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Introduction

It would be presumptuous to claim that the three chapters, which make up this the-
sis, are closely related. Broadly categorized the first chapter originates from the area
of industrial organization, the second chapter contributes to the theory of contracts,
and the third chapter to the economics of regulation. However, a closer look unveils a
common theme: the role of commitment, specifically the absence of commitment.

The Oxford Dictionary defines commitment as “an engagement or obligation that
restricts freedom of action”.1 In economics we are trained to think of any interaction
within a group of individuals as a game. Using this understanding, commitment means
that an individual promises to refrain from certain actions during play. The benefits
and drawbacks of commitment can be best understood with the following example.

Consider parents trying to teach their child the proper use of cutlery through trial
and error.2 Committing to sufficiently long periods of experimentation, without inter-
ference, is acknowledged as an appropriate strategy. The child’s errors, however, can
undermine the parents’ credibility. When the child learns that parents will help with
eating, once the mess created on and around the table is sufficient, it will learn how to
induce the parents’ help faster than how to use the spoon.

The example highlights the importance of credibility for the usefulness of making
commitments. The three chapters of this thesis study similar cases, where the as-
sumption of commitment to particular actions is questioned. They aim to understand
the impact of relaxing such an assumption, how economic outcomes are affected and
which conclusions concerning the involved institutions can be drawn.

Chapter 1 is based on joint work with Lilo Wagner (Pollrich and Wagner (2014)).
It studies the interaction of information disclosure and reputational concerns in certi-

1The definition is taken from http://www.oxforddictionaries.com/definition/english/commitment. It
refers to the second definition of the word commitment.

2To translate this example into a purely economic environment, think of the parents as a principal
and the child as the agent. Learning the use of cutlery can then be replaced by an arbitrary task, such
as instructing the agent in the use of a new machine during production.

1



fication markets. In this chapter we relax the assumption that a certifier can commit
to a disclosure rule, and instead allow for the possibility that sellers bribe the certi-
fier to get favorable certificates. We argue that revealing less precise, resp. coarse,
information helps the certifier maintain credibility, and turn down bribes.

Underlying this effect is a classic trade-off the certifier faces in his long-run rela-
tionship with consumers. He trades-off short-term gains from bribes, versus the long-
term losses from losing trust, which boil down to losing any future profit. Opaque
disclosure rules constrain feasible bribes, thus, lowering the potential short-run gain.
On the other hand, long-run losses are - if at all - only slightly reduced. As a conse-
quence, only less precise disclosure rules are implementable for intermediate discount
factors. These insights suggest that contrary to the common view, coarse disclosure is
socially desirable. A ban may provoke market failure, especially in industries where
certifier reputational rents are low.

In the second chapter I study the optimal communication mechanism in a setting
with adverse selection when the principal cannot commit to an audit strategy. Usually,
the revelation principle applied to principal-agent problems with full commitment im-
plies that the principal can offer a menu of contracts containing one item per type
of agent. The principal’s inability to credibly commit to an audit strategy leads to
the undermining of this simple structure. Rather, the principal resorts to an impartial
mediator.

The optimal mediated contract has the following properties: (1) the agent reports
truthfully to the mediator, (2) the mediator performs a report-dependent randomiza-
tion, (3) the randomization is over a report-dependent transfer-quantity schedule and
a fixed transfer-quantity schedule, (4) only the fixed transfer-quantity schedule is ac-
companied with a recommendation to audit, and (5) the principal obediently follows
the mediator’s recommendation. Properties (1) and (5) follow from applying the rev-
elation principle. (2) is used to guarantee the principal’s obedience after a recommen-
dation to audit. In particular, it creates the right posterior that makes the principal
indifferent between auditing and not when the recommended action is audit. The ex-
act details of the three utilized transfer-quantity schedules is determined by trading off
rents, efficiency and audit costs.

It is crucial to employ a mediator for the randomization, otherwise the principal
learns the agent’s type from his report and updates her belief accordingly. Intuitively,
the mediator breaks the information flow and transmits only as much information
to the principal as is required to guarantee obedience. The structure of the optimal

2



mechanism improves our understanding of the institutional design of audit agencies.
A separation of auditing and contracting is inherent in the optimal mechanism and
should therefore also be reflected in the institutions. Separate audit agencies are just
one way of implementing this idea.

Chapter 3 is based on joint work with Robert Schmidt (Pollrich and Schmidt
(2014)). It studies the design of optimal contracts to avert firm relocation. One way
that a firm’s relocation can be triggered, is a unilateral policy intervention such as the
introduction of an emission price. We analyze a dynamic game where a regulator of-
fers contracts to avert the relocation of a firm in each of two periods. The firm can
undertake a location-specific investment (e.g., in abatement capital) at the beginning
of the first period. Contracts can be written on some contractible productive activity
(e.g., emissions), but the firm’s investment is not contractible.

We analyze optimal contracts in this setting under two differing assumptions on
the principal’s ability to make commitments for future periods. When the regulator
can commit to long-term contracts, simple subsidy payments are sufficient to avert re-
location. However, an implementation problem arises when only short-term contracts
are feasible. Because the second-period contract can only compensate the firm for not
relocating in that period, any compensation for the firm’s investment needs to be paid
in period one. This, however, opens up the possibility for a ’take-the-money-and-run’-
strategy for the firm: sack the large first-period transfer but secretly underinvest and
relocate in period two. To prevent this the regulator resorts to high-powered incentives
in the first period. The firm’s investment is then so high that a lock-in effect prevents
relocation in both periods. A second-period contract is, hence, no longer required.

Compared to the optimal contract under long-term contracting the firm now invests
more and, consequently, receives a larger total transfer. Paradoxically, the distortion
in the first-period contract can be so severe that higher transfers are needed to avert
relocation compared to a (hypothetical) situation without the investment opportunity.

3
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Chapter 1

Informational Opacity and Honest
Certification

This chapter is based on Pollrich and Wagner (2014).

1.1 Introduction

In markets that exhibit informational asymmetries, product quality is typically re-
duced. This in turn may provoke a breakdown of trade. The lack of credible com-
munication between informed and uninformed parties may result in the emergence of
certification intermediaries. Certifiers inspect products whose characteristics are pri-
vate information to agents, and publicly reveal this information. Examples of certifiers
abound: rating agencies, eco-labels, wine certificates or technical inspections. Often
however, certification results are revealed on a coarse scale, although the information
at hand allows for a more precise disclosure.

A rich literature starting with Lizzeri (1999) has identified profit concerns as the
cause for information disclosure by intermediaries being imprecise.1 The rough intu-
ition is that for the certifier’s profit it is more important that many certificates are sold
and not what the informational content of certificates is.

This chapter provides a novel explanation for such opacity: partially revealing
rules can serve as a safeguard against fraud. Certifiers may be tempted to accept bribes
for releasing favorable certificates, a behavior called capture. If consumers are aware
of this threat of capture, the certifier must find ways to credibly commit to honesty.

1See the literature review at the end of this section.
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CHAPTER 1

The certifier faces a classic reputation dilemma in deciding whether the short-run gain
from capture in form of the bribe is larger than the future profit losses from losing
trust. We show that the certifier’s choice of the disclosure rule has a crucial impact on
this trade-off.

The effectiveness of employing opaque disclosure rules to signal credibility is in-
dependent of the motive of mere profit-maximization. In particular, opacity is ben-
eficial even though certifier profits are maximized via revealing precise information.
Consequently, coarse information revelation is also a feature of certification markets
where profit concerns play only a minor role.2

Opacity in certification markets is yet another instance, where the commonly held
view that reducing informational asymmetries is socially desirable per se, fails to be
accurate.3 Revealing too precise information is not credible to consumers and only
coarse disclosure enhances information revelation in the first place. Hence, opacity
can be welfare enhancing for the simple reason that it may prevent market failure.

Our results are important in the light of recent policy debates regarding the reg-
ulation of the market for credit ratings. The ’Dodd-Frank Wall Street Reform and
Consumer Protection Act’ includes without limitation regulations regarding the dis-
closure practice of rating agencies.4 Though this kind of regulation would be innocent,
if opacity was only caused by certifiers’ profit concerns, it has a potential downside
when the mere existence of the market depends on opacity. As we argue in this chap-
ter, transparency is vulnerable against collusion between certifiers and sellers who
demand certification. The economic purpose of opacity is to make the certification
market work in the first place and not only to maximize profits.

We show our results in a model that allows us to delineate reputational and profit
concerns - thus opacity caused by reputational concerns is present even when this does
not maximize profits. We consider an infinitely repeated certification game with moral
hazard where, in each period, short-lived producers first have to make an investment
choice, which in turn determines the probability distribution of their product’s quality.
Thus, the payoffs assigned to each quality outcome determine the incentives to invest.

2Many non-profit organizations, such as the Marine Stewardship Council (MSC) or the Forest Stew-
ardship Council (FSC), certify on a coarse scale, despite collecting fairly rich data on their clients.

3This point is, among others, made by Mason (2011), who argues that the introduction of noisy
eco-labels may reduce welfare. Similarly, Langinier and Babcock (2008) study welfare effects when
firms can certify as a group. Kreps and Wilson (1982) show that noise enhances welfare in finitely
repeated games.

4E.g. Title IV, Sec. 404 and Sec. 405. For a comprehensive review of this Act and its impact on
rating agencies see also Kartasheva and Yilmaz (2013)
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1.1. INTRODUCTION

The long-lived certifier has two instruments at his disposal: a flat certification fee and
the disclosure rule. Consumers experience the true quality of a product only after
consumption. If it does not match the awarded certificate, capture is detected. This
makes the certifier face a classical reputation dilemma: she trades off short-run gains
from capture against future profits.

We characterize feasible disclosure rules in this setting. Our major finding is that
for sufficiently low discount factors, honest certification requires partial disclosure of
quality information, which in our model implies noisy disclosure. In the short run,
a certifier may gain from making a capture offer that is acceptable for at least some
producers. The maximum producer willingness to pay for bribes is directly affected
by the publicly announced disclosure rule. It is greatest for full disclosure and can be
substantially reduced by revealing less precise information. But if consumers detect
a bribe and therefore lose trust, a certifier gives up his future profits. Static certifier
profits are maximal for full disclosure and any deviation will typically reduce the
long-run loss from losing credibility. As will be shown, the first effect exceeds the
latter.

We moreover obtain the counterintuitive result that a threat of capture increases
social welfare.5 Whenever information is fully revealed, sharing profits necessarily
reduces producer investments as compared to the first-best level, obtained under com-
plete information. We show that whenever capture offers are made before a certifier
observes the true quality level, these are such that they are accepted by either all pro-
ducers or only by low quality producers. If the highest threat of capture stems from
offers that are accepted by all producers and the disclosure rule is noisy, credibil-
ity can be maintained by making honest certification more attractive to high quality
producers. This in turn increases equilibrium investment levels as compared to full
information disclosure.

The remainder of the chapter is organized as follows. Section 1.2 revies the related
literature. The formal model is presented in section 1.3. Section 1.4 analyzes the static
game in the absence of bribery. In section 1.5, we treat the general case of certification
under the threat of capture. Section 1.6 concludes. All proofs are presented in the
appendix.

5We analyze a belief system that substantially restricts the set of feasible disclosure rules. For
different belief systems and sufficiently low discount factors, other (opaque) rules may be chosen by
the certifier. The effect on social welfare is therefore not a general result.
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CHAPTER 1

1.2 Related literature

A stream of literature seeks to explain why certifiers often choose to only partially
reveal quality information. Lizzeri (1999) finds that it is optimal for a monopolistic
certifier in a static adverse selection environment to reveal almost no information.
In this setting, this result is robust to introducing capture because a no revelation
policy simply annihilates producer incentives to bribe. In the presence of moral hazard
however, information revelation is necessary to create incentives for the provision of
quality.

Albano and Lizzeri (2001) study optimal disclosure rules in a static model of both
moral hazard and adverse selection. In their setting, a certifier chooses to employ
noisy disclosure if his set of actions is restricted to flat fees. Kartasheva and Yilmaz
(2013) explain imprecise ratings in a model with partially informed investors and het-
erogeneous liquidity needs of issuers. No disclosure is not optimal, because it deters
high quality issuers from participating. With full disclosure, the fee is determined by
the willingness to pay of the lowest certified type. Awarding to this type the best cer-
tificate with small but positive probability therefore allows for increasing the fee and
also profits.

All papers mentioned above have profit maximization as the sole objective of the
certifier. In contrast, this chapter suggests reputational concerns as another origin of a
certifiers preference for coarse quality disclosure. In particular, the model we provide
features full disclosure as a profit maximizing disclosure rule and nevertheless the
certifier resorts to opacity because otherwise she cannot signal honesty.

Farhi, Lerner, and Tirole (2013) apply the term opacity to the disclosure of re-
jected applications for a certificate. In their model, a seller can turn to various certi-
fiers, which differ in their acceptance of quality and whether they disclose true quality
or only whether quality is not the lowest. The competition of certifiers makes ’rejec-
tion’ a valuable information, whereas in our model there is only one chance to get
certified and this information is worthless. Again, the certifiers preference for opacity
stems from profit concerns. In a similar vein, Faure-Grimaud, Peyrache, and Quesada
(2009) consider a model where the contract between the seller and the certifier entails
the ownership of the rating, i.e. whether the seller can conceal it or not. If firms have
only an imprecise signal of their own quality and some do not ask for a rating, sim-
ple ownership contracts emerge where the certification result is not published by the
certifier but owned by the seller who can publish or conceal the result. In both studies

8



1.2. RELATED LITERATURE

the certifier’s disclosure rule in terms of intrinsic product quality is exogenously given
- opacity is referred to as the potential concealment of certificates and certification
procedures and arises from profit concerns of the certifiers.

In Pagano and Volpin (2012) it is the seller who decides to release coarse infor-
mation. In their model of rating asset-backed securities, the rating agencies’ role is to
confirm the information the issuer wants to conceal. It is again a profit concern that
leads to opacity.

The threat of capture in certification markets has been analyzed by Strausz (2005).
In a pure adverse selection setting with mandatory full disclosure, he analyzes the ef-
fects of a threat of capture on certification prices. He finds that in order to maintain
credibility, for low discount factors, a certifier raises fees above the static monopoly
price. This result is consistent with our finding: A larger fee reduces the share of cer-
tifying types and thereby increases the value of an uncertified product. As it is also the
case in this chapter, it turns out that a major determinant for the certifiers credibility is
the maximal bribe, which corresponds to largest difference in certification outcomes,
e.g. the difference in values for the best certificate and uncertified products. A larger
fee increases this cut-off but this implies that less information is revealed in equi-
librium. Although this effect is also present in Strausz (2005), he however does not
explicitly point it out. Credibility is maintained by reducing the maximal willingness
to bribe. In Strausz (2005), this is affected by the value of not being certified, which,
in turn, is an increasing function of the certification fee.

There is a rich literature on reputation building in markets with informational
asymmetries. For example, Shapiro (1983) analyzes the forces at work when sell-
ers build reputation. Biglaiser (1993) investigates the role of market intermediaries
when sellers are unable to build their own reputation. Examples of works that treat
reputational concerns of rating agencies are Mathis, McAndrews, and Rochet (2009)
and Bolton, Freixas, and Shapiro (2012). In contrast to the chapter, these works fol-
low the asymmetric information approach to reputations, where certifiers are assumed
to always be committed (i.e. honest) with positive probability.6 This, however, does
not allow for studying the interaction between repuational concerns and information
disclosure. The reason is that only false certification within a given disclosure rule
can be studied, because with the committed certifier type the disclosure rule is already
fixed and any departure reveals the certifier being not honest. Instead of assuming that

6See Mailath and Samuelson (2012, Chapter IV) for a discussion of this approach.
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CHAPTER 1

testing by the certifier is imperfect as is done in those works, we show how imperfect
testing may endogenously arise in equilibrium.

We conclude this literature review by listing two related papers that do not focus
on certification in particular. Levin (2003) extends the standard moral hazard setting
to situations where contractual agreements are enforceable only to a certain degree
and where reciprocal relations are long-term. The optimal contract derived by Levin
has a coarse structure, which parallels our finding of coarse disclosure being optimal.
As in this chapter, coarseness stems from a binding reputational constraint. The inter-
action of disclosure and incentives to exert effort is studied in Dubey and Geanakoplos
(2010). In a model where a teacher seeks to induce effort by her students, it is shown
that coarse grading schemes can help to induce all students to employ effort if they are
disparate and care about their status in class.

1.3 Setup

We consider a dynamic framework in discrete time. A short-lived monopolistic
producer is born in each period t = 1, 2, . . . ,∞. He produces a single unit of quality
qt ∈ {ql, qh}, where 0 ≤ ql < qh. In the following, we refer to a high type producer
if his product quality is qh and to a low type producer otherwise. Prior to production,
a producer chooses some investment level et ∈ [0, 1]. Quality is stochastic and the
probability that the good is of high quality qh is given by Prob(qt = qh|et) = et. This
probability function is independent of t, i.e. quality levels are independent across time.
Investment costs are given by the function k(·), which we assume is strictly increasing
and strictly convex. For technical reasons we assume a non-negative third derivative,
so that the certifier’s profit function is concave and to guarantee interior solutions we
additionally assume k′(0) ≤ ql and k′(1) ≥ qh.

Consumers’ reservation prices equal (expected) qualities. Both investment and
quality level are private information to the producer. Consumers observe the prod-
uct quality only after consumption. All other components of the model are common
knowledge. A producer enters the market, decides upon the investment level et and
the good is produced. At the end of each period goods are sold in a second-price auc-
tion7 after which the producer leaves the market. Figure 1.1 summarizes the timing

7The second price auction results in a standard monopoly price that equals consumers’ valuations. It
circumvents signaling issues, e.g. letting the informed party take a publicly observed action that might
be interpreted as a signal.
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1.3. SETUP

begin of period t

producer chooses et

producer learns qt

good sold in auction

consumers learn qt

begin of period t+ 1

Figure 1.1: Timing in one period without certification

in period t. The equilibrium concept we use throughout the chapter is that of perfect
Bayesian equilibrium.

To simplify notation, we set ql ≡ 0 and define v := qh − ql. In the benchmark
of complete information high quality goods are sold in the second-price auction at
price v and low quality goods are sold at price 0. The producer then chooses e to
maximize expected profits ev − k(e). The first-best investment level e∗ is thus given
by k′(e∗) = v, which lies in the interval [0, 1] due to our assumption k′(1) ≥ v. In
particular we have e∗ > 0.

Under asymmetric information and in the absence of any further economic institu-
tion, a producer cannot persuade consumers that he offers a high quality good and the
market price can therefore not be made contingent on a good’s quality. It is standard to
show that the Perfect Bayesian market outcome involves a market breakdown. In such
an outcome, consumers form a belief q̃t about the offered quality, which reflects their
willingness to pay. In equilibrium, this belief has to be consistent with the actual ex-
pected quality,E(qt|et). Given any belief, the producer’s optimal choice of investment
is et = 0, as he maximizes q̃t−k(et). Because E(qt|0) = 0, in the unique equilibrium
producers choose et = 0 and the quality of the good is zero in each period. The result
is a market failure: high quality is never offered in equilibrium. We summarize this
finding in the following lemma.

Lemma 1.1. Without certification, producers choose et = 0 in each period. In equi-

librium, quality is given by qt = 0 and the price is 0 in each period.

This inefficiency calls for the emergence of alternative market institutions to facil-
itate supply of high quality. The focus of the chapter lies on certification as one such
institution. Assume that an infinitely long-lived certifier enters the market. She offers
to disclose the result of some potentially imperfect test of the good’s quality, prior to
the good being sold. More precisely, at the beginning of the game, in period t = 0,
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CHAPTER 1

the certifier announces a fee f ≥ 0,8 9 and a disclosure rule D = (C, αl, αh).

Any producer who demands certification has to pay the fee f . The disclosure rule
consists of a set C = {C1, . . . , Cm} of potential certificates and probability vectors
αl and αh, where the k-th entry of vector αi reflects the probability that a product
of quality qi is awarded certificate Ck whenever tested. We do not assume that these
probabilities add up to one, i.e. we allow for

∑m
k=1 α

i
k < 1. Hence, a product may

remain uncertified with the conforming probability and will be sold as such. We as-
sume that consumers cannot observe whether a product was tested, unless it is offered
with a certificate.10 Possible disclosure rules encompass for example full disclosure,
where C = {C1, C2} and αh = (0, 1) as well as αl = (1, 0), or no disclosure, where
C = {C} and αi = (1).11

For a given certificate Ck, consumers form a belief q̃Ck about the true quality of a
product. The belief for uncertified products is denoted q̃∅. For notational convenience
we henceforth add ∅ to the set of certificates C, which refers to uncertified products.
Hence, C = {C1, . . . , Cm, ∅}.

An interpretation of the disclosure rule, which we shall use throughout the chapter,
is the following: the certifier can create any test that leads to a grading scheme with
grades from the set C and results in the respective grades with conforming probabil-
ities. This may be done with a computer program or a statistical test. In particular,
after the test result is obtained, the certifier and the consumers share the same beliefs
on product quality.

Finally we assume that the certifier’s inspection costs are zero12 and that she dis-
counts future profits at rate δ ∈ (0, 1). Figure 1.2 illustrates the timing of the game

8Assuming a single fee f , that does not depend on the certificate, is without loss in the setting with
only two quality levels. The best a certifier could do is, following the revelation principle, offering a
menu of ’contracts’ for the two potential producer types. Eventually, there is one payment referring
to the high type and one referring to the low type. It can be easily shown that the optimal contract
corresponds to the full disclosure rule, where high types pay f and low types pay 0 and true quality is
revealed.

9The fee f creates a distortion as will become clear later on. The certifier could implement the first-
best outcome, but only when moving first, i.e. when demanding an upfront payment before producers
choose their investment. This timing however seems unreasonable in many certification markets.

10Hence products which “failed” the test are sold under the same label as products that didn’t even
take the test. This assumption is not crucial, since the certifier can replicate any outcome of a game
where consumers are able to observe whether a product applied for certification.

11Note that certificates do not carry an intrinsic value. In the case that quality is fully revealed,
whether C1 or C2 is the valuable certificate depends on the choice of α.

12This assumption simplifies the analysis without substantially affecting the results, which continue
to hold as presented here for small but strictly positive inspection costs. Large inspection costs leave
most of our results still valid, but create cumbersome case distinctions.

12
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Figure 1.2: Timing of a period t with certification

with certification.

1.4 Optimal honest certification

In this section, we analyze certifier equilibrium strategies when the certifier is
honest. By the stationary structure of the model, we can restrict our analysis to the
certifier decision (D, f) plus a single period of production. Let πD(f) denote the
equilibrium profit of the certifier, when adopting disclosure rule D with certification
fee f .

We first study the case of full disclosure in some detail, as it will turn out that this
disclosure rule can be used to achieve maximal profits. Consider the case that quality
is fully revealed such that αh = (1, 0) and αl = (0, 1). Any product that is awarded
C1 is sold at a price v, whereas C2 is worth nothing. The only plausible equilibrium is
one where only high types apply for certification.13 A producer chooses his investment
according to

e = argmax
ẽ

ẽ · (v − f)− k(ẽ). (1.1)

This implies k′(e) = v−f in equilibrium and certifier expected equilibrium profits
can be expressed as

π̂FD(e) = e · (v − k′(e)). (1.2)

Denote eFD the equilibrium effort level under a full disclosure rule and fFD the
respective fee that maximizes certifier profits under full disclosure. The following

13Trivially, low quality producers do not demand certification when f > 0 since their revenues are
most zero.
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lemma proves that these values do exist and are unique.

Lemma 1.2. Under full disclosure, there exists a unique fee fFD that maximizes cer-

tifier profits. The uniquely defined equilibrium investment level eFD is implicitly given

by

k′′(eFD) · eFD = v − k′(eFD). (1.3)

The fee is fFD = v − k′(eFD) and the (subgame-) equilibrium profit is πFD = eFD ·
fFD.

We continue analyzing general disclosure rules. The entire set of disclosure rules
is complex and difficult to handle analytically. A closer look at equation (1.2), which
allows us to express the certifier profit as function of the implemented investment level
e, points to the advantages of using an indirect approach. We can express the attained
profit of any certifier policy (D, f) solely in terms of the induced investment level e.
This allows for a straightforward comparison of attained profits and leads us to the
following proposition.

Proposition 1.1. For any disclosure rule D =
(
C, αl, αh

)
and any fee f ≥ 0, it holds

that πD(f) ≤ πFD in equilibrium.

Proposition 1.1 states that the certifier will always find it optimal to employ a full
disclosure rule. The reason is that, investment incentives depend on the difference
between payoffs from selling high and low quality products. Given full disclosure, the
certification fee is sufficient to fully control this difference.

We conclude this section by pointing out that full disclosure is not the unique
disclosure rule that yields the maximal certifier profit πFD. First of all, one can imple-
ment the outcome of full disclosure with various disclosure rules by adding redundant
certificates - either additional certificates for high types, which then all have the same
value in equilibrium, or by adding certificates for low types that will not be issued
in equilibrium. Because we assumed certification to be costless for the certifier, other
rules equally achieve the maximal per-period profit: Issue two different certificates C1

and C2. Low quality products are only eligible for certificate C2, hence αl = (0, 1).
High quality products receive certificate C1 with probability α ∈ (0, 1) and C2 oth-
erwise, therefore αh = (α, 1 − α). With this structure, it is possible to sustain an
equilibrium in which all producer types demand certification.14 The optimal certifier

14For this, we have to set the off-equilibrium belief q̃∅ = 0 and all other beliefs underly Bayesian
updating.
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profit πFD is then obtained by choosing f and α appropriately.15

Disclosure rules of the latter kind play a crucial rule for the remainder of the chap-
ter. We henceforth refer to them as partial disclosure rules.

1.5 The capture problem

So far we assume that the certifier sticks to the announced disclosure rule, in partic-
ular that she conducts the lottery honestly and grants the respective certificate. How-
ever, there is pressure from producers who wish to be awarded better certificates. For
instance, if disclosure is meant to be noisy, a certifier might be willing to guarantee a
producer a high value certificate in exchange for a bribe. In this section we address
this issue by formally introducing the possibility of capture.

We follow Strausz (2005) in modeling the possibility of capture, using the frame-
work of enforceable capture as initiated by Tirole (1986). Hence we assume that the
certifier and the producer can write an enforceable side-contract with transfers. Con-
sumers are fully aware of the possibility of these side-contracts, but cannot observe
them.

Specifically, we model capture as follows: after a producer has learned his type qt,
but before deciding upon certification, the certifier, without observing qt, may make
an offer (C, b) to the producer. The offer consists of a certificate C, issued in case
of acceptance, and a financial transfer b to be paid by the producer. The certifier
thus offers to "sell" the sure certificate C at the price b, circumventing the customary
certification procedure given by the disclosure rule. Hence, (C, b) are the terms at
which she is willing to become captured. A producer, however, can reject this offer
and, if willing to do so, insist on honest certification by paying the fee f . This last
assumption is motivated following Kofman and Lawarrée (1993) in assuming that the
certifier cannot forge certification without the help of the producer. Figure 1.3 displays
the timing in a representative period t, allowing for the possibility of capture.

Note that the choice of the disclosure rule puts some limits on the set of feasible

capture offers. For a general disclosure rule D = {C, α} only offers of the form (C, b)

with C ∈ C are feasible.16

15We formally show this in the proof of Proposition 1.6.
16This will be made more precise when formally introducing consumer beliefs. Granting a certificate

which is not contained in D is certainly perceived as cheating by consumers. Consequently consumers
believe to be faced with a worthless product and they will lose trust in the certifier’s credibility.
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Figure 1.3: Timing of a period t with certification and capture

Within the framework presented here, capture may subvert honest certification for
two reasons.17 First, producers with low quality products are willing to side-contract
with the certifier in order to obtain better certification. Second, high types may want
to avoid uncertainty if disclosure is noisy.

In this section we are interested in the existence and characterization of equilib-
ria where the certifier resists the temptation of making any capture offer of the above
described kind. Throughout, we will work with different specifications of trigger be-
liefs. This becomes necessary as the ability of consumers to detect capture varies
across disclosure rules. We assume consumers are able to perfectly observe qual-
ity after consumption. Therefore, if D is full disclosure or if certain certificates are
awarded exclusively to high types, capture detection is also perfect.

Our particular idea behind the consumers’ beliefs is the following: They stop trust-
ing the certifier immediately if a false testimony about a product’s quality is detected.
Then, producers are not willing to pay for certification anymore. Consequently the
certifier will lose future demand and makes zero profits henceforth. This prevents the
certifier from becoming captured in the first place. We shall make this more precise in
the following subsections.

1.5.1 Capture under full disclosure

Consider again the full disclosure rule introduced in section 1.4, i.e. there are the
certificates C1 and C2 where C1 is only awarded to high quality products. Because,
by Proposition 1.1, a certifier would want to employ full disclosure whenever pos-
sible, we start by investigating capture under a full disclosure rule. We assume that

17When certification is costly for the certifier, there is a third reason: saving certification costs.
As already mentioned in Footnote 12 our analysis can be extended to c > 0, but this involves some
troubling case-by-case distinctions.
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1.5. THE CAPTURE PROBLEM

consumers trust certificates as long as they have not detected a deviation. A certifier
who anticipates this behavior may be prevented from succumbing to the temptation of
becoming captured by the fact that losing credibility will leave her without demand in
future periods.

Denote ht = (Ct, qt) the certification outcome in period t, where Ct is the issued
certificate in period t and qt is the true quality observed after consumption. If certi-
fication in period t did not take place, then Ct = ∅. Now let Ht = (h1, . . . , ht−1)

summarize the history of certification at the beginning of period t. Finally, we de-
note q̃t(Ct, Ht) a consumer’s belief in period t when faced with a product carrying
certificate Ct and when having observed history Ht. The following assumption on
consumers’ beliefs covers the described behavior.18

Assumption 1.1. The consumers’ beliefs q̃t(Ct, Ht) satisfy q̃t(Ct, Ht) = q̃Ct whenever

{τ < t|qCτ 6= qτ ∨ Cτ /∈ C ∪ {∅}} = ∅. Moreover q̃t(Ct, Ht) = 0 whenever

{τ < t|q̃Cτ 6= qτ ∨ Cτ /∈ C ∪ {∅}} 6= ∅ and q̃t(Ct, Ht) = 0 whenever Ct /∈ C.

The assumption states that consumers trust the certifier if capture was not observed
in the past. They however lose trust forever, once they detected cheating. Losing trust
implies that consumers believe for any certifier’s claim that the offered quality is zero.

With full disclosure, there are (at most) two types of bribing offers that can be
made: (C1, b) and (C2, b). Obviously, an offer (C2, b) is turned down by all types of
producers, as it is worth nothing. Hence, in the following we focus on offers (C1, b)

and talk of a bribe b rather than (C1, b). An offer b is accepted by high producer types
whenever b < f . Low quality producers accept any bribe b < v because acceptance
will yield positive profits compared to zero profits for rejection.

In equilibrium, the certifier assigns probability e(f) to the event that a producer is
of high type, where e(f) is the producer’s optimal investment under full disclosure,
derived from (1.1). We are interested in equilibria where capture does not occur. In all
such equilibria, a producer chooses his optimal investment level knowing that he will
not receive an acceptable capture offer. The acceptance probability p(b|f) of bribing

18Note that consumers do not lose trust in the certifier when a product is awarded certificate C2,
although this should not happen in equilibrium. It is not necessary to include this case into consumers’
beliefs, because any such event can only follow a non-profitable deviation by the certifier.
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offer b given the certification fee f is given by

p(b|f) =


1, if b < f,

1− e(f), if f ≤ b < v,

0, if b ≥ v.

(1.4)

We denote by ΠD(f) =
∑∞

t=1 δ
t−1πD(f) = πD(f)/(1 − δ) the certifier’s ex-

pected profit from honest certification under disclosure rule D and fee f . The cer-
tifier’s expected profit from offering bribe b is denoted by Π̂D(b|f) and depends on
whether the consumer detected capture as follows: whenever b < f , all producer
types will accept the bribe, but only for low quality producers this is detected. Hence,
Π̂FD(b|f) = b + e(f)δΠFD(f). For f ≤ b < v, only low quality producers accept
the bribe and Π̂FD(b|f) = (1 − e(f))b + e(f)(f + δΠFD(f)). Whenever b ≥ v, all
producers reject the bribe and the certifier obtains Π̂FD(b|f) = ΠFD(f).

If Π̂FD(b|f) exceeds ΠFD(f) for some b, the certifier is actually better off becom-
ing captured with the associated probability p(b|f). We say that certification at a fee
f is capture proof if and only if

ΠFD(f) ≥ Π̂FD(b|f) (1.5)

for all b.
Note that Π̂FD(b|f) is increasing in b, both on [0, f) and [f, v) and it is constant

for b ≥ v. Furthermore Π̂FD(·|f) is continuous at b = f .19 Therefore, certifier profits
from bribery are largest when b approaches v. Evaluating this yields the following
proposition:

Proposition 1.2. Under a full disclosure rule, an equilibrium satisfying Assumption

1.1 is capture proof. It exists if and only if

δ ≥ δFD(f) ≡ v

v + πFD(f)
(1.6)

The proposition highlights the crucial role the discount factor plays for the exis-
tence of honest, i.e. capture proof, equilibria: the critical discount factor determines
the relative weights of the short run gain - the bribe b - and the long run loss of capture

19To see this compare the left and right limit: limb↓f Π̂FD(b|f) = f + e(f)δΠFD(f) = (1 −
e(f))f + e(f)

(
f + δΠFD(f)

)
= limb↑f Π̂FD(b|f).
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Figure 1.4: Capture proof combinations of (e, δ) resp. (f, δ) under full disclosure.

- foregone future profits from certification. To see this, note that all bribes b < v are
accepted with some positive probability and therefore, the largest possible short-run
gain equals v. In the long run, a certifier risks her per-period profits πFD(f).

Because the certification fee enters (1.6) only via the per-period profit, δFD(f)

depends on f only through πFD(f), which is concave in f . Therefore δFD(f) must
be convex in f and minimized at the profit maximizing fee fFD.

Corollary 1.1. For any discount factor δ ≥ δFD there exists an interval of fees

[fl(δ), fh(δ)], which sustains capture-proof certification under full disclosure, where

δFD ≡ v

v + πFD
. (1.7)

As an immediate consequence we get that that the static monopoly fee fFD can
sustain honest certification for all discount factors δ ≥ δFD. The right panel of Figure
1.4 depicts the set of feasible (δ, f)-combinations for full disclosure.

Alternatively one might ask the question, what level of producer investment can be
implemented via capture-proof certification with a full disclosure rule? The analysis
follows the same arguments as above, only that certifier profits in the inequality of
Proposition 1.2 are expressed in terms of e.

Proposition 1.3. For any δ ≥ δFD there exist values eFDl (δ) < eFDh (δ) such that an

investment level e can be implemented in a capture-proof equilibrium if and only if

e ∈ [eFDl (δ), eFDh (δ)]. A particular investment level e ∈ [0, e∗] can be implemented in

a capture-proof equilibrium with full disclosure if and only if

δ ≥ δFD(e) ≡ v

v + e · (v − k′(e))
. (1.8)
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The set of feasible (e, δ)-combinations is depicted in the left panel of Figure 1.4.
Note that the first-best investment level e∗ can only be (virtually) implemented for
δ = 1. Whenever δ < 1, fees must be strictly positive in order to induce the certifier
to remain honest. But then, the producer does not obtain the entire return on his
investment. Hence, it must be that e < e∗.

1.5.2 Capture under partial disclosure

We next argue that alternative noisy disclosure rules can improve certifier credibil-
ity in the sense that they increase the range of discount factors that allow for capture-
proof equilibria.

To gain some intuition consider again condition (1.6). This condition summarizes
the trade-off between short-run gains and long-run losses. A larger profit πD(f) re-
duces the critical discount factor and full disclosure guarantees maximal per-period
profits. On the other hand, δFD(f) is decreasing in v, which represents the the maxi-
mal bribe still accepted by low-type producers and therefore the largest possible short-
run gain from capture.

Using noisy disclosure the certifier can affect the maximal short-run gain in various
dimensions. First of all, lowering the value of the best certificate or increasing the
value of the worst certificate (resp. the value of uncertified products) decreases the
gap between particular certification outcomes. This effect can be used to reduce the
maximal bribe which producers are willing to pay. Second, with noisy disclosure
the certifier can sustain an outcome where both producer types demand certification.
Upon colluding with a producer type the certifier foregoes the regular certification fee,
which reduces the effective gain from becoming captured.

Before analyzing noisy disclosure rules, we have to reconsider the detection possi-
bilities by consumers. An implication of noisy rules is that consumers may hold prob-
abilistic beliefs about a product’s quality. In order to simplify matters and because
it suffices to make our point clear, we focus on partial disclosure rules as introduced
in section 1.4. Other noisy disclosure rules are discussed in section 1.6 and in the
appendix.

Under partial disclosure, there are again two certificates C1 and C2, where cer-
tificate C1 is awarded exclusively to high quality products and C2 is awarded to a
high quality seller with probability 1 − α and to every low quality seller. With an
appropriately chosen fee f all producer types demand certification, hence there are no
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uncertified products on the equilibrium path. The corresponding off-equilibirum be-
lief is q∅ = 0. The fact that C1 is awarded exclusively to high quality products makes
effective trigger punishment possible. In particular, it then suffices that the certifier is
punished only if probability zero events (a low quality product was awarded certificate
C1) are observed. The fact that capture detection is not possible if bribes are being
paid in exchange for the low value certificate C2, which is assigned to both high and
low types, turns out not to be crucial. This relies on the fact that in the equilibria under
consideration all producer types demand certification, hence receiving certificate C2

is the worst possible outcome. Certificate C2 can therefore not be part of a profitable
bribing offer, as we will argue later.

To specify consumer beliefs, let ht = (Ct, qt) denote the certification outcome
in period t and, as before, Ht = (h1, . . . , ht−1) describes the history in period t.
Consumer’s beliefs are specified as follows

Assumption 1.2. The consumers’ beliefs q̃t(Ct, Ht) satisfy q̃t(Ct, Ht) = q̃Ct whenever

{τ < t|Prob(C = Cτ |q = qτ ) = 0 ∨ Cτ /∈ C ∪ {∅}} = ∅. Moreover q̃t(Ct, Ht) = 0

when either Ct /∈ C or {τ < t|Prob(C = Ct|q = qt) = 0 ∨ Cτ /∈ C ∪ {∅}} 6= ∅.

Note that in contrast to Assumption 1.1, the consumer trust the certifier unless
probability zero events occured in the past. Because the crucial bribe entails certificate
C1, which is exclusively awarded to high quality producers, this essentially says that
consumers stop trusting the certifier, whenever they find a low quality product carrying
certificate C1. Cheating on the lottery leading to certificate C2 is not detected and also
not punished, but because this certificate corresponds to the worst outcome this will
not happen as a result of a capture offer.

Bribing offers can now be of two kinds: (C1, b) and (C2, b). Offer (C2, b) is never
beneficial. It would only be accepted for b < f , because any producer receives at
least the certificate C2 when applying for (honest) certification and the certifier gets f
from any producer who is honestly tested. Thus, we can focus on bribing offers of the
form (C1, b), which we will simply refer to as b. Recall that certificate C1 can only
be awarded to high quality products. Hence, qC1

= v. To simplify notation, denote
V2 the value of a C2-certified product, i.e. V2 = qC

2 . Furthermore, recall that α is the
probability with which a high type is awarded C1.

A bribe b is accepted by low types whenever V2−f < v−b. High quality producers
accept b if αv + (1 − α)V2 − f < v − b. Denote e(α) the equilibrium investment.20

20The investment decision does not depend on the fee because in equilibrium, all types apply for
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Then bribery acceptance probabilities are

p(b|α, f) =


1, if b < f + (1− α)(v − V2),

1− e(α), if f + (1− α)(v − V2) ≤ b < f + (v − V2),

0, if b ≥ f + (v − V2).

Let ΠPD(α, f) denote the expected profit from applying a partial disclosure rule
and honestly disclosing information in each period. The corresponding expected cer-
tifier profits from bribing offer b are

Π̂(b|α, f) =



b+ e(α)δΠPD(α, f), if b < f + (1− α)(v − V2),

(1− e(α))b if f + (1− α)(v − V2)

+e(α)
(
f + δΠPD(α, f)

)
, ≤ b < f + (v − V2),

ΠPD(α, f), if b ≥ f + (v − V2).

Note that whenever high types accept the bribery offer, this is not perceived as
cheating because the certificate then matches the observed quality level. The function
Π̂(b|α, f) is increasing in the respective subintervals. But, contrary to the respective
case of full disclosure, it exhibits a downward-jump at b = f + (1− α)(v − V2). The
reason is that high types are willing to accept bribes strictly larger than the certification
fee f to avoid the lottery between the good and the bad certificate. Therefore, at least
locally, the certifier is better off bribing all producers instead of only the low types as it
was the case with full disclosure. Furthermore, the maximal bribe that is accepted by
at least some types is now f+v−V2, which is weakly lower than under full disclosure,
where the maximal bribe is v.21

Revisiting condition (1.5), we say certification at fee f with noise level α is
capture-proof, if and only if

ΠPD(α, f) ≥ Π̂(b|α, f). (1.9)

certification and therefore pay f anyway. The expected producer profit is e(αV1 + (1− α)V2) + (1−
e)V2 − f − k(e) and consequently the optimal investment level depends on α but not on f .

21In order to have all producer types demand certification it has to hold that f ≤ V2. Consequently
f + v − V2 ≤ v.
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Analyzing this latter condition yields the following proposition.

Proposition 1.4. With partial disclosure, an equilibrium satisfying Assumption 1.2 is

capture-proof. It exists if and only if

δ ≥ δPD(α, f) ≡ max
{
δl(α, f), δl,h(α, f)

}
, (1.10)

where δl(α, f) = v−V2
v−V2+f

and δl,h(α, f) = (1−α)(v−V2)
(1−α)(v−V2)+(1−e(α))f

.

The result gives a lower bound on the discount factor δ to guarantee existence of a
capture-proof equilibrium with partial disclosure. The critical discount factor discount
factor δPD(α, f) depends on the parameters in the way how they affect short-run gain
and long-run loss from capture and on which producer types accept the bribing offer
that yields largest deviation profits.

The term δl(α, f) refers to the case where the largest threat stems from bribes ac-
cepted only by low types. The numerator v − V2 is the effective bribe, defined as the
bribery payment minus foregone payments. In the denominator we find again the ef-
fective bribe and the per-period profit f , reflecting the long-run loss from capture. The
term δl,h(α, f) refers to the case where the largest threat stems from bribes accepted
by all types. Here the effective bribe is (1 − α)(v − V2). Because the long-run profit
is only at stake if quality is low, long-run profits are lost with probability (1 − e(α)).
Although the classical trade-off between short-run gain and long-run loss, that we al-
ready identified for full disclosure, prevails, the derivation of the maximal short-run
gain is more involved for partial disclosure.

From Proposition 1.4 we identify a third notable difference between capture under
full and noisy disclosure. Short-run gains from capture can be reduced due to the
different equilibrium structure: all producers certify in equilibrium which implies that
the certifier always loses fee payments if he is captured. Therefore, a larger fee f not
only increases the long-run losses but at the same time reduces the short-run gains
from capture.

It is now straightforward to see that δPD(α, f) is decreasing in the certification fee
f . This implies that for any partial disclosure rule (i.e. any α) the threat of capture is
lowest when f is maximal. To keep all producers applying for certification, f cannot
exceed V2. It is therefore optimal to set f = V2, which leaves low quality producers
with an expected profit of zero. The following corollary summarizes.
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Corollary 1.2. With partial disclosure a capture-proof equilibrium satisfying Assump-

tion 1.2 exists if and only if

δ ≥ δPD(α) ≡ max
{
δl(α), δl,h(α)

}
, (1.11)

where δl(α) = v−e(α)(v−k′(e(α)))
v

and δl,h(α) = 1
1+e(α)

.

Corollary 1.2 allows us to reduce the problem of finding the critical discount factor
for partial disclosure to the one-dimensional problem of finding the optimal level of
α, the probability that high quality is revealed. In fact, δPD(α) depends on α only
through the equilibrium value for producer investment e(α). The set of investment
levels that can be implemented by partial disclosure is (0, e∗), the same set as for
full disclosure. Defining δPD ≡ minα δ

PD(α) allows us to formulate the analog of
Proposition 1.3 for partial disclosure.

Proposition 1.5. For any δ ≥ δPD there exist values ePDl (δ) < ePDh (δ) such that an

investment level e can be implemented in a capture-proof equilibrium if and only if

e ∈ [ePDl (δ), ePDh (δ)]. A particular investment level e ∈ [0, e∗] can be implemented in

a capture-proof equilibrium with noisy disclosure if and only if

δ ≥ δPD(e) = max
{
δPD,l(e), δPD,l,h(e)

}
(1.12)

where δPD,l(e) = v−e(v−k′(e))
v

and δPD,l,h(e) = 1
1+e

.

Proposition 1.5 makes implementation of capture-proof equilibrium under full and
partial disclosure directly comparable. Before investigating this in the next section we
want to highlight some properties of the function δPD(e). Writing e(v − k′(e)) =

πPD(e) = f the term δPD,l(e) can be expressed as (v − f)/(v − f + πPD(e)). This
resembles the trade-off between short-run gain and long-run loss, already identified
above. Only the maximal short-run gain with partial disclosure is the maximal bribe
minus foregone regular payments. The same trade-off leads to δPD,l,h(e), which is,
however, independent of the producer’s cost function k(e).

The maximal bribe that is accepted from both producer types in particular must
be accepted from high quality producers. For them, the difference between the sure
certificate C1 and the lottery faced when certifying honestly matters. This difference
is closely related to a producers’ investment incentives, in fact one can show that the
maximal bribe equals v − k′(e). Both short-run gain and long-run loss depend in a
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Figure 1.5: Capture-proof (e, δ)-combinations for low (left) and high (right) marginal costs k′

at e = eFD.

similar way on the investment incentives22, consequently the fraction δPD,l,h(e) does
not depend on the producers cost function anymore.

Which of the two terms, δPD,l(e) and δPD,l,h(e), is larger? δPD,l,h(e) is decreasing
in e, starting at 1 for e = 0 towards 1/2 for e = 1. On the other hand δPD,l(e) is
convex in e with a unique minimum at e = eFD. Furthermore δPD,l(0) = δPD,l(1) =

1. Therefore, δPD is either δPD,l(eFD), that is the minimum of δPD,l, or it is the
intersection of both fractions lying to the right of e = eFD. Figure 1.5 illustrates the
two cases, the latter in its left part.

1.5.3 Sub-optimality of full disclosure

In the previous sections, we identified the conditions under which capture-proof
equilibria exist for full disclosure and a special class of noisy disclosure rules. These
conditions are expressed in terms of the critical discount factors δFD and δPD. It is the
aim of this chapter to show that opaque disclosure rules can be used by the certifier to
improve his credibility. Comparing the critical discount factors δFD and δPD is short-
hand for comparing the entire sets of (e, δ)-combinations, for which a capture-proof
equilibrium exists with the respective disclosure rule.

We prove in this section that the two sets are different and, more importantly,
that the respective set for full disclosure is contained in the respective set for partial

22As discussed, the short-run gain equals v− k′(e). The long-run loss is the per-period profit, which
was already shown to be e(v − k′(e)).
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disclosure. Consequently there exists an intermediate range of discount factors for
which there does not exist a capture-proof equilibrium with full disclosure, but it is
still possible to sustain capture-proof equilibria with partial disclosure.

As we have discussed several times throughout the chapter, the key trade-off for
implementing a capture-proof equilibrium is short-run gains versus long-run losses.
Either disclosure rule leads to a per-period profit of π(e) = e(v − k′(e)) when imple-
menting effort level e, the potential long-run loss is therefore the same. However, with
partial disclosure the short-run gain from becoming captured by only low quality pro-
ducers is v−f , compared to v for full disclosure. The resulting trade-off is resolved in
favor of partial disclosure. So far this assumes that the largest threat of capture indeed
stems from low quality producers. Although this is in general true for full disclosure,
it ceases to hold for partial disclosure.

When the maximal threat stems from a bribe accepted by all producer types, the
long-run loss is reduced. Only when the producer is of low quality this is perceived
as cheating by consumers and punished accordingly. So per-period profits are only
lost with probability 1 − e. On the other hand such a bribe must be smaller in order
to be acceptable for high quality producers, which reduces the short-run gain. The
following proposition proves that the latter effect outweighs the former.

Proposition 1.6. It holds that δPD < δFD. For any δ ∈ [δPD, δFD], a capture-proof

equilibrium can only be sustained applying a noisy disclosure rule. Furthermore, for

any δ ≥ δFD, we have that [eFDl (δ), eFDh (δ)] ( [ePDl (δ), ePDh (δ)].

Proposition 1.6 shows our main result that opacity can be used as a tool to improve
certifier credibility. For any level of producer investment e, the range of discount fac-
tors that allow for capture-proof implementation of e is strictly larger for partial dis-
closure compared to full disclosure. Similarly, for any discount factor δ, the set of
investment levels that are implementable in a capture-proof equilibrium with partial
disclosure is strictly larger then the corresponding set for full disclosure. The supe-
riority of partial disclosure therefore goes along two dimensions. Figure 1.6 displays
these differences. The dark-grey area corresponds to (e, δ)-combinations that can be
implemented as a capture-proof equilibrium under full disclosure. The light-grey area
shows the additional (e, δ)-pairs that allow for implementation in capture-proof equi-
librium under partial disclosure.

In Section 1.4, we have argued that a certifier would always want to implement
eFD as this maximizes her per-period profits. With full disclosure, this is only possi-
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Figure 1.6: Dark-grey: capture-proof certification with full disclosure. Light-grey: (addi-
tional) capture-proof certification with noisy disclosure.

ble when δ ≥ δFD. Partial disclosure allows for capture-proof equilibria also for lower
discount factors. It is remarkable that, at least for a range of discount factors, this can
be achieved without waiving any profits. To see this, denote δ̃(πFD) the smallest dis-
count factor, such that a capture-proof equilibrium is sustained and achieves per-period
profits of πFD. The following corollary is an immediate consequence of Proposition
1.6.

Corollary 1.3. It holds that

δ̃(πFD) = max

{
v − πFD

v
,

1

1 + eFD

}
< δFD.

1.5.4 Welfare properties of partial disclosure

In this subsection, we study welfare properties of capture-proof equilibria with
partial disclosure. When δ̃(πFD) = δPD we also have δPD = (v − πFD)/v. In this
case, the largest threat of capture stems from low quality producers, i.e. the largest
deviation profit for the certifier is achieved for b = v. Then the certifier can still
achieve the maximal per-period profits πFD in a capture-proof equilibrium for any
δ ≥ δPD, which implies implementing e = eFD.

This is however not true when δ̃(πFD) > δPD. As can be seen from Figure 1.6,
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for discount factors below δ̃(πFD) the profit maximizing level of investment eFD is
no longer capture-proof implementable. Instead only larger values of producer in-
vestment can be implemented when δ ∈ [δPD, δ̃(πFD)). To provide an intuition for
this, note the following: Bribing offers b that are accepted by all producer types pose
the largest threat. Now, implementing a larger e leads to a reduction in V2, as oth-
erwise profits would increase beyond πFD. To incentivize producers to make larger
investments the certifier has to increase α.

As now shown, for high quality producers the difference in expected profits be-
tween the lottery of the certification process and the sure certificate v is reduced.23

This in turn lowers the maximum bribe they are willing to pay for capture and there-
fore reduces the short-run gain for the certifier from any such offer. From a wel-
fare perspective this increase in investment is beneficial. Social welfare is given by
e · v − k(e) in each period. The first-best investment level e∗ was shown to be strictly
larger than eFD and welfare is strictly increasing on [0, e∗]. Implementing certifica-
tion with partial disclosure for discount factors δ ∈ [δPD, δ̃(πFD)] therefore increases
social welfare compared to doing so for larger levels of the discount factor. Put differ-
ently, a severe threat of capture increases welfare. We summarize this in the following
proposition.

Proposition 1.7. Assume δ̃(πFD) > δPD. For intermediate levels of the discount

factor, i.e. δ ∈ [δPD, δ̃(πFD)), only investment levels that are strictly larger than eFD

can be capture-proof implemented with partial disclosure. This leads to increased

social welfare.

1.6 Discussion

We analyze the effects of reputational concerns on optimal disclosure rules from
the point of view of a monopolistic certifier. Our main finding is that if capture is
an issue, a certifier benefits from resorting to coarser certification in order to reduce
the threat of capture and this is indepent of a potential profit concern that pushes the
certifier in the same direction. In particular, for medium discount factors, sustaining
honest certification is impossible if information is fully disclosed whereas it is still
possible if information disclosure is noisy.

23Honest certification yields an expected payoff αv + (1 − α)V2. This value is reduced when α
increases and V2 decreases at the same time.
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Implications of our analysis are manifold. First of all we provide a novel explana-
tion for the occurrence of imperfect testing. In many papers on e.g. rating agencies
(examples include Mathis, McAndrews, and Rochet (2009) and Bolton, Freixas, and
Shapiro (2012)) imperfect testing is exogenously given, whereas here it arises in equi-
librium. An empirical implication is that for low discount factors we expect disclosure
to be coarser. This is consistent with the casual observation that certification in mar-
kets with low volume, such as wine, technical inspections or eco-labels often involves
only a few different certificates. On the other hand, the high volume rating market
exhibits a rather wide variety of different but still coarse certificates per rating agency.

Our findings also have important policy implications. Politics tend to push cer-
tifiers to precisely reveal information.24 Our results suggest that doing so may lead
to unforeseen consequences for the functioning of those markets, as it might become
more difficult to build up a reputation and resist capture if certificates are required to
be too precise. Similarly, regarding the current financial crisis, forcing rating agencies
to issue more precise information might even exacerbate capture problems.

We demonstrate our results in a highly stylized model, but the intuition behind
our results is general. In particular, they carry over to more than only two quality
specifications. This makes the analysis simpler on the one hand, as it can be shown
that already coarse deterministic disclosure rules outperform full disclosure. On the
other hand the analysis is complicated by the fact that full disclosure is not necessarily
optimal anymore, when capture is ignored. The first point already becomes clear from
a setting with three quality levels. Full disclosure can then entail both the highest and
the medium quality producer demand certification. A coarse rule would specify one
certificate awarded to all but low quality. Obviously, for both rules the same types of
producer demand certification. In the latter case however the maximal bribe is strictly
lower. For similar investment levels and fees, the critical discount factor is therefore
strictly lower for the coarse rule. The precise analysis is more complicated, since the
coarse rule generates different investment incentives for producers. In Appendix B we
offer an illustration for a special case of probability distributions.

We point out that our restriction to a particular class of noisy disclosure rules is
without loss of generality. First, offering various coarse certificates generates incen-
tives for the certifier to always offer the best among the noisy certificates in a bribing
offer. This will be accepted (at least by low quality producers) in order to avoid a

24Such as in the Dodd-Frank Act, see Footnote 4
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lottery that includes the worst certificates. As deviations of this kind remain unde-
tected they will occur with certainty, that destroys the equilibrium. Second, disclosure
rules that do not allow for unambiguous detection of deviations call for a different
type of trigger beliefs. Consumers lose trust in the certifier whenever they first detect
low quality sold with the best certificate. This leads to punishments even if collusion
did not take place. The harsher punishments makes it impossible to sustain capture
proof equilibria for low discount factors. Proposition 1.8 in the appendix makes this
statement precise.

Also the assumptions on the certifier’s policy space is not restrictive. In our two
period model, a full disclosure rule is equivalent to certificate-dependent payments:
for a good certificate pay the certification fee f and for the bad certificate pay zero.
By the revelation principle an optimal policy involves a certification contract for each
of the two quality types. It is then straightforward to verify that the optimal policy is
outcome-equivalent to a full disclosure rule with a flat fee.

Finally we use a specific extensive form to model capture. More sophisticated
forms to study imply non-uniform bribing offers, e.g. menus, to elicit the producers’
private information. Also, later bribing, after the certifier learned q or giving pro-
ducers the possibility to signal their private information are possible extensions. The
exact extensive form may well affect parts of the analysis, but the main finding of the
advantage of opacity does not depend on the specific extensive form.
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Appendix

1.A Proofs

1.A.1 Proofs of Section 1.3

Proof of Lemma 1.1. Follows immediately from the arguments given in the text.

1.A.2 Proofs os Section 1.4

Proof of Lemma 1.2. Following the arguments given in the text the certifier maxi-
mizes (1.2). Recall that we assume k′′′(·) ≥ 0, which ensures that this profit function
is concave in e, thus the first-order condition is sufficient for an optimum. This first-
order condition is 0 = v − k′(e) − ek′′(e). Define Ψ(e) = v − k′(e) − ek′′(e). We
have Ψ(0) = v > 0 and Ψ(1) = v − k′(1) − k′′(1) ≤ 0 by our assumptions on k(·).
Furthermore Ψ is strictly decreasing due to strict concavity of k(·). Hence there exists
a unique eFD such that Ψ(eFD) = 0, which consequently is the unique maximizer of
the certifier profit. The formulas for eFD and fFD follow easily from the formulas
above.

Proof of Proposition 1.1. First of all a disclosure rule can potentially lead to four
different subgames: (1) no producer demands certification, (2) only low quality pro-
ducers demand certification, (3) only high quality producers demand certification, and
(4) all producers demand certification. Note that we do not explicitly consider mixed
strategies by producers. The reason is that any outcome where some producers ran-
domize their certification decision can be replicated by a disclosure rule that adds the
respective probabilities for not certifying to the probabilities of remaining uncertified
though paying for certification. To see this, assume type i chooses to certify with
probability γ ∈ (0, 1). Now multiply every αi by γ and increase the probability of
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remaining uncertified appropriately. After changing the fee from f to γf , it is easy
to see that this adjusted disclosure with the reduced fee leads to the same investment
incentives and also to the same equilibrium prices for (un-)certified products and the
certifiers profit is unchanged.
Case (1) trivially leads to zero profits and the claim is proven.
Case (2) leads to consumers paying zero in equilibrium for certified products.25 To
make low quality producers “pay” for certification we consequently must have f = 0

which leads to zero profits and proves our claim also in this case.
Case (3) can be analyzed as follows: If only high types certify, rational behavior by
consumers dictates that a certified product is sold at a price v. Uncertified products
however can be of either high or low quality and have some price q∅ ∈ [0, v).
A producer’s investment decision is given by the solution of

max
e

e
(∑

k

α1
kv + (1−

∑
k

α1
k)q
∅ − f

)
+ (1− e)q∅ − k(e),

which yields the following first-order condition for producer investment:(∑
k

α1
k(v − q∅)− f

)
= k′(e).

Rewriting this constraint in terms of induced investment yields f = v − k′(e)− (1−∑
k α

1
k)(v − q∅)− q∅. Now we have for the certifier profit

πD(f) = e(f,D) · f

= e ·
(
v − k′(e)− (1−

∑
k

α1
k)(v − q∅)− q∅

)
≤ e · (v − k′(e)) ≤ πFD.

This proves the claim for case (3).
Finally consider case (4): When both producer types demand certification, the result-
ing certifier profit in the subgame is πD(f) = f . The price at which a product holding
certificate Ci can be sold is

qC
i

= v · eαhi
eαhi + (1− e)αli

.

25A disclosure leading to this particular subgame is given by C = {C}, αl = 1 and αh = 0.
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Uncertified products are sold at price q∅ = v · e
(

1−
∑
i α

h
i

)
e
(

1−
∑
i α

h
i

)
+(1−e)

(
1−

∑
i α

l
i

) . A producer’s

investment decision follows from maximizing his expected payoff from certification,
given by

e ·

(∑
i

αhi q
Ci +

(
1−

∑
i

αhi

)
q∅

)

+ (1− e) ·

(∑
i

αliq
Ci +

(
1−

∑
i

αli

)
q∅

)
− f − k(e).

The resulting investment constraint is

k′(e) =
∑
i

(αhi − αli)(qC
i − q∅). (1.13)

On the other hand, from the formula given for qCi we have eαhi q
Ci + (1− e)αliqC

i
=

evαhi . Similarly e(1−
∑

i α
h
i )q∅+ (1− e)(1−

∑
i α

l
i)q
∅ = ev(1−

∑
i α

h
i ). Summing

those expressions yields∑
i

(
eαhi q

Ci + (1− e)αliqC
i
)

+e(1−
∑
i

αhi )q∅+(1−e)(1−
∑
i

αli)q
∅ = ev. (1.14)

Rewriting the left hand side of equation (1.14) yields

e
∑
i

(αhi − αli)(qC
i − q∅) +

∑
i

αliq
Ci +

(
1−

∑
i

αli

)
q∅ = ev. (1.15)

Finally, to make all producer types demand certification we must have in particular

f ≤
∑
i

αliq
Ci +

(
1−

∑
i

αli

)
q∅ (1.16)

i.e. low quality producers ecpected payoff from certification must be non-negative.26

26More conditions are required in subgame where all producer types demand certification, but the
one presented her is the only required for our proof.
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From this we can derive an upper bound on certifier profits:

πD(f) = f
(1.16)
≤

∑
i

αliq
Ci +

(
1−

∑
i

αli

)
q∅

(1.15)
= ev − e

∑
i

(αhi − αli)(qC
i − q∅)

(1.13)
= ev − ek′(e) = e(v − k′(e)).

But e (v − k′(e)) is the profit from implementing effort level e optimally with a full
disclosure rule, therefore we have proven πD(f) ≤ πFD.

1.A.3 Proofs of Section 1.5

Proof of Proposition 1.2. In any equilibrium in which Assumption 1.1 holds capture
may not take place, since otherwise the beliefs of consumers are not consistent with
the behavior of the certifier. Hence, condition (1.5) must be satisfied for all b. As
mentioned in the text, certifier profits from deviating Π̂FD(b|f) are largest for b ap-
proaching v. Taking this limit yields

lim
b↗v

Π̂FD(b|f) = (1− e(f))v + e(f) ·
(
f + δΠFD(f)

)
= (1− e(f))v + πFD(f) +

δ

1− δ
e(f)πFD(f)

= (1− e(f))v − δ

1− δ
(1− e(f))πFD(f) + ΠFD(f).

Condition (1.5) is thus equivalent to

(1− e(f))v ≤ δ

1− δ
(1− e(f))πFD(f).

Rearranging this expression yields that condition (1.5) is satisfied if and only if

δ ≥ δFD(f) ≡ v

v + πFD(f)
.

Proof of Proposition 1.3. We first argue how condition (1.6) can be translated to-
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wards (1.8). Recall πFD(f) = e(f) · f and optimal investment by producers requires
k′(e) = v−f . Replacing f by v−k′(e) yields (1.8). All other statements are straight-
forward reformulations of Proposition 1.2 and Corollary 1.1.

Proof of Proposition 1.4. In any equilibrium in which Assumption 1.2 holds capture
may not take place, since otherwise the beliefs of consumers are not consistent with
the behavior of the certifier. Hence, condition (1.9) must be satisfied for all b. We
compute the respective critical discount factors. Taking the limit of Π̂D(b|f) as b
approaches f + (1− α)(v − V2) we get

lim
b↗f+(1−α)(v−V2)

Π̂D(b|f) = f + (1− α)(v − V2) + e(α)δΠPD(f)

= f + (1− α)(v − V2) + e(α)
δ

1− δ
f

= (1− α)(v − V2)− δ

1− δ
(1− e(α))f + ΠPD(f).

Consequently this limit lies below ΠPD(f) if and only if

(1− α)(v − V2) ≤ δ

1− δ
(1− e(α))f,

respectively whenever

δ ≥ δl,h(α, f) =
(1− α)(v − V2)

(1− α)(v − V2) + (1− e(α))f
.

Similarly the limit of Π̂D(b|f) as b approaches f+(v−V2) can be rewritten as follows

lim
b↗f+(v−V2)

Π̂D(b|f) = (1− e(α)) · (f + (v − V2)) + e(α)
(
f + δΠPD(f)

)
= (1− e(α))(v − V2)− δ

1− δ
(1− e(α))f + ΠPD(f).

Therefore limb↗f+(v−V2) Π̂D(b|f) ≤ ΠPD(f) if and only if

δ ≥ δl(α, f) =
v − V2

f + v − V2

.

Because capture-proofness requires Π̂D(b|f) ≤ ΠPD(f) for all b, (1.10) follows.

Proof of Corollary 1.2. As discussed in the text, the certifier may set f = V2 to
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minimize the threat of capture. We consider δl(α, f) first. Making use of f = V2

allows us to simplify it to (v − V2)/v. From the proof of Proposition 1.1 we get
V2 = e(v − k′(e)) and therefore

δl(α) =
v − V2

v
=
v − e(α)(v − k′(e(α)))

v
.

Now consider δl,h(α, f). With f = V2 we may rewrite

δl,h(α, f) =
(1− α)(v − V2)

(1− α)(v − V2) + (1− e(α))V2

By Bayesian updating we have V2 = v ·
(
(1 − α)e(α)

)
/
(
1 − αe(α)

)
in equilibrium,

which implies v − V2 = v ·
(
1 − e(α)

)
(
(
1 − αe(α)

)
. Replacing V2 and v − V2

accordingly yields

(1− α)(v − V2)

(1− α)(v − V2) + (1− e(α))V2

=
1

1 + e(α)
.

Proof of Proposition 1.6. Recall, that with full disclosure the critical discount fac-
tor is δFD(e) = v

v+πFD(e)
= v

v+e(v−k′(e)) and this term is minimized for the profit
maximizing effort e, yielding mine δ

FD(e) = v
v+πFD

. For all e ∈ (0, e∗) we have
v−e(v−k′(e))

v
< δFD(e). To see this:

v − e(v − k′(e))
v

< δFD(e) =
v

v + e(v − k′(e))
⇔ (e(v − k′(e)))2

> 0.

Also
1

1 + e
< δFD(e) =

v

v + e(v − k′(e))
⇔ ek′(e) > 0

Therefore also max{ 1
1+e

, v−e(v−k
′(e))

v
} < δFD(e) for all e ∈ (0, e∗) and hence we can

define
δPD := min

e
max

{
1

1 + e
,
v − e(v − k′(e))

v

}
and it follows that δFD > δPD.
Since both δPD,l(e) < δFD(e) and δPD,l,h(e) < δFD(e) the last statement follows
immediately.
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Proof of Proposition 1.7. When δPD < δ̃(πFD) we must have

δ̃(πFD) = δPD(eFD) =
1

1 + eFD
.

Because 1/1 + e decreases in e we have δPD(e) > δ̃(πFD) for any e < eFD. Conse-
quently, we must have δPD(e) < δ̃(πFD) on some interval [eFD, ê]. This proves our
result.

1.B Extensions

1.B.1 An example with more than two levels of quality

Example 1.1.

Let quality levels be {0, 0.5, 1} and P (q = 0.5|e) = P (q = 1|e) = e/2. Con-
sequently P (q = 0|e) = 1 − e. The cost of effort is k(e) = e2/2. If we restrict the
analysis to deterministic disclosure rules, it is straightforward to show that full disclo-
sure with a fee f = 3/8 maximizes certifier profits. With this fee both quality levels
0.5 and 1 get certified in equilibrium. Using the same line of argument as in the main
text, this disclosure rule can be sustained as a capture-proof equilibrium whenever
δ ≥ 16

19
.

A cut-off disclosure rule that certifies any product whose quality exceeds 0, but does
not distinguish any further, achieves the same static profit as the mentioned full dis-
closure rule. However, the largest possible bribe is then not equal to 1 since no certifi-
cate which yields a price of one is available. Instead, the best certificate yields 3/4,
the value of a certified product. Consequently, a capture-proof equilibrium with this
disclosure rule exists whenever δ ≥ 16

20
. While profits remain the same, the largest

acceptable bribe is lowered.

1.B.2 Alternative disclosure rules for the two-quality case

Proposition 1.8. For any δ < δFD and any disclosure rule which is such that the

highest certificate’s value is different from v, no capture-proof equilibrium exists.

Proof. We restrict the proof to the following simple disclosure rule27: there are two
certificates, C1 andC2, where high quality always receivesC1 and low quality receives

27For any other rule, the argument is the same for selling the best certificate in a capture offer to the
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C1 with probability α ∈ (0, 1). Denote V the value of C1, certificate C2 is always
worth zero (in equilibrium). The first-order condition for producer investment reads
as

k′(e) = (1− α)V

and from Baye’s rule we have

V = v
e

e+ α(1− e)
.

Thus, to implement a particular e, the certifier has to set28

α =
e(v − k′(e))

e(v − k′(e)) + k′(e)

The fee must be such that low quality producers are willing to get their product certi-
fied, i.e. f ≤ αV .
When a purchased product with certificateC1 turns out to be of low quality, consumers
cannot be sure whether this was due to bad luck or to a captures certifier. Appropriate
trigger beliefs have to be such that the certifier is punished whenever low quality is
sold with certificate C1. This can well happen without any deviation by the certifier.
The probability of entering punishment, absent any deviation, is p = (1 − e)α and
expected profits from honest play are given by

Πh(α, f) = f + (1− p)δf + (1− p)2δ2f + . . . =
f

1− (1− p)δ
.

The maximal bribe is given by b ≈ (1 − α)V + f , where only low quality producers
accept it. The profit from making such an offer is

Π(b|f, α) = (1− e)b+ e(f + δΠh(α, f))

We have Π(b|f, α) ≤ Πh(α, f) for b→ (1− α)V + f whenever

δ ≥ (1− e)b− (1− e)f
(1− e)(1− p)b− epf

=
b− f(

1− (1− e)α
)
b− eαf

low quality producer. However, there are even more feasible bribing offers, which make it even harder
to resist the threat of capture.

28Note that lime→0 α equals 1 whenever k′′(0) = 0 and otherwise equals v
v+k′′(0)∈(0,1) , that is in

the latter case not all α are implementable.
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This is both increasing in b and in f , such that the largest threat is exercised for f =

αV and b = V , which results in the condition

δ ≥ 1

1 + eα
.

We have 1
1+eα

≥ v
v+e(v−k′(e)) if and only if

v − k′(e) ≥ vα ⇔ 1 ≥ e.

Hence, for all e to be implemented, this is only possible with a noisy rule without sure
high quality certificate, when this is also possible using a full disclosure rule.
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Chapter 2

Mediated Audits

2.1 Introduction

The beneficial role of audits in mitigating incentive problems has been widely ac-
knowledged.1 Findings of an audit are used to punish misbehavior, which dampens
incentives for misreporting and permits a reduction of informational rents. In this re-
spect, commitment plays a crucial role, because the threat of a punishment is only
effective if it is credible. Under the assumption of full commitment, however, agents
report truthfully and an audit never leads to a penalty payment. Conducting a costly
audit is therefore not in the principal’s interest ex-post. As a consequence, commit-
ment to an audit policy, i.e., a contractually fixed probability of an audit conditional
on observable and verifiable information, seems implausible.2

In this chapter I study the optimal contract when costly audits are available, but it
is impossible to commit to an audit strategy.3 Usually, the revelation principle applied
to principal-agent problems with full commitment implies that the principal offers a
menu of contracts containing one item per type of agent. The principal’s inability to
credibly commit to an audit strategy leads to the undermining of this simple structure.
Rather, the principal resorts to an impartial mediator. The mediator breaks the infor-

1See for example, Baron (1984), Baron (1989), Baron and Besanko (1984), Border and Sobel
(1987), Demski, Sappington, and Spiller (1987), Dunne and Loewenstein (1995), Graetz, Reinganum,
and Wilde (1986), Hart (1995), Kofman and Lawarrée (1993) and Mookherjee and Png (1989).

2Baron and Besanko (1984), Border and Sobel (1987) and Kofman and Lawarrée (1993), among
others, assume commitment to an audit strategy.

3Other authors have studied auditing with limited commitment, e.g., Khalil and Lawarrée (1995),
Khalil (1997), Khalil and Parigi (1998), Khalil and Lawarrée (2006), Graetz, Reinganum, and Wilde
(1986), Melumad and Mookherjee (1989) and Chatterjee, Morton, and Mukherji (2008). All these
articles make restrictive assumptions on the communication, which are relaxed in this paper.
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mation flow between agent and principal, and, in particular, conveys only as much
information about the agent’s type as is required to persuade the principal to audit.
For a large set of parameters the optimal contract entails strictly more contingencies
than types, and can not be implemented with simple communication protocols.

The structure of the optimal mechanism improves our understanding of the institu-
tional design of audit agencies. A separation of auditing and contracting is inherent in
the optimal mechanism and should therefore also be reflected in the institutions. Sep-
arate audit agencies are just one way of implementing this idea. The analysis of this
chapter also provides a proper benchmark to which other attempts in mitigating the
commitment problem can be compared to.4 Furthermore, I completely characterize
the optimal communication mechanism in a setting with limited commitment without
restrictions on the communication. The analysis reveals new insights on the beneficial
role of mediation, and advances the quest for a unified and tractable model to study
problems of contracting with limited commitment.

As a workhorse, I use a two type-version of the well-known model of regulating a
monopolist with unknown cost, introduced by Baron and Myerson (1982) and add the
possibility of an ex-post audit. To account for the lack of commitment, the principal
has to resort to general coordination mechanisms, in the spirit of Myerson (1986).
The crucial difference to the full commitment case is that communication between
principal and agent is in general neither one-shot nor face-to-face. Instead, the parties
resort to an impartial mediator, a machine or some noisy channel.

With limited commitment the contracting game essentially consists of two stages:
First a negotiation stage, where production schedules are agreed upon, and second the
audit stage. For an audit to take place, the posterior the principal holds in stage two
must be such that he expects to earn more from conducting an audit than the costs of
an audit.

The optimal mediated contract has the following properties: (1) the agent reports
truthfully to the mediator, (2) the mediator performs a report-dependent randomiza-
tion, (3) the randomization is over a report-dependent transfer-quantity schedule and
a fixed transfer-quantity schedule, (4) only the fixed transfer-quantity schedule is ac-
companied with a recommendation to audit, and (5) the principal obediently follows
the mediator’s recommendation. Properties (1) and (5) follow from applying the rev-
elation principle. (2) is used to guarantee the principal’s obedience after a recommen-

4For instance Khalil and Lawarrée (2006) contrast internal versus external auditors, but use an
unmediated mechanism for internal audits as the benchmark.
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ta, qa

th, qh

no audit

audit

no audit
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%h

1− %h

1

1

1

Figure 2.1: The optimal coordination mechanism with limited commitment.

dation to audit. In particular, it creates the right posterior that makes the principal
indifferent between auditing and not when the recommended action is audit. The ex-
act details of the three utilized transfer-quantity schedules is determined by trading off
rents, efficiency and audit costs.

The structure of the optimal mechanism is illustrated in Figure 2.1. The intro-
duction of the transfer-quantity schedule (ta, qa) distinguishes it from a traditional
self-selection menu. Audits are only recommended in combination with (ta, qa). To
this end, the respective probabilities assigned to this outcome are linked via the prin-
cipal’s obedience constraint. The share of low-cost types is such, that the principal is
indifferent between following the recommendation and not.

A crucial feature of the mediated mechanism is the confidential randomization.
When receiving a recommendation to audit, the principal does not know which type
triggered this recommendation. This distinguishes the mediated mechanism from a
random contract, where the randomization is performed by the principal. In the latter,
the principal learns the agent’s reported information and uses it for any subsequent
action. In the proposed mediated mechanism the mediator fine-tunes the information
flow between agent and principal. In particular, three different posteriors are gener-
ated: two degenerated posteriors and one interior which triggers the audit.

Whether the optimal outcome features all three transfer-quantity schedules de-
pends on the level of the deterrent. For low levels of the deterrent audits are not
profitable and, hence, never recommended. When the deterrent is moderate, audits
are used to reduce the rent that is left to the low-cost type. As long as it remains im-
possible to reduce this rent to zero, audit frequency is at its maximal level. This in
particular implies that all high-cost types are audited, i.e. are assigned (ta, qa) with
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probability one. The schedule (th, qh) is, consequently, not produced in equilibrium,
but plays a crucial role in determining whether audits are profitable in the first place.
The classical rent vs. efficiency trade-off is still in place, but it is softened because the
efficient type produces under the schedule (ta, qa) with strictly positive probability.

When the rent can be easily reduced to zero, the principal starts reducing the ex-
ante probability of an audit and therefore the induced audit-cost. Each type now
produces the intended pair (tr, qr) more frequently. The classical rent-vs-efficiency
trade-off is augmented to a rent-vs-efficiency-vs-audit-cost trade-off. Increasing qh,
resp. qa, has on the one hand the classical rent-effect: it increases the rent that is left
to the low-cost type. On the other hand, audits are used to reduce this rent to zero
and therefore more audits are required. In particular, the allocation has to be distorted
more via a larger likelihood of qa - the audit-cost-effect. The interaction of these
two effects for each individual quantity and across the two quantities determines the
optimal communication mechanism.

Comparing the results to the full commitment audit contract, it can be shown that
audits get profitable only for larger deterrents and it requires a larger deterrent to
reduce the agent’s rent to zero. However, some comparative statics are similar. In
particular, as the deterrent increases the outcome converges to the first-best and the
ex-ante probability of an audit converges to zero.

The structure of the optimal mechanism has implications into two directions: From
a practical perspective it provides a novel explanation for the frequently observed sep-
aration of contracting and auditing.5 With limited commitment this separation is an
inherent feature of the optimal contract and separate agencies are just one way of im-
plementing the optimum. In particular the optimal mechanism requires to break down
the flow of information into two parts: one that is needed to assign the production
schedule and one that is needed to decide upon audits.

From a theoretical perspective, the chapter provides a complete characterization
of the optimal contract under limited commitment. The optimal contract exhibits in-
teresting features that help understanding the beneficial role of mediation in contract
theory with limited commitment. The mediated mechanism correlates the agent’s
reported information with the recommendation to the principal. The aspect of corre-
lation can already be found in Myerson (1982). However, it plays no role in principal-
agent problems with only one agent and full commitment. This is maybe a reason

5Examples for this separation abound: U.S. Government Accountability Office (GAO), Internal
Affairs Bureau in the police force and Internal Audit Service in the European Commission.
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why it has not yet been fully acknowledged in the literature on contracting with lim-
ited commitment.

The remainder of this chapter is organized as follows: Section 2.2 reviews the
related literature and section 2.3 presents the model. Section 2.4 reviews the optimal
contract under full commitment. In section 2.5 the optimal coordination mechanism
under limited commitment is analyzed. Section 2.6 concludes. All proofs are relegated
to the appendix.

2.2 Related literature

This article contributes to the literature on auditing with limited commitment.
Khalil (1997) studies a model similar to the one studied here, but limits the analy-
sis to one-shot face-to-face communication. The mixed equilibria obtained by Khalil
do never yield optimal contracts. Graetz, Reinganum, and Wilde (1986) have modeled
tax compliance without commitment. However, their model is not one of mechanism
design, but a game-theoretic analysis of an inspection game. Dunne and Loewenstein
(1995) study a model where agents compete for a principal’s project. The princi-
pal can observe the agent’s cost at some private expense, but cannot credibly commit
to actually do so. Chatterjee, Morton, and Mukherji (2008) study a continuous-type
model, but focus on one-shot face-to-face communication.

Also the literature on costly state verification studies the issue of limited commit-
ment, nicely surveyed by Attar and Campioni (2003). In these models contracting
typically takes place before the agent receives private information, e.g., Khalil and
Parigi (1998) study loan contracts where the bank can audit in case of default. Or
contracts arise in a competitive market, e.g., Picard (1996) studies optimal insurance
contracts when insurers cannot commit to audit strategies.

Limited commitment has been used to explain the frequently observed separation
between contracting and auditing. Khalil and Lawarrée (2006) derive a demand for ex-
ternal audits when internal commitment is limited. Melumad and Mookherjee (1989)
study delegation in a model of tax compliance. The government can implement the
full-commitment solution by delegating authority over the audit policy.

Surprisingly, little is known about optimal contracts under limited commitment in
general. Bester and Strausz (2001) provide a revelation principle when communica-
tion is limited to one round of face-to-face communication. The same authors show
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that noisy communication can be beneficial, in Bester and Strausz (2007). Their re-
sults depend on an assumption about the agent’s utility function, which is not satisfied
in this chapter. Therefore, we cannot adopt their solution procedure.

The general approach to communication used in the chapter is borrowed from
the game-theoretic literature, e.g., Myerson (1986) and Forges (1986). That multi-
stage communication already enhances welfare has been demonstrated by, e.g., Forges
(1990) and Krishna and Morgan (2004). With indirect communication, i.e., via a
mediator or a noisy channel, further improvements are possible (see, e.g., Myerson
(1986) and Forges (1986)).

Recently, mediation has found its way into contract theory. Rahman and Obara
(2010) show that mediation can virtually implement first-best effort choices in a team
problem where budget-balance is required. Strausz (2012) links this result to general
insights from mechanism design.

The impact of various communication protocols is perhaps best understood in the
area of cheap talk. Crawford and Sobel (1982) provide the benchmark with a sin-
gle round of face-to-face communication, which is extended to multiple rounds by
Krishna and Morgan (2004). Mediation is added by Goltsman, Hörner, Pavlov, and
Squintani (2009). That noisy communication is already sufficient to achieve the out-
come under mediation, is shown in Blume, Board, and Kawamura (2007). Also Mi-
tusch and Strausz (2005) study beneficial mediation in a cheap talk model of conflict.

2.3 Model

Consider the following principal-agent framework: A principal hires an agent to
carry out the production of some good. The principal’s value of q units of this good
is given by the strictly increasing and strictly concave function V (q). We normal-
ize V (0) = 0 and to guarantee strictly positive, but bounded output levels, we shall
assume V ′(0) =∞ and V ′(∞) = 0. The agent has constant marginal costs of produc-
tion, given by the parameter θ > 0. At the outset, only the agent knows his marginal
cost. With probability φ ∈ (0, 1) marginal costs are low, i.e., θ = θl, and with proba-
bility 1−φmarginal costs are high, i.e., θ = θh > θl. In particular, ∆θ := θh−θl > 0.
Efficient production levels are thus given by

V ′(qoi ) = θi, i = l, h. (2.1)
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For delivery of a publicly observable quantity q, the principal pays the agent a mon-
etary transfer t. In addition, we assume the principal possesses an audit technology,
that allows to learn the agent’s true marginal cost after production took place.6 As an
example, the principal can send an inspector in order to check the agent’s accounts
after production. From the accounts the inspector can infer total production costs and
thereby learn the true parameter θ.

An audit is costly to the principal and this cost is given by c > 0. The result of
the audit can be used to demand a payment from the agent to the principal, which is
assumed to be exogenously fixed at a level P > 0.7 Throughout we use the notation
penalty scheme for a mapping P : {θl, θh} → {0, P}, which gives the true cost
types that are required to make an adjustment payment under the current regime. In
total, there are four possible penalty schemes: the void penalty scheme P0 ≡ 0,
the complete penalty scheme P lh ≡ P and then one for each type, i.e. P i satisfies
P i(θi) = P and P i(θj) = 0 for j 6= i. Lastly, denote α the audit strategy of the
principal, i.e. α ∈ [0, 1] is the probability with which the principal conducts an audit.
The payoff of an agent of type θi, when producing quantity q, with transfer t and
penalty scheme P(·), when the principal’s audit strategy is α, is given by8

Ui = t− θiq − αP(θi). (2.2)

The principal’s payoff in that case is

Vi = V (q)− t+ α
[
P(θi)− c

]
. (2.3)

This essentially describes a two-stage game, where in stage one the agent produces
quantity q and transfers are paid, and in stage two the principal can audit and adjust-
ment payments are made. It is natural to assume the principal wants to use information

6The assumption of a perfect audit technology simplifies the analysis, but is not crucial for our
results.

7One possible interpretation is, that P is enforced by a court. Though the contracting parties have
all flexibility in determining conditions that are seen as breach, they are committed to penalty payments
imposed by jurisdiction.

8From this formulation of the agent’s utility it can be easily seen that Assumption 1 in Bester and
Strausz (2007) is not satisfied. With the interaction of production costs and penalty scheme a single-
crossing property is precluded. Effectively the problem is one of multi-dimensional screening, with a
cost-type and an audit-type, though substantially they are identical. What complicates the problem is
that screening the second-dimension is endogenous, i.e. depends on the penalty scheme that itself is
part of the contract.
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from the first stage when deciding on her strategy in the second stage. We thus assume
that the principal cannot commit to her audit strategy.

More formally, in the first stage the principal can commit to a transfer t, a quantity
q and penalty scheme P(·). In the second stage she chooses the audit strategy α. The
audit strategy is not contractible in stage one, so the principal chooses it at her own
discretion. Before formally introducing coordination mechanisms, we briefly analyze
the relevant benchmark cases that have been extensively studied in the literature.

2.4 Benchmarks

This section considers two important benchmark cases: First we briefly review
results on optimal contracts in our setting, when no audit technology is available.
Second, we analyze the case of full commitment, where the principal can commit to
an audit strategy.

2.4.1 No audits

Our setting without audits is a special case of the well-known framework of reg-
ulating a monopolist with unknown costs, established by Baron and Myerson (1982).
Applying the revelation principle, the following structure is without loss: The agent is
asked to report his cost type to the principal who commits to terms of trade for each
type report. Let (ti, qi) be the contract executed when the agent reports to be of type
θi. Baron and Myerson (1982) have shown that the following is optimal.

Lemma 2.1. The optimal contract without audits is given by

qnal = qol , V ′(qnah ) = θh +
φ

1− φ
∆θ. (2.4)

In equilibrium, Una
h = 0 and Una

l = ∆θqnah .

The optimal contract trades off the rent that has to be left to the efficient type
and the productive distortion imposed on the inefficient type: A higher quantity qh
increases the rent left to the efficient type, but increases profits from the inefficient
type’s production.
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2.4.2 Full commitment

We now introduce the audit technology, but make the assumption that the prin-
cipal can also commit to an audit strategy. The sequential structure, i.e., that audits
are conducted after production is therefore inconsequential. Applying once more the
revelation principle, it is without loss that the principal offers a menu

Γ = {(tl, ql,Pl, αl), (th, qh,Ph, αh)}, (2.5)

consisting of a transfer, a quantity, a penalty scheme and an audit strategy for each
potential type report. The optimal contract solves the following problem:

max
Γ

φ
(
V (ql)− tl +αl(Pl(θl)− c)

)
+ (1−φ)

(
V (qh)− th +αh(Ph(θh)− c)

)
(2.6)

subject to the following constraints

tl − θlql − αlPl(θl) ≥ 0 (2.7)

th − θhqh − αhPh(θh) ≥ 0 (2.8)

tl − θlql − αlPl(θl) ≥ th − θlqh − αhPh(θl) (2.9)

th − θhqh − αhPh(θh) ≥ tl − θhql − αlPl(θh) (2.10)

where (2.7) and (2.8) are the respective type’s participation constraints, and (2.9) and
(2.10) are the incentive constraints. The solution to this problem has been studied in
Baron and Besanko (1984) and Kofman and Lawarrée (1993).9

Lemma 2.2. The optimal contract under full commitment coincides with the no-audit

contract (see Lemma 2.1) if and only if φP ≤ (1−φ)c.10 Otherwise, the audit contract

entails αcl = 0, qcl = qol , U
c
h = 0 and the penalty schemes are Pch = P l and Pcl = P0.

If P ≤ P c := ∆θqnah we further have αch = 1, qch = qnah and U c
l = ∆θqnah − P . For

P > P c the audit contract entails U c
l = 0 and either

• αch = 1 and qch = P/∆θ, or

• αch < 1 and V ′(qch) = θh + c
P

∆θ, as well as αch = ∆θqch/P .

9Both papers use similar, though not identical, models. We adopt a different solution procedure,
that allows for finer results, see Corollary 2.1.

10Here and in the following we adopt the following convention: Audits are only used when the
principal strictly prefers to do so. Otherwise there is an indeterminacy for the unique level of P where
the principal obtains the same profit from any level of auditing.
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This illustrates the impact of audits on the optimal contract. Without auditing, two
inefficiencies arise: a rent has to be paid to the efficient type and the inefficient type’s
production is distorted. The principal uses the audit technology to gradually reduce
these distortions. First of all, it is immediate that via the penalty P the rent to the
efficient type can be reduced by P . The gain is φP , but the cost is (1 − φ)c - the
principal now has to audit the inefficient type to establish the deterrent. Clearly, this
is beneficial if and only if φP > (1 − φ)c.11 If, given the allocation, the penalty is
large enough to reduce the efficient type’s rent to zero, the principal also reduces the
allocative distortion. Yet, for any finite penalty P there remains a distortion on qh -
only in the limit as P approaches infinity does the allocation converge to the first-best.

Whether αch < 1 for P > P c depends on the shape of V . Corollary 2.1 gives a
general result under a mild assumption on the function V .

Corollary 2.1. Assume −V ′′(q)q
V ′(q)

≥ (φ∆θ)/((1 − φ)θh + φ∆θ). Then there exists a

unique value P
c
< ∆θqoh such that αch < 1 if and only if P > P

c
. Moreover, αch

strictly decreases for P > P
c

and qch strictly increases for P > P c.

Figure 2.1 illustrates the comparative statics of the audit contract with respect to
the deterrent P . For low values of P , the principal never audits and the allocation
is that from the no-audit contract in Lemma 2.1. Next, there is a range of values P ,
where (sure) audits are used to reduce rents. As soon as P is large enough to reduce
all rents to zero, distortions on quantities can be reduced. On a first range this is done
with certain audits. As P gets sufficiently large, i.e., for P > P

c
, audits are random

and their frequency decreases with P , while the allocation converges to first-best.
However, for any finite P the allocation is distorted.

2.5 Limited commitment

This section studies optimal contracts when commitment to an audit strategy is
impossible. To begin with, it is instructive to point out that the outcome from the
contract of Lemma 2.2 cannot be implemented when commitment to an audit strategy
is impossible. To see this, notice that because the agent reports truthfully the principal
knows that the agent is of type θi, whenever the reported type is θi. Consequently,
conducting an audit after report θh never results in the collection of the penalty P , and

11Notice that this does not even require P > c, i.e. for large φ a relatively small penalty compared
to a high cost of audit is sufficient for its profitability.
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Figure 2.1: Comparative statics of the audit contract under full commitment as P changes.

hence the principal has no incentive to audit at all. But if the principal does not audit,
incentive compatibility fails: the θl-type now strictly prefers to report θh.

When studying the optimal contract under limited commitment, we have to take
the sequential structure into account: In the first stage principal and agent bargain over
the contractual variables t, q and the penalty scheme. In the second stage the principal
decides upon the audit, taking into account all information revealed in stage one.

Applying the revelation principle for multistage games with communication, see
Myerson (1986), the principal can confine attention to incentive compatible commu-
nication mechanisms. A (direct) communication mechanism is defined as follows:
First, the agent reports all his private information to some central mediator; then the
mediator computes an allocation (q, t,P) and a recommended action for the principal,
as a (potentially random) function of the report; the allocation gets implemented, i.e.,
the agent produces q and receives the transfer t, and the mediator confidentially tells
the principal what is her recommended action. Such a communication mechanism is
incentive compatible, if the agent finds it in his best interest to truthfully report his
information, and if the principal cannot gain by disobeying the mediator’s recommen-
dation.

Let π = (πl, πh) be a vector of probability distributions, where πi(t, q,P , r) de-
notes the probability that outcome (t, q,P) is chosen and the principal’s recommended
action is r, after the agent reported to be of type θi. The difficulty in finding the opti-
mal incentive compatible communication mechanism lies in finding the support of the
probability distributions πi.12 In order to avoid measure-theoretic complications we

12In the static counterpart this issue is circumvented by focussing on deterministic mechanisms,
hence the respective support is a singleton. The crux of the matter is that an optimal contract that
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shall assume countability of the support of both πl and πh.
To simplify the exposition, we formally set up the principal’s problem of finding

the optimal communication mechanism only in Appendix 2.A.2, where we prove the
following statement that substantially simplifies the following analysis. Let r = a be
the recommendation to audit, and r = na the recommendation not to audit.

Proposition 2.1. Without loss of generality an optimal communication mechanism has

the following properties: Each πi randomizes over (ti, qi,P0, na) and (ta, qa,P l, a).

The incentive constraint of type θl as well as the participation constraint of type θh
are binding, while the incentive constraint of type θh is slack. Moreover, the principal

is indifferent between auditing and not after receiving the recommendation to audit.

This result is essentially obtained as follows: First we adopt the standard procedure
of ’guessing’ that the high-cost type’s incentive constraint is not binding. This allows
us to rule out penalties for type θh, as they require larger transfers to this type. Via the
efficient type’s incentive constraint also the transfer to type θl is then increased. Sec-
ond, obedience only matters when the recommendation is to audit, because otherwise
setting the penalty scheme to P0 makes this trivial. Quantities that are produced by
type θi without the recommendation to audit must be unique, because otherwise it is
not worse to put all mass on one of them that yields the highest surplus.13 Lastly, the
obedience constraint must be binding, which also yields uniqueness of the associated
quantity.

Figure 2.1 illustrates the optimal communication mechanism, using the results
from Proposition 2.1. To simplify notation, let % denote the probability that (ta, qa) is
chosen by the mediator after the agent reported to be of type θh, i.e.

% := πh(ta, qa,P l, a). (2.11)

To keep the principal indifferent whether to audit, it has to hold that φaP = c,
where φa denotes the principal’s posterior after this recommendation. Solving this
equation yields14

πl(ta, qa,P l, a) = %
(1− φ)c

φ(P − c)
. (2.12)

prescribes audits is never deterministic.
13This argument uses strict concavity of V . It is similar to arguing that the optimal contract under

full commitment is deterministic.
14At this point we might still have πl(qa, Pl, a) > 1. We show in Proposition 2.2 below, that φP > c

whenever % > 0. This implies that all probabilities are indeed between zero and one.
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Figure 2.1: The optimal coordination mechanism with limited commitment.

Feasibility further requires πh(th, qh,P0, na) = 1 − %, and πl(tl, ql,P0, na) = 1 −
% (1−φ)c
φ(P−c) .

The variable % represents the audit probability in the communication mechanism.
Obviously, whenever % = 0 no audits are conducted. In what follows, % = 1 represents
the maximal audit probability - all high-cost types are audited and some low-cost
types. In the latter two cases only two transfer-quantity pairs occur in equilibrium.
The third case refers to % < 1, when all three transfer-quantity pairs occur. For this
case it is essential that the principal does not observe the agent’s report and holds
a non-trivial belief after being recommended to audit. Due to limited commitment,
the mechanism has to recommend an audit for some low- and some high-cost types.
If the share of high-cost types is too high, the principal will no longer follow the
recommendation and obedience fails. If, however, the share of low-cost types is too
high it becomes too costly to incentivize the agent to report truthfully. Following
Proposition 2.1 it is optimal to keep the principal just indifferent whether to follow the
recommendation. With the resulting indifference condition all probabilities but one
are fixed, as described above.

The principal’s profit from employing the communication mechanism from figure
2.1 is

φ

(
1− % (1− φ)c

φ(P − c)

)(
V (ql)− tl

)
+ (1− φ)(1− %)

(
V (qh)− th

)
+

(
φ%

(1− φ)c

φ(P − c)
+ (1− φ)%

)(
V (qa)− ta

)
.

(2.13)

Notice that revenues from auditing disappeared: Because the obedience constraint
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is binding, the principal is indifferent between auditing and not whenever recom-
mended to do so. Hence, audit revenues equal zero. Finding the optimal commu-
nication mechanism requires maximization of (2.13) over the variables tl, ql; ta, qa;
th, qh and %. Following Proposition 2.1 the principal has to respect the participation
constraint of type θh

%(ta − θhqa) + (1− %)(th − θhqh) = 0, (2.14)

the incentive constraint of type θl(
1− % (1− φ)c

φ(P − c)

)
(tl − θlql) + %

(1− φ)c

φ(P − c)
(ta − θlqa − P ) =

%(ta − θlqa − P ) + (1− %)(th − θlqh).
(2.15)

and the participation constraint of type θl(
1− % (1− φ)c

φ(P − c)

)
(tl − θlql) + %

(1− φ)c

φ(P − c)
(ta − θlqa − P ) ≥ 0. (2.16)

Substituting tl, ta and th from the former two binding constraints, the principal’s
profit can be written as a function V(%, ql, qa, qh):15

V(%, ql, qa, qh) = φ
(
V (ql)− θlql −∆θqh

)
+ (1− φ)

(
V (qh)− θhqh

)
+ %

{
−(1− φ)c

P − c
(
V (ql)− θlql − V (qa) + θlqa

)
+ (1− φ)

(
V (qa)− θhqa − V (qh) + θhqh

)
−φ∆θ(qa − qh) +

φP − c
P − c

P

} (2.17)

The principal now maximizes (2.17) subject to (2.16). From (2.17) the impact
of audits becomes clear. When % = 0, the principal never audits and the expression
coincides with the standard no-audit profit. If audits are to be implemented, the mech-
anism has to create the right incentives for the principal to actually do so. In order
to achieve this, a new outcome is created: the quantity qa along with the recommen-

15Interestingly, from two binding constraints we are able to substitute for three variables. The reason
is, that only type-specific transfers matter. In fact, there is a continuum of transfer-pairs th, ta that
satisfy the inefficient type’s participation constraint. For any such pair there exists a unique tl such that
(2.15) is satisfied.
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dation to audit. A particular ratio of low-cost and high-cost types is required to meet
the obedience constraint. Introducing this new contingency has several effects on the
principal’s profit: The respective types now produce qa instead of ql, resp., qh. Starting
from the no-audit contract, this leads to a loss when interacting with type θl and the
sign of the effect when interacting with type θh is unclear. Second, introducing audits
has an effect on the rent to the efficient type. The latter effect is twofold: the deterrent
itself affects the rent as long as the frequency of audits differs for the two possible
type reports. But also the production itself has an effect, because a false report now
leads to a lottery over qa and qh.

The next proposition analyzes profitability of audits and gives a necessary and
sufficient condition on the size of deterrent P , that guarantees beneficial audits.

Proposition 2.2. There exists a unique value P ∗, defined as the solution of

max
ql,qa,qh

{
(1− φ)c

P − c
(
V (ql)− θlql − V (qa) + θlqa

)
+ φ∆θ(qa − qh)

−(1− φ)
(
V (qa)− θhqa − V (qh) + θhqh

)
− φP − c

P − c
P

}
= 0

(2.18)

such that the optimal coordination mechanism entails %∗ > 0 if and only P > P ∗. In

particular, we have φP ∗ > c.

There are two important insights from Proposition 2.2. A necessary condition
for profitable audits is φP ∗ > c. Why is this the case? To guarantee obedience,
the principal’s posterior φa when she is recommended to audit has to satisfy φaP = c.
This requires a particular ratio of high- and low-cost types. In particular, when φP ≤ c

the ratio of low-cost types has to be (weakly) higher than it is in the prior distribution
- it has to hold that φa ≥ φ. Consequently, a low-cost type is more frequently asked
to produce qa and getting audited than a high-cost type. But this makes it harder to
satisfy (2.15), because there are fewer audits when the agent misreports, i.e., fewer
penalty payments. Hence, the penalty P itself helps to steer incentives if and only if
φP > c. Incidentally, this condition also guarantees that all probabilities lie between
zero and one, whenever %∗ > 0.

Furthermore, recall that the condition for profitable audits under full commitment
was φP > (1 − φ)c. Because φP ∗ > c we trivially have φP ∗ > (1 − φ)c and audits
are thus already profitable under full commitment. Consequently, with limited com-
mitment the principal uses her audit technology only for larger levels of the deterrent
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than under full commitment. In particular, with the latter an audit may well be unprof-
itable ex-post even if the principal knew the agent’s type. To see this, observe that the
condition φP > (1− φ)c does not require P > c.

Let us now continue with a discussion of the optimal coordination mechanism.
When P ≤ P ∗ we have seen that the solution entails %∗ = 0. It is then straightforward
to verify that it coincides with the optimal no-audit contract. This does, however,
not imply that there is no commitment problem, because we may well have φP >

(1 − φ)c. In this sense, limited commitment has a large impact here in that it makes
audits completely unprofitable, whereas the principal would have used them under full
commitment.

For the remainder assume the deterrent is large enough, i.e. P > P ∗, such that au-
dits are used in an optimal mechanism. The principal’s profit in (2.17) can be rewritten
as follows

V(%, ql, qa, qh) = (1− %)

{
φ
(
V (ql)− θlql −∆θqh

)
+ (1− φ)

(
V (qh)− θhqh

)}
+ %

{
φP − c
P − c

(
V (ql)− θlql −∆θqa + P

)
+

(1− φ)P

P − c
(
V (qa)− θhqa

)}
(2.19)

Ignoring (2.16) for the moment, the formulation of principal’s profit in (2.19) already
tells us something about the optimal quantities. Both arise from a classical rent-vs-
efficiency trade-off, only that the shares of types differ. Regarding qh the trade-off
is as in the full commitment case or for the no-audit contract, only that the weight
on it is 1 − %. Matters are slightly different for qa, because this quantity is produced
by both types. Still, the high-cost type is asked to produce qa more frequently than
the low-cost type, and the trade-off is determined by this margin. Because the latter
margin is lower, the distortion on qa is lower, hence qoh > qa > qh. Also, when
concerned with qa the rent left to the efficient type is reduced by P via the audit.
The optimal communication mechanism when (2.16) is non-binding is given in the
following proposition.

Proposition 2.3. There exists a unique value Pm, such that in the optimal audit mech-

anism under limited commitment (2.16) is not binding if and only if P ≤ Pm. The
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optimal communication mechanism then entails %∗ = 1, q∗l = qol and q∗a given by

V ′(q∗a) = θh +
φP − c

(1− φ)P
∆θ (2.20)

The high-cost type earns no rent, whereas the low-cost type obtains a rent of U∗l =

∆θq∗a − P .

The mechanism obtained in Proposition 2.3 shares many features with the cor-
responding contract under full commitment. In both settings, for low values of the
deterrent P the rent to the efficient type cannot be reduced to zero. Auditing is then
merely used to reduce the rent by as much as possible, which requires certain audits
(after the respective type report).

At first sight, also quantities are altered when commitment is limited. After all,
with full commitment the high-cost type produces qnah as long as rents are non-zero,
whereas with limited commitment qa is strictly higher. But this difference is a conse-
quence of the need to incentivize the principal to actually conduct the required audits.
Quantity qa is artificially introduced to serve this purpose and because both agent’s
produce it, its value is determined differently from how qnah evolves. In the back-
ground, quantity qh remains at the level qnah , but because the principal uses audits at
the maximal frequency this quantity ultimately is never produced.

Further notice that Pm > P c, i.e., it requires strictly larger deterrents to reduce all
rents to zero under limited commitment. This immediately follows from the discussion
above, because it is costly for the principal to introduce qa.

We next consider larger deterrents for which (2.16) becomes binding and hence all
rents are reduced to zero. As in the full commitment case, the principal now gradually
reduces the distortions imposed on quantities. However, as outlined in the preced-
ing paragraph, matters seem different from the outside. The following proposition
characterizes the optimal communication mechanism for deterrents P > Pm.

Proposition 2.4. For deterrents P > Pm the low-cost types participation constraint

is binding and hence U∗h = U∗l = 0. The optimal communication mechanism is given

by either

%∗ = 1, q∗l = qol and qa = P/∆θ (2.21)

or

%∗ < 1, q∗l = qol and qoh > qa > qh > qnah . (2.22)
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For P ≥ ∆θqoh, the optimal mechanism always entails %∗ < 1.

The mechanism obtained from Proposition 2.4 shares many features with the full
commitment contract. There may be a range where audits remain certain, i.e., all
high-cost types are audited.16 In this range, qa raises linearly with P and actually
corresponds to the quantity from the full commitment contract.17 For large enough
penalties audits get random, which means that not all high-cost types are audited. Un-
der full commitment this simply means random audits after the agent reported to have
high costs. With limited commitment the mechanism now uses all three quantities
ql, qa and qh. In particular this implies there are more contingencies than types.

Before focussing in greater detail on the contract with %∗ < 1, we briefly study
implementability of the optimal mechanism as described in Propositions 2.3 and 2.4.
When %∗ = 0 it is trivial that the optimal communication mechanism can be im-
plemented via one round of face-to-face communication, i.e., using only modes of
communication traditionally used in contract theory. This is also the case whenever
%∗ = 1. To see this, notice that because (2.15) is binding and (2.16) is always satisfied,
the low-cost type is actually indifferent between the outcomes tl, ql and no audit, and
ta, qa and sure audit. Hence, this type is willing to randomize with reporting strat-
egy as proposed by the communication mechanism. Furthermore, the high-cost type
strictly prefers ta, qa over tl, ql.18 Consequently, there exists a Perfect Bayesian Equi-
librium of the game where the agent reports a type to the principal and the principal,
after transfers were paid and quantities were produced, decides upon an audit. In this
equilibrium the low-cost type randomizes between the two type reports and the high-
cost type reports truthfully. The principal audits with certainty after the agent reported
high costs.

The mechanism with %∗ < 1, however, cannot be implemented with one round of
face-to-face communication. Assuming the randomization is executed by the agent,
following Bester and Strausz (2001) there would exist an equivalent mechanism with
only two reports for the agent. But this contradicts optimality of the above mechanism.
Also, the randomization cannot be executed by the principal in form of a stochastic
mechanism, because the implied knowledge of the agent’s report when deciding upon

16Under limited commitment this implies that also a share of low-cost types is audited. Under full
commitment the latter is not required.

17However, there need not be a range for the deterrent where the audit contracts under full and limited
commitment coincide. In particular, audits can be already random under full commitment, while rents
are still positive under limited commitment, i.e. when Pm > P

c
.

18Also, this type is never affected by potential audits.
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an audit. But the optimal communication mechanism requires that the principal does
not know the agent’s report after the randomization realized in production of qa.

The following corollary formalizes the last statements.

Corollary 2.2. The optimal communication mechanism can be implemented via one

round of face-to-face communication if and only if %∗ ∈ {0, 1}.

Let us now have a closer look at the random audit mechanism under limited com-
mitment, i.e., the cases where %∗ ∈ (0, 1). Each of the two type reports leads to a
lottery. Overall there are three deterministic outcomes: tl, ql and no audits, ta, qa and
sure audits, as well as th, qh and no audits. Reporting to have low costs leads to a
lottery over the first two outcomes, whereas reporting to have high costs leads to a
lottery over the last two outcomes.

It is crucial that the randomization is not performed by the principal, but the medi-
ator. In particular, when learning that the outcome ta, qa has been chosen, the principal
is not supposed to know which type the agent reported. This distinguishes the optimal
communication mechanism from a random contract, where the principal learns the re-
ported type but nevertheless determines the outcome via a lottery. From the (truthful)
type report to the mediator, the principal receives only the necessary information to
persuade her to obey the recommendation. In case of ta, qa this implies, in particular,
that the principal does not learn the (truthful) type report. Moreover, this cannot be
achieved by letting the agent perform the randomization. There do not exist trans-
fers tl, ta and th, such that each type of the agent is indifferent between the respective
alternatives.

For a discussion of the underlying trade-offs it is helpful to solve (2.16) for %:

% =
∆θqh

P −∆θ(qa − qh)
. (2.23)

From (2.23) it is immediate, that % increases with qa and qh.

Increasing either qa or qh has two effects: First a rent-effect that can be best seen
from looking at (2.19). Via the incentive constraint, an increase of the respective
quantity increases the rent that has to be left to the low-cost type. The rent effect
is stronger for qh, because the low-cost type anyway produces qa when % ∈ (0, 1).
The second-effect we denote audit-cost-effect. It stems from the binding participation
constraint of the low-cost type. All rents are reduced to zero via the use of audits.
When a quantity is increased, also rents increase such that more audits are required to
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reduce those back to zero and more audits require a larger %. But a larger % implies a
larger distortion via the ’mis-allocation’, i.e., that each type produces qa more often.
What becomes crucial in comparing the rent- and the audit-cost-effect is, that the latter
has the same (relative)19 magnitude for both changes in qa and qh. Because the rent-
effect differs for the respective quantities, this explains why qa and qh differ and why
we have qa > qh.

With increasing P , the audit-cost-effect is weakened, because only a slight change
in audit probability already has a severe impact on the agent’s rent.20 Therefore, quan-
tities qa and qh increase with P and % decreases. Also the difference between the
rent-effects decreases with P , so the difference in the two quantities decreases with
P .

Comparative statics when P is getting large are similar to those of the full commit-
ment contract. In particular we also have qh < qa < qoh for all finite P . A reduction
away from qoh has no first-order effect on welfare from production, but allows for a
reduction of audit costs (from ’mis-allocation’). This implies, that we have random
audits for P ≥ ∆θqoh, both under full and limited commitment. As P approaches
infinity, we further have that % converges to zero and both qa and qh converge to qoh.
Hence, in the limit, commitment plays no role, as expected.21

As in the case of full commitment, we cannot make a general statement about %∗

when P ∈ (Pm,∆θqoh). In general %∗ is not monotone on this range. In the following
we work out an example, for which a unique threshold P

m
exists, such that %∗ < 1 if

and only if P > P
m

.

Example 2.1. Let V (q) = 2
√
q and the cost parameters be given by θl = 1, resp.,

θh = 2. Then qol = 1 and qoh = 1/4. furthermore, assume φ = 1/2, which yields

qnah = 1/9 and the welfare from the no-audit contract equals Vna = 2/3.

Now consider audits and assume c = 0.01. The threshold-value P ∗ for profitable

audits can be computed as P ∗ ≈ 0.0758. Furthermore, we have Pm ≈ 0.1241.

Consequently we have %∗ = 1 for all P ∈ (P ∗, Pm]. Lengthy calculations show that

there exists a unique value P
m ≈ 0.2387 such that %∗ = 1 also for P ∈ (Pm, P

m
]. On

19Relative in the following sense: Differentiating % yields ∂%/∂qh = (1 − %)%/qh and ∂%/∂qa =
%2/qh. When differentiating (2.19), the rent-effect has weight 1 − % for qh, resp. % for qa. Factoring
these weights out, the audit-cost-effect is the same, irrespective of the quantity.

20The relationship is in general not monotone. It depends on the shape of V (·), as already for the full
commitment case. For large P this can be shown to hold in general, irrespective of the shape of V (·).

21The speed of convergence is different. For any finite P , the profits under full and limited commit-
ment are different, but the gap closes, as P becomes large.
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Figure 2.2: The mediated audit contract. Some characteristics as a function of P . Along the
dotted blue line qh is not produced.

this interval, we have Ul = 0 and hence three binding constraints. Only for P > P
m

,

we have %∗ < 1. Notice further that P
m
< ∆θqoh.

Figure 2.2 illustrates determinants of the communication mechanism as a function
of the deterrent P in our example. The pattern for the efficient type’s rents is as
under full commitment, only that it requires a larger deterrent P to induce audits in
the first place and also a larger penalty is required to reduce rents to zero. Similarly,
the audit probability % follows a similar pattern. Notice, however, that there are more
audits under limited commitment because also some low-cost types are audited. The
difference between optimal contracts under full and limited commitment can be best
seen when looking at quantities. With limited commitment there is an upward jump
at P ∗ when production switches from qnah to q̂a. Furthermore, the optimal value q̂a
declines with P as long as P ≤ Pm. On the interval (Pm, P

m
) the pattern is similar

as for the full commitment case. For P > P
m

there are three quantities produced.
Both qa and qh increase with P and tend to qoh as P tends to infinity.

2.6 Conclusion

This chapter analyzes the optimal coordination mechanism in a principal-agent
framework when the principal cannot commit to an audit strategy. It is shown that
to induce the principal to audit, the optimal mechanism provides an additional alter-
native that, if it is chosen induces the principal to audit with certainty. The ex-ante
cost of an audit is determined by the welfare-effect of the new alternative. For large
enough deterrents the optimal audit mechanism implements three distinct production
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schedules, despite there being only two types. Implementation via one single round of
face-to-face communication is only possible, when the coordination mechanism uses
only two production schedules.

We study a stylized two-type model. A natural question that arises is whether
our results change when allowing for more types. The beneficial role of mediation
carries over, but the analysis gets easily intractable. Already the full commitment
case is messy to analyze with more than two types, see for instance Border and Sobel
(1987). The problem lies in identifying the binding constraints. The possibility of
an audit effectively transforms the one-dimensional screening problem into a multi-
dimensional screening problem.

We leave open the question of whether there exist more elaborate face-to-face
communication mechanisms, i.e., with multiple rounds of message exchange, that
allow for implementing the optimal mechanism with %∗ < 1. Though this is relatively
straightforward in the case of cheap talk, the presence of transfers makes the problem
hard to analyze and we leave this issue for future research.

Our model is one of adverse selection, where the agent knows her type at the
time of contracting. This differentiates our model from the literature on costly-state-
verification, where contracting takes place before the agent obtains private informa-
tion. Studying the role of mediation in a model with costly-stat-verification is there-
fore a next logical step.

Lastly, in the chapter we fully analyze the optimal contract in a setting of contract-
ing with limited commitment. Our results provide new insights into both the structure
of optimal communication mechanism and the analysis itself. Building on these in-
sights may help studying mediation in different models, such as those of dynamic
contracting with limited commitment (e.g., Laffont and Tirole (1988)), bilateral trade
(e.g., Skreta (2006)) or auction design without commitment (e.g., Vartiainen (2013)
and Skreta (2013)).
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2.A Proofs

2.A.1 Proofs of Section 2.4

Proof of Lemma 2.1. The proof is standard and therefore skipped.

Proof of Lemma 2.2. First notice that we can set Pi(θi) = 0 for i = l, h without
loss of generality. To see this, suppose Pi(θi) = P . Then, setting t̃i = ti − αiP and
P̃i(θi) = 0 keeps all constraints valid. However, the principal’s profit is unchanged,
because

φ(ti − t̃i)− φαiPii = φαiP − φαiP = 0. (2.24)

In the following we solve a relaxed program, where we ignore the inefficient type’s
incentive constraint (2.10). Doing so, we can w.l.o.g. set Pl = P0, because penalties
to the high-cost type do not affect any of the three remaining constraints. Furthermore,
we can set Ph = P l.

It is then straightforward that (2.8) and (2.9) are binding. Substituting transfers
from these constraint into the principal’s objective yields

φ
(
V (ql)− θlql −∆θqh + αP

)
+ (1− φ)

(
V (qh)− θhqh − αc

)
. (2.25)

Hence, the principal maximizes (2.25) with respect to (2.7). First maximize (2.25)
while ignoring (2.7). This yields ql = qol and qh = qnah . As long as P ≤ P c := ∆θqnah
this solution does indeed satisfy (2.7). Otherwise, there exists a unique α(P ) ∈ (0, 1)

such that (2.7) is satisfied for α ≤ α(P ).

Now add the efficient type’s participation constraint to the problem, for a given
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value of α the Lagrangian reads as

L(α, ql, qh, λ) = φ
(
V (ql)− θlql −∆θqh + αP

)
+ (1− φ)

(
V (qh)− θhqh − αc

)
+ λ(∆θqh − αP ).

(2.26)

Maximization over ql, qh and λ yields the first-order conditions

V ′(ql) = θl

V ′(qh) = θh +
φ− λ
1− φ

∆θ

∆θqh − αP = 0.

Define Vc(α) := maxql,qa,λ L(α, ql, qh, λ). By the envelope-theorem we have

∂Vc

∂α
= φP − (1− φ)c− λP. (2.27)

Because α(P ), as defined above, is strictly positive for all P we have ∂Vc/∂α =

φP − (1 − φ)c for α ∈ [0, α(P )] for all P . Furthermore, by the implicit function
theorem we have ∂λ/∂α = −P (1− φ)V ′′(qh)/((∆θ)

2) > 0. Hence

∂2Vc

∂α2
= −∂λ

∂α
P < 0 (2.28)

for α ∈ (α(P ), 1].

This proves that we have three cases for the optimal value of αc:

• αc = 0, which applies whenever φP ≤ (1− φ)c.

• αc = 1, which applies whenever (∂Vc)/(∂α) ≥ 0 at α = 1.

• αc = (α(P ), 1), which applies whenever φP > (1 − φ)c and (∂Vc)/(∂α) < 0

at α = 1.

For the remainder assume φP > (1 − φ)c. For P ≤ P c we have that Lc(α) is linear
in α and consequently maximized at α = 1. For P > P c notice that ∂Vc/∂α = 0 if
and only if φ− λ = (1− φ)c/P and therefore

V ′(qh) = θh +
c

P
∆θ > θh. (2.29)
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Consequently, for αc ∈ (0, 1) we have that qch satisfies the above condition. Notice
that for P = ∆θqnah we have V ′(P/∆θ) > θh + c

P
∆θ and consequently the solution

has αc = 1, which by continuity holds also on some interval [∆θqnah ,∆θq
na
h + ε).

Furthermore (2.29) implies that αc < 1 for all P ≥ ∆θqoh. Hence, there exists a
P
c ∈ (P c,∆θqoh) such that α < 1 for all P > P

c
. If on the other hand αc = 1 and

(2.7) binding, we must have qh = P/∆θ.

Finally, it is straightforward to verify that (ICh) is indeed satisfied: We have tl ≤
θlq

o
l + ∆θqnah and therefore tl − θhqol ≤ −∆θ(qol − qnah ) < 0.

Proof of Corollary 2.1. Taking the derivative of ∂Vc/∂α with respect to P yields

∂2Vc

∂α∂P
= (φ− λ)− ∂λ

∂P
P. (2.30)

From the implicit function theorem we have ∂λ/∂P = −αV ′′(qh)(1−φ)/((∆θ)2),
consequently

∂2Vc

∂α∂P
=

1− φ
∆θ

(
φ− λ
1− φ

∆θ + V ′′(qh)qh

)
≤ 1− φ

∆θ

(
φ− λ
1− φ

∆θ − V ′(qh)
φ∆θ

(1− φ)θh + φ∆θ

)
=

1− φ
∆θ

(
φ− λ
1− φ

∆θ − (θh +
φ− λ
1− φ

∆θ)
φ∆θ

(1− φ)θh + φ∆θ

)
= (φ− λ)

(1− φ)θh
(1− φ)θh + φ∆θ

− φ (1− φ)θh
(1− φ)θh + φ∆θ

= −λ (1− φ)θh
(1− φ)θh + φ∆θ

< 0.

We know already that αch < 1 for P ≥ ∆θqoh. The above proves, that there exists
a unique value P

c
such that αch < 1 if and only if P > P

c
. Moreover, we have

∂αch/∂P < 0.

Considering qch, we have that qch ≡ qnah for all P ≤ P c. For P ∈ (P c, P
c
] we

have qch = P/∆θ which increases with P . Lastly, for P > P
c

we have ∂qch/∂P =

−(∆θc)/(P 2V ′′(qch)) > 0.
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2.A.2 Proofs of Section 2.5

Proof of Proposition 2.1. To simplify notation, let d = (r, q, t,P(·)) ∈ {a, na} ×
R+×R×{P0,P l,Ph,P lh} be shorthand for an allocation determined by the mediator.
For a given π define supp{π} := supp{πl} ∪ supp{πh} the support of π, i.e. the set
of allocations d that are chosen with strictly positive probability for some type report.
A mechanism π is incentive compatible if

∑
d∈supp{πi}

[
t− θiq − 1{r=a}P(θi)

]
πi(d) ≥

∑
d∈supp{πj}

[
t− θiq − 1{r=a}P(θi)

]
πj(d),

(ICi)

holds for all i 6= j ∈ {l, h}, i.e. each type of the agent prefers truthful reporting; and

(−1)1{r=na}
{

φπl(d)

φπl(d) + (1− φ)πh(d)
P(θl)

+
(1− φ)πh(d)

φπl(d) + (1− φ)πh(d)
P(θh)− c

}
≥ 0,

(OCd)

for all d ∈ supp{π}, i.e. the principal obediently follows the recommended action.

The mechanism is individually rational if

∑
d∈supp{πi}

[
t− θiq − 1{r=a}P(θi)

]
πi(d) ≥ 0, (IRi)

for i = l, h - each type receives at least the outside option of zero. Finally, π is
feasible, whenever

πi(d) ≥ 0 ∀i, d;
∑

d∈supp{πi}

πi(d) = 1, (FC)

that is whenever each πi is a proper probability distribution.

The principal’s expected profit from applying the incentive compatible, individu-
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ally rational and feasible mechanism π is

V(π) = φ
∑

d∈supp{πl}

[
V (q)− t+ 1{r=a}(P(θl)− c)

]
πl(d)

+ (1− φ)
∑

d∈supp{πh}

[
V (q)− t+ 1{r=a}(P(θh)− c)

]
πh(d).

(2.31)

This allows us to state the principal’s problem of finding the optimal coordination
mechanism:

max
π
V(π} s.t. (IRi), (ICi), (OCd), (FC) for i = l, h and d ∈ supp{π}. (P)

Instead of solving problem (P) we shall set up an auxiliary problem that is easier
to solve and at the end argue that the solution of the auxiliary problem also solves
problem (P).

First we dispose the irrelevant obedience constraints. As stated in (OCd), we im-
pose obedience constraints for both recommended actions. However, if the recom-
mended action is ’no audit’, obedience is easily guaranteed if we setP ≡ P0. Because
the principal observes the penalty scheme, this change does not affect any of the other
constraints, hence we can focus on obedience constraints where the recommended
action is audit: {

φπl(d)

φπl(d) + (1− φ)πh(d)
P(θl)

+
(1− φ)πh(d)

φπl(d) + (1− φ)πh(d)
P(θh)− c

}
≥ 0,

(OC′d)

for all d ∈ supp{π} and r = a.

Next, we proceed as in the full commitment case and guess that (ICh) is not bind-
ing, which we will verify at the end.22

Finally, a simplification that helps us to substantially reduce the complexity of
the following analysis is to focus on type-dependent transfers. In particular, we sub-
stitute

∑
d t πi(d) by Ti. This allows for more flexibility in the principal’s problem

22The problem here and in the full commitment case is that the screening problem is essentially
multi-dimensional through the impact of the penalty schemes. Potential penalties for the inefficient
type may render (ICh) binding. By assuming the constraint to be slack, we can easily rule out these
penalties, which ultimately helps justifying the assumption in the first place.
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and turns out to be analytically more tractable. Notice however that this constitutes a
purely theoretical simplification, because the principal will observe the transfer paid
to the agent. Hence, at the end of our analysis we shall point out how to re-transform
the type-dependent transfers into allocation-specific transfers. The agent’s individual
rationality constraints now read as

Ti −
∑

d∈supp{πi}

[
θiq + 1{r=a}P(θi)

]
πi(d) ≥ 0, (IR′i)

for i = l, h, and the efficient type’s incentive compatibility constraint is

Tl −
∑

d∈supp{πl}

[
θlq + 1{r=a}P(θl)

]
πl(d) ≥

Th −
∑

d∈supp{πh}

[
θlq + 1{r=a}P(θl)

]
πh(d).

(IC′l)

The principal’s profit can now be stated as

V(π) = φ
∑

d∈supp{πl}

[
V (q) + 1{r=a}(P(θl)− c)

]
πl(d)

+ (1− φ)
∑

d∈supp{πh}

[
V (q) + 1{r=a}(P(θh)− c)

]
πh(d)

− φTl − (1− φ)Th.

(2.32)

The auxiliary problem we solve in the following is

max
π
V(π} s.t. (IR′i), (IC

′
l), (OC′d), (FC) for i = l, h and d ∈ supp{π}. (P ′)

Notice that we abuse notation here: After moving towards type-dependent trans-
fers, an allocation d consists only of a quantity q, a recommendation r and a penalty
scheme P(·). Consequently, randomizations are understood to be over these variables
and the support changes accordingly.

The proof is now a sequence of intermediate results. The following two Lemmas
rule out penalties for the inefficient type.

Lemma 2.3. It is never optimal to have strictly positive mass on the penalty scheme

P lh.
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Proof. Suppose π satisfies all constraints of problem (P ′) and there exists q such
that πi(q,P lh, a) > 0 for some i ∈ {l, h}.23 Consider π̃, where Ti is replaced by
T̃i = Ti − πi(q,P lh, a)P . Furthermore, set π̃i(q,P lh, a) = 0, and π̃i(q,P0, na) =

πi(q,P0, na) + πi(q,P lh, a). In all other respects π̃ coincides with π. It is straight-
forward to verify that π̃ satisfies all constraints of problem (P ′) and yields expected
profit V(π̃) = V(π) + (πl(q,P lh, a) + πh(q,P lh, a))c > V(π).

Lemma 2.4. Without loss of generality we can assume that the optimal mechanism

has no strictly positive mass on the penalty scheme Ph.

Proof. Suppose π satisfies all constraints of problem (P ′) and there exists q such that
πh(q,Ph, a) > 0. Consider π̃, where we set π̃i(q,Ph, a) = 0 and
π̃i(q,P0, na) = πi(q,P0, na) + πi(q,Ph, a). Further set the transfer to the inefficient
type as T̃h = Th − πh(q,Ph, a)P . Clearly, π̃ satisfies all constraints of problem (P ′)
and the for the respective profits we have V(π̃) ≥ V(π).

Lemmas 2.3 and 2.4 imply that a solution to problem (P ′), without loss of gener-
ality, puts strictly positive mass only on outcomes involving the penalty schemes P0

and P l. Furthermore, the penalty scheme P l always accompanies the recommenda-
tion to audit, whereas P0 always implies r = na. The following Lemma argues that
the principal is kept indifferent whether the obey the mediators recommendation to
audit.

Lemma 2.5. If the principal is recommended to audit, then she is just indifferent

whether to obey this recommendation.

Proof. Fix some outcome (q,P l, a) such that πl(q,P l, a) > 0. Assume by contradic-
tion, that the principal strictly prefers to obey the mediator’s recommendation. Con-
sider the alternative mechanism π̃ which coincides with π, apart from

π̃l(q,P l, a) = πl(q,P l, a)− ε, (2.33)

and
π̃l(q,P0, a) = πl(q,P0, a) + ε, (2.34)

for some small ε > 0. Lastly, set T̃l = Tl − εP . As long as ε is small enough, the
principal still obediently follows the mediator’s recommendations. Furthermore, (IRh)

23As argued in the paragraph preceeding OC′d we assume that P ≡ P0 whenever no audit is recom-
mended.
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is unaffected and the adjusted transfer just keeps (ICl) and (IRl) valid. However, we
have V(π̃)− V(π) = εP − ε(P − c) = εc > 0.

By what we have shown so far, there can be three distinct outcome types: a quan-
tity q produced by the l-type and no audit recommended, a quantity q produced by the
h-type and no audit recommended, and a quantity q produced by either type with the
recommendation to audit. We shall prove in the remainder that each invoked outcome
is unique with respect to the quantity.

At this point, notice that both (IRh) and (ICl) must be binding: If the former was
not binding, the principal could increase profits by lowering Th without violating any
other constraint. The latter must be binding, because otherwise the first-best was a
solution to the principal’s problem. But this clearly violates (ICl).

Because by Lemmas 2.3 and 2.4 the inefficient type is never penalized, we get
from (IRh) that

Th =
∑

d∈supp{πh}

θhq πh(d). (2.35)

The binding constraint (ICl) can then be solved for Tl as follows:

Tl =
∑

d∈supp{πl}

[
θlq + 1{r=a}P(θl)

]
πl(d)

+
∑

d∈supp{πh}

[
∆θq − 1{r=a}P(θl)

]
πh(d).

(2.36)

Substituting these transfers into the principal’s objective yields

V(π) = φ
∑

d∈supp{πl}

(V (q)− θlq) πl(d)

− φ
∑

d∈supp{πh}

[
∆θq − 1{r=a}P(θl)

]
πh(d)

+ (1− φ)
∑

d∈supp{πh}

(V (q)− θhq) πh(d).

(2.37)

Lemma 2.6. Suppose π is a solution to problem (P ′) and πl(q,P0, na) > 0. Then

q = qol .

Proof. Follows immediately from (2.37) and noticing that V (q) − θlq has the unique
maximizer qol . Notice that any modification of a quantity for which πl(q,P0, na) > 0
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that is accompanied by an adjustment of Tl to keep the left-hand side of (ICl) un-
changed, does also not affect (IRl). Hence, focussing solely on (2.37) is indeed suffi-
cient.

Lemma 2.7. Suppose π is a solution to problem (P ′). There exists at most one q such

that πh(q,P0, na) > 0.

Proof. Suppose the contrary, i.e., there exists d = (q,P0, na) and d̂ = (q̂,P0, na)

with q 6= q̂ and both πh(d) > 0 and πh(d̂) > 0. Set

q̃ :=
qπh(d) + q̂πh(d̂)

πh(d) + πh(d̂)
. (2.38)

The value q̃ is the probability-weighted average of the two quantities q and q̂.
Further consider π̃, where we set π̃h(q̃,P0, na) = πh(d) + πh(d̂). All other entries
of π̃ coincide with those of π. The agent’s constraints are all linear in quantities, that
is why the validity of all the agent’s constraints for the mechanism π̃, follows from
validity for the mechanism π. Because the function (1 − φ)(V (q) − θhq) − φ∆θq is
strictly concave, we have V(π̃) > V(π).

Lemma 2.8. Suppose π is a solution to problem (P ′). There exists at most one q such

that πl(q,P l, a) > 0.

Proof. Suppose the contrary, i.e., there exists d = (q,P l, a) and d̂ = (q̂,P l, na) with
q 6= q̂ and both πl(d) > 0 and πl(d̂) > 0. Then also πh(d) > 0 and πh(d̂) > 0 by
Lemma 2.5. Set

q̃ :=
qπl(d) + q̂πl(d̂)

πl(d) + πl(d̂)
. (2.39)

Furthermore consider π̃, where we set π̃l(q̃,P l, a) = πl(d) + πl(d̂), as well as
π̃h(q̃,P l, a) = πh(d) + πh(d̂). Also, set π̃i(d) = π̃i(d̂) = 0. All other entries of
π̃ coincide with those of π. From the principal’s indifference whether to follow the
recommendation to audit we get

πh(d) =
φ(P − c)
(1− φ)c

πl(d), πh(d̂) =
φ(P − c)
(1− φ)c

πl(d̂), (2.40)
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and therefore

π̃h(q̃,P l, a) q̃ =
(
πh(d) + πh(d̂)

)
q̃

=
φ(P − c)
(1− φ)c

(
qπl(d) + q̂πl(d̂)

)
=qπh(d) + q̂π(d̂).

Thus, as in the proof of Lemma 2.7 validity of the agent’s constraints for mech-
anism π implies validity of the same constraints for mechanism π̃. Strict concav-
ity of the functions V (q) − θlq, resp., (1 − φ)(V (q) − θhq) − φ∆θq then yields
V(π̃) > V(π).

Trivially, Lemma 2.8 also implies there exists at most one value q s.t. πh(q,P l, a) >

0, and, hence, we have shown that in any solution to problem (P ′) there are at most
three distinct quantities. Denote them ql, qa and qh, as prescribed in Proposition 2.1.

What remains to show is, that these insights extend to the solution of problem
(P). To show this, let π be a solution to problem (P ′). Setting ta = θhqa and th =

θhqh, it is straightforward to verify that (IRh) and the right-hand side of (ICl) are kept
unchanged. Solving (ICl) for tl yields validity of both (ICl) and (IRl). Obviously, all
obedience constraints are satisfied. What remains to be shown is validity of (ICh).
For this we have to anticipate some of the results obtained in Propositions 2.2 - 2.4.
These Propositions solve also for optimal quantities and probabilities of the solution
to problem P ′. There are three cases:

(1) (no-audit contract)
πl(qa,P l, a) = πh(qa,P l, a) = 0. Then ql = qol and qh = qnah and the h-type
clearly receives a strictly negative payoff from misreporting.

(2) (sure-audit contract, see Propositions 2.3 and 2.4)
πh(qa,P l, a) = 1 which implies πl(qa,P l, a) = ((1 − φ)c)/(φ(P − c)). The
high-cost type’s utility from misreporting can be simplified to

− φP − c
φ(P − c)

·∆θ(ql − qa + P ), (2.41)

which is negative, because as we shall argue in the main text we must have
φP > c and ql > qa in this case.
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(3) (random-audit contract, see Proposition 2.4)
πh(qa,P l, a) = % ∈ (0, 1) and πl(qa,P l, a) = %((1 − φ)c)/(φ(P − c)). Using
the binding constraint (IRl), the payoff of type θh from misreporting can be
simplified to(

1− % (1− φ)c

φ(P − c)

)(
−∆θql − %

(1− φ)c

φ(P − c)
(P −∆θqa)

)
< 0, (2.42)

where the strict inequality follows from P > ∆θqa and φP > c.

This completes the proof of Proposition 2.1.

Proof of Proposition 2.2. First ignore (IRl). For a given % ∈ (0, 1) differentiate
(2.17) with respect to quantities. This yields ql = qol , qh = qnah , and qa = q̂a, where

V ′(q̂a) = θh +
φP − c

(1− φ)P
∆θ. (2.43)

Now define Pm as the solution of

V ′
(
P

∆θ

)
= θh +

φP − c
(1− φ)P

∆θ. (2.44)

The value Pm exists, because for P → ∞ we have (φP − c)/((1 − φ)P ) →
φ/(1 − φ) > 0, while V (P/∆θ) → 0, and for P → 0 the right-hand side of (2.44)
gets negative, whereas the left-hand side is always positive. It is unique, because the
left-hand side of (2.44) strictly decreases with P , whereas the right-hand side strictly
increases.

By the definition of q̂a we have ∆θq̂a ≥ P if and only if P ≤ Pm. Provided (IRh)
and (ICl) are binding, (IRl) rewrites as

%∆θqa + (1− %)∆θqh − %P ≥ 0. (2.45)

Using the values for quantities derived above, this condition is satisfied for all
% ∈ (0, 1), whenever ∆θq̂a − P ≥ 0, i.e. whenever P ≤ Pm. When P > Pm, there
exists a unique %(P ) ∈ (0, 1) such that %∆θqa + (1 − %)∆θqh − %P ≥ 0 if and only
if % ≤ %(P ).

Next maximize (2.17) for a given % > %(P ) together with the now binding con-
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straint (IRl). Let λ denote the Lagrange-multiplier on (IRl), the Lagrangian reads as

L(ql, qa, qh, λ) = φ
(
V (ql)− θlql −∆θqh

)
+ (1− φ)

(
V (qh)− θhqh

)
− %

{
(1− φ)c

P − c
(
V (ql)− θlql − V (qa) + θlqa

)
− (1− φ)

(
V (qa)− θhqa − V (qh) + θhqh

)
+φ∆θ(qa − qh)−

φP − c
P − c

P

}
+ λ
(
%∆θqa + (1− %)∆θqh − %P

)
.

(2.46)

First order conditions for quantities and λ are

ql : V ′(ql) = θl, (2.47)

qa : V ′(qa) = θh +
φP − c− λ(P − c)

(1− φ)P
∆θ, (2.48)

qh : V ′(qh) = θh +
φ− λ
1− φ

∆θ, (2.49)

λ : %∆θqa + (1− %)∆θqh − %P. (2.50)

Thus, once more we have ql = qol , whereas qa > q̂a and qh > qnah because λ > 0.
Define

V(%) := max
ql,qa,qh,λ

L(ql, qa, qh, λ) (2.51)

Clearly, this function is continuous on the whole interval [0, 1]. Consider the fol-
lowing cases:

• (I) P ≤ Pm. Then V(%) is linear in %, because all quantities do not depend on %
and we have λ = 0. Furthermore,

∂V
∂%

= −
{

(1− φ)c

P − c
(
V (qol )− θlqol − V (q̂a) + θlq̂a

)
− (1− φ)

(
V (q̂a)− θhq̂a − V (qnah ) + θhq

na
h

)
+φ∆θ(q̂a − qnah )− φP − c

P − c
P

}
.

(2.52)

Hence, ∂V/∂% > 0 if and only if P > P ∗, as defined in (2.18).

74



2.A. PROOFS

• For P > Pm we have that (2.52) holds for % ≤ %(P ). For % > %(P ) we have,
after applying the envelope-theorem

∂V
∂%

= −
{

(1− φ)c

P − c
(
V (ql)− θlql − V (qa) + θlqa

)
− (1− φ)

(
V (qa)− θhqa − V (qh) + θhqh

)
+φ∆θ(qa − qh)−

φP − c
P − c

P

}
+ λ
(
∆θ(qa − qh)− P

)
.

(2.53)

Differentiating once again yields

∂2V
∂%2

=
(1− φ)c

P − c
(V ′(qa)− θl)

∂qa
∂%
− φ∆θ

(
∂qa
∂%
− ∂qh

∂%

)
+(1− φ)(V ′(qa)− θh)

∂qa
∂%
− (1− φ)(V ′(qh)− θh)

∂qh
∂%

+
(
∆θ(qa − qh)− P

)∂λ
∂%

+ λ∆θ

(
∂qa
∂%
− ∂qh

∂%

)
= (1− λ)

c

P
∆θ

∂qa
∂%

+
φP − c− λ(P − c)

P
∆θ

∂qa
∂%
− (φ− λ)∆θ

∂qh
∂%

−(φ− λ)∆θ

(
∂qa
∂%
− ∂qh

∂%

)
− (P −∆θ(qa − qh))

= −
(
P −∆θ(qa − qh)

)∂λ
∂%

< 0,

where we were using the first order conditions (2.48) and (2.49). The final
inequality follows, because % > 0 and qh > 0 - therefore P − ∆θ(qa − qh) =

∆θqh/% > 0 - and after applying the implicit function theorem to get

∂λ

∂%
=

V ′′(qa)V
′′(qh)(∆θ(qa − qh)− P )

(P−c)%
(1−φ)P

V ′′(qh)(∆θ)2 + 1−%
1−φV

′′(qa)(∆θ)2
> 0. (2.54)

Consequently, the solution entails %∗ = 0 if and only if ∂V/∂% ≤ 0 at % = 0.
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A necessary condition to get (2.18) is φP > c. To see this, observe the following

(1− φ)c

P − c
(
V (qol )− θlqol − V (q̂a) + θlq̂a

)
+ φ∆θ(q̂a − qnah )

−(1− φ)
(
V (q̂a)− θhq̂a − V (qnah ) + θhq

na
h

)
− φP − c

P − c
P

≥ φ∆θ(q̂a − qnah )− (1− φ)
(
V (q̂a)− θhq̂a − V (qnah ) + θhq

na
h

)
− φP − c

P − c
P

> φ∆θ(q̂a − qnah )− (1− φ)
φ

1− φ
∆θ(q̂a − qnah )− φP − c

P − c
P = −φP − c

P − c
P.

For the first inequality we used ql = qol . The strict inequality follows from q̂a > qnah
and the mean-value-theorem. Hence, for φP ≤ c, the left-hand side of (2.18) is strictly
positive. As P → ∞, the left-hand side of (2.18) gets strictly negative, because the
first three terms ar bounded, while the last tends to (negative) infinity. this yields
existence of P ∗. Differentiating the left-hand side of (2.18) with respect to P yields

− (1− φ)c

(P − c)2

(
V (qol )− θlqol − V (q̂a) + θlq̂a

)
− φP − c

P − c
− P (1− φ)c

P − c
< 0. (2.55)

Consequently, P ∗ is also unique.

Proof of Proposition 2.3. The proof of Proposition 2.2 in particular implies, that
there exists a unique %m that maximizes L(%). Because for given % also the quan-
tities are uniquely defined, we have a unique optimal mechanism.
In the proof of Proposition 2.2 we have already defined the value Pm such that (2.16)
is binding if and only if P > Pm (see equation (2.44) and the following discussion).
Hence, the optimal mechanism in this case entails ql = qol and qa = q̂a.

Proof of Proposition 2.4. If P > Pm and %m = 1 we have from (2.16) that ∆θqa =

P , hence qa = P/∆θ. It always holds that ql = qol . We next argue that at %m > 0 we
have qoh > qa > qh ≥ qnah . To see this, notice that because ql = qol we have

∂L
∂%
≤ (λ− φ)∆θ(qa − qh) + (1− φ)(V (qa)− θhqa − V (qh) + θhqh)

+
φP − c
P − c

P − λP.
(2.56)

By the mean value theorem we have

(1− φ)(V (qa)− θhqa − V (qh) + θhqh) = (1− φ)(qa − qh)(V ′(q)− θh)
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for some q ∈ (qa, qh). We distinguish the following cases:

• λ ≥ 1. Then qh ≥ qa ≥ qol and because 0 > V ′(qa) − θh ≥ V ′(qh) − θh, we
have

(1− φ)(qa − qh)(V ′(q)− θh) < (φ− λ)∆θ(qa − qh). (2.57)

• λ ≤ φ. Here we have qh < qa < qoh and V ′(qa) − θh < 0 ≤ V ′(qh) − θh.
Consequently (2.57) holds also here.

• φ < λ < 1. Then qh < qa and 0 > V ′(qh) − θh > V ′(qa) − θh. Again, this
yields (2.57).

Altogether, we have
∂L
∂%

< P ·
(
φP − c
P − c

− λ
)
. (2.58)

Thus, in a solution with %∗ > 0 where ∂L/∂% ≥ 0 we must have λ < (φP −
c)/(P − c) < φ. By the first-order conditions for quantities this implies qnah ≤ qh <

qa < qoh. Whenever (PCl) is binding, we have λ > 0 and therefore qh > qnah . On the
fly, this establishes existence of P

m ∈ [Pm,∆θqoh) such that %m < 1 for P > P
m

. As
long as %∗ = 1 we have ∆θqa ≥ P by (PCl). Because qa < qoh by what we have shown
above, this implies that %∗ < 1 for P ≥ ∆θqoh.

Proof of Corollary 2.2. Follows from the arguments given in the main text.
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Chapter 3

Optimal Incentive Contracts to Avert
Firm Relocation

This chapter is based on Pollrich and Schmidt (2014).

3.1 Introduction

In a globalized world economy, a firm’s location is a strategic choice. Changes in
tax regimes, market conditions, or regulations can render production more profitable
in one country compared to another, and may induce firms to relocate or outsource pro-
duction to other countries. Policy makers often perceive such relocation as harmful,
because it can cause losses of jobs or reductions in tax revenues. Hence, they some-
times take measures to prevent firms from relocating, or design policies that minimize
the incentives for firms to relocate.

We study the issue of firm relocation in a dynamic setting, where a local regulator
seeks to prevent the relocation of a firm to some other country in each of two periods.
The firm can undertake a location-specific investment that is neither observable to the
regulator nor verifiable and, hence, not contractible. The regulator, however, can make
transfer payments to the firm contingent on other indicators of the firm’s productive
activity, such as its output. While the firm’s optimal choice of these activities is related
to the investment, they are not fully revealing – some activities remain unobservable
to the regulator so that the firm’s investment cannot be inferred.

We show that a moral hazard problem arises when contracts can only be written on
a short-term basis (so that the regulator must offer to the firm a new set of contracts in
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each period). Such short-term contracting is especially relevant because with changing
majorities and legislations, regulators or policy makers may not be able to commit to
contractual obligations and future regulations for a sufficiently long period of time.
In particular, because firms’ location decisions and investments related with them are
usually long-term, limited commitment is likely to be a major concern in this context.
Limited commitment leads to the problem that the firm can then adopt a ‘take-the-
money-and-run strategy’. In this case, the firm stays for only one period in its home
country and benefits from first-period transfers, but (secretly) lowers its investment,
planning to relocate in period 2.1 We demonstrate that the resulting moral hazard
problem leads to distortions in the allocation. In particular, the regulator tightens the
regulation in the first period, in order to induce the firm to invest more. Because
investment is location-specific, this creates a ‘lock-in effect’ that averts relocation in
both periods under limited commitment.

As a benchmark case, we first consider long-term contracting (‘full commitment’).
In this case, the regulator can offer contracts to the firm that last for both periods and
specify transfers as well as the firm’s choice of its (verifiable) production decisions
for both periods. The regulator’s problem under long-term contracting is simple, be-
cause the interests of the regulator and the firm are to some extent aligned. While the
firm seeks to maximize its profits, the regulator seeks to avert the firm’s relocation at
minimal costs, which requires maximal profits. Hence, all productive variables are set
to their profit-maximizing levels, and the transfer just compensates the firm for not
relocating.

This picture changes drastically under limited commitment, when only short-term
contracts can be utilized. On the one hand, the regulator now offers a second-period
contract that just compensates the firm for not relocating in that period. On the other
hand, the form is now free to relocate in period two. In particular, she can invest little
in period one while planning to reject any contract offered in period two. To avoid the
latter, a sufficiently high second-period transfer must be promised as a reward for not
under-investing. The resulting tension between (1) the need for high second-period
transfers to react to the firm’s opportunism, and (2) the regulator’s parsimony, result-

1For example, in 1999 the Finnish telecommunications company Nokia received a subsidy from
the German state North Rhine-Westphalia to maintain production of mobile phones in the region.
The subsidy was conditioned upon a guarantee to maintain at least 2.856 full-time jobs. Neverthe-
less, in 2008 Nokia announced plans to shut down production and finally relocated to Romania. For
more details see www.spiegel.de/international/germany/the-world-from-berlin-nokia-under-attack-in-
germany-a-529218.html.
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ing in sequentially optimal second-period transfers, cumulates in an implementation
problem.

The first-period contract must be such, that the described tension does not arise in
the first place. To achieve this, it must be in the firm’s own best interest to stay for
both periods when just accepting the first-period contract and, hence, committing to
stay for only one period. In this case no second-period contract is required anymore,
which solves the problem of sequential-optimality. And because the firm anticipates
in period one that she will say also in period two, she will invest accordingly and a
‘take-the-money-and-run’-strategy turns out to be not desirable.

The implications of this are twofold. First, the optimal long-term contract is only
implementable when relocation is not very attractive. As soon as relocating is suffi-
ciently attractive, the implementation problem gets relevant. This requires a tougher
first-period contract to induce already a large investment when the firm just plans to
stay for one-period. The lock-in effect of investment then makes it even more attrac-
tive for the firm to invest more and stay for both periods. With tougher first-period
contracts, the regulator induces the firm to overinvest, compared to what would have
been optimal under full commitment.

From a policy perspective, our analysis indicates that transfers conditioned only
on the location of a firm at a certain point in time (i.e., within a period) may be less
effective in averting relocation on a permanent basis than regulations that involve also
binding targets for a firm’s output or employment. To account for the implementation
problem, contracts have to be tougher, in order to induce sufficient investment by the
firm. The relocation problem is then solved in period one for all subsequent periods.

To foster intuition, we frame our analysis in the context of the following environ-
mental application.2 A unilateral introduction of an emission price by a country can
induce firms to relocate to other countries with less stringent environmental regula-
tion. Firm relocation is an important channel of ‘carbon leakage’, or more generally
the leakage of emissions to other countries, in response to unilateral emissions regu-

2Another application of our model features a regulator, who seeks to induce a pharmaceutical com-
pany to develop a new drug. The model developed in this chapter applies if the regulator cannot observe
the firm’s overall R&D effort to develop the drug, but can subsidize investments in research equipment.
Under limited commitment, the firm can pocket any transfers that take place in the first period, and quit
the project in the second period.
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lation.3 Even though firm relocation may not be the major cause of leakage,4 it may
be particularly relevant for policy makers given their concern for jobs and interna-
tional competitiveness. Indeed, the fear of job losses may be one of the reasons why
many countries shy away from implementing unilateral climate policies in the first
place. In that case, the firm’s investment is in abatement capital (or low-carbon tech-
nologies) that allows the firm to reduce its operating costs in the light of an emission
price in the home country. We refer to the firm’s observable activity as ‘emissions’,
while some other activities of the firm (such as output) remain unobservable to the
regulator. In this context, transfers can easily be implemented by allocating emission
allowances for free during an early phase of a cap-and-trade scheme (Schmidt and
Heitzig, 2014). Our results suggest that also in this case, additional criteria (such as
firm-specific emission targets) raise the effectiveness of the implicit transfers, unless
the regulator is able to commit to future contractual obligations (i.e., transfers) for a
sufficiently long period of time.

The remainder of the chapter is organized as follows. Section 3.2 reviews the
literature and section 3.3 introduces the model. Section 3.4 studies the relocation
problem of the firm in isolation. Regulation is introduced in section 3.5.1, where
we analyze the benchmark case of long-term contracting. Section 3.5.2 investigates
short-term contracting and contains our main results. Extensions of the model, such as
observable but non-contractible investments, and an alternative objective function of
the regulator that depends directly on the firm’s emissions, are presented in section 3.6.
They serve us as a robustness check. Section 3.7 concludes. All formal proofs are
relegated to the Appendix.

3.2 Related literature

This chapter contributes to a growing body of literature that tackles the problem
of limited commitment in repeated moral hazard problems. E.g., Manso (2011) con-
siders the problem of an agent who is motivated to innovate. The optimal long-term
contract that induces the agent to experiment is shown not to be implementable with
a sequence of short-term contracts. It is further shown that under certain conditions,

3When leakage occurs, the emissions in a foreign country rise in response to the introduction of an
emissions control policy in the home country (see, e.g., Babiker (2005)). Leakage is yet another reason
why firm relocation may be perceived as harmful by the local regulator.

4Another channel is via changes in fossil fuel prices.
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outcomes with experimentation completely fail to be implementable. Bergemann and
Hege (1998) study the problem of providing venture capital in a dynamic agency
model and argue that short-term contracts can never substitute long-term contracts.
In their model, however, problems of implementation do not arise. In another paper,
Bergemann and Hege (2005) study the funding of a research project with uncertain
return and date of completion. Only short-term contracts are considered and a distinc-
tion is made between observable and unobservable effort. As opposed to our results,
they show that unobservable effort leads to a Pareto-superior outcome, compared to
observable investment.

The more general literature on repeated moral hazard is surveyed by Chiappori,
Macho, Rey, and Salanié (1994), who derive a principal’s optimal contract when mo-
tivating an agent to exert costly effort. Rey and Salanié (1990) and Fudenberg, Holm-
strom, and Milgrom (1990) provide sufficient conditions for the implementability of
the optimal long-term contract via a sequence of short-term contracts. However, they
do not characterize the sequence of short-term contracts when the optimal long-term
contract is not implementable. Fudenberg, Holmstrom, and Milgrom (1990) report
two examples for environments where optimal long-term contracts fail to be imple-
mentable with short-term contracts, but do not go deeper into this problem.5

Our setting also embodies a form of the ratchet effect. Pioneered by Weitzman
(1980), the ratchet effect has found its ways into the literature on contracting with lim-
ited commitment. Examples are Lazear (1986), Gibbons (1986), Freixas, Guesnerie,
and Tirole (1985), and Laffont and Tirole (1988). While Lazear (1986) argues that
high-powered incentives can overcome the ratchet effect, Laffont and Tirole (1988)
prove a result on the impossibility of implementing full separation with a continuum
of types. All these works study models of adverse selection. The issue is then to
compensate the agent today for being exploited in the future, because ex-ante private
information is typically revealed over time. We instead study a model of moral haz-
ard, where the exploitation in the future has severe consequences on the problem of
implementing effort in the first place.

A recent paper that studies the ratchet effect in a model with moral hazard is
Bhaskar (2014). He studies a dynamic principal-agent problem with moral hazard
and learning. The difficulty of the job, undertaken by the agent, is a priori unknown

5Our model can be seen as a version of Example 1 in Fudenberg, Holmstrom, and Milgrom (1990).
The intuition behind their Example 2, however, fits better with the observed implementation problem
in this chapter.
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to both parties. Conditional on first-period effort and output, both principal and agent
update their beliefs. When shirking, the agent’s posterior differs from the principal’s,
which gives rise to a ratchet effect that leads to a failure of implementability that is
similar to the one presented in this chapter. The agent can adopt a ‘take-the-money-
and-run’ strategy, which makes deviations from interior values profitable.

Due to the commitment problem under short-term contracting, the chapter is also
related to the literature on incomplete contracts, e.g. Hart and Moore (1988). As in
this literature, we allow contracts to depend on some observable characteristics, but
not on investments. Our analysis of short-term contracting establishes a new chan-
nel for a contractual hold-up: although the contracts we analyze are rich enough to
mitigate hold-up within a period (or under full commitment), the threat of exploita-
tion in future periods resurrects the hold-up problem under limited commitment. As
compared to the classical results in that literature (see Che and Sákovics (2004) for an
overview), we identify over-investment as another possible consequence of incomplete
contracting. Joskow (1987) finds empirical evidence for a link between the contractual
commitments of future trade and importance of relationship-specific investment. The
chapter provides a theoretical foundation: when the contract length falls short of the
time in which investments are recouped, efficient investment cannot be implemented.

In a model of repeated climate contracting between countries, Harstad (2012) finds
results that are related to ours. Countries repeatedly negotiate climate contracts that
specify emission levels. Between the contracting stages they invest in abatement tech-
nology. The author finds that shorter contract duration leads to tougher contracts and
lower emission levels are agreed upon. However, investments remain at an ineffi-
ciently low level, whereas in our model contracts are tougher and investments are
inefficiently high.

The problem of firm relocation has been studied in different strands of literature.
Horstmann and Markusen (1992), e.g., study the impact of a trade policy on market
structure. They report that ‘small policy changes can produce large welfare effects
when equilibrium market structure shifts’. Also tax competition in general affects firm
location, Wilson and Wildasin (2004) and Bucovetsky (2005) provide an overview.6

The impact of unilateral environmental regulation on firms’ location decisions was
first analyzed formally by Markusen, Morey, and Olewiler (1993).7 In a two-country

6See also Haufler and Wooton (2010).
7See also Markusen, Morey, and Olewiler (1995). Other examples include Motta and Thisse (1994),

who analyze the relocation of firms already established in their home country in response to a unilateral
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model, firms decide where to locate after governments have determined environmental
taxes. Firms’ location decisions are, therefore, very sensitive to differences in tax
policies, as confirmed by Ulph (1994) in a numerical calibration of the model. The
chapter complements this literature in that it provides a method to counterbalance the
adverse effects on firm location.

Schmidt and Heitzig (2014) study the dynamics of ‘grandfathering’ schemes. They
show that such transfer schemes can permanently avert firm relocation even when they
terminate in finite time. In contrast to what we do in this chapter, full contractual
commitment by the regulator is assumed. Their findings conform with our results on
long-term contracting. In particular, with full commitment, simple transfer schemes
are sufficient, as the regulator need not interfere directly with the firm’s productive de-
cisions. The promise of transfers that last for a sufficiently long period of time induces
the optimal investment by the firm, and permanently averts its relocation. With limited
commitment, however, our results indicate that these simple grandfathering schemes
are no longer optimal and contracts should be made contingent on other observable
characteristics, such as emissions.

3.3 Model

3.3.1 The firm

We analyze the following two-period model: There is one firm that is initially
located in country A, where it earns per-period profits of πA(e, a). The variable e
reflects some productive activity, and a is the stock of capital available to the firm. For
illustrative purposes, we will interpret these variables in terms of our environmental
example (motivated in the introduction) throughout the chapter. Then e stands for the
firm’s emissions, and a is the firm’s stock of abatement capital. Note that the profit
function πA(e, a) is given in a reduced form. In particular, all other potential factors
(e.g. input and output quantities, prices) are always chosen optimally by the firm, for
any given values of e and a. Below, we show how to derive the firm’s profit in the
reduced form πA(e, a) in a specific example.

Emission levels are chosen by the firm in each period, and we denote eτ the emis-

anti-pollution policy pursued by the government in their home country. Further, Ulph and Valentini
(1997) analyze strategic environmental policy in a setting where different sectors are linked via an
input-output relation.

85



CHAPTER 3

sion level in period τ ∈ {1, 2}. The capital stock a is established at the beginning of
period 1 and is thereafter available for both periods of production.8 We further assume
that abatement capital is immobile, i.e. it can only be utilized in country A.9 The cost
of installing a capital stock of a ≥ 0 is given by the strictly convex cost functionK(a),
with K(0) = K ′(0) = 0. The firm’s discounted profit from producing in country A in
both periods, when choosing emission levels e1 and e2 as well as capital a is, therefore,

πA(e1, a)−K(a) + δπA(e2, a), (3.1)

where δ > 0 is the discount factor.10

We assume that at the beginning of each period, the firm has the possibility to
relocate to some other country, in the following referred to as ‘country B’. In country
B, the firm earns a fixed per-period profit of πB.11 Relocation is once and for all, and
for simplicity assumed to be costless. If the firm relocates immediately (i.e. at the
beginning of period 1) to country B, it earns a total profit of

VB = (1 + δ)πB. (3.2)

In this case, the firm has no incentive to invest in abatement capital. The firm can
also stay in A for only one period, and relocate to B at the beginning of period 2. This
strategy, referred to as ‘location plan AB’, amounts to a discounted profit of

πA(e1, a)−K(a) + δπB. (3.3)

We use the following technical assumptions regarding the profit function πA(e, a),
defined on an open interval (e, e), with −∞ ≤ e < e ≤ ∞.12

Assumptions:

(A1) πA(e, a) is strictly concave in e, and for all a ≥ 0 we have ∂πA
∂e

= +∞ for

8In particular, we assume away depreciation. Allowing for a positive rate of depreciation would,
however, not change our main results.

9Examples include investments in more energy-efficient production technologies, or investments in
physical capital such as a building.

10We allow for δ > 1, which admits time periods of different length and/or economic importance.
11In the context of our environmental example, country B may, e.g., be a country that does not

regulate emissions. Hence, even if capital were mobile, a prior investment in abatement capital does
not affect the firm’s profit after relocation.

12Negative values for e can be interpreted as selling emission rights on the market.
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e→ e, as well as ∂πA
∂e

< 0 for e→ e.

(A2) πA(e, a) is strictly concave in a, and ∂πA
∂a

> 0 holds at a = 0 for all e ∈ (e, e);
furthermore, ∂πA

∂a
is bounded from above for all e ∈ (e, e).

(A3) The Hessian of πA(e, a) is negative definite.

(A4) ∂2πA
∂e∂a

< 0.

(A5) ∃ ε > 0 such that whenever ∂πA/∂e = 0 then ∂πA/∂a > ε.

The first three assumptions are technical: (A1) states that πA(e, a) is a regular
profit function in e for all possible values of a (i.e., there exists a unique interior
maximizer) and rules out boundary solutions for e. Assumption (A2) implies that
investment exhibits diminishing returns, and it is never optimal to choose a = 0 (un-
less the firm relocates immediately). (A3) guarantees concavity of implicitly defined
functions (such functions are introduced later on).

The last two assumptions describe the relation between emissions and investment:
(A4) is a single-crossing property, and implies that emissions and investment are sub-
stitutes.13 Assumption (A5) implies that whenever the firm is free to choose e opti-
mally, it is always better off with a larger capital stock when the investment costs in a
are ignored.

Example 3.1. Consider a polluting firm that produces an output quantity q, emitting

e units of greenhouse gases. The firm faces the inverse demand P (q) = 3 − q/2.

Marginal costs of production are constant and normalized to zero. The emissions

price in A (e.g., following the introduction of a cap-and-trade scheme) is equal to

1 in both periods. Consequently, the firm’s per-period profit in country A, gross of

abatement capital installation cost, is

π̃A(e, q) = (3− q/2)q − e.

Emissions are a function of output and the firm’s abatement capital stock. For

simplicity, we assume that the firm’s emissions are additive in q and a, i.e. e(q, a) =

q − a. Inserting this into π̃A(e, q), we obtain the firm’s profit function in the reduced

form:14

πA(e, a) = 3a+ 2e− (a+ e)2/2. (3.4)
13Intuitively, if the firm has a larger abatement capital stock then its optimal emissions are lower.
14It is easy to verify that the function πA(e, a) fulfills our earlier assumptions.
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We will return to this simple example frequently throughout the chapter, in order

to illustrate our findings.

3.3.2 The regulator

In country A a regulator (or policy maker) is concerned with the firm’s option to
relocate. In particular, as soon as the firm relocates, welfare in country A is reduced
by some fixed amount L > 0, e.g., due to job losses or lower tax revenues.15

Because of the potential loss L, the regulator’s main interest is to avert relocation
of the firm on a permanent basis. To this end, the regulator offers to the firm contracts
in a take-it-or-leave-it manner. We assume that the firm’s emissions in each period are
contractible. However, the investment in abatement capital is neither observable to the
regulator nor verifiable. Contracts thus specify a location-specific transfer to the firm,
denoted by t, and emission levels that the firm has to comply with (in order to obtain
the transfer). The firm can reject any contract offer and either relocate to country B,
or produce in country A at its own, un-subsidized expense.

The regulator maximizes the following welfare function

W = −χ1 t1 − χ2 δt2 − (1− χ2)L, (3.5)

where χτ = 1 if the firm operates in country A in period τ (and accepts the contract
offered in that period), and χτ = 0 otherwise.16 The regulator and the firm use the
same discount factor δ > 0.

Throughout this chapter, we distinguish between long-term and short-term con-
tracts. The former specify emission levels and transfers for each individual period,
i.e. a long-term contract is a quadruple (t1, e1, t2, e2). This implicitly assumes that the
regulator can fully commit to all present and future contractual obligations. Commit-
ment here is two-sided, i.e. also the firm, after signing the contract, is committed to

15The assumption that L is independent of whether the firm relocates in period 1 or in period 2
highlights the regulator’s interest in averting relocation on a permanent basis (rather than on a temporary
one). In our environmental example, an emission price is implemented by some higher authority (e.g.,
on the federal level), while transfers are paid by a local regulator who’s primary objective it is to avert
the firm’s relocation. Hence, the firm’s emissions do not directly affect the regulator’s payoff. In
Section 3.6, we introduce an alternative payoff function for the regulator that also depends on the firm’s
choice of e, as well as on the period in which the firm relocates. The regulator may then also benefit
from averting relocation only in period 1. We will show that our main results are unaffected by these
changes.

16Because relocation is by assumption irreversible, χ2 = 1 requires that also χ1 = 1 holds.
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staying in country A throughout the contract duration.17

The timing with long-term contracting is as follows. First, the regulator offers a
contract. After observing the contract offer, the firm decides whether or not to relocate
to countryB. If the firm relocates, the game ends. Otherwise, it decides whether or not
to accept the contract, and chooses a level of abatement capital investment.18 Finally,
production starts under the terms specified in the contract or, in case no contract was
signed, the firm chooses its productive variables.

Under short-term contracting neither the regulator nor the firm have the ability to
make commitments that last for more than one period.19 Hence, the regulator resorts
to a sequence of spot contracts (tτ , eτ ). The timing for this case is as follows.

1. Regulator offers contract (t1, e1).

2. Firm accepts/rejects and location choice A/B.

3. Firm chooses a and produces e1. Transfer t1 paid to the firm.

4. Regulator offers contract (t2, e2).

5. Firm accepts/rejects and location A/B.

6. Firm produces e2. Transfer t2 paid to the firm.

In the first period a short-term contract (t1, e1) is offered to the firm. After ob-
serving the contract, the firm decides on its location and whether or not to accept the
contract. The game ends whenever the firm relocates. Otherwise, the firm invests in
abatement capital and production takes place (according to the terms specified in the
contract if accepted). At the end of period 1, the transfer is paid to the firm, in case it
accepted the contract. Period 2 starts with a new contract offer (t2, e2) by the regulator
(unless the firm already relocated in period 1). The firm observes the offered contract
and decides whether or not to relocate in period 2. If it stays in A, the firm can accept
the contract and produce according to the contractual terms or reject the contract, in
which case it produces on its own account and does not receive any transfer payment
in period 2. Again, the transfer is paid at the end of period 2.

17This formulation rules out contracts that keep the firm for the first period and impose relocation in
the second period. Because such contracts are never desirable, their exclusion is without loss.

18The firm’s decisions within a period are, of course, simultaneous.
19Intermediate cases of one-sided commitment are simple in our model. E.g., if the regulator has full

commitment power but not the firm, postponing all transfers to period 2 – after the option to relocate
has vanished – is sufficient to implement the full commitment outcome.
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3.3.3 Equilibrium concept

We argue in the following that even though we study a dynamic game with im-
perfect information, we can use Subgame Perfect Nash Equilibrium (SPNE) as our
solution concept, and hence, backward induction as solution method. This is obvious
in the case of long-term contracting where the regulator moves only once and all re-
maining decisions are taken by the firm (after observing the long-term contract offered
by the regulator).

Under short-term contracting, there is no proper subgame after stage 3 (see above),
because the regulator does not observe the firm’s choice of a. However, stages 5
and 6 constitute a proper subgame, because the firm has perfect recall. Furthermore,
the sequentiality of stages 3 and 4 (firm’s choice of a and second-period contract
offer (t2, e2)) is inconsequential for the equilibrium outcome because no information
is revealed between these two stages. Hence, we can effectively treat these two stages
as simultaneous moves. This allows us to solve the game by backward induction.20

Furthermore, throughout the main part of the chapter we focus on pure strategies.
This is clearly without loss of generality when we analyze long-term contracts. With
short-term contracting, randomization could be beneficial when the firm chooses its
investment. However, as we formally prove in Appendix 3.B, there are no additional
equilibria in mixed strategies. Hence, focusing on pure strategy equilibria is without
loss of generality also in the case of short-term contracting.

3.4 Preliminaries and the ‘no-regulation’ benchmark

In this section we consider the firm’s problem in isolation and identify conditions
under which relocation occurs. It will turn out convenient to use the following short-
hand notations. Let

π∗A(a) = max
e
πA(e, a), (3.6)

be the firm’s maximal profit in one period after having installed capital stock a. Denote
e∗(a) the corresponding level of emissions. Using this, we can define

VA(e1) = max
a

(
πA(e1, a)−K(a) + δπ∗A(a)

)
. (3.7)

20The alternative is to use Perfect Bayesian Nash Equilibrium. This requires specifying beliefs of
the regulator in stage 4 about the firm’s choice of investment. Because of the simple structure, these
PBNE correspond to the SPNE.
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This represents the firm’s discounted profit when staying in country A in both periods,
with first-period emissions fixed (e.g., in a contract) at a level of e1, while choosing
e2 optimally in period 2, and choosing a optimally in period 1. The corresponding
optimal level of investment is denoted by aA(e1). Similarly,

VAB(e1) = max
a

(
πA(e1, a)−K(a) + δπB

)
, (3.8)

is the firm’s profit under location plan AB with first-period emissions e1, given an
optimal investment for this location plan. The corresponding maximizer is denoted by
aAB(e1). The following Lemma states properties of these functions and their maxi-
mizers.

Lemma 3.1. (1) e∗(a) is unique and strictly decreasing,

(2) π∗A(a) is strictly increasing, concave, and lima→∞ π
∗
A(a) = +∞,

(3) aA(e1) and aAB(e1) are unique and strictly decreasing,

(4) VA(e1) and VAB(e1) are strictly concave and have unique maximizers,

(5) aA(e1) > aAB(e1) for all e1 ∈ (e, e).

The first result confirms that a firm that has installed a larger abatement capi-
tal stock optimally chooses lower emissions. The second result rephrases our earlier
assumption (A5) that ∂πA/∂e = 0 implies ∂πA/∂a > 0 and provides a first indica-
tion towards a lock-in effect, namely a sufficiently large investment renders relocation
unprofitable even for large values of πB. The functions aA(e1) and aAB(e1) are de-
creasing because in our model a stricter regulation in the first period corresponds to
a smaller value of e1 (emissions are regulated more tightly). Accordingly, the firm
responds with a larger investment when e1 is smaller (both under location plan AB or
when the firm plans to stay permanently in A). The final result says that if the firm
plans to stay in A in both periods, it invests more than when it plans to relocate after
one period.

The next lemma is an immediate consequence of the investment cost being sunk.

Lemma 3.2. For any level of first-period emissions, the option to relocate after one

period is always inferior to either immediate relocation or no relocation (or both).

More specifically, it holds for any e1 that VAB(e1) < max{VA(e1), VB}.
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Figure 3.1: Profit functions VA(e1), VAB(e1), and VB for low πB (left) and high πB (right).

The Lemma establishes a lock-in effect. Whenever the firm finds it optimal to stay
for one period in country A, it will undertake some investment. Intuitively, location
plan AB can only be optimal if the net profit in period 1, i.e. profit from production
minus the cost of installing capital, exceeds the profit in country B. But then the
corresponding per-period profit of production in country A, gross of investment costs,
clearly exceeds πB when the firm implements aAB(e1). So it must be profitable for
the firm to stay in country A also for the second period. By raising its investment to
the level aA(e1), the firm can achieve an even higher profit.

Figure 3.1 illustrates the typical shape of the firm’s profit function for the different
location plans. Note, that raising πB does not affect VA, whereas it shifts VAB as well
as VB upwards.

According to Lemma 3.2, the firm prefers either to stay in country A for both
periods or to relocate immediately. Only the latter case is of interest for us, since it
calls for regulatory intervention. To make this more precise, let eoA be the optimal
(first-period) emission level when the firm plans to stay in country A for both periods.
It is given by

eoA = argmax
e1

VA(e1). (3.9)

Because the firm uses the same capital stock in each period, it is straightforward to
verify that given this optimal choice of first-period emissions, it holds that e2 = e1 =

eoA if the firm is free to choose its emissions in period 2. Define V o
A := VA(eoA) and

aoA := aA(eoA). The following lemma is an immediate consequence of the preceding
derivations.
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Lemma 3.3. Absent regulatory intervention, the firm strictly prefers immediate relo-

cation whenever πB > πoB, and no relocation otherwise. The critical value πoB is given

by

πoB :=
V o
A

1 + δ
. (3.10)

Throughout the rest of the chapter we maintain the assumption πB ≥ πoB. Hence,
in the absence of regulatory intervention the firm relocates immediately.

Example 3.2. Maximizing πA(e, a) = 3a + 2e − (a + e)2/2 over e, we find that the

firm’s optimal emissions (given a) are e∗(a) = 2 − a. Therefore π∗A(a) = 2 + a. Let

investment costs be given by the quadratic cost function K(a) = a2/2. If the firm

plans to stay in country A in both periods, and is constrained to emit (no more than)

e1 units in period 1 (e.g., by the regulator), it thus solves:

max
a

3a+ 2e1 −
(a+ e1)2

2
− a2

2
+ δ(2 + a).

This yields aA(e1) = (3− e1 + δ)/2 and VA(e1) = 1
2
(5 + δ)(1 + δ)− 1

4
(e1− (1− δ))2.

The latter implies eoA = 1− δ and V o
A = 1

2
(5 + δ)(1 + δ). The critical level of πB for

relocation is πoB = 1
2
(5 + δ). If the firm plans to stay in country A for only one period,

it solves:

max
a

3a+ 2e1 −
(a+ e1)2

2
− a2

2
+ δπB.

This yields aAB(e1) = (3− e1)/2, and VAB(e1) = 5
2
− 1

4
(e1 − 1)2 + δπB. The firm’s

optimal choice of first-period emissions is eAB = 1. Observe that the firm’s emissions

are higher and the abatement capital investment is smaller when it plans to relocate

after one period (we find aoA = 1 + δ and aAB = 1).

3.5 Regulation

This section studies the optimal regulatory policy in the presence of the threat of
firm relocation. We first analyze the benchmark case of long-term contracting (full
commitment), and then proceed to short-term contracting (limited commitment).

3.5.1 Long-term contracting

The regulator’s payoff from not offering a contract is −L. Alternatively, the reg-
ulator can offer a long-term contract that requires the firm to produce in country A in
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both periods. In finding the optimal contract that permanently averts relocation, the
regulator solves the following program

min
t1,e1,t2,e2,a

t1 + δt2

s.t. t1 + πA(e1, a)−K(a) + δ
(
t2 + πA(e2, a)

)
≥ VB , and (PC)

t1 + πA(e1, a)−K(a) + δ
(
t2 + πA(e2, a)

)
≥

t1 + πA(e1, ã)−K(ã) + δ
(
t2 + πA(e2, ã)

)
∀ã.

(MH-1)

The participation constraint (PC) ensures that the firm prefers accepting the con-
tract (and not relocating) to immediate relocation. Constraint (MH-1) is a moral haz-
ard constraint, that ensures the firm chooses the intended level of investment. Because
we assume two-sided commitment, the distribution of transfers across periods is in-
consequential and we can substitute for the total transfer t = t1 + δt2.21

Obviously the participation constraint (PC) is binding. Together with the moral
hazard constraint (MH-1) the minimal (total) transfer t that is required to avert reloca-
tion in both periods when emissions are chosen at levels e1 and e2 is

t = VB −max
a

(
πA(e1, a)−K(a) + δπA(e2, a)

)
. (3.11)

The regulator’s minimization program given above, therefore, corresponds to min-
imizing (3.11) with respect to e1 and e2. This is equivalent to maximizing VA(e1) over
e1, which yields e1 = eoA as defined in (3.9). The minimal total transfer required
to avert relocation is, therefore, t = VB − V o

A, and the regulator, accounting for the
welfare loss from relocation, offers a contract that averts relocation if and only if this
transfer does not exceed L. The following proposition summarizes.

Proposition 3.1. The optimal long-term contract specifies e1 = e2 = eoA, pays a total

transfer of to := VB−V o
A and the firm does not relocate, whenever L ≥ to. Otherwise,

the regulator offers the null contract and the firm relocates immediately.

Notice the following alternative way of implementing the optimal long-term con-
tract: Because of full commitment on the side of the firm, the regulator can simply
offer the lump-sum subsidy to for the firm’s commitment not to relocate in any of the
two periods. This leaves the optimal choices of e1 and e2 at the firm’s discretion. The

21This also relies on the assumption that regulator and firm have a common discount factor. With
differing discount factors, the regulator would have a preference for either paying all transfers in period
1 or in period 2.
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firm then chooses emissions and investment so as to maximize its discounted profit
from two periods of production in country A. But this implies e1 = e2 = eoA and
a = aoA, as we have shown in Section 3.4. Acceptance of the subsidy to is implied
by its definition in Proposition 3.1. Hence, under full commitment, a simple location-
based subsidization is sufficient to avert firm relocation with minimal transfers; the
regulator does not need to interfere directly with the firm’s productive activities.

Example 3.3. Applying Proposition 3.1, the optimal long-term contract specifies emis-

sion targets e1 = e2 = eoA = 1 − δ. The firm’s discounted profit in A is V o
A =

1
2
(1 + δ)(5 + δ), and a total transfer of to = VB − V o

A = (1 + δ)
[
πB − 1

2
(5 + δ)

]
is

required to avert relocation. From the expression for to we also get πoB = 1
2
(5 + δ).

3.5.2 Short-term contracting

We move on to the study of short-term contracting. Hence, we assume that the
regulator cannot commit to a contract that specifies emissions and transfers for both
periods and instead resorts to a sequence of short-term contracts. Also the firm cannot
commit in period 1 to not relocating in period 2.

For each contracting party, limited commitment generates a new constraint. First,
the regulator’s second-period contract offer must be sequentially optimal. In particu-
lar, the second-period transfer can be no higher than required to avert relocation in that
period. Second, the firm has the option to accept the first-period contract but never-
theless relocate in period 2. In order to prevent this, a sufficiently large second-period
transfer has to be ‘promised’. We show in this section that these two restrictions can
only be compatible if the latter constraint is irrelevant, i.e. upon accepting the first-
period contract the firm already prefers to stay for two periods and planned relocation
is inferior. To achieve this, the regulator sets a stringent (i.e. low) first-period emis-
sion target e1. This induces a lock-in that prevents relocation in both periods without
transfers in period 2.

As before, offering no contract results in a welfare of−L. The relevant alternative
to the null contract in period 1 is a contract offer that is accepted by the firm, and leads
to an outcome where the firm does not relocate in period 2. Acceptance of the first-
period contract, while taking the continuation play as given, is induced by constraint
(PC). Similarly, the constraint for the firm choosing investment a provided it accepts
the respective contracts in each of the two periods is given by (MH-1).
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Furthermore, after having installed capital stock a in period 1, the firm is willing
to accept the second-period contract offer (t2, e2) if and only if t2 + πA(e2, a) ≥
max{πB, π∗A(a)}. Note that the firm has the option to produce inA at its own expense,
earning a maximal profit of π∗A(a), which leads to zero transfers for large values of a.
Hence, the second-period contract (t2, e2) is sequentially optimally provided the firm
invests a, whenever

t2 = max{0, πB − π∗A(a)}, e2 = e∗(a). (SO)

As in the case of long-term contracting, the regulator’s and the firm’s interests
are to some extent aligned: minimizing the transfer payment, the regulator seeks to
maximize the firm’s profit over e2. What is crucial is that whenever t2 > 0, this
transfer just compensates the firm for not relocating in period 2. However, if π∗A(a) ≥
πB, then no second-period transfer is required.22

The other new constraint concerns the firm’s possibility to (secretely) plan reloca-
tion. Doing so, after having accepted the first-period contract (t1, e1), the firm chooses
investment aAB(e1), and earns a discounted profit of t1 + VAB(e1). This leads to the
additional moral hazard constraint

t1 + πA(e1, a)−K(a) + δ
(
t2 + πA(e2, a)

)
≥ t1 + VAB(e1). (MH-2)

The regulator’s problem of finding the minimal transfer(s) that permanently avert
relocation can, therefore, be stated as follows:

min
t1,e1,t2,e2,a

t1 + δt2, subject to (PC), (MH-1), (MH-2), (SO). (PS)

Before solving problem PS , let us first characterize the set of first-period emis-
sion levels that induce an equilibrium in the continuation game where the firm never
relocates. Hence, we are looking for levels of e1 for which there exists a contract
(t2, e2) and an investment level a such that constraints (MH-1),(MH-2), and (SO) are
satisfied. Notice that constraint (SO) essentially pins down (t2, e2) for a given level
of investment a. Similarly, for a given second-period emission level e2, we can derive
a from constraint (MH-1).23 Using the latter condition and e2 = e∗(a), we can thus

22We assume that when π∗A(a) ≥ πB , the firm still accepts a contract offer with t2 = 0 and emissions
at the level e2 = e∗(a).

23This is also what we have done when deriving the optimal long-term contract. Note, that any
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rewrite constraint (MH-2) as follows

δt2 + VA(e1) ≥ VAB(e1). (MH-2′)

In this representation the role of the second-period transfer becomes clear. When
investing, the firm faces two options: Either it invests little and relocates in period
2, rejecting the second-period contract offer. Or it invests more, planning to stay in
A in both periods and accepting the second-period contract offer. Because the actual
investment level is not observable to the regulator, the second-period offer cannot
be made contingent on it. When seeking to implement an outcome where the firm
never relocates, the second-period contract offer (t2, e2) is implicitly contingent on the
optimal investment level for the second option (no planned relocation), by conditions
(MH-1) and (SO). But the resulting second-period transfer has to compensate the firm
also for not secretly under-investing, i.e., by condition (MH-2′), it has to hold that
δt2 ≥ VAB(e1) − VA(e1). The following result shows that this condition restricts the
range of implementable outcomes.

Proposition 3.2. For a first-period emission level e1, there exists a second-period

contract (t2, e2) and an investment level a such that constraints (MH-1), (MH-2), and

(SO) are satisfied if and only if VA(e1) ≥ VAB(e1).

If the condition in the proposition is met, constraint (MH-2) has no bite. This can
be seen best from its reformulation into (MH-2′). Provided that VA(e1) ≥ VAB(e1),
any non-negative transfer t2 satisfies the constraint. If, however, VA(e1) < VAB(e1),
constraint (MH-2′) imposes a lower bound on t2, as argued above. Intuitively, in order
to satisfy constraint (MH-2′), the second-period transfer not only has to account for
the difference in second-period profits, but also for the respective difference in first-
period profits that arises when the firm plans to stay inA in both periods, rather than to
relocate after period 1. In particular, because the underlying investments differ in the
two cases, first-period profits are strictly higher with planned relocation compared to
no relocation, and the second-period transfer – serving as reward – has to compensate
for this difference. However, because the regulator has no commitment power, offer-
ing such a reward is not credible. Any sequentially optimal second-period transfer,
i.e., any t2 that satisfies (SO) only compensates the firm for not relocating within that
period, and fails to take into account investment costs that were incurred prior to this

combination e1, e2 leads to a unique investment level.
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period.

Notice a crucial consequence of Proposition 3.2: the condition VA(e1) ≥ VAB(e1)

implies that no second-period transfer is required to avert relocation in period 2. In
other words, an equilibrium with no relocation under short-term contracting necessar-
ily implies a situation where the firm is locked-in after the first period.

Proposition 3.2 also allows us to determine when the optimal long-term contract
is implementable via a sequence of short-term contracts:

Corollary 3.1. The optimal long-term contract can be implemented via a sequence of

short-term contracts if and only if V o
A ≥ VAB(eoA). This is equivalent to πB ≤ π]B,

where

π]B := 1
δ

(
V o
A − πA(eoA, aAB(eoA)) +K(aAB(eoA))

)
> πoB.

The respective sequence of contracts entails (t1, e1) = (to, eoA), and (t2, e2) = (0, eoA).

We now proceed with the analysis of optimal short-term contracts when πB > π]B.
The following result makes the analysis more transparent, by mapping the condition
VA(e1) ≥ VAB(e1) from Proposition 3.2 to a line segment.

Lemma 3.4. Assume πB > π]B. Then there exists a unique value e], with e < e] < eoA,

such that VA(e1) ≥ VAB(e1) holds if and only if e1 ≤ e]. The level e] decreases with

πB.

Hence, only sufficiently low emission targets for the first period can be utilized
to implement an outcome without relocation in any period. By offering more high-
powered incentives in the first period, the regulator enforces a sufficiently high abate-
ment capital investment by the firm. This renders the relocation option in period 2
unprofitable when the firm optimally exploits its possibilities to invest in abatement
capital. Planning to relocate after period 1 is, then, no longer optimal from the firm’s
perspective, because staying for only one period in A already involves a fairly large
investment. The firm then prefers to invest even more, and realizes the rents from the
investment also in period 2.

Finding the optimal first-period contract, i.e. the first-period emission level e1 that
implements an equilibrium where the firm stays for both periods in countryA with the
lowest (total) transfers, is now straightforward. Because VA(e1) is strictly concave,
implementing e1 = e] leads to lowest transfers and is, therefore, optimal. Regarding
the cost of implementing such an outcome, the total transfer required is given by
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Figure 3.1: Optimal first-period contracts with short-term contracting; left: eoA < e], right:
eoA > e]. Implementable levels of e1 are shown in red.

t1 = VB − VA(e]), and the regulator prefers this to immediate relocation whenever
t1 ≤ L.

Proposition 3.3. With short-term contracting the optimal first-period contract is

• (t1, e1) = (to, eoA), if πB ≤ π]B and L ≥ to;

• (t1, e1) = (t], e]), if πB > π]B and L ≥ t], with t] := VB − VA(e]) > to;

• the null contract otherwise.

In the first two cases the second-period contract is (t2, e2) = (0, e∗(aA(e1))).

The implications of Proposition 3.3 are as follows: For moderate relocation profits
πB, the lack of commitment has no consequence for the optimal contract. Both with
long-term and with short-term contracting, a transfer has to paid only in period 1,
and the firm invests enough so that relocation in period 2 is no longer in its interest.
Hence, for moderate values of πB a one-period contract is sufficient to resolve the
relocation problem on a permanent basis, even without regulation in period 2. This
case is depicted in the left panel of Figure 3.1. Observe that at e1 = eoA, it holds that
VAB(e1) < VA(e1). Hence, as the firm has to comply with the emission target e1 in
order to obtain the transfer t1 in the first period, the option to relocate in period 2 is
effectively ruled out.

However, when the outside option in form of the relocation option is more attrac-
tive, limited commitment affects the design of the optimal contract in period 1, and
the effect can be severe. A tension arises between the regulator’s parsimony, i.e., of-
fering a sequentially optimal second-period contract that minimizes transfer payments
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in that period, and the firm’s opportunism, i.e., considering a ‘take-the-money-and-
run’ strategy (sacking first-period transfers and relocating in period 2). This tension
can only be resolved by preempting it via a tighter regulation in the first-period. This
amounts to a downward-distortion in e1, that is costly to the regulator. The transfer
t1 required to induce the firm to accept the first-period contract (rather than to relo-
cate immediately) is larger than the total transfer under long-term contracting. This
case is depicted in the right panel of Figure 3.1. An implication of Proposition 3.3 is,
therefore, that with short-term contracting, the regulator prefers not to avert relocation
already for lower values of the welfare loss L. In this sense, limited commitment leads
to more relocation.24

Figure 3.2 shows combinations of the parameters πB and L for which relocation
is averted under short-term contracting, in comparison with long-term contracting.
As the figure illustrates, the implementation problem that is underlying the results
of Proposition 3.3 becomes more severe when the relocation option becomes more
attractive (i.e., for larger values of πB). In contrast, when πB ≤ π]B, there is no
implementation problem, because offering a contract in period 1 is already sufficient
to avert relocation in both periods. If πB ≤ πoB then no transfers are needed to avert
relocation.

As a consequence of limited commitment also investments are distorted. In partic-
ular, the tougher first-period emission target e1 leads to an over-investment in abate-
ment capital by the firm.

Corollary 3.2. Under the optimal sequence of short-term contracts, the implemented

investment level is aoA for πB ≤ π]B (and L ≥ to), and distorted upwards for πB > π]B
(and L ≥ t]).

Paradoxically, the distortions in e1 and a can be so severe that the existence of an
investment opportunity in abatement capital can overall be welfare-reducing. In other
words, a seemingly welfare-enhancing investment opportunity, such as investment in
abatement capital, may turn out to be welfare-diminishing if it leads to the described
conflict of interest between the regulator and the firm. This holds if a higher transfer is
required to avert relocation under short-term contracting than in a (hypothetical) situa-
tion where a = 0 is exogenously fixed from the start (and this is common knowledge).

24We implicitly assume here that there are several firms that are regulated, and the profit from relo-
cation, πB , or some other characteristic varies across firms.
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Figure 3.2: (πB, L) - combinations for which relocation is averted; grey-shaded area: long-
term contracting; dotted area: short term.

Corollary 3.3. If πB is sufficiently large then t] > (1 + δ)(πB − π∗A(0)), i.e. the

regulator would prefer a situation where a = 0 is exogenously fixed.

We close this section by illustrating the above findings in our earlier example.

Example 3.4. The firm’s profit when following location plan ‘AB’ with first-period

emissions eoA is given by VAB(eoA) = 5
2
− 1

4
δ2+δπB. We have V o

A ≥ VAB(eoA) if and only

if πB ≤ π]B = 3+3
4
δ. Notice that aoA = 1+δ and hence π∗A(aoA) = 3+δ > πB whenever

πB ≤ π]B. This demonstrates the lock-in effect, which renders relocation unprofitable

even absent any second-period transfer payment. If, however, πB > π]B a transfer of

t2 ≥ 1
δ

{
VAB(eoA)− V o

A

}
= πB − π]B is required to implement the long-term contract.

Provided the firm indeed chooses investment aoA, the sequentially rational second-

period transfer is max{0, πB − π∗A(aoA)} = max{0, πB − (3 + δ)}. Implementation

fails, because the latter is strictly lower than πB − π]B, which mirrors the finding of

Corollary 3.1. The critical value e] is given by e] = eoA− 2(πB − π]B) = 7 + δ
2
− 2πB.

Consequently, for πB > π]B, the regulator specifies first-period emissions e1 = e] <

eoA. The resulting first-period transfer is t] = VB − V o
A + (πB − π]B)2 > VB − V o

A (if

L ≥ t]). Investment in this case is a]A = aoA + πB − π]B > aoA.

To illustrate the finding of Corollary 3.3 notice that π∗A(0) = 2. Hence, in the

hypothetical situation where investment is impossible the firm earns a maximal per-

period profit of 2 and relocation can be averted with a transfer of πB−2 per period. In

this case there is no commitment problem, i.e. relocation can be averted permanently
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with a total transfer of (1 + δ)(πB − 2) = VB − 2(1 + δ). Obviously, for large πB this

expression is smaller than t].

3.6 Extensions

In this section we consider extensions of our main model, and analyze to what
extent they have an impact on the central result of the previous section, regarding
the implementability of outcomes under short-term contracting. First, we consider a
situation where the firm’s investment is observable to the regulator, but remains non-
contractible.25 Second, we focus on a more general objective function of the regulator,
that (apart from the firm’s location decision) also depends on the firm’s emissions, and
allows for a benefit to the regulator from averted relocation also in case the firm stays
for only one period in A.

3.6.1 Observable investment

Observability of the firm’s investment relaxes the implementation problem studied
in the previous section to some extent. The reason is, that the regulator can now make
the second-period contract offer dependent on the level of investment actually chosen

by the firm (and not just the anticipated level of a, as in the previous section). As
a result, also emission levels e1 > e] can now be used to implement SPNE without
relocation. Nevertheless, we will show that the optimal long-term contract can only be
implemented when V o

A ≥ VAB(eoA) (as in the case with an unobservable investment).

Because the regulator now observes the firm’s investment level a, the second-
period contract entails e2 = e∗(a) and t2 = max{0, πB − π∗A(a)}, unless the stated
t2 exceeds L (in this case no second-period contract is offered and the firm relocates).
Let a be the investment level that is just sufficiently large to create a lock-in situation
in period 2. Hence, it is implicitly defined by the condition π∗A(a) = πB.26 For a ≥ a

no second-period transfer is required to avert relocation and the firm’s second-period
profit is π∗A(a). Otherwise (for a < a), the firm is either offered a contract and does
not relocate, or there is no second-period contract offer and the firm relocates; in both

25Bergemann and Hege (2005) show in a model of project-financing with an infinite time horizon
that non-observability of effort may actually be beneficial because it leads to a form of implicit commit-
ment. In our model with a finite horizon, observability is always preferable. Nonetheless, short-term
contracting still has severe consequences on implementation.

26Existence of a follows from Lemma 3.1, result (2).
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cases, the firm’s profit in period 2 is πB. Overall, the firm’s discounted profit at the
investment stage is

t1 + πA(e1, a)−K(a) + δ

π∗A(a), a ≥ ā,

πB, a < ā.
(3.12)

After having accepted the first-period contract, the firm chooses its investment
to maximize (3.12). The corresponding investment level depends only on e1. For
low values of e1, namely e1 ≤ e], the firm invests aA(e1). Intuitively, the optimal
investment when the firm plans to stay for only one period in country A is, then,
already fairly large. The firm then prefers to invest even more, planning to stay also in
period 2, even without a second-period transfer. This leads to an optimal investment
of a = aA(e1). On the other hand, less stringent first-period emission levels e1 > e]

render large investments unprofitable, so that the firm ends up requiring a transfer
in period 2. But in that case its second-period profit is always πB, so that the firm
optimally chooses a = aAB(e1) even when it does not plan relocate.

Plugging the optimal investment level back into the firm’s discounted profit, (3.12),
its profit is t1 + VA(e1) whenever e1 ≤ e], and t1 + VAB(e1) whenever e1 > e]. The
first-period transfer that is necessary to implement some first-period emission level e1

is thus given by t1 = VB − VA(e1) if e1 ≤ e], and t1 = VB − VAB(e1) if e1 > e].
In the latter case, also a positive second-period transfer of t2 = πB − π∗A(aAB(e1)) is
paid. The total (discounted) transfer needed to implement a first-period emission level
of e1 > e] is VB − VAB(e1) + δ

(
πB − π∗A(aAB(e1))

)
.

Minimizing the total transfer needed to permanently avert relocation leads us to
the following result.

Proposition 3.4. Assume aAB(e) is concave in e.27 With observable investment, the

optimal first-period contract is

• (t1, e1) = (to, eoA), if πB ≤ π]B and L ≥ to;

• (t1, e1) = (t], e]), if π]B < πB ≤ πtr
B and L ≥ t];

• (t1, e1) = (VB − VAB(etr
A), etr

A), if πB > πtr
B and L ≥ ttr;

27This assumption is sufficient to establish existence and uniqueness of the value etr
A. Only mild

assumptions are required to establish concavity of aAB . E.g., in our illustrative example, aAB(e) is
always concave.
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• the null contract otherwise.

πtr
B > π]B is the critical value for πB for which t] = ttr. The second-period contract in

the third case is (t2, e2) = (πB − π∗A(aAB(etr
A)), e∗(aAB(etr

A))).

Hence, in contrast to the case with unobservable investment, the regulator now has
an alternative way to avert relocation, using the possibility to implement a positive
second-period transfer. To this end, the regulator adjusts the emissions target in pe-
riod 1 to the level etr

A, which induces a sufficiently small investment by the firm. In
period 2, the regulator then pays a transfer that just averts relocation. However, this
option creates a (potential) double inefficiency. Namely, the firm’s investment is in-
efficiently small (given e1), and in addition the emissions in period 1 are, in general,
also distorted.28 Since the actions implemented by the firm in this case do not depend
on the value of πB, whereas the distortions in the case with a lock-in (second case
in Proposition 3.4) are increasing in πB, the regulator implements etrA whenever πB is
sufficiently large (larger than πtr

B).

3.6.2 Alternative objective function

In our model as presented so far the regulator’s preference only varies in the loca-
tion of the firm and not directly in the firm’s productive choices. Adding a preference
over the contractible productive choices of the firm slightly complicates the analysis,
but does not reverse the major result of the chapter concerning the implementability of
outcomes. In addition, we will also allow for positive benefits of averting relocation
only in period 1. We will show that also this modification does not alter the main
results. Unlike in the previous subsection, we again assume that a is not observable to
the regulator.

Suppose, the regulator’s payoff can be written as follows:

− χ1 (t1 +D(e1))− (1− χ1)L1 − χ2 δ(t2 +D(e2))− (1− χ2) δL2, (3.13)

where χτ = 1 if the firm operates in country A in period τ (and accepts the contract
offered in that period), and χτ = 0 otherwise. If the firm relocates in the second period
the regulator incurs a loss of L2 in that period, and if it relocates already in period 1
the regulator incurs an additional loss of L1 ≥ 0. Hence, L1 is the regulator’s benefit

28Whether emissions in period 1 are distorted depends on the specified functions. It turns out that in
our illustrative example we have etrA = eoA.
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of averting relocation only in period 1. We assume L2 ≥ L1, so that the same payoff
structure as in (3.5) is obtained when L1 = 0, while the regulator has an identical
interest in averting relocation in each of the two periods when L1 = L2. D(e) is a
penalty function, capturing the domestic damages from the firm’s emissions.29 We
assume that D(e) is weakly increasing in e, and that D(e) = 0 if e ≤ 0.

With this payoff structure it is not obvious that the regulator always prefers ei-
ther immediate relocation or no relocation, because the regulator benefits also from
averting relocation only in period 1. However, we argue in the following that due to
the sunk costs associated with abatement capital investments, such an outcome is less
preferable to either immediate relocation or no relocation and, hence, cannot arise in
equilibrium.

Lemma 3.5. Under the optimal sequence of short-term contracts the firm either relo-

cates immediately or stays for both periods.

The intuition is straightforward. If the firm stays for one period, it has to receive
a transfer that compensates it for not relocating in that period. Because investments
are made in the first period, this transfer has to take the investment cost into account.
Because these costs are sunk, in period 2 a lower transfer is sufficient to discourage
the firm from relocating. This implies that whenever the regulator prefers to avert the
firm’s relocation in period 1, then he strictly prefers to avert it also in period 2.

Under limited commitment, the regulator thus seeks to find the optimal sequence
of short-term contracts that permanently avert relocation with minimal total transfers,
taking into consideration also the damages of emissions. If this is too costly, the
regulator offers no contract and implements the outcome where the firm relocates
immediately.

In the following we derive necessary and sufficient conditions for the implementabil-
ity of such an outcome, that parallel the results in Section 3.5.2.

To form an equilibrium where the firm does not relocate, the quintuple (t1, e1, t2, e2, a)

again has to satisfy the constraints (PC), (MH-1), and (MH-2). The constraint of se-
quential optimality now reads as follows

(t2, e2) ∈ arg min
t̃2,ẽ2

t̃2 +D(ẽ2), s.t. t̃2 + πA(ẽ2, a) ≥ max{πB, π∗A(a)}. (SO’)

29When the firm relocates, it may increase its emissions abroad. If pollution is trans-boundary, the
regulator will take these emissions into account as well. However, they effectively only raise the fixed
welfare loss of relocation and, hence, can be embedded in the parameters L1 and L2.
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Because the regulator may now prefer a different level of emissions than the firm
also in period 2, a further constraint emerges. Namely, the firm should not choose a
different investment and thereafter stay in countryA also in period 2 without accepting
the second-period contract. This leads us to the following additional moral hazard
constraint:30

t1 + πA(e1, a)−K(a) + δ(t2 + πA(e2, a)) ≥ t1 + VA(e1). (MH-3)

We can now extend the central result regarding the implementability of outcomes
under short-term contracting (see Proposition 3.2) to the generalized payoff structure.

Proposition 3.5. For a first-period emission level e1, there exists a second-period

contract (t2, e2) and an investment level a such that constraints (MH-1), (MH-2),
(SO’), and (MH-3) are satisfied if and only if VA(e1) ≥ VAB(e1) and

D′(e∗(aA(e1))) = 0.

Hence, our result on implementability, which is the central result of this chapter,
carries over to the more general payoff function of the regulator. However, the imple-
mentation of outcomes becomes even harder. The second condition in Proposition 3.5
requires that given the firm’s equilibrium investment a, the regulator’s and the firm’s
interests in the second period are fully aligned. Hence, the regulator must have no
incentive to distort the firm’s emissions e2 away from the level that the firm would
optimally choose (given a) in the absence of regulation in that period.

The underlying reason for this result is similar as before. Namely, whenever the
regulator has an incentive to distort the firm’s emissions in period 2, this is anticipated
by the firm, and leads to an adjustment in the firm’s investment in abatement capital.
The regulator, in turn, anticipates this adjustment, and is only willing to compensate
the firm for the distortion in second-period emissions, taking this adjustment into ac-
count. This shifts the reference point for transfers in the second period, so that the
firm is always better off when it plans to reject the second-period contract offer from
the start, and invests in abatement capital accordingly (i.e., a = aA(e1)).31

30For the sake of brevity we did not write down this constraint under the original payoff structure (see
Section 3.5.2), because there it is automatically satisfied given the constraint (SO). This is no longer
true under the modified constraint (SO’).

31This reasoning also applies if the regulator has an incentive to distort the firm’s emissions upwards
(e.g., in order to trigger a higher choice of output). Anticipating this distortion in the second period,
the firm reduces its investment, so that its optimal (un-distorted) emissions are higher in period 2. The
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The only way to escape this dilemma is for the regulator to implement an emission
level e1 that preempts the conflict between the regulator’s and the firm’s interests in
period 2. Given the above specification of the regulator’s payoff, this holds whenever
e∗(aA(e1)) ≤ 0, which implies D′(e∗(aA(e1))) = 0.32 Hence, first-period emissions
must be set at a sufficiently low level in order to induce a lock in, and fulfill the above
constraint.33

3.7 Conclusion

The chapter identifies a general implementation problem associated with persistent
investments by an agent, that yield returns over more than one period. It arises when
the principal cannot commit to contractual obligations for the full period of time in
which the returns on the investments are incurred. The agent has an outside option, and
realizes that in the future, the principal will compensate her only for forgone profits
(due to not using the outside option) within a period, and not for her prior investment
costs. Hence, the agent is unable to recover the full investment cost, and is better off
when she plans to use the outside option in a future period from the start, which implies
lower investment costs. We show that the principal is unable to implement outcomes
where the agent never uses the outside option and requires a strictly positive transfer
in a future period. To circumvent this implementation problem, the principal distorts
the contract offered to the agent in the first period, where the investment takes place.
In particular, by offering more high-powered incentives, the agent is induced to invest
more. The outside option, then, becomes less attractive, so that the agent no longer
requires a positive transfer in the future and yet refrains from using the outside option.

We frame this general idea in a more specific context. Namely, we analyze the

regulator then only compensates the difference in the firm’s profit when choosing its optimal emissions
in period 2, given this investment, and the emission level preferred by the regulator.

32Depending on the value of the outside option πB , either the constraint VA(e1) ≥ VAB(e1), or the
constraint D′(e∗(aA(e1))) = 0 is binding.

33There are other possible modifications of the model that can alleviate the implementation problem.
E.g., suppose that in addition to the variable cost of installing an abatement capital stock of a, there
is a fixed cost that arises only if a is strictly larger than zero. In that case, the regulator can always
induce an investment of zero by setting a sufficiently high emission target for the first period, because
this reduces the firm’s benefit from investing in abatement capital. But as long as a = 0 holds, the
local effects from a distortion in the second-period emission target upon the firm’s investment vanish.
This suggests that – similarly as in the case with an observable investment (see Section 3.6.1) – the
regulator has an alternative way to circumvent the implementation problem, by setting a sufficiently
loose emission target in the first period.
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problem of designing optimal incentive contracts that avert firm relocation. A local
regulator aims to avert a firm’s relocation in each of two periods. The firm, if staying
for at least one period, undertakes some location-specific investment, which is not
observable to the regulator. Contracts consist of transfers and targets for an observable
productive activity, such as the firm’s emissions, output, or employment.

If contracts are long-term, they specify simple subsidy payments, conditional on
the firm’s location. Optimal long-term contracts do not interfere directly with the
firm’s operative decisions. This simple structure results because the interests of the
regulator and the firm are to some extent aligned. Averting relocation with minimal
transfers requires maximal profits of the firm. Therefore, the regulator has no incentive
to distort the firm’s operative decisions.

With limited commitment an implementation problem arises whenever relocation
is sufficiently attractive. Optimal first-period contracts are then more stringent, and
implement an inefficiently high investment in order to induce a ‘lock-in’. The more
attractive the relocation option is, the tougher the contract needs to be, which leads
to larger first-period transfers. The distortions that arise due to the implementation
problem can be so severe that higher transfers are required to avert the firm’s reloca-
tion permanently than in a hypothetical situation where the firm cannot invest at all
– although a positive investment would be required to avert relocation with minimal
transfers.

Our model has an important application in the area of climate policy. When
some countries unilaterally introduce prices for emissions, the competitiveness of their
energy-intensive industries is harmed. In response, firms may be tempted to relocate
to other countries with less stringent environmental regulation. This may be one of the
reasons why the EU initially decided to allocate allowances for free in the EU-ETS.
Our results indicate that such simple subsidies may not prevent relocation on a per-

manent basis. In order to be effective in this respect, subsidies should be conditioned
upon the fulfillment of binding criteria such as firm-specific emission levels, output or
employment targets. Such policies are needed whenever policy makers cannot make
binding commitments that last for a sufficiently long period of time.
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3.A Proofs

3.A.1 Proofs of Section 3.4

Proof of Lemma 3.1. Claim (1): e∗(a) is implicitly defined by ∂πA/∂e = 0. By
Assumption (A1) this value exists and is unique. Differentiating ∂πA/∂e = 0 w.r.t. a
and rearranging yields

∂e∗

∂a
= −

∂2πA
∂e∂a
∂2πA
∂e2

< 0. (3.14)

Claim (2): π∗A is strictly increasing by assumption (A5). To prove concavity of π∗A
differentiate twice, using the envelope-theorem, to get

∂2π∗A
∂a2

=
∂2πA
∂a∂e

· ∂e
∗

∂a
+
∂2πA
∂a2

.

Using (3.14), this can be written as

∂2π∗A
∂a2

= −

(
∂2πA
∂e∂a

)2

∂2πA
∂e2

+
∂2πA
∂a2

=

∂2πA
∂a2
· ∂

2πA
∂e2
−
(
∂2πA
∂e∂a

)2

∂2πA
∂e2

≤ 0.

The numerator is non-negative by (A3), while the denominator is negative by (A1).
Hence the entire expression is negative. Furthermore, (A5) implies ∂π∗A/∂a > ε > 0

for all a, which yields lima→∞ π
∗
A(a) = +∞.

Claim (3): aA(e) is implicitly defined by the first-order condition

∂πA
∂a
− ∂K

∂a
+ δ

∂π∗A
∂a

= 0. (3.15)
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At a = 0 the expression one the left-hand side is strictly positive, by (A2), K ′(0) = 0,
and (A5). Furthermore, boundedness of ∂πA/∂a by (A2) and strict concavity of K
imply that this expression turns negative for large values of a. Existence of aA(e) then
follows from continuity. Furthermore, πA(e, a)−K(a)+δπ∗A(a) is strictly concave in
a, because its components are concave and some even strictly concave, which proves
uniqueness of aA(e). Differentiating (3.15) w.r.t. e and rearranging yields

∂aA
∂e

=

∂2πA
∂e∂a

∂2K
∂a2
− ∂2πA

∂a2
− δ ∂

2π∗
A

∂a2

< 0. (3.16)

For aAB(e) just repeat the above steps.
Claim (4): By claim (4) both VA(e) and VAB(e) are well defined. Differentiating VA(e)

twice, using the envelope-theorem, yields

∂2VA
∂e2

=
∂2πA
∂e2

+
∂2πA
∂e∂a

· ∂aA
∂e

=
∂2πA
∂e2

+

(
∂2πA
∂e∂a

)2

∂2K
∂a2
− ∂2πA

∂a2
− δ ∂

2π∗
A

∂a2

=
∂2K
∂a2
· ∂

2πA
∂e2
−
[∂2πA
∂a2
· ∂

2πA
∂e2
−
(∂2πA
∂e∂a

)2]− δ ∂2π∗A
∂a2
· ∂

2πA
∂e2

∂2K
∂a2
− ∂2πA

∂a2
− δ ∂

2π∗
A

∂a2

< 0.

Concavity of VAB(e) is proven in the same way (not shown). Using the envelope-
theorem, the first-order condition for maximizing VA(e) is ∂πA

∂e
(e, aA(e)) = 0. By

(A1) and continuity there exits some value e that satisfies this equation. Uniqueness
follows from strict concavity of VA(e). Similarly, maximizing VAB(e) yields the first-
order condition ∂πA

∂e
(e, aAB(e)) = 0, existence and uniqueness follow as before.

Claim (5): aAB(e) is defined by the first-order condition

∂πA
∂a
− ∂K

∂a
= 0. (3.17)

Comparing this to (3.15), noticing that π∗A is strictly increasing and by concavity of
the respective objectives, we find that aA(e) > aAB(e) for all e.

Proof of Lemma 3.2. Assume VAB(e1) ≥ VB, which can be written as

VAB(e1) = πA(e1, aAB(e1))−K(aAB(e1)) + δπB ≥ πB + δπB = VB.
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But this implies πA(e1, aAB(e1)) > πB and therefore

VA(e1) = max
a

πA(e1, a)−K(a) + δπ∗A(a)

≥ πA(e1, aAB(e1))−K(aAB(e1)) + δπA(e1, aAB(e1))

> πA(e1, aAB(e1))−K(aAB(e1)) + δπB

= VAB(e1).

This proves our claim.

Proof of Lemma 3.3. As is discussed in the main text, the optimal profit from not
relocating is V o

A. The profit from immediate relocation is VB. As a consequence of
Lemma 3.2 we have VAB(e1) < max{V o

A, VB} for all e1. Therefore, the firm prefers
immediate relocation whenever VB > V o

A and no relocation otherwise. Solving V o
A =

VB for πB leads to the definition of πoB.

3.A.2 Proofs of Section 3.5

Proof of Proposition 3.1. As is argued in the main text, the regulator’s problem is
to minimize (3.11) over e1 and e2. This is equivalent to maximizing πA(e1, a) −
K(a) + δπA(e2, a) over a, e1, and e2. Maximizing first over e2 and a yields VA(e1).
Maximizing this over e1 yields e1 = eoA. By comparing the respective first-order
conditions we get e2 = e1. The total transfer required is to = VB − V o

A. The regulator
offers this contract whenever to ≤ L.

Proof of Proposition 3.2. When (SO) is satisfied, the firm’s second-period profit is
t2 + π∗A(a). By the envelope-theorem, (MH-1) then implies that the firm’s total profit
is t1 + δt2 + VA(e1). This justifies constraint (MH-2′), as a replacement for (MH-2).
Now first assume VA(e1) ≥ VAB(e1), which can be stated as

max
a

πA(e1, a)−K(a) + δπ∗A(a) ≥ max
a

πA(e1, a)−K(a) + δπB. (3.18)

This implies π∗A(aA(e1)) > πB, where aA(e1) denotes the maximizer of the left-hand
side. Hence, the second-period contract (t2, e2) = (0, e∗(aA(e1))) satisfies (SO), given
a = aA(e1). By construction, (MH-1) and (MH-2) are satisfied, given (t2, e2).
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Next assume VA(e1) < VAB(e1). Constraints (MH-1) and (SO) imply a = aA(e1)

and the second-period contract offer entails t2 = max{0, πB − π∗A(aA(e1))} and e2 =

e∗(aA(e1)). As indicated above, (MH-2) can be replaced by (MH-2′). Therefore,
necessary for all three constraints to hold is δt2 ≥ VAB(e1) − VA(e1) > 0. Further,
note that

δt2 ≥ VAB(e1)− VA(e1)

= max
a

{
πA(e1, a)−K(a) + δπB

}
−max

a

{
πA(e1, a)−K(a) + δπ∗A(a)

}
> δ

(
πB − π∗A(aA(e1))

)
.

Therefore t2 > πB − π∗A(aA) and together with t2 > 0, as shown above, we get
t2 > max{0, πB − π∗A(aA)} – this contradicts (SO).

Proof of Corollary 3.1. The result on implementability follows from Proposition 3.2.
Regarding π]B notice that V o

A > VAB(eoA) for πB = πoB by Lemma 3.2. Because
VAB(eoA) strictly increases with πB, while V o

A is independent of πB, we get π]B >

πoB.

Proof of Lemma 3.4. By the envelope-theorem ∂VA/∂πB = 0 < δ = ∂VAB/∂πB.
Furthermore, using aA(e) > aAB(e), it holds that

∂VA
∂e

=
∂πA
∂e

(e, aA(e)) <
∂πA
∂e

(e, aAB(e)) =
∂VAB
∂e

. (3.19)

Together with VA(eoA) = VAB(eoA) for πB = π]B (from Corollary 3.1) this yields e] <
eoA and e] strictly decreases with πB.
It remains to prove that e] > e for all πB. To see this, notice that VA(e) = VAB(e) at
δ = 0 for all e. Also, ∂VA/∂δ = π∗A(a) and ∂VAB/∂δ = πB. For e → e we have by
(A1) and strictly convex K that aA(e)→∞. As this holds irrespective of δ, we have
that VA(e) > VAB(e) for e→ e which completes the proof.

Proof of Proposition 3.3. We determine the cost of implementing an equilibrium with
no relocation. Recall from the proof of Proposition 3.2 that there is no second-period
transfer. As long as πB ≤ π]B, by Corollary 3.1, eoA is implementable and minimizes
the cost over the set of implementable first-period emission levels; the required (total)
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transfer is to = VB − V o
A. If πB > π]B, we have eoA > e]. Therefore, the regulator

cannot use eoA to implement an outcome with no relocation. By the concavity of VA,
implementing e] requires the smallest transfer, which is equal to t] = VB−VA(e]).

Proof of Corollary 3.2. Trivial for πB ≤ π]B. For πB > π]B recall that aA(e) de-
creases in e (Lemma 3.1), and e] < eoA. The result follows.

Proof of Corollary 3.3. Recall that t] = VB − VA(e]). On the other hand, the trans-
fer to avert relocation when a = 0 is given by ta=0 = VB − (1 + δ)π∗A(0), and
no implementation problem arises in this case as a is fixed. Therefore t] − ta=0 =

−VA(e]) + (1 + δ)π∗A(0). Now, from Lemma 3.4 we have e] → e for πB → ∞ and
by strict concavity of VA this implies VA(e]) → −∞. Consequently, t] − ta=0 → ∞,
which proves the claim.

3.A.3 Proofs of Section 3.6

Proof of Proposition 3.4. We first characterize the firm’s optimal investment deci-
sion, i.e. the maximizer of (3.12). We distinguish three cases:

i) ā ≤ aAB(e1). By concavity of πA(e, a)−K(a) + δπB (see the proof of Lemma
3.1), we have for all a ≤ a:

πA(e1, a)−K(a) + δπB ≤ πA(e1, a)−K(a) + δπB

= πA(e1, a)−K(a) + δπ∗A(a).

Furthermore, because ā ≤ aAB(e1) < aA(e1), we have VA(e1) ≥ πA(e1, a) −
K(a) + δπ∗A(a) for all a ≥ ā. Consequently, a = aA(e1) maximizes the firm’s
profit in this case and this maximal profit is VA(e1).

ii) aA(e1) ≤ ā. Similar to the previous case we have for all a ≥ a:

πA(e1, a)−K(a) + δπ∗A(a) ≤ πA(e1, a)−K(a) + δπ∗A(a)

= πA(e1, a)−K(a) + δπB.

Furthermore, because aAB(e1) < aA(e1) ≤ ā, we have VAB(e1) ≥ πA(e1, a) −
K(a) + δπB for all a ≤ ā. Consequently, a = aAB(e1) maximizes the firm’s
expected profit in this case and this maximal profit is VAB(e1).

113



CHAPTER 3

iii) aAB(e1) < ā < aA(e1). By the above arguments the firm’s profit has two local
maxima: at a = aA(e1) and at a = aAB(e1), such that the maximal profit is
either VA(e1) or VAB(e1). Because VA(e) > VAB(e) holds if and only if e < e],
we find that the firm’s maximal profit, given aAB(e1) < ā < aA(e1), is thus
VA(e1) if e1 ≤ e], and VAB(e1) if e1 > e].

Therefore, the firm’s profit after having accepted a first-period contract offer (t1, e1) is

t1 +

VA(e1), e1 ≤ e],

VAB(e1), e1 > e].
(3.20)

We here implicitly assume that the firm always chooses aA(e1) when e1 = e], although
it is indifferent. This is without loss of generality, because the regulator chooses the
equilibrium, in case there are multiple, and it is obvious that the first-period transfer
to implement e1 = e] is unaffected by the continuation, but in case the firm chooses
aAB(e]) the regulator has to pay a strictly positive second-period transfer to avert
relocation in period 2.
The total transfer to avert relocation is given by

t(e1) =

VB − VA(e1), e1 ≤ e],

VB − VAB(e1) + δ
(
πB − π∗A(aAB(e1))

)
, e1 > e].

(3.21)

In case e1 ≤ e] this is trivial, because it implies a = aA(e1) > a and therefore a first-
period transfer is sufficient (this already follows from Lemma 3.4). Now consider
e1 > e], and suppose π∗A(aAB(e1)) ≥ πB. This would imply

VAB(e1) = πA(e1, aAB(e1))−K(aAB(e1)) + δπB

≤ πA(e1, aAB(e1))−K(aAB(e1)) + δπ∗A(aAB(e1)) < VA(e1),

which yields e1 < e] – a contradiction. Thus, π∗A(aAB(e1)) < πB, so that the minimal
second-period transfer required to implement an outcome with no relocation is t2 =

πB − π∗A(aAB(e1)).
The regulator now chooses e1 in order to minimize (3.21). The first case (πB ≤ π]B ⇔
eoA ≤ e]) follows readily from Corollary 3.1. For the remainder, assume eoA > e], i.e.

114



3.A. PROOFS

πB > π]B. By strict concavity of VA(e) we have

t(e1) = VB − VA(e1) > VB − VA(e]) = t] ∀e1 < e].

So it cannot be optimal to implement some e1 < e]. For e1 > e], the required transfer
is t̃(e1) = VB − VAB(e1) + δ

(
πB − π∗A(aAB(e1))

)
. Denote etr

A the minimizer of t̃(e1).
By Lemma 3.1, the function VAB(e1) is strictly concave. Furthermore, because π∗A
is concave and strictly increasing by Lemma 3.1, the composition with the concave
function aAB(e1) is also concave. Therefore, t̃(e1) is strictly convex for all e1 ∈ (e, e).
Furthermore, by (A1) and Lemma 3.1 the minimizer is interior, i.e. etr

A ∈ (e, e) exists.
Now suppose etr

A ≤ e]. Then t(e]) ≥ t̃(e]) > t̃(e1) for all e1 > e] so that e1 = e]

leads to minimal (total) transfers. Hence the relevant cases are where etr
A > e]. Notice,

that t̃(etr
A) does not depend on πB, and that for πB = π]B we have V tr

A (etr
A) < VA(e]).

Because t(e]) strictly increases with πB and converges to +∞, there exists a level πtr
B

such that t(etr
A) < t(e]) if and only if πB > πtr

B. This completes the proof.

Proof of Lemma 3.5. Suppose the regulator offers (t1, e1) in the first period, which
is accepted by the firm and relocation in period 2 occurs. Denote â the equilibrium
value of the firm’s investment. Because the firm relocates in period 2, we must have
π∗A(â) ≤ πB. Regarding the first-period transfer, it has to hold that t1 ≥ VB−VAB(e1),
in order to be accepted by the firm. Furthermore, we must have L1 ≥ t1 + D(e1),
otherwise the regulator prefers not to offer the contract at all. But then we have

0 ≤ L1 − t1 −D(e1) ≤ L1 − VB + VAB(e1)−D(e1)

= L1 − πB + πA(e1, â)−K(â)−D(e1) < L2 − πB + πA(e1, â)−D(e1).

Now, because π∗A(â) ≤ πB, the optimal contract to keep the firm in country A in
period 2 is the solution to

min
t2,e2

t2 +D(e2) s.t. t2 + πA(e2, â) ≥ πB. (3.22)

Clearly, the solution to this is e2 = arg maxe πA(e, â)−D(e) and t2 = πB−πA(e2, â).
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Together with the above, the regulator’s benefit from offering this contract is

L2 − t2 −D(e2) = L2 − πB + πA(e2, â)−D(e2)

> L2 − πB + πA(e1, â)−D(e1) > 0,

where the first inequality holds because e2 maximizes πA(e, â)−D(e), and the second
inequality was shown above to hold. Hence, the regulator strictly prefers offering a
contract in period 2 that averts relocation.
Notice that the method of proof also rules out random relocation in period 2. Hence,
either immediate relocation or no relocation can be optimal.

Proof of Proposition 3.5. Let (t1, e1, t2, e2, a) be the outcome to be implemented.
Assume first that VA(e1) ≥ VAB(e1) and the second-period contract entails e2 6= e∗(a).
Because D′ ≥ 0 this implies e2 < e∗(a) and thus (MH-1) implies a > aA(e1). But
then π∗A(a) > π∗A(aA(e1)) > πB. The firm’s second-period profit, including the trans-
fer t2 = π∗A(a) − πA(e2, a), is therefore π∗A(a), but then (MH-3) is clearly violated
because a 6= aA(e1) is not the maximizer of πA(e1, ã)−K(ã) + δπ∗A(ã).
Next assume VA(e1) ≥ VAB(e1) and the second-period contract entails e2 = e∗(a).
Then (MH-3) is trivially satisfied. Also (MH-2) holds, by the arguments used in prov-
ing Lemma 3.2. Constraint (SO’) is only satisfied when the regulator indeed prefers
to keep the firm without distorting its second-period emissions, for which the second
condition from the Proposition is both necessary and sufficient.
Lastly, assume VA(e1) < VAB(e1). If π∗A(a) ≥ πB the firm’s equilibrium pay-
off is t1 + πA(e1, a) − K(a) + δπ∗A(a) ≤ t1 + VA(e1) < t1 + VAB(e1), hence
(MH-2) is violated. If on the other hand π∗A(a) < πB the firm’s equilibrium payoff is
t1 +πA(e1, a)−K(a)+δπB. BecauseD′ ≥ 0 we must have e2 ≤ e∗(a) and, therefore,
∂πA/∂a |e2,a> 0 by assumptions (A1) and (A5), which implies a 6= aAB(e1). Con-
sequently (MH-2) is violated because a is not the maximizer of πA(e1, ã) − K(ã) +

δπB.

3.B Restriction to pure strategies

Here we argue that allowing for mixed strategies does not soften the regulator’s
implementation problem identified in Proposition 3.2. An equilibrium in mixed strate-
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gies is characterized by a randomized strategy of the firm, i.e. a distribution on a subset
A of the real line, and a mechanism that the regulator offers in period 2. By the revela-
tion principle, the latter mechanism can be assumed to be direct, incentive compatible
and truth-telling.34

For simplicity we focus in our analysis on the discrete case, i.e. where the firm ran-
domizes over the discrete set of investment levels A = {a1, . . . , an}. Clearly, there
must exist â ∈ A which receives no positive rent. Denote the contract this types
accepts in equilibrium as (t̂2, ê2). Then it must hold that

t̂2 + πA(ê2, â) = πB. (3.23)

Now consider the firm’s investment choice. First of all, âmust maximize the following
expression

t1 + πA(e1, a)−K(a) + δ(t̂2 + πA(ê2, a)). (3.24)

Second, because of (3.23), â also maximizes

t1 + πA(e1, a)−K(a) + δπB. (3.25)

Using the first order-conditions for (3.24) and (3.25), â has to satisfy

∂πA
∂a

(ê2, â) = 0. (3.26)

Because the function πA is strictly concave in a for any value e, we conclude that

πA(ê2, a) < πA(ê2, â), ∀a 6= â. (3.27)

Together with (3.23) this implies

t̂2 + πA(ê2, a) < πB, ∀a ∈ Ar {â}. (3.28)

Thus, no other type has the incentive to mimic type â, because any type is guaranteed
a profit of at least πB. But this implies that there exists a second type a′ 6= â that
also receives no rent, because otherwise we could reduce all transfers to types a 6= â

34Because only allocations matter for providing investment incentives to the firm, replacing an arbi-
trary mechanism that leads to a particular allocation with its direct and incentive compatible counterpart
is indeed without loss of generality.
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without violating any incentive constraint. This type a′ also has to maximize (3.25).
Because (3.25) has a unique maximizer, namely aAB(e1), this leads to a contradiction.
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