
c© 2013 3D-LAB

Mitigating Uncertainty via Compromise Decisions in
Two-stage Stochastic Linear Programming

Suvrajeet Sen, Yifan Liu
Daniel J. Epstein Department of Industrial and Systems Engineering

University of Southern California, Los Angeles, 90089
s.sen@usc.edu, yifanl@usc.edu

Stochastic Programming (SP) has long been considered as a well-justified yet computationally challenging

paradigm for practical applications. Computational studies in the literature often involve approximating a

large number of scenarios by using a small number of scenarios to be processed via deterministic solvers, or

running Sample Average Approximation on some genre of high performance machines so that statistically

acceptable bounds can be obtained. In this paper we show that for a class of stochastic linear programming

problems, an alternative approach known as Stochastic Decomposition (SD) can provide solutions of similar

quality, in far less computational time using ordinary desktop or laptop machines of today. In addition to

these compelling computational results, we also provide a stronger convergence result for SD, and introduce

a new solution concept which we refer to as the compromise decision. This new concept is attractive for

algorithms which call for multiple replications in sampling-based convex optimization algorithms. For such

replicated optimization, we show that the difference between an average solution and a compromise decision

provides a natural stopping rule. Finally our computational results cover a variety of instances from the

literature, including a detailed study of SSN, a network planning instance which is known to be more

challenging than other test instances in the literature.

Key words : Stochastic Linear Programming, Stochastic Decomposition, Computational Experiments

1. Introduction

For certain stochastic linear programming (SLP) models, the associated probability space

can be so large that identifying a deterministically verifiable optimum is impossible (in

reasonable time) using any foreseeable computer. Nevertheless, such models arise in a

variety of applications, and new notions of approximate (or near)- optimality, supported

by statistically verifiable bounds, are important for decision support. While statistical

optimality bounds have been studied in the literature for a while (e.g. Higle and Sen

(1991b), Higle and Sen (1996a), Mak et al. (1999), Kleywegt et al. (2002), Bayraksan

1

Sen and Liu: Mitigating Uncertainty in SLP
2 c© 2013 3D-LAB

and Morton (2011), Glynn and Infanger (2013)), their use in identifying near-optimal

decisions for realistic instances has been limited. It is important to note the emphasis on

“decisions” as opposed to identifying bounds within which the optimal value might belong.

Prior attempts to use statistical optimality bounds have either required some genre of

high performance computing or they have been limited to relatively small instances (few

decision variables/constraints and a small number of random variables or scenarios). The

goal of this paper is to demonstrate that for certain classes of two-stage SLP models, we are

able to provide statistically verifiable, near-optimal decisions even if uncertainty is modeled

using continuous random variables. Building on previous work connected to stochastic

decomposition, we introduce the notion of a “compromise” decision, which allows us to not

only confirm statistical bounds, but also recommend decisions with significant confidence.

We report computational results for a suite of SLP test problems from the literature,

and show that statistically verifiable decisions can be obtained within a few minutes of

computing on desktops, laptops, and similar “run-of-the-mill” computing devices.

The class of SLP models discussed below fall under a category known as fixed-and-

relatively-complete recourse models, and may be stated as follows.

Min f(x) = c>x + E[h(x, ω̃)] (1a)

s.t. x∈X = {Ax ≤ b} ⊆<n1 (1b)

where, ω̃ denotes an appropriately defined (vector) random variable, and the function h is

defined as follows.

h(x,ω) = Min d>y (2a)

s.t. Dy= ξ(ω)−C(ω)x (2b)

y≥ 0, y ∈<n2. (2c)

The notation ω denotes any outcome of the random variable ω̃. The fixed-and-relatively-

complete recourse assumption of the above model implies that the matrix D is deter-

ministic, and the function h has finite value for all solutions x satisfying Ax ≤ b. As is

common in decision-making under uncertainty, it is necessary to make decisions (x) in the

first stage before an outcome ω is observed, and subsequently, the second stage decisions

(y) are made. The quantity ξ(ω)−C(ω)x often denotes the “position of resources” after

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 3

the decision x has been made, and the outcome ω has been observed. In the terminology

of Approximate Dynamic Programming (ADP, Powell (2007)), this vector may be looked

upon as the “post-decision state” of a two-stage model.

In order to motivate this paper, we will begin by presenting some computational results

for a well known instance called SSN (Sonet Switched Network, Sen et al. (1994)). This

model has been used for a variety of purposes in the past; it was one of the early SLP

models validated using discrete-event simulation; others have used it to illustrate whether

certain algorithms scale well (Linderoth et al. (2006) and Nemirovski et al. (2009)), and

still others have used it to illustrate what makes certain SLP models difficult for sampling-

based algorithms (Shapiro et al. (2002)). More recently the Defense Science Board Report

(Grasso and LaPlante (2011)) recommends SSN and models of this genre for DoD trade-

off studies in which a very large number of contingency scenarios are necessary as part

of the analysis to accompany recommendations for investment in new technologies. For

these reasons, and because of its roots as an industrial-sized instance (SSN grew out of a

1990’s Metropolitan network in Atlanta, GA), we use the performance on SSN to illustrate

that decision-makers need not shy away from some classes of SLP models; certain current

algorithms are up to the task of providing statistical optimality bounds within reasonable

time using ordinary computing machinery. This evidence is provided in section 2.

Following a discussion of SSN, section 3 presents the methodology, which is based on

Stochastic Decomposition (SD, Higle and Sen (1991a), Higle and Sen (1994), Higle and

Sen (1996b)). While SD has close ties to some Simulation Optimization approaches (e.g.

Shapiro and de Mello (1998), and approaches described in Kim et al. (2011)), these methods

are more general in scope than SD because the latter focuses strictly on two-stage SLP

models. This focus facilitates computations with large scale problems arising in practical

applications. In addition to the ability to scale up using linear programming, focusing

on SLP models also allows us to show that the algorithm produces a sequence which

converges to a unique limit (with probability one). Moreover, as outputs of the algorithm,

our procedure provides decision-makers two alternative choices which either reinforce each

other, or provide indicators of “indecision”. One of the alternative decisions will be the

“compromise” decision, and the other will be an “average” solution. We will show that

when these decisions are similar (i.e. they reinforce), they are both very close to optimum.

On the other hand, if these decisions are not similar, then we suggest greater precision

Sen and Liu: Mitigating Uncertainty in SLP
4 c© 2013 3D-LAB

in calculating solutions for each replication, and these should be undertaken by using the

“warm starting” capability that is naturally available via SD. Following our presentation of

the methodology, we present further computational results in section 4. The test instances,

which are available in the literature cover a variety of applications ranging from inventory

control and supply chain planning to power generation planning, freight transportation,

and others. All of the test instances reported here require an algorithmic treatment of

multi-dimensional random vectors, and hence instances with the simple recourse property

(e.g. news-vendor models) are not included in this study.

This paper addresses several questions of relevance to the SP community.

1. Given that SP problems can be demanding, greater accuracy may call for re-runs that should re-use

previously discovered structures of an instance. How can such structures be re-used for the purposes of

warm-starting?

2. Given that SLP models have a very special (convex) structure, should sampling-based methods be

designed to take advantage of such structure?

3. Sampling-based SP methods borrow variance reduction techniques from the simulation literature.

Are there other variance reduction techniques that are appropriate for SP, but are not considered in the

simulation literature?

4. Parallel architectures in SP have traditionally been used to process bunches of scenarios. Are there

other ways to use parallel architectures which permit the solution of industrial-strength models?

5. Should SP algorithms report lower bound estimates for the “true” problem so that the quality of a

recommended decision can be ascertained?

We will present the conclusions of this paper by placing our contributions in the context

of these questions. For now, we begin by applying sampling-based algorithms to SSN.

2. Motivation: Computations with a Practical SLP

Formally speaking, SSN is a two-stage stochastic linear programming model. The basic

“operations”-issue in the SSN model is to recommend link sizes of a given network so

that the network will experience the least number of “lost calls” (in expectation), while

operating under a given budget constraint. We refer the reader to Appendix A for its

mathematical formulation. In the SP literature, such models are often classified as “here-

and-now” models because the link capacities must be decided before actual demands are

known. Models of this type, which are based on introducing randomness to linear pro-

gramming models, must contend with multi-dimensional random vectors, which, in the

SSN model represent point-to-point demand uncertainty. In this particular example, there

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 5

are 86 point-to-point pairs, which, by standards of LP models, is modest. As is common

today, these demands are available through forecasting systems, and errors in forecasts

may be treated as independent random variables. For the model presented in Sen et al.

(1994), each marginal error random variable was deemed to be sufficiently approximated

by a discretization using about 5-9 outcomes per demand pair. It is not difficult to see

that the total number of scenarios involves an astronomical number of parametric LPs

(approximately O(1071)). Even if one had access to an exascale (1018 flops) computing

platform, it would be pointless trying to seek a solution whose optimality could be verified

in a deterministic sense. It is therefore pragmatic to seek approximate solutions which are

near-optimum in a statistical sense. Other approximations to SLP have been suggested via

linear decision rules (Kuhn et al. (2011), Chen et al. (2008)). However, these approaches

are motivated by scalability, rather than statistical bounds of optimality.

The remainder of this section uses the SSN model to illustrate the level of computing

resources that may be necessary to provide decision support using sampling approaches for

two-stage SLP models. The two classes of algorithms presented below are Sample Average

Approximation (SAA) and Stochastic Decomposition (SD).

2.1. Sample Average Approximation

Conceptually, the SAA approach consists of replacing the “Expectation”, the objective

function (1a), by a collection of instances which optimize a sample average approximation

defined by a relatively small number of outcomes, say N . Then the function FN(x) below

is known as the sample average approximation, and the following optimization problem is

an SAA instance.

Min
x∈X

FN(x)≡ c>x+
1

N

N∑
i=1

h(x,ωi) (3)

For the SSN model, one has c= 0, and in this sense the statement of (3) is agnostic to this

fact. The SAA process may be summarized as follows.

Sen and Liu: Mitigating Uncertainty in SLP
6 c© 2013 3D-LAB

1. Choose a sample size N , and choose a number M denoting the number of replications (batches).

2. (Optimization Step). For m= 1, . . . ,M create an approximation Fm
N (x), and solve an SAA instance

(3). Let F̂m
N denote the optimal value of replication m.

3. (Statistical Validation Step). Using {F̂m
N }Mm=1 estimate a Lower Bound confidence interval. Using M

solutions (i.e. potential decisions) from the Optimization Step, estimate the best Upper Bound confidence

interval to a specified level of accuracy.

4. If the lower end of the estimated Lower Bound confidence interval is acceptably close to the upper

end estimated Upper Bound confidence interval, then stop. Else, increase the sample size N and repeat

from step 2.

Because the sampling step is independent of the optimization step, SAA is sometimes

referred to as an ”external” sampling algorithm. Some presentations in the literature refer

to the “Optimization Step” as the “Training Step”, and the “Statistical Validation Step” as

simply the “Validation Step” (see Boyd (2013)). While the notion of replications is often not

emphasized in some segments of the literature, decision-makers who have experience with

sample-based algorithms (e.g. simulation) seek variance estimates of any metric reported

by an algorithm, which in this case consists of lower bound and upper bound estimates.

The calculation in step 4 reflects the worst case optimality gap, which we refer to as the

Pessimistic-Gap. We should also note that variance reduction techniques, such as Latin

Hypercube Sampling (LHS), have been found to reduce variance of SAA estimates (Lin-

deroth et al. (2006)). When M is in the neighborhood of 30, one typically invokes the

central limit theorem for estimating a Lower Bound confidence interval; however, when M

is much smaller (say 10), then, confidence intervals should be derived using the χ2.

In order to complete the numerical illustration of SAA for SSN, we now draw upon

results from Linderoth et al. (2006) where the Lower and Upper confidence bounds (Table

1) were reported using M ∈ [7,10] and Latin Hypercube Sampling. The Optimization Step

for their study was performed using the Asynchronous Trust Region algorithm of Linderoth

and Wright (2003), and the Statistical Validation is in line with the Mak et al. (1999). It

is well known that the optimality gap estimates reduce with increases in sample size as

shown in Table 1, and with a significant increase in sample size (from 1000 to 5000), we see

a significant improvement in the “pessimistic gap” in Table 1. The chance that the actual

gap exceeds the pessimistic gap is very small. The last row corresponding to a sample size

of 5000 yields a pessimistic gap of about 2%, suggesting near optimality with very high

probability.

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 7

Sample Size (N) Lower Bound Upper Bound Pessimistic-Gap

50 10.10(+/-0.81) 11.380(+/-0.023) 2.113

100 8.90(+/-0.36) 10.542(+/-0.021) 2.023

500 9.87(+/-0.22) 10.069(+/-0.026) 0.445

1000 9.83(+/-0.29) 9.996(+/-0.025) 0.445

5000 9.84(+/-0.10) 9.913(+/-0.022) 0.195

Table 1 SAA with Latin Hypercube Sampling

The results of Linderoth et al. (2006) were obtained using a computational grid with

hundreds of desktop PCs, although no more than one hundred machines were in oper-

ation at any one time. Even so, each SAA instance of the final row (with N = 5000)

required about 30-45 minutes of wall clock time for solving one SAA instance of SSN. As

it turned out, the solutions provided by the replications (about 6) were quite disparate

even though these experiments were done using Latin-Hypercube Sampling. The use of a

computational grid to establish the above results was a remarkable feat, solving millions

of LPs on geographically dispersed and architecturally diverse machines. However, it also

underscores the challenge of using SAA for real-world applications; if one resorts to sam-

pling/simulation without exploiting the structure of the optimization problem, then the

computing resources required to solve these instances can easily out-strip the available

resources, thus restricting the potential of the SLP modeling paradigm.

2.2. Stochastic Decomposition (SD)

In keeping with the “high-level” description of SAA above, we provide a “high-level”

description of SD. As with SAA, one may choose the number of replications M , but instead

of choosing a sample size, we allow the SD algorithm to determine what is a sufficiently

large sample size during the Optimization Step. Unlike SAA, SD does not optimize one

sample average function Fm
N ; instead it optimizes a sequence of Value Functions (VF)

approximations fmk (x), where k denotes an iteration counter during replication m. A VF

approximation in iteration k will consist of two terms: the linear first stage cost c>x, and

the second term will be the pointwise maximum of a finite number of linear (formally affine)

functions representing the second stage expected recourse function. We refer to each linear

piece as a sample average price function which represents a subgradient of some sample

Sen and Liu: Mitigating Uncertainty in SLP
8 c© 2013 3D-LAB

average approximation observed by the algorithm. These sample average price functions

will resemble Benders’ cuts, but there are several differences as summarized in the Remark

provided in the following section. We will discuss further algorithmic details there; for the

moment however, we note that each VF approximation will satisfy the following minorizing

property

fmk (x)≤ Fm
k (x), (4)

where Fm
k denotes a sample average function with a sample size of k (as in (3)). For iteration

k + 1, the next sample (of size k + 1) will use all k previously generated outcomes and

add one more (generated independently of previous outcomes) to arrive at a sample size of

k+ 1. The earliest version of SD (Higle and Sen (1991a)) optimized the VF approximation

of iteration k to obtain the next candidate solution xm,k. More recent versions, including

this paper, are based on Higle and Sen (1994) where optimization of a regularized version

produces the next candidate solution. A subset of the sequence of candidate solutions,

denoted x̂m,k, will be refereed to as “incumbents” (or incumbent solutions). In these earlier

papers, it has been shown that if k→∞ then, we have asymptotic consistency of the values

i.e., if x̂m,k → xm, then limk→∞ f
m
k (x̂m,k) = limk→∞F

m
k (x̂m,k) = E[h(xm, ω̃)] (wp1). A few

more details regarding the algorithm are provided in the following section (see also Birge

and Louveaux (1997)).

While results like consistency are based on long-run behavior of an algorithm, one stops

each replication after a finite number of steps, which will be based on detecting that the

approximations obtained for the current replication have stabilized sufficiently, based on

a given tolerance level. This test is known as an In-Sample stopping rule (Higle and Sen

(1999)), and signals whether a particular replication has enough information to propose

a solution which we denote by xm. If m<M (the desired number of replications), then,

we proceed to the next replication; otherwise SD recommends a “compromise decision” xc

which presents a compromise between all replicated decisions xm. Using xc as the proposed

decision, we calculate a 95% confidence interval for the upper bound f(xc). In addition, a

95% confidence interval for a lower bound estimate on the optimal value is also reported.

As with SAA computations in the previous subsection, we will report the pessimistic gap.

A high-level description of SD is provided next.

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 9

1. (Initialize). Let m denote a counter of completed replications, and set m= 0.

2. (Out-of-Sample loop). If the current number of completed replications is less than M , then increment

m, and initialize (or continue) the next replication (go to step 3). Else, go to step 6.

3. (In-Sample loop). Update the available sample by adding one sampled outcome (independent of

previously generated outcomes), and update empirical frequencies.

4. (Update Value Function (VF) Approximation). Using previously generated approximations and the

new outcome, update the VF approximation fmk (x) = c>x+max{hmt,k(x), t∈ Jk}, where ht,k denote sample

average price functions (see (8)), and Jk is an index set with |Jk| ≤ n1 + 3.

5. (Optimization Step). Optimize a regularization of the VF approximation (see (5)), and update an

incumbent decision for the first stage.

6. (In-Sample Stopping Rule). If an In-Sample stopping rule is satisfied, then output a lower bound

estimate ˆ̀m, an incumbent xm for replication m, and continue to step 7. Else repeat from step 3.

7. (Out-of-Sample Stopping Rule). If the number of replications is less than M , then go to step 2. Else,

using the replicated solutions {xm} calculate a compromise decision (denoted xc) and with this solution

estimate a 95% Upper Bound confidence interval of specified accuracy. Using {ˆ̀m}Mm=1, the lower bound

estimates calculate a 95% Lower Bound confidence interval. If the Pessimistic-Gap is acceptably small

then stop. Else, decrease the tolerance of the In-Sample Stopping Rule, reset m= 0, and resume all M

replications from step 2.

This algorithm was executed for the SSN instance using three increasingly tighter relative

tolerances: loose (0.01), nominal (0.001), and tight (0.0001), and the results for each run

appear in Table 2.

Stopping Avg. Sample Size Lower Bound Upper Bound Pessimistic- CPU Time (s)

Tolerance (Std Dev) Gap (Std Dev)

Loose 1030.83(182.31) 9.345(+/-0.240) 9.951(+/-0.05) 0.896 30.11(6.63)

Nominal 2286.90(341.71) 9.736(+/-0.118) 9.927(+/-0.05) 0.359 90.50(20.56)

Tight 3305.47(617.17) 9.852(+/-0.107) 9.923(+/-0.05) 0.228 162.01(55.43)

Table 2 SD with Common Random Numbers (on a desktop PC with CPLEX12.4)

Upon examining Table 2, we first observe that the average sample size (per replica-

tion) increases with increased precision, as expected. The solution quality (as seen in the

upper bound) does not improve dramatically from the first row to the third. However, the

improvements in lower bounds are significant, ultimately, mitigating the uncertainty about

the quality of the solution. In this sense, it reinforces a common observation in difficult

Sen and Liu: Mitigating Uncertainty in SLP
10 c© 2013 3D-LAB

optimization models: proving optimality is what requires extensive computations for diffi-

cult instances. Nevertheless, the average CPU secs. for even the row with “tight” tolerance

is under 3 minutes on a desktop PC with the following specifications: Intel Core i7-3770S

CPU@3.10GHz (Quad-Core), and 8 GB Memory @1600MHz. Since these processors are

faster than the ones used in the computational grid study (Linderoth et al. (2006)), we also

ran the same SD code on a Mac Book Air running Intel Core i5 CPU@1.8GHz (Dual-Core)

with 4 GB Memory @1600 MHz. Such (laptop) processors of today could be considered

on par with (or slightly slower) than the standard Pentium IV processors of 2004/2005

vintage. The average solution times and solution quality for such a processor is reported

in Table 3. Notice that the solution quality is very similar to that reported in Tables 1 and

2. Indeed, the average lower bound as well as the pessimistic lower bound (in Table 3) are

the best reported to date for SSN. Finally, the increase in CPU time (secs.) is marginal

with “tight” tolerance, requiring just over 3 mins. of CPU time on average. In contrast, the

grid study (Linderoth et al. (2006)) reported wall-clock time of the order of 30-45 minutes

per replication using about 100 processors at any given time.

We recognize that it is impossible to provide precise characterization of the level of

speed-up for several reasons: a) in addition to processor speeds, LP software has also made

significant progress since 2004/2005, and b) there is communications overhead involved

with using the grid. Nevertheless, it is worth noting, as in a recent PCAST report Holdren

et al. (2010), that software advances are just as meaningful for challenging numerical

problems as improvements in processing power. As a rough estimate of such advances, let

η represent the fraction of time that processors are either idle or communicating during

the shortest run (30 mins. of wall-clock time) on the grid. Then the speed-up factor for

software (LP-solvers and SD) using a laptop could be approximated as 30
3
× 100(1− η).

To see how this might compare with the rate of Moore’s Law, first note that the speed

of processors used for Table 3 is about the same or slower than standard processors of

2004/2005 vintage. Hence the speed-up can be attributed entirely to software progress,

which implies that as long as η ≤ 0.872 (i.e. idling/communications are less than 87.2%)

speed-ups in LP/SLP software outpace Moore’s Law which calls for a factor of at least 128

in 10.5 years.

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 11

Stopping Avg. Sample Size Lower Bound Upper Bound Pessimistic- CPU Time (s)

Tolerance (Std Dev) Gap (Std Dev)

Loose 1023.33(167.62) 9.366(+/-0.244) 9.953(+/-0.050) 0.881 32.73(6.97)

Nominal 2353.43(343.33) 9.764(+/-0.120) 9.928(+/-0.050) 0.334 109.96(26.31)

Tight 3137.50(605.17) 9.876(+/-0.107) 9.925(+/-0.050) 0.206 189.79(74.57)

Table 3 SD with Common Random Numbers (on a MacBook Air with CPLEX12.4)

Let us now return to a closer examination of Table 2. The stepped curve in Figure 1 shows

the spread of objective function estimates obtained for each tolerance level reported in

Table 2. Despite the fact that SD is an asymptotically convergent algorithm, the objective

function estimates (for each terminal incumbent) show variability due to the fact that each

run is terminated upon achieving some level of accuracy in finitely many iterations. For

each tolerance setting (Loose, Nominal and Tight), the objective function estimates are in

the range [10.100, 10.460], [9.994, 10.330] and [9.950, 10.310] respectively, and note that

both upper and lower limits of these ranges move in the appropriate direction (lower).

Moreover, from Table 2 we notice that lower bounds increase steadily, starting with 9.345

(for loose tolerance) rising to 9.736 (for nominal tolerance), and finally 9.852 (for tight

tolerance). Thus increasing precision in SD leads to less biased estimates of lower bounds.

Moreover, comparing these lower bounds to the last two rows (N = 1000,5000) in Table 1,

we observe that lower end of confidence intervals for lower bounds in Table 1 are in fact

weaker than those reported in Tables 2 and 3.

Figure 2 also shows three lines on the far left of the figure. These correspond to the

upper bound (average value) reported in Table 2. They correspond to objective estimates

for compromise decisions at each tolerance setting. As shown in Figure 1 the compromise

decisions for each setting yields a lower objective function estimate than the incumbent

solutions for the corresponding run. The compromise decisions are not only superior, but

they also possess another important property: when the compromise decision and the aver-

age solution are reasonably close, we can also conclude that both decisions are reasonably

good. We will establish this result in the following section. For now, examining the specific

instance at hand (i.e. SSN), we present the maximum relative error between the compro-

mise and average solutions in Figure 2. For variables that are almost zero we report the

absolute error instead of the relative error. In these figures, the horizontal axis displays

Sen and Liu: Mitigating Uncertainty in SLP
12 c© 2013 3D-LAB

9.9 10.0 10.1 10.2 10.3 10.4 10.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

9.9 10.0 10.1 10.2 10.3 10.4 10.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

9.9 10.0 10.1 10.2 10.3 10.4 10.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Frequency of SSN objective function estimates for Loose, Nominal and Tight tolerances

Estimated Objective

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Tight

Nominal

Loose

Tight

Nominal

Loose

Loose Tolerance
Nominal Tolerance
Tight Tolerance

Figure 1 Cumulative frequency of SSN objective function estimates for Loose, Nominal and Tight tolerances

the index of first stage decision variables, and the vertical axis represents the difference

between compromise and average solutions for each first stage variable. Observe that for

each tolerance setting, the maximum relative differences are on the order of 10−4 to 10−5.

Since the relative error shown for all tolerance levels is pretty minimal, we can infer high

quality decisions from compromise solutions for each tolerance level, even though the Lower

Bound confidence intervals are weaker for the loose and nominal tolerances. Thus even for

SSN, an instance considered to be ill-conditioned, the nominal setting provides reasonable

accuracy. Such decision support is intended to mitigate the effects of uncertainty, without

requiring extensive computational resources.

3. Algorithmic Concepts in Stochastic Decomposition

This section provides the algorithmic background for the computational results presented

for SSN, as well as the more extensive computations presented in the next section. The

algorithmic content will be presented in two subsections: one dealing with algorithm design

and convergence, and another on stopping rules. The latter will be divided into two further

subsections dealing with In-Sample and Out-of-Sample aspects of stopping within the SD

framework. Before getting into the details, we mention some of the critical assumptions

for SD.

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 13

0 20 40 60 80

0.
00
00

0.
00
15

0.
00
30

Index of solution vector for loose tolerance

R
el

at
iv

e/
ab

so
lu

te
 e

rr
or

Maximum relative error: 2.936506e-04
Maximum absolute error: 2.99852e-03

0 20 40 60 80

0.
00
00

0.
00
15

0.
00
30

Index of solution vector for nominal tolerance

R
el

at
iv

e/
ab

so
lu

te
 e

rr
or

Maximum relative error: 5.857978e-05
Maximum absolute error: 1.99228e-04

0 20 40 60 80

0.
00
00

0.
00
15

0.
00
30

Index of solution vector for tight tolerance

R
el

at
iv

e/
ab

so
lu

te
 e

rr
or

Maximum relative error: 4.85385e-05
Maximum absolute error: 1.580362e-04

Figure 2 Relative/absolute error between compromise and average solutions calculated for Loose, Nominal and

Tight tolerances

Assumptions. In addition to the fixed, and relatively complete recourse assumption, the

set of first stage solutions, X, and the set of outcomes Ω are assumed to be compact and

moreover, the recourse function h is assumed to be non-negative. The last assumption can

be easily dropped by recognizing that a lower bound can always be added to the recourse

function so as to ensure non-negativity. �

3.1. Algorithmic Details of SD and Convergence

For this, and the following section, we will suppress the index m because our focus will be

on calculations during any replication. At iteration k, a VF approximation will be given

by the pointwise maximum of some linear (formally affine) functions, that is, fk−1(x) =

Sen and Liu: Mitigating Uncertainty in SLP
14 c© 2013 3D-LAB

c>x+ max{hj,k−1(x), j ∈ Jk−1}. With each index j, we will record t(j) as the iteration at

which the linear function was created. This quantity t(j) will also remind us of the sample

size used to create the jth function. It was shown in Higle and Sen (1994) that one only

needs n1 +3 indices (at most) in Jk−1, where n1 denotes the number of decision variables in

the first stage, and functions that are deleted will be “forgotten” for all future iterations.

Any iteration of the SD algorithm works like an election. At iteration k, we start with

a previously chosen incumbent decision and a VF approximation fk−1(x). The algorithmic

strategy is to present a challenge to the incumbent by finding a solution to the following

optimization problem.

xk ∈ argmin{fk−1(x) +
σ

2
‖x− x̂k−1‖2 | x∈X} (5)

The decision xk is referred to as the candidate. The quadratic term in the above problem

is variously referred to as a proximal term or Tikhonov regularization. The quantity σ≥ 1

and is chosen adaptively depending upon the progress observed during the algorithm.

Formally, it should also be indexed by k, but since we will not discuss the procedure to

update σ, we prefer to maintain an un-indexed parameter.

We will pit the two competing decisions x̂k−1 (incumbent) and xk (candidate) against

each other using an updated value function fk(x). If the candidate happens to be signif-

icantly better (lower value) than the incumbent (see (9)), then we accept it as the new

incumbent. Otherwise, there is no incumbent update. The first question at this point is:

how does one calculate and update the VF approximations fk(x)? We accomplish the

update in the following steps:

1. Generate a new outcome ωk, independent of all previous outcomes.

2. Let πk denote the optimal conditional shadow price for the second stage LP, given inputs (xk, ωk).

Assuming Vk−1 (possibly empty) is available from previous iterations, Vk← Vk−1 ∪πk.

3. Derive two sample average price functions denoted hν,k, h0,k, with the former representing the can-

didate, and the latter representing the incumbent. We simply present calculations for hν,k, and recognize

that h0,k is calculated similarly (by replacing xk by x̂k−1 in (7)).

hν,k(x) =
1

k

k∑
i=1

π>i,k[ξ(ω
i)−C(ωi)x] (6)

where, i= 1, . . . , k and πi,k is a conditional shadow price for outcome i, and is calculated as follows.

πi,k ∈ argmax {π>[ξ(ωi)−C(ωi)xk] | π ∈ Vk} (7)

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 15

4. Delete one of those linear functions hj,k−1 for which the dual multiplier obtained by solving (5) is

zero. Create an updated index set Jk. (One can ensure that at most n1 + 3 indices are present in Jk.)

5. Let t(j) denote the iteration at which inequality j ∈ Jk was created. Under the assumption that

h≥ 0 for all (x,ω), the functions j /∈ {0, ν} are updated as follows.

hj,k(x)←
(
t(j)

k

)
hj,t(j)(x), j ∈ Jk\{0, ν}. (8)

Remark. The approximations used in SD depends critically on sample average price

functions (6) derived for both the candidate and the incumbent solutions. These price func-

tions are similar in spirit to Benders’ cuts; however, they are different in several important

ways: a) they use the empirical distribution induced by the sample, b) as seen in (7) they

can be derived by using approximately optimum shadow prices (in Vk), and c) as itera-

tions proceed, the sample average price functions that were generated in past iterations

are given less weight because they were created using a smaller sample size (than k). Thus

unlike cuts in Benders’ decomposition, the sample average price functions ultimately fade

away, thus avoiding the persistence of poor (sampled) approximations. And, because sam-

ple average price functions evolve with every iteration, we do not refer to them as “cuts”

(as in traditional Benders’ decomposition) because they do not cut away any part of the

epigraph permanently. �

Let ∆k = fk−1(x
k)−fk−1(x̂k−1) denote the predicted change under the VF approximation

fk−1. We allow σ ≥ 1 to be chosen in such a way that ∆k ≤ 0. Then the winner of the

election using the approximation fk will be the next incumbent x̂k as obtained below, with

a fixed parameter ρ∈ (0,1) (set at 0.2 in our experiments).

x̂k =

x
k if fk(x

k)< fk(x̂
k−1) + ρ∆k

x̂k−1 otherwise
(9)

In the event that the incumbent changes, the positioning of the incumbent and candidate

inequalities in Jk must also be swapped. We refer to Higle and Sen (1994) for a basic proof

of asymptotic convergence (wp1). We now present a uniqueness result to give the reader a

sense of the type of convergence that is possible.

Theorem 1. Assuming X is a compact set, and the fixed-and-complete recourse

assumption holds. In addition, assume that σ ≥ 1, and the recourse function h(x,ω) is

Sen and Liu: Mitigating Uncertainty in SLP
16 c© 2013 3D-LAB

non-negative for all x∈X almost surely. Then the sequence converges to a unique solution

with probability one.

Proof. The only case of interest is one in which the incumbent sequence is infinite. Since

X is compact, the sequence of incumbent solutions must have a convergent subsequence.

In addition, noting that subgradient inequalities are generated at incumbents in every

iteration, and the sample size increases with k, it follows that for any convergent incum-

bent subsequence {x̂k−1}k∈K1 → x̂ we have {f(x̂k−1)}k∈K1 → f(x̂) = f̂ with probability

one (i.e., consistency of SD approximations). Moreover, for any other convergent subse-

quence, indexed by K2 say, (9), and the continuity of the expectation functional imply that

{f(x̂k−1)}k∈K2→ f̂ (wp1).

Now let K denote the sequence of solutions where the incumbent changes, and for τ > 1,

let k0, k1, k2, . . . , kτ ∈K. Consider the quantity

γτ =
1

τ

τ∑
`=1

(
fk`−1(x̂

k`)− fk`−1(x̂k`−1)
)

(10a)

=
1

τ
[fkτ−1(x̂

kτ)− fk1−1(x̂k0)] +
1

τ

τ−1∑
`=1

(
fk`−1(x̂

k`)− fk`+1−1(x̂
k`)
)

(10b)

Because of the consistency of objective estimates for incumbent solutions shown above,

the summation term in (10b) must approach zero (wp1) as τ →∞. Moreover the com-

pactness of X and the relatively complete recourse assumption implies that the difference

fkτ−1(x̂
kτ)− fk1−1(x̂k0) is bounded. Hence if τ →∞, then γτ → 0 (wp1).

Now with σ≥ 1, the optimality conditions for (5) at a candidate solution xk imply that

(see equation (2.6) on page 115 of Higle and Sen (1996b)).

fk−1(x
k)− fk−1(x̂k−1)≤−‖xk− x̂k−1‖2 ≤ 0. (11)

Focusing on those iterations in which incumbents change (as in the index set K above),

and using (10) and (11), and noting that x̂k`−1 = x̂k`−1 for k` ∈K, we conclude that

γτ ≤−
1

τ

τ∑
`=1

‖x̂k` − x̂k`−1‖ ≤ 0, k ∈K.

Hence as τ →∞, we have γτ → 0 (wp1), and therefore we conclude that the average

change between all incumbent solutions vanishes (wp1). This proves the result. �

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 17

A few comments on analytical predictions (as opposed to computational experiments)

are also in order. In this regard, recall that any SAA implementation separates the com-

putational work along two dimensions: numerical optimization and statistical validation.

Royset and Szechtman (2013) explores a variety of combinations based on asymptotic rates

for using numerical optimization within SAA. A related method, known as Retrospective

Approximations (RA), has been studied in Pasupathy (2010) where the sample average

function is allowed to use larger sample sizes as iterations proceed. It is easy to see that RA

has similarities with both SAA as well as SD. Like SAA, it seeks a near-optimal solution to

an approximate problem of the same form as SAA (3); although like SD, it uses a growing

set of outcomes. Indeed, RA is perhaps closest in spirit to a precursor of SD known as a

Stochastic Cutting Plane method (SCP, Higle and Sen (1996b)), and for smooth problems,

one might expect SCP to have similar convergence rates as RA, asymptotically.

3.2. Stopping Rules

As with any decision-making algorithm, SD must be terminated in finitely many iterations.

Because the expectation operator requires multi-dimensional integration, providing deter-

ministic certificates of optimality for practical instances (with several random variables)

is intractable in general. As a result, a tandem of stopping rules, one based on In-Sample

estimates, and the other on Out-of-Sample tests have been studied previously in a series of

papers (Higle and Sen (1991b, 1996a, 1999)). We will comment on the performance of these

tests in the appropriate subsections below. At this point, it suffices to say that previously

known hurdles (e.g. the inability to reconcile multiple solutions from replications, relatively

large gap estimates, and in some cases time-consuming LP-based bootstrap processes) have

been overcome through a fresh view of the Out-of-Sample tests. These stopping rules are

presented next.

3.2.1. In-Sample Stopping Rule. As proposed in Higle and Sen (1999), the In-Sample

rule is intended to address two issues:

1. (Shadow Price Stability.) To assess whether the approximation due to (7) exhibits

any sensitivity to additional information in the form of new shadow prices.

2. (Primal-Dual Gap Stability.) To recognize whether the estimated primal and dual

solutions associated with the (5) are sensitive to variability due to sampling.

Sen and Liu: Mitigating Uncertainty in SLP
18 c© 2013 3D-LAB

Shadow Price Stability. At iteration k, we assess the impact of new information (new

outcomes, new first-stage candidate solutions and most importantly new shadow prices)

on VF approximations. Note however that the first term of any VF approximation is linear

(c>x) and c is known. Hence the predictive capacity of a VF approximation depends on

how well the shadow prices in Vk predict the recourse function realizations h(x,ω) for

any pair (x,ω) encountered by the algorithm. For any set of runs, suppose that we fix a

tolerance level denoted ε. For such a run, let q ∈ [2, k − 1] define a window of iterations

which will be used to ascertain whether further iterations are meaningful for the purpose

of improving the approximation of the recourse function. Towards this end we observe the

difference in approximation-quality when the recourse function is estimated using Vq versus

the larger set Vk in (7). We will choose q to be large enough so that some recourse function

observations have positive value, and calculate the following ratio.

Sk(x) =
k∑
i=1

max{π>[ξ(ωi)−C(ωi)x]|π ∈ Vk} (12a)

S−k (x) =
k∑
i=1

max{π>[ξ(ωi)−C(ωi)x]|π ∈ Vq} (12b)

Rk(x) =
S−k (x)

Sk(x).
(12c)

These ratios are calculated whenever we calculate a subgradient at either a candidate

(xk) or an incumbent (x̂k−1). By assumption, Sk(x) > 0, and since we have S−k ≤ Sk, we

have 0≤Rk(x)≤ 1. Then, we assess the stability of R(k) by examining its sample mean

and variance over the most recent w(ε) iterations. When these measures are sufficiently

close to target thresholds (0.95 for the sample mean, and 0.00001 for the sample variance),

then we declare the set of shadow prices to be stable. Appendix B provides figures showing

the evolution of Rk associated with candidate and incumbent solutions for the industrial-

strength instances in our study. In our implementation, we use w(ε) ∈ {64,256,512} for

ε∈ {Loose (0.01),Nominal(0.001),Tight(0.0001)} respectively.

Primal-Dual Gap Stability. Formally we wish to estimate the probability P (f(x̂)−f ∗ ≤

ε) where f ∗ denotes the optimal value of the “true” problem. There are several computa-

tional hurdles with this calculation, all of which can be overcome using our non-parametric

statistical approach based on bootstrapping. Recall that (5) is defined using several sample

average price functions. As a result, this problem and its dual are random objects due to

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 19

variability of each sample average price function. We will consider a primal-dual pair of

solutions (x̂k−1, θ̂k, λ̂k) which are primal and dual optimum for (5) in iteration k. Since

this instance is subject to variability (due to sampling), we wish to ascertain whether the

variability of the gap estimate is small enough that this pair of primal and dual solutions

is close enough to optimality. To do so, we use the general concept of bootstrapping as set

forth in Efron (1979) (see also Singh (1981)). In the context of SD, bootstrapping involves

re-sampling each sample average price function in Jk to create a re-sampled instance of (5).

This application of bootstrapping was first used in Higle and Sen (1991b) where primal

and dual pairs were both linear programs. Because re-sampled versions of linear program-

ming approximations may render the dual multipliers (θ̂k, λ̂k) infeasible for the re-sampled

approximation, the above implementation of the bootstrapping procedure required solving

each re-sampled dual problem, thus making it somewhat computationally burdensome. In

a subsequent paper, Higle and Sen (1999) proposed the primal-dual pair of QPs below

which overcome the computational demands posed by the earlier LP counterpart.

Let Bk denote the matrix of sample average price functions (subgradients) {βj}j∈Jk and

Hk denote the vector of scalars hj,k(x̂
k−1). As shown in Higle and Sen (1994), the set

Jk has cardinality of at most n1 + 3, thus maintaining a finite bound on the size of the

primal master problem. Let A and b define the polyhedron X = {Ax≤ b} and let bk denote

the quantity b−Ax̂k−1. Then using primal decisions as d= x− x̂k−1 the primal and dual

problems may be stated as

u= Min h+ c>d+
σ

2
‖d‖2 (13a)

s.t. h− (βj)>d≥ hj,k(x̂k−1) ∀j ∈ Jk (13b)

x̂k−1+d∈X (13c)

`= Max H>k θ+ b>k λ−
1

2σ
‖c+B>k θ+A>λ‖2 (14a)

s.t. 1>θ= 1, θ≥ 0, λ≥ 0 (14b)

With the above formulations, the point x̂k−1 gets mapped to d= 0 in the primal, and the

multipliers (θ̂k, λ̂k) are to be used for the dual. The gap estimate for this pair of solutions

will be estimated by constructing a primal-dual pair in which each sample average price

Sen and Liu: Mitigating Uncertainty in SLP
20 c© 2013 3D-LAB

function is represented by a re-sampled estimate. Very briefly, the idea is as follows. Let

{ω1, . . . , ωk} be a random i.i.d. sample of size k with distribution F and let Fk denote

the empirical distribution of {ω1, . . . , ωk}. Define a random object T (ω1, . . . , ωk;F), which

depends upon distribution F . The bootstrap method is to approximate the distribution

T (ω1, . . . , ωk;F) by T (ψ1, . . . ,ψk;Fk) under Fk, where {ψ1, . . . ,ψk} denotes a random

sample of size k under distribution Fk. Next, we summarize an important theorem by

Singh (1981).

Lemma 1. Let µ= EF [ω], ω̄k = 1/k
∑k

i=1ω
i, ψ̄k = 1/k

∑k
i=1ψ

i and assume E[ω2]<∞.

Let P and Pk denote the probabilities under F and Fk respectively. Then

lim
k→∞
|P (k1/2(ω̄k−µ)≤ s)−Pk(k1/2(ψ̄k− ω̄k)≤ s)|= 0 a.s. (15)

Proof. See Singh (1981). �

Basically, Lemma 1 studies the convergence (to zero) of the discrepancy between distri-

bution k1/2(ω̄k−µ) and the bootstrap approximation. Essentially, pivotal statistics like the

sample average are appropriate for bootstrapping because they are based on linear oper-

ators. In order to apply this idea to our setting, we re-sample every sample average price

function defining the primal (13) to obtain a re-sampled primal. The dual corresponds to

this re-sampled primal, and therefore has the form (14) using the re-sampled data. Thus

in our re-sampling process we setup primal and dual problems from which we compare

the gap associated with the given primal-dual pair. Note that this procedure re-samples

pivotal statistics (i.e. sample averages) and not the duality gap directly because the latter

is not necessarily pivotal. Moreover, since the primal solution x̂k−1 and the dual solution

(θ̂k, λ̂k) are feasible to the respective re-sampled problems, we are able to calculate the

re-sampled gap estimates by simply computing the primal and dual objective functions for

each re-sampled instance. This eliminates the need to solve LPs as in the original boot-

strapping method of Higle and Sen (1991b). Let ui − `i denote the gap obtained for the

ith re-sampled instance, and from these we compute the empirical frequency distribution

Fk(ε) to estimate P (u− ` ≥ ε). Thus when Fk(ε) ≤ 1− δ, then the replication is termi-

nated, and the next SD replication can begin. In fact, the actual implementation uses a

relative tolerance, so that a replication terminates when duality gap is small relative to

the current incumbent value. For our computational experiments, we use δ= 0.95, so that

the In-Sample test requires 95% of the bootstrapped gap estimates to pass the test.

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 21

3.2.2. Out-of-Sample Stopping Rule. The idea of replication in stochastic program-

ming has been adopted in many papers dealing with sample-based algorithms (Mak et al.

(1999)). Because sampling introduces randomness into the algorithm, it is important to

characterize errors in a manner that provides statistical performance guarantees. As the

reader may have observed from Figure 1, the variability of solutions as well as objective

values can be significant. Indeed, Linderoth et al. (2006) also report wide disparity of solu-

tions of sampled instances with a sample size of 5000. A common suggestion is to obtain

a preliminary objective estimate for solutions associated obtained from each replication,

and then to successively prune (solutions) and refine objective estimates, until the subset

of solutions is small enough to recommend a decision (Linderoth et al. (2006)). In gen-

eral, this strategy can be extremely computationally intensive, requiring on the order of

1
εr

computations in the worst case. (Here r denotes the number of random variables, and ε

is the desired accuracy.) In order to overcome issues related to the complexity of multiple

replications, Bayraksan and Morton (2011) proposed a sequential sampling scheme, where

the increase in sample size was controlled. To the best of our knowledge, this idea has been

tested on some of the smaller instances (e.g. GBD, PGP2, 4TERM) and the computational

results suggest that for instances with higher variability (e.g. PGP2), multiple replications

provide more reliable estimates. In contrast, Nesterov and Vial (2008) suggest multiple

replications with small increments (e.g. 1) to the sample size, and then to use an average

solution, instead of trying to find the best among the replications. This idea has some

similarity with the concept of compromise decisions which we report below.

Our Out-of-Sample test will leverage not only the primal solutions {xm}Mm=1, but also

the value function approximations {fm(x)}Mm=1. Towards this end, consider the following

problem

Min
x∈X

1

M

M∑
m=1

[fm(x) +
σ̄

2
‖x−xm‖2] (16)

where σ̄ is the sample average of {σm}. We refer to (16) as Compromise Problem and

its solution as Compromise Decision. The Compromise Problem represents two objectives:

the average value function approximation and the sum of squared errors. Let xc denote

the compromise decision, and x̄ = 1
M

∑
mxm. Intuitively, x̄ is an optimal solution to the

squared errors part of the objective and if xc and x̄ agree, then clearly, both are optimal

to (16). We formalize this intuition below.

Sen and Liu: Mitigating Uncertainty in SLP
22 c© 2013 3D-LAB

Let Km(ε) denote the sample size used to construct the sample average price function

at xm prior to termination for a given trial m and ε > 0. Define N = min{Km(ε),m =

1, . . . ,M}, the smallest sample size of the sample average price functions used by any of

the M approximations at their terminal solutions xm. Of course, N depends on ε, but we

suppress this dependence for notational convenience.

Lemma 2. Suppose that the fixed and relatively complete recourse assumptions hold,

and assume that both the set of first stage solutions, X, and the set of outcomes Ω are

compact. Furthermore assume that the the recourse function is non-negative.

a) If xc = x̄, then xc solves the following

Min
x∈X

F̄M(x) =
1

M

M∑
m=1

fm(x). (17)

b) Under the same hypothesis as in a), if [f(xm)− fm(xm)] =Op(N
− 1

2) for all m, then,

f(xc)≤ 1

M

M∑
m=1

fm(xm) +Op((NM)−
1
2)≤ F̄M(xc) +Op((NM)−

1
2). (18)

Proof. a) The optimization problem in (16) is a convex program and the optimality

conditions imply that

0∈ 1

M

M∑
m=1

∂fm(xc) +NX(xc) + σ̄(xc− 1

M

M∑
m=1

xm) (19)

where NX(xc) denotes the normal cone at xc. If xc = x̄, then the above equation reduces

to the optimality conditions of (17).

b) We have

f(xc) = f(x̄)≤ 1

M

M∑
m=1

f(xm) (20a)

=
1

M

M∑
m=1

fm(xm) +
1

M

M∑
m=1

[f(xm)− fm(xm)] (20b)

≤ 1

M

M∑
m=1

fm(xc) +Op((NM)−
1
2) (20c)

= F̄M(xc) +Op((NM)−
1
2). (20d)

Here (20a) is due to convexity of f and (20c) follows from the fact that xm is a minimizer

of fm. �

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 23

Lemma 2 simply states under the hypothesis of b), the errors may be attributed to

sampling, not optimization. While the above result motivates our Out-of-Sample stopping

rule (i.e. measuring ‖xc − x̄‖), we caution that testing the inequalities in (18) could, in

fact, take a large number of samples because they depend on the sampling error, which

can be very slow to reduce. Nevertheless, when ε→ 0, we have Km(ε)→∞, and N →∞.

As the reader might recall, N depends on ε, and in fact, so does F̄M . If we make this

dependence explicit by using F̄ε,M instead, then the fact that sample average price functions

are asymptotic minorants implies the following theorem.

Theorem 2. Let f ∗ denote the optimal value of the problem. Let xc(ε) and xm(ε) denote

the quantities analogous to those in Lemma 2 for a given ε. Suppose that limε→0x
c(ε) = xc

and limε→0x
m(ε) = xm and x̄= 1

M

∑M
m=1x

m. If xc = x̄, then, limε→0P (F̄ε,M(xc) = f ∗) = 1.

Proof. Because ε→ 0, we have Km(ε)→∞, and N →∞, the sample average price func-

tions provide asymptotic lower bounds, and therefore

lim
ε→0

P (F̄ε,M(xc)≤ f ∗) = 1. (21)

Moreover using arguments similar to Lemma 2, we have limε→0P (F̄ε,M(xc) ≥ f(xc)) = 1

because N →∞. Since f(xc)≥ f ∗, it follows that

lim
ε→0

P (F̄ε,M(xc)≥ f ∗) = 1. (22)

Hence combining (21) and (22) the result follows. �

This theorem justifies our use of the compromise decision. Accordingly, we report con-

fidence intervals for upper and lower bounds objective values, as well as the pessimistic

gap. This provides the statistical analog of stopping deterministic algorithms when the

estimated gap falls below a pre-specified error tolerance.

The increased reliability offered by compromise decisions reported for SSN (see Fig-

ure 2) might have come as a surprise for a problem that has been characterized as “ill-

conditioned”. The reader might recall that for the loose tolerance run, Figure 2 already

showed good agreement between the average and compromise solutions, and a decision-

maker might have been satisfied with an objective function upper bound of 9.951 (see

Table 2). However, if the decision-maker chooses to obtain greater accuracy, then, it is easy

to re-start the SD process for the nominal tolerance using all the information obtained in

the course of the previous run (with loose tolerance). Thus, while greater reliability may

Sen and Liu: Mitigating Uncertainty in SLP
24 c© 2013 3D-LAB

require more sampling (for instances like SSN), the marginal effort is simply the additional

iterations and not an entire run from scratch. Such warm-starting is critical for those

decision-makers who seek greater accuracy in decision support.

On a related note, we observe that while it might seem that (16) is even more onerous

than the individual replications, that is not the case. Because the In-Sample rule already

provides xm, the sample average solution x̄ is already available, and so are the VF approx-

imations {fm}. Hence all that is required is to warm-start the quadratic program (16)

using x̄, and if it declares optimality at the start, one can directly use x̄ as the compromise

solution. However, since the marginal amount of computations associated with solving the

compromise problem (independently of the sample average decision) is not very resource

intensive, we calculate both xc and x̄ independently so that the user can verify similarities

between these solutions. To give the reader a sense of the computational time involved for

each of tolerance level of SSN, we note that the CPU seconds for the compromise prob-

lems were 5.78 (Loose Tol.), 5.86 (Nominal Tol.) and 6.21 (Tight Tol.) respectively. When

compared with the effort required to estimate the objective function at one or more of

the points {xm}, the solution time of the Compromise Problem is minimal. To close this

section, we note that there are several instances in the literature (e.g. CEP1 and STORM)

for which longer runs (and even replications) are an overkill. By monitoring the coefficient

of variation of each decision variable across successive replications, several instances can

be accurately solved without excessively long runs. We shall report these computational

results in the following section.

4. Further Computational Results

Table 4 summarizes all test instances solved by SD under nominal tolerance. BAA99 is a

single period multi-product inventory model (see Bassok et al. (1999)) and BAA99-20 is

a larger version (20 products) of BAA99. CEP is a capacity expansion model appears in

Higle and Sen (1996b). LandS, LandS2 and LandS3 are three versions of a power generation

planning problem (Louveaux and Smeers (1988)). The original LandS instance has one

random variable with 3 outcomes. LandS2 has 3 random variables with a total of 64

scenarios. LandS3 has 3 random variables each descritized to a finer normal distribution

with a total of 106 scenarios. PGP2 is the same genre of instances, but has greater objective

function variability in value as well as solution variability (Higle and Sen (1996b)). The

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 25

multi-location transshipment model called RETAIL can be found in Herer et al. (2006).

SSN is the network expansion model presented at the beginning of this paper. STORM is

an air freight scheduling model (Mulvey and Ruszczyński (1995)). 4NODE and 20TERM

are both freight fleet scheduling problems, with the former data set appearing on a web

site due to A. Felt (http://www4.uwsp.edu/math/afelt/slptestset/download.html), and the

latter came to us from Infanger (1999). Along with SSN, STORM and 20TERM are based

on industrial applications, and are indicated by an asterisk in Table 4. One of the larger

data sets in this set is STORM. While it is large both in size and number of scenarios,

the variability of its objective function is relatively small, as confirmed by the ratios Rk(x)

reported for STORM in Appendix B.

Because the early computational tests in the Stochastic Programming literature were

performed using deterministic algorithms, it became customary to report performance by

creating alternative instances using different sample sizes. For example, Zverovich et al.

(2012) reported 16 different sample sizes for 4NODE, corresponding to scenarios ranging

from 20,21, . . . ,215. In our study, we do not consider these as 16 different instances, but one

instance with 215 scenarios, and our goal is to provide statistical guarantees for objective

value upper and lower bounds, together with recommendations of the compromise and

average solutions with the former being generated without warm-starting (using the aver-

age solution). We made this choice to avoid prompting the compromise problem in any

way.

From Table 5 we see that for all instances, the confidence levels obtained using the

nominal tolerance is very reasonable, and moreover, the average and compromise solutions

also provide similar values. For most instances, these solutions obtained with nominal

tolerance should be considered acceptable, although the user has the option to be more

demanding, and seek solutions with tighter tolerance without having to re-start the process

“from scratch”. This is because SD records all shadow prices, and sample average price

functions for each run, and they can be used immediately to continue further iterations if

the user desires. For large scale models like SSN, this is a powerful setup. Another aspect of

our study that is unique to SD is its ability to report the sample sizes that were necessary

to obtain the quality of solution. This is particularly important in large scale applications

where optimization and simulation are tightly coupled (see the wind energy case study for

the state of Illinois in Gangammanavar et al. (2013)).

Sen and Liu: Mitigating Uncertainty in SLP
26 c© 2013 3D-LAB

Instance 1st stage 2nd stage # of random Universe of

Name variables/constraints variables/constraints variables scenarios

BAA99 2/0 7/4 2 615

BAA99-20 20/0 250/40 20 O(1034)

CEP 8/5 15/7 3 216

LandS 4/2 12/7 1 3

LandS2 4/2 12/7 3 64

LandS3 4/2 12/7 3 O(106)

PGP2 4/2 16/7 3 576

RETAIL 7/0 70/22 7 O(1011)

SSN* 89/1 706/175 86 O(1070)

STORM* 121/185 1259/528 117 O(1081)

4NODE 52/14 186/74 12 32768

20TERM* 63/3 764/12 40 O(1012)

Table 4 Test instances with SD under Nominal Tolerance

In Table 6 we report the sample sizes used for each instance (together with its variability

over 30 replications). From this table one can observe that although STORM is very

large in terms of the variables, constraints and scenarios, it requires a sample size of

only 300 to get reasonable solutions. This is about the same number of samples required

for much smaller instances such as PGP2 and BAA99. From our study, we also observe

that 20TERM and RETAIL take more iterations, and in fact, the latter takes longer for

objective function estimation even though the instance (RETAIL) is smaller than 20TERM

in terms of decision variables and constraints. As expected it is the variability that makes

instances take longer. Finally, it is clear that SSN is by far the most demanding of these

instances, but each replication can be completed in about 90 secs for nominal tolerance.

It was shown in Figure 2 that this solution has very low error from the average solution.

From this point of view, the user may decide to accept the decision based on the fact that

the difference between the compromise and average solution is small enough. However, as

shown in section 2 tighter statistical bounds can also be obtained by demanding greater

precision on the bounds. Such solution reports are likely to provide decision makers a great

deal of confidence in adopting decisions recommended by the SLP solver.

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 27

Instance Upper(UB) and Average Solution Compromise Solution

Name Lower Bounds(LB) Average Values 95% CI’s Average Value 95% CI’s

BAA99
OBJ UB -236.204 ±5.451 -236.203 ±5.451

OBJ LB -240.864 ±5.988 -240.864 ±5.988

BAA99-20
OBJ UB -318393.648 ±3994.053 -318451.800 ±3994.502

OBJ LB -322870.496 ±1337.854 -322870.496 ±1337.854

CEP
OBJ UB 354175.320 ±1687.537 354175.320 ±1687.537

OBJ LB 353080.809 ±10530.916 353080.809 ±10530.916

LandS
OBJ UB 381.761 ±1.309 381.761 ±1.309

OBJ LB 381.120 ±1.174 381.120 ±1.174

LandS2
OBJ UB 227.393 ±0.668 227.395 ±0.668

OBJ LB 227.789 ±1.628 227.789 ±1.628

LandS3
OBJ UB 225.541 ±0.640 225.541 ±0.640

OBJ LB 225.712 ±1.319 225.712 ±1.319

PGP2
OBJ UB 447.955 ±1.406 447.928 ±1.405

OBJ LB 447.339 ±2.157 447.339 ±2.157

RETAIL
OBJ UB 154.411 ±0.772 154.406 ±0.772

OBJ LB 153.995 ±2.573 153.995 ±2.573

SSN
OBJ UB 9.927 ±0.050 9.927 ±0.050

OBJ LB 9.736 ±0.118 9.736 ±0.118

STORM
OBJ UB 15481852.286 ±48193.646 15481760.131 ±48208.190

OBJ LB 15493958.503 ±8826.814 15493958.503 ±8826.814

4NODE
OBJ UB 447.058 ±0.392 446.951 ±0.394

OBJ LB 446.979 ±0.068 446.979 ±0.068

20TERM
OBJ UB 254515.479 ±1005.008 254514.672 ±1004.934

OBJ LB 253649.385 ±168.573 253649.385 ±168.573

Table 5 Objective upper and lower bounds and corresponding 95% confidence intervals of all instances solved

by SD

Sen and Liu: Mitigating Uncertainty in SLP
28 c© 2013 3D-LAB

Average Average CPU secs CPU secs CPU secs

Instance Sample Size CPU secs to Solve to Estimate Obj to Estimate Obj

Name (Std Dev) (Std Dev) Compromise of Compromise of Average

for SD for SD Problem Solution Solution

BAA99 298.03(58.82) 0.89(0.23) 0.01 0.25 0.21

BAA99-20 330.50(13.68) 1.49(0.13) 0.04 0.13 0.14

CEP 263.03(6.73) 0.79(0.08) 0.01 5.61 5.43

LandS 260.27(2.77) 0.76(0.07) 0.01 0.21 0.22

LandS2 264.27(4.86) 0.83(0.08) 0.01 1.29 1.26

LandS3 263.57(5.99) 0.78(0.07) 0.00 0.78 0.74

PGP2 284.63(27.60) 0.74(0.10) 0.01 0.31 0.31

RETAIL 460.47(150.55) 1.53(0.67) 0.00 4.01 3.98

SSN 2286.90(341.71) 90.50(20.56) 5.86 112.31 111.52

STORM 300.50(5.33) 19.56(1.46) 8.83 0.06 0.05

4NODE 406.07(49.44) 5.66(0.85) 3.04 0.01 0.01

20TERM 453.07(5.98) 7.28(0.39) 1.13 0.13 0.12

Table 6 Sample size (std dev), solution time for SD(std dev), solution time for Compromise Problem and

evaluation time (of compromise solution and average solution) for all instances solved by SD

5. Conclusions

Our contributions to the SP literature may be viewed through several lenses. These points

of view are captured by the questions that were posed in section 1, and in this context, we

offer the following comments.

1. Given that SP problems can be demanding, greater accuracy may call for re-runs that

should re-use previously discovered structures of an instance. How can such structures be

re-used for the purposes of warm-starting?

• Because SD uses “sampling-on-the-fly” (i.e. adaptive sampling), it creates a sequence

of sample average price functions based on re-using shadow prices. This approach records

information gathered during the course of the algorithm (e.g. shadow prices, and sample

average price functions), so that future iterations can be resumed without having to re-

discover them from scratch. This capability is also important in the context of Stochastic

MIPs, just as fast LP solvers, and warm-starting are important for deterministic MIPs.

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 29

2. Given that SLP models have a very special (convex) structure, should sampling-based

methods be designed to take advantage of such structure?

• Convex non-smooth optimization forms the backbone of SD, which derives its stabil-

ity from using a proximal term. The latter also suggests a quadratic programming dual

problem which is used for the In-Sample (Primal-Dual Gap Stability) as well as the Out-of-

Sample tests (with the Compromise Problem). Such integration of numerical optimization

and statistical computing promotes algorithmic synergy for more efficient solution.

3. Sampling-based SP methods borrow variance reduction techniques from the simula-

tion literature. Are there other variance reduction techniques that are appropriate for SP,

but are not considered in the simulation literature?

• Variance reduction in simulation is primarily aimed at performance (objective func-

tion) estimation. While this is important for SP models, it needs to go beyond performance

estimation because of the emphasis on decision-making. In order to appreciate this point,

note that past attempts at solving SSN have not only required high performance com-

puting, but disagreement between alternative runs can leave users in a quandary. Instead,

concurrence between compromise and sample average decisions, provides a principled (see

Theorem 2), and computationally effective approach. Figure 2 highlights the empirical

success of this approach.

4. Parallel architectures in SP have traditionally been used to process bunches of sce-

narios. Are there other ways to use parallel architectures which permit the solution of

industrial-strength models?

• The speed of replications can be improved significantly by using parallelization. This

approach to SP (and of course SD) needs greater attention.

5. Should SP algorithms report lower bound estimates for the “true” problem so that

the quality of a recommended decision can be ascertained?

• It is difficult to establish the quality of a solution without both upper bound and lower

bound estimates. The former is usually a statistical estimation problem, if a decision is

available. The latter (lower bounds) is an optimization issue since it is the optimization

step that provides the lower bounding estimate. Clearly this is an essential ingredient of

any optimization method.

In summary we have demonstrated that two-stage SLP models are now solvable to

very reasonable levels of accuracy, even for industrial-strength models, in reasonable time,

Sen and Liu: Mitigating Uncertainty in SLP
30 c© 2013 3D-LAB

using “run-of-the-mill” computing devices. This bodes well for users of the SLP modeling

paradigm.

Acknowledgements: We are grateful to the National Science Foundation (Grant

CMMI: 0900070) and AFOSR (Grant FA9550-13-1-0015) for their continued support of

our research.

Appendix A: The SSN Instance - Back to the Future

The subtitle of this Appendix (“Back to the Future”) is intended to reflect the fact

that there are certain instances from the past which need to be fully explored before we

can claim to have a thorough understanding of the two-stage SLP paradigm. SSN is one

such instance. The subtitle conveys the fact that we went back two decades to revive our

interest in the SSN model, and the results of this paper have shown us how to solve such

problems fairly accurately, and without requiring computing platforms that are beyond

the ordinary.

SSN is a network planning model which seeks to size links (i.e. choose link capacities)

before demand is known with certainty. This model is limited to adding capacity to links

that have been identified for expansion, and in this sense, it does not recommend what

additional links may be useful. The model does not consider the possibility of adding

new links, which would require stochastic integer programming. Thus given a collection of

links, we wish to choose additional capacities under a budget constraint, while ensuring

that the expected unserved demand is minimized. The model uses the following notation.

First stage decision variables:

xj ≡ the amount of capacity to be added to the jth link.

First stage data/parameters:

n≡ the number of links that are to be considered for capacity expansion.

b≡ the total capacity budget for the entire network.

ω̃≡ the m dimensional random variable that represents demands associated with the m

point to point pairs served by the network.

The first stage problem can be summarized as follows:

Min E[h(x, ω̃)] (23a)

s.t.
∑
j

xj ≤ b (23b)

x≥ 0 (23c)

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 31

The function h(x, ω̃) is a random variable representing unserved demand. It is a function

of the capacity expansion plan x and a random vector ω̃. For each outcome ω following

model is used to estimate unserved demand, and the generic name referring to this

piece of the model is the second stage problem. The second stage decision variables are

fir ≡ the number of calls associated with point to point pair i that are served via route

r ∈R(i).

si ≡ the number of unserved requests associated with point to point pair i.

Second stage data/parameters:

m≡ the number of point to point pairs served by the network.

R(i)≡ the set of routes that can be used to connect point to point pair i.

Air ≡ is an incidence vector in Rn whose jth element is 1 if link j belongs to route r ∈R(i),

and is 0 otherwise.

e≡ is a vector in Rn of current link capacities.

And the second stage problem is the following:

h(x,ω) = Min
m∑
i=1

si (24a)

s.t.
∑
i

∑
r∈R(i)

Airfir ≤ x+ e (24b)

∑
r∈R(i)

fir + sir = ωi i= 1, ...,m (24c)

f, s≥ 0 (24d)

Constraints (23b) limits the expansion plan under a total capacity level b while constraints

(24b) ensure that routing is achieved without violating any link capacity. Constraints (24c)

are flow balance equations of the network.

Sen and Liu: Mitigating Uncertainty in SLP
32 c© 2013 3D-LAB

Appendix B: Figures of Shadow Price Stability

The following figures show that for the three “industrial-strength” instances included

in this paper, the VF approximations are poor representations of the expected recourse

function in early iterations. As the SD algorithm proceeds, the ratios Rk approach 1 (see

Shadow Price Stability in subsection 3.2.1), indicating vastly improved approximations in

the vicinity of candidate and incumbent solutions, and they are all steady by the time that

the In-Sample rule accepts an incumbent. The number of data points in these graphs exceed

the number of iterations because SD updates incumbent objective estimates periodically,

and the ratios are calculated for those updates too.

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio Rk(x) vs Iteration Number for SSN

Iteration k

R
k(
x)

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 33

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio Rk(x) vs Iteration Number for 20TERM

Iteration k

R
k(
x)

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio Rk(x) vs Iteration Number for STORM

Iteration k

R
k(
x)

References

Bassok, Y., R. Anupindi, R. Akella. 1999. Single-period multiproduct inventory models with substitution.

Operations Research 47(4) 632–642.

Sen and Liu: Mitigating Uncertainty in SLP
34 c© 2013 3D-LAB

Bayraksan, G., D. P. Morton. 2011. A sequential sampling procedure for stochastic programming. Operations

Research 59(4) 898–913.

Birge, J. R., F. V. Louveaux. 1997. Introduction to Stochastic Programming . Springer.

Boyd, S. 2013. Convex programming lectures. Stanford University EE364a Lectures.

Chen, X., M. Sim, P. Sun, J. Zhang. 2008. A linear decision-based approximation approach to stochastic

programming. Operations Research 56(2) 344–357.

Efron, B. 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics 1–26.

Gangammanavar, H., S. Sen, V. Zavala. 2013. Simulation and optimization of wind energy for modeling

sub-hourly economic dispatch. IEEE Trans. on Power Systems (submitted) .

Glynn, P. W., G. Infanger. 2013. Simulation-based confidence bounds for two-stage stochastic programs.

Mathematical Programming 1–28.

Grasso, A., W. LaPlante. 2011. Enhancing adaptability of us military forces. Washington, DC: Office of the

Under Secretary of Defense for Acquisition, Technology and Logistics.

Herer, Y. T., M. Tzur, E. Yücesan. 2006. The multilocation transshipment problem. IIE Transactions 38(3)

185–200.

Higle, J. L., S. Sen. 1991a. Stochastic decomposition: An algorithm for two-stage linear programs with

recourse. Mathematics of Operations Research 16(3) 650–669.

Higle, J. L., S. Sen. 1991b. Statistical verification of optimality conditions for stochastic programs with

recourse. Annals of Operations Research 30(1) 215–239.

Higle, J. L., S. Sen. 1994. Finite master programs in regularized stochastic decomposition. Mathematical

Programming 67(1-3) 143–168.

Higle, J. L., S. Sen. 1996a. Duality and statistical tests of optimality for two stage stochastic programs.

Mathematical Programming 75(2) 257–275.

Higle, J. L., S. Sen. 1996b. Stochastic decomposition: a statistical method for large scale stochastic linear

programming , vol. 8. Springer.

Higle, J. L., S. Sen. 1999. Statistical approximations for stochastic linear programming problems. Annals of

Operations Research 85 173–193.

Holdren, J., E. Lander, H. Varmus. 2010. Report to the president and congress designing a digital future:

Federally funded research and development in networking and information technology. Executive Office

of the President and President’s Council of Advisors on Science and Technology .

Infanger, G. 1999. Private communication.

Kim, S., R. Pasupathy, S. G. Henderson. 2011. A guide to sample-average approximation .

Kleywegt, A. J., A. Shapiro, T. Homem de Mello. 2002. The sample average approximation method for

stochastic discrete optimization. SIAM Journal on Optimization 12(2) 479–502.

Sen and Liu: Mitigating Uncertainty in SLP
c© 2013 3D-LAB 35

Kuhn, D., W. Wiesemann, A. Georghiou. 2011. Primal and dual linear decision rules in stochastic and robust

optimization. Mathematical Programming 130(1) 177–209.

Linderoth, J., A. Shapiro, S. Wright. 2006. The empirical behavior of sampling methods for stochastic

programming. Annals of Operations Research 142(1) 215–241.

Linderoth, J., S. Wright. 2003. Decomposition algorithms for stochastic programming on a computational

grid. Computational Optimization and Applications 24(2-3) 207–250.

Louveaux, F., Y. Smeers. 1988. Optimal investments for electricity generation: A stochastic model and a

test problem. Numerical Techniques for Stochastic Optimization 33–64.

Mak, W., D. P. Morton, R. K. Wood. 1999. Monte carlo bounding techniques for determining solution

quality in stochastic programs. Operations Research Letters 24(1) 47–56.

Mulvey, J. M., A. Ruszczyński. 1995. A new scenario decomposition method for large-scale stochastic

optimization. Operations Research 43(3) 477–490.

Nemirovski, A., A. Juditsky, G. Lan, A. Shapiro. 2009. Robust stochastic approximation approach to stochas-

tic programming. SIAM Journal on Optimization 19(4) 1574–1609.

Nesterov, Y., J. Vial. 2008. Confidence level solutions for stochastic programming. Automatica 44(6) 1559–

1568.

Pasupathy, R. 2010. On choosing parameters in retrospective-approximation algorithms for stochastic root

finding and simulation optimization. Operations Research 58(4-Part-1) 889–901.

Powell, W. B. 2007. Approximate Dynamic Programming: Solving the curses of dimensionality , vol. 703.

John Wiley & Sons.

Royset, J. O., R. Szechtman. 2013. Optimal budget allocation for sample average approximation. Operations

Research 61 762–776.

Sen, S., R. D. Doverspike, S. Cosares. 1994. Network planning with random demand. Telecommunication

Systems 3(1) 11–30.

Shapiro, A., T. Homem de Mello. 1998. A simulation-based approach to two-stage stochastic programming

with recourse. Mathematical Programming 81(3) 301–325.

Shapiro, A., T. Homem de Mello, J. Kim. 2002. Conditioning of convex piecewise linear stochastic programs.

Mathematical Programming 94(1) 1–19.

Singh, K. 1981. On the asymptotic accuracy of Efron’s bootstrap. The Annals of Statistics 1187–1195.

Zverovich, V., C. I. Fábián, E. F. Ellison, G. Mitra. 2012. A computational study of a solver system for

processing two-stage stochastic LPs with enhanced benders decomposition. Mathematical Programming

Computation 4(3) 211–238.

