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Abstract

Descriptive complexity theory is concerned with the characterization of complexity classes
by means of suitable logics. A central open question is whether there exists a logic
that characterizes, or captures, the complexity class polynomial time (PTIME) on the
class of all graphs. A promising step towards finding an answer is the recent result of
Grohe that fixed-point logic with counting (FP+C) captures PTIME on all classes of
graphs with excluded minors. In this thesis we present another step. We consider classes
of graphs with excluded induced subgraphs. We show that FP4+C captures PTIME on
the class of permutation graphs and on the class of chordal comparability graphs. The
results are based on a graph decomposition, known as modular decomposition, which
was introduced by Gallai in 1976. The graphs that are non-decomposable with respect
to modular decomposition are called prime. For graph classes C that are closed under
taking induced subgraphs, we prove the Modular Decomposition Theorem. It reduces
(definable) canonization of C to (definable) canonization of the class of prime graphs of C
that are colored with binary relations on a linearly ordered set. Our capturing results for
permutation graphs and chordal comparability graphs follow from an application of the
Modular Decomposition Theorem and reveal its strength. We also show that the modular
decomposition of a graph is definable in symmetric transitive closure logic with counting
(STC+C). As a side result, we obtain a logarithmic-space algorithm for computing the
modular decomposition tree.

Further, we turn our attention to the complexity class logarithmic space (LOGSPACE),
and introduce a new logic for LOGSPACE. We extend first-order logic with counting
by a new operator that allows it to formalize a limited form of recursion which can
be evaluated in logarithmic space. The data complexity of the resulting logic LREC
is in LOGSPACE. Furthermore, LREC defines LOGSPACE-complete problems such as
deterministic reachability and Boolean formula evaluation. We prove that LREC is strictly
more expressive than deterministic transitive closure logic with counting (DTC+C) and
that it is strictly contained in FP+C. Its expressive power is incomparable with symmetric
transitive closure logic (STC) and transitive closure logic (TC) (with or without counting).
We show that LREC captures LOGSPACE on the class of directed trees. We also study an
extension LREC_ of LREC that has nicer closure properties and is more expressive than
both LREC and STC. The data complexity of LREC_ is still in LOGSPACE, and LREC_
is contained in FP+C as well. We prove that LREC_ captures LOGSPACE on the class of
interval graphs and the class of chordal claw-free graphs.
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Zusammenfassung

Ziel der deskriptiven Komplexitéitstheorie ist es, Komplexitédtsklassen mit Hilfe von
geeigneten Logiken zu charakterisieren. Eine auch aus praktischer Sicht besonders
wichtige Komplexitatsklasse ist die Klasse der Polynomialzeit-Eigenschaften (PTIME).
Wir beschéftigen uns mit der ungelosten Frage, ob es eine Logik gibt, welche PTIME
auf der Klasse aller Graphen charakterisiert. Eine Herangehensweise an dieses Problem
ist es, eingeschriankte Graphklassen zu betrachten. So wurde von Grohe gezeigt, dass
PTIME auf allen Graphklassen mit verbotenen Minoren durch Fixpunktlogik mit Zahlen
(FP+4-C) charakterisiert wird. In dieser Arbeit betrachten wir Graphklassen mit verbote-
nen induzierten Teilgraphen. Wir beweisen, dass FP+C die Komplexitétsklasse PTIME
auf der Klasse aller Permutationsgraphen und auf der Klasse aller chordalen Komparabil-
itdtsgraphen charakterisiert. Unsere Resultate basieren auf der Zerlegung von Graphen
in Module, welche 1976 von Gallai eingefithrt wurde. Graphen, die durch modulare
Zerlegung nicht zerlegbar sind, heiflen prim. Fiir Graphklassen C, die unter induzierten
Subgraphen abgeschlossen sind, beweisen wir das Modulare Zerlegungstheorem. Dieses re-
duziert (definierbare) Kanonisierung der Graphklasse C auf (definierbare) Kanonisierung
der Klasse aller primen Graphen aus C, die mit bindren Relationen auf einer linear
geordneten Menge gefarbt sind. Unsere Resultate fiir Permutationsgraphen und chordale
Komparabilitdtsgraphen folgen aus dem Modularen Zerlegungstheorem. Wir zeigen
zudem, dass die modulare Zerlegung eines Graphen in Symmetrisch-Transitive-Hiillen-
Logik mit Zahlen (STC+C) definiert werden kann. Als Folgerung erhalten wir einen
Algorithmus, der mit logarithmischer Platzbeschrankung modulare Zerlegungsbdume
berechnet.

Weiterhin definieren wir eine neue Logik fiir die Komplexitatsklasse Logarithmischer Platz
(LOGSPACE). Die Logik LREC erweitert die Logik erster Stufe mit Zahlen (FO+C) um
einen Operator, der eine beschrankte und in logarithmischem Platz berechenbare Form
der Rekursion erlaubt. Die Datenkomplexitédt von LREC liegt in LOGSPACE. Zudem
kénnen LOGSPACE-vollstéandige Probleme wie deterministische Erreichbarkeit und die
Auswertung Boolescher Formeln in LREC definiert werden. Wir beweisen, dass LREC
echt ausdrucksstérker als Deterministisch-Transitive-Hiillen-Logik mit Zéahlen (DTC+C)
ist, und dass LREC echt in FP+C enthalten ist. Andererseits ist die Ausdrucksstiarke von
LREC weder mit der von Symmetrisch-Transitive-Hiillen-Logik (STC) noch mit der von
Transitive-Hiillen-Logik (TC) vergleichbar (dies gilt auch fir die Erweiterungen dieser
Logiken mit Zdhlen). Wir zeigen, dass LREC die Komplexitéitsklasse LOGSPACE auf
gerichteten Bdumen charakterisiert. Zudem betrachten wir eine Erweiterung LREC_
von LREC. Die Datenkomplexitidt von LREC_ liegt in LOGSPACE, und wie LREC ist
LREC. auch in FP4-C enthalten. Die Logik LREC_ zeichnet sich jedoch durch bessere
Abschlusseigenschaften als LREC aus und ist ausdrucksstirker als LREC und STC. Wir
beweisen, dass LREC_ die Komplexitatsklasse LOGSPACE sowohl auf Intervallgraphen
als auch auf chordalen klauenfreien Graphen charakterisiert.
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1. Introduction

In computational complexity theory problems are classified into complexity classes based
on the resources that an abstract machine needs to solve them. Descriptive complexity
theory, in contrast, is concerned with classifying problems based on the expressive power
that is needed in order to describe them. In particular, descriptive complexity theory
aims to find logics that characterize the standard complexity classes of computational
complexity theory. By this means, one hopes to gain insight into the inherent structure
of the problems contained in a certain complexity class.

Computational complexity theory provides the following inclusions between the com-
plexity classes logarithmic space (LOGSPACE), non-deterministic logarithmic space (NL),
polynomial time (PTIME) and non-deterministic polynomial time (NP):

LOGSPACE C NL C PTIME C NP.

Until now, it is unknown whether any of these inclusions are strict. Deciding whether the
rearmost inclusion is strict corresponds to the famous open question of whether PTIME
is equal to NP. This question is not only interesting from a theoretical point of view, but
also has consequences for practical computational problems. While PTIME is commonly
accepted as a good theoretical model of what can be computed efficiently, the class NP
contains a variety of problems of practical importance for which it is unknown whether
they can be solved efficiently.

Besides of giving a new perspective on the constitution of complexity classes, charac-
terizations of complexity classes by means of suitable logics provide new prospects on
the comparison and, possibly, separation of these complexity classes. In 1974 Fagin
showed that a problem is in NP if and only if it can be defined in existential second-order
logic (3S0) [20], that is, first-order logic extended by existential quantification over
relations. In short, we say that 3SO captures NP. Naturally, the question was raised
whether there also is a logic that captures PTIME (Gurevich, 1984 [35]).} If such a logic
exists, methods from logic and model theory could be applied to separate PTIME and
NP or to show that they coincide. Clearly, PTIME is not equal to NP if such a logic
does not exist. The same holds for the complexity classes LOGSPACE and NL. A logical
characterization of LOGSPACE (or NL) could pave the way for separating LOGSPACE or
NL from NP.

This thesis contributes to the quest for logical characterizations for the complexity classes
PTIME and LOGSPACE.

! Note that Chandra and Harel asked a similar question from the perspective of database theory in
1982 [§]
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Capturing PTIME

Independently of each other, Immerman [39] and Vardi [66] obtained an early result
towards a logical characterization for PTIME. They proved that fixed-point logic (FP)
captures PTIME on ordered structures,? that is, on structures that have a distinguished
binary relation which linearly orders the elements of the structure. However, a simple
counterexample shows that this does not generalize to arbitrary, that is, not necessarily
ordered, structures: Although the class of structures whose universe has even cardinality
can clearly be decided in PTIME, it cannot be defined in FP [17]. Thus, in 1987 Immerman
proposed to add to FP the ability to count [40], and proved, together with Lander, that
the resulting logic FP+C captures PTIME on the class of trees [44]. However, in 1992
Cai, Fiihrer and Immerman showed that also FP4C does not suffices to capture PTIME
on arbitrary structures [7].

There are two basic strategies for finding a logic that captures PTIME. The first strategy
is to develop new logics whose expressive power converges towards PTIME. This is not
an easy task and since 1992 only few more logics have been introduced towards this end.
Examples of these are Choiceless Polynomial Time CPT [3] and rank logics [14, 26]. The
second strategy is to find restricted graph classes on which already known logics capture
PTIME. In the first part of this thesis, we follow the second approach.

It is known that FP+C captures PTIME on planar graphs [27], all classes of graphs
of bounded tree width [34], as well as K5-minor free graphs [28]. Note that all these
classes can be defined by a list of forbidden minors. In fact, Grohe recently showed that
FP+C captures PTIME on all classes of graphs with excluded minors [30]. This leads
to the question whether a similar result can be obtained for classes of graphs that are
characterized by a (finite or infinite) list of forbidden induced subgraphs. Grohe showed
that capturing PTIME on the class of chordal graphs® is as hard as capturing PTIME on
all graphs for any “reasonable” logic [29]. Thus, for FP+C a general result which captures
PTIME on all graphs with forbidden induced subgraphs is not possible. However, there
are partial results showing that FP4-C captures PTIME on the class of interval graphs [49]
and on the class of chordal line graphs [29].

This thesis, showing that FP+C captures PTIME also on the class of permutation graphs
and on the class of chordal comparability graphs, adds to this line of research. Both
results are based on modular decomposition, a graph decomposition which was introduced
by Gallai in 1976 [21]. The modular decomposition of a graph partitions the vertex set
of the graph into so called modules, that is, into subsets that share the same neighbors.
A graph is prime if only the vertex set itself and all vertex sets of size 1 are modules
of the graph. For every class C of graphs that is closed under induced subgraphs, we
let C* be the class of all prime graphs from C that are colored with binary relations
on a linearly ordered set. Our Modular Decomposition Theorem states that there is
an FP+C-canonization of C if there is an FP+C-canonization of the class C* It follows
that FP4-C captures PTIME on C if FP4-C captures PTIME on C* To prove the Modular
Decomposition Theorem, we show that the modular decomposition of a graph is definable

2 More precisely, Immerman and Vardi’s theorem holds for least fixed-point logic (LFP) and the equally
expressive inflationary fixed-point logic (IFP). Our indeterminate FP refers to either of these two
logics.

3 For the class of chordal graphs the forbidden induced subgraphs are cycles of length at least 4.



in STC+C. This also proves that there exists a logarithmic-space algorithm that computes
the modular decomposition of a graph. Note that the Modular Decomposition Theorem
extends to all logics whose expressive power is as least as strong as FP+C’s and which
are closed under FP+4C-reductions. Our capturing results for permutation graphs and
chordal comparability graphs follow from an application of the Modular Decomposition
Theorem.

Capturing LOGSPACE

In the second part of this thesis, we consider the complexity class LOGSPACE. Similar
to PTIME, there is a capturing result for LOGSPACE on ordered structures: Immerman
proved that deterministic transitive closure logic (DTC) captures LOGSPACE on ordered
structures [41]. Much less is known for LOGSPACE on arbitrary structures. Recall that
for PTIME, the logic FP, which captures PTIME on ordered structures, was equipped with
counting operators to obtain the logic FP+C, which captures PTIME on certain interesting
graph classes. Thus, an obvious idea is to capture LOGSPACE with the extension DTC+C
of DTC by counting operators. However, Etessami and Immerman proved that (directed)
tree isomorphism is not definable in DTC4C, and not even definable in the stronger
transitive closure logic with counting (TC+C) [18]. Since Lindell [53] showed that tree
isomorphism is decidable in logarithmic space, it follows that DTC+C does not even
capture LOGSPACE on the class of all trees.

We introduce a new logic LREC and prove that it captures LOGSPACE on directed trees.
Furthermore, we extend LREC to a logic LREC_ that captures LOGSPACE on the class
of interval graphs and on the class of chordal claw-free graphs. As a consequence, we
obtain the first logical characterizations of LOGSPACE on non-trivial natural classes of
unordered structures.

The logic LREC extends first-order logic with counting (FO+C) by an operator that
allows limited recursion. The limited recursion operator bounds the recursion depth by a
“resource term”, and thereby makes sure that the recursive definition can be evaluated
in logarithmic space. It is easy to see that LREC is (semantically) contained in FP+C.
Furthermore, we show that LREC contains DTC+C. Since LREC captures LOGSPACE on
directed trees, its expressive power exceeds the one of DTC+C, and LREC is not contained
in STC4+C or TC+C. We also prove that undirected graph reachability is not definable
in LREC. It follows that LREC does not contain STC or TC, and is strictly contained in
FP+C.

Apart from the incapability of LREC to express undirected graph reachability, another
weakness of LREC is that it is not closed under (first-order) logical reductions. To remedy
this weakness, we enhance the limited recursion operator of LREC, and thus obtain the
logic LREC_-. Due to this enhancement, undirected graph reachability is definable in
LREC_, and therefore, LREC_ strictly contains STC+C. We prove that LREC_ captures
LOGSPACE on the class of interval graphs. Further, we show that the class of chordal
claw-free graphs admits LREC_-definable canonization. This implies that there is a
logarithmic-space algorithm for computing a canonization mapping for chordal claw-free
graphs, and that LREC_ captures LOGSPACE on the class of chordal claw-free graphs.
Since LREC_ is contained in FP+4C, we also obtain that FP+C captures PTIME on the
class of chordal claw-free graphs



1. Introduction

Structure of this Thesis

After giving the necessary preliminaries in Chapter 2, this thesis consists of the two
already outlined parts.

In the first part, we focus on PTIME. In Chapter 3, we introduce the modular decomposi-
tion and show its STC+C-definability. In Chapter 4, we prove the Modular Decomposition
Theorem. Finally, we apply the Modular Decomposition Theorem in Chapters 5 and 6
to show that FP+C captures PTIME on the class of permutation graphs and on the class
of chordal comparability graphs, respectively.

In the second part of the thesis, we focus on LOGSPACE. In Chapter 7, we introduce
the logic LREC and show in Chapter 8 that LREC captures LOGSPACE on directed trees.
We prove in Chapter 9 that undirected graph reachability is not definable in LREC.
Chapter 10 defines the logic LREC_, and Chapters 11 and 12 show that LREC_ captures
LOGSPACE on the class of interval graphs and on the class of chordal claw-free graphs,
respectively.

Finally, Chapter 13 provides a conclusion of the thesis.
About this Thesis

The research presented in Chapters 7-11 was done in collaboration with Martin Grohe,
André Hernich and Bastian Laubner. It has been published in [32] and [33].



2. Preliminaries

2.1. General Notation

Z, N and NT denote the sets of all integers, non-negative integers and positive integers,
respectively. For all n,n’ € Z, we define [n,n'] :={m € Z | n <m < n'} and [n] := [1,n].

We often denote tuples (ay,...,a;) by a. Given a tuple a = (aq,...,ax), let a :=
{a1,...,ax}. By |a| we denote the length of the tuple a. Let n > 1, and @’ = (ai, ..., a} )
be a tuple of length k; for each i € [n]. We denote the tuple (af,...,a}, ... al, ..., aﬁﬂ)

by (a',...,a'). Mappings f: A — B are extended to tuples @ = (ay,...,a;) over A via
f(a) == (f(a1),..., f(ar)). For a subset A’ C A, we let f(A") :={f(a)|a € A’}. For a
set S, we denote the cardinality of S by [S|. A singleton is a set S with S| = 1. We let
P(S) be the set of all subsets of S and (g) be the set of all subsets S’ of S with |5'| = 2.
If S is a set of sets, then |JS and US , respectively, denote the union and the disjoint
union of all sets in §. The disjoint union of two sets S and S’ is denoted by SU.S".
A partition of a set S is a set S of disjoint non-empty subsets of S such that S = S.

2.2. Relations and Orders

Let n € NT. An n-ary relation on a set U is a subset R of U". The restriction R|, of an
n-ary relation R on U to a subset A C U is the relation R’ := RN A™ A binary relation
R is

reflexive if (a,a) € R for all a € U,

irreflezive if (a,a) ¢ R for all a € U,

transitive if (a,b) € R and (b, c¢) € R imply (a,c) € R for all a,b,c € U,

symmetric if (a,b) € R implies (b,a) € R for all a,b € U,

asymmetric if (a,b) € R implies (b,a) ¢ R for all a,b € U,

antisymmetric if (a,b) € R and (b,a) € R imply a = b for all a,b € U,

total if (a,b) € R or (b,a) € R for all a,b € U,

connez if (a,b) € R or (b,a) € Ror a =10 for all a,b € U.

For binary relations R on U, we also denote (a,b) € R by a Rb.

Given a set U, a reflexive, transitive, symmetric binary relation ~ is called an equivalence
relation on U. For each a € U we denote the equivalence class {a’ € U | @’ =~ a} of a by
a/~. (We also use another notation, which we specify later.) For a k-ary relation R C U*
we let R/~ be the set {(ai/~,...,ax/~) | (a1,...,ar) € R}. The set U/~ of equivalence
classes is a partition of U.

The symmetric closure of a binary relation R on U is the smallest (with respect to
inclusion) relation R’ on U such that R C R’ and R’ is symmetric. Similarly, we define
the transitive closure and the reflexive, symmetric, transitive closure. The reflexive,
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symmetric, transitive closure of a binary relation R on U is called the equivalence relation
generated by R.

A partial order is a reflexive, transitive and antisymmetric binary relation <. A binary
relation = is a linear order if it is transitive, antisymmetric and total. For a subset
M C N we denote the natural linear order on M by <,;. For each partial order and
each linear order < there exists an associated irreflexive relation <, called a strict partial
order and strict linear order, respectively, which is defined by a < b if and only if a < b
and a # b. Then < is a strict partial order if and only if < is irreflexive and transitive.
Further, < is a strict linear order if and only if < is irreflexive, transitive and connex.
A reflexive and transitive binary relation = is called a preorder. For a preorder < the
associated irreflexive relation <, called a strict preorder, is defined by a < b if and only
if @ < b and not b < a. Then < is a strict preorder if and only if < is irreflexive and
transitive.

Let < be a partial order on U. We call a € U <-minimal if we have a = b for all b e U
with b < a. Similarly, we define <-mazximal. For a strict partial order <, we define the
<-minimal and <-maximal elements analogously. Thus, a € U is <-minimal if there is
no b € U such that b < a. If it is clear what partial order < or strict partial order < we
are referring to, we simply call an element a € U minimal or maximal.

Let < be a strict partial order on U. We say a € U and b € U are comparable with
respect to < if a < b or b < a. If they are not comparable, we call them incomparable. A
strict weak order is a strict partial order where incomparability is transitive. Moreover,
in a strict weak order incomparability is an equivalence relation. Further, if a and b are
incomparable with respect to strict weak order <, then a < ¢ implies b < ¢, and ¢ < a
implies ¢ < b. As a consequence, if < is a strict weak order on U and = is the equivalence
relation defined by incomparability, then < induces a strict linear order on U /x.

The reverse of a binary relation < is the relation <%:= {(b,a) | (a,b) € <}. Occasionally,
we denote the reverse of a binary relation < by >, that is, by mirroring the relation
symbol. For (strict) partial or (strict) linear orders, the reverse remains a (strict) partial
or (strict) linear order.

For k € N and a set U with a linear order =< on it, we define the lexicographic extension
<iex Of < on U*, that is, on all k-tuples of elements of U, as follows. For a,b € U* with
a=(ay,...,a;) and b= (by,...,by) we let @ <ie b if, and only if, @ = b or there is an
i € [k] such that a; < b; and a; = b; for all j < i. For sets A, B C U* we let A <jex B
if and only if A = B or there is a beB \ A such that for all a € Uk with @ <jex b we
have a € A <= a € B. It should be clear how to extend < to a linear order <. on
tuples of subsets of U¥. We also call <., the lezicographic order if it is apparent from
the context what linear order < we refer to.

2.3. Graphs and Structures

2.3.1. Structures

A signature or vocabulary is a finite set 7 of relation symbols R1, Ra,. ... Each relation
symbol R € 7 has a fixed arity ar(R) € N. A structure A of signature 7, also called a
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T-structure, consists of a non-empty finite set U(A), its universe or domain, and for each
relation symbol R € 7 of a relation R(A) C U(A)*). We also denote the universe U(A)
and the relations R(A) by U and R for R € 7 if it is clear which structure we are referring
to. Let o and 7 be vocabularies such that ¢ C 7. For a 7-structure A the o-reduct is
the o-structure A|, where U(A|,) := U(A) and R(A|,) := R(A) for each relation symbol
Reo.

An isomorphism between T-structures A and B is a bijection f: U(A) — U(B) such
that for all R € 7 and all ay,...,a.r) € U(A) we have (ai,...,a.r) € R(A) if and
only if (f(a1),..., f(aa(r))) € R(B). We call T-structures A and B isomorphic if there
exists an isomorphism between them. We write A = B to indicate that A and B are
isomorphic. When we consider a class C of structures we always assume it to be closed
under isomorphism, that is, whenever A € C and B is isomorphic to A, then we also have
BeC.

2.3.2. Graphs and Basic Graph Notions

In the following we introduce graphs and the basic graph notions. More on graphs can
be found in [15].

A directed graph (or short a digraph) is a pair G = (V, E) where V is a non-empty finite
set and E is a subset of V2 An (undirected) graph G is a pair (V, E) consisting of a
non-empty finite set V and a set E C (}) of 2-element subsets of V. We call V the
vertices and E the edges of the directed or undirected graph G. Generally, the term
graph refers to an undirected graph. However, when it is clear that the structure referred

to is a directed graph, we occasionally also omit the term directed.

Let 75 := {E'} be a signature with binary relation symbol E. Each digraph corresponds
to a Tg-structure, where the universe is the vertex set and relation E the edge relation.
We also understand every (undirected) graph as a Tg-structure G = (V, E') where E is an
irreflexive and symmetric binary relation. We do not distinguish between the set of all
edges (a subset of (‘2/)) of an undirected graph and the corresponding edge relation (a
subset of V2).

If {v,w} € E is an edge of an undirected graph G = (V, E), then v and w are adjacent,
and w is a neighbor of v. The degree of a vertex v € V is the number of neighbors of v.
For an edge (v, w) € E of a directed graph we say the edge is directed from v to w. An
edge (v, w) € E is an incoming edge of w and an outgoing edge of v. Let (v,w) € E. Then
v € V is an in-neighbor of w, and w an out-neighbor of v. The in-degree (out-degree) of a
vertex v € V' is the number of in-neighbors (out-neighbors) of v.

The following definitions only refer to undirected graphs. We partly omit the analogous
definitions for directed graphs, as (if necessary) they can be easily transferred from the
given definitions. We only add definitions for directed graphs if they differ from the ones
for undirected graphs.

Let G = (V,E) and H = (V' E’) be graphs. The union G U H of G and H is the graph
(VUV,EUE'). TVNV' =, then GU H is called the disjoint union of G and H.
The graph H is a subgraph of G if V! CV and E' C EN (‘gl) For a subset W C V of
vertices, G[W] denotes the induced subgraph (W, EN (V;)) of G on W, and G\ W denotes
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the induced subgraph G[V \ W]. The complement graph of G is G := (V, E) where
E= (‘2/) \ E. The graph G is complete if E = (Z) A clique of G is a subset A of vertices
such that G[A] is complete. The graph G is called edgeless if G is the complement graph
of a complete graph. A subset A of vertices of G is an independent set of G if G[A] is

edgeless.

A simple path P in G = (V, E) is a sequence vg,v1,...,v; of distinct vertices where
{vi—1,v;} € E for all i € [k]. Non-simple paths may contain vertices repeatedly. Unless
stated otherwise, the paths we consider are simple paths. We call vy and vy the ends of the
path P. We also say P = vg,v1, ...,V is a path from vy to vi. Note that for undirected
graphs a path from vg to vy is also a path from v to vg. The length of P is the number
k of edges of P. We also understand a simple path P = vy, v1,...,v; in G as a subgraph
(V. E") of G where V' = {vg,v1,...,v} and E' = {{vg,v1}, {v1,v2}, ..., {vk—1, 06 }}. A
subpath of path P is a subgraph of P that is a path. A cycle C in G is a non-simple
path vg,v1,...,vp with & > 3 where vy = v and vy,. .., v, are distinct vertices. (For
directed graphs we allow k& > 1 in the definition of cycle. If kK = 1, we call C' a loop.)
Again, we also regard cycles C = vg, v1,...,v; in G as subgraphs of GG. The length of C
is the number k of edges of C'. A graph GG that does not contain a cycle is called acyclic.

Let G = (V, E) be a graph. If there is a path in G from v to w, we say v and w are
connected in G. The graph G is connected if v and w are connected for all vertices
v,w € V. (A directed graph G is connected if the graph that we obtain from G by
deleting loops and interpreting every directed edge as an undirected edge is connected.)
If G is connected, we call G co-connected. A set W C V is connected (or co-connected) if
G[W] is connected (or co-connected). A connected component is a maximal (with respect
to inclusion) connected subset W C V. Let G be connected. Then a separator is a set
S C V such that G\ S is not connected. A separator S separates vertices v,w € V in G
if v and w are in different connected components of G \ S.

2.3.3. Forests and Trees

A forest is an acyclic undirected graph. A connected forest is a tree. A rooted tree is a
triple T' = (V, E,r) where (V, E) is a tree and r € V is a distinguished node called the
root.

A directed forest is an acyclic directed graph where every vertex has an in-degree of
at most 1. Often we will call the vertices of forests and directed forests nodes. A
directed tree is a connected directed forest. There is a one-to-one correspondence
between rooted trees and directed trees. For every rooted tree T'= (V, E,r) we let
the corresponding directed tree 7" be the directed graph (V, E’') where E' = {(v,w) |
{v,w} € E and v lies on a path from r to w}. Then the corresponding rooted tree 1" for
a directed tree T" = (V' E’) is (V/, E,r) where r € V' is the node of 7" with in-degree 0
and E = {{v,w} | (v,w) € E'}. We will often switch back and forth between rooted and
directed trees. We will also transfer the terminology we introduce for directed trees to
rooted trees and if possible to trees in general.

Let T'= (V, E) be a directed tree. A subtree of T' is a subgraph 7" of T' that is a directed
tree. If (v,w) € E, then w is a child of v, and v is the parent of w. Let w,w’ be children
of a node v. Then w is a sibling of w’ if w # w’. A node of out-degree 0 is a leaf or outer
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node, and a node of out-degree at least 1 is an inner node. If there is a path from v € V
tow € V in T, then v is an ancestor of w, and w is a descendant of v. If additionally
v # w, then v is called a proper ancestor of w, and w a proper descendant of v. The
depth of v € V is the length of the path from the root r to v. The height of a node v
is the length of the longest path from v to a leaf in the subtree of T' rooted by v. For
example, for the directed tree T' = ({v}, () that consists only of one node v, the height of
v is 0.

2.3.4. Colorings and LO-Colored Graphs

In this section we define colored and LO-colored graphs. We will also direct our attention
to the representation of such graphs as logical structures.

Let G = (V, E) be a (directed or undirected) graph and f: V — C be a mapping from
the vertices of G to a finite set C. Then f is a coloring of GG, and the elements of C' are
called colors. A colored graph is a triple (V, E, f) where (V, E) is a directed or undirected
graph and f is a coloring of the graph (V, E). A coloring f of G defines a partition
{f~1(c) | c € C, f~1(c) # 0} of the vertex set V into color classes. Furthermore, for a
partition S = {Ay,..., Ax} of the vertex set V' the mapping f: V — S where f(v) := A4;
if v € A; is a coloring of G. Thus, we can also say a coloring of G is a partition of the
vertex set V of G.

Let G = (V, E) be an undirected) graph, and k& > 0. A k-coloring of G is a coloring f
where |f(V)| <k and f(v) # f(w) if {v,w} € E. The graph G is bipartite if there exists
a 2-coloring of G. It is commonly known that G is bipartite if, and only if, each cycle of
G has an even length (see e.g. [15]). Thus, for example, forests are bipartite graphs.

Throughout this thesis we often color the vertices of a graph with binary relations on
a linearly ordered set.! We call graphs with such a coloring LO-colored graphs. More
precisely, an LO-colored graph is a tuple G = (V, E, M, <, L) with the following properties:

The pair (V, E) is an undirected graph. We call (V| E) the underlying graph of G.
The set of basic color elements M # () is a finite set with M NV = (.

Further, the binary relation << C M? is a linear order on M.

Finally, the color relation L C V x M? is a ternary relation that assigns to each

vertex v € V a color L, :={(d,d') | (v,d,d') € L}.

Let do, . .., d|prj—1 be the enumeration of the basic color elements in M according to their
linear order <. Then we call L) := {(i,j) € N? | (d;,d;) € L,} the natural color of
veV.

We can use the linear order < on M to obtain a linear order <Jj¢, on the colors {L, | v € V'}
of G. For all v,w € V we let

L, <ex Ly, <= L, is lexicographically less than or equal to L,,.

Clearly, <jex is a linear order on the colors of G. Thus, an LO-colored graph is a special
kind of colored graph with a linear order on its colors.

! n particular, we color graphs with representations of ordered copies of graphs on the number sort
(defined in Section 4.2).



2. Preliminaries

In order to represent G = (V, E, M, <, L) as a logical structure we extend the 5-tuple
with its properties by a set U to a 6-tuple (U, V, E, M, <, L) and additionally require that
U =V UM. Clearly, the set U serves as the universe of the structure, and V, E, M, <, L
are relations on U. For convenience, we can omit V and M from the 6-tuple, as they are
implicitly given by < and U: Since < is a linear order on M, we have M = {d | d < d},
and V = U\ M. Hence, we can regard an LO-colored graph as a 7/-structure (U, E, <, L),
where 7/ := 75 U {<J, L} is a signature with binary relation symbols F and < and a
ternary relation symbol L, with the following properties:

e The binary relation < is a linear order on a non-empty subset M C U.
e Structure (V, F) is an undirected graph where V :=U \ M.
e We have L CV x M2

Similarly, we can also represent colored graphs G = (V, E, f) with f: V — C as logical
structures (U, V, E, Ry) where U :=V UC and Ry := {(v, f(v)) |v € V}.

In this thesis we usually do not distinguish between the graphs defined in this section
and their representation as logical structures. It will be clear from the context which
form we are referring to.

2.4. Logics

We assume basic knowledge in logic, in particular we suppose that the reader is familiar
with first order logic (FO) and inflationary fized-point logic (IFP), and their counting
extensions FO+C and IFP+C, respectively. Further, we occasionally use simultaneous
(inflationary) fized-point logic, which has the same expressive power as IFP. For the
syntax and semantics of these logics we refer the reader to [31]. The notation used in this
thesis corresponds to the one in [31]. A detailed introduction of inflationary fixed-point
logic and simultaneous inflationary fixed-point logic can be found in [17]. In this thesis
we simply call inflationary fixed-point logic fized-point logic (FP) and fized-point logic
with counting (FP+C).

In many places throughout this thesis we also refer to various transitive closure logics, that
is, DTC, STC, TC, and their counting extensions. Note that these logics are semantically
contained in FP and its counting extension FP+C, respectively. These logics are relevant
for a reader familiar with descriptive complexity theory to put our results in context. The
main results of the first part of this thesis refer to FP4+C. Although we might refer to a
transitive closure logic when defining or describing a formula, it will always be easy (and
sufficient) to see that the formula is definable in FP+C. In the second part of this thesis,
we use these logics to point out the relation between them and our new logics LREC and
LREC_, but they are not essential to follow the technical core. Therefore, we omit the
definitions and refer the reader to the textbooks [17, 25, 43, 52] and the paper [41].

In the following we introduce notations and conventions.

For logics L,L" we write L < L” if L is semantically contained in L, and L < L’ if this
containment is strict.

Let L be a logic in {FO,DTC,STC, TC}. The counting extension L+C of L extends L by
a counting operator that allows for counting the cardinality of L+C-definable relations.

10
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It lives in a two-sorted context, where structures A are equipped with a number sort
N(A) :=10,|U(A)|]. L+C has two types of individual variables: L+C-variables are either
structure variables that range over the universe U(A) of a structure A, or number variables
that range over the number sort N(A). Let u be an individual variable. Then the type
t(u) is s if w is a structure variable and n if v is a number variable. For each variable u,
let A* := U(A) if u is a structure variable, and A" := N(A) if u is a number variable.
Usually, we use z,y, z and variants like z1, %/, z* of these letters for structure variables,
and o, p, q,r and variants for number variables. If the type of an (individual) variable
does not matter, we use the letters u, v and variants of it.

FP+C also has relational variables. Let X be a relational variable of arity k£ that ranges
over relations R C Wy x --- x Wy, where W; € {U(A),N(A)} for all i € [k]. We let
AX == P(Wy x --- x W},). Further, we let the type t(X) of X be the tuple (ti,...,tx)
where t; = s if W; = U(A) and t; = n if W; = N(A). Usually, we denote relational
variables by X,Y, Z and variants of these letters.

Let u = (uy,...,ux) be a tuple of (individual or relational) variables. The type t(u) of
w is the tuple (t(uq),...,t(ug)). We let A% := A% x ... x A%. The tuples (u1,...,ux)
and (v1,...,ve) of variables are compatible if k = ¢, and for every i € [k] the variables u;
and v; have the same type.

An assignment in A is a mapping « where for each variable v we have a(u) € A*. For
tuples @ = (ug,...,ux) of variables and a = (ay,...,a;) € A%, the assignment «[a/u]
maps u; to a; for each i € [k], and each variable v € @ to a(v).

We write ¢(uq,...,u;) to denote a formula ¢ with free(¢) C {uy,...,ux}, where free(p)

denotes the set of free variables in ¢. Given a formula ¢(uq,...,ux), a structure A and
(a1,...,a;) € AW we write A |= ¢[ay,...,ax] if ¢ holds in A with u; assigned to
a;, for each i € [k]. We use a similar notation for substitution: For a tuple (vy,...,vk)
of variables that is compatible with (uy,...,ux), we let ¢(vi,...,vx) be the result of

substituting v; for u; for every i € [k]. We write p[A, «;u] for the set of all tuples
a € A" with (4,ala/u]) = ¢. For a formula p(u) (with free(p) C @) we also denote
¢|A, a; u] simply by ¢[A;u]. For a formula ¢(v,u) and a € A% we denote ¢[4, ala/v]; 4]
by ¢[A, a; ul.

For structures A and tuples i = (ny,...,nx) € N(A)* we let (n), be the number

k

(g = Y mi- (UA)]+1)7

i=1

If A is understood from the context, we write (n) instead of (n),.

We use the following notational conventions and basic arithmetics:

We write u # v for ~-u=v and p < g for p < gA-p=gq. Let k > 1, and u = (uy,...,ux)
and v = (vy,...,v;). We abbreviate Ju; ...Ju, by Ju and Yuy ... Vug by Yu. We use
u = v to abbreviate u; = vy A -+ Aug = v, and u # v to abbreviate ~u = v. We write
T for Vxx = x and L for = T.

There exist FO+C-formulas zero(p), one(p) and largest(p) that define the numbers 0, 1
and |A| for all structures A (cf. Example 2.3.5(1) in [31]). We will occasionally use 0

11
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and 1 as constants within formulas. It is not hard to see that these formulas can be
modified so that they do not use these constants with the help of formulas zero(p) and

one(p).
Let p, p, ¢ be tuples of number variables. There is a DTC+C-formula plus(p, p, ¢) that

defines the addition function, that is, for all structures A and n € AP, 7’ € A” and
m € A9 we have

A plusli iy m] = () + (@), = (),
Example 2.3.5(3) in [31] shows an FP+C-formula for the addition of unary tuples. We
write p + p' = q instead of plus(p, p', q).

Let L be a logic with DTC+C < L. Let u be a tuple of variables, p be a tuple of number
variables, and 1 be an L-formula. By #u vy = p we denote the L-formula which holds in
a structure A under an assignment « in A if [{a € A" | (A, afa/u]) = ¥} = (a(p)), - As
simple arithmetics like addition and multiplication are definable in DTC+C, there is an
L-formula equivalent to #u = p.

Let £ > 0, and let p = (p1,...,pk) and ¢ = (q1,-..,qr) be tuples of number variables.
Then

D1 (D, ) = \/ (Pz‘ < gi N /\ pj = QJ')

1€[k] jeEli—1]

is an FO+C-formula that defines the lexicographic order on N(A)* for all structures A.
Thus, for all structures A and n,m € AP, we have

AEpo  [n,m] <= n <ex m.

For LO-colored graphs G* = (U, V, E, M, <, L) the lexicographic order < is a linear
order on the colors of the vertices of G*. Similarly, <ljex is a strict linear order on the colors
of the vertices of G*. We define FO-formulas ¢, (x,z’) and ¢4, (z,2) , respectively,
which define the total preorder and the strict preorder on V induced by the linear order
<jex and strict linear order <l on the colors of the vertices. Thus, for all a,a’ € U, we
have

G* Eva.,]a,d] < a,d €V and L, Sjex Ly, (2.1)

G Eq.la,d] < a,d €V and L, <jex Ly

Let ¢4, be the formula we obtain from ¢, by replacing p; < ¢; by < (pi, qi) A pi # ¢
for all 7 € [k]. Then

Ve (2,2) =L@, §) A —L(2,9) AVZ (90 (5,9) = (L(z,2) © L, 2)))),
Ya, (@, 2') =Yg, (z,2") VVZ(L(z, Z) + L(2) 2)).

2.5. Transductions

Transductions (also known as syntactical interpretations) define certain structures within
other structures. We will be using different notions of transductions throughout this thesis.

12
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In order to introduce transductions, we will first present a simple form of transductions
(that uses only structure variables) and use it to illustrate the application of transductions.
Gradually, we will turn to more general definitions by adding number variables and
parameter variables to the transductions, until we finally present a notion which includes
all aspects that are necessary in this thesis. Along the way, we introduce the Transduction
Lemma, which shows us how to apply transductions. Throughout this thesis we will
always only use those aspects of transductions that are necessary for our purpose and leave
out the ones that would complicate the presentation. Subsequent to the introduction of
(parameterized) transductions, we look at the composition of two transductions, which is
again a transduction. A proof of this result can be found in the Appendix. In the last part
of this section, we introduce a new form of transductions, called counting transductions.
They allow a shorter presentation of specific kinds of transductions. Finally, we show
that each counting transduction can be rephrased as a transduction.

In Section 2.6 transductions will be used to define canonizations, and we will need them
on many other occasions in this thesis. More on transductions can be found in [31], [60]
and [25]. For further examples and applications of transductions see [31] and [17].

Throughout this section we let £ be the following set of logics:
L ={STC,STC+C, TC, TC+C,FP,FP+C}.

2.5.1. Transductions

We start by introducing transductions that use only structure variables.
Definition 1 (Transduction). Let L > STC be a logic, and let 71, 72 be vocabularies.

1. An L-transduction from 1 to 7o (short: L[, 2]-transduction) is a tuple

© = (Baoms 00/(0). 0 (. 7). (Or(iirs. - iari) s, )

of L[r]-formulas, where @, 4 and upr; for every R € 7 and i € [ar(R)] are tuples
of structure variables of the same length.

2. The domain of transduction © is the class Dom(O) of all j-structures A where
A = Ogom and Oy [A;u] is not empty. The variables appearing in u are called the
domain variables.

3. Let A be in the domain of ©. We define a mp-structure ©[A] as follows. We let
~ be the binary relation generated by 0~[A;u,u/], i.e. the reflexive, symmetric,
transitive closure of 0~[A; @, '], and call it the equivalence relation of A under ©.2
We let

U(OIA]) = 0u[As

be the universe of ©[A]. Further, for each R € 7, we let

R(O[4]) := (HR[A;ERJ,...,ERM(R)] mgU[A;ﬂ]ar(R))/

~
~

2 The traditional notion of transduction (or congruence closure) requires 8~ to actually define an
equivalence relation and not only to generate one. However, for logics L as least as strong as STC
the equivalence relation generated by an L-definable binary relation is also L-definable. Since our
main results involve logics that are at least as strong as STC, we can use this more general definition
of transduction.

13
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Informally, an L-transduction from 71 to 7o defines a mapping from structures over the
first vocabulary 7 into structures over the second vocabulary 7 via L[r]-formulas.

Occasionally, it will occur that we do not need to exploit the capabilities of formulas 04om
or 0, and we simply let O30, be T and 0 be L. If O4or, := T, the domain is the class of
all 7i-structures with a non-empty universe. If . := 1, the equivalence relation ~ is
the reflexive closure of the empty set, that is, the equivalence classes are the 1-element
subsets of A% As a convention, we identify each 1-element equivalence class {a} with
its element a, in this case. We can omit the respective formula when presenting the
transduction. Thus, in each transduction that is given without formula 644y, formula
Odqom is to be interpreted as T, and if formula 6~ is missing, it has to be interpreted as L.

Example 2. On the class of all graphs let us consider the STC[{E}, ]-transduction
01 = (0y(z),0~(z,2")), where

0(](.%’) =T
O~(x,2") = E(x,2').

The domain of transduction Oy is the class of all graphs. For a graph G the universe
of ©1]G] is the set C of connected components of G. Since ©1[G] does not contain any
relations, we have ©1[G| = (C). Therefore, the transduction ©; maps every graph G to
its set of connected components ©1[G]. 4

If L is a counting logic, we can extend the definition of L-transductions above to not only
allow structure variables but also number variables as domain variables. In this case we
do not only need that the tuples of variables occurring within the transduction are of
the same length but we also need that they are compatible. More precisely, we require
that u,u and up; for every R € 7 and i € [ar(R)] are compatible tuples of individual
variables in the first part of the definition.

An important property of transductions from 71 to 73 is that, for suitable logics, they allow
to pull back To-formulas, which means that for each m-formula there exists a 7-formula
that expresses essentially the same. This property is the core of the Transduction Lemma.
First we present the Transduction Lemma restricted to sentences, which makes it easier
to perceive the key idea.

Proposition 3. Let L be a logic in L, let T, be vocabularies and let © be an L[m, To]-
transduction. Then for every L|m]-sentence 1 there is an L[r]-sentence 1~ such that
for all A € Dom|[0]

AEY™® = 64 EFv.

Thus, if ¢ is an L-sentence, which defines a certain property of mo-structures, then ¢=© is
an L-sentence which defines the property of m3-structures that i holds after applying O,
for logics L with L € L.

Example 4. In this example we want to use Proposition 3 to show that there is an
STC[{E'}]-sentence @conn such that for all graphs G we have

G = @conn <= G is connected.

14
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Consider the transduction ©; from Example 2. In order to obtain sentence @eonn, we
pull back the STC[0]-sentence v := JzVa' = 2’ under transduction O;. Sentence 1 is
satisfied if and only if there exists only one element in the universe of a given structure.

Thus, if sentence v is satisfied after ©; has been applied to a graph G, then this means
that there exists only one connected component in GG, and vice versa. Hence, there exists
a sentence 1~ 1 such that for all graphs G € Dom(0;) we have

Gl «— 0,[G] E¢ <= G is connected,

and we define @eonn 1= PO, g

In the following proposition the Transduction Lemma is formulated for formulas with free
structure variables. Afterwards we explain how it extends to formulas with free structure
and number variables for the counting logics in L.

Proposition 5. Let L be a logic in L, let T, be vocabularies and let © be an L[m, T2]-
transduction, where u is the tuple of domain variables. Further, let ¢ (x1,...,x,) be an
L[m2]-formula where x1, ...,z are structure variables. Then there exists an L[ ]-formula
VO (@, ..., Ux), where Uy, ..., U are compatible with @, such that for all A € Dom(0)
and all a,...,a, € A"

A=Y Oay,. .. a: < aijx,..., a0/~ € U(O[A]) and
O[A] E ¥lai/fxs - - an/~],

where = is the equivalence relation of A under ©.

Similarly we can pull back L[r]-formulas with free structure and number variables if
L is one of the counting logics in £. Whenever we have a free number variable p in a
To-formula, the pulled-back 7i-formula contains a tuple of free number variables g of the
same length as u. The tuple of variables ¢ is then used to represent the number associated
with variable p in the different numerical system. In the next part of this section, where
we introduce parameters to transductions, we will also cover the proceeding with free
number variables in more detail.

Example 6. Now we use Proposition 5 to show that there exists an STC[{ E'}]-sentence
Xconn(Z, ') such that for all graphs G we have

G E Xcom[v,V'] < v and v’ are connected in G.

Again we consider the transduction ©; from Example 2. The equivalence relation =
generated by 0~[G;x, 2'] partitions the vertex set of G into connected components. This
time we pull back @-formula ¥(y,y’) := y = y’. Thus, there exists an {E}-formula
1~©1(z,2’) such that for all graphs G and all vertices v, v’ of G we have

G YO 0,v] <= v/et/ /s € U(O[G]) and 64[G] = $[v/fe, v/ 2]
<= v/~ [~ are connected components of G and v/ = v’ /x

<= v and v’ are connected in G.

We let Yeonn(z, ) := 1 (z, 2). J
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Let C; be a class of 7y-structures and Cy be a class of m-structures. We call a mapping f
from C; to Cy L-definable, if there exists an L7y, 7o]-transduction © such that C; C Dom(©)
and for all 7j-structures A € C; we have f(A) = ©[A]. An L[, m»)-transduction © is
called an L-reduction from Ci to Cy if for all mi-structures A we have A € C; if and only
if ©[A] € Cy. Notice that transductions and logical reductions use the same formalism.

Let L and L' be logics with L' < L. We say L'[r1, 72]-transduction © allows to pull
back L-formulas if each L[m]-formula 1 can be pulled back under © to an L[r]-formula
1. Logic L is closed under L'-reductions if for all (relational) vocabularies 71, 7o each
L'[71, 72]-transduction © allows to pull back L-formulas. If L is closed under L-reductions,
then we say that L is closed under logical reductions. Each logic L € L is closed under
logical reductions (see Exercise 11.2.4 in [17] or Lemma 1.49 in [60]). For FP+C this
is shown in the Appendix in Section A.1.1 by proving the Transduction Lemma for
parameterized FP+C-transductions.

2.5.2. Parameterized Transductions

In this part, we further generalize transductions and the Transduction Lemma. We
introduce parameterized transductions for FP+C and generalize the Transduction Lemma
in two steps so that we can pull back arbitrary FP+4C-formulas under parameterized
transductions.

In the following we consider parameterized transductions for FP4C. As parameter
variables of these transductions, we allow individual variables as well as relational
variables. The domain variables are individual variables. The definition of parameterized
transduction for other logics that are at least as strong as STC can be obtained from the
given definition of parameterized FP+C-transduction by leaving out all variables of types
that do not occur in the particular logic.

Definition 7 (Parameterized Transduction). Let 71, 7 be vocabularies.

1. A parameterized FP+C|1q, 12]-transduction is a tuple
G(X) = (Gdom(X)a GU(Xa ﬂ)a GE(X7 Q_L, ﬁl)a (HR(Xa ﬂR,la EEE) aR,ar(R)))RETz)

of L[r]-formulas, where X is a tuple of individual or relational variables, and
u,u and up,; for every R € 75 and i € [ar(R)] are compatible tuples of individual
variables.

2. The domain of parameterized transduction ©(X) is the class Dom(0(X)) of all pairs
(A, P), where A is a 7j-structure and P € AX| with A = Oqom[P] and 0y[A, P; 4] is
not empty. The variables occurring in tuple X are called parameter variables, and
the ones occurring in @ are referred to as domain variables. The elements in P are
called parameters.

3. Let (A, P) be in the domain of ©(X). We define a 7-structure O[A, P] as follows.
We let ~ be the equivalence relation generated by 0~[A, P;u, @], and call it the
equivalence relation of (A, P) under ©. We let

U(O[A, P)) := Oy[A, P; )/~
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be the universe of ©[A, P]. Further, for each R € 75, we let

R(@[A7 P]) = (HR[A,P; aR,la"'vaR,ar(R)] DHU[A7]5; a]ar(R))/

A parameterized L-transduction from 7, to 7 basically defines a parameterized mapping?
from 71-structures into 7e-structures via L[7j]-formulas. An L-transduction is a parame-
terized L-transduction were the tuple of parameter variables is empty. We occasionally
drop the word “parameterized” in parameterized transduction if it is clear from the
content that we deal with parameterized transductions. As for transductions, omitting
the formula 040, in a parameterized transduction means that formula 640, is equal to T
and omitting 6 means that formula 6, is equal to L.

Example 8. In the following we present a parameterized STC[{E}, { E'}]-transduction
O2(z,) that maps a tree T' to a directed version of this tree. It uses a node r of T' as
a parameter to root 7" at r. Transduction Os(x,) maps T and its parameter r to the
directed tree that corresponds to the rooted tree (r, V(T'), E(T)). We let

62(337") = (edom(xr); HU(I,«, CC), HE(J:T-; z, $/))
where

T,
T,
E(z,2") A 9conn (2, 2, ).

edom(xr) :
Ov(x,, x) :
QE(-%'N:C"TI) :

We let Yeonn(y, 21, z2) be an STC-formula such that for each graph G and w, vy, vy € V(G)
we have

G = Yeonn|w, v1,v2] <= v; and vy are connected in G \ {w}.
The existence of Yeonn (Y, 21, x2) will be shown in Example 10.

Now, the domain of parameterized transduction ©y(z,) consists of all pairs (T, r) where
T is a tree and r € V(T'). The universe of O[T, r| is the set of vertices of T'. We use
Op(x,, z,2") to direct each edge such that it points to the vertex that is farther away
from the root. Therefore, O[T, 7] is the directed tree that corresponds to the rooted tree
(r,V(T), E(T)). J

In the following we present a version of the Transduction Lemma for parameterized
FP+C-transductions that allows us to pull back FP+C-formulas with free individual
variables.

3 Usually, parameterized mappings are considered for fixed parameters. Here, we cannot do this since
for each 7i-structure A, valid parameters must belong to the universe of A. Therefore, we use the
formula Ogom (X) to define possible parameters for each structure. They often have a special property
that distinguishes them from other elements of the universe. That is why the term parameter makes

sense in this context.
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Proposition 9 (Transduction Lemma). Let 71,7y be vocabularies. Let ©(X) be a pa-
rameterized FP+C[1y, To]-transduction, where {-tuple u is the tuple of domain variables.

Further, let ¥(z1,...,Z4,p1,--.,0x) be an FP+Clr]-formula where x1, ..., are struc-
ture variables and py, . .., px are number variables. Then there exists an FP+C[r]-formula
vO(X, U1, .., Uk, G1s - - -5 Q0), Where Uy, ..., U, are compatible with 4 and Gy, ...,y are

(-tuples of number variables, such that for all (A, P) € Dom(©(X)), all ai,...,a, € A
and all ny,...,n\ € N(A),

AEYOPa,... a0, .. 7]
= A1/~ ... 00/~ € U(O[A, P]),
(R1)ys--- 5 (a)y € N(O[A, P]) and
O[A, Pl = ¥ar/a,- - Gnfry (Aa)y - (4]

where ~ is the equivalence relation of (A, P) under ©.

Example 10. We show that there exists an STC-formula Y¢conn (Y, 21, z2) such that for
each graph G = (V, E) and w,v;,v2 € V we have

G = Yeonn|w, v1,v2] <= v; and vy are connected in G\ {w}.

We pull back the STC-formula Xconn (2, ') from Example 6 under parameterized trans-
duction

@3(y) = (adom(y), QU(:% l')’ QE(yv xz, 1;,))

where

Hdom(y) =T,
GU(yax) =T 7é Y,
Op(y,z,2') := E(z,2').

Transduction ©3(y) maps every (directed) graph G and vertex w (the parameter) to the
induced subgraph G[V \ {w}]. Hence, there is a formula Oeonn (y, 21, 72) 1= Xoo? (y, 21, T2)
such that for all pairs (G, w) where G is a (directed) graph and w € V', and all v1,vy € V
we have

G ): X;)%g[waUhU?] — ’Ul/z?UQ/z € U(Q[G7w]) and 63[G7w] ): Xconn[vl/%ﬂ)?/z]

<= w1, v are connected vertices in G[V \ {w}]. 4

The Transduction Lemma for parameterized FP+C-transductions in its most general
form allows us to pull back arbitrary FP+C-formulas. In order to present it, we need the
subsequent definitions. These definitions allow us to formulate the Transduction Lemma
in Proposition 11 in a nice, short way. Further, we use these definitions in Proposition 12
and its proof.

Let ©(X) be a parameterized FP4C[r(, 75]-transduction where ¢-tuple @ is the tuple
of domain variables, and let v be an individual or relational variable. In the following
we define v*% If v is a variable in a T-formula 1, then v*% is the variable or tuple of
variables, we need in order to represent the values for variable v after pulling back v to a
7i-formula 1/~®. For the following recall the definition of the type of (tuples of) variables
defined in Section 2.4. We define v*% as follows:
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2.5. Transductions

Ifvisa

e structure variable, we let v*“ be a tuple of individual variables of type t(u).

e number variable, we let vX“ be an /-tuple of number variables.

e relational variable of type t(v) = (ti,...,tx), we let v be a relational variable of
type t(v*®) = (t},...,t}) where for all i € [k] tuple t} is an ¢-tuple, and t; = t(a) if
t;i =sand t; = (n,...,n) if t; = n.

For a tuple ¥ = (vy,...,v;) of (arbitrary) variables, we let 9*% := (v;" ... v}"). Thus,
if ¥ is the tuple of variables occurring in a 7o-formula 1, then %% is the tuple of variables
in 7-formula ¥ ~©.

Now, let (A, P) be in the domain of ©(X) and let ~ be the equivalence relation of (A, P)
under ©. Again, let v be an individual or relational variable. Let S € A*"". Then,
S is a tuple of elements from U(A) U N(A) if v is an individual variable, and a relation
on U(A)UN(A) if v is a relational variable. By forming the equivalence classes and
interpreting the number tuples we can define the value <S)Z,z each S represents.

Ifvisa

e structure variable, we let

(Shan = S
e number variable, we let

<S>Z,z = ()4

e relational variable of type t(v) = (t1,...,tx), we let

<S>Z,z = {(<a1>2z L) <ak>f{k,z) ’ (C_Lla s 7(_116) € S}’
=@/~ if t; = s and (@;)} L = (@;), if t; =n for all i € {1,...k}.

~
R

where (a;)’

For a tuple © = (vy,...,v;) of (arbitrary) variables, and S = (Sy,...,S;) € A" we let
(S)ym = ((S1) ) o (SK) 4 -

Now we can state the Transduction Lemma for parameterized FP+C-transductions
in its general form. In Section A.1.1 in the Appendix the Transduction Lemma for
parameterized FP+C-transductions (Proposition 11) is repeated in more detail, and
proved afterwards. There, we distinguish explicitly between the types of the variables
that are used and their assigned values.

Proposition 11 (Transduction Lemma). Let 71,7 be vocabularies. Let O(X) be a para-
meterized FP+C[1y, 2] -transduction where @ is the tuple of domain variables. Further, let
Y (v) be an FP+C[m]-formula where v is a tuple of (individual and relational) variables.
Then there exists an FP+C[ry]-formula ¢~°(X,v'), where o' = v*% such that for all
(A, P) € Dom(O(X)), and all S € A?,

AEY O[PS <= (S), . €O[A P]" and O[A, P] | ¢[(S)

A7z} ’

where = is the equivalence relation of (A, P) under ©.

The proof of the Transduction Lemma for parameterized FP+C-transductions (Proposi-
tion 11) can be found in Section A.1.1 in the Appendix. By leaving out number variables

and everything concerning them, it yields a proof for the corresponding result for FP.
The proofs for STC, TC and their counting variants are analogous.
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2.5.3. Composition
The following proposition shows that the composition of two parameterized transductions
is again a parameterized transduction.

We let L be any logic in L.

Proposition 12. Let 7, 7o and 713 be vocabularies. Let ©q (Xl) be a parameterized

L[y, 72]-transduction, and let ©4 (37) be a parameterized L[y, 13]-transduction where u,
and uy are the respective tuples of domain variables. Then there exists a parameterized
L[y, 73]-transduction ©(X) with X = (X1, X3) such that Xo = Y™™, the tuple uy"" is the
tuple of domain variables, and for all 7 -structures A and all P € AX with P = (151, ]52),

(A, P) € Dom(0(X)) < (A, P;) € Dom(0:(X1)),
Q:= (), . €O[AP] and
(014, 1], Q) € Dom(©(Y)),
where =2 is the equivalence relation of (A, Py) under ©1, and for all (A, P) € Dom(0(X)),

0[4, P] ~ 0,[0,[A, P, Q).

Section A.1.2 in the Appendix contains the proof of Proposition 12.

2.5.4. Counting Transductions

We introduce the new notion of counting transductions in this section. For a structure A
(and a tuple of parameters) from the domain of the counting transduction, a counting
transduction automatically includes the number sort of A in the universe of the structure
defined by the counting transduction. For this reason, counting transductions sometimes
allow a shorter formulation of the transduction. Counting transductions are as powerful
as transductions, which we will show in the end of this section. Often giving a counting
transduction instead of a transduction will contribute to an easier and clearer presentation.

In the following we assume L is a counting logic.

Definition 13 (Parameterized Counting Transduction). Let 71, 72 be vocabularies.

1. A parameterized L[T, To]-counting transduction is a tuple

@#(X) = (ngm(X), Qﬁ(X, ﬂ)v gz(X’ u, ﬂ/)’ (0}§(X, URLy - aRvﬁY(R)))RETz)
of L[r]-formulas, where X is a tuple of individual or relational variables, i, i’ are
compatible tuples of individual variables, u, 4’ are not tuples of number variables
of length 1, and for every R € 7 and ¢ € [ar(R)], ur; is a tuple of variables that is
compatible to u or a tuple of number variables of length 1.

2. The domain of counting transduction ©#(X) is the class Dom(0#(X)) of all pairs
(A, P) such that A |= 0% [P] where A is a 7-structure and P € AX.
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3. Let (A, P) be in the domain of ©#(X). We define a 7p-structure ©#[A, P] as follows.
We let &~ be the equivalence relation generated by 6Z[A, P;u,u’]. We let

U(O%[A, P)) = 0£[A, Piii)jx U N(A)

be the universe of ©#[A, P].4
For a tuple a € A“UN(A), let a~ := a/x if a is compatible to u, and @~ :
is a tuple of number variables of length 1. For each R € 1y, let

|

ol
el
=1
ol

AP

)

_ _ . ar(R)
RY o= OF[A, Piiipg, . ipacm) 0 (0514, Pra] UN(4))

Then,
R(©*[A, P)) := {(aT, ..., Gax(w)”) | (@1, ..., Gax(r)) € ij}.

Proposition 14. Let ©#(X) be an L[ry, 72]-counting transduction. Then there exists a
parameterized L[y, mo]-transduction ©(X) such that

e Dom(O(X)) = Dom(0#(X)) and B
o O[A, P| = ©#[A, P] for all (A, P) € Dom(0©(X))

Proof. Let
OF(X) = (0,,(X), 07X, @), 02(X, 0, @), (O4(X, im1, -, Gr () ey )

be a parameterized L[r,T2]-counting transduction. Let ug be a tuple of individual
variables compatible to u, and %1 be a tuple of number variables of length 1. Further, let
00,01 be number variables. Now let ¢ := (0g, 01, g, u1). We present an L[7y, 7o|-transduc-
tion

G(X) = (edom(X)> HU(Xa E)a 0%()25 t_a t_/)> (HR(X> t_R,la R 7t_R,ar(R)))R€TQ>7

where Dom(©(X)) = Dom(60# (X)) and for all (A, P) € Dom(0(X)) structures O[A, P]
and ©#[A, P] are isomorphic. Within this transduction the variables oy and o; help us
to construct the desired universe, the union of 6f[A, P;u] and [0, |A|]. We will only allow
values for the variables og and 01, where one variable is assigned to value 1 and the other
variable obtains value 0. Now, if the value assigned to variable oq is 1, only tuples where
the part corresponding to variable tuple @y belongs to different equivalence classes of
equivalence relation §%[A, P; i, u'] are distinguished by our equivalence relation. If the

4 We can also define counting transductions ©% (X) such that for (A, P) € Dom(6% (X)) the universe

of ©%[A, P] is
UO*[A, P)) = 04[A, P/~ U | ] N(A™
meM

for a finite set M C N. Then we let ur ; be a tuple of variables that is compatible to @ or a tuple of
number variables of length ¢ with ¢ € M in part 1 of the definition, and forbid that u is a tuple of
number variables of length ¢ with £ € M. The proof of Proposition 14 works analogous in this case.
We simply use number variables o,, and variable tuples 4, for m € M in the same way we use o1
and % in the proof of Proposition 14.
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value assigned to variable o; is 1, then the equivalence relation distinguishes only between
tuples where the part of the tuple corresponding to tuple %; of number variables differs.

More precisely, we let @(X' ) be the parameterized transduction where

edom(X) = Hjom (X)’
GU(X,E) = (0021/\01:0)\/(00:0/\01:1),
0~(X,6,1) == (0g=1N0h=1NA 0%(X, 1, up)) V (01 = 1Ay =1 Aty = a}).

Let T be the set of all tuples up,; where R € 7 and i € [ar(R)]. Let h be a function that
maps every U, € T to 0 if u, is compatible to # and to 1 otherwise. Then

_ _ . S _R1 _R,ar(R) Ry —
Or(X,tr 1, s tRar(R)) = QR(X’ uh(ﬁR,l)v""uh(ﬁR,ar(m)) A /\ Oh(an,) = !
i€lar(R)]

for all R € 7y, where tr; = (og”, 01" ag"", af™).
It is not hard to see, that structure ©[A, P] is isomorphic to structure ©#[A, P] for all
(A, P) € Dom(O(X)). O

2.6. Canonization

In this section we introduce ordered structures, the notion of canonization and definable
canonization. Further, we present two important results regarding canonization from [31],
which we will need in Section 4.3 and Chapter 12. A detailed introduction of (definable)
canonization and more examples can be found in [31].

In the following let 7 be a signature with < ¢ 7, and let L be an arbitrary logic.

We call a 7 U {<}-structure A’ ordered if the relation symbol < is interpreted as a linear
order on the universe of A’. Ordered structures A" and B’ are order isomorphic if they
are isomorphic. (We use the formulation “order isomorphic” to emphasize the presence
of the ordering.) Let A be a 7-structure. We say a 7 U {<}-structure A’ is an ordered
copy of A if A'|, = A.

Let C be a class of 7-structures. A mapping f is a canonization mapping of C if it
assigns every structure A € C to an ordered copy f(A) = (A, <y) of A such that for
isomorphic structures A, B € C the ordered copies f(A) and f(B) are order isomorphic.
We call the ordered structure f(A) the canon of A. Notice that when we talk about the
canon of a structure we implicitly assume a specific canonization mapping. For every
canonization mapping f of C, let fy be the unique canonization mapping of C that maps
every structure A € C with |U(A)| = n to the ordered copy fn(A) = (A, <) where the
universe U(Ay,) is [n], the linear order <y, is the natural order on [n], and fn(A) and
f(A) are order isomorphic. We say that fi defines an ordered copy of A on the number
sort for all A € C.

Let z be a tuple of individual variables, and let ©(z) be a parameterized L[r,7 U {<}]-
transduction. We say ©(Z) canonizes a T-structure A if there is at least one tuple p € A*
such that (A,p) € Dom(O(Z)), and for all tuples p € A* with (A,p) € Dom(O(Z)), the
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7 U {<}-structure ©[A, p] is an ordered copy of A.> A parameterized transduction O(z)
canomnizes a class C of T-structures if it canonizes all A € C. A parameterized L-canon-
ization of a class C of 7T-structures is a parameterized L[r,7 U {<}]-transduction that
canonizes C. Like for transductions, we refer to parameterized L-canonization as L-canon-
1zations if the tuple Z is empty. A class C of structures admits L-definable canonization if
for all vocabularies 7 the class C[7] has a parameterized L-canonization.

The following proposition shows the connection between canonization and parameterized
canonization.

Proposition 15 ([31], Lemma 3.3.18%). Let L > STC+C be a logic that is closed under
logical reductions, and let C be a class of T-structures. If there is a parameterized
L-canonization of C, then there exists an L-canonization of C without parameter variables.

Proposition 15 shows that each parameterized L-canonization of C yields a canonization
mapping of C, because for each parameterized L-canonization ©(z) of C there is an
L-canonization ©' of C without parameter variables, and the mapping A — ©'[4] is a
canonization mapping of C.

Example 16. In the following we present an STC+C-canonization ©4 of the class K of
complete graphs. We let

04 := (Bu(p), 0u(p,p'), 0<(p,p")),

where

0u(p) :=p >0
Op(p.p) :==p # D,
O<(p,p') :==p <p.

©, is an STC4+C[{E}, { E, <}]-transduction that uses only tuples of number variables of
length ¢ = 1. The relation 0[G;p] is non-empty for complete graphs G. Thus, the domain
of ©4 contains the class of all complete graphs. For G € Dom(0,4) where n is the number
of vertices in G, we have 04[G| = ([n], ([g]), <)), that is, structure ©4[G] is the complete
graph on the vertex set [n] together with the natural linear order <, on the numbers in
[n]. Thus, ©4[G] is an ordered copy of G and ©,4 canonizes K. a

Example 17. Next we present an STC+C-canonization ©* of the class K* of LO-colored
graphs K* = (U,V, E, M, <, L) where the underlying graph (V, F) is a complete graph.
We let formulas ¢4, (z,2) and <, (z,2") be the FO-formulas from (2.1). In order to
define the canon of LO-colored graph K* we do the following: We order all vertices of
K* according to the lexicographic order of their colors. Note that this is a total preorder.
We assign each vertex to every position the vertex can obtain within a linear order that

® Note that if the tuple Z of parameter variables is the empty tuple, L[, 7 U {<}]-transduction ©
canonizes a T-structure A if A € Dom(0) and the 7 U {<}-structure ©[A] is an ordered copy of A.
5 As the main result in [31] is based on IFP4+C, Lemma 3.3.18 is only shown for IFP+C in [31].
However, addition, multiplication and all arithmetics (e.g. Fact 3.3.14) that are necessary to show
Lemma 3.3.18 can be defined in DTC+C. Further, Lemma 3.3.12 and 3.3.17, which are used to prove
Lemma 3.3.18, can be shown by pulling back simple FO+C-formulas under STC+C-transductions.
Hence, it suffices if our logic L is closed under logical reductions and is as least as strong as STC+C.
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extends the total preorder. Thus, each vertex is assigned to numbers in [1,|V|]. We order
all basic color elements by the given linear order <l on M and assign them to the numbers
in [|V|+1,|V]|+|M]|]. The formulas ¢v(y,p) and ¢ (y,p) define these assignments.

ov(y,p) == 3q 3¢ (#x Va. (x,y) =q N #x b, (z,y) = N “g<p<q"”)
ov(y,p) :==3q3¢ (#Hx V() =q N #xxz<dy=q¢ N p=q+q)

For K* € K* the pair (v,n) € U(K*) x N(K*) satisfies ¢y (y,p) if, and only if, after
ordering all vertices of K* according to the lexicographic order of their colors there
exist less than n vertices smaller than v and at least n vertices larger than v. The pair
(v,n) € U(K*) x N(K*) satisfies pn(y,p), if v is the mth vertex of the linear order <
on the basic color elements M and n = |V| + m.

We let ©* := (67:(p), 0y (p), 0% (p. 1), 034 (), 05 (p, P'), 07 (p, P’ p"), 0% (p, p')), where

05 (p) ==p >0,
0y (p) :== Jy pv(y,p),
( ') =03 (p) N0V (P') Ap # D

0 (p) == 3y oum(y,p),

05(p,p) == 03 (p )A9M( Y Ap <Y,

07 (0,0, p") =3y, 2 (L(y,za ") Nov(y,p) Apm (20) A pn(27p")), and
0= (p,p ) =p S
Then ©* is a canonization of IC*. J

Remark 18. If we also allowed parameter variables that are relational variables in the
definition of canonization, then every class of 7-structures would admit FP-definable
canonization. To verify this, consider the following parameterized transduction where
parameter variable X is a binary relational variable:

O(X) := (baom(X), 0y (X, x), (Or(X, 21, ..., Tar(R))) ReT> 0<(X,z,2'))

with
edom(X) Pre ( ) A SDantisym(X) A Ptrans (X) A Spconnex(X)a
GU(X .T) = T7
Or(X, :cl, oo Zar(r)) = R(w1, ..., 2ar(gy) for all R € 7, and
0<(X,z,2') := X (z,2").

where ©rea(X), Qantisym(X), Pirans(X) and @eonnex(X) are FO-definable formulas that
decide if X is interpreted by a reflexive, antisymmetric, transitive and connex binary
relation, respectively. a

Next let us consider graphs. The following proposition shows that if we can canonize
the graphs induced by the connected components of a graph, then we can canonize the
whole graph.
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Proposition 19 ([31], Corollary 3.3.217). Let L > STC+C be a logic that is closed under
logical reductions. Let C be a class of graphs, and let Ceonn be the class of all graphs
induced by the connected components of the graphs in C. If Ceonn admits L-definable
canonization, then C does as well.

2.7. Descriptive Complexity

To learn more about descriptive complexity we recommend Chapter 7 and 11 in [17] and
Chapter 2 in [31]. In this section we introduce descriptive complexity only briefly.

2.7.1. Turing Machines and Complexity Classes

We assume that the reader has basic knowledge in complexity theory; see, e. g., [48, 64] for
an introduction into complexity theory. The main complexity classes used in this thesis
are PTIME and LOGSPACE. With the following definitions, which are mostly adopted
from [50], we shortly introduce these complexity classes.

A Turing machine M decides a language L, that is, a class L of finite strings, if for any
finite string =z,

accepts if x € L
Mz .
rejects if x & L.

Let C be an additional language. A Turing machine M decides a language L on C if M
decides a language L’ such that LNC =L NC.

A polynomial-time Turing machine M is a Turing machine for which there exists a
constant ¢ € N such that all computation paths of M terminate within O(|x|¢) steps on
all input strings . A language L is polynomial-time decidable if there is a deterministic
polynomial-time Turing machine that decides L. We denote the class of all polynomial-
time decidable languages by PTIME. We let NP denote the class of all languages decidable
by a non-deterministic polynomial-time Turing machine.

A logarithmic-space Turing machine is a Turing machine whose input tape is read-only,
and which accesses at most O(log(|x|)) different work tape cells for any computation
path for all input strings x. LOGSPACE is the class of all languages L for which there
exists a deterministic logarithmic-space Turing machine that decides L. We also use
the word logspace as an abbreviation for logarithmic space. We denote the class of all
languages decidable by a non-deterministic logarithmic-space Turing machine by NL.

A logspace transducer is a deterministic logspace Turing machine which has, in addition
to its read-only input tape and its worktapes, one write-only output tape. Note that the
length of the output string may be polynomial. Logspace transducers can be concatenated,

7 Similar to Lemma 3.3.18 (see footnote of Proposition 15), Corollary 3.3.21 is only shown for IFP+C
in [31]. The proof of Corollary 3.3.21 uses Lemma 3.3.18, the definability of simple arithmetics,
connectivity and the Transduction Lemma. Hence, Corollary 3.3.21 also holds for all logics L that
are closed under logical reductions and are as least as strong as STC+C.
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that is, if one logspace transducer uses the output of another as its input, these two
transducers can be combined into a single logspace transducer (cf. [48]).

We use the terms Turing machine and algorithm interchangeably.

2.7.2. Capturing Complexity Classes

We can associate with an ordered structure (A4, <) a binary string enc(A, <) that represents
this ordered structure (see [31], Section 3.1.2, for possible representation schemes). For
structures A, in general, we let the set A< of all ordered representations of A be

A< :={enc(A4,<) | <is a linear order on U(A)}.

For a class A of structures, let A< :=J o4 4A<.

Let L be a logic, 7 be a vocabulary and A be a class of T-structures. A 7-sentence ¢ of L
defines the class A if for all 7-structures A we have A € A <= A = ¢. The class A
is L-definable if there exists a 7-sentence ¢ of L that defines A. Let K be a complexity
class. The language A< is K-decidable if A< € K. Logic L captures the complexity class
K if for every vocabulary 7 and every class A of T-structures, A is L-definable if and only

if A< is K-decidable .

Let L be a logic and C be a class of structures. Further, let 7 be a vocabulary and A be a
class of T-structures. A T-sentence ¢ of L defines the class A on C if for all r-structures
A€ C wehave Ae A < A= . The class A is L-definable on C if there exists a
T-sentence ¢ of L that defines A on C. Let K be a complexity class. The language A<
is K-decidable on C< if there is a language L € K such that L NC< = A< NC<. Logic L
captures K on C if for every vocabulary 7 and each class A of 7-structures, A is L-definable
on C if and only if A< is K-decidable on C<.

Remark 20. The definition of capturing actually has to be refined to exclude pathological
examples of logics (cf. [17]). We have to pose restrictions on what constitutes a “logic”.
Further, we need an effective procedure that maps any 7-sentence that defines a class
of T-structures A (on C) to a Turing machine that decides A< (on C<). To include this
(cf. [17]), we say a logic L effectively captures a complexity class K (on C) if L captures
K (on C) (as defined above), and for every vocabulary 7, the set of 7-sentences of L is
decidable and there is a recursive procedure which assigns to every 7-sentence ¢ of L a
Turing machine M and (the code of) a function f such that M decides {A | A = ¢}< (on
C<) and f witnesses that M is resource-bounded according to K. Within all capturing
results in this thesis the respective logic effectively captures the respective complexity
class (on the respective class of structures). a

On ordered structures there already exist capturing results for the complexity classes
PTIME and LOGSPACE. One fundamental result in descriptive complexity theory is the
Immerman-Vardi Theorem.

Theorem 21 (Immerman-Vardi Theorem, [39, 66]). IFP captures PTIME on the class
of all ordered structures.
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Further, Immerman showed that there also is a descriptive characterization of the

complexity classes LOGSPACE and NL.

Theorem 22 (Immerman [41, 42]). On the class of all ordered structures

e DTC captures LOGSPACE, and
e TC captures NL.

Since DTC < STC and STC-formulas can be evaluated in logarithmic space [62], Theo-
rem 22 implies the following corollary.

Corollary 23. STC captures LOGSPACE on the class of all ordered structures.

Let L be a logic that captures a complexity class on ordered structures. If L is closed
under logical reductions, then in order to show that L captures a complexity class on a
class C of structures, it suffices to find a (parameterized) L-canonization of C. As we can
pull back each sentence of L under this canonization, the capturing result transfers from
ordered structures to the class C.

Proposition 24. Let L, := {FP,FP+C} and L,y := {DTC,DTC+C,STC,STC+C}.

1. Let L € Lyoy. If a class C of structures admits L-definable canonization, then L
captures polynomial time on C.

2. Let L € Liog. If a class C of structures admits L-definable canonization, then L
captures logarithmic space on C.

2.8. Graph-Theoretical Preliminaries

2.8.1. Depth-First Tree Traversal

There are different methods to traverse a graph, that is, to visit each vertex at least
once. One method that is commonly known is depth-first search (see e.g. [63]). For
trees depth-first search is also called depth-first tree traversal. In [53], for example, it
is shown that depth-first tree traversal is possible in logarithmic space.® Note that the
representation of the nodes of the tree in the input string of the algorithm induces a
linear order on the nodes of the tree, and therefore on the children of each node. We
assume that the children of a node are given in this order.

In the following we summarize depth-first traversal as it is described by Lindell in [53].
It is illustrated in Figure 2.1. We start at the root. For every node of the tree we have
three possible moves:

e down: go down to the first child, if it exists
e over: move over to the next sibling, if it exists
e up: buck up to the parent, if it exists

At each step we only need to remember our last move and the current node. If our last
move was down, over or there was no last move, which means we are visiting a new
node, then we perform the first move out of down, over or up that succeeds. If our last
move was up, then we are backtracking, and we call over if it is possible or else up.

81n [53] Lindell proves that tree canonization is in LOGSPACE.
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Figure 2.1.: Depth-first tree traversal

2.8.2. Max Cliques and Spanning Vertices

Let G = (V, E) be an arbitrary graph. A maximal clique, or maz clique, of G is a clique
of GG that is not properly contained in another clique of G. The set of max cliques of G
is denoted by M. We omit the index if it is clear what graph we are referring to. Let
k > 0. We say k vertices v1,...,vr € V span a max clique A € M, if A is the only max
clique that contains vertices vy, ..., vg.

Let C be a class of graphs, and k& > 1. For the remainder of this section, we assume the
following.

Assumption 25. For every graph G € C, each max clique of G is spanned by k vertices.

We show that the max cliques of graphs in graph class C are FO-definable.

Lemma 26. Let A be a maz clique of a graph G = (V, E), and vy,...,v, € A. Then
U1, ..., 0, span A if, and only if, for all v,w € V \ {vy,..., v} with v # w there is an
edge between v and w if {v1,...,vp} X {v,w} is a subset of E.

Proof. Let S := {v1,...,v;} be a subset of max clique A of G. Let us assume there
exist vertices v,w € V' \ S with v # w such that there is no edge between v and w but
S x {v,w} C E. Then SU {v} and S U {w} are cliques but S U {v,w} is not a clique.
Thus, S U {v} is a subset of a max clique C' with w ¢ C, and S U {w} is a subset of a
max clique D with v € D. Consequently, vertices vy, ..., v; are contained in more than
one max clique and therefore do not span A.

Next, let us suppose vy,...,v; do not span A. Then there must exist another max
clique B with vy,...,vx € B. As A cannot be a subset of B, there exists a vertex
v e A\ B. Now, BU{v} cannot be a clique. Thus, there must exist a vertex w € B that
is not adjacent to v. Since v is adjacent to all vertices in A \ {v}, we have w € B\ A.
Consequently, v and w are vertices in V' \ S with v # w that are not adjacent although
S x {v,w} is a subset of E. O

Let vy, ...,v; € V. Vertices vy, ..., v are jointly contained in a max clique precisely if,
v; = v; or v; and v; are adjacent, for all 4,j € [k]. Therefore, vertices vy,...,v, € V
span a max clique if, and only if, for all 4,j € [k] we have v; = v;, or v; and v; are
adjacent, and for all v,w € V' \ {v1,...,vx} with v # w vertices v and w are adjacent if
{v1,..., v} X {v,w} is a subset of edge relation E. This characterization of spanning
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vertices allows us to define max cliques in FO. The following formula is satisfied by a
graph G € C and vertices v1,...,v; € V if and only if vertices v1,..., v, span a max
clique.

@span($17 e 7$k) = /\ (l‘l =x;V E(xi,xj))
3,5€[k]

A VaVy <( /\ E(z,x;) A /\ E(y, acz)) — E(;c,y)) (2.2)
]

i€[k] ielk

If vertices vq,..., v, span a max clique, then according to Lemma 26 vertices vy, ..., v
and all vertices w with {vy,..., v} x {w} C E form a clique. It is not hard to see that
this clique is maximal. The next formula allows us to define max cliques, and for graphs
G € C we have G = pp(v1, ..., vk, w) exactly if vq, ..., v span a max clique A of G and
w € A.

OM(T15 -, Thy Y) = Pspan(T1, - .-, Tk) A ( \/ y=x; V /\ E(y,xz)) (2.3)
1€[K] 1€[K]

In order to decide whether the vertices vy, ..., v and v}, ..., v} span the same max clique,
we use formula pgpan ~. It is satisfied for a graph G € C and vy,...,vg, 0], ..., v, € V if
and only if the vertices vy, ..., v and the vertices vi,..., v}, both span max cliques of G
and the max cliques are equal.

Gspana(T1y ooy Ty @, o0, X)) = Qepan (T1, - -+, T) A Pspan (], -+ -, TF)

AVY (pm(z, sz, y) < om(ah, . 2k, y)). (24)

Clearly, @span~ defines an equivalence relation on the set of all k-tuples of spanning
vertices. We use these equivalence classes to represent the max cliques, and obtain the
following corollary.

Corollary 27. For graphs G € C the maz cliques of G are FO-definable.

2.8.3. Centroids

Let T'= (V,E) be a tree and w € V. Let C,...,C} be the connected components of
T\ {w}. The weight wg(w) of w in T' is the maximum of |Cy|,...,|Ck|. A node w € V
of minimal weight is called a centroid of T.

Lemma 28 ([46], p. 387). There are at most two centroids in a tree, and if two centroids
exist, they are adjacent.

Observation 29. Let T be a tree with at least one inner node. Then all centroids of T
are inner nodes.

Proof. Let T = (V, E) be a tree with at least one inner node w. Let C,...,Cy be the
connected components of 7"\ {w}. Since w is an inner node, it holds that & > 2. Let us
consider a connected component C;. Each connected component C; with j # i contains
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at least one vertex. Therefore, |C;| < |V|—1— (k —1). Thus, the weight of w in T is at
most |V| —k < |[V]—2. Now, let us suppose the outer node w is a centroid of T'. As w is
a leaf, T\ {w} has one connected component C' and |C| = |V| — 1. Consequently, |V|—1
is the weight of w in T. It follows that w is not a node of minimal weight. O

In order to define the weight of a vertex in STC+C, we use the STC-formula 9conn (v, 21, 22)
from Example 10. For each tree T" and w,vy,vy € V(T') we have

T = Yeonn[w, v1,v2] <= vy and vy are connected in 7"\ {w}.

The following STC+C-formula ¢y, uses Jeonn to determine the sizes of the connected
components of the tree T after removing a vertex w. Formula ¢y, (y, p) is satisfied for a
tree T' and a pair (v,n) € V(G) x N(G) if and only if the weight of v in T is n.
@Wg(@%p) = du #z 19C0nn(y7 x, Z) =p A V' Vp/(#z ﬁconn(ya x/, Z) = p/ - p/ < p)
We can use this formula to define the centroids of a tree in STC+C. We let
peon () = I (Pus(y: ) A VY 9D (g (0, 0) = P < 7)) (2.5)
For each tree T'= (V, E) and w € V we have

T = Yeen|w] <= w is a centroid of T.
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Introduction

The (unique) modular decomposition of a graph partitions the vertex set of the graph into
modules, that is, into subsets that share the same neighbors. By recursively constructing
the modular decompositions of the subgraphs induced by these modules, one eventually
obtains the modular decomposition tree of a graph.

Modular decomposition (also called substitution decomposition) was introduced in 1967
by Gallai [21] as a tool for the structural analysis of comparability graphs. In the
following it found a variety of applications in graph theory [58, 36]. For example,
modular decomposition is often employed in recognition algorithms for classes of graphs
that are well-structured with respect to the modular decomposition, like permutation
graphs [61], interval graphs [37] and cographs [10]. The modular decomposition tree
of a graph can be constructed in linear time [55, 11, 13]. It is useful to solve many
combinatorial optimization problems on graphs efficiently [58]. Another application of
modular decomposition is graph canonization. In particular, modular decomposition
has been used to show that there exists a logarithmic-space algorithm for computing a
canonization mapping for interval graphs [47]. In descriptive complexity theory, modular
decomposition was first used by Laubner [49, 50]9, showing that the class of interval
graphs admits FP+C-definable canonization. This implies that FP+C captures PTIME
on interval graphs.

In this thesis, we use modular decomposition to prove that FP+C also captures PTIME
on permutation graphs and chordal comparability graphs. To this end, we show that
(under certain conditions that have to be made more precise) a logic captures PTIME on
a class C of graphs if it captures PTIME on the class C* of LO-colored graphs with prime
underlying graphs from C.!1° A graph is prime if only the vertex set itself and all vertex
sets of size 1 are modules of the graph. For each class C of graphs that is closed under
induced subgraphs and every logic L that is as least as expressive as FP+C and closed
under FP+C-reductions, we prove the Modular Decomposition Theorem, which says that
there is an L-canonization of C if there is an L-canonization of the class C*. It follows
from the Modular Decomposition Theorem that L captures PTIME on C if L captures
PTIME on C*.

To prove the Modular Decomposition Theorem, we show that the modular decomposition
of a graph is definable in STC+C. This also proves that there exists a logspace algorithm
that computes the modular decomposition of a graph, which we extend to an algorithm
that computes the modular decomposition tree in logarithmic space.

This part of the thesis is organized as follows: In Chapter 3 we first introduce modules
and the modular decomposition of a graph. Furthermore, we show that there exists

¥ The canonization result in [47] is actually based on observations of Laubner in [49, 50].

10 Note that an LO-coloring is a coloring of the vertices of the graph where the colors are linearly ordered.
Often it is easy to extend an L-canonization of a class D of (prime) graphs to an L-canonization of
the class of LO-colored graphs with underlying graphs from D (cf. Chapters 5 and 6).
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an STCH+C-formula that defines the modular decomposition. We outline the logspace
algorithm behind this formula and extend it to a logspace algorithm that computes
the modular decomposition tree of a graph in Section 3.5. In Chapter 4, we prove the
Modular Decomposition Theorem. Finally, in Chapters 5 and 6 we apply the Modular
Decomposition Theorem to show that FP+C captures PTIME on the class of permutation
graphs and the class of chordal comparability graphs, respectively.
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The aim of this chapter is to show that the modular decomposition of a graph is
definable in symmetric transitive closure logic with counting, and therefore, computable
in logarithmic space.

First, we introduce modules and the modular decomposition of a graph in this chapter.
Then in order to show that the modular decomposition is definable in STC+C, we consider
modules that are spanned by two vertices, that is, modules that contain the two vertices
and are minimal with this property. We use the concept of edge classes introduced by
Gallai in [21] to show that these spanned modules are definable in STC+C. Afterwards,
we show how the spanned modules are related to the modules occurring in the modular
decomposition, and exploit the STC+C-definability of the spanned modules to define
the modules of the modular decomposition. As a result, we obtain that the modular
decomposition is definable in STC+C. Consequently, it is computable in logarithmic
space. In the last part of this chapter we outline the logspace algorithm behind the
STC+C-formulas. Finally, we introduce the modular decomposition tree and show that
it is computable in logarithmic space as well.

We utilize the STC+C-definability (actually we only require FP+C-definability) of the
modular decomposition in order to prove the Modular Decomposition Theorem in
Chapter 4.

3.1. Modules and their Basic Properties

Let G = (V, E) be a graph. By G we denote the complement graph of G which has vertex
set V and edge set E where e € E if and only if e ¢ E. A non-empty subset M C V is a
module of a graph G if for all vertices v € V' '\ M either v is adjacent to all vertices in M
or v is adjacent to no vertex in M. Thus, a non-empty subset M C V is a module if and
only if for all v € V'\ M and all w,w" € M we have

{v,w} € E < {v,u'} € E.

HIBE R B

(a) The connected components of G; and G are modules. (b) The highlighted sets, for exam-
ple, are modules of graph G3.

Figure 3.1.: Modules
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All vertex sets of size 1 are modules. We call them singleton modules. Further, the vertex
set V is a module. We also refer to the module V and the singleton modules as trivial
modules. The connected components and unions of connected components of G or G are
modules as well (see Figure 3.1a). Figure 3.1b shows a further example of modules in a
graph.

A module M is a proper module if M C V. We call a graph prime if it does not contain
any non-singleton proper modules. Thus, a graph is prime if all its modules are trivial
modules. Figure 3.2 shows a prime graph. Notice that if M is a module of a graph G,
then M is also a module of G. Therefore, a graph G is prime if and only if G is prime.

e

Figure 3.2.: A prime graph

In the following we show three fundamental properties of modules.

Observation 30. If M; and My are modules of a graph G with M; N My = 0, then
either there exist no edges between vertices in My and vertices in My, or every vertex in
My is adjacent to each vertex in Ms.

Proof. Let there be an edge between vertices v; € M7 and vy € Ms. Then v; must be
adjacent to all vertices in My as My is a module. Since each vertex v in Ms is adjacent
to v1, there must also be an edge between v and each vertex in M; as M; is a module.
Consequently, there is an edge between each vertex in M; and every vertex in M. [

Observation 31. If My and My are modules of a graph G and have a non-empty
intersection, then My N My and My U My are modules as well.

Proof. Let M := My N My be non-empty. In order to prove that M is a module, we
need to show that for all vertices v € V' \ M and all vertices w,w’ € M there is an edge
between v and w if and only if there is one between v and w'. Thus, let v € V'\ M and
w,w" € M be arbitrary vertices (see Figure 3.3a). There exists an ¢ € [2] such that v is
contained in V' \ M;. Further, we have w,w’ € M; since M is a subset of M;. As M, is a
module it follows that v and w are adjacent if and only if v and w’ are. Consequently,
M is a module.

$CHINEO

(a) My N M is a module (b) My U Ms is a module
(here, v € V'\ Ms). (here, w € My, w’ € Ms).

Figure 3.3.: llustrations for the proof of Observation 31
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Now let us consider the union of two modules M7, My with non-empty intersection, and
let M' := MyUDMs,. Let v e V\M'" and w,w" € M’ be arbitrary vertices (see Figure 3.3b).
Suppose that w is in M; and w' is in M with j, j* € {1,2}. Further, let z be a vertex in
My N M. Aswvisin V\ M;, and M, is a module, v and w are adjacent if and only if
there is an edge between v and z. Equivalently, there is an edge between v and w' if and
only if v and z are adjacent. Thus, there is an edge between v and w if and only if there
is one between v and w’. Hence, M; U M5 is a module. ]

Observation 32. Let M’ be a module of G, and M be a subset of M'. Then M is a
module of G if and only if it is a module of G[M'].

Proof. If M is a module of G, then clearly it must be a module of G[M']. Thus, we only
need to show the other direction, and we let M be a module of G[M']. To show that M
is a module of G, let us consider arbitrary vertices v € V' \ M and w,w’ € M. If v is
in M’ then v and w are adjacent if and only if v and w’ are, since M’ is a module. If
v € V'\ M, then we can use that w,w’ € M’ and M’ is a module of G. Again we obtain
that there is an edge between v and w if and only if there is one between v and w’. [

3.2. Modular Decomposition

In the following we present the modular decomposition of a graph, which was introduced
by Gallai in 1967 [21]. The modular decomposition decomposes a graph, and can be
applied recursively.

Let G = (V,E) be an arbitrary graph. We let n be the number of vertices in G. If
G (or G) is not connected, then every connected component of G (or G) is a module.
Thus, if we partition the vertices of G (or G) into its connected components, we have a
partition of V into proper modules. For graphs G where G and G are connected there
also exists a unique partition of V into proper modules. Gallai showed that for those
graphs G, the maximal proper modules of G form a partition of V' if n > 1 (Satz 2.9
and 2.11 in [21]). Actually, Figure 3.1b does not only depict arbitrary modules, but the
maximal proper modules of a connected and co-connected graph. A graph is co-connected
if the complement of the graph is connected.

Consequently, we can partition each graph G with n > 1 into proper modules. For a
vertex v of graph G we let Dg(v) be the respective proper module containing vertex v.
Thus, for a vertex v of a graph G with at least two vertices, Dg(v) is!

e the connected component of G that contains v if G is not connected,
e the connected component of G that contains v if G is not connected, or
e the maximal proper module of G that contains v if G and G are connected.

If the graph G has only one vertex v, we let Dg(v) := {v}.

! We can also say Dg(v) is the maximal strong proper module of G that contains v. (A module M is
strong, if we have M N M' =0, M C M’ or M’ C M for all other modules M’.) Gallai proved that
the maximal strong proper modules partition the vertex set of G (Satz 2.11 in [21]), and that for
each graph G they coincide with the sets Dg(v) as they are defined here (Satz 2.9 and 2.10 in [21]).

37



3. STC+C-Definability of the Modular Decomposition

We define the (recursive) modular decomposition® of G as the following family of subsets
D;, CV with i € [0,n], v € V. Welet Dy, :=V for all v € V, and for i € [0,n] we
define D; 1, for all v € V recursively:

Diy1. := Dgp, ,)(v)-

As an example, a graph and its modular decomposition is illustrated in Figure 3.4.

2: 1=3: 1=4: 1=25:
... L) L)

L) L)
o' «®

.. .\.. .:.

Ba i

Figure 3.4.: Modular decomposition of a graph

It is easy to see that there exists a k € [0,n] such that V' = Dy, D D14 D -+ D Dy, = {v}
and that D;, = {v} for all i > k. Thus, D,,, = {v} for all v € V. For all i € [0,n] and all
v € V the set D; , is a module of G as we can apply Observation 32 inductively. Further,
an easy induction shows that the set {D;, | v € V'} is a partition of the vertex set V for
all 7 € [0,n]. Hence, we can conclude the following.

Observation 33. For allv,w € V and alli € [0,n], the modules D; ,, and D; ., are equal
if and only if w € D;,.

3.3. Spanned Modules and (W)edge Classes

Let v,w € V be vertices of G. We let M, ,, be the intersection of all modules of G that
contain v and w. Notice that V' is a module containing v and w. Therefore, the set M, ,,
exists. Further, M, ,, is non-empty, since v and w are contained in M, ,,, and as there
exist only finitely many modules containing v and w, Observation 31 implies that M, ,,
is a module. Consequently, M, ,, is the smallest module containing v and w. We say
vertices v,w € V span module M if M = M, ,,, that is, if M is the smallest module
containing v and w. We call M a spanned module if there exists v,w € V that span M.
Trivially, M, , = {v}.

2 Note that usually the term modular decomposition denotes only the decomposition of the graph
into the modules D¢ (v), v € V.
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3.3. Spanned Modules and (W)edge Classes

Let e,/ € FE be two edges of G. We say e and ¢’ form a wedge in G if there exist
three distinct vertices u,v,w € V such that e = {u,v}, ¢/ = {u,w} and there is no edge
between v and w. We also write e/\e’ if the edges e and €’ form a wedge in G. Clearly,
ehe’ implies €/ Ae. We call the relation A the wedge relation on E. We say two edges
e and ¢’ are wedge connected if their exists a k > 1 and a sequence of edges eq, ..., e,
such that e = ey, ¢/ = e; and e;Ne;yq for all 1 < i < k. It is not hard to see that wedge
connectivity is an equivalence relation on the set of edges of the graph. We call the
equivalence classes the edge classes of G.2 Thus, the edge classes partition the set of
edges of a graph. The same way, we can partition the set of edges of the complement
graph G of G. We define the wedge class of a binary set {v,w} of vertices as the edge
class of G that contains {v,w} if {v,w} is an edge of G, or as the edge class of G that
contains {v, w} otherwise. For distinct vertices v and w we let W, ,, be the set of vertices
occurring in binary subsets in the wedge class of {v,w}. Hence, W, ,, is the union of all
elements in the wedge class of {v, w}. Clearly, we have v,w € W, .

d d d
a a a
e C e e
b b b
f f f
(a) Graph H (b) Edge classes of H (c) Edge classes of H
Figure 3.5.

Example 34. Consider the graph H, depicted in Figure 3.5a.

The following edges form a wedge in H:

e {b,c} and {c,d},
e {b,c} and {c, e},
e {b,c} and {c, [},
e {a,c} and {c,d},

{a,c} and {c, e},
{arc} and {c, £},
fed} and {c, f},
{d,e} and {e, f}.

Thus, for example, {c,e} is wedge connected to {b,c}, {a,c}, {c,d}, {c, f} and itself.
The edge classes of H, which are illustrated in Figure 3.5b, are

{{a,0}}, {{a,c}{b, ¢}, {e.d} {c, e} {c, f}} and {{d, e}, {e, [}}.

The complement of H and its edge classes are shown in Figure 3.5c. Finally, we list some
examples of the set W, ,, for distinct vertices v,w € V(H):

i We,f = {dveaf}v i def = {d> f})
o W.r=V(H), o Wyr=V(H)\ {c}. a

3 Edge classes (or Kantenklassen) are defined in [21]. We extend this definition to wedge classes.
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3. STC+C-Definability of the Modular Decomposition

Lemma 35 ([21], Satz 1.5). Let v,w € V with v # w. Then W, ,, is a module.

Proof. Let v # w. For a contradiction, let us assume that there exist a,b € W, ,, and
2z & Wy with {a,z} € E and {b,z} ¢ E. Let a/ and b’ be vertices in W, ,, such that
{a,d’} and {b,V'} are in the wedge class of {v,w}. Without loss of generality let v and w
be adjacent. Then a and o/, and b and b’ are also adjacent. Since {a,a’} and {b,0'} are
wedge connected, there exists a k > 1 and a sequence e, ..., e of edges with e; = {a,d’}
and e = {b,b'} and e;Ne;41 for all 1 < i < k. Next we show that there exists an edge
ej = {cj,¢j} with 1 < j <k in this sequence such that {c;, 2} € E and {c}, 2} ¢ E. Then
{¢j, ¢} and {cj, 2} form a wedge, which means that {c;, 2} belongs to the wedge class of
{v,w} as well, and it follows that z € W, ,,, which is a contradiction to the choice of z.
So let us assume that for all i € [k] vertex z is adjacent to both vertices of e; or to none.
As a and z are adjacent, z is adjacent to both vertices of e;. Further, for all i < k edges
e; and e;y1 share a vertex. Thus, it follows inductively that z is adjacent to both vertices
of all edges e; with ¢ € [k]. We obtain a contradiction, since {z,b} ¢ E. O

Lemma 36 ([21], Satz 1.5). W, ,, € M, ,, for all vertices v,w € V with v # w.

Proof. Let v # w, and without loss of generality let v and w be adjacent. Let z € W, .
Then there exists an edge € with z € ¢ that is wedge connected to e := {v,w}. In
the following we prove that each edge that is wedge connected to e is a subset of M, .
As a result z € M, ,,, and therefore W, ,, C M,,,. Let e and ¢’ be wedge connected,
then there exist eq,..., e, such that e = e, ¢/ = ¢, and e;Ne;1q for all 1 < i < k. We
show inductively that e; C M, ,, for all j € [k]. Clearly, e; C M, ,,. Now let ¢; C M, ,,
for j € [k — 1]. We show that ejy1 © My, as well. Since e;jMeji1, there exist distinct
vertices a,b,c € V such that e; = {a,b}, ej11 = {a,c} and {b,c} € E. As a,b € M,,,
the assumption that ¢ ¢ M, ,, directly implies that M, , is not a module. Thus, ¢ has to
be contained in M, ,, and ej11 C M, . O

Lemma 35 and 36 yield the following corollary.

Corollary 37. M, ., = Wy, for all vertices v,w € V with v # w.

In the following Lemma we show that spanned modules are definable in symmetric
transitive closure logic. As a consequence, they are also computable in logarithmic space.
Lemma 38. There exists an STC-formula o (x1,22,y) such that for all pairs (vi,ve) € V2
of vertices of G, the set oy |G, v1,v2;y] is the module spanned by vy and vs.

Proof. To prove this lemma we apply Corollary 37, which allows us to use the definition
of Wy in order to define the module spanned by two distinct vertices.

First of all, we need a formula for the wedge relation, that is, a formula which is satisfied
for vertices vy, ve, w1, we € V if, and only if, {v1,va}N{wi,we} in G. Clearly, this is
precisely the case if there exist 4,5 € [2] such that

v; = wj, v3_; # w3_j, and
{vi,v2}, {wi,we} € E, {vs_j,w3_;} € E.
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3.4. Defining the Modular Decomposition in STC+C

Thus, we obtain an FO-formula for the wedge relation by taking the disjunction of the
above statement over all 7, j € [2]. Since the wedge relation is symmetric, we can use the
STC-operator to express wedge connectivity. Hence, there exists an STC-formula that
expresses wedge connectivity in G, and similarly we obtain one for wedge connectivity
in G, as well. Using these formulas we are able to define the wedge classes of a graph.
Consequently, we can also define the set W, ,, for distinct vertices v,w € V in symmetric
transitive closure logic.

Now it remains for ¢j; to distinguish between the cases of whether the spanning vertices
are equal or not and define the spanned module accordingly. O

3.4. Defining the Modular Decomposition in STC+C

In this section we prove that the modular decomposition of a graph is definable in
symmetric transitive closure logic with counting.

Let us fix a v € V. Our goal is to define the sets D; , for i € [0,n]. We use the modules
M, ., with w € V for it. It is possible to construct D;, out of certain modules M, ,, with
w € V. In order to do that, we first need to gain a better understanding of the connection
between D; , and the sets M, .

Lemma 39 (]21], Satz 2.9 and 2.11 in connection with Satz 1.2 (3b)*). Let G and G be
connected and let M', M" € M be maximal proper modules of G with M' # M". Further
letve M and w e M". Then M,,, =V.

Proof. The set of all maximal proper modules M of G is a partition of V' if G and G are
connected and n > 1. Since this is a fact which is commonly known, we only show that
Lemma 39 follows directly from this fact, although their actual proofs in [21] are linked.

Let us assume M, ,, is a proper module. Then there must exist a maximal proper module
M € M such that M, ,, C M. Sinceve M'NM and w € M"NM, and M is a partition
of V' into maximal proper modules, we have M’ = M and M"” = M. Thus, M’ = M", a
contradiction. O

Corollary 40. Let i € [0,n] and v € V. If G[D;,] and its complement are connected
and |D; | > 1, then for all vertices w € D;, \ Djy1,, we have D, = M, 4.

Lemma 41 ([21], Satz 1.2 (2)*). Let G be not connected and v and w be in different
connected components of G. Let C, and C,, be the respective connected components. Then
M, = Cy U Cy.

Proof. We know that C, U C\, is a module containing v and w. Thus, M, ,, has to be a
subset of C, U Cy,. To show that M, , = C, UC\, we assume that there exists a vertex
in C, U C,, that is not contained in M, ,,. Without loss of generality, let this vertex
be in C,. As C, is connected, there must exist a vertex x € C, \ M, such that z is
adjacent to a vertex y € M, ,, N C, (see Figure 3.6). Now z and y € M, ,, are adjacent,
but there is no edge between z and w € C,, N M, ,,. Since M, ,, is a module, we have a
contradiction. OJ

41n [21] Gallai showed this lemma for the set Wy, ., instead of My w.
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3. STC+C-Definability of the Modular Decomposition

C, Cy
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Figure 3.6.: Illustration for the proof of Lemma 41

Corollary 42. Leti € [0,n—1] andv € V. If G|D;,| or its complement is not connected,
then for all w € D;,, \ Dit1,, we have My, = Djy1,4 U Dit1,.

From Corollary 40 and 42 we can conclude that in some cases there exists a vertex
w € V such that D;, = M,,. As shown, this is the case if G[D;,] and its complement
are connected, or if G[D;,] or its complement consist of two connected components. If
G[D; ] or its complement consists of more than two connected components, then for each
w € D;, we have M, ,, # D;,. However, D, , is the union of all connected components
Dj 1.4 with w € D;,,. Thus, Corollary 42 shows that D , is the union of all M, ,, where
w € D;, is in a connected component different from the one containing v.

Let v € V be fixed. So far we have seen, that we obtain each set D;, by taking the union
of certain submodules M, ,, of D;,. We show in the following that we can partition the
vertex set V' into Ag, ..., A} such that

L%m:: LJ Aluwy

weAY

where £ is minimal with Dy, , = {v}. In order to obtain this partition we order the modules
M, ., with w € V with respect to proper inclusion. This order is a strict weak order
(Lemma 43). Hence, incomparability is an equivalence relation. If we identify each module
M, ., with its vertex w, the incomparability relation leads to an equivalence relation
on the vertex set V. The resulting equivalence classes form the partition {Ag,..., A}}.
Consequently, we obtain the sets D;, by taking the union of all sets M, , that are
incomparable with respect to proper inclusion. An example showing the connection
between D; ,,, M, ., for w € V and the sets Ag, ..., A} for a specific vertex v € V' is given
in Figure 3.7a and c. We define the relation <, by letting wy <, ws if and only if the
module spanned by v, ws is a proper subset of the module spanned by v,w;. Further,
wy and wq are incomparable with respect to <, if neither w; <, wy nor wy <, w;.
Figure 3.7b depicts the relation <, for the example in Figure 3.7a.

Lemma 43. For every v the relation <, is a strict weak order, that is, a strict partial
order, where incomparability is transitive.

Proof. 1t is easy to see that <, is transitive and irreflexive. Let us show that incompara-
bility is transitive. Thus, let w; and ws, and wy and w3 be incomparable with respect to
<, and let us assume that w; and w3 are comparable, that is, without loss of generality
we have w; <, ws, which means M, ,,, D My ,. Let i € {0,...,n} be maximal such
that D;, contains M, v, , My, and My ,.
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3. STC+C-Definability of the Modular Decomposition

First of all, we show that M, ., # D;, for all j € {1,2,3}. M, 4, cannot be equal
to D;, as M, ., is a proper subset of M, . If the module M, ,, was equal to D,,,
then My, C My 4,, and ws and wy would be comparable with respect to <,. Thus,
My w, # Diy. Finally, M, ., cannot be equal to D;, either since M, ,, = D;, implies
that M, w, C M, ., and then wy and w; would be comparable. Consequently, neither of
My wy s My, and M, is equal to D;,, and |D;,| > 1.

Now, if G[D;,] is connected and co-connected, we can partition D;, into maximal
proper modules, and for all j € [3] we obtain that M, is a subset of module D; 1,
if wj € Djy1, or equal to D, if wj € D, \ Diy1, (Corollary 40). As we have shown
above that M, # D;, for all j € [3], we have My ., , My wy, Myw; € Dit1,, which is a
contradiction to the choice of 1.

If G[D; ] is not connected, we can partition D; , into its connected components. The case
of G[D;,] being not connected can be treated analogously. For every u € D, ,, the set
D;41, is the connected component of G[D;,| containing u. Let us denote D;1q, by Ci.
Since i has been chosen maximal, there has to be a j € {1,2,3} such that My, is not
contained in C,,. For this j, vertex w; must be a vertex in M, ., \ Cy, and by Corollary 42
we obtain that M, ., = C, U Cy ;- As wy and wsy are incomparable and wy and w3 are
incomparable, independent from our choice of j, there exists an index k € {1,2,3}\ {j}
such that w; and wj, are incomparable. Thus, M, ,, cannot be a proper subset of
C,UCy,, and consequently, M, ,, \ C, # 0. As above, we obtain that module M, ,, is
equal to C, UC,, . Let us assume j = 3 or k = 3. Module M, ,,, = C,UC,, is a proper
subset of module M, ,,,. Thus, M, ,, \ C, # 0 and we can deduce M, ,, = C, UC,y, as
we did before. Since both M, ,,, and M, ,, are the union of two connected components,
M, v, cannot be a proper subset of M, ,,. Therefore, j =1 and £k = 2, or j = 2 and

= 1. As a consequence, we have M, ., = C,UCy, and M, ,, = C, UC,,. Now, if
My w, \ Cy # 0, then M, ,,, is the disjoint union of the connected components C, and
Cu,, a contradiction to M, y, C My, . If M, ., is a subset of C,,, then M, ,,, is a proper
subset of M, .,,, which yields that wy and w3 are comparable, a contradiction. Hence,
incomparability is transitive. O

There exists an STC-formula ¢_(x,y1,y2) such that for all v,w;,ws € V we have
G E ¢_[v, w1, ws] if, and only if, wy <, we, that is, the module spanned by v, ws is
a proper subset of the module spanned by v, w;. Let ¢ be the formula from Lemma 38.
Then we let

P ($7?/1ay2) = VZ(SOM(:IJ)yZaZ) — QDM(zaylyz))
A 32(¢N1(x7y17 Z) A _‘SOM(%?J% Z)) (31)

According to Lemma 43 incomparability with respect to <, is transitive. Hence, incom-
parability is an equivalence relation. We denote the incomparability of two vertices w
and w' by w ~, w'. We let [w], be the equivalence class of w, and V/., be the set of
all equivalence classes. Then V/., = {A§,..., A}}. We let [z], <, [w], if there exist
2" € [z], and w' € [w], such that 2’ <, w’. Notice that if w and ', and z and 2’ are
incomparable with respect to strict weak order <., then z <, w implies 2’ <, w’, and <,
induces a strict linear order on V/., .

We use the strict linear order on the equivalence classes of the incomparability relation
induced by <, to assign numbers to the equivalence classes, which match their position
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3.4. Defining the Modular Decomposition in STC+C

within the strict linear order. We assign 0 to the smallest equivalence class regarding <.
The largest equivalence class regarding <, is [v], = {v}. Let p,: V/., — N be this
assignment. Then p,([z],) < py(Jw]y) if and only if [z], <, [w],, for all z,w € V. We let

Siw = {v}u U{Mv,w | po([w]e) =14, we V}

for all 4 € [0,n]. Thus, S;, is the union of {v} and all modules M, ,, where w belongs to
the equivalence class at position ¢ regarding <,. If k¥ + 1 is the number of equivalence
classes of ~,, then

o _ UMy | po([w]y) =i, weV} ifi<hk
T e if i >k

Lemma 44. For alli € {0,...,n} and v € V, we have D;, = S; .

Proof. We prove this by induction on 4. First, let us consider ¢ = 0. The set Dy, is
equal to V for all v € V. We show that Sy, is equal to V as well. Let G and G be
connected. We prove that there exists a w € V such that M, ,, = V: If n = 1, then
M,, =V and w = v serves the purpose. If n > 1, we can apply Lemma 39, and let
w be from a different maximal proper module than the one containing v. We obtain
M, ., =V, and p,([w],) = 0. Thus, Sp, is equal to Vif G and G are connected. Let G or
G be not connected, and for each u € V let C, be the connected component of G or G
containing u. For all w € V' we have either M, ,, C C, if w € C,, or if w € C,, we have

M, = C, U C,, according to Lemma 41. Thus, for all w ¢ C,, we have p,([w],) = 0, and
So,v is the union of {v} and all sets C,, U C,, with w & C, and therefore equal to V.

Let ¢ > 0. By inductive assumption, we have D;_1, = Sj_1,. Let us first consider the
case where D;_; , and S;_1, are equal to {v}. Then clearly, D;, = {v}. Further, if there
exists an w € V with p,([w],) =i — 1, then w = v. Thus, [v],, the largest equivalence
class regarding <, is situated at position at most ¢ — 1. Therefore, S; , = {v} as well.
Hence D;, = S; .

Now we let D;_1, and S;_1, contain more than one vertex. Then, ¢ — 1 is smaller than
the position of the largest equivalence class within the strict linear order <,. In the
following suppose G[D;_1,] is connected and co-connected. Then there is a w’ such
that D;_1, = M, (Corollary 40). First, we show that p,([w'],) =i — 1: Since w’ is
contained in M, v = S;_1,, there must exist a w” € V such that p,([w"],) =i —1 and
w' € M, . Consequently, M, ., C M, ,», and p,([w'],) > p,([w”]y). Further, we have
My € My as M, = Si—1, and M, C S;—1,. Therefore, p,([w"],) > p,([w']y).
It follows that p,([w"],) and p,([w'],) are equal, and we obtain p,([w'],) =i —1. As a
consequence, p,([w],) =i — 1 for all w € V' with M, ,, = D;_1 .

Next we prove that D;, = S;, in the case where G[D,_;,] and its complement are
connected: The set D, , is a maximal proper module of G[D;_; ,] containing v. According
to Corollary 40, we have M, ,, = D;_1, and p,([w],) = i — 1 for all w € D;_;, with
w & D;,. Therefore, for all w € V vertex w is contained in module D;, if and only
if py([w],) > @ — 1. It follows that M, ,, C D, for all w € V with p,([w"],) =i — 1.

Hence,S;, C D;,. Now, if G[D;,]| is connected and co-connected, there exists a vertex
z € V such that D;, = M, . (Corollary 40). Further, p,([z],) = i as D;, is a proper
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3. STC+C-Definability of the Modular Decomposition

or its complement is not connected, then ¢ < n and for all w € D;, \ D;y1, we have
My = Dit10 U Dit1, (Corollary 42). Thus, for all w € D, ,, either M, ,, C Djt1, if
w € Diy14 or My = Diy14 U Digy, if w & Djyq,. Hence, we have p,([w],) = i for all
w e Diﬂ, \ Di+1,v7 and Diﬂ, = U{Muw | w e Diﬂ, \Di—i-l,v} - Siﬂ). We obtain Di,v = Si,v-

module of G[D;_1,|. Thus, D;, C S;,, and therefore, D, , = S;, in this case. If G[D; ]

Now, let G[D;_1,] be not connected. The case of G[D;_1,] being not connected can
be treated analogously. By Corollary 42 we know M, ., = D;., U D;, for all w €
D;_1,\Dj,. Asfor all wy,ws € D;j_y,\ D;, modules M, ,,, and M, ,, are incomparable,
po([wily) = pu([wa]y). Let us show that p,([w],) = i — 1 for all w € D;_1, \ Di,.
Let w € D1, \ Dj,. Since D;_1, = S;_1, by inductive assumption, there exists a
w' € V such that p,([w']y) =i —1 and w € M, ,s. Consequently, M, , C M,  and
po([w]y) > py([w']y). On the other hand we have that D;_q, is equal to the union of
all My, with w € D;_y, \ D;,. As w' € D;_y,, there exists a w” € D;_1, \ D;, with
w' € M, . It follows that M, . C M, 4 and p,([w']y) > po([w”],). Since modules M,
and M, .~ are incomparable, we have p,([w"],) = p,([w],). Therefore, p,([w],) =i — 1.

The set D;, is the connected component of G[D;_1,| containing v, and every module
M, ., with p,([w],) > i is a subset of D;,. Similar to the case where G[D;_1,] and its
complement are connected, we can use Corollary 40 and 42 to obtain D;, = S;,. ]

Theorem 45. There is an STC+C-formula ¢p(p,x,z) such that for all graphs G, all
i € N(GQ) and all vertices v € V(G) the set ¢p|G,i,v;z] is the set D;, of the modular
decomposition of G.

Proof. First we define a formula ¢,.q that assigns to each vertex w € W the position
po([w]y) of [w], within the strict linear order of the equivalence classes of the incom-
parability relation induced by <, for v € V. More precisely, G = @ora[v, w,n] if and
only if p,([w],) = n, for all v,w € V(G) and n € N(G). Clearly, @orq is satisfied for
v,w € V,n € N(V) exactly if n is the number of equivalence classes that are smaller
than [w], regarding <,. Thus, we need an STC+C-formula which counts the number of
equivalence classes smaller than [w],. We obtain such an STC+C-formula by an easy
application of the Transduction Lemma for parameterized STC+C-transductions. We use
a transduction ©(z) = (Oy(z,y), 0~(z,y,v'),0<(z,y,y")) where for each v € V, 0y and
0~ define the equivalence classes of ~,, and 6. defines the strict linear order on them
induced by <,. More precisely, we let

Ov(z,y) =T,
O~(z,y,y") = ~o<(z,y,4") A ~p<(z,y,y),
9_<(3?, Y, y/) = (,0.<(.CIZ', Y, yl)a

where ¢ is the formula defined in (3.1). Then we obtain ¢,.¢ by applying the Transduc-
tion Lemma to the formula #v/'(y' < y) = p.

Now, we let ¢ be the formula from Lemma 38, and we apply Lemma 44, that is, we
use that D;, = S;,, Then it is easy to see that the following formula is as desired:

@D(p7$7z) = Ely(g&ord(.’lf,y,p)/\QDM(.T,:I/,Z)) VI =z O

As STC+C-formulas can be evaluated in logarithmic space [62], we obtain the following
corollary.
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Corollary 46. There exists a Turing machine, which given a graph G = (V,E), a
number i < |V| and vertices v,w € V' decides in LOGSPACE whether w € D;,,.

3.5. A Logspace Algorithm for the Modular Decomposition Tree

In the previous section we showed that the modular decomposition is definable in STC+C,
and therefore, computable in logarithmic space. The aim of this section is to briefly
outline the logspace algorithm behind the STC+C-formulas. Further, we define the
modular decomposition tree, and extend the algorithm to a logspace algorithm for the
modular decomposition tree.

Logspace Algorithm for Corollary 46

According to Corollary 46 there exists a logspace algorithm that decides for a graph G,
vertices v,w € V and i € [0,n] whether vertex w is contained in D;,. In the following
we shortly describe such an algorithm. It is based on the fact that w € D;, if, and only
if, there exist (at least) i + 1 vertices w;, ..., up such that u; = w and M, ,, C My, ,

for all k € [i].

First of all, we need a logspace algorithm that tests for two vertices u, ' whether module
M, is a proper subset of module M, , . Clearly, this is not the case if ' = v, and
this is always the case if © = v and «’ # v. Thus, let u # v and v’ # v. According to
Corollary 37 the spanned modules are equal to their respective wedge classes. Hence,
we have to decide whether W, ,, C W, ,». A vertex a is contained in set W, , for z # v
if and only if there exists a vertex b with b # a such that {v, z} is wedge connected to
{a,b} in G or G. Now wedge connectivity amount to (undirected) connectivity in the
graph Gyedge With vertex set (‘2/) where there is an edge between e, e’ € (‘2/) if and only if
ele’ in G or G. Clearly, there is a logspace transducer that constructs Gwedge, and as
(undirected) graph connectivity is in LOGSPACE [62], there exists a logspace transducer
for wedge connectivity. Hence, it is possible to determine in logspace whether a € W, ,,.
In order to find out if W, ,, C W, ., we check whether a € W, ,, implies a € W,, ,» for all
vertices a € V.

Now that we have a logspace algorithm that decides proper inclusion for two spanned
modules M, ,, and M, , with u,u € V, we can present an algorithm that finds out if
w € D;, for v,w €V and i € [0,n]. As already mentioned, we use that w € D;, if, and
only if, there are (at least) i + 1 vertices u;, ..., up such that u; = w and M, ,, C My, ,
for all k € [i]. The algorithm starts with u; = w. In each step it determines for a vertex
uy, with k € [i] a vertex ug_; such that M, ,, is a proper subset of M,,, , and there
exists no vertex uy_; with My, C M, C My, . The algorithm counts the number
of possible steps. If there are at least 7 steps, then w € D, ,,.

Modular Decomposition Tree

Next, let us turn to the modular decomposition tree. Let the family of subsets D;,
with ¢ € [0,n], v € V be the modular decomposition of graph G = (V, E). The modular

47



3. STC+C-Definability of the Modular Decomposition

decomposition tree of G is the directed tree T' = (Vp, Er) with

Vi :={D;,|i€[0,n),veV}
Er = {(Di,v,Di—H,v’) € ng | Djy1,. C Di,v}

Hence, the vertex set V is the root of the modular decomposition tree of G. The children
of each vertex D;, with |D;,| > 1 are the maximal proper modules of G[D; |, and the
singleton sets {v} for v € V are the leaves of the tree.

Corollary 46 implies the following Corollary.

Corollary 47. There ezists a Turing machine, which given a graph G = (V, E), oultputs
the modular decomposition tree of G in logarithmic space.

Proof. First, there is a logspace Turing machine 77 that outputs the sets D;, for all
i € [0,n] and v € V in the following way: For each i € [0,n], we set a marker for i, and
we output the sets D;, for all v € V. To output a set D, ,, we first mark the beginning of
a new set D;,. Then we go through all vertices w € V' in the lexicographic order of their
representation in the input string, and we output w € V' if w € D;,. This is possible in
logspace by Corollary 46.

We use this output as an input for a logspace Turing machine 75 that eliminates duplicates.
We keep the markers for ¢ € [0, n] and we only keep the first occurrence of a set D;,, with
i € [0,n], v € V. Hence, for each set D;, listed at marker ¢, there is no ¢ > ¢ such that
Di',v = Di,v-

Again we use this output as an input for a logspace transducer, T3, which now creates
the modular decomposition tree. To output the vertex set we only have to remove the
markers for ¢ € [0,n]. We obtain the (directed) edges by going through all sets D; , and
finding the edges outgoing at D;,. Thus, for every set D;, we go to the next marker and
check for each set D;,1, at this next marker whether D; ., is included in D;,. If this
is the case, we output the edge {Dj y, Dij1.w}-

The composition of T7, 15 and T3 yields a logspace transducer for the modular decompo-
sition tree. O]
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4. The Modular Decomposition Theorem

The Modular Decomposition Theorem is a tool for showing that certain classes of graphs
admit FP+C-definable canonization. It also extends to logics L that are stronger than
fixed-point logic with counting and are closed under parameterized FP+C-transduc-
tions. Let C be a class of graphs that is closed under induced subgraphs. The Modular
Decomposition Theorem states that there is an L-canonization for C if there is one for
the class of LO-colored graphs (defined in Section 2.3.4) with prime underlying graphs
from class C. We use the Modular Decomposition Theorem in Chapters 5 and 6 to prove
that there exists an FP+C-canonization for the class of permutation graphs and the class
of chordal comparability graphs, respectively. As a result, FP+C captures polynomial
time on these graph classes. In [49] (also [50]) Laubner used modular decompositions to
prove that FP+C captures polynomial time on interval graphs. The application of the
Modular Decomposition Theorem in [49] (and [50]) would lead to a shorter proof.

Overview

Let us shortly elaborate on how the Modular Decomposition Theorem exploits the
properties of the modular decomposition of a graph and why we consider LO-colored
graphs with prime underlying graphs.

Given a graph we can contract all modules to vertices. The resulting graph is called
a modular contraction and is introduced in Section 4.1. Given a modular contraction
and the graphs induced by the modules we can recreate the original graph by replacing
each vertex with the corresponding module. We can restore the original edge relation as
modules are either completely connected with edges or not at all.

Now in order to compute a canon we could simply take the canon of the modules and
the canon of the modular contraction and combine them. However, we need to be able
to reassign each vertex in the canon of the modular contraction to the canon of the
module it represents. That is why we do not use the canon of the modular contraction,
but the canon of a colored version of it. Basically, we color the vertices of the modular
contraction with the canons of the graphs induced by the corresponding modules. To
realize this coloring we encode the canons into a binary relation on the numbers, which
we call the representation of the canon. We introduce this representation in Section 4.2.
As a result we obtain an LO-colored graph.

Hence, to be able to construct the canon of a graph, we need the canonization of LO-
colored modular contractions to be definable. Modular contractions are either complete
graphs, edgeless graphs or prime graphs. As complete graphs and edgeless graphs are
easy to handle, we only require that the canonization of LO-colored graphs with prime
underlying graphs is definable.

On a first glance it seems rather inconvenient to have to find a canonization for a class of
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4. The Modular Decomposition Theorem

LO-colored graphs. However, LO-colored graphs have a linear order on its colors. Often
it is not hard to extend a canonization of a class of (prime) graphs to a canonization of a
class of (prime) graphs with ordered colors (see Chapters 5 and 6).

4.1. Modular Contraction

In this section we introduce the modular contraction of a graph and some basic properties
of it. The modular contraction is basically the graph that we obtain by contracting the
maximal proper modules of a graph to vertices.

For a graph G = (V, E) let ~¢ be the equivalence relation on V' given by the partition
{D¢g(v) | v € V}. Dg(v) is defined on page 37. We let G.. be the graph consisting of
vertex set V/., = {v/e, | v € V}}, where there is an edge between vertices w/., and
w'/., if and only if there is one between w and w’ in G. Since w/.. and w'/. . are the
modules Dg(w) and Dg(w'), edges are well-defined (Observation 30). We call G, the
modular contraction of G. Thus, the modular contraction of a graph G is

e an edgeless graph with as many vertices as there are connected components in G if
G is not connected,

e a complete graph with as many vertices as there are connected components in G if
G is not connected, or

e if G and G are connected and |V (G)| > 1, a set of vertices one for each maximal
proper module where there is an edge between two vertices exactly if the corre-
sponding modules are (completely) connected with edges; or a single vertex if

V(@) =1.

"AHIE =2 "B

(G1).: (Ga)..: @— (Gs)e: O—O—O—

(a) Graphs G (not connected) and G (not co-connected) (b) Graph G3 (connected and co-
and their modular contractions (Gi)_ and (Ga). connected) and its modular
contraction (G3)~

Figure 4.1.: Modular contractions

Figure 4.1 depicts the graphs from Figure 3.1 together with their modular contractions.

Observation 48 ([21], Satz 1.8). If G and G are connected, then the modular contrac-
tion G~ of G is prime.

Proof. Let G and G be connected, and let us assume the modular contraction G.. of
G is not prime. Then there exists a non-trivial module M. in G.. We show that
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M = H{v/e, € M.} C V is a module of G, which is a contradiction to v/., € M.
being maximal proper modules of G. Let v € V'\ M and w,w’ € M. We have

{v,w} € E(G) <= {v/eg: W/} € E(G-)
> {V/ug,W/up} € BE(GL) <= {v,w'} € E(G)

The second equivalence follows from M. being a module. O

As a consequence of Observation 48 we obtain that G.. and also the modular contraction
G.. of the complement graph G are prime if G and G are connected. Further, notice that
for a prime graph H with more than 2 vertices, H and its complement are connected.

Lemma 49. For every graph G, the modular contraction of G is isomorphic to an
induced subgraph of G.

Proof. For every vertex w € V(G.) in the modular contraction of G, we can find a
representative v € V(G) such that w = v/.,. Let U be the set of representatives. Then
veUwr v/, €V(G.) is an isomorphism between the induced subgraph G[U]| and the
modular contraction G.. O

For all modules D;, of G, we denote the modular contraction G[D; ]~ of G[D;,]| for all
t <nand v e Vby G;,. Notice that Gy, is the modular contraction G of G.

4.2. The Representation of a Graph

In the following we introduce the representation of a graph. As we only need to represent
canons of graphs, we suppose our graph G has the vertex set [|[V(G)|]. We use the
representation to encode the given graph in a binary relation. Later, when we want to
color vertices with graphs, we use these representations as colors instead. As a result we
obtain an LO-colored graph.

Let G be a graph with vertex set [|[V(G)|]. We encode graph G in a symmetric binary
relation grep(G) C [0, [V(G)[]?. Relation grep(G) contains all edges of the graph and the
pair (n,n) where n is the number of vertices in G. More precisely, we let

Grep(G) = {(m, m) [ {m,m"} € E(G)} U{(n,n) [n=[V(G)}.

We call grep(G) the representation of G. An example of a graph and its representation
can be found in Figure 4.2. Conversely, we can interpret every symmetric binary relation
R C N(G)? as a graph ggrapn(R). We call ggrapn(R) the graph of relation R. Let n/ be
minimal with the property that (n’,n’) € R, or 0 if such an n’ does not exist. We let

V (ggraph(R)) := [1,n] and
E(ggraph(R)) = {{ml,mQH(ml,mQ) e RN [1, n/]Z} \ {{nl,n'}}'

Notice that we obtain the empty graph if n’ = 0. It is easy to see that ggraph(grep(G)) = G.
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1 4
G: '3\/ Gren(G) = {(1.3), (3. 1), (3.4), (4,3), (5.5)}

2e ®5

Figure 4.2.: A graph G and its representation grep(G)
4.3. The Modular Decomposition Theorem

In this section we present the Modular Decomposition Theorem, the main theorem of
Part I. Let C be a class of graphs that is closed under induced subgraphs. Further, let
L be a logic with FP4+C < L that is closed under parameterized FP+4C-transductions.
The Modular Decomposition Theorem proves that in order to show the existence of an
L-canonization of graph class C it is sufficient to find a (parameterized) L-canonization
for all LO-colored graphs with prime underlying graphs from class C.

LO-colored graphs are graphs that are colored with binary relations on an ordered set.
They were introduced in Section 2.3.4. We call an LO-colored graph H*= (U, V, E, M, <, L)
prime if the underlying graph (V, E) is prime. For a class C of graphs that is closed under
induced subgraphs, we let C* be the class of all LO-colored graphs H*= (U, V, E, M, <, L)
where the underlying graph (V, E) is a prime graph in C and |V| > 4.

Theorem 50 (Modular Decomposition Theorem). Let L be a logic with L > FP+C that is
closed under parameterized FP+C-transductions. Further, let C be a class of graphs which
is closed under induced subgraphs. If C* admits L-definable (parameterized) canonization,
then C admits L-definable canonization.

If L > FP+C and there is a parameterized L-canonization of C* then there also exists
an L-canonization of C* by Proposition 15. Hence, it suffices to prove the Modular
Decomposition Theorem under the assumption that C* admits L-definable canonization.

Remember that C* admits L-definable canonization if, and only if, for 7 = {V, E, M, <, L}
there is an L(7, 7U{<})-transduction ©¢ such that for every LO-colored graph H* € C* the
LO-colored graph ©°[H*| is an ordered copy of H* Let K* be the class of all LO-colored
graphs where the underlying graph is complete, and Z* be the class of all LO-colored
graphs where the underlying graph is edgeless. Without loss of generality we can assume
that ©° defines not only a canonization mapping for all prime LO-colored graphs in C*
but also for all LO-colored graphs in I*UZ* It is easy to describe in FP+C whether the
underlying graph H of an LO-colored graph H* is complete or edgeless. Also, it is not
hard to define the canon of an LO-colored graph H*€ K*UZ* in FP4C (see Example 17).
We only need to assign the vertices of H* to numbers according to the lexicographical
order of the vertices’ natural colors. (The natural color of a vertex of an LO-colored graph
is defined in Section 2.3.4.) Thus, we can extend O° in such a way that it first detects
whether LO-colored graph H* is in *UZ* or not. If H* € K*UZ*, then ©° defines the
canon as explained above. If H* ¢ K*UZ*, then ©° behaves as originally intended. Thus,
from now on we assume that ©° is an L-canonization for the class Cg; := C*U K*UZ™
Notice that Ci; contains all prime LO-colored graphs where the underlying graph is in C,
because every prime graph with less than 4 vertices is complete or edgeless. Further, we
let f* be the canonization mapping defined by ©°.

In order to show the Modular Decomposition Theorem the idea is to construct the canon
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of each G € C recursively using the modular decomposition. Let n be the number of
vertices of G. Then for all i € {n,...,0}, starting with i = n, we inductively define the
canons of the induced subgraphs G[D; ] for all v € V. We can trivially define the canon
for each module that is a singleton. For the inductive step we consider the modular
contraction G;, of G[D;,] for all i <n and v € V. For all i < n and v € V the graph G, ,
is prime if G[D;,| and G[D;,] are connected, complete if G[D;,] is not connected or
edgeless if G[D; ,] is not connected. We transform G, into an LO-colored graph G7,
by coloring every vertex w /~c[ Di ) of G;, with the representation of the canon of graph
G[Dit1,0)- The canon of G[D;j1,,] is definable by inductive assumption. Then G7, € C*
or G}, € K*UZ". Thus, we can apply f* to get G} ,’s canon K;,. Now each vertex in
K7, stands for a module, and the color of every vertex is the representation of the canon
of the graph induced by this module. Therefore, we can use the color to replace each
vertex of K7, by the module the vertex represents. Further, the order on the vertices of
K}, induces an order on the vertices of the resulting graph.

4.4. Proof of the Modular Decomposition Theorem

In the following we will give a detailed proof of the Modular Decomposition Theorem. We
start by recursively defining the canonization mapping f which maps each graph G € C
to its canon f(G). Afterwards we show that this canonization mapping is L-definable.

Canonization Mapping

In this section we define the canonization mapping f, which maps each graph G € C to
the canon f(G) = (V) Erc), <f))- We let the vertex set of canon f(G) be [|[V(G)].
The linear order on the vertex set is the natural order on [|V(G)]].

If [V(G)| = 1, then the canon of G is f(G) := ({1},0, <{13). Now in order to define the
canonization mapping f on graphs G with |V (G)| > 1, we use their decomposition into
modules to recursively construct the canon of a graph from its modules’ canons. In a first
step we define G, the LO-colored graph of G, which has G-, the modular contraction
of G, as underlying graph. To obtain G, we color every vertex w/.. in G. with the
representation of the canon f(G[Dg(w)]) of G[Dg(w)]. More precisely, we let

Gi = (UG*N 3 VGL ’ EGi 3 MG*Na S]G*N 3 LG*N)

where
Ugs = Vs U Mg,
(Ve , Bar ) = G,
Mg, = [0,[V(G)]],
ez = =p,v(c) and
Lo :={(v,1,7) € Vgx X MC%:

(,4) € grep (f(G[Da(v)]))}-

The construction of G, is illustrated in Figure 4.3.
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M n B Losellaet]|et {1,2), {10} {@.2)} {@.2)}
> ° 2,1),
o o 2 4 02|02 @314),

(4,3),
(4,4)}

Graph G Modular contraction G.. Modular contraction G~ The graph G},
and the maximal proper and the canons f(Dg(w)),
modules Dg(w),weV weV

Figure 4.3.: Construction of G,

As G, the underlying graph of G*, is a modular contraction, G.. is a prime graph,
complete or edgeless. Therefore, we can use the given canonization mapping f* to obtain
the canon of G*:

K? = (Uk+,Vk=, Eg+, Mg+, g+, Lg» , <g-).

To get the canon of G we replace each vertex w € Vg« of the ordered LO-colored graph K
by the graph represented by w’s natural color (which is defined in Section 2.3.4). Since
each LO-colored graph consists of a linear order on the basic color elements, the natural
colors of isomorphic LO-colored graphs are equal. Hence, the natural colors of K* match
the (natural) colors of G¥,, which again encode the canons of the subgraphs induced by the
modules the vertices represent. Thus, we replace the vertices of K* by the corresponding
canons. We use the linear order on the vertices (given by the linear order <g- restricted
to the vertex set Vi~ ) to replace one vertex after the other. We name the new vertices
consecutively according to the time of their installment (and their order in the respective
canon). Figure 4.4 shows the construction of f(G).

w z x vy z x Yy w Zx
.—.—.—.
*——1o—0—0 .—.—.—. 9| [eslfe7
{(a;b), {(a,a)}{(®,0)} {(b,b)} {(1,2), {1, D} {(2,2)} {(2,2)} 13 m> ><\-
| I w6l —tes
(c,d), (3,4), 2 4 .2
(d,c), (4,3),
(d,d)} 4,9}
A possible canon K*  The underlying The underlying graph Graph f(G)
of graph G* where graph and the and the graphs
w<gx T<pg»Y<pg=z, natural colors of K* represented by the
a k= b= c<dk= d natural colors of K

Figure 4.4.: Construction of f(G)

In the following we describe the construction of the canon f(G) more precisely. For
all vertices w € V-, let LE be the natural color of w, and let n,, be the only element
with (14, n,) € LY. Since the module that w stands for (and whose induced subgraph’s
canon’s representation is the natural color of w) consists of at least one vertex, such an
Ny, exists and 0 < ny,, < |Mg- |. To construct the canon we assign each vertex n of the
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graph ggraph(LY)) of representation LI to the number

nb(w,n) :=n + Z Ny, (4.1)

’
w' < gk w
KX

w’E\/K:kV

where w' <g+ w if and only if w’ <g» w and w' # w. Clearly, mapping nb is a bijection,
that maps (n,v), where n is a vertex in the graph represented by vertex v’s natural color,
to m € [|[V(G)]].

We add a pair of numbers to the edges of f(G) if they represent vertices from different
modules, and the modules are completely connected; or they represent vertices from the
same module that are connected by an edge. Thus, we add {mj, ms} to the edges of

£(G) if

1. there exist an edge {wi,ws} € Ek» and numbers ni,ny € [|[Mg=x
N1 < Ny, N2 < Ny, and (mq, mg) = (nb(wi, n1), nb(ws, n2)), or

2. there exist a vertex w € Vi and a pair (ny,ns) € LY such that ny # ny and
(m1,ms) = (nb(w,n1),nb(w, ns)).

| such that

Clearly, the ordered graph f(G) is an ordered copy of G on the number sort. In the
Observation 51 we show that for isomorphic graphs G and Gy we have f(G;) = f(Gs).
Hence, f is a canonization mapping.

Observation 51. For isomorphic graphs G and G' from class C, we have f(G) = f(G').

Proof. Let h be an isomorphism between G and G’. We show that f(G) = f(G’) by
induction. Clearly, we have f(G) = f(G') if G and G’ consist of only one vertex.
Therefore, let |V(G)| = |[V(G')| > 1. As the modular decomposition of a graph is unique,
isomorphism A maps every maximal proper module of G to a maximal proper module
of G'. Hence, the respective graphs induced by the maximal proper modules of G and G’
are isomorphic, and by inductive assumption f maps them to the same canon. Further, h
induces an isomorphism h. between G. and G’ . Consequently, the graphs G* and G'*
are isomorphic. They are mapped to order isomorphic copies K* and K'* by f*. Let g
be an isomorphism between them. Clearly, for each vertex v € Vi, vertices v and g(v)
have the same natural color. Further, we have v; <g- vy if and only if g(vi) <g/+ g(ve).
As a consequence, f(G) = f(G"). O

In the following five steps we show that f is L-definable.

Step 1: Transduction from the Graphs to the LO-Colored Graphs

For all modules D; , of G with i < V(G) and v € V(G), we denote the LO-colored graph
(G[Din)) of G[D;,] by G7,,. Notice that the underlying graph of G}, is G;,. It is not
hard to see that within the recursive definition of f(G) we need the canons f(G[D;,]) of
the subgraphs induced by all modules D;, for i < V(G) and v € V(G) of the modular
decomposition of G.

The first step in constructing an L-formula that defines f is to define the colored version
G}, of the modular contraction G;, for all G € C and all i € N(G) and v € V(G).
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For this purpose, we define a counting transduction ©# (o, z, X), where o is a number
variable, z is a structure variable, and X is a relational variable of type (n,s,n,n). It is a
parameterized L[{E}, {V, E, M, <, L}]-counting transduction, which maps every graph G
to an LO-colored graph va = O#[G,i,v, R] for (G,i,v, R) € Dom(©# (0, z, X)). Thus,
©%(0, 2z, X) defines a parameterized mapping from the graphs to the LO-colored graphs.
For some triples (i,v, R) € G(>%X) where R is a specific relation depending on i and v,
the LO-colored graph va is isomorphic to G} ,. We let

6#(0)25 X) = <9d0m(07Z7X)7 QU(Ou ZvXu y)u 9%(07 ZvXuy)y,)7
HV(Oa ZaXa y)a QE(O,Z,X, yvy/)a
OM(Ov z)X)p))eﬂ(Ov z)X)pap/)a 9L(07 Zvayapvp/))v
where

Odom (0, 2z, X) := —largest(o) (see Section 2.4),
Ouv(o, 2, X,y) := pplo,z,9),

0~(0,2,X,y,y") := Fo'(0+1=0 Npp(d,y,v)),
Ov(o,z,X,y):= T,

Or(0,2, X, y,y) == E(y,y),
Oy (0,2, X,p) = T,

04(0,2,X,p,p'):= p<p and

0r(0,2,X,y,p,p') := Fo'(o+1=0 NX(,y,p,D)).
As a reminder, formula ¢p(o, z,y), which was introduced in Theorem 45, defines the set

D, ,, of the modular decomposition, i.e. for all i € N(G) and all vertices v € V(G) we
have ¢p[G,i,v;y] = Dj,.

Let G € C. We say a triple (i,v, R) € G(>*X) is suitable for G € C if it satisfies i < |V (G))|
and the following property:

For all w € D;, the relation R;i1, := {(n1,n2) | (i + 1,w,n1,ne € R)} is the
representation of the canon of G[D;1 ] defined by f.

We let Suit(G) be the set of all suitable triples for G.

Lemma 52. Let G be a graph in C and let (i,v, R) € G®*X) be a suitable triple for G.
Then (G, i,v, R) € Dom(0%(0, 2, X)) and Gf¥, = G},,.

Proof. Let G € C and let i € N(G), v € V(G) and R C N(G) x V(G) x N(G)? be such
that (i,v,R) € Suit(G). Then, i < |[V(G)|. Therefore, (G,7,v,R) € Dom(0%#(0,2z,X)).
Clearly, 0y[G,i,v, R;y| is the set D;,. Further, ~[G,i,v, R;y,y'] is the equivalence
relation {D;11, | w € V(G)}. Let =~ denote this equivalence relation. Then the
universe of GfY, is the set D;,/~ U [0,|V(G)|]. The vertex set V(GF,) is D;, /~, and it
is not hard to see that the formulas 6y, 6~ and 0 of transduction ©* (o, z, X) define
the graph G;,. Further, M(GF)) = [0,|V(G)|] and <(GF,) is the natural order on
[0,]V(G)]]. Finally, formula 6, defines the color relation. As (i,v, R) € Suit(G), relation
{(m1,m2) | (i +1,w,my,my) € R} is the representation of the canon of G[D;;1,)] for
all w € V(G), and we obtain that G, that is, ©#[G,i,v, R], is equal to Gy, for all

2,0

(i,v, R) € Suit(G). O
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Later, we will make sure that the triple of parameters (o, z, X) is always interpreted by a
suitable triple.

Step 2: Transduction from the Graphs to the ordered LO-Colored Graphs

Since ©%(o, z, X) is a counting transduction, there exists a parameterized L-transduction
©*(0, z, X) with the same domain such that ©#[G, i, v, R] and ©*[G, i, v, R| are isomorphic
for all (G,i,v, R) in the domain (Proposition 14). As a consequence, Lemma 52 holds
for L-transduction ©*(o, z, X) in a similar way: For a graph G € C and a suitable triple
(i,v, R) € G®*X) the tuple (G, i, v, R) is in the domain of ©*(0, z, X), and the LO-colored
graph ©*[G, i, v, R] is isomorphic to G

"

Let G € C and let (i, v, R) be a suitable triple for G. Then ©*[G, i, v, R}, as it is isomorphic
to G7,, is an LO-colored graph in Ciz. We know that there exists an L-canonization ©°
for the class Cx-; of LO-colored graphs. According to Proposition 12 we can compose
transductions ©*(o, z, X)) and ©% We obtain an L[{E},{V, E, M, <, L, <}|-transduction

©*(0, z, X) where (G,1i,v, R) € Dom(©*(0, z, X)) for all G € C and (i, v, R) € Suit(G).

As ©*[G,i,v, R] and G7, are isomorphic for G € C and suitable triples (i,v, R) for G,
and O° is a canonization, the ordered LO-colored graph ©°[©*[G, i, v, R]] is an ordered
copy of G7,. Further, for all (G,i,v,R) € Dom(©*‘[o, z, X]) the ordered LO-colored
graphs ©*[G,i,v, R] and O°[0*[G, i, v, R|| are isomorphic. Thus, ©*°[G, i, v, R] also is
an ordered copy of Gy, for G € C and suitable triples (i,v, R) for G. We denote the
ordered copy ©*[G,i,v, R] of G}, by K.

The relations between the different transductions used in Step 2 are illustrated in
Figure 4.5.

*

00,2 %) GF = ©*[G,i,v,R]
l
G ecC @*(O,Z,X) * . o° ¥ .
(i,v, R) € Suit(G) (G, i, v, B] 0°(6*(G,i,v, ]|
2
©*(0,2,X)

K}, = ©*[G,i,v, R]

Figure 4.5.: Overview of the transductions
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4. The Modular Decomposition Theorem

Step 3: Defining the Edge Relation

In the following we construct a {V, E, M, <, L, <}-formula that given an ordered LO-col-
ored graph K, defines the edge relation of f(G[D;,]) as it is defined in the first part of
this section.

In order to do this, we have to define the function nb(w,n) from (4.1) in logic L. For
every vertex w of K7, and each vertex n occurring in the graph of the natural color of
vertex w, nb(w, n) is the number that vertex n is assigned to in the canon of G[D; ,].

Function nb(w,n) depends on the values n,, for certain vertices w’. Value n,, is the
number of vertices in the graph represented by the natural color of vertex w. We can
determine this number by finding the only vertex w for which (u, ) belongs to the color
of w. Then n,, is the number of vertices that are smaller than u with respect to the
linear order <J(K7,) of the basic color elements. We define n,, in formula ¢y, :

en(@p) = y(L(z,y,9) A p=#y (A 9) Ny # ).

Then we have K/, = ¢n, [w,ny] if, and only if, the graph represented by the natural
color LY of vertex w has n,, vertices, where LY is the natural color of w in K7 ,. Notice
that formula ¢, cannot be satisfied if w is a basic color element.

To define function nb(w, n), we first check whether n € [n,,]. Then we count the vertices
occurring in the graphs of the natural colors of all vertices w’ that are smaller than w
with respect to the linear order <(K/,), and the vertices n’ in the graph of the natural
color of w with 0 < n' < mn. Thus, we let

@ub (2,7, 8) == 3p (pn,, (x,p) A0 <7 < p”)
A <s = #(2',1") (Elp’ (On (@, P)YN <@, z) N2’ #£x A0 <7 <p'”)
Vg =xzn“0<r < r”))).
Then K, = oun[w,n, m] if and only if w is a vertex, n € [n,] and nb(w,n) =m in K.
With formula ¢y, we are able to define the edge relation of the canon of G[D;,]. We let
©0E(s1,52) == @E1(51,52) V @p2(s1, s2)

where

pp1(s1,s2) = Jr1, 22,71, 72 (E(ZE17£U2) A @nb($jarj75j)>a
je{1.2}

©0p2(s1,82) = 3T,Y1,Y2,71, 72 (L(507y17y2) AT1F# T2

AN (rj = #y(A,95) Ay 7# y;) A pan (@, 75, Sﬁ)))

Jje{1,2}

It is not hard to see that ¢g 1 [K/,; 51, s2] and SDE’Q[KZ'*’U; s1, 2] are exactly the edges of

2,0

the canon of G[D;,| obtained by Rule 1 and Rule 2 from the first part of this section.
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4.4. Proof of the Modular Decomposition Theorem

Step 4: Pulling Back the Formula for the Edge Relation

Now we have a {V, E, M, <, L, <}-formula ¢g(s1,s2) that defines the edge relation of
the canon f(G[D;,]) for a given ordered LO-colored graph K;,. In order to use the
formula to construct an { E}-formula for the canonization mapping f, we need to pull it
back under transduction ©*(o, z, X). Hence, we apply the Transduction Lemma to the
formula ¢g(s1,s2). We obtain an {E'}-formula @Ee*c(o,z, X,q1,q2). Let G € C and let
(i,v, R) be a suitable triple for G. Then (G,i,v, R) € Dom(©*(o, z, X )). Thus, for all
tuples my, mo of numbers in N(G), we have

GE cpge*c[i,v,R,ml,mg] < (mi)g,(Mm2)c € N(K,) and (4.2)

K}, E epl(mi)a, (m2)cl.
The length of tuples q1, g2, and therefore also of mq, Mo, is the same and depends on the
length of the tuple of domain variables of the canonization ©°. Let ¢ be the length of the
listed tuples. Let m; = (ml,...,m{) and let the other tuples be defined analogously. In

the following we show that in each variable tuple we only need the first number variable,
as the others are always assigned to 0.

Let G be again a graph in C and let (i,v, R) be a suitable triple for G. Since the vertex
set of f(G) is [|V(G)[], we have (m1)q, (m2)e € [|[V(G)]] for all my,me € N(G)* with
K}, | xel{mi)a, (M2)¢]. Now remember that for a tuple 7 = (n1,...,n¢) € N(G)",

V4
(@) = Y m (V@) +

Consequently, we have mj1 = 0, and also m% = 0, for all j > 1, which means that
mi = (m1)g and mi = (ms)¢.

Now we define formula ¢p as follows:

d)E(Oa Z, Xa qi1, q2) = SOEG*C (07 2, Xv (qlv 07 ey 0)7 (CI27 07 ey O))
Then, for a graph G € C, (i,v, R) € Suit(G) and my, my € N(G) we have
G = ¢gli,v, R,mi, mg] <= There is an edge between vertices my

and mg in f(G[D;y]).

Step 5: Inductive Definition of the Canon f(G)

We are now able to inductively define the edge relation of the canon f(G) of G € C. We
let

bk (s1,82) :=30', 2 (0/ =0A s1# 52 A fp(X(0,2,q1,q2)  ¢) (0,2, 51, 82))
where

¢ =1V (2 A (DB V ¢n,,))
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4. The Modular Decomposition Theorem

and

(Z)l(ov 2,41, qQ) : largeSt(O) ANqr = 1A g2 = 17
¢2(07 ZaX7 q1, QQ) : _'largeSt(O) A 30’, Z/a qlla q/Q(O + 1= 0/ A X(0/7 Zla qll7qé))>
bn.,(0,2,q1,q2) = q1 = @2 N1 = #Y ¢p(0,2,9).

The relational variable X within the inflationary fixed-point operator of formula ¢ is
of type (n,s,n,n). Let X* be the relation assigned to variable X after the fixed-point
is reached. We show in Lemma 53 that for each i € N(G) and v € V(G) the set of
pairs {(ni,n2) | (i,v,n1,n2) € X} is the representation of the canon f(G[D;,]). For
i =0 and any vertex v € V(G) we have D;, = V(G). Therefore, for all G € C and all
ni,ny € N(G),

G = ¢k[ni,n2] <= {ni1,n2} is an edge in the canon f(G).

Formula ¢ of the inflationary fixed-point operator is constructed such that ¢, defines
the basis of the inductive definition. For ¢ = |V (G)| and all vertices v € V(G), it ensures
that the tuples describing the representation of the canon of G[D;,], which consists only
of one vertex, are added to the fixed-point relation in the first step. Thus, all tuples
in {(|V(G)|,v,1,1) | v € V(G)} are added in the first step. Formulas ¢ and ¢ V ¢y,
take effect in the inductive step. In step k we add all tuples (i,v,n1,n2) € X to the
fixed-point relation with ¢ = |V (G)| — k + 1. Formula ¢9 ensures that we add only tuples
(7,v,m1,n2) if the tuples for i + 1 have already been included to the fixed-point relation.
This way, ¢, v and the fixed-point relation form a suitable triple. Then, formula ¢g V ¢y,
defines the representation of the canon of G[D; ,].

In the following lemma we show inductively that formula ¢k uses an inflationary fixed-
point operator which in stage k of its iteration defines the representation of the canons

of all G[D;,] with v € V(G) and i > |[V(G)| — k + 1.

Lemma 53. Let X* be the fized-point relation that we get at stage k of the iteration
of the inflationary fized-point operator in formula ¢x. Further, let S* be the set of all
tuples (i,v,n1,n2) € N(G) x V(G) x N(G)? where i > |V(G)| —k +1 and (n1,nz) is in
Grep(f(G[D;2])), the representation of the canon of G[D;,]. Then Xk = S*.

Proof. Of course, for k = 0 we have X* = () and S* = (). For k = 1 it is easy to see that
there is no tuple that satisfies ¢ since X = (). Thus, X! is the set 01[G;0,2,q1,q2) =
{(IV(G)|,v,1,1) | v € V(G)}. Further, for all v € V(G) the representation of the canon
of G[Dyy(@)),»] is {(1,1)}, and therefore, X' =81 Now let k > 1, and let X* = S*. In
the following we prove that X*+! = S§*+1 by showing that X]’-“Jrl = S]’?“ for all j € N(G),
where S]’?H is the set of all tuples (4,v,n1,n2) € S**! and XJI?H is the set of tuples
(4,v,n1,n9) € XFFL,

It is easy to see that XJI-“Jrl = SJ’?H for j = |V(G)]: We have already shown that
#$1[G;0,2,q1,q2) = X! and that X; = S;. Further, relation ¢»[G,a[X*/X];0, 2, q1, ¢]
cannot contain any tuple (7, v,n1,n2) with i = |V(G)|. Consequently, X]’-“Jr1 = S5;. Since
Sy =Syt for j = [V(G)], we have X+ = S5+,
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4.4. Proof of the Modular Decomposition Theorem

Next, let us consider j < |[V(G)| — k. Then j < |V(G)|, and there does not exist
a tuple (i,v,n1,n2) € ¢$1[G;0,2,q1,q2] with i = j. Further, by inductive assumption
we have X* = S* and by definition we know that S* does not contain any tuples
(', v,m1,m2) with j* < |V(G)| — k + 1. Consequently, there cannot be a tuple (i,v,n,ng)
in ]G, a[X*/X];0,2,q1,q)] with i = j. Thus, for j < |V(G)| — k we have XJ].“Jrl =0,
and since S]]-“Jrl is also empty, we obtain X ]]-“H = SJI?H.

Now, let |[V(G)| —k < j < |V(G)|. Then the relation ¢;[G;o, z, ¢1, ¢2] does not contain
any tuple (¢,v,my, mg) with i = j. However, there exist a vertex v € V(G) and numbers
ni,ne € N(G) such that (j,v,n1,n2) € ¢$2[G,a[X*/X];0,2,q1,q] because X* = S* by
inductive assumption, and S}, is non-empty for all j/ > |[V(G)| — k + 1, by definition.
Since we have X¥ = S¥ and j +1 > |[V(G)| —k + 1 and j < |V(G)|, the relation
{(n1,m2) | (j + 1,w,n1,n2) € X*} is the representation of the canon of G[Dj 1, for all
w € V(G). Therefore, (j,v, X*) is a suitable triple for all v € V(G). As shown in Step
3 and 4, the relation ¢g[G, j,v, X*;q1, ¢o] is the edge relation of the canon of G[D;,]
for suitable triples (j,v, X*). Further, ¢y, [G,7,v;q1,q] = {|Dj.|,|D;jo|}. Thus, the
relation ¢rep[G, j, v, X*; 1, o], where ¢rep := ¢ V @y, , is the representation of the canon
of G[Dj,] for all vertices v € V(G), and it follows that Xf“ = Sf“. O

Proof of Theorem 50. As a direct consequence of Lemma 53 we obtain that L-formula
¢ defines the edge relation of the canon f(G) for all G € C. Therefore, we conclude
that there exists an L-canonization for the class C of graphs. O
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5. Capturing PTIME on Permutation Graphs

In this chapter we use the Modular Decomposition Theorem to prove that fixed-point
logic with counting captures polynomial time on the class of permutation graphs.

We begin this chapter with an introduction to permutation graphs, where we present
different properties, characterizations and applications of permutation graphs. (A detailed
introduction can also be found in [24].) Afterwards we show that there exists an FP+C-
canonization of the class of permutation graphs by applying the Modular Decomposition
Theorem. As a result, fixed-point logic with counting captures polynomial time on
permutation graphs.

5.1. Permutation Graphs

In this section we consider a class of graphs with many interesting properties and
characterizations. Let us take two parallel lines, and draw straight line segments between
these parallel lines. Now we associate each line segment with a vertex, and let two vertices
be adjacent if and only if their corresponding line segments intersect. This way we obtain
a class of intersection graphs. The graphs of this class are called permutation graphs.

Permutation graphs arise, for example, in a problem of memory allocation in system
programming [19]. Further, they occur in circuit design as an abstract representation
of a special case of wire routing, known as two-terminal channel routing (see [19], and
[59] for a survey on VLSI design). Given a set of nets, the goal in wire routing is to
(only) connect terminals that are contained in the same net. In two-terminal channel
routing the routing area is a rectangular grid, all nets consist of only two terminals and
the terminals are placed on the lower and upper boundary of the grid. For an arbitrary
fine grid, the intersection graph of the connecting routes of the two-terminal nets is a
permutation graph. Applications similar to the mentioned ones can also be found in [24].

Definition

Let G = (V, E) be a graph, and let <; and <3 be two strict linear orders on the vertex
set V. We call (<1, <2) a realizer of G if two vertices u, v are adjacent in G if and only if
they occur in different order in <; and <s, that is,

e u <y vandv<syu,or
o v <y uandu<sw.

A graph G is a permutation graph if there exists a realizer of G. In the following we
present an example of a permutation graph and its realizer.

Example 54. Figure 5.1a and b show a graph H and a realizer (<i, <s) for H. Let us
verify that (<1, <2) is indeed a realizer of H: Vertex a is adjacent to d but to no further
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5.1. Permutation Graphs

vertex of graph H. Thus, vertices a and d have to occur in different order in <; and <s,
and the order of a and (each of) b, ¢, e has to be the same in <; and <. In strict linear
order <y vertex a is the first vertex, and in strict linear order <y vertex d is smaller than
a, and b, ¢ and e are larger than a. Consequently, the realizer is correct for all pairs
of vertices involving a. Next let us consider vertex e, the last vertex of <;. For e we
analogously observe that b, the only vertex adjacent to e, is larger than e with respect
to <9, and that the remaining vertices are smaller than e regarding <. It remains to
consider vertices b, ¢ and d. These three vertices form a clique, and we can verify in
Figure 5.1b that their occurrence in < is in reverse order to their occurrence in <s.
Thus, (<1,<z2) is in fact a realizer of permutation graph H.

d a a b c d e
C<‘ a<i1b<iec<id<ie : E
d<oa<gc<ge<sb
b e d a ¢ e b
(a) Graph H (b) Realizer (<1, <3) of H (c) Diagram of (<1, <2)

Figure 5.1.: A (prime) permutation graph and its realizer

The following example illustrates the connection of permutation graphs with mathematical
permutations.

Example 55. Let <p, be the natural strict linear order on [n]. For each permutation 7
of the numbers from 1 to n, we let <, be the strict linear order defined by permutation 7.
Then (<), <r) is a realizer of a graph G with vertex set V' = [n]. We call the graph
G the inversion graph of w. Thus, each permutation 7 defines a permutation graph:
the inversion graph G.. Conversely, suppose we have given a realizer (<;,<s3) of a
permutation graph G. Let us assign each vertex of graph G to the position of its
occurrence in <y, and let h: V' — [|V]] be the corresponding mapping. If we rename the
vertices of G according to h, we obtain a graph G’ which is isomorphic to G and which is
the inversion graph of a permutation. Thus, each permutation graph also is isomorphic
to an inversion graph of a permutation. J

Properties and Characterizations

As already mentioned in the introduction of this section, permutation graphs are intersec-
tion graphs. In order to see this, let (<1, <2) be a realizer of the graph, and let us take
two horizontal parallel lines. Now, above the first parallel line we write the vertices of the
graph ordered by strict linear order <, and below the second parallel line we write them
ordered by <,. Now we draw straight line segments between the two parallel lines. Each
line segment connects the two occurrences of one vertex, that is, the vertex on the upper
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5. Capturing PTIME on Permutation Graphs

line and the same vertex on the lower line are the two endpoints of a line segment. We
call this the diagram of realizer (<1, <3). Figure 5.1c¢ shows the diagram of the realizer
in Figure 5.1b. It is not hard to see that the corresponding line segments for two vertices
intersect if and only if the two vertices occur in different order in <; and <s. Therefore,
we obtain that two line segments intersect if and only if the corresponding vertices are
adjacent.

If we allow a circle instead of parallel lines in a diagram, then the intersection graph of
the line segments, which are now chords of the circle, is called a circle graph. This graph
class properly contains the class of permutation graphs. More precisely, permutation
graphs are circle graphs that admit an equator [24, p. 252].

Let G be a permutation graph with realizer (<, <2). Each pair of strict linear orders
that we obtain by exchanging or reversing both, <; and <s, is a realizer of G as well.
More precisely, (<2, <1), (<, <Z) and (<%, <£) are further realizers of G, where <7
denotes the reverse order of strict linear order <. If we reverse only, for example, <5,
and keep <; unchanged, then each pair of vertices that originally occurs in the same
order now occurs inverted, and vice versa. Hence, the pair (<, <%) is a realizer of the
complement graph of G. This shows that the complement of a permutation graph also is
a permutation graph.

Another property of permutation graphs is that their edge relation can be oriented in such
a way that the corresponding binary relation is transitive. In other words, a permutation
graph is a comparability graph (defined in Section 6.1). To show this, let us direct each
edge towards the vertex that is larger with respect to <;. Then the resulting binary
relation E’ is transitive:

Observation 56. Let G = (V, E) be a permutation graph with realizer (<1,<s). Then
E' = {(v,w) | {v,w} € E and v <y w} is transitive.

Proof. Let (u,v) € E' and (v,w) € E’. Then by definition of E’ we know that u <; v
and v <1 w, and that there are edges between v and v, and v and w. We obtain v <, u
and w <9 v. Now transitivity of <; and <, implies that v <; w and w <g u. Thus, there
also is an edge between u and w. Since u <; w, this edge is directed towards w, and

(u,w) € F'. O

So permutation graphs are comparability graphs. As the complement of a permutation
graph is a permutation graph, it is a comparability graph as well. Pnueli, Lempel and
Even showed in [61] that also the other direction holds, that is, a graph G is a permutation
graph if, and only if, the graph G and its complement are comparability graphs.

In the following section we want to apply the Modular Decomposition Theorem to
permutation graphs. As it only holds for graph classes that are closed under induced
subgraphs, we make sure that this is the case for permutation graphs.

Observation 57. The class of permutation graphs is closed under induced subgraphs

Proof. Let H be an induced subgraph of G. If the pair (<1, <3) of strict linear orders is a
realizer of GG, then clearly we obtain a realizer of H by restricting the strict linear orders
<7 and <5 to the vertices of H. Therefore, every induced subgraph of a permutation
graph is a permutation graph as well. ]
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5.2. Capturing Result

Now we want to show that fixed-point logic with counting captures polynomial time on
permutation graphs. In order to do this we first consider prime permutation graphs.
It is known that the realizer of a prime permutation graph is unique up to reversal
and exchange [21]. Thus, a prime permutation graph has at most 4 different realizers.
We show that these realizers are definable in fixed-point logic. We use the strict linear
orders of the realizers to construct a linear order on the universe of prime LO-colored
permutation graphs. This way, we obtain an FP-canonization of the class of prime LO-
colored permutation graphs. Then we can apply the Modular Decomposition Theorem,
which yields that the class of all permutation graphs admits FP+4-C-definable canonization.
As a consequence, we obtain the capturing result.

Defining the Realizers

First we prove that the realizers of prime permutation graphs are definable in fixed-point
logic with counting. We start with defining certain properties of pairs of relations. These
properties enable us to construct the realizers recursively.

Let <13 and <3 be two binary relations. We call the pair (<1, <2) transitive if each of the
binary relations <1 and <y is transitive. Further, we let the transitive closure (<, <12)T
of (<1, <l2) be the pair (<7, <) where <i¥ and < is the transitive closure of <i; and
g, respectively. Let G = (V, E) be a graph and (<1, <l2) be a pair of binary relations
on V. The pair (<1q, <l2) is closed under edge relation E if for all vertices u,v € V and all
i € [2] the following holds:

o If u ;v and {u,v} € E, then v <3_; u.
o If u<;vand {u,v} € E, then u <3_; v.

Notice that for a permutation graph G = (V, E), each realizer of G is closed under edge
relation E. Moreover, we observe the following.

Observation 58. Let G = (V, E) be a permutation graph. Then a pair of binary relations
(<1, <2) is a realizer of G if, and only if, <1 and <g are strict linear orders and (<, <l3)
is closed under edge relation E.

Now for all i € [2] we let

DY ;== {(v,u) | u <; v and {u,v} € E} and
Df_i = {(u,v) | u <; v and {u,v} € E},

and we let (<i1, <12)¥ be the pair (<f, <¥) of relations where for all i € [2] we have

<f = q,u DP U DF.

Let G = (V, E) be a permutation graph, and let R be a set of pairs of binary relations
on vertex set V. We call a pair (<1, <2) € R the minimum of R if we have <1; C <} and
<y C < for all pairs (<}, <) € R. There cannot exist more than one minimum of R, as
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the respective relations of two minimums would be contained in each other, and therefore
be equal. For binary relations <1 and <i3 on the vertex set V' of permutation graph
G = (V,E), we let RF(<1, <12) be the set of all pairs (<1}, <1) of binary relations on V'
where <17 C <), <o C <), and (<}, <)) is closed under edge relation E. In Lemma 59 we
show that RE(<y, <) always has a minimum, which is (<ij, <i2)®. We call the minimum
(<11, <12)® of RE (<, <1p) the closure of (<11, <lz) under edge relation E.

Lemma 59. For each permutation graph G = (V, E), the pair (<1, <2)¥ is the minimum
of RF (<11, <19).

Proof. First we show that (<1, <lo)® € RF (<11, <12). We know that <11 C < and <1, C <F.
Hence, it remains to prove that (<ii, <l2)¥ is closed under edge relation E. In order to do
this, let us consider arbitrary u,v € V and i € [2] with u <1 v. Without loss of generality,
let u and v be adjacent. Thus, we have to show that v <1¥ , u. Since u <¥ v, one of
the following cases is satisfied: u <; v, (u,v) € DF or (u,v) € D¥; where (u,v) € DF
can be excluded as u and v are adjacent. Now if u <; v is the case, then (v,u) € D¥ |
and we obtain that v <, u. If (u,v) € DE, then v <i3_; u, and we also have v <%, u.
Therefore, we obtain v <i¥ ; u in both cases. As a consequence, (<, <12)¥ is closed under

edge relation F.

In order to prove that (<j, <lg)¥ is the minimum of R (<, <13), we need to show that
<F C < and <f C <), for all (<1}, <) € RP(<1, <2). Let (<, <) be a pair in relation
REP(<11,<3). Then we have <1; C <! for all i € [2]. Further, the pair (<}, <) is closed
under edge relation E. Thus, relation <} contains the pairs in DF U DiE for i € [2].
It follows that <1 is a subset of <}, which proves that (<ij, <i2)® is the minimum of
RF (<1, <). O

Let G = (V, E) be a prime permutation graph. For each w € V' we define two binary
relations <1}” and <1§ on the vertex set V. We call w the initial vertex of <’ and <¥. If
there exists a realizer (<;,<2) of G where w is the first vertex of the first strict linear
order <y, then it will turn out that (<Y, <¥) = (<1, <2).

In order to construct the binary relations <" and <y, we recursively define relations <y,
and <3, on the vertex set V for all k > 0. To increase readability we often separately
indicate the vertex w € V that the relations are referring to, and omit w in the notation
of <} and <y, or <Y, and <y,. So let us fix an initial vertex w € V. We begin with
defining the relations for kK = 0. As w is the first element of the first strict linear order of
the realizer that we want to reconstruct, we let

<o ={(w,v) |veV,v#w} and
<20 =0.

Thus, we have a < b if, and only if, a is the initial vertex w and b is a vertex distinct
from w. Further, there do not exist vertices a and b such that a < 0.

Now, we recursively define <; 41 and <lp 41 for all £ > 0 as follows:

(<1 D2 p41) = ((Qus <2,k)E)T-
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Clearly, for all initial vertices w and all k > 0 the relations satisfy the property that

<k € <ip41 and
<ok € <2pi1 -

Since the vertex set is finite, there exists an m such that <., = <;m41 for all i € [2].
Let m be minimal with that property. We define <;:=<;,, for ¢ € [2]. Example 60
illustrates the construction of (<, <13).

Example 60. Let us consider the prime permutation graph H = (V, E) depicted in
Figure 5.2a. We let a € V be the initial vertex. Figure 5.2b shows an illustration of
(<1,0, <2,0). We use square brackets to mark incomparable vertices. Now let us determine
(<1,1,<2,1). We know that a <1 ¢ v for all v # a. Further, a and d are adjacent but there
is no edge between a and the remaining vertices. Thus, for the closure of (<, <2,)
under edge relation E we have d 450 a and a 450 v for v € {b,¢c,e}. Now we take the
transitive closure and additionally obtain that d is smaller than b, ¢ and e with respect
to (<12E70)T= <l2,1. The resulting relations <111 and <1 are depicted in Figure 5.2c. For
k € {2,3,4} the pairs of relations (< i, <2,x) are shown in Figure 5.2d-f. No new pairs

of vertices are added to any of the relations for k > 4. J

d a a[b7c7d7e] a[b7c7d’e]
< N\

? 0 [a, b, ¢, d, e] d alb, ¢ e]

(a) Graph H (b) (4170, <12)0) (C) (<11,1, 4271)

a [b,c]d e a [b, c]d e a b c d e

d alb, c e] d a c e b d a c e b

(d) (<11,2,<12,2) (e) (<11,3,<2,3) (f) (<11,4,<12,4)

Figure 5.2.: Construction of (<1, <)

In the following we let (<1, <2) be a realizer of permutation graph G, and we let w be the
first element of <;. We show that the pair of relations <}’ and <14 is the realizer (<1, <2).
We fix w as initial vertex and let <1; := <}’ and <9 := <. By definition of (<1 9, <20) we
have <119 C <3 and <z C <g. Further, we obtain (<1y, <2) from (< o, <l2,0) by recursively
taking the closure under edge relation E and the transitive closure. Since the realizer
(<1, <2) is closed under both, the following observation holds.

L For all k > 0 the relations <1 and < j are strict weak orders (Lemma 62). This makes it possible
to arrange the equivalence classes expressing incomparability into a strict linear order, and enables
us to visualize the relations like this.
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Observation 61. For all k > 0, we have < C <y and <z C <9, and thus, <; € <4
and <1g C <.

We use the following lemma to prove in Theorem 64 that <i; and <l are strict linear
orders. Then it follows with Observation 61 that <1; = <; and <y = <s.

Lemma 62. Relations <11 and <2} are strict weak orders for all k > 0.

Proof. In order to show that a relation is a strict weak order, we have to prove that it is
a strict partial order and that incomparability is transitive. Let £ > 0. As <; and <5
are irreflexive, it follows from <; , € <; and <z C <5 that <1y ; and <y are irreflexive
as well. Further, relations <y ;, and <2 are transitive. Hence, <1, and <y, are strict
partial orders. It remains to show that incomparability is transitive. We denote two
vertices x and y that are incomparable with respect to <;; by x ~; 1 y. Let us consider
k = 0. With respect to <j, all elements in V' \ {w} are pairwise incomparable and
w is incomparable to itself. Further, all elements in V' are pairwise incomparable with
respect to <lp9. Thus, for <19 and < incomparability is transitive. To show that
incomparability is transive for £ > 0 we need the following claims.

Claim 1. Let k > 0,4 € [2] and x,y € V. If x and y are incomparable with respect to
<;.x+1, then z and y are incomparable with respect to <1y, and <g .

Proof. Without loss of generality let ¢ = 1, and let  and y be incomparable with respect
to <11 x+1. For a contradiction let us assume that 2 and y are comparable with respect
to <y, or <g,. If x and y are comparable with respect to <y, then this directly
implies that  and y are comparable with respect to <1y 1, since <y, € <1 x4+1. Thus,
let us suppose x and y are comparable with respect to <z . Then z and y are also
comparable with respect to <l‘15:m and therefore also with respect to (<lf,i)T= <1 k+1, &
contradiction. a

Claim 2. Let k > 0, ¢ € [2] and y,z € V. Further, let <y, and <g, be strict weak
orders, and let y and z be incomparable with respect to <i; ,+1. Then for all vertices
v € V the following holds: If v <1£H z, then v <F_y.

K

Proof. Without loss of generality let ¢ = 1. Relation <1‘1E’,‘i contains only pairs that are

in <, in D{E’H or in DIEH. Therefore, v <lf,_€ z implies that either v <y, 2, 2 <2, v or

v g, 2. If we have v <1, 2, then we also have v <, y, as y and z are incomparable
with respect to <; , by Claim 1 and <, is a strict weak order. Analogously, z <3, v
and v <, z imply y <2, v and v <3, y, respectively. Hence, in each of the cases we
obtain v <lf,i Y. J

Now, let us assume there exists a k£ > 0 such that incomparability is not transitive for
<1 or <y, and let k be minimal. Without loss of generality, let incomparability be
not transitive for <; ;. Consequently, there exist vertices x,y,z € V such that x ~1; v,
y ~1% 2z and o z. Hence, x and z are comparable, which means = <y 4 z or z <y, .
Without loss of generality, let <1 2. Since <;; is the transitive closure of Q{E,k,l,
there exists an [ > 0 and vg,v1, ..., v;+1 such that

E E E
T=v Qg1 Vg1V g1 Vit1 = 2.
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As we know that <;;,_; and <gj_; are strict weak orders, that y ~;; 2z, and that
v <lfk_1 z, we can apply Claim 2, and obtain v <1{37k_1 y. Consequently, we have

E E E
T=v0 Qi p—1 " Vg1V Q1Y

and therefore, <1y 1 y, a contradiction. O

Corollary 63. Relations <11 and <l are strict weak orders.

Theorem 64. Relations <1 and <o are strict linear orders.

Proof. Let us assume that <1; is not a strict linear order. Since <1; is a strict weak order
by Corollary 63, there must exist two distinct vertices u, v such that u ~; v, i.e. v and v
are incomparable regarding <I;. Hence, the equivalence class u/., contains at least two
elements. In the following we prove that u/., is a module. Let us assume u /., is not a
module. Then there exists a vertex z € u/., and vertices x,y € u/., such that z and
x are adjacent and z and y are not adjacent. As <; is a strict weak order, we either
have z <y x and z <y ¥, or = <1 z and y <1 z. Let us assume z <1; z and z <1; y. The
other case can be shown analogously. Since there is an edge between z and x and no
edge between z and y, and (<11, <2) is closed under edge relation E, we have x <3 z and
z <z y. Therefore, we must also have z <5 y, by transitivity of <. Then we use again
that (<11, <l2) is closed under F, and obtain that z <; y or y <y z. Hence, z and y are
comparable with respect to <y, a contradiction. Consequently, u/., is a module with
|u/w,| > 2. Clearly, u/., cannot be the vertex set V' since we know w <1 v for all v # w,
where w is the initial vertex. Thus, u/., is a non-trivial module, a contradiction to G
being prime.

Similarly we can prove that <y is a strict linear order. To show that a module u/., with
|u/wy| > 2 for uw € V cannot be the vertex set V, we argue as follows: Since w <1y v for all
v €V with v # w and (<1, <2) is closed under FE, vertex w is comparable to all v # w
with respect to <. O

Corollary 65. We have <1 =<1 and <y =<s.

Now we know that the pair (<f’, <) of relations is the realizer (<, <g) if w is the first
vertex of <;. We use this to show that the realizers of prime permutation graphs are
definable in fixed-point logic.

First of all, there are FP-formulas ¢4, (z,v,3’) and ¢4, (x,y,y’) such that for all prime
permutation graphs G = (V, F) and all w,v,v" € V we have

G E pq,|w,v,0] <= v < 0.

In order to define ¢4, we use a simultaneous inflationary fixed-point operator. Within
this fixed-point operator we need two binary relational variables X; and X5 to create
the strict linear orders <1’ and <. Let X and X% be the relations that we get at the
kth iteration of the simultaneous fixed-point operator. We can design the simultaneous
fixed-point operator such that X{“ and Xé“ are precisely <Gk and <9k It is not hard
to see that this is possible since the transitive closure and the closure under the edge
relation are definable in transitive closure logic and first order logic, respectively.
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5. Capturing PTIME on Permutation Graphs

We use formulas ¢4, and ¢, to define a formula x(x) where for prime permutation
graphs G = (V, E) and w € V we have

G = x[w] <= (<Y, <y) is a realizer of G.

We already know that (<Y, <¥') is closed under edge relation £ by Lemma 59. Therefore,
we only have to check whether <1} and <% are strict linear orders to find out if (<}, <%)
is a realizer of (G. Since irreflexivity, transitivity and antisymmetry of relations can be
tested in first order logic, formula y is FP-definable.

Formulas ¢4,, ¢4, and x enable us to define the realizers of prime permutation graphs
in fixed-point logic.

Applying the Modular Decomposition Theorem

Let Cperm be the class of permutation graphs. Then Cj, is the class of all prime
LO-colored permutation graphs with at least 4 vertices. In the following we describe
the construction of a parameterized FP-canonization of CJ,,,. Afterwards we apply the
Modular Decomposition Theorem to show that fixed-point logic with counting captures

polynomial time on Cperm-

Since we can define the realizers of prime permutation graphs, it is also possible to define
the realizers of the underlying graphs of prime LO-colored permutation graphs. We
simply pull back the formulas ¢, ¢4, and x under ({V, E, M, <, L}, { E})-transduction
Ograph = (V (), E(x,2")), which maps every LO-colored graph to (an isomorphic copy of)
its underlying graph. In order to actually construct the canonization of Cj,,,, we only
need the pull-backs of formula x(x) and of formula p<, (z,y,v) == ¢, (z,y, ¥ ) Vy =1,
which defines the linear order <} associated with the strict linear order <1}’ on the vertex

set.

If (<, <) is a realizer of the underlying graph of G* € C},,,, then <1’ is a strict linear
order on the vertex set of G*. We can use this strict linear order on the vertex set to
construct a linear order on the universe of the LO-colored graph G* We simply compose
the linear version <Y of the strict linear order <f and the linear order < on the basic

color elements M (G*). More precisely,
<= U QU{(v,m) |ve V(G"), me M(G")} (5.1)

is a linear order on the universe of LO-colored graph G*

We now define a parameterized FP-canonization ©(z), which maps each prime LO-colored
permutation graph G* € C,,.. to the ordered copy (G*, <"). Valid parameters of this

perm
transduction are vertices w € V that are the first vertex of the first strict linear order of
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5.2. Capturing Result

a realizer. We let ©(x) = (0dom, 0u, v, 0, 0rr, 0<, 01, 0<), where

Odom () —X egraph(x)
Ov(z,y) ==
Ov(z,y) := ( ),

0p(r,y,Y') == E(y,y),
On(z,y) == M(y),

Oa(z,y,y") =<(y,y),

Or(z,y,y,y") = L(y,y,y") and
O<(z,y.y') = o =" (z,y,4)V L(y.y) v (V(y) A M(Y)),

Formula 640y, that is, the pull-back of formula y, defines the valid parameters, and
formula 6< defines the linear order <* from (5.1) by using the pull-back of formula ¢4, .

Now that we have proved that there exists a parameterized FP-canonization of the
class Cj,, of prime LO-colored permutation graphs with at least 4 vertices, and we
know that the class Cperm 0f permutation graphs is closed under induced subgraphs
(Observation 57), we can apply the Modular Decomposition Theorem. We obtain that
the class of permutation graphs admits FP+C-definable canonization. As a consequence,

FP+C captures polynomial time on permutation graphs.
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We use the Modular Decomposition Theorem to show that fixed-point logic with counting
captures polynomial time on the class of chordal comparability graphs in this chapter.

6.1. Chordal Comparability Graphs

A graph is called chordal if all of its induced cycles are of length 3. Thus, each cycle of
length at least 4 has a chord, which is an edge that connects two non-consecutive vertices
of the cycle. Alternately, chordal graphs can be characterized by the property that its
maximal cliques can be arranged in a tree T, so that for every vertex of the graph the
set of max cliques containing it is connected in T". The tree T is called a clique tree.
Clique trees of chordal graphs are of fundamental use in Chapter 12 and are defined in
Section 12.1. An elementary introduction to multiple characterizations of chordal graphs
(and clique trees) can be found in [2].

A graph G is a comparability graph (also called transitively orientable graph, partially
orderable graph or containment graph [4]) if there exists a strict partial order for G.
A strict partial order for a graph G = (V, E) is a strict partial order < (irreflexive,
transitive) on G’s vertex set so that {u,v} € E if and only if u,v € V are comparable
with respect to <. It follows that G is a comparability graph if and only if its edges can
be oriented in such a way that the corresponding binary relation is transitive. Given a
comparability graph G, it is possible to transitively orient the edges, that is, to find a
strict partial order for G, in linear time [56].

Every strict partial order is the intersection of a set of strict linear orders [16]. A strict
partial order < has dimension k if there exist k strict linear orders whose intersection
is <. It is not hard to see that a graph G is a permutation graph (see Section 5.1) if and
only if there is a strict partial order for G of dimension at most 2.

Chordal comparability graphs have been investigated, e.g., in [54, 38, 12]. They can be
recognized in linear time [38, 56]. For all chordal comparability graphs G there exists a
strict partial order for G of dimension at most 4 [54, 65]. This bound is tight [45], but
as there are permutation graphs that are not chordal, e. g., a cycle of length 4, a strict
partial order for a graph G of dimension at most 4 does not imply that the graph G is a
chordal comparability graph. For chordal comparability graphs, these four strict linear
orders can be found in linear time [12].

6.2. Modular Decomposition Theorem - Application

Let Cconco be the class of all chordal comparability graphs. It is not hard to see, that the
class of chordal graphs and the class of comparability graphs are closed under induced
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subgraphs. Therefore, the class of chordal comparability graphs is closed under induced
subgraphs, and we can apply the Modular Decomposition Theorem (Theorem 50) to
obtain a capturing result for chordal comparability graphs.

The Modular Decomposition Theorem states that in order to prove that FP+C captures
polynomial time on chordal comparability graphs, it suffices to show that there is
an FP+C-definable canonization mapping for the class C¢y ¢, of all LO-colored graphs
G* = (U, V,E,M,<, L) where the underlying graph G := (V,E) is a prime chordal
comparability graph with at least 4 vertices. The remainder of Chapter 6 will be devoted
to the proof of the existence of such an FP+C-definable canonization mapping.

6.3. The Graph’s Structure

In this section we consider the class C o, of prime chordal comparability graphs, that
is, the class of underlying graphs of the LO-colored graphs that we need to canonize
according to the Modular Decomposition Theorem. In the following, we introduce
structural elements of prime chordal comparability graphs, for example, maximal cliques,
ends and sides. In addition, we prove necessary properties of these structural elements
and their logical definability.

Notice that to show the mentioned definability results we present {FE}-formulas for
the graphs in C{q, although we will actually need {V,E, M, <, L}-formulas for the
LO-colored graphs in C¢y .. Yet, it is not hard to find a transduction, that maps each
LO-colored graph G* € C¢y ¢, to its underlying graph. Hence, for the presented formulas
in this section the Transduction Lemma guarantees us matching {V, E, M, <, L}-formulas
that refer to the underlying graph of the LO-colored graphs in Cfy,c,-

We denote prime chordal comparability graphs by G, and chordal comparability graphs
(that do not have to be prime) by H throughout this section.

6.3.1. Max Cliques

In the following we want to show that the max cliques of a chordal comparability graph
are FO-definable. This result does not require a restriction on the number of vertices of
the graph or the graph to be prime. Thus, let H = (V, E) be a chordal comparability
graph and let < be an arbitrary strict partial order for H. Further, let M be the set of
all max cliques of H.

Observation 66. For every max clique A € M of graph H, the restriction <, of < to
A is a strict linear order.

Proof. The binary relation <), is irreflexive and transitive, and as A is a clique, relation
<, also is connex. Thus, <, is a strict linear order on A. O

Let A € M be a max clique with |[A| = m. We also denote a max clique A = {as,...,an}
with a3 < -+ < ay, by (a1,...,an)<. We depict a max clique A as shown in Figure 6.1,
where vertex a; is drawn above vertex a; if and only if a; < a;.
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A

Figure 6.1.: Max clique A

Lemma 67. Let A and B be maz cliques of H andv € B. If{b € B | b < v} is a subset
of A, then there exists no vertex a € A\ B with a < v.

Proof. Let D :={b € B | b < v} be a subset of A, and let us assume that there exists
a vertex a € A\ B with a < v. We show that vertex a is adjacent to all vertices in
B=DU{v}uU{be B|wv <b}in graph H: Since D U {a} is a subset of A, vertex a
is adjacent to all vertices in D. Further, we have a < v, and for all b € B with v < b
transitivity implies that a < b. Consequently, there also exist edges between a and all
vertices in B\ D. Hence, B U{a} is a clique, which is a contradiction to B being a max
clique. O

Lemma 68. Let A = (ay,...,am)<, B = (b1,...,b,)< be intersecting max cliques of H,
and A # B. Then there do not exist vertices ay,az,a; € A with 1 <k <z <l <m such
that a, € AN B and a,a; € A\ B.

Proof. Now, let us assume there are ag,a; € A\Band a, € ANBwithl <k <z <l <m,
and let £ > x be minimal and [ < x maximal such that ay,a; € A\ B. Thus, for all i
with k <7 < we have a; € AN B. Let 2’ be the index such that a, = b,,. Further, let
k" < 2’ be the maximal index so that by € B\ A, and I’ > 2’ be the minimal index so
that by € B\ A. A picture showing ay, a,, a; and by, b/, by can be found in Figure 6.2a.
In order to show that such indices exist, assume there is no k' < 2’ so that by € B\ A.
Then, {b € B|b < b, } is a subset of A and ay, is a vertex in A\ B with aj < a;, which
is a contradiction to Lemma 67. Equivalently, we can show that [’ exists.

(b) (¢)

Figure 6.2.: llustration for the proof of Lemma 68
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We have a; < by and by < a;, because ax < a, and b,r < by, and by < b,y and a, < aq;.
Hence, {ak, by}, {br,a;} and, of course, {ay,a;}, {bx, by } are edges of the graph H. Thus,
ag, ay, by, by, ak is a cycle of H as shown in Figure 6.2b. Since H is chordal, all of H’s
induced cycles are of length 3. Therefore, {ay, by} or {a;, by} is an edge in H. Without
loss of generality, let us assume {ag, by} is an edge of H. Then aj < by or by < ag. If
ap, < by, we obtain by transitivity that a; < by for all ¢ < k, and by < a; for all ¢ > [,
because aj+1 = bir41. As illustrated in Figure 6.2c, the set AU {by/} is a clique, which is
a contradiction to the maximality of clique A. If by < ai, we obtain a contradiction by
using the same argument. O

Lemma 69. Let A = (ay,...,am)<,B = (b1,...,b,)< be intersecting maz cliques, and
A#B. Ifa, € AN B, then either a; =by,...,a; =by 07 Gz = bp_mig, .-, Qm = by.

Proof. Let A # B and a, € AN B. Since A is a max clique different from B, there exists
an [ € [m] such that a € A\ B. If [ > z, then for all k € [1,z] we have a, € AN B by
Lemma 68. Let 2’ € [n] be such that a, = b,. The existence of an index k' < z’ such
that by € A contradicts Lemma 67. Thus, {a1,...,a,} = {b1,...,b,s} and therefore,

a1 = by,...,a, = b,. Equivalently, we can show that a, = b,_ymig,...,am = by, if
| < z. Finally, since there exists an [ € [m] such that a; € A\ B we cannot have both,
a1 =">b1,...,a, =by and ay = bp_mazy- - Qm = by O

The following corollary is an immediate consequence of Lemma 69.

Corollary 70. Let A = (ay,...,am)<,B = (b1,...,b,)< be maz cliques with A # B. Let
I := [min{m,n} —1]. If A and B intersect, then they intersect in one of the following
forms (see Figure 6.3):

(@) ap =b1,...,a; =b; and {ai11, .. am} N{biz1,...,bp} =0 foriel,
(b) {al,...,am_j}ﬂ{bl,...,bn_j} =0 and Am—j+1 :bn_j+1,...,am =b, fOT’j el,
(C) ap = bl,...,ai = bi, {aiH,...,am,j}ﬂ{le,...,bn,j} :(Z) and

Am—jy1 = bp—ji1,. .. am =by fori,j>1andi+jel.

(a) (b) (c)

Figure 6.3.: Max clique intersection types

For max cliques A and B with A # B, let
Vi'(A,B):={a€ A|Vd € A: (d’ Ra=d € ANB)} and
ViX(A,B) :={a€ A|Vd € A: (a Xd =d € AN B)}.

75



6. Capturing PTIME on Chordal Comparability Graphs

It is easy to see, that for all ' € A with o’ < a we have o’ € V]*(4, B) if a € Vi*(A, B),
and analogously, that we have a’ € V;%(A, B) for all ¢’ € A with a < d’ if a € V;3(4, B).
Notice that V,*(A, B) can be empty for an i € [2]. Clearly, for all i € [2] we have
V.*(A, B) C AN B. Moreover, if a € AN B, then a is either in V;*(A, B) or V;*(A, B)
according to Lemma 69. Thus, we obtain the following:

Observation 71. Let A, B € M be max cliques of H with A # B. Then AN B is the
disjoint union of V{*(A, B) and V;*(A, B).

Corollary 70 implies that V,*(A, B) = V,*(B, A) for all max cliques A, B € M with
A# Bandie€[2].

For a max clique A, let us define

V4= | V4 B).
BeM\{A}

An illustration of the set V;*(A) can be found in Figure 6.4. Clearly, for a max clique
A= (a1,...,am)< we have ay,...,a; € Vi*(4) if ar, € Vi*(A), and ag, ..., an € V3°(4)
if a, € V5*(A). Further, the set V;(A) is a proper subset of A: Since a,, & V;*(A, B) for
any B € M\ {A}, we have a,,, € V;*(A). Equivalently we obtain a; & V;*(A).

Figure 6.4.: V*(A)

Observation 72. Let Vi*(A) # 0, V5°(A) # 0, and let amay be the <-mazimal element
in Vi*(A) and am, be the <-minimal element in V5 (A). Then amaz < Qmin and

Vit(A) NV (4) = 0.

Proof. Assume ayin =< @maz- Then there exists a max clique A; € M \ {A} such
that ame € V7°(4, A1) and a max clique As € M\ {A} such that ap, € V5 (A, As)
as illustrated in Figure 6.5a. Since amin =< Gmaz, We have apma, € V55 (A, A2). As a
CONSeqUENCe, Gmqr € AN A1 N Ag, and {a1 € A1 | a1 <X ez} = {a € A| a <X apa.} and
{a2 € AQ ‘ ag = amaz} = {(Z €A ‘ a amax}-

Let C be a max clique containing the clique D :={a € Ay | a > amar }U{a € Ay | a < s}
(see Figure 6.5b). As A1 € Aand {a € A1 | a = amaz} = {a € A | a < s}, there
is an a; € Ay with a1 > a;q. such that a; € A, analogously, there is an ay € As with
a2 < Amaz such that as € A. Hence, C' O D is a maximal clique with as < @mas < a1
where a1,a2 € ANC and e € ANC, which is a contradiction to Lemma 68. O
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A A
Ag A2
L]

a2

® V amin 8 amin

8/l max 8/l Gmax

a
A Ay
(a) Max cliques A; and A, (b) Max clique C

Figure 6.5.: Illustration for the proof of Observation 72

Observation 73. Ifa € V*(A), then v € V*(A) for allv € V with v < a. Equivalently,
if a € Vi°(A), then v € V55(A) for allv € V with a < v.

Proof. Without loss of generality, let a € V;*(A). Let v be an arbitrary vertex in V' with
v < a. Then {a,v} € E and there exists a max clique B € M with a,v € B. If A =B,
then clearly v € V;*(A). Thus, let A # B. Since a € AN B, there exists an i € [2] such
that a € V;*(A, B) = V;*(B, A) (Observation 71). If i = 1, then v € V¥(B, 4) C V*(A).
If i = 2, then a € V5% (A, B) C V;*(A), which is a contradiction to the previous lemma. []

The following lemma is used in Section 6.3.4.

Lemma 74. Let A = (ay,...,an)<, B,C be three max cliques such that AN BNC # 0.
Then ay or a,, s contained in ANBNC.

Proof. Let us assume AN BNC contains neither a; nor a,,, but as ANBNC # () there is
an = € [m] such that a, € AN BNC. According to Lemma 69 either ay,...,a, € ANB
or Qg,...,0;, € AN B. Without loss of generality let us assume a,...,a, € AN B.
Since a1 ¢ AN BNC, we obtain a; ¢ C. Then for AN C Lemma 69 implies that
agy...,am € AN C. Therefore, a, is contained in V;*(A, B) C V;*(A), but also in
V¥ (A, C) C V5*(A), which is a contradiction to Observation 72. O

Remember, two vertices a1, as € V' span a max clique A € M, if A is the only max clique
that contains vertices a1, as. If ai,a9 € V span a max clique A € M, we call the two
vertices ai,as a spanning pair of A.

Lemma 75. Fvery maz clique of H has a spanning pair.

Proof. 1f there exists a vertex a € A that is contained in no other max clique of H, then
obviously vertices a, a span max clique A. Thus, let A be a max clique where each vertex
in A is also contained in another max clique. Let A = (ay,...,am)<. Both V;*(A) and
V5 (A) are non-empty: For vertex a; there exists a max clique B # A such that a; € B.
Thus, a1 € V*(4, B) C V*(A). Equivalently, we can show that a,, € V5*(A).

Now, let dq, be the <-maximal element in V;*(A) and a,,;, be the <-minimal element
in V;5(A). Let us assume Gz, Gmin do not span A. Then there is a max clique
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B € M\ {A} such that @z, Gmin € B. For am.. we have either apq. € Vi°(A, B)
Or Gmaz € V5 (A, B) according to Observation 71. By Observation 72 we cannot have
maz € Vo (A, B) C V53 (A). Thus, ame: € Vi°(4, B). Analogously, ani, € V5 (A4, B).
Therefore, {a1,...,@maz}s {@min,---,am} C B. As A is a max clique different from B,
there has to be a vertex a € A\ B such that a4, < @ < Gpin. Since every vertex in A
is also contained in another max clique, there exists a max clique C' # A with a € C.
Then Observation 71 implies that a € V;*(A,C) C V;7(A) for an i € [2], which is a
contradiction to the maximality of a4, or the minimality of a,.;,. Hence, the vertices
Qmaz, Amin SPan max clique A. O

A direct consequence of Lemma 75 is that there exist at most |V|? max cliques in a
chordal comparability graph. Further, by using the spanning vertices we can define the
max cliques in FO, which is shown in Section 2.8.2. Note that in the following sections
we will represent max cliques as described in Section 2.8.2 and use the formulas defined
in Section 2.8.2.

6.3.2. Ends and the Bundle Tree

In this section we consider connected chordal comparability graphs. Again, we do not
require that the graphs are prime. Thus, in the following let H = (V, E) be a connected
chordal comparability graph with |[V| > 1, and let < be a strict partial order for H. We
introduce <-ends and the <-bundle tree of H in this section. Let M be the set of max
cliques of H.

Let A= (ay,...,an)< be a max clique of H. We call the vertices a; and a,, the <-ends
of A. We also say e € V is a <-end of H if there exists a max clique A € M such that e
is a <-end of A. Since H is connected and |V| > 1, every max clique of H consists of at
least two vertices and has therefore two distinct <-ends. As A is a max clique, <-end ay
must be a minimal and <-end a,, a maximal element of V regarding <. Moreover, each
<-minimal or <-maximal vertex e of V must be a <-end of every max clique containing
it. Thus, we observe the following.

Observation 76. Let < be a strict partial order for H. Then vertex e is a <-end of H
if, and only if, e is <-minimal or <-mazximal.

Observation 77. Let < be a strict partial order for H, and let A be a mazx clique of H.
If vertex e is a <-end of H and e € A, then e is a <-end of max clique A.

Let F'~ be the set of <-ends of H. In the following we consider the subgraph of H induced
by the set F~.

Clearly, for all <-ends eq,e; € F~ with e; # eg, there is an edge between e; and es in H
if and only if there exists a max clique A € M such that ey, e; € A. Further, notice that
whenever two vertices e, f € F~ with e # f satisfy e, f € A for a max clique A € M, the
vertices e and f are the <-ends of A, according to Observation 77. Thus, an edge {e, f}
in H[F~] represents the set of all max cliques with <-ends e and f.

We show that the induced subgraph H[F~] is a tree (Lemma 80). We call H[F'~] the
<-bundle tree of H. We start by showing that H[F~| is connected and bipartite.
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Lemma 78. Let H = (V, E) be connected and |V| > 1. Then H[F~] is connected.

Proof. Let H = (V, E) be a connected chordal comparability graph with |V| > 1. Then
each max clique of H has exactly two <-ends. Let us assume H[F'~] is not connected,
and let F’ be a connected component of H[F~]. Since each <-end in F” is the <-end of
a max clique, which has two <-ends, we have |F’| > 2. Let M’ be the set of max cliques
where both <-ends are in F’, and let W’ := |J M. The set W' is a proper subset of V as
F=\ F' ¢ W' Further, M’ # () implies W' # (). Since H is connected, there must exist
vertices v € V' \ W/ and w € W' that are adjacent. Let A € M \ M’ be a max clique
containing v and w. Further, w is contained in a max clique B € M'. Notice that A # B.
Thus, w € AN B and by Lemma 69 max cliques A and B share a <-end e € F". Let f be
the other <-end of A. Then there is an edge between e € F' and f € F~\ F' in H[F~],
a contradiction. OJ

We use the strict partial order < to define two subsets F* and F;* of F=. We let F*
be the set of all <-ends that are <-minimal and F3* be the set of all <-ends that are
<-maximal.

Lemma 79. Let H = (V, E) be connected and |V| > 1. Then {F[*, F5'} is a 2-coloring
of the graph H[F~].

Proof. Let H = (V, E) be a connected chordal comparability graph with |V| > 1. Accord-
ing to Observation 76, we have F'~ = F[° U F5*. Further, F* N F;* is empty, because a
vertex that is <-minimal and <-maximal forms a max clique of size 1, which cannot exist
in a connected graph with more than one vertex. Thus, {F}*, F;*} is a partition of F'~.

Now, let e, f € F~ be adjacent in H[F~]. Then {e, f} € FE, and either e < f or f < e.
Therefore, e is <-minimal if and only if f is <-maximal, which implies that e € F* if
and only if f € F5*. Consequently, {F*, F;'} is a 2-coloring of F~. O

Now we can prove that H[F~] is a tree.

Lemma 80. Let H be connected. Then H[F<] is a tree.

Proof. Let H be a connected chordal comparability graph. By Lemma 78, the graph
H[F~] is connected. Let us assume C' = fi,..., fm, f1 is a cycle in H[F'~] of minimal
length. Then C is an induced cycle in H[F<]. Therefore, C is also an induced cycle
in H. As there do not exist induced cycles of length greater than 3 in a chordal graph,
cycle C' must have length 3. This contradicts Lemma 79, since bipartite graphs cannot
have cycles of length 3. O

6.3.3. Inner and Outer Ends and Max Cliques

In the subsequent sections we show that for prime chordal comparability graphs the
<-ends of a max clique do not depend on the underlying strict partial order < and that
it is possible to define these <-ends in FP without knowing <. In order to do this we
define two different kinds of <-ends, inner and outer <-ends, in this section. We also
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define two different kinds of max cliques, inner and outer max cliques, and show the
connection between inner and outer max cliques and inner and outer <-ends.

From now on we consider prime chordal comparability graphs G with |V| > 2. Notice
that a prime graph with at least 3 vertices is connected and co-connected, and it must
have at least 2 maximal cliques. Further, each max clique contains at least 2 vertices.
Let M be the set of max cliques of G.

Let < be a strict partial order for G, and let F'= be the set of <-ends of G. We distinguish
between different types of <-ends. We call a <-end e € '~ an inner <-end if e is an
inner node of the bundle tree G[F*] of G. If e is an outer node, that is, a leaf, of the
bundle tree G[F~] we say e € F~ is an outer <-end. We let F}; be the set of inner
<-ends, and FJ; be the set of outer <-ends of G. Clearly, F~ is the disjoint union of
F and F;

out*

We also distinguish between different types of max cliques. Let the neighborhood N(A)
of a max clique A € M be the set of all max cliques B € M \ {A} for which BN A # (.
We say a max clique A is an inner maz clique if there exist max cliques Ay, Ay € N'(A)
with A1 N Ay = (), and a max clique is an outer maz clique otherwise. In Figure 6.6 you
find an example for an inner max clique A. Notice that the definition of inner and outer
max clique does not depend on the strict partial order for the graph. Further, the set of
inner max cliques (and therefore also the set of outer max cliques) is FO-definable. It is
easy to see, that there is an FO-formula that decides for each (spanning pair of) max
clique A whether there exist (spanning pairs of) two max cliques Ay, A2 that each have a
non-empty intersection with A and that do not intersect with each other.

Ao

Ay

Figure 6.6.: Inner max clique A

Observation 81. Let < be an arbitrary strict partial order for G. Let A = (a1, ..., am)<
be an inner maz clique of G, and let Ay, Ay € N(A) with Ay N Ay = 0. Then either
a1 € Ay and a,, € Ay, or a1 € Ay and a,, € Ay.

Proof. For each i € [2] we have a; € A; or a,, € A; according to Corollary 70. Since
A1 N Ay = 0, we have either a; € A; and a,, € As, or a; € Ay and a,, € A;. O

Lemma 82. Let < be an arbitrary strict partial order for G, and let A € M be an inner
max clique of G. Then the two <-ends of A are inner <-ends.
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Proof. Let max clique A € M be an inner max clique of G, and let Ay, Ay € N(A) be
max cliques with A; N Ay = 0. Let us assume there is a strict partial order < for G such
that A has an outer <-end e. Let €’ be the other <-end of A. According to Observation 81
we have e € A; and € € Az_; for an i € [2]. Let f be the <-end with f # e of A;. As
A1 N Ay =0, we have f # €. Hence, node e has two neighbors, ¢ and f, in the bundle
tree G[F<] of G. Therefore, e is an inner <-end, a contradiction. O

Lemma 83. Let < be an arbitrary strict partial order for G, and let A € M be an outer
maz clique of G. Then there is a <-end of A that is an outer <-end.

Proof. Let us assume there is a strict partial order < for G such that outer max clique
A € M has two inner <-ends e and f. Clearly, e and f are adjacent in G[F~]. As e and
f are inner <-ends, there exists a neighbor €’ of e with ¢’ # f and a neighbor f’ of f with
f' # e in G[F~]. Since G[F~] is a tree (Lemma 80), we have ¢’ # f’. Let A; be a max
clique with e, e’ € Ay, and let As be a max clique with f, f' € Ay. Then Ay, Ay € N(A).
By Observation 77, e and €' are the <-ends of A;, and f and f’ are the <-ends of Aj.
Since {e, e’} N{f, f'} =0, it follows from Corollary 70 that A; N Ay = (. Consequently,
A is an inner max clique, which is a contradiction. O

Lemma 84. Let < be an arbitrary strict partial order for G and let A = (aq,...,am)< be
an outer max clique of G. Then ay € B for all B € N(A), or an, € B for all B € N(A).

Proof. Let < be an arbitrary strict partial order for G, and let A = (aq,...,am,)< € M
be an outer max clique. Let us assume there exist max cliques B = (by,...,b,)< and
B' = (b},...,b,)< in N(A) with a; ¢ B" and a,, ¢ B. Max cliques B and B’ intersect
with A. Therefore, we have a; = b; and a,,, = bj, according to Corollary 70. Since A is
an outer max clique, B and B’ must intersect with each other. Thus, we have by = ¥
or b, = b, (Corollary 70). If by = by, then ay € B’, and if b, = b/, then a,, € B, a
contradiction. O

Lemma 85. Let A € M be an outer max clique. Then there exists an inner maz clique

B € M with AN B # 0.

Proof. Let < be an arbitrary strict partial order for G and let A = (aq,...,a,,)< be an
outer max clique. Let D be the set N (A)U{A} of max cliques, and let us assume all max
cliques in D are outer max cliques. By Lemma 84, <-end a; or <-end a,, is contained in
I :=({D € D}. Without loss of generality let a; € I. In the following we prove that all
vertices w € V' \ {a1} are adjacent to a;.

Let us assume the opposite, and let W be the non-empty set of vertices w € V' \ {a;}
that are not adjacent to a;. Since GG is connected, there must exist a vertex w € W that
is adjacent to a vertex b € V' \ W. Vertex b must be distinct from a; because w and ay
are not adjacent. As there is an edge between b and a1, there exist a max cliques B that
contains the vertices b and a;. Then AN B # () and B € D. Further, there is a max
clique C with b,w € C since b and w are adjacent. Clearly, C N B # (). As B is an outer
max clique, we have AN C # (). Hence, C € D and a; € C. Consequently, there must be
an edge between w and ay, a contradiction.

Thus, all vertices in V' \ {a;} are adjacent to a;. Since |V| > 2, the set V' \ {a1} is a
non-trivial module. We obtain a contradiction because G is prime. O
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Lemma 85 implies that there always exists an inner max clique of G. For every strict
partial order < for GG, such an inner max clique has two inner <-ends by Lemma 82.
From this we can infer the following for the <-bundle tree of G:

Corollary 86. The <-bundle tree G[F=] of G has at least two inner nodes for each
strict partial order < for G.

Lemma 87. Let < be an arbitrary strict partial order for G, and let A € M be an outer
max clique of G. Then there is a <-end of A that is an inner <-end.

Proof. Let < be an arbitrary strict partial order for G, and let A € M be an outer max
clique of G. Let B € M be an inner max clique with A N B # (), which exists according
to Lemma 85. By Corollary 70, the set AN B contains a vertex e that is a <-end of A
and of B. It follows from Lemma 82 that e is an inner <-end. O

The following corollary follows from Lemma 83 and Lemma 87.

Corollary 88. Let < be an arbitrary strict partial order for G, and let A € M be an
outer max clique of G. Then A has an outer <-end and an inner <-end.

Lemma 89. Let < be an arbitrary strict partial order for G. Let e € F~ be an inner

<-end of G. Then e is a <-end of an inner max clique.

Proof. Let < be an arbitrary strict partial order for G, and let e € I~ be an inner <-end
of GG. Let us assume e is not a <-end of any inner max clique. Then e must be a <-end
of an outer max clique A. By Lemma 85 there exists an inner max clique B € M with
AN B # (. As shown in the proof of Lemma 87, there exists an inner <-end ¢’ that is a
<-end of A and of B. Since e is the only inner <-end of outer max clique A according to
Corollary 88, we have e = €/, and e is a <-end of inner max clique B, a contradiction. [J
Lemma 82 and Lemma 89 yield the following corollary.

Corollary 90. Let < be an arbitrary strict partial order for G, and let e € F~. Then,
vertex e is an inner <-end if and only if verter e is a <-end of an inner mazx clique.

The following corollary is a direct consequence of Corollary 90 and Observation 81.

Corollary 91. Let < be an arbitrary strict partial order for G. Fach inner <-end is
contained in at least two mazx cliques.

6.3.4. Inner Ends

In this section we show that the inner <-ends do not depend on the strict partial order
< for G and are definable in FO.

Let A be an inner max clique. Thus, there exist two max cliques A, Ay € N'(A) such
that A1 N Ay = 0. For i = 1,2 we let

E4 (A) = ﬂ{B e M| (A;NA)N B # 0} (6.1)
Note that F4,(A) C A;N A for each i € [2] since (4;NA)NA; # 0 and (A4, NA)NA#0.
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Example 92. Figure 6.7 shows an inner max clique A and its neighborhood N (4). Two
max cliques A1, Ay in N(A) such that A; N Ay = () are indicated, and all max cliques B

with (41 N A) N B # () and the set Ey4, (A) are highlighted. N
A
Ea, (A)
A
Ay

Figure 6.7.: The set F4,(A) for an inner max clique A

Proposition 93. Let A be an inner maz clique and let Ay, Ay € N(A) be arbitrary max
cliques such that Ay N As = 0. Then |Ea, (A)| = |Ea,(A)| = 1. More precisely, for every
strict partial order < for G, which induces the order ay,...,a, on the elements of A, we
have Ea, (A) = {a1} and Ea,(A) = {an} if a1 € Ay and a,, € Az, and Ea,(A) = {a1}
and Eq, (A) = {a,} otherwise.

Proof. Let A € M and Ay, Ay € N(A) such that A N As = (). Let < be an arbitrary
strict partial order for G and A = (ay,...,am)<,4; = (ai,...,al)<. According to
Observation 81 either a; € A; and a,, € As, or a; € Ay and a,, € A;. Without loss
of generality, let us assume a; € A; and a,, € Ay. Then a,, € A; and a1 € As. We
show that F4,(A) = {a1}. The proof that F4,(A) = {a,} can be obtained the same
way. First, let us suppose that a; € F4,(A). Then there exists a max clique B with
(A;NA)NB # ) and a; ¢ B. By Lemma 74, it follows that a,, € (41 NA)N B C Ay,
a contradiction. Consequently, a; € E4, (A), and therefore, |E4, (A)| > 1. Further, we
have |Ey4, (4)| < |V since a, & Ea,(A) C A;. Next, we prove that E4, (A) is a module.
Then, it follows that |E4, (A)| = 1, and therefore Ey4, (A) = {a1}, as there do not exist
non-trivial modules in G. For a contradiction, let us assume E4, (A) is not a module,
that is, there are vertices u,v € E4,(A) and w ¢ Ey4, (A) such that v and w are adjacent
and v and w are not adjacent. Since there is an edge between u and w, there exists a
max clique C' with u,w € C. As u is contained in Ey4, (A) C A; N A and in max clique
C, we have (A1 NA)NC # (). Thus, E4,(A) C C, and therefore, v € C. Hence, v,w € C
but v and w are not adjacent, a contradiction. O

A consequence of Proposition 93 is that the <-ends of an inner max clique A of G do not
depend on the strict partial order < for G, because the sets E4,(A) and F4,(A) defined
in (6.1) do not depend on <. We obtain the following corollary.

Corollary 94. Let A be an inner max clique of a graph G. Then there exist e, f € A
with e # f such that e and f are the <-ends of A for all strict partial orders < for G.
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Let < be an arbitrary strict partial order for G. By Corollary 90 we know that a <-end
is an inner <-end if and only if it is a <-end of an inner max clique. Hence, the set F;
of inner <-ends equals the set of <-ends of inner max cliques. Corollary 94 implies that
the set F does not depend on the the strict partial order < for G.

Corollary 95. There exists a set Fy, CV of vertices of G such that Fy, = F. for all
strict partial orders < for G.

Since inner <-ends do not depend on the strict partial order < for G, we simply call
them inner ends. We denote the set of all inner ends of G by Fi,.

The set Fi, of inner ends is definable in FO: Since F}, equals the set of <-ends of inner
max cliques, it suffices to show that the set of <-ends of inner max cliques is FO-definable.
We use the sets E4, (A) and E4, (A) as described in Proposition 93 to define the <-ends
of inner max cliques A. First of all, we use spanning pairs to define max cliques in FO
(see Section 2.8.2). Clearly, we can test in FO whether a max clique A, represented by
a spanning pair, is an inner max clique. Moreover, there is an FO-formula that defines
for each spanning pair of a max clique A spanning pairs of two arbitrary max cliques
Ay, Ay € N(A) with A; N Ay = (). Then we can check in FO whether a vertex e is a
<-end of the inner max clique A by testing whether e is contained in all max cliques B
(represented by a spanning pair) that have a non-empty intersection with AN A; or all
max cliques B that have a non-empty intersection with A N As. Thus, there exists an
FO-formula ¢ (x1, xo, x*) that is satisfied for prime chordal comparability graphs G and
vertices a, b, c € V exactly if a,b span an inner max clique A of G and ¢ is a <-end of A.
Then g, := Jr13x9 (21, 22, 2*) defines the set of all <-ends of inner max cliques, and

in

therefore, the set F}, of inner ends.

Corollary 96. There exists an FO-formula ¢p, (z*) that is satisfied for a vertex e € V
in a prime chordal comparability graph G if, and only if, e is an inner end of A.

6.3.5. The Sets S* and S5

It is more difficult to show that the outer <-ends do not depend on the strict partial
order < for G and that they are definable in FP. We introduce the framework necessary
to obtain these results in this and the next section.

Let M, be the set of max cliques A € M of G that satisfy v € A. Further, let U,
be the set of all vertices that are contained in at least one max clique in M, that is,
U, :=JM,. It is not hard to see that the set U, consists of vertex v and all vertices
that are adjacent to v. Thus, for each v € V the set U, is FO-definable. Let < be a strict
partial order for G. We consider sets M, and U, where e € F~. Observation 77 implies
that vertex e € F~ is a <-end of all max cliques A € M..

For a strict partial order < for G and e € F'~, let

SFe):= |J Vi(4) and SF(e):= |J V5i(4). (6.2)
AeM. AeM.

The sets ST (e) and S5 (e) are depicted in Figure 6.8. Clearly, we have Si*(e) C U, and
S5 (e) C U..

As a direct consequence of Observation 73 we obtain the subsequent observation.
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Figure 6.8.: The sets ST (e) and S5 (e)

Observation 97. Let < be a strict partial order for G and e € F~. If a € S7(e), then
we have b € S;(e) for allb € V with b < a. Equivalently, if a € S5'(e), then we have
be S5i(e) for allb eV with a < b.

Observation 71 implies the next observation.

Observation 98. Let < be a strict partial order for G and e € F=. Let v € V. Then
there exists an i € [2] such that v € S7(e) if, and only if, there exist maz cliques A € M.
and B € M\ {A} withv e AN B.

In the following we present some properties of S7*(e) and S5 (e) for e € F~.

Observation 99. Let < be a strict partial order for G and e € F=. If e is <-minimal,
then e € S7(e) or S7(e) = 0. If e is <-mazximal, then e € S5*(e) or S5 (e) = 0.

Proof. Let < be a strict partial order for G and e € F=. Without loss of generality, let
e be <-minimal. Let S7*(e) # (). Then there exists a vertex v € S7*(e) C U,, and there
has to be an edge between e and v. As e is <-minimal we have e < v. It follows from
Observation 97 that e € S7(e). O

Observation 100. Let < be a strict partial order for G and e € F=. Then ST (e)
and S3'(e) are disjoint sets of vertices of U,.

Proof. Let < be a strict partial order for G and e € F~=. Let us assume there exists a
vertex v € S7(e) N S5 (e). It follows that there are max cliques A, B € M, such that
v e V¥(A)NV,3(B) € AN B. According to Observation 71, we have v € V;*(A, B)
or v € V;5(A, B). Now, v € Vi*(4, B) implies v € V¥(B), and v € V;3(A, B) yields
v € V5(A). In both cases we have a contradiction to Observation 72. O

For e € F~, let OF := U, \ (S7(e) U S5(e)). The set OF is the set of vertices of U, that
are contained in exactly one max clique according to Observation 98. Thus, we obtain
the following observation.

Observation 101. Let < be a strict partial order for G and e € F~. Let v € U,. Then
v € OF if, and only if, v is contained in only one mazx clique.

85



6. Capturing PTIME on Chordal Comparability Graphs

This implies that the set O does not depend on the strict partial order < for G.
Therefore, we denote O by O.. We call O, the middle of e. Note that there cannot
exist two vertices in O, that are contained in the same max clique as these would form a
non-trivial module.

Since we can express inner ends and max cliques in first order logic, the middle O, of e is
definable in FO for inner ends e € F}, by applying Observation 101.

Lemma 102. Let < be a strict partial order for G and e € F=. Let C = (c1,...,¢y)< €
M. be a maz clique with <-end e € {c1,¢,}. Then, ¢ & S5'(e) and ¢, & ST (e).

Proof. Let < be a strict partial order for G and e € F'=*. Let C' = (¢1,...,¢p)< € M. If
C' is the only max clique containing c¢,, then ¢, € O, by Observation 101. If ¢, is also
contained in a max clique A different from C, then ¢, € V;3(C, A) C V;*(C) C S5'(e),
and ¢, ¢ ST (e) since ST (e) N S5 (e) = @ by Observation 100. For ¢; we analogously
obtain that ¢; is either in S7*(e) or in O,. Thus, ¢; € S5'(e) and ¢, & ST(e). O

Lemma 102 directly implies that there is no i € [2] such that both <-ends of a max clique
are contained in the same set S;*(e).

Observation 103. Let < be a strict partial order for G ande € F~. Let Ae¢ M, v € A,
and let i € [2]. If v € S7(e), then v € VX (A).

Proof. Let < be a strict partial order for G and e € F'~. Let A € M and i € [2]. Let v be
a vertex in A that is in S7*(e). Then there exists a max clique B € M, with v € V,*(B).
If B = A, we are done. Thus, let B # A. Then, v € AN B. According to Observa-
tion 71 either v € V;*(A4, B) or v € V3~ (A4, B). If v € V2 (A, B), then v € V32 ,(B), a
contradiction to Observation 72. Consequently, we have v € V,*(A, B) C V,*(A). O

Lemma 104. Let < be a strict partial order for G and let e € F=. Further, let B € M
and C, M, N € M, be max cliques, and let v be a vertex in (BNC NM)\ N. Leti € [2].
Ifve S3(e), then (MNN)\ S ,(e) Cc(BNC)\ S5 ,(e).

A picture illustrating Lemma 104 can be found in Figure 6.9.

(M N N)\ S5 (e)

Figure 6.9.: Illustration for Lemma 104
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Proof. Let < be a strict partial order for G and e € F~. Let B € M and C, M, N € M..
Further, let v € (BNCN M)\ N and v € S7(e) for an i € [2]. First we show
that (M N N)\ S5 ;(e) € (BNC)\ Si,(e). Let w e (MNN)\ S3,(e). Since
w € M NN, we have w € V*(M, N) for a j € [2] according to Observation 71. Now
VX (M,N) C V(M) C S5 (e) implies that w € Sj(e). As w ¢ S5°;(e), it follows that
i = jand w € S7(e). Let us show that w € BN C: By Observation 103 we have
ve V.3 (B)NV,¥(C) and w € V;*(N). Since v,w € M, either v = w, then w € BN C, or
there is an edge between v and w. If v and w are adjacent, then v < w or w < v. Now we
can apply Observation 73: Without loss of generality let ¢« = 1. If w < v, then it follows
from v € Vi¥(B)NV(C) that w € V¥ (B)NV¥(C) C BNC. If v < w, then w € V;*(N)
implies that v € V;*(N) C N, a contradiction. Therefore, w € B N C. Consequently,
we (BNCO)\S;,(e).

By Observation 100 we have v ¢ S5 ,(e). Asv € BNC but v ¢ M N N, we have
(M NN)\ S5 (e) C(BNC)\ S5 ,(e). u

6.3.6. Sides of Inner Ends

For this section let e € F},. Since inner end e is contained in at least two max cliques
by Corollary 91 and these two max cliques are in M., we have e € S;*(e) or e € S5 (e)
for e € F}, according to Observation 98. Further, S;*(e) and S5 (e) are disjoint sets of
vertices by Observation 100. Thus, inner end e is in exactly one of the two sets S7*(e)
and S3'(e). Let ¢ € [2] such that e € S7*(e). In the following the goal is to define the sets

S5 := S7%(e) and 55 := S5, (e). (6.3)

We call S the <-side and S’: the <-counterside of e € Fi,. We show that for e € Fj,
the sets S;* and S are the same for every strict partial order < for G, and that they
can be defined in FP using a simultaneous inflationary fixed-point operator.

In order to do that, we present a sequence of vertex sets (X §<,
of sets occurs within the recursion of the simultaneous IFP-formula, which defines the
sets S* and S and which we will present afterwards. For large enough [ € N we have
(X! XlSA<) = (S7,57). Let e € Fy,. Further, let S := {S*,S*}. Our goal is to define

S2

the sets X% for all S € S and all k € N.

X g < )ken- This sequence

We start by defining the sets X éf and Xé ~. We want them to contain vertices of which
we definitely know that they are in S;* and é’:, respectively. Thus, we let X}g< contain

the inner end e, and we let Xé< be the set of all vertices in U, that are also contained in

a max clique D ¢ M,. The following lemma shows that all vertices in Xé< belong to S‘:

Lemma 105. Let e € F},, and let < be a strict partial orderAfor G. Let A€ M, and
D & M, be maz cliques such that AND # 0. Then AND C SF.

Proof. Let e € Fj,, and let < be a strict partial order for G. Further, let A € M, and
D € M\ M, be such that AND # 0. As D & M., we have e ¢ AND. Thus, Corollary 70
implies that the intersection of A and D is not of form (c¢). Consequently, there exists an
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i € [2] such that AN D C V.*(A,D) C V*(A) C S*(e). Note that AN D contains the
second <-end e’ # e of A. Since we already know that e € S, and Lemma 102 implies
that S* cannot contain both <-ends of A, it follows that AN D C S, O

To sum up, we let

Xé: :={e} and Xé: = U{A ND|AeM.D¢M.}. (6.4)

Now we can recursively define the sets Xk fors € Sand k > 2. For 8 = S= we let § := 55,
and for 8 = S7 we let § := SZ. Then D§ := {(M,N) € M? | v e Xf:ve M AN},
and we define

X5 =xku |y MnN)\ XL (6.5)
(M,N)eDk

First, we show that Xéf is a subset of S &€ S for all £ > 1.

Lemma 106. Let e € Fy, and let < be an arbitrary strict partial order for G. Then
XéfgsforallSES and all k > 1.

Proof. We show Lemma 106 by induction. XéM C S since Xé< = {e}, and X;N C S’:
follows from Lemma 105. Thus, Xé CSforses.

Let k > 1. The set X¥ is a subset of S € S by inductive assumption. In order to show
that X5t1 C S for each S € S, let us consider pairs (M, N) € DE| that is, max cliques
M, N € M, such that there exists a vertex v € Xé“ with v € M A N. We need to show
that (M N N) \ Xéf is a subset of S. Without loss of generality, let v € M \ N. For a
contradiction, let us assume there exists an a € (M N N) \ Xé“ that is not in S. Thus,
a € (MNN)\S. Now, let us consider the vertex v € Xg. Let m < k be minimal with
ve X

If m=1and 8 =57, then v € DN A’ for max cliques A’ € M, and D ¢ M.. Thus,
ve (DNA'NM)\N. As v € ST by inductive assumption, we can apply Lemma 104
and obtain (M N N)\ S* C (DN A"\ S>. Consequently, a € (DN A")\ S. Since

(DNA") C Xé< C XI§<’ we have a € X§<, which is a contradiction to a € (MﬂN)\X§<.

Ifm=1andS= S:, then v = e. Since N € M., we have v € N, a contradiction.

Now let m > 1. Then there exist max cliques B, C € Dé”fl such that (BNC)\ Xg" ' C X
and v € (BNC)\ X! Since X§*' C S by inductive assumption and X" C X,
we have (BN C)\ 8 C X!. Further, we have B,C € M, v € (BNCNM)\ N, and

v € § by inductive assumption. Therefore, we can apply Lemma 104, and we obtain
(MNAN)\sc(BNC)\S. Asae (MNN)\Sand (BNC)\8S QXé“, vertex a must be

in Xé“, a contradiction. O

As XF C X forall s € S and k > 1, there exists an [ such that (X}, X}) = (X4, X4).
Then (X}, X}) = (XY, XL) for all I’ > 1. Let [ be minimal with that property.
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Proposition 107. Let e € Fy,. For all strict partial orders < for G, we have X} =S
for each 8 € {S7,S5:}.

In order to show Proposition 107 we need the following claim.

Claim 108. Let e € Fy,. Let A, B € M. be max cliques, and let x € AN B. If there

exists an a € AN B such that a € Xé,: UXIS:, then x € Xg: UXg:.

Proof. Let e € Fy,,. Let A, B M., and x € AN B. Let a € A/ B and let there be an
S € S such that a € X.. Then (4, B) € D, and (AN B)\ X} C XL Due to the choice
of I, we have (AN B) \Xé C XL. Thus, if z € AN B is not in Xé, then it must be in X{.
Consequently, = € Xg: U Xé,:. O

Proof of Proposition 107. Let e € Fy,, and let < be a strict partial order for G. As Xé Cs
for S € S according to Lemma 106 and S, 5': are disjoint sets by Observation 100, it
suffices to show that SX U SX C Xé: U Xé<. Thus, let 2 € S* U SX. We need to show
thatxeXé:UXg:. ‘

For # € SX U SX there exists a max clique A € M, and a max clique B € M\ {A}
such that z € AN B by Observation 98. If B ¢ M., then z € Xéﬁ, and therefore,
x € Xé< UX%<. In the following let B € M.. ‘

If there is an a € A /A B such that a € Xé< U Xg

to Claim 108. Thus, we only need to consider the case where there does not exist an
a€ AA B with a € Xéé UXéj, that is, the case where (A A B)N (Xg; UXé:) ={. In
the following we show that this case leads to a contradiction.

< then x € Xé: U Xé,< according

We inductively construct an infinite sequence (M;);en of sets of max cliques with
M; C M, for all i > 0 such that U; :={v € A| A€ M;} and K; :=U; \ (Xé,< UX%Q
and the following properties are satisfied for each 7 > 0:

1. For all M, N € M; we have M N (XL U Xlg<) =NN(XL U Xg<), and
2. ‘KiJrl’ > |K1| and ‘K()’ > 2.

Obviously, it holds that U; C U, and K; C K := U, \ (XlS< U Xé<) for all ¢ > 0. Thus,

such a sequence induces a contradiction, since |Kx|| > |K| but K|x C K.

Let My := {A, B}. First we show that the set M, satisfies the two properties: Since
(AA B)N (XZS: U Xé,;) = 0, the set My = {A, B} satisfies Property 1. Further, we
have |A A B] > 2 as A and B are distinct max cliques. Therefore, it follows from
(AAB)N (X< U Xg:) = 0 that [Ko| = [(AUB)\ (Xg< U Xg:)y > 2. Thus, Property 2
is satisfied for M.

Now let ¢ > 0 and let Mo, ..., M, be a sequence of subsets of M, such that for all j € [0, 7]

the above properties are satisfied. In the following we construct a set M, ;1 C M, so
that for 7 =7 + 1 the two properties are satisfied as well.

Since e € ngﬁ, we have e € K;. Thus, |V| > |K;| > |Ky| > 2. As K; cannot be a non-

trivial module, there must be a vertex ¢ € V'\ K; and vertices p, ¢ € K; with {p,c} € F and
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{q,c} ¢ E. Vertex ¢ cannot be contained in U;\ K;: Assume c € U;\ K; = Uiﬁ(Xé< UXfSQ.
Then, since ¢, g € U;, there exist two max cliques, M. and M,, in M; that contain c and ¢,
respectively. Now, M, N (Xg: UXg<) = M,N (Xg; U Xg<) according to Property 1, and
therefore, c € M. N (Xé< U Xé<) is an element in M, which implies ¢ = ¢ or {¢,q} € F,
a contradiction. Hence, ¢ ¢ U; \ K, that is, ¢ € V \ Us.

Let A; € M be a max clique containing p and c¢. As p € K; C U; there is a max clique
B; € M; C M, such that p € B;. Obviously, 4; € M;, c ¢ B; and B; # A;. If A; & M.,
then p € Xé: C Xé: U Xg: by the definition of Xé:, which cannot be as p € K;. Thus,
A; € M,.

We define M1 := M;U{A;}. Then the two properties are satisfied for j = i41: To show
Property 1 let us assume Aiﬂ(Xfgﬁ UXé,<) #+ B;N (Xé,)< UXf§< ). Then there exists a vertex
a such that a € A; AB; and a € XéH UXKZ§< By Claim 108 we have p € XéH UXé<, which
is a contradiction to p € K;. As a consequence, A; N (Xé: U Xg:) =B;N (Xé: U Xg;),
and by inductive assumption Property 1 implies A; N (Xé: U Xfé;) =Mn (Xlsj U Xé:)
for all M € M;. To show Property 2, note that ¢ ¢ K; and that ¢ € A;\ B;. Thus, vertex
¢ cannot be in Xé: U Xé: as we have shown A; N (XIS(;< U Xéj) =B;N (Xé: U Xé:).
Consequently, ¢ € K; 11 \ K; and |K;11] > | K. O

(PorolAlary 109. There exist sets Se,S’e C V of vertices of G such that S. = S and
Se = S for all strict partial orders < for G.

To emphasize that the <-side S* and the <-counterside S* do not depend on the strict
partial order < for G, we from now on denote S and 5’: by S, and 5’5, respectively. We
call S, the side and S, the counterside of e € F,. Notice that then O, = U, \ (S U 5’6)
We use the inductive definition of the two sets S, and S’e via the sets X ;3: and X §< for
k > 0 to define S, and S’e in FP for e € F},. We let ‘

Xi(z1) < 01V Prec(z l'l,XhXZ)) (o)

ing, .k .\ .__ * .
P (" ') = o () A ifp (Xmg) Coy e

where

*
Y1 =1 =T,

o 1= Fz1, 22,21, 25 (P21, 22, T2) A (2, 2, 22) A
90/\/1(217'2271‘*) A _'QDM(ZLZé?x*»a and

Prec(z”, 2, X5, Xa) = 3y, 92,91, ¥, ¥ (om(y1, 2, 7) A ora (Y1, 5, 27) A
Xa(y) A oa (Y1, Y2, Ui Yo ¥) A
oMW1, Y2, %) N oa(yy, v, ) A = Xg(x)).

Simultaneous IFP-formula ¢(z*, 2) first uses the formula ¢p, from Corollary 96 to
check whether the vertex for £* is an inner end e. Then it recursively determines whether
the vertex for 2’ belongs to S.. It is not hard to see that the sets X} and X% for k > 1
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occurring in the recursion when interpreting the simultaneous fixed-point operator of
@& (x*, ') match the previously defined sets X and X §<:

Formulas ¢; and ¢y ensure that X{ = X é< and X4 = X!, respectively. Formula ¢,

§20
guaranties that X{ (only) contains the inner end e. Formula ¢, makes sure that the
set X4 contains all vertices that are both in a max clique A € M, and in a max clique
A" & M.. Remember that the formula o (21, 22, ) (see (2.3) in Section 2.8.2) is satisfied

for (vi,ve,w) € V3 precisely if vy, v, is a spanning pair of a max clique A and w € A.

Due to formula .. all necessary vertices are added in each round of the recursion: If
e € Fiy, w € V and the sets X§ and X¥ for 8 € {S7, S} and k > 0 are the sets defined
recursively in (6.4) and (6.5), then (e,w,Xé“,Xg) satisfies formula ¢rec(2*, z, X5, X3)
if and only if w € U(M’N)Epéc(M N N) \X;c The variables y1,y2 and ], y5 can only
be interpreted by spanning pairs of two max cliques N and M in M., respectively.
Then each possible value for variable y is a vertex v € Xg such that v € M A N.
Subformula pa expresses the symmetric difference. Thus, pa(y1, Y2, y1, ys,y) is satisfied
for (a1, as,al,ah,a) € V° if, and only if, a; and as span a max clique 4, a} and a} span
a max clique A" and a € A A A’. Clearly, formula @ is definable in FO. Hence, the
variables y1, yo and y}, 35 are to be interpreted by spanning pairs for two max cliques N
and M with (N, M) € DE. Then, it is not hard to see that rec(z*, x, X5, X3) is satisfied
for a tuple (e, w, X§, X}) as defined above if and only if w € U, vyeps (M N N) \ X5

Symmetrically, we can define S, for inner ends e € Fj,:

ing o« I\ .__ * . XQ(xQ) <_802A§0rec(x*ax27X2aX1) 1
SOg (:U 755) = ‘PFm(‘T )/\lfp <X1($1) — o1 A SOrec(x*,$1,XlaX2) x )

As a consequence we obtain the following result:

Corollary 110. There exists an FP-formula o' (z* 2') (or gpig(x*, x')) that is satisfied
for vertices e,a € V in a graph G if, and only if, e is an inner end of G and a € S, (or

a€S.).

6.3.7. Outer Ends

Now we can use Corollary 109 to show that the outer <-ends do not depend on the strict
partial order < for G and that we can define them in FP.

Let < be an arbitrary strict partial order for G. By Lemma 82 we know that each
outer <-end is a <-end of an outer max clique. This is why we consider outer max
cliques in this section. Each outer max clique has an outer and an inner <-end according
to Corollary 88. The inner <-end does not depend on the strict partial order < of G
(Corollary 95).

Let A be an outer max clique, and let e be the inner end of A. Then A € M., and the set
U, is the disjoint union of S., O, and Se. We let V. := S, U O, and Ve = ﬁe U O,. Since
Se, S. and O, are FP-definable for inner ends e (shown in the previous two sections),
V. and Ve are definable in FP as well. We use the set Ve to show that the outer <-end of
A does not depend on the strict partial order < for G. We let

E'(A):=({{DNV.|DeMand ANDNV, # 0} (6.6)
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Proposition 111. Let A € M be an outer max clique of G. Then |E'(A)| = 1. More
precisely, for every strict partial order < for G, which induces the order a1, ..., ay, on
the elements of A, we have either E'(A) = {a1} or E'(A) = {an}, where E'(A) contains
the outer <-end of A.

Proof. The proof is similar to the proof of Proposition 93. Let < be an arbitrary strict
partial order for G. Let A = (ay,...,a,)< be an outer max clique of G. Without
loss of generality, let a; be the inner end e of A. We show that the outer end a,,
of Ais in E'(A). Vertex a,, must be in V, as a,, ¢ Si(e) = S, (Lemma 102). Let
D:={DeM|ANDNV,#0}. Then A€ D and D # (). Let us assume there exists a
max clique D € D with a,, € D. Then D # A. Let d be an element of the non-empty
set ANDNV,. As an, ¢ D, Corollary 70 implies that the intersection of A and D is of
form (a). Consequently, AN D = V;*(A, D). It follows that d € AN D =V;*(A,D) C
Vi*(A) C S{(e) = S., which is a contradiction since d € V,. We obtain that a,, must be
contained in all max cliques D € D. Hence, a,, € E'(A). As a result, |E'(A)| > 1. Since
e € S, we have e € V., and therefore e & E'(A). Thus, |E'(A)| < |[V|. We can show that
E'(A) is a module in the same way as in the proof of Proposition 93. Since there are no
non-trivial modules, it follows that |E'(A)| = 1. O

Corollary 112. Let A be an outer max clique of a graph G. Then there exists a vertex
f € A such that f is the outer <-end of A for all strict partial orders < for G.

Let < be an arbitrary strict partial order for GG. Since each outer <-end is a <-end of an
outer max clique by Lemma 82, we can conclude the following:

Corollary 113. There exists a set Fou CV of vertices of G such that Fow = Fy for
all strict partial orders < for G.

We summarize the results of Corollary 95 and 113 in the following corollary.

Corollary 114. There exists a set F C V' of vertices of G such that F = F~ for all
strict partial orders < for G.

As a consequence, we can omit the “<” in the notation of the outer <-ends and <-ends
in general. From now on, we simply write outer ends and denote F,3, by Foy. Further,
we use I to denote F'~, the set Fi, U Fyy; of all ends.

From the description of the construction of formula ¢, (z*) in Section 6.3.4, it should
be clear how to use the definition of E'(A) in (6.6) for the construction of an FP-formula
©r,.. (x*) that is satisfied for prime chordal comparability graphs G and vertices e € V'
if and only if e is an outer end of G. In combination with Corollary 96, we obtain the
following result:

Corollary 115. There exist FP-formulas pr, (x*), vr, ., (x*) and pp(x*) that are satisfied
for a vertex e € V' in a prime chordal comparability graph G if, and only if, e is an inner
end, an outer end and an end of G, respectively.

Since the <-ends do not depend on the strict partial order < for GG, we obtain that the
<-bundle tree G[F~] does not depend on the strict partial order < for prime chordal
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comparability graphs G according to Corollary 114. We call G[F| the bundle tree of
prime graph G. Since there is an FP-formula ¢ (z*) that defines the unique set F of ends
(Corollary 115), the bundle tree G[F] is FP-definable for prime chordal comparability
graphs. Further, 2-colorings of connected bipartite graphs are definable in symmetric
transitive closure logic.! Thus, a 2-coloring {F}, Fy} of the tree G[F] is definable in FP.

Corollary 116. There exists an FP-formula @p~(x* y*) such that for all vertices e and
f of a prime chordal comparability graph G we have

G E=vyrale, f) <= e and f are in the same color class
of the 2-coloring {F1, F»} of G[F].

6.3.8. Sides of Outer Ends

For all inner ends e € Fj, we have already defined the side S, and counterside S’e of e.
Now let us define the side and counterside of outer ends.

Let f € Fuy be an outer end of G. Then f is a leaf of the bundle tree G[F]. By
Corollary 86, f has a unique neighbor e € F', which is an inner end, in G[F. Since end e
is the only end adjacent to f, all max cliques that have f as an end must also have e as
an end. Thus, My C M,.. We use 5’6 and S. to define the side Sy and the counterside
Sy of outer end f. We let

Sy = geﬂUf and Sf = S.NUy. (6.7)

Figure 6.10 shows the intersection of the set Uy with 5'6 and S..

Q)

N
D

QT

I Z—

Figure 6.10.: The sets 5’6, Se and Uy

The side Sy and counterside S ¢ of outer ends f € Fiy; are definable in FP: We can define
in fixed-point logic all pairs of vertices f and e where f is an outer end and e is an

1 We can test whether two vertices a and b have to be colored with the same color in a connected
bipartite graph H = (V, E) by checking whether a and b are connected in the graph H' = (V, E’)
where E' := {{v,w} € (‘2/)‘32 eV:{v,z},{z,w} € E}
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inner end that is adjacent to f (Corollary 115). Further, Uy is FO-definable, and the
side S, and counterside S, of each inner end e € Fj, are definable in fixed-point logic
(Corollary 110). Thus, there exists an FP-formula that defines Sy and S ¢ for outer ends
f € Fout. This and Corollary 110 yield the following corollary.

Corollary 117. There exists an FP-formula ps(x* x) (or pg(x* x)) that is satisfied for
vertices e,a € V in G if, and only if, e € F and a € S, (or a € S’e)

In the following we present the connection between Sy and Sy, and S7(f) and S5*(f) for
f € Fou where < is the strict partial order for G.

Proposition 118. Let < be a strict partial order for G, and let f € Fyy. There exists
exactly one i € [2] such that f € S7(f) or S7(f) =0, and for this i € [2] we have

Sy =S87(f) and Sy = S5(f)-

To prove Proposition 118 we need the three subsequent lemmas.

Lemma 119. Let < be a strict partial order for G, and let f € Foy. Let i € [2] be such
that f € S7(f) or S7(f) = 0. Then Sy = S7(f) and Sy = 53,(f).

Proof. Let < be a strict partial order for G, and let f € F,y;. Let e € Fj, be the unique
neighbor of end f in the bundle tree G[F] of graph G. We first prove that S7(f) =
S (e) N Uy for all j € [2]: Since My C M, and V;7(A) C A for all A € M, we obtain
Unerr, Vi (A) € Usem. Vi*(4) and Ugen, Vi (A) C Uy, respectively. Consequently,
S7(f) = Usem, Vi (A) is a subset of Uyepq, V7 (A) N Uy = S7(e) N Up. Next let
v € S;'(e) NUy. Then there exists a max clique A € M such that v € A. As v € S7(e),
we have v € V;7(A4) according to Observation 103. Thus, v € Uaenm, Vi (4) = S;7(f),
and S5 (e) NUy C S5(f).

Now let S7*(f) = 0. Then S;*(e) N Uy = 0, and inner end e cannot be in S;*(e)
because e € Us. Thus, S;(e) = S, and S5 ;(e) = S,.. Hence, S*(f) = S. N U; and
S3(f) = S.nUy. If f € S7*(f), then f € S*(e), and Lemma 102 yields e € S;*(e). Again,
we have S;%(e) = S, and S5°;(e) = S, which results in S7*(f) = Sy and S5,(f) = 5;. O

The following two lemmas help us to gain a better understanding of the sets S7*(f) and
S3(f) for outer ends f. Further, they show that there must exist an i € [2] such that
fe€S3(f)or SH(f)=0for f € Foy.

Lemma 120. Let f € Foy, and < be a strict partial order for G. Then f € S;*(f) for
an i € 2] if and only if [My| > 1.

Proof. Let f € Fuy, and < be a strict partial order for G. Let f € S;*(f) for i € [2].
Then there exist a max clique A € M such that f € V;"(A), and thus, there also exists
a max clique B # A such that f € V;*(A, B) C AN B. Hence, |M/| > 1.

If [My| > 1, there exist max cliques A, B € My with A # B and f € AN B. It follows
from Observation 98 that there is an ¢ € [2] such that f € S7(f). O
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Lemma 121. Let f € F,y be an outer end, and let < be a strict partial order for G.
Then there exists an i € [2] such that S;*(f) = 0 if and only if [My| = 1.

Proof. Let f € Fyy be an outer end, and let < be a strict partial order for G. To show
the first direction, let S;*(f) = 0 for an ¢ € [2]. Let us suppose |[My| > 1, and let e be
the inner end adjacent to f in G[F]. Then ends e and f are contained in at least two
max cliques from My, and by Observation 98 each end is in S7*(f) or S5'(f). Since
S3(f) =0, we have e, f € S5 ,(f), which is a contradiction to Lemma 102.

For the other direction, let [Mf| =1, and let A = (a4, ..., a, )< be the only max clique
in My. Then S;*(f) = V;*(A) for each i € [2]. Further, let us assume S;*(f) # 0 for
both i € [2]. Then, we must have a; € V]*(A) and a,, € V;°(A) (Observation 73). As
f=ay or f = ay, there exists a j € [2] such that f € V;*(A) C S7(f), which according
to Lemma 120 is a contradiction. O

Let f € Fout. Lemma 119 states that for all i € [2] with f € S7*(f) or S;*(f) = 0, we have
Sy = S7(f) and S; = S5 ;(f). Further, Lemma 120 and 121 show that there exists an
i € [2] such that f € S7(f) or S;*(f) = 0. In order to show Proposition 118, it remains
to prove that there exists only one i € [2] like that:

Proof of Proposition 118. Let us assume we have f € S7(f) or S7(f) = 0 for both
i € [2]. According to Lemma 119 we have Sy = S7(f) = S5*(f) and Sy = S5 (f) = S7*(f).
Since ST(f) and S5'(f) are disjoint sets of vertices by Observation 100, it follows that
ST(f) = S5(f) = 0. Let e be the inner end adjacent to f in G[F]. Then e is contained
in a max clique A in M; C M., which is an outer max clique by Lemma 82. As e is
an inner end, it is contained in a further (inner) max clique (Lemma 89). According to
Observation 98, e € S]'f( f) for a j' € [2], a contradiction. O

6.3.9. Sides and the Middle of a Graph

For each end e € F' we call the set S, a side of G. Further, we let O := V \ J{S. | e € F'}
be the middle of G. Remember that Sy(e) and S5(e) are subsets of U, and that O,
is the set Ue \ (S7(e) U S5'(e)) where < is an arbitrary strict partial order for G (see
Section 6.3.5). By Proposition 118 we have S7(e) U S5*(e) = S. U S, not only for inner
ends e € F;, but also for outer ends e € F, ;. Thus, S, U S, CU,and O, = U, \ (SeU S’e)
forallee F. Welet V. := 5. UO0O.,.

According to Corollary 117 we can define S, and S, in fixed-point logic. Further, U, is
FO-definable. As a consequence we can construct FP-formulas po(z*, ) and ¢y (2 x)
such that for each prime chordal comparability graph G = (V, E) with |V| > 2 and all
e,v € V we have

G Epole,v] <= e€FandveO, and
GEoyvle,n] <= eeFandvel.. (6.8)

In the following we present results regarding the sides and the middle of G.
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Observation 122. Let A and B be distinct max cliques containing a vertex v. Then
there exists a common end e € F of A and B such that v € S..

Proof. Let A,B € M with A # B and let v € AN B. Let < be a strict partial order
for G and let i € [2] be such that v € V;7(A, B) (Observation 71). Further, let e be the
common end of A and B that satisfies e € V;*(A, B). Then V;*(A4, B) C V,*(A) C S*(e),
and S;*(e) = S, since e € S (e). O

Lemma 123. Let v € V. Then v € O if and only if v is contained in only one mazx
clique.

Proof. Let v € V. In order to show the first direction, let us assume v is contained in max
cliques A and B with A # B. Then v € S, for a common end e of A and B according
to Observation 122. Thus, v € O. For the other direction, suppose v € O. Then v € S,
for an end e € F'. Thus, v € O, and we can apply Observation 101. As a consequence
v € U, is contained in more than one max clique. [

Observation 124. Let {Fy, Fy} be the 2-coloring of G[F|. Then O = U.cf, Oc for each
i€ 2]

Proof. Let i € [2]. By Observation 101 and 123, we have O, C O for all e € Fj.
Hence, U.cp, Oc € O. It remains to show that O C J.cp, Oc. Let v € O. According to
Lemma 123, vertex v is in only one max clique A. Let e be the end of this max clique with
e € F;. Then v € U.. Now we can apply Observation 101, and obtain that v € O.. 0O

Corollary 125. There is an FP-formula po(x) that is satisfied for a vertex v € V in a
prime chordal comparability graph G if, and only if, v € O.

Proof. We let po(2) := Jz*po(z* z), where po(z*, z) is the formula defined in (6.8). [
Observation 126. Let f € Foy be an outer end. Then f € O if and only if Sy = 0.

Proof. Let f € Fout be an outer end, and let < be a strict partial order for G. Let f € O.
Then f is contained in only one max clique by Lemma 123. According to Lemma 121
there is an ¢ € [2] such that S;*(f) = (. It follows from Proposition 118 that Sy = 0.
Now let f ¢ O. By Lemma 123, f is contained in more than one max clique. Lemma 120
implies that f € S;*(f) for an ¢ € [2], and Proposition 118 yields that f € S;. O

Observation 127. Let < be a strict partial order for G and e € F. If e is <-minimal,
then S, = S7(e) and S. = S5*(e). If e is <-mazimal, then S, = S5'(e) and S. = S (e).

Proof. Let < be a strict partial order for G and e € F. Without loss of generality, let
e be <-minimal. Let us assume there exist two max cliques A, B € M that contain e.
Then e € V;*(A4, B) C Si(e). By the definition of S, and S, for inner ends (see (6.3))
and Proposition 118, we have S, = Si*(e) and S, = S5(e). Now let us suppose there
exists only one max clique A € M that contains e. Then e cannot be an inner end by
Corollary 91. Thus, e is an outer end. Let us assume there exists a vertex v € V such
that v € S;*(e). Since v € S7*(e), vertex v is contained in a max clique M € M,. Thus, e
and v are adjacent, and as e is <-minimal, we have e < v. It follows from Observation 97
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that e € S7°(e). Then, Lemma 120 implies that [M.| > 1, which is a contradiction. Thus,
ST (e) must be empty. By Proposition 118, we have S, = S7*(e) and S, = S5*(e). O

Lemma 128. For all e,e’ € F with e # € we have S, N Sy = ().

Proof. Let e, e’ € F with e # €'. First, let e and ¢’ be adjacent vertices. Let < be a strict
partial order for G. Without loss of generality, let e < ¢. Then Observation 76 yields
that e is <-minimal and €’ is <-maximal. It follows that S, = S7*(e) and S, = S5*(¢’) by
Observation 127. Let us assume there exists a vertex v € S.NS,/. Vertex v is contained in
a max clique A. By Observation 103 we have v € V%(4), and v € V;*(A), a contradiction
to Observation 72.

It remains to consider ends ¢ and ¢’ that are non-adjacent vertices. Let us suppose there
exists a vertex v € S.NSey C U, NUy. Let A € M, and A’ € M, be max cliques
containing v. As e and ¢’ are not adjacent, there does not exist a max clique B with
e,¢’ € B. Thus, we have A # A. By Observation 122 we have v € Sy where f is a
common end of A and A’ Since there does not exist a max clique that contains e and €/,
we have f # e and f # €’ Then ends e and f are adjacent and v € Sc N Sy, which is a

contradiction as shown in the previous case. O

Lemma 128 shows that for all v € V'\ O, there exists a unique end e € F such that
v E Se.

Lemma 129. If a vertex v € V' \ O belongs to a max clique with ends e and €', then
either v € S, or v € Sr.

Proof. Let v € V' \ O be contained in a max clique A with ends e and ¢’. Since v & O,
there must exist a further max cliques B # A with v € AN B (Lemma 123). According
to Observation 122 we have v € Sy where f is a common end of A and B. It follows that

fe{ecet. 0

Lemma 129 directly implies the following corollary.
Corollary 130. Let A be a maz clique with ends e, f € F. Then A C S, UO U Sy.

Corollary 131. Lete € F. Ifv € V., then every max clique A with v € A has e as an
end.

Proof. Let e € F and v € S, UO,. Let us assume there exists a max clique A with
v € A that does not have e as an end. Then A must have two ends f and f’ different
from e. By Corollary 130 v € A C S UOU Sy. If v € Se, then v is not in O, and v
is also not contained in Sy or Sy by Lemma 128. Thus, we must have v € O,. As a
consequence, there is only one max clique, namely A, that contains v (Observation 101).
Since v € O, C U,, this max clique is in M,.. Hence, max clique A must have e as an
end, a contradiction. O

Lemma 132. Let e, f € F with e # f. If there is no edge between e and f (in G[F]),
then V. N Vy = 0.
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Proof. Let us assume there exists a vertex v € V. N Vy. Then v € O, or v € Oy
according to Lemma 128. By Observation 101 vertex v is contained in only one max
clique A € M. Now we can apply Corollary 131, and obtain that e and f are the ends of
A, a contradiction to e and f being non-adjacent. ]

6.3.10. Side Depth and Side Trees

Throughout this section let G be a prime chordal comparability graphs with more than
two vertices. We introduce the side depth and side trees in this section. For each end
e € F, we define a directed tree T, the side tree of e, which will be FP+C-definable. The
vertex set of T, is V, and the symmetric closure of the transitive closure of the edge
relation of T is the edge relation of the induced subgraph G[V,]. We begin this section
with introducing the side depth of a vertex v € V, for an end e € F. The side depth of
v € V, corresponds to the depth of v in the side tree T, of e.

For e € F and v € V, we define the side depth sd.(v) of v regarding e as follows: We let
sde(v) := |Ag U{v}

where A :={w e V. | {v,w} € E and 3IM € M: w € M,v ¢ M}. Notice that the set
AY does not contain vertex v. Thus, sd.(v) = |AY| + 1. Further, for each end e € F, it
follows from Corollary 131 that AS = (). Therefore, we have sd.(e) = 1 for all e € F.

There exists an FP+C-formula for the side depth. We let
pual@’2,p) = pv(az) A p = #y ((ov (@ y) A Bla,y) A (6.9)
321, 22 (P21, 22, ) A (21, 22795))) Vy= l“)7

where @y and paq are the formulas defining the set V, for e € F' and max cliques M € M,
respectively, from (6.8) and (2.3). Then for each prime chordal comparability graph
G = (V,E) with |V| > 2, all e,v € V and all [ € N(G) we have

G = gule,v,l]] < ec€F,veV,andsd.(v) =11in G.

Lemma 133. Let < be a strict partial order for G. Let e € F and v € V.. Ife is
<-minimal (or <-mazimal), then A} ={z eV |z <v} (or AL ={z €V |v=<2z})

Proof. Let e € F', v € V, and < be a strict partial order for G. Without loss of generality,
let e be <-minimal. Then S, = S7*(e) and S5'(e) = S. by Observation 127.

First we show that AY C {z € V | z < v}. Thus, let w € AY. Then w € V,, {v,w} € E
and there exists a max clique M € M such that w € M and v ¢ M. Since {v,w} € E,
there must exist a max clique A € M with v, w € A. As a consequence of Observation 101,
we have w € O.. Hence, w € S, = S7*(e) and by Observation 103 we have w € V™ (M).
As {v,w} € E, we have either v < w or w < v. Now, v < w implies that v € V,*(M) C M
(Observation 73), a contradiction to v ¢ M. Therefore, we must have w < v. Hence, w is
in{zeV]z=<v}

To prove that A D {z € V | z < v}, let w e {z € V| z <v}. Thus, w < v. Then
{v,w} € E, and there exists a max clique A that contains v, w. Let us assume that
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there does not exist a max clique M € M such that w € M and v ¢ M, that is, w & M
or v € M for all max cliques M € M. Then {v,w} is a module: First let us suppose
that there exists a z ¢ {v,w} such that {z,v} € F and {z,w} € E. Then there exists a
max clique B € M with z,w € B. Since B is a max clique with w € B, we must have
v € B according to our assumption. Consequently, there is an edge between z and v, a
contradiction. Now let us assume that there is a z € {v,w} such that {z,v} € F and
{z,w} ¢ E. Then there exists a max clique B € M with z,v € B. As z and w are
not adjacent, vertex w cannot be in B. Thus, B # A and v ¢ O, by Observation 101.
Therefore, we must have v € S, = S7*(e). Then Observation 103 yields that v € V*(B).
Now w < v implies that w € V*(B) C B (Observation 73), a contradiction. Thus,
{v,w} is a module in G. Moreover, {v,w} is a non-trivial module. As G is prime, our
assumption was wrong and there exists a max clique M € M such that w € M and
v € M. It remains to show that w € V.. Since v € V., max clique A has e as an end
according to Corollary 131. Therefore, w € U,.. Let us suppose that w € S, = S5 (e).
Then w € V;(A) (Observation 103), and from w < v it follows that v € V5*(A) as well.
Hence, v also is in S5 (e) = S, a contradiction. O

Lemma 133 directly implies the following two corollaries:

Corollary 134. Let < be a strict partial order for G. Let e € F andv € V,. If e is
<-minimal (or <-mazximal), then sd.(v) is the number of vertices z € V with z < v (or
v=2z).

Corollary 135. Let < be a strict partial order for G. If e € F is <-minimal (or
<-mazximal), then for all v,v" € V. with {v,v'} € E we have sd.(v) < sd.(v') if and only
if v < (orv <w).

For e € F we define the directed graph T, = (V,, E,) as follows: We let (v,w) € V.2 be
an edge of T, if sd.(v) = sde(w) — 1 and {v,w} € E. In the following we show that T is
a directed tree. We call T, the side tree of e.

Lemma 136. T, is a directed tree for all e € F, and the root of T, is end e.

Proof. Let T, be the undirected version of 7., and suppose C' = vy, ..., vy, vy is a cycle of
minimal length in T,. Let us choose j € [k] such that [ := sd.(v;) is maximal. Without loss
of generality, let 7 = 2. Then there are edges between v; and vo and between vy and vz in
G, and sd(v1) = 1—1 and sd(vs) = I —1. Let < be a strict partial order for G, and without
loss of generality let e be <-minimal. By Corollary 135 we have v; < vy and vz < vs.
First, let us suppose that v3 < v1. Then v3 and v; are adjacent, and Corollary 135 implies
that sde(vs3) < sde(v1), a contradiction. Now, let us assume vz £ v;. Then we can apply
Lemma 133. We obtain that vz ¢ A" and that A2 U{vy,v3} C A2, An illustration can
be found in Figure 6.11a. As a consequence, sd(vs) = |A22|+1 > |AV |+ 3 = sd.(v1) + 2,
again a contradiction. It follows that there does not exist a cycle in 7.

In the following, we show that there is a directed path from e to each vertex v € V.. (This
part of the proof is illustrated in Figure 6.11b.) Let W, be the set of vertices w' € V,
that e is connected to by a directed path. Clearly, e € W,. Further, let W := V_ \ WL.
Let us assume that W # (). Let < be a strict partial order for GG, and without loss
of generality let e be <-minimal. Further, let w be a vertex in W such that sd.(w) is
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Figure 6.11.: Illustrations for the proof of Lemma 136

minimal. Then AYNW = ) according to Lemma 133 and Corollary 135. Hence, AY C W..
As w € U, we have e < w. Thus, the set AY is not empty. Let a € AY be such that
sde(a) is maximal. Notice that a € AY implies that a < w and {a,w} € E. According to
Corollary 135, it holds that sde(a) < sd.(w), and as there is no directed edge from a to w
in T,, we must have sd.(a) < sde(w) — 1. Hence, |A%| < |A¥| — 1. Since a < w, we have
A% C AY (Lemma 133). Let o’ be a vertex in AY such that o’ € A2 U {a}. Then ¢’ < w
by Lemma 133. Let M € M, be a max clique with w € M. We show that both a and o’
are also in max clique M: If w € S, then w € S7*(e) (Observation 127) and w € V*(M)
(Observation 103), and it follows from Observation 73 that a,a’ € V(M) C M. If
w € O, then M is the only max clique containing w. Since w is adjacent to a and o', the
vertices a,a’ must be in M. Consequently, a,a’ € M, and there must be an edge between
them. Thus, a < a’ or @’ < a. As o’ ¢ A%, we cannot have a’ < a (Lemma 133); and we
cannot have a < a’ either because it implies that sd(a) < sd.(a’) (Corollary 135), and
a € AY was chosen such that sd.(a) is maximal, a contradiction. O

Given the FP+C-formula in (6.9) for the side depth of a vertex v € V, regarding an end
e € F) it is easy to see that we can define the edge relation of the side tree T, of e € F' in
fixed-point logic with counting.

Observation 137. There exists an FP+C-formula o (x* x1,z2) that is satisfied for a
graph G and vertices e,v,w € V if and only if e € F and (v,w) is an edge of the directed
tree T,.

For every vertex v of side tree T, the depth of v in T, is sd.(v) — 1. We let anc.(v) be
the set of all ancestors and dec.(v) be the set of all descendants of v € V, in T,. In the
following we show more properties of T¢.

Lemma 138. Let < be a strict partial order for G, and let e € F' be an end that is
<-minimal (or <-mazimal). Then for all v,w € V., we have v < w (or w < v) if and
only if v is a proper ancestor of w in Te.

Proof. Let < be a strict partial order for G. Let e € F and v,w € V.. Without loss of
generality, let us assume e is <-minimal.

Let v be a proper ancestor of w, and let v = vq,...,v; = w be the directed path from
v to w in the directed tree T,. Then sd.(v;) = sde(vit1) — 1 and {v;,v;41} € E for all
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i € [k — 1]. By Corollary 135 we have v; < v;41 for all i € [k — 1], and the transitivity of
=< implies that v < w.

Now let us assume there exist v,w € V, with v < w where v is not a proper ancestor of
w in T,. Let w be of minimal depth in T, with this property. As v < w, we have w # e.
Let w’ be the parent of w in T,. Clearly, w’ # v. According to Corollary 135 we have
w' < w. If v < w, then due to our choice of w, vertex v is a proper ancestor of w’, and
therefore, v is a proper ancestor of w, a contradiction. Consequently, we cannot have
v < w’. By Lemma 133 we obtain v ¢ A%’ However, v € A”, and from w’ < w it follows
that w' € A and AY" C AY. Therefore, AY U{w',v} C A¥. Then |[A¥| > |AY'| + 2, but
sde(w) = sde(w’) + 1, a contradiction. O

Corollary 139. The edge relation of the induced subgraph G[V.] corresponds to the
symmetric closure of the transitive closure of the edge relation of T, for all e € F.

Lemma 140. Let v,w € V, for e € F. Then w € anc.(v) if, and only if, v € A implies
w € A for all maz cliques A € M.

Proof. Let e € F and v,w € V.. First we show that if w € anc.(v), then v € A implies
w € A for all max cliques A € M. Let v € O.. Then there exists only one max clique
A e M with v € A. If w € ance(v), then either w = v or there is an edge between v
and w in G according to Corollary 139. Hence, w € A. Now let v € S.. Without loss of
generality, let e be <-minimal. Thus, S. = S7*(e) (Observation 127). Let w € anc.(v).
By Lemma 138 we know w < v. Let A € M be such that v € A. Then we obtain
w € V*(A) C A as a direct consequence of Observation 103 and Observation 73.

Now let us prove that w € anc.(v) if v € A implies w € A for all max cliques A € M.
Let w € A for all max cliques A € M with v € A. Clearly, w € anc.(v) if v = w. Thus,
let v # w. Let A be a max clique with v € A. Then w € A. Therefore, there is an edge
between v and w. It follows that v < w or w < v. By Lemma 138 we obtain that w is a
proper ancestor of v or that v is a proper ancestor of w in T,. In the first case we are
done. Thus, let us assume v is a proper ancestor of w in T,. Then it follows from the
above that w € A implies v € A for all max cliques A € M. Hence, for all max cliques
A, we have v € A if and only if w € A. Tt is not hard to see, that this yields that {v,w}
is a non-trivial module, which is a contradiction because G is prime. O

Observation 141. Let e € F. The set O, is a subset of the set of leaves of T..

Proof. Let e € F. Let us assume there exists a vertex w with w € O, but w is not a leaf
of T.. Let v be a child of w in T,. Then w € anc.(v), and by Lemma 140, v € A implies
w € A for all max cliques A € M. As w € O, is contained in just one max clique A,
max clique A is the only max clique containing vertex v. Consequently, v and w are
each solely adjacent to the vertices in A except for itself. We obtain that {v,w} is a
non-trivial module, a contradiction. O

Let {Fi, F»} be the 2-coloring of the bundle tree G[F| of G. For each i € [2] we define a
relation <; on V. We let a <; b if, and only if, one of the following holds:
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e there exists an e € F; such that a,b € V, and a € anc.(b) \ {b},

e there exists an f € F3_; such that a,b € V; and a € dec.(b) \ {b},

e there exist e € F}, f € F3_; and a max clique A € M such that a € S, b € Sy and
a,be M.

Observation 142. Let < be a strict partial order for G, and let { Fy, F} be the 2-coloring
of the bundle tree G[F]. Then < = <1 if F1 = FT* and Fy = F5*, and < = <9, if F} = F}°
and Fy = F°.

Proof. Let < be a strict partial order for G, and let {F}, F»} be the 2-coloring of G[F].
Without loss of generality, let F; = F[ and Fy = F5;*. Then all ends in F} are minimal
and all ends in F5 maximal with respect to <.

Let a < b. We have to show that a <1 b. If there exists an e € F' such that a,b € V,,
then a <; b follows directly from Lemma 138. Thus, let there be ends e, f € F with
e # f such that a € V, and b € V}. Since {a,b} € E there exists a max clique A such
that a,b € A. By Corollary 131 vertices e and f are the ends of A. Let a € O, or b € Oy.
Then it follows from Observation 101 that a € Oy or b € O,. Hence, a,b € V;ora,bc 'V,
in this case, and we have a <; b as shown above. In the following let a € S. and b € S;.
If e is <-maximal, then a € S, implies that b € S, according to Observation 127 and
Observation 97, which is a contradiction to Lemma 128. Hence, e must be <-minimal,
that is, e € F1. As e and f are the ends of A, ends e and f are adjacent in G[F|. Thus,
e € I yields f € Fy. Therefore, a <7 b.

Next let us prove that a < b if a <1 b. If a <1 b holds because of one of the first two
cases, then a < b follows directly from Lemma 138. Thus, let us consider the third case:
There exist e € Fy, f € F> and a max clique A € M such that a € S., b € Sy and
a,b € M. Since a and b are adjacent, we have either a < b or b < a. If b < a, then we
obtain a contradiction to Lemma 128, as a € S, yields b € S. by Observation 127 and
Observation 97. Consequently, we have a < b. ]

It is not hard to see that <3_; is exactly the reverse relation <;p of strict partial order <;.

Corollary 143. For each i € [2] the relation <; is a strict partial order for G.

6.4. The Bundle Extension and Extended Valid Subgraphs

Let G* € C&yc, be an LO-colored graph, where the underlying graph G = (V, E) is
a prime chordal comparability graph with [V| > 4. In this section we transform the
LO-colored graph G* € C{y,¢, into a structure H*, a bundle extension. We do this in two
steps. First we define the O-extension G*' of LO-colored graph G* and afterwards, the
bundle extension H* of G*". The bundle extension allows us to retrieve G* but also contains
additional information about the structure of GG. Further, we define valid subgraphs and
extended valid subgraphs in this section. Valid subgraphs are induced subgraphs of the
underlying graph of bundle extension H*. As we need knowlegde about the structure
of the valid subgraph, we equip the valid subgraph with additional relations, which
contain information about the structure. We call the resulting structure an extended
valid subgraph. Extended valid subgraphs are used in the following section to construct
a decomposition tree that can be used for canonization.
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6.4.1. The O-Extension

Let G* = (U,V,E,M,<,L) € C¢yc, be an LO-colored graph with |V| > 4. In this section
we transform G* into an O-extension G*. We add vertices to G* such that subsequently
in the underlying graph every max clique has a vertex that is contained in only one
max clique, that is, a vertex that belongs to the set O. Then for every end e the set of
leaves of the tree T, coincides with the set O.. We mark the newly added vertices by
adding a unary relation that contains these vertices. So that we can identify the original
LO-colored graph G* given the O-extension G*.

First, let us extend the underlying graph G = (V, E)) of G* to a graph G’ = (V| E’). Let M
be the set of max cliques of G, and let O be the middle of G. For every max clique A € M
of G with ANO =10, let vs € V be a new vertex. Let Vg :={va| A€ M: ANO = 0}.
We let

V' i=VUVy and
E':= EU{{va,v}|va € Vp,v € A}.

Note that G is the subgraph of G’ induced by V.

In the following we show that G’ is a prime chordal comparability graph.

Lemma 144. G’ is prime.

Proof. Let us assume that there exists a non-trivial module M of G. As M is a module
of G’, the set M NV is a module of G. Since G = (V, E) is a prime graph, which means
there are no non-trivial modules in G, we must have [M NV| <1lor M NV = V. In the
following we show that each of the two conditions lead to a contradiction. Note that
G = (V,E) is a prime graph with |V| > 4. Thus, G has at least two max cliques and
each max clique consists of at least two vertices.

First let us suppose that |[M N V| = 0. Then there exist vertices v4,vg € M with
va,vB € Vi and vq # vp. Thus, for max cliques A and B of G we have A # B. As
A and B are max cliques of G, there exists a vertex a € A\ B. Vertex a is not in M
because |[M N V| =0. Now, v4 and a are adjacent but vg and a are not adjacent. Since
M is a module of G, we obtain a contradiction.

Next let us suppose that |[M NV| = 1. Let v be the vertex in M NV, and let vg € Vg
be a further vertex in M. Let us consider the case where v € A. Then AN M = () and as
vy is adjacent to all @ € A, v must be adjacent to all @ € A as well. Hence, AU{v} is a
clique, which is a contradiction to A being a max clique. It remains to consider the case
where v € A. As va € Vi, we have AN O = (). Thus, v is contained in at least two max
cliques of G by Lemma 123. Let B € M be a max clique of G with A # B and v € B.
Since A and B are distinct, there exists a vertex b € B\ A. Clearly, b # v, b # v4 and
b & M. We obtain that v and b are adjacent but v4 and b are not adjacent. As M is a
module of G, this is a contradiction.

Finally, we assume that M NV = V. Since M is a non-trivial module of G’ we have
V'\ M # (0, and it follows from M NV =V that V'\ M C V). Let vg € V be a vertex
of G’ that is not in M. Let B be a max clique of G with B # A. Max cliques A and B
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are subsets of M. Let a € A\ B and b € B\ A. Then a and vy are adjacent but b and
va are not adjacent. Again, we obtain a contradiction because M is a module of G". [

Observation 145. G’ is a chordal graph.

Proof. Let us assume there exists an induced cycle C' = ¢4, ..., ¢k, ¢p of length at least 4
in G, and let us suppose C' contains a vertex vy € V. Without loss of generality, let
co = v4. As vy is only adjacent to the vertices in max clique A of G, the vertices ¢; and
c3, which are adjacent to co, must be contained in max clique A. Thus, there is an edge
between ¢y and c3, and C is not an induced cycle, a contradiction. Hence, C' contains
only vertices in V, which is a contradiction as G is a chordal graph. O

In the following we prove that G’ is a comparability graph. Let < be a strict partial
order for G. We define a relation <’ on V' that extends the strict partial order < for G,
and use the subsequent lemmas to show that <’ is a strict partial order for G'. We let

v <" w for all v,w € V with v < w,
and for each vertex va € V) we let

a <"vy for all a € V*(A) and
va <" a for all a € V5 (A).

Lemma 146. The relation <" is a strict partial order.

Proof. Since < is irreflexive, it is not hard to see that <’ is irreflexive as well. Let us
show that <’ is transitive. Let u,v,w € V' be such that u <" v and v <" w. Clearly, we
have u <’ w if u,v,w e V.

Let us consider the case where v € V. Then v = vy for a max clique A of G. Asu <" v
and v <" w, we have u € V*(A) and w € V;3(A). If follows from Observation 72 that
u < w, and therefore, u <’ w.

Now, let us consider the case where u € V. Then u = v, for a max clique A of G.
As u <" v, we have v € V;*(A). If w € V, then v < w and w € V;*(A) according to
Observation 73. Thus, if w € V', we have u <" w. Let w € V. Then w = vg for a max
clique B of G, and v € V*(B). Thus, v € V]3(B) C Band v € V;5(A) C A. If A= B,
we obtain a contradiction according to Observation 72. Therefore, let A # B. Since
v € AN B, there exists an i € [2] such that v € V;"(A, B) by Observation 71. Without
loss of generality, let i = 1. As v € V]*(A, B) C V;*(A), we obtain a contradiction to
Observation 72. The case where w € V) can be handled analogously. O

Lemma 147. Let < be a strict partial order for G, and let A be a maz clique of G. If
ANO =10, then V*(A) UV, (A) = A.

Proof. Let < be a strict partial order for G. Let A be a max clique of G where ANO = ().
Clearly, Vi*(A) U V5% (A) C A. Thus, we only need to prove that each a € A is also
contained in V(A4) U V5 (A4). As ANO =0, every vertex a € A is contained in at least
two max cliques according to Lemma 123. By Observation 122 there exists an end e
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such that a € S,, where S, is the side of e of G. Without loss of generality let e be
<-minimal. Then S. = S7*(e) by Observation 127. From Observation 103 it follows that
a € V3 (A). O

Lemma 148. The relation <" is a strict partial order for G

Proof. According to Lemma 146, <’ is a strict partial order. In order to show that <’ is
a strict partial order for G, it remains to prove that for all vertices u,v € V' we have
{u,v} € FE’ if and only if u and v are comparable with respect to <. For u,v € V
this follows from < being a strict partial order for G. Every vertex vy € V) is only
comparable to all a € V;*(A) U V;*(A) with respect to </, and each vertex vy € Vi is
only adjacent to all @ € A in G'. Therefore, we need to show that V;*(A) U V;%(A) = A
for all v4 € V), which follows directly from Lemma 147 because for each va4 € V) we
have ANO = 0. O

Corollary 149. G’ is a comparability graph.

Now we consider the max cliques of G’ and show that all added vertices v4 € V) are
contained in the middle O’ of G. We will see in Corollary 152 that the middle O’ of G’
is exactly the extension of O by the vertices from V).

For a max clique A € M of G, let the set g'(A) of vertices of G’ be defined as follows:

Au{vs} fANO=0
g(a) = A0 .

A otherwise.
In the following we show that ¢’ is a bijection between the set M of max cliques of G
and the set M’ of max cliques of G".

Observation 150. Let A be a max clique of G. Then ¢'(A) is a mazx clique of G'.

Proof. Let A be a max clique of G. The set ¢'(A) is a clique because A is a clique and
vertex v4 is adjacent to all vertices in A if ANO = (). Let us assume ¢'(A) is not maximal.
Then there is a vertex w ¢ ¢'(A) such that w is adjacent to all vertices in ¢'(A). If
w € V, then A is not a max clique of G, and we have a contradiction. Let w ¢ V. Then
w € Vg, and w = vp for a max clique B # A. Since A and B are distinct max cliques of
G, there exists a vertex v € A\ B. By definition of E’, vertex w is not adjacent to v, a
contradiction. O

Observation 151. Let A’ be a max clique of G'. Then there is a max clique A of G
such that A" = ¢'(A).

Proof. Let A’ be a max clique of G'. Let C' := A'NV. As G is the subgraph of G’ induced
by V, the set C' must be a clique of G. Let us consider A’ N V4. Since there are no edges
between vertices in V), there exists at most one vertex in A’ N V. If there does not
exist a vertex in A’ N V), we let A be an arbitrary max clique of G that contains C. If
there exists a vertex vg € A’ N V), then clique C' must be a subset of B because vp is
only adjacent to v € V if v is contained in max clique B of G, and we let A be the max
clique B. Now it is not hard to see, that A’ is a subset of ¢’(A). As A’ is a max clique
of G’, Observation 150 yields that A" = ¢'(A). O
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It follows from Observations 150 and 151 that ¢’ is a surjective mapping between the set
of max cliques of G and the set of max cliques of G'. It is not hard to see that ¢’ must be
injective as well. Hence, ¢’ is bijective. We can observe that the max cliques of G and
G’ essentially are the same, except that some max cliques of G’ contain an additional
new vertex v4 € V. Thus, for all vertices v € V, vertex v is only contained in one max
clique of G if and only if v is only contained in one max clique of G'. Further, each vertex
v4 € Vi is only contained in the max clique AU {v4} of G With Lemma 123 we obtain
the following corollary.

Corollary 152. The middle O' of G’ is the disjoint union of Vaq and the middle O of G.

Now for every max clique A of G it follows that ¢'(A) N O’ # 0: If ¢'(A) = AU {va},
then vg € ¢'(A)NO’; and if ¢'(A) = A, then ANO # 0, and ¢g'(A) N O’ # () follows from
ANO C ¢ (A)NO". We conclude the following:

Corollary 153. Let O’ be the middle of G'. Then for every maz clique A" of G' we have
ANO #0.

The subsequent corollary follows directly from Lemma 123 and Corollary 153.

Corollary 154. For every mazx clique A" of G' there is a vertex v € O such that A’ is
spanned by vertex v.

Lemma 155. Let e € F' be an end of G', and let O, be the middle and T, be the side
tree of e of G'. Then O. is the set of leaves of T..

Proof. Let e € F' be an end of G'. Let O, be the middle and 7T be the side tree of e of G".
By Observation 141 the set O, is a subset of the set of leaves of T7. Let us suppose there
is a leaf w of T that is not in O.. Then w is contained in the side S. of e. It follows
from Lemma 123 that w is contained in at least two max cliques A" and B’ of G". Let us
consider max clique A. Max clique A’ has e as an end by Corollary 131. According to
Corollary 153 there exists a vertex v € A’ N O’ As v € O/, vertex v is only contained in
max clique A’ (Lemma 123). Since v € U, Observation 101 implies that v € O, C V..
By Lemma 140 it follows that w is an ancestor of v in T,. As v # w, we obtain that w is
not a leaf, a contradiction. ]

Now let us define the O-extension of the LO-colored graph G* = (U, V, E, M, <, L) € C¢y ¢,
Let U := VUM, and Z := Vyy. Then G*' := (U, V', E', M, <, L, Z) is the O-extension of
G* Generally, a {V' E/, M', <’ L', Z'}-structure is an O-extension if it is the O-extension
of an LO-colored graph G* € C&yc,- As the graph G' = (V' E’) is a prime chordal
comparability graph, we can interpret the O-extension G*' = (U, V' E', M', <" I, Z") of
G* € Céy oo as an LO-colored graph (U, V', E', M', ', L") from C¢, ¢, with an additional
unary relation Z’, which contains all vertices from V' that are not in V. We transfer all
names from LO-colored graphs to O-extensions. Thus, G' = (V| E’) is the underlying
graph, M’ the set of basic color elements and L’ the color relation of G*.

Given an O-extension G*' = (U, V', E", M', </, L', Z') we can easily determine the unique
LO-colored graph G* € C¢,, ¢, of which G*' is the O-extension: We obtain G* from G*
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by dropping relation Z’ and by using the subgraph induced by V' \ Z’ of the underlying
graph G’ = (V', E') of G*' as underlying graph G = (V, E) of G*

The following transduction ©' maps each LO-colored graph G* € C&y, ¢, to an isomorphic
copy of its O-extension G*'.

o = (9[]/(1', yvp)a O~ (ZC, Y, D, 'T/7 ylap/)> HV/ (.CL', yvp)v HE/ (fC, Y, D, 'Tl? ylvp/)>
HM’ (ZL', yap)a 93/(.’13, Y,D, xla y/a p/)a 0[/ (15, Y,D, :B/v y/a pl7 fE”, ?/”7 ”)a HZ/ (1‘7 y7p))

where

v (z,y,p) == p=0
V (p = 1A @span(,y) A =32 (pm(z, ¥, 2) A polz))),
O (z,y,p, 2,y p") = (p=0Ap =0Az =2)
V (p=1AP =1A@panx(,9,2,9)),
Oy (z,y,p) == (p=0AV(z)) Vp=1,
O (2,y,p, , y’,p') = (p =0Ap =0A E(x, :c'))
V (p=0Ap =1Apu(ay,x))
V (p=1Ap =0Apm(z,y,2')),
Ore (z,y,p) := p=0AM(x),
Oa (z,y,p,250,p) == p=0Ap =0A d(z,2),
Op (z,y,p, 2y, 02" 4" ") = p=0Ap =0Ap" =0A L(x, 2, 2"),
0z (z,y,p) p=1.

Within the above definition of transduction ©’ the formulas @span, @span~ and o
are not the {E}-formulas for graphs from Section 2.8.2 and o not the {E}-formu-
la for graphs G € Ccnco from Corollary 125 but matching {V, E, M, <, L}-formulas
referring to the underlying graphs of LO-colored graphs G* € C¢y .- We obtain them
easily by an application of the Transduction Lemma. The transduction used is the
({V,E, M, <, L}, {E})-transduction © = (V (z), E(x,2')).

Lemma 156. For every G* € Céyq,, structure ©'[G*] is isomorphic to G*'.

Proof. Let G* = (U,V,E,M,<,L) € Ciyc, and let G*' = (U, V', B, M", <, I, Z') be the
O-extension of G* Further, let G = (V, E) and G’ = (V' E’) be the underlying graphs of
G* and G*. The set U" := 0y:[G*; x,y, p| consists of all triples (v, w, j) € U(G*)? x N(G*)
where j € {0,1} and if j = 1, vertices v,w € V are spanning vertices of a max clique
of G that is disjoint to the middle O of G. Thus, U” is the disjoint union of Uj :=
U(G*)? x {0} and U{ := {(v,w) € V(G*) | JA € M: v,w span A, ANO =0} x {1}.
Let ~' be the equivalence relation generated by 0~/ [G*;z,y, p, 2, v/, p']. Triples (v, w,0)
and (v, w'0) from Uj are equivalent regarding ~' if, and only if, v = v’ Thus, the
mapping h: (v,w,0)/~ — v is a bijection between U /~» and U. Notice that there are
no triples from U}/ that are equivalent to triples from Uj. Triples (v,w,1) and (v/,w’,1)
from U are equivalent if, and only if, v,w and v, w’ span the same max clique A of G
(where AN O = ()). We obtain that U]/~ consists of exactly one vertex for each max
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clique A of G with AN O = 0. We let h((v,w,1)/x) := va if v,w span max clique A.
Then h bijectively maps U{ /= to V. Thus, h is a bijection between U” /» and U’.

Now let us show that formulas 6y, 0~ and 0 define an isomorphic copy of the
graph G'. It is not hard to see that V" := 0y/[G*;z,y,p] N U" is the union of the sets
V)= {(v,w,0) € U} | ve V}and V" :=U/. Since h(Vy' /o) =V and h(V{' ») = Vi,
it follows that h(V”/x) = V. Let E” be the relation 0p/ [G*;z,y,p, 2" v/, p'] N U, and
let Ejo, £y, and EY, be the set of all (v,w,j,v,w',j') € E” where j = 0 and j' = 0,
j=0and j =1, and j =1 and j' = 0, respectively. Then £" = Ej, U Ef, U E{,. Let
h': (U" /<) — (U')? be the mapping where

hl((”»“’aj)/z’v (Ul7 wlvjl) z/) = (h((v,w,j)/z/),h((v', wlajl) z/))

Clearly, h'(Ejo/~) = E. We have (v,w,0,v,w’ 1) € Ey, if, and only if, (v,w,0) € Uy,
(v, w' 1) € U, and v' and w' are vertices of G that span a max clique A of G with
v € A. Hence, M'(Ef,/~) = {(v,va) € U x Vg | v € A}. Analogously, we can show
that h'(EYo/~) = {(va,v) € Vi x U | v € A}. Then W(Ef;/~ U EY/~) is the set
{{va,v} | va € V\m,v € A}. Thus, W (E"/~) = E'. It follows that formulas 6y, 0~ and
O define an isomorphic copy of the graph G

It is not hard to see that formulas 0,;/, 0« and 67, define the relations corresponding
to M', <" and L/, and that 6z and 6« define the relation corresponding to Z’ on the
universe U” /xr. O

6.4.2. The Bundle Extension

We consider O-extensions in this section, and extend them further into what we call
bundle extensions. O-extensions are a sort of LO-colored graphs from C¢y o, with an
additional unary relation Z of vertices. We can consider O-extensions as LO-colored
graphs from C¢yc, where certain vertices are marked. That is why we denote the O-
extensions in this section by G*. In order to obtain the bundle extension H* of G* we add
two new vertices, f1 and fs, to the underlying graph G of O-extension G* We let each of
these two vertices be adjacent to all other vertices. Further, we construct two side trees
for the bundle extension. The vertices f; and fo become the roots of these two side trees,
and the new side trees contain all side trees of the underlying graph G as subtrees.

Defining the Bundle Extension

Let G* = (U,V,E,M,<, L, Z) be an O-extension with underlying graph G = (V, E). We
extend the underlying graph G = (V| E) of our O-extension G* to a graph H = (V,E). We
let the vertex set V consist of all vertices in V' and two distinct vertices f; and f5 for the
color classes Fy and Fy, respectively, of the bundle tree G[F| of G. The edge relation E

of His the set EU {{v,w} € (}) |v e {fi, fo}}.

Note that G is the subgraph of H induced by V. Further, each of the two additional
vertices f1 and f, is completely connected to the rest of the graph. Thus, {fi, f2} is a
non-trivial module of H, and therefore, the graph H is not prime. However, H remains
chordal because an induced cycle of length > 4 cannot contain f; or fy and must therefore
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be an induced cycle in G. Further, H is a comparability graph as we can extend a strict
partial order < for G to a strict partial order for H by letting f; < v for all v € V\ {f1}
and v < fy for all v € V\ {f2}. Notice that we can extend a strict partial order < for G
also in a different way to a strict partial order for H. It follows that the set of <-ends of
H depends on the strict partial order < for H, and that we cannot define a unique set of
ends of H.

Next we define the side trees, Ty, and Ty,, of bundle extension H. The side tree Ty, is a
directed tree that has f; as root vertex and all side trees T, of e € F| of GG as subtrees.
We integrate the trees T, into Ty by letting the root vertices e € Fy be the children
of fi. Notice, that according to Lemma 132 the vertex sets V, of the directed trees T,
with e € Fy are disjoint. Equivalently, we construct Ty,, where we use the set I, of end
vertices of G.

Let U:= VUM, and Z := Z U {fi, fo}. Further, let T be the set of all pairs (v,w) € V?
where (v,w) € E(Ty) for f € {fi, f2}. We call H* := (U,V,E,M, <, L, T,Z) the bundle
extension of G*. Generally, a {V,E,M, <, L, T, Z}-structure is a bundle extension if it is the
bundle extension of an O-extension. We let C¢y, -, be the class of all bundle extensions. We
transfer names from O-extensions, that is, LO-colored graphs, to the bundle extensions.
Thus, H = (V,E) is the underlying graph, M the set of basic color elements and L defines
the color relation of bundle extension H*.

Having a bundle extension H* = (U,V,E,M, <,L, T, Z) € C&, ¢, it is not hard to identify the
unique O-extension G*' of which H* is a bundle extension: We can determine the two
vertices of the directed graph (V,T) where the in-degree is 0. These vertices are f; and
f2. Then we obtain G*' by dropping the relation T from H*, removing f; and f, from Z,
and by using the induced subgraph H[V \ {f1, f2}], where H = (V,E), as underlying graph.

The following transduction 8 maps each O-extension G* to an isomorphic copy of its
bundle extension H*

8= (9[}(()3, y7p>7 9z(x, y)pv xlu y/a p/)a OV(:Eu y7p)) HE(xa yvpa .’,C/, y,7p,)7 QM(x) y7p>7
93(117, Y,DP, x,7 yla p/)7 QL({E7 Y,D, ‘T,7 y/7 pla xﬂv y”7 p”)7 HT(QT? Y,D, iU: yla p,)a 92(x7 yap))

where

Ou(z,y,p) ;= (p=0Vp=1) Apr(y),
O,y 0,7, p) = (p=0Ap =0Az =2)
V(p=1Ap =1N0r~(,9)),
O(z,y,p) = (p=0AV(x)) Vp=1,
eE(xay7pax/7y/7p/) = (]0 = 0/\p/ = OAE((II,CL‘/)
V (p=1AD =1A-pr(y,y))
V (p=0Ap =1)V(p=1Ap =0),
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Ou(z,y,p) = p=0AM(x),
Qﬂ(l',y,p,lﬁ/,y/,pl) = p= 0/\1?/ =0nd ($7$/)>
):
):

Ou(z,y,p, 2y, 0, 2" y"\p") == p=0ADp =0AD" =0A L(z,2',2"),
=(p=1Ap =0Ay=2a)

HT(xa:%paxlv y/apl
V (p=0Ap =0A3" op(a’ z,2)),
Oz(z,y,p):= (p=0AZ(z))Vp=1.

Within the above definition we assume that formulas ¢r, ¢r~ and ¢r are not the
{E}-formulas for graphs G € Ccnco from Section 6.3 (Corollaries 115 and 116, Observa-
tion 137) but matching {V, E, M, <, L, Z}-formulas referring to the underlying graphs of
O-extensions.

Lemma 157. For every O-extension G*, structure 8[G*| is isomorphic to H".

Proof. Let G* = (U,V,E, M, <, L, Z) be an O-extension, and let H* = (U, V,E,M, <, L, T, Z)
be the bundle extension of G* Further, let G = (V, E) and H = (V,E) be the underlying
graphs of G* and H* respectively. The set U := 0y[G*;x,y,p] consists of all triples
(v,e,7) € U(G*)? x N(G*) where j € {0,1} and e is in the set F of ends of G. Thus, U =
U(G*) x F x{0,1}. Let = be the equivalence relation generated by 0~[G*; z,y,p, 2, v/, p'].
Triples (v, e,0) and (v, €,0) from U(G*) x F x {0} are equivalent if, and only if, v = v"
Therefore, the mapping h: (v,e,0)/~ — v is a bijection between (U(G*) x F x {0})/~
and U(G*). Note that there are no triples from U(G*) x F' x {0} that are equivalent to
triples from U(G*) x F' x {1}. Triples (v,e,1) and (v, €, 1) from U(G*) x F x {1} are
equivalent if and only if e and €’ are in the same color class of bipartition {F, Fo} of
G[F]. We obtain that (U(G*) x F x {1})/~ consists of exactly two equivalence classes,
which correspond to the vertices f; and fo of H; and we let h((v,e,1)/x) := f; if e € F;
for ¢ € [2]. Then h is a bijection between the universe of 8[G*] and the universe U of the
bundle extension H*.

Now, it is not hard to see that formulas fy, 6~ and g define an isomorphic copy of the
graph H, that formulas 6y, 0~, 04 and 6y define the relations corresponding to M, < and L,
and 6z and 0~ the relation corresponding to Z on the universe (U(G*) x F' x {0,1}) /~.

Let us examine the relation T' := 61[G*; x,y,p, 2, v, p'] N U2 For all (v,e,7) € U let
T'(v,e,j) :=={(v,€,5") | (v,e,j,v,€,5") € T'}. First let us consider all triples (v,e,j) € U
with j = 1. Let v € U(G*) and e € F. Then h((v,e, 1)/~) is either f; or fy. For each
i € [2], the equivalence class h=1(f;) is the set U(G*) x F; x {1}. For (v,e,1) € h=(f;)
we have T'(v,e,1) = {(e, €,0) | ¢ € F}, and thus, T'(h=(f;)) = {(e,€,0) | e € F}, € € F}.
Notice that (e, €,0)/~ = (e,e,0)/~ for all vertices e,e’ € F. Therefore, we obtain
T (h71(fi))/~ = {(e,e,0)/~ | e € F;}. Let T/, be the set of all tuples (v,e, j, v, €, j') € T’
where j = i, and let h': (U” /~)? = (U’)? be the mapping where

h/((v761j) ' (Ula elvjl)/z/) = (h((v>€7j)/%/)7h((vlv €I7jl)/z/))-

Then h(T}/~) = {(fi,e) | e € F;}. Next let us consider all (v,e,j) € U with j = 0. Let
v € U(G*) and e € F. The set T'(v,e,0) is the set of all triples (v, ¢/,0) where ¢’ € F
and there exists an €’ € F' such that (v,v’) is an edge of the directed tree T.». Note
that h((v,e,0)/~) = v and for each triple (v/,e’,0) we have h((v),€,0)/~) = v. Thus,
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h(Ty/~) = {(v,0v") € E(Ter) | €” € F}. 1t follows that ' maps T'/x, that is, T} /& UT} /~,
to T. Hence, h is an isomorphism between G* and H*. O
Having a bundle extension H* = (U, V,E,M, q,L, T, Z) € C§, ¢, We cannot only determine the
unique O-extension G*' of which H* is a bundle extension, but also the unique LO-colored
graph G* € C¢y ¢, of whose O-extension G*' the structure H* is a bundle extension. We
obtain G* by dropping the relations T and Z from H*, and by using the induced subgraph
H[V \ Z] as underlying graph, where H = (V,E) is the underlying graph of H*.

Definitions and Properties

Now we consider a bundle extension H* = (U,V,E,M,<,L,T,Z). Let H = (V,E) be the
underlying graph of H*. We let f; and f; be the two vertices in V that have in-degree
0 in the directed graph (V,T). We call f; and f, the termini of the underlying graph H
and we let F := {f1, fo}. For each i € [2] we let Vy, be the set of all vertices v € V that
are reachable from f; in (V,T). Obviously, f; € V}, for ¢ € [2] and Vy, UVy, = V. Then
the side tree Ty, is (Vy,,Ef,) where Ef, := TN (Vy,)?. Further, we let 0y, be the set of all
leaves of Ty,. Since 0y, = 0y, (Observation 124, Lemma 155), we simply denote the set of
all leaves by 0. Clearly, fi, fo ¢ 0. We call 0 the middle of H. We define Sy, := Vg, \ 0 as
the side of f; € F. As we have 0y, = 0y,, Lemma 128 implies the following observation.

Observation 158. We have Vy, NVy, =0 and Sy, NSy, = 0.

We let pr(z), ov(z*, x), pe(z’, z,2"), o(z) and ¢s(z* x) be TC-formulas for F, Vy,, Ef,, 0
and Sy, respectively. Hence,

H" = or(f] < fE€F, (6.10)
H | oy[f,v] <= f&€FandwvecVy,

H' |= e[f,v,0'] <= [ €Fand (v,v) €Ey,

H* = g [v] <— wv€0, and

H* = @s[f, v] < feFandveES;.

We let My be the set of max cliques of H. Let H* be the bundle extension of O-exten-
sion G*. Let G be the underlying graph of G* It holds that A is a max clique of G if,
and only if, AU {f1, fo} is a max clique of H. Therefore, the property that every max
clique of G is spanned by one vertex (cf. Corollary 154) is also satisfied for H.

Corollary 159. For every mazx cliqgue A € My of H there is a verter v € A such that A
is spanned by vertex v.

Hence, there are FO-formulas (see Section 2.8.2) that define the max cliques of H for
bundle extensions H*. In the following, we show that vertex v is in the middle 0 of H if,
and only if, v is contained in only one max clique of H. We use the following observation
to do this.

Observation 160. Let v € V. Vertex v is in the middle O of H if, and only if, v is in
the middle O of G.
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Proof. Let i € [2] and v € V. Vertex v is in 0 exactly if v is a leaf of Tf,. By construction
of the side tree Ty,, v is a leaf of Ty, if, and only if, there is an end e € F; such that v is
a leaf of the side tree T, of G. According to Lemma 155, the set of leaves of T, is the
middle O, of e in the underlying graph G of O-extension G* Further, as GG is a prime
chordal comparability graph, the union of all sets O, with e € F; is the middle O of G
(Observation 124). Thus, we obtain that v € 0 if and only if v € O. O

Lemma 161. Let v € V. Vertex v is in the middle 0 of H if and only if v is contained in
only one mazx clique of H.

Proof. First of all, Lemma 161 is true for f; and f5 since fi, fo € 0 and f; and f> are
contained in more than one max clique. (The prime chordal comparability graph G has at
least two max cliques. Therefore, H has at least two max cliques.) Now let v € V =V \ F.
According to Observation 160, v is in the middle 0 of H precisely if v is in the middle
O of G. Further, v € O if and only if v is contained in only one max clique of G by
Lemma 123. Since A is a max clique of G exactly if A UF is a max clique of H, it follows
that v is contained in only one max clique of G if and only if v is contained in only one
max clique of H. O

Corollary 159 and Lemma 161 yield the following corollary.

Corollary 162. We have ANO0 # () for every maz cligue A € My of H.

We let ancy(v) be the set of ancestors and decy(v) be the set of descendants of v € Vy
in Ty for f € F. Clearly, the ancestors ancs(v) and descendants decy(v) are definable
in transitive closure logic for bundle extensions H*. Thus, there exist TC-formulas
Ganc (2% 2, y) and pgec(x*, x,y) such that for all elements f, v, w € U of a bundle extension
H* we have

H = @anclf,v,w] <= f€F, v,weVyand w € ancy(v), (6.11)
H' E @aec|frv,w] <= f€F, v,w e Vyand w € decy(v).

For i € [2] bundle extension H* allows us to define a relation <y, for H. For v,w € V, we
let v <y, w if and only if one of the following holds:

e v,w € Vy, and v € ancy, (w) \ {w},
e v,w €V , and v € decy, (w) \ {w},
e v €8Sy and w € Sy,_,, and there is a max clique M € My with v,w € M.

It is not hard to see that <y, , is exactly the reverse relation (<y,)r of relation <y,.
If we restrict <y, to the vertex set V, we obtain the strict partial order <; for G' from
the end of Section 6.3.10. Further, f; <4 v for all v € V\ {fi}, and v <y, f3_; for all
v € V\ {fs—i}. Therefore, we obtain the following corollary.

Corollary 163. Ordering <y is a strict partial order for H for all f € F.

Observation 164. Let f € F and v,w € V. If w € Vy and v <y w, then v € Vy and v is
a proper ancestor of w in Ty.
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Proof. Let i € [2] and v,w € V. Let w € Vg, and v <y, w. Since w € Vg, , \ 0 =Sy, ,
(Observation 158), the definition of <y, implies that v,w € Vy, and v € ancy, (w) \ {w}, or
v,w € Vg, and v € decy, ,(w) \ {w}. Suppose v,w € Vg, , and v € decy, ,(w) \ {w}.
Then w € 0 by Observation 158. Thus, w is a leaf of Ty, ,, and we obtain a contra-
diction as v cannot be a proper descendant of w in Ty, ,. It follows that v € Vy, and
v € ancy, (w) \ {w}. O

Observation 165. Let i € [2] and v,w € V. Then v <y, w if, and only if, one of the
following holds:

e v,weVy and v € ancy,(w) \ {w},
o v,w €V , and v € decy, (w) \ {w},
e v E Sy and w € Sy, ,, and there is a vertex o € 0 such that v € ancy, (o) \ {o} and

0 € decy, , (w) \ {w).

Proof. Let i € [2] and v,w € V. Let v € Sy, and w € Sy, ,. We only need to show that
there is a vertex o € 0 such that v € ancy, (0) \ {0} and o € decy, ,(w) \ {w} if, and only
if, there is a max clique M € My with v,w € M.

First, let there be a max clique M € My with v,w € M. We show that there is a vertex
o € 0 such that v € ancy,(0) \ {0} and o € decy, ,(w) \ {w}. By Corollary 162 we have
M N0 #0. Let o€ M NO. Then v and o are adjacent. Thus, v <y, 0 or 0 <y, v. Since v
and o are in Vy,, vertex v is a proper ancestor of o or vertex o a proper ancestor of v in
Ty, (Observation 164). As o € 0 is a leaf of Ty,, we have v € ancy,(0) \ {o}. Analogously,
we can show that o € decy, ,(w) \ {w}.

Now let there be a vertex o € 0 such that v € ancy,(0) \ {o} and o € decy, ,(w) \ {w}.
We prove that there is a max clique M € My with v,w € M. According to Lemma 161
there is only one max clique that contains vertex o. Let M be this max clique. Thus,
each vertex that is adjacent to o is contained in max clique M. As v and o are in Vy, and
v € ancy,(0) \ {0}, we have v <y, 0. Thus, v and o are adjacent, and v € M. Similarly,
we can show that w € M. O

As there are formulas for F, V¢, Sy, 0, ancs(v) and decy(v) (cf. (6.10) and (6.11)),
it is easy to see that there exists a TC-formula ¢ (2% x1,z5) such that for elements
f,v1,v9 € U of bundle extension H* we have

H = os[f,vi,v2] <= f€F, vi,v2 €Vand v <y vs. (6.12)

The following corollary follows immediately from Corollary 139 and the structure of H*.

Corollary 166. The edge relation of the induced subgraph H[V¢] is the symmetric closure
of the transitive closure of the edge relation of Ty for all f € F.

Corollary 167. The set 0 is an independent set.

Lemma 168. Let f € F and v,w € Vy. Then w € ancs(v) if, and only if, v € A implies
w € A for all maz cligues A € My.
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Proof. Let f € F and v,w € Vy. First, let us consider w = f. Then w € ancs(v) and as
w is contained in all max cliques A € My, v € A implies w € A for all A € My. Next,
let us consider v = f. Clearly, ancy(f) = {f} and by Observation 158 and Lemma 161
vertex f is the only vertex in Vy that is contained in all max cliques A € My. Now, let
us consider v # f and w # f. Let f = f; with i € [2]. If there is an e € F; such that
v,w € V., then Lemma 168 follows from Lemma 140, and the fact that A is a max clique
of G if and only if AUF is a max clique of H. If there is no e € F; such that v, w € V,, then
there exist e, ep € F; with e; # e such that v € V,, and w € V,,. Then w ¢ ancy, (v) by
Lemma 132. Let us assume v € A implies w € A for all max cliques A € My. Clearly,
there exists a max clique A € My with v € A. Thus, w € A. According to Corollary 131
the max clique A\ F of G has e; and es as ends. It follows that e; and ey are adjacent in
G|[F], a contradiction to ej, ez € Fj. O

Lemma 161 and 168 imply the following corollary.

Corollary 169. Let v € 0. Then v spans the maz clique ancy, (v) U ancy, (v).

6.4.3. Subbundle Pairs

We now introduce subbundle pairs. Subbundle pairs play a major role within the
construction of the decomposition tree in Section 6.5.

Let H* = (U,V,E,M, <, L, T,Z) be a bundle extension, and H = (V,E) be its underlying
graph. Let a,b € V. We call the binary multiset [a,b] a subbundle pair of H if a,b € V
and either a = b or there is an edge between a and b. Of course, if [a,b] is a subbundle
pair of H, then so is [b,a]. We let Py, be the set of all subbundle pairs of H. Clearly,
there exists an FO-formula gy, (21, 22) that decides whether [a1, as] is a subbundle pair
of H for ay,as € Vand H* € C§y ¢, We call a subbundle pair [a, b] of H trivial if there is a
terminus f € F such that a,b € V;, and non-trivial otherwise. Then, a subbundle pair
[a, ] of H is non-trivial if there is an i € [2] such that a € Sy, and b € Sy, _,.

Let [a,b] be a subbundle pair of H. If there is an edge between a and b in H, then for
all f € F either a <y b or b <y a as order <y is a strict partial order for H. Therefore,
we have a <y b or b <f a for all subbundle pairs [a,b] of H and all f € F. Let us fix
a terminus f € F. We let V([a,b]) be the set of vertices v € V where a <y v <f b or
b < v <y a. Since order <y, , is the reverse of <y, for i € [2], the definition of V([a, b])
does not depend on the terminus f € F. Obviously, if a = b, then V([a,b]) = {a}. Further,
if @ <y b, then there do not exist vertices v with b <y v <y a. Thus, if a <y b for
subbundle pair [a,b], then V([a,b]) = {v € V| a =f v <; b}. We also denote V([a,b])
by V(a,b). Since <y is definable in transitive closure logic, we also have a TC-formula
ou(.,)(x1, 22, y) that defines the set V(a, b). Hence, for a bundle extension H* and elements
a,b,v € U of H* it holds that

H* = ¢y(,yla,b,v] <= [a,b] is a subbundle pair of H and v € V(a, b). (6.13)

Observation 170. Let [a,b] be a trivial subbundle pair of H where a,b € Vy with f € F.
Then V(a,b) C V¢ and V(a,b) induces a directed path from a to b or from b to a in Ty.
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Proof. Let [a,b] be a trivial subbundle pair of H where a,b € V; with f € F. If a = b,
then V(a,b) = {a}. Thus, V(a,b) C V; and V(a,b) induces a directed path from a to b
in Ty in this case. Let a # b. Then a and b are adjacent, and either a <y b or b <y a.
Without loss of generality, let a <y b. Then Observation 164 and the definition of <
imply that for all v € V we have a <y v <; b if and only if vertex v is a descendant of a
and an ancestor of b in the directed tree Ty. Since V(a,b) = {v € V| a <y v < b}, the
set V(a,b) is a subset of V; and V(a,b) induces a directed path from a to b in Ty. O

Observation 171. Let i € [2]. Let [a,b] be a subbundle pair of H with a € Vy, and
beVy, ,. Then a =y, b.

Proof. Let i € [2] and let [a,b] be a subbundle pair of H with a € Vs, and b € Vg, _,.
Clearly, we have a =y, b if a = b. Thus, let a and b be adjacent. Then a <y, b or b <y, a.
Let us suppose we have b <y, a. Then b € Vy, and b is a proper ancestor of a in Ty,
by Observation 164. As b € Vy, NV, ., =0 (Observation 158), b is a leaf of Ty, and we
obtain a contradiction. Hence, a <y, b. O

Let f € F. For a € V; we let 0, be the set of all leaves v € 0 such that there is a path
from a to v in Ty. Let [a,b] be a non-trivial subbundle pair of H. Then a # b and there
is an ¢ € [2] such that a € Sy, and b € Sy, ,. For f € F let rf(a,b) := a if a € Sy and
r¢(a,b) :=0bif b € Sy. We let T¢(a,b) be the unique subtree of Ty that has r¢(a,b) as
root and O, N Oy, as set of leaves. We denote the vertex set of T¢(a,b) by V¢(a,b). Thus,
if a € Sy, for i € [2], then Vy,(a,b) consists of all vertices that lie on a path from a to a
vertex 0 € Og N Oy. Clearly, V¢(a,b) is a subset of V¢. Further, the set of leaves of Tf(a,b)
is 0, U 0y for each f € F, and no vertex from 0\ (0, U 0p) is contained in V¢(a,b). Then
Observation 158 implies the following observation.

Observation 172. Let [a,b] € Pay, be a non-trivial subbundle pair of the graph H. Then
Vi (a, b) NVy, (a, b) = 0, N Op.

Lemma 173. Let [a,b] € Psy, be a non-trivial subbundle pair of the graph H. Then
V(a,b) = Vg, (a,b) UVy,(a,b).

Proof. Let [a,b] be a non-trivial subbundle pair of H. Without loss of generality, let
a €Sy and b € Sy,. Then a <y, b by Observation 171.

First, let us prove that V(a,b) C Vg, (a,b) UVy,(a,b). Let v € V(a,b). Then a <y, v <y, b.
Let us consider the case where v € 0. Then v is in Vg, and a <y, v implies that a is
an ancestor of v in Ty, (Observation 164). Further, v is contained in Vy,, and v <y, b
yields that v is an descendant of b in Ty,. Hence, v € 0, N 0. Clearly, v lies on the
path from a to v in Ty,. Thus, v € V¢, (a,b). Now let us consider the case where v € Sy,.
Vertex a is an ancestor of v in Ty, because a =y, v. Since v € Sy, b € Sy,, we have
v # b (Observation 158). Thus, v <y, b, and Observation 165 implies that there exists an
o € O such that v is an ancestor of o in Ty, and b is an ancestor of o in Ty,. Then a is
an ancestor of o in Ty,. Thus, o € 0, N 0, and vertex v lies on the path from a to o in
T4,. Hence, v € V¢, (a,b). Analogously, we can show that v € Sy, implies v € Vy,(a,b).
Consequently, V(a, b) is a subset of V¢, (a,b) UVy,(a,b).

Next, we prove that V¢, (a,b) C V(a,b). Let v € V¢, (a,b). Then there is a vertex o € 0,M0y
such that v lies on the path from a to o in Tf,. Hence, a is an ancestor of v and v is an
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ancestor of o in Ty,. Moreover, since o € 0y, vertex o is a descendant of b in Ty,. We
obtain that a <y, v =, 0 Xy, b. As =y, is transitive, we have a <y, v <y, b. It follows
that v € V(a,b). Analogously, it can be shown that Vg, (a,b) C V(a,b). O

Corollary 174. Let [a,b] € Py, be a non-trivial subbundle pair of the graph H. Then for
all f € F we have V(a,b) NVy =V(a,b).

Proof. Let [a,b] € Py be a non-trivial subbundle pair of H. As V¢(a,b) C Vy for each
f €Fand Vs(a,b) CV(a,b) by Lemma 173 we have V¢(a,b) C V(a,b) NVy. Lemma 173
also implies that V(a,b) NV C Vg, (a,b) UVy,(a,b). Without loss of generality, let f = fi
Let us assume there is a vertex v € V(a,b) NVy, that is contained in Vy,(a,b) \ Vg, (a, b).
Then v € Vg, and v € Vy,(a,b) C Vy,. Hence, v € 0 by Observation 158. Since Vg, (a, b)
does not contain any vertices from 0\ (0, U 0p), vertex v is in 0, U 0, and therefore also
in Vg, (a,b), a contradiction. It follows that V(a,b) NV, C V¢, (a,b). O

Let [a,b] € Py, be a non-trivial subbundle pair of H. We let V™([a, b]) (or short V™ (a,b))
be the set V(a,b) \ {a,b}. Then, V(a,b) ={veV|3f €F:a<yv<s5b}. Let feF. If
a =y b, it follows that V7(a,b) = {v € V| a <y v <; b}. Further, we let V}(a,b) be the set
Vy(a,b) \ {rs(a,b)}, and we let T;(a,b) be the subgraph of Ty(a,b) induced by V;(a,b).
Then T}(a,b) is a directed forest. Let Cf(a, b) be the set of children of 7¢(a,b) in Ty(a,b).
The set Cy(a,b) is the set of roots of the directed forest T (a, b).

For each vertex e € Cy(a,b) let V¢(a,b) be the connected component of T;(a,b) with
e € Vi(a,b). Let T¢(a,b) be the subtree induced by V§(a,b) in Ty, and let 0%(a,b) be the
set of leaves of T (a,b). Clearly, e is the root of T¢(a,b), and the set of leaves 0%(a, b) is
a subset of 0, N 0y = V" (a,b) N 0. Further, V}(a,b) is the union of all sets V$(a, b) where
e € C¢(a,b). We can easily observe the following.

Observation 175. Let [a,b] € Py be a non-trivial subbundle pair of the graph H, and let
f €F. Forall e1,es € Cy(a,b) with e; # ey, the sets V?(a,b) and V?(a, b) are disjoint.

Observation 176. Let [a,b] € Py, be a non-trivial subbundle pair of the graph H. Let
i €[2]. Then

J 0%(a.b) = 0,N0,.
e€Cy, (a,b)

Observation 172 and Corollary 174 imply the following two corollaries.

Corollary 177. Let [a,b] € Psup, be a non-trivial subbundle pair of the graph H. For all
e1 € Cr,(a,b) and all e3 € Cy,(a,b), we have Vi, (a,b) NV (a,b) C 0, N Qy.

Corollary 178. Let [a,b] € Py, be a non-trivial subbundle pair of the graph H. Then for
all f € F we have

Via,b)NVy = | J Vi(a,b).

e€Cy(a,b)
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6.4.4. Valid Triples and (Extended) Valid Subgraphs

For each subbundle pair [a,b], let H (a,b) be the graph H[V™(a,b)]. The graph H(a,b)
is not necessarily connected. We call ([a, b], ¢) a valid triple of H if [a, b] is a non-trivial
subbundle pair of H and ¢ € V7(a,b). It is not hard to see that formula

Odom (71, T2, 3) 1= @y(..) (1, T2, T3) A =21 = T3 A ~Tg = T3
A =3 (py(z®, 21) A py(a®, 22))
defines all valid triples, where ¢y and @y(..) are the formulas from (6.10) and (6.13).

For every valid triple ([a,b], c) we let V([44).¢) be the connected component of H™(a, b) that
contains vertex c. The induced subgraph H((, ) ) := H [V([a’b}’c)] is a chordal comparability
graph as the class of chordal comparability graphs is closed under induced subgraphs.
Note that H [, ), is not necessarily prime. We call H ([, ) the valid subgraph of H defined
by the valid triple ([a, b], ¢). Let E(j44)) be the edge relation of H((, ). Since we already
have a TC-formula ¢y .y that defines V(a, b) and connectivity is expressible in STC, the
graph H(jqy) ) is definable in transitive closure logic. Thus, there exist TC-formulas
Ov (x1, 9, x3,91) and Og(x1, 2, T3, Y1, y2) such that for all elements vy, vy € U of a bundle
extensions H* € C¢, ¢, and for all valid triples ([a, ], c) of the underlying graph H of H*
we have

H* = Oy [a,b,c,v] < 01 € Vap,), and
H' | Opla,b,c,v,v9] = {v1,02} € Eap)e)-

Thus, Oval = (Bdgom, Ov, 0r) is a parameterized TC-transduction, that assigns each bundle
extension H* and valid triple ([a, b], ¢) of the underlying graph H of H* to the valid subgraph
H ({q,1),¢) of H defined by ([a, ], c).

We need valid subgraphs to create a decomposition tree, which we use for canonization.
To create the decomposition tree, we need more of the information we already have
about the structure of these valid subgraphs. Hence, we define extended valid subgraphs
and show different properties of extended valid subgraphs. Extended valid subgraphs
additionally include a strict partial order (and its reverse) for the valid subgraph, and
side trees.

Let ([a,b], ¢) be a valid triple. Thus, [a,b] is a non-trivial subbundle pair.

Since for all f € F and all e € Cy¢(a,b) the tree T}(a,b) is a subtree of Ty and H(p),) s
an induced subgraph of H with V§(a,b) C V(a4),¢), Corollary 166 implies the following
corollary.

Corollary 179. The edge relation of the induced subgraph H(q ) c) [V?(a, b)| is the sym-
metric closure of the transitive closure of the edge relation of T?(a, b) for all f €F and
all e € C¢(a,b).

Let f € F. By Observation 175 and Corollary 178 we know that V™(a,b) N Vs is the
disjoint union of all sets V§(a,b) with e € C¢(a,b). By Corollary 179 the set V%(a,b) of
vertices of the subtree T$(a, b) of Ty is connected in H(jqy ) for every e € Cy(a,b). Hence,
the connected component V|, 4 ) of H(a,b) that contains vertex c is the union of several
connected sets V$(a,b) with e € Cf(a,b) and f € F. We obtain the following corollary.
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Corollary 180. Let ([a,b],c) be a valid triple. For each f € F there is a unique subset
Cy C Cy¢(a,b) such that

Viiasle) NVr = | V5(a,b).

e€Cy

Corollary 181. Let ([a,b],c) be a valid triple. Let f € F. Then Cy # ().

Proof. Let ([a,b],c) be a valid triple, and let f € F. As [a,b] is a non-trivial subbundle
pair, we have a € Vy or b € Vy. Thus, V(4 4),c) N Vs # 0, and it follows from Corollary 180
that C; # 0. O

For every f € F let Cy be the unique subset mentioned in Corollary 180. We call each
vertex e € Cy with f € F an (inherited) terminus of H (a4 ). We let Fiiqp.0) = Cp, UCy,
be the set of all inherited termini of H(f,p)). We call the directed tree T$(a,b) for
e € Fap),c) the (inherited) side tree of e of H(jqy ), and the set 0%(a,b) the (inherited)
middle of e of Hfqp). We let the (inherited) middle O )y of Hjqp),) be the union of
all sets 0%(a,b) with f € F and e € Cy. Clearly, we can observe the following.

Observation 182. Let ([a,b],c) be a valid triple. Then Oq ) = 0N Vijgp),e)-

Lemma 183. Let ([a,b],c) be a valid triple. Let f € F. Then

Oasley = |J 07(a,b).

ecCy

Proof. Let ([a,b],c) be a valid triple. Let f € F. Without loss of generality, let f = fs.
Clearly, Ueecfz 0%,(a,b) € O(jap),c)- Let us assume O((q4),¢) € Ueecfz 0%,(a,b). Then there
is a root e1 € Cy, and a vertex v € 0%} (a, b) such that for all e € Cy, we have v € 0%,(a, b).
According to Observation 176 there is a root ez € Cy,(a,b) such that v € 0% (a,b). As
v € 0% (a,b) C V;i(a,b) and e; € Cy,, it follows from Corollary 180 that v € V{(a))-
Since v € 0% (a,b) C Vi(a,b) and V¢ (a,b) is connected in H™(a,b), the set Vi (a,b) is
a subset of the connected component V{(44)). Further, V?ﬁ(a, b) C Vy, (Corollary 178).
Hence, Observation 175 and Corollary 180 imply that e; € Cy,, a contradiction. ]

A strict partial order for the underlying graph H of a bundle extension yields a strict
partial order for every induced subgraph of H. For the strict partial order <y, for H, the
restriction <y, (jap,c) Of <y, to the vertex set of the valid subgraph H((q ) is a strict
partial order for Hjqp ). We call <y (ap),c) and <j, (jap),c) the inherited strict partial
orders for Hap) c)-

Analogously to subbundle pairs of H, we define subbundle pairs of the induced subgraph
H({a),c)- Thus, [z,y] is a subbundle pair of H(jap) if and only if z = y or z and y are
adjacent in H,p))- As Hap),) is an induced subgraph of H, the multiset [z,y] is a
subbundle pair of H () precisely if [z, y] is a subbundle pair of H, for all z,y € V{{a,4,¢)-
We let V{jap,c)(z,y) be the set of all v € V((44 ) for which there is an 4 € [2] such that

T 2 (lable) U 2 (able) Y-

Lemma 184. Let ([a,b],c) be a valid triple and [z,y] be a subbundle pair of H gy c)-
Then Vijap,e) (%, y) = V(z,y).
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Proof. Let ([a,b],c) be a valid triple and [z, y] be a subbundle pair of H ). First let
us show that V(. (7, y) € V(x,y). Let v € Vijq4),¢)(2,y). Then v € Vi[44),) and there
is an ¢ € [2] such that z fi(lable) U S fi(lable) Y- Since V([a,b],c) C Vand =fi.([ab],c) 18 the
restriction of <y, to the vertex set V([ ), it follows that v € V and there is an i € [2]
such that x <y, v <y, y. Hence, v € V(z,y).

Next let us prove that V(z,y) € V{ja),c)(z,¥). Let v € V(z,y). Then v € V and there is an
i € [2] such that <y, v <y, y. Without loss of generality, let i = 1. As z,y € V{{a.1)¢), We
have z,y € V'(a,b). Thus, a <5, x,y <y, bor a <y, z,y <5, b. Without loss of generality,
let a <y, ¢,y <y, b. Then a <y, * <y, v =p, y <y, b, and by transitivity it follows that
a <f v <p b. Hence, v € V'(a,b). Since z <y, v, either z = v or there is an edge
between x and v. Consequently, x and v are in the same connected component of H™(a, b),
and therefore, v € V([a,b],c)- Now, v =y, v =y, y implies that x =2fi([able) U 2 (able) Y-
Hence, v € V{jq3),¢)(,¥).

We already know that there is a TC-formula ¢ (z* z1,22) that is satisfied for elements
f,v1,v2 € U of bundle extension H* if, and only if, f € F, v;,v; € V and v; <5 vy (cf.
(6.12)). We slightly modify this formula, and we let

0 (z,x1,m2) := F*(ps(z% ) N p<(2¥, 21, 22)).

Then, elements v, vy, vy € U of bundle extension H* satisfy 0-(x,z1,x9) if, and only if,
v,v1,v2 € V and there is an f € F such that v € 8y and v1 <y ve. Let <((4),c) be the
restriction of the relation defined by formula 6+ to the vertex set of H (g .c)- As H([a],c)
is connected, either \V([a,b],c)] =1 or V([44),c) contains at least one vertex from Sy, USy,
(Corollary 167). Since <y, ((a,b),c) and <, (ja,b],c) are the reverse of each other, <((44),¢), and
therefore formula 6+, can be used to obtain the inherited strict partial orders <y, ((a.4.¢)
and <, (apl,0) for Hap,o)-

We let T{j4,),c) be the restriction of relation T to V(4 4),)- Then

Hija .00 = Viail.e) Eat.c) <(abl.e) Tablo)
is the extended valid subgraph of H defined by ([a, b], c).
We let
Or(x1, 2,3, y1,2) = T(Y1,Y2)-

Then we can use formulas O4om, 6v, 0, 0~ and 07 to define a parameterized TC-
transduction

Oval(z1, 22, 23) = (Bdom, Ov, O0E, 0=, 6r) (6.14)

that maps each bundle extension H* and every valid triple ([a, b], c) of the underlying
graph H of H* to the extended valid subgraph H, é[a,b],c) of H defined by ([a, b}, ¢).

We now consider extended valid subgraphs and the properties they inherit from the
bundle extension. Let H* = (U,V,E,M,<,L,T,Z) be a bundle extension with underlying
graph H. Let ([a, b],c) be a valid triple, and let H' = (V, E, <,T') be the extended valid
subgraph of H defined by ([a,b],¢). Let H = (V, E). We call H the underlying graph
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of H'. Tt should be clear how to use relation < to obtain an inherited strict partial order
=< or <9 for H. We can use <; for i € [2] to define the set F~¢ of <;-ends of H, that is
the <;-minimums and <;-maximums, in FO. As < is the reverse of <, and vice versa,
the set of <j-ends is equal to the set of <s-ends. Let I’ be the set of inherited termini
of H. Then F = F~ for each i € [2], as shown in the following lemma.

Lemma 185. The set F' of inherited termini of H is equal to the set F~i of <;-ends of
H for each i € [2], where <1 and <3 are the inherited strict partial orders for H.

Proof. Let F = {f1, fo} be the set of termini of H, Sy, and Sy, be the sides, and Ty, and
Ts, be the side trees of H. Without loss of generality, let a € Sy, and b € Sy,. Then
a <y, b. For i € [2] let <; be the inherited strict partial order for H that is obtained by
restricting <y, to the vertex set V. For each f € F let C; be the unique subset of C¢(a, b)
from Corollary 180.

First we prove that every terminus e € F' of H is a <j-end of H. Clearly, this implies
that e is a <9-end of H as well. Let e € . Then there is an f € F so that e € C;. Thus,
e is the root of the directed subtree T¢(a,b) of Ty. The root e of T}(a,b) is a child of
r¢(a,b) in Ty. Without loss of generality, let f = fi. Then e is a child of a in Ty,. Let us
suppose e is not <i-minimal. Then there is a vertex v € V such that v <1 e. As < is the
restriction of <y, to V, we have v <y, e. Since e € Vy,, vertex v € V is a proper ancestor
of e in Ty, (Observation 164), and therefore, an ancestor of a in Ty,. Hence, v <4, a, and
vertex v is not contained in V' (a,b) = {v € V| a <y, v <5, b}. Thus, v ¢V CV (a,b), a
contradiction. It follows that e is <;-minimal.

Next let us show that every <;-end e of H is a terminus of H. Without loss of generality, let
e be <y-minimal. Let us consider the case where e € Vy,. Since VNVy, = U.ec,, V5, (a,b)
(Corollary 180), there is a vertex € € Cy, such that e € V5 (a,b). As there is no vertex
v € V such that v <y e, there is no vertex v € V with v <y, e. Thus, there is no
ancestor v € V of e in Ty,, and therefore, no ancestor v € V% (a,b) of e in T (a,b). It
follows that e is the root of T%, (a,b). Consequently, e = ¢, and e is an inherited terminus
of H. Now let us consider the case where e € V' \ Vy, C Sy, (Observation 158). As
VnVy, = Ueec,, V5, (a;b), there is a vertex € € Cy, such that e € V, (a,b). Let o be a leaf
of T, (a,b) that is a descendant of e in the directed tree T%, (a,b). All leaves of T%, (a, b)
are in 0, N0, € 0. Thus, 0 € 0. As e € Sy,, it follows that o is a proper descendant of e
in Ty,. Therefore, o <y, e. Since V§,(a,b) C V, we have o € V. Hence, o < e, which is a
contradiction because e is <;-minimal. ]

Corollary 186. The set I of termini of H is FO-definable for every extended valid
subgraph H' with underlying graph H.

As H is a chordal comparability graph, the induced subgraph H[F =] is a tree (Lemma 80),
the <;-bundle tree of H, where <; and <5 are the inherited strict partial orders for H.
Since F' = F~t = F=2 by Lemma 185, we have H[F~¢] = H[F] for i € [2]. We call H[F]
the (inherited) bundle tree of H. It follows from Corollary 186 that H[F] is definable
in FO for each extended valid subgraph H’ with underlying graph H. We let the set
of inner termini Fi, and the set of outer termini F,, be the set of inner and outer
nodes of H[F], respectively. Clearly, the sets of inner and outer termini are FO-definable.
As H[F] is a tree, there is a unique 2-coloring {F, F»} of H[F]. It is not hard to see
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that {F1, F5} = {Cf,,Cs, } where Cy, and Cy, are the sets from Corollary 180. Since
{F, R} = {F, F;"} by Lemma 79, the equivalence relation corresponding to the
2-coloring is definable in FO.

For every e € F, we let V, be the set of vertices that are reachable from e in the directed
graph (V,T). We let T, := (V,,T NV2), and we let O, be the set of leaves of T,. It is
not hard to see that the directed tree T, is the inherited side tree of e of H. Thus, O, is
the middle of e € F of H, and O := |J,cp is the middle of H. We let the (inherited) side
Se of terminus e be the set V. \ O.. Hence, S, = V. \ O. It is not hard to see that V,,
E(T.), O, and S, are TC-definable for extended valid subgraphs H"

We let wF(x)v (2 (l’*), 1/)\/(37*71’), 1/)E(ZC*,{L‘7LL‘/), 1/)0(113) and wS(J’I*?J")a respectively, be
TC-formulas for the set/relations F', Fi,, V., E(T.), O and S, for an extended valid
subgraph H’. Hence,

H' = 9Yrle] — ecF, (6.15)
H' = ¢p,le] < e€Fy,

H' = yyle,v] < ecFandvelV,

H' E ¢ple,v,v'] < e€ F and (v,0') € E(T.),

H' = o[v] < e€FandveO, and

H' = 4sle, ] <— e€FandveS..

Further, it is not hard to see there are FO-formulas s, (21, 22) and 9y (..)(21, 22, y) such
that for vy, vy, w € V of an extended valid subgraph H' with underlying graph H we have

H' = Ygup|v1, vo] <= [v1,v9] is a subbundle pair of H, (6.16)
H' =1y ylvr,v2,w] <= [v1,vy] is a subbundle pair of H and w € V (vy, v2).

The following corollary is a direct consequence of Observation 175.

Corollary 187. Leti € [2] and ey, es € F; with ey # ey. Then Vo, NV, = 0.
Corollary 188. Leti € [2] and e; € Fy and es € Fy. Then V,, NV, C O.

Proof. Let i € [2] and e; € F} and ey € F,. Then either e; € Cy, and ez € Cy,, or
e1 € Cs, and ey € Cy,. As Cy, C Cy,(a,b) for each i € [2], Corollary 177 implies that

V., NV, C0,N0p C 0, where 0 is the middle of H. Hence, V., NV,, is a subset of V' N0,
which is equal to O by Observation 182. O

Lemma 189. Let ey, es € F with e; # e3. Then S, N Se, = 0.

Proof. Let e1,es € F with e; # ey. If €1 and es are in the same color class of {Fy, Fb},
then Se, N'Se, = 0 follows from Corollary 187. If e; and eg are in different color classes
of the 2-coloring {Fy, F»}, then V., NV, C O by Corollary 188, and it follows that
Sey N Se, = 0. O

Observation 190. Let [x,y] be a subbundle pair of H. Then each z € V(x,y) with
z # x is adjacent to x.
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Proof. Let [x,y] be a subbundle pair of H, and let z € V(z,y) with z # z. Let <; be
one of the inherited strict partial orders for H. Since z € V(z,y) and z # x, we have
x <71 z or z <1 x. Hence, there in an edge between = and z in H. O

Lemma 191. Let f € F and e € Cy be a terminus. Let [z,y] be a subbundle pair of H
where x € Vo, and y € Vy. Then V(z,y) C V. and V(x,y) induces a directed path from x
toy or fromy to x in T,.

Proof. Let f € F and e € Cy. Let [z,y] be a subbundle pair of H with € V, and
y € Vs. As e € Cy and x € V, the multiset [z,y] is a subbundle pair of H with z,y € Vy.
Lemma 184 implies that V' (x,y) = V(z,y). By Observation 170 we have V(z,y) C V; and
V(z,y) induces a path from z to y or from y to = in Ty. It follows that V(z,y) C V NVy.
The set V N Vy is the disjoint union of all sets Vor = V;i’ (a,b) for €' € Cs by Corollary 180.
As V(z,y) is connected (Observation 190) and x € V,, we have V(x,y) C V.. Since the
side tree T, of e of H is the subtree of Ty induced by V., the set V(z,y) induces a path
from z to y or from y to x in T. O

Corollary 192. Let e € F be a terminus, and [z,y] be a subbundle pair of H where
x,y € Vo. Then V(x,y) C V. and V(x,y) induces a directed path from x toy or from y
tox in T,.

Proof. Let e € F be a terminus, and [z, y| be a subbundle pair of H with z,y € V.. Then
there is an f € F such that e € Cy. Clearly, y € Vy. Thus, Corollary 192 follows from
Lemma 191. O

Corollary 193. Let e € F be a terminus, and [x,y] be a subbundle pair of H with
xz,y €Se. Then V(x,y) C S,.

Proof. Let e € F be a terminus, and [z, y] be a subbundle pair with 2,y € S.. According
to Corollary 192, V(x,y) is a subset of V, and induces a directed path from z to y or
from y to x in T,. Let us assume there is a vertex z € V(z,y) that is in O.. As z is a
leaf of T,, vertex z must be the end of the path induced by V (z,y), that is, z is  or y.
Since z and y are in S., we obtain a contradiction. O

Lemma 194. Let e € F be a terminus, and x,y € V,. If there is a directed path from x
toy in Te, then [z,y] is a subbundle pair of H and V(x,y) consists of all vertices of the
directed path from x toy in T,.

Proof. Let e € F be a terminus, and x,y € V.. As there is a path from z to y in T,
Corollary 179 implies that either 2 = y or z and y are adjacent in H. Thus, [z,y] is a
subbundle pair of H with z,y € V.. Corollary 192 implies that V(z,y) consists of all
vertices of the directed path from x to y in T.. O

Observation 195. Let [z,y] be a subbundle pair of H, and let z € V(x,y). Then [z, 2]
is a subbundle pair of H and V(z,z) C V(z,y).

Proof. Let [z,y] be a subbundle pair of H, and let z € V(z,y). According to Observa-
tion 190 either z = z or x and z are adjacent. Consequently, [z, 2] is a subbundle pair.
Let <; be one of the inherited strict partial orders for H. Without loss of generality, let

122



6.4. The Bundle Extension and Extended Valid Subgraphs

r =1 y. As 2 € V(z,y) we have  <; z and 2z <; y. Let v € V(z,z). Then z <; v <X 2
because z <7 z. Hence, x =1 v =1 z <1 y. We obtain = <; v <1 y by transitivity of <.
It follows that v € V(x,y). Therefore, V(x,z) C V(x,y). O

Lemma 196. Let e € F and le,y] be a subbundle pair of H. Then V(e,y) NV, is the
vertex set of a subtree of T, that is rooted at e.

Proof. We show that for each vertex v € V(e,y) NV, there is a path from e to v in the
subgraph of T, induced by V(e,y) N V.. Then the induced subgraph T.[V (e,y) N V]
is connected, and therefore, a subtree of T,. Further, e is the root of this subtree.
Let v € V(e,y) N V.. By Observation 195 the multiset [e,v] is a subbundle pair and
V(e,v) C V(e,y). As e,v € V., we can apply Corollary 192 and obtain that V(e,v) C V,
and that V' (e,v) induces a directed path from e to v or from v to e in T¢. Since e is the
root of T, the set V (e, v) induces a directed path from e to v. Now, V(e,v) C V(e,y) NV,
implies that there is a path from e to v in the subgraph of T, induced by V(e,y)NV,. O

Lemma 197. Let [eq, 3] be a subbundle pair with ey, ey € F. Then V(e1,e2) C S, UVe,.

Proof. Let [e1, es] be a subbundle pair with ey, ey € F. If €1 = eq, then V(ey,e2) = {ea}
and V(e1,e2) C V,,. Thus, let e; # es. Then e; and ey are adjacent. Hence, e; and
eo are in different color classes of the 2-coloring {Fi, Fo} = {Cy,,Cy,}. Without loss of
generality, let e; € Cy, and ey € Cy,. Let us assume there is a vertex v € V (e, e2) such
that v € S, UV,,. First, let us consider the case where v € Vy,. As v € V(ey,e2), the
multiset [e2, v] is a subbundle pair of H by Observation 195. Since e € Cy,, €2 € V., and
v € Vy,, we can apply Lemma 191 and obtain that V (e, v) C V,,. It follows that v € V,,
a contradiction. Now, let us consider the case where v € V' \ V4,. Then v € Vg, and
analogous to the previous case we obtain that v € V.. As v & S,,, we have v € O, C O.
According to Observation 182, O C 0. Further, 0 C Vy,. It follows that v € Vg, a
contradiction. We obtain that V (e, e2) C Se, U VL,. O

Corollary 198. Let [e1, es] be a subbundle pair of the graph H with e1,es € F. Then
V(el, 62) - Sel uou 562.

For e € F' we let N, be the set of neighbors of e in the bundle tree H[F]. Thus, N, C F'.
Clearly, for each e € F' and every neighbor ¢’ € N,, the multiset [e, €/] is a subbundle pair
of H.

Observation 199. Lete € F. Then S. N N, = (.

Proof. Let e € F. Let us suppose there is an ¢/ € N, with ¢’ € S,. Clearly, ¢ € V..
Corollary 188 implies that ¢’ € O. Hence, €' € S., a contradiction. O

Lemma 200. We have V(e,e;) NV(e,ez) C Se for all e € Fyy, and all ey, e € N, with
€1 # €.

Proof. Let e € Fi, and ey, e € N, with e; # es. Then [e, e;] and [e, e5] are subbundle
pairs and e, e; and ey all are in F. According to Lemma 197 we have V(e,e;) C S, UV,
and V(e ,ez) € Sc UV,,. Since e; and ey are neighbors of e, the vertices e; and ey belong
to the same color class of the 2-coloring {Fy, F»}. Thus, V., NV,, = 0 by Corollary 187.
It follows that V(e,e;) NV (e, e2) C Se. O
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Corollary 201. Let e € F, be an inner inherited terminus of valid subgraph H. Then e
is in the inherited side S, of e.

Proof. Let e € Fy,,. Then e has two distinct neighbors e, es € F' in the inherited bundle
tree H[F|. Hence, e1,e3 € N, and [e, e1] and e, e2] are subbundle pairs with e € V'(e, ;)
and e € V(e,ez). It follows that e € S, by Lemma 200. O

Lemma 202. Lete € Fy,, ¢ € N, and x € V,. If € and x are adjacent in H, then
x € Viee).

Proof. Let e € Fy,, € € N,. Let <1 be one of the inherited strict partial orders for H.
Then {F[*', F;*'} is a 2-coloring of H[F| (Lemma 79). Without loss of generality, let
e € F*" and € € Fy*'. Thus, e is <;-minimal and e’ is <;-maximal. As x € V,, e in an
ancestor of x in T,. By Corollary 179 either ¢ = « or e and x are adjacent in H. Since e
is <j-minimal, it follows that ¢ <1 x. Further, z <; ¢’ because x and ¢’ are adjacent in
H and €’ is <;-maximal. It follows that e <; z <; €/, and therefore x € V (e, ¢’). O

Observation 203. Let v € V be a vertex of H. Then there are termini e,e’ € F such
that v € V (e, ¢€').

Proof. Let <1 be one of the inherited strict partial orders for H. Let e € V' be any vertex
with e <; v that is <-minimal, and ¢’ € V' be any vertex with v <; ¢’ that is <-maximal.
Then v € V(e,€’). By Lemma 185 e, e’ € F. O

Observation 204. Let {v,w} € E be an edge of H. Then there are termini e,e’ € F
with e # €' such that v,w € V (e, €).

Proof. Let <1 be one of the inherited strict partial orders for H. Without loss of
generality, let v <; w. Let e € V be any vertex with e <; v that is <-minimal, and
e’ € V be any vertex with w <1 €' that is <-maximal. By Lemma 185 ¢,¢’ € F. As <
is a strict partial order and = is its associated partial order, we have v,w € V (e, €’).
Further, it follows that e <; €’ and therefore, e # €. O

6.5. The Genealogical Decomposition Tree

The genealogical decomposition tree of the underlying graph H of a bundle extension
H* is a directed tree, which is of use in the canonization procedure. It has a recursive
structure that is based on decomposition trees of valid subgraphs of H. The graph H and
its valid subgraphs are introduced in the previous section, and the decomposition tree of
a valid subgraph is defined in Section 6.5.3.

Every node of a decomposition tree of a valid subgraph H is a subbundle pair of H, and
therefore, a subbundle pair of the graph H. Each subbundle pair represents a certain
subset of vertices of H. More precisely, the subbundle pair [a,b] of valid subgraph H
represents the vertex set V(a,b). The most important property of a decomposition tree
of a valid subgraph H of H is that the intersection of the vertex sets represented by a
node and its parent node is contained within a max clique of H. Moreover, there is
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a terminus e of H such that the intersection is contained in the side S, of e of H and
induces a path in the side tree T, of e of H. In order to introduce the decomposition tree
of a valid subgraph of H, We start with defining the simplified decomposition tree, which
reflects the basic structure of the decomposition tree.

6.5.1. The Simplified Decomposition Tree

We first define a simplified version of the decomposition tree of H. This simplified
decomposition tree is a directed tree. The set of nodes of the simplified decomposition
tree is a set of blocks, where almost each block basically consists of all subbundle pairs
that contain a common terminus and a neighbor of this terminus in the bundle tree of
H. To obtain the actual decomposition tree, we refine this simplified decomposition tree.
For each block we construct a directed tree of subbundle pairs. We call this directed
tree the decomposition tree for a block. It is introduced in the subsequent section. In
Section 6.5.3 the directed trees for each block are then attached according to the edge
relation of the simplified decomposition tree.

Blocks and the Simplified Decomposition Tree

Let H' = (V, E,<,T) be an extended valid subgraph with underlying graph H. Let F be
the set of termini of H, and N, be the set of neighbors of e € F' in the bundle tree H[F].
In the following we define the simplified decomposition tree of H. Its definition depends
on the number of centroids of the bundle tree H[F]. We distinguish between one and
two centroids. Remember that if a tree has two centroids, the two centroids are adjacent
(Lemma 28), and that each centroid of a tree is an inner node (Observation 29). The set
of nodes of the simplified decomposition tree of H is the set of blocks B. A block is a
pair b = (£,1), where [ is a subbundle pair of H and £ is a set of subbundle pairs of H
with [ € £. We call [ the eldest of block b. In the following we define the set of blocks 8.

The set of inner termini Fj, is the set of inner nodes of the bundle tree H[F], that is,
F,, contains all termini that are not a leaf of H[F]. We assume that F}, # 0. If F,
is empty we can define the decomposition tree directly, without help of the simplified
decomposition tree. For each e € Fj, we define a block b, = (£.,[.). Then the set of
blocks B consists of all blocks b, for e € Fj,, and possibly also of an additional block as
described below. Let C' C Fi, be the set of centroids of H[F].

If |C] = 1, we transfer the bundle tree H[F| into a rooted tree T/ by fixing e, € C' as
the root of H[F|. Let p(e) be the parent node of e in T] for each e € I}, \ {e,}. Now
we can define the block b, = (£.,1[.) for each e € F;,. For every e € Fj, \ {e,} we let
le := [e,p(e)] be the eldest of the block b, and we let I, := [e,, e,] be the eldest of the
block b, for the root e,. Further, for every e € F;, we let £, := {[e, f] | f € N} U{l.}.
In the case that |C| = 1, the simplified decomposition tree (8, €) is defined as follows:
We let B be the set {b. | e € Fi, }, and we let (b, b)) € €, if, and only if, (e,€') is an
edge in the directed tree equivalent to the rooted tree T} .

Let |C| = 2. Let e,, and e,, be the two centroids in C. We transfer H[F| into two
rooted trees Te’r1 and chrz by removing the edge between e,, and e,, (Lemma 28) and
fixing e,, and e,, as roots of the two emerging subtrees. Again we let p(e) be the parent
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node of e in the respective rooted tree for each e € Fi, \ {e,,, €., }. Then we can define a
block b, = (£, l.) for every e € F, by letting I, := [e, p(e)] be the eldest of the block for
e € Fin\{er,er, } and I := [e,,, €,,] be the eldest of the block for e € {e,,, e, }. For every
e € Fy, we let £, := {[e, f] | f € N.}. Notice that I, € £ for all e € F};,. Further, we
need the additional block byoot := ([€ry, €ry], {[€r1, €rs]})- In the case that |C| = 2, we let
B, the set of nodes of the simplified decomposition tree, be the set {b. | e € Fiy} U{broot }-
The set € of edges of the simplified decomposition tree (B, €) is defined as follows: We
let (broot, be,, ) and (broot, be, ) be edges of the simplified decomposition tree. Further, we
let (be, ber) € € if (e,€) is an edge in one of the directed trees equivalent to the rooted
trees T, or T .

Observation 205. Let block b, = (£c,l.) be a block of an inner terminus e € Fy, in
the simplified decomposition tree (B, €). Then l. € L., and for all subbundle pairs
[e1, ea] € L. we have e € {e1,ea}.

Observation 206. Let block b = (£,1) be a child of a block b' = (£',I') in the simplified
decomposition tree (B, €). Then the subbundle pair l is an element in £'.

Defining the Simplified Decomposition Tree in STC+C

Given an extended valid subgraph H' = (V, E, <,T) where H denotes the underlying
valid subgraph, the set F' of tips and the set Fj, of inner termini of H are FO-definable
(cf. (6.15)). In order to define the decomposition tree of H, we will only need the blocks
b of inner termini e € Fj,. In the following we describe STC+C formulas @e(x* x) and
¢i(x*, x) such that for extended valid subgraphs H' = (V, E, <,T) and e, e’ € V we have

H | pele,e/] <= e€ F, and [e, €] € £, (6.17)
H' l: (pl[e’ el] < e€Fandl = [e7el]'

Let S be a set of subbundle pairs where e € {a,b} for all [a,b] € S. The e-reduct S|.
of S is the set {c | [e,c¢] € S}. Thus there is a one-to-one correspondence between the
subbundle pairs in S and the vertices in S|.. Note that e € S|, if and only if [e,e] € S.
Then it follows from Observation 205 that £.|c = pe[H' e; 2] and {l.}|c = ¢i[H', e; ] for
all e € Fi,.

For all e € Fy,, we have £, = {[e, €] | ¢/ € N.} U{l.} in each of the two cases. Thus, we
can easily define p¢ by using formula ¢;. We let

pe(x) = (¢r. (") A pr(r) A Bz ) V oi(2' o),
where ¢ and 9, are the formulas for F' and Fi, from (6.15).

In order the define ¢y, let us first summarize the definition of [,:

e For all e € Fj, \ C, we have [. = [e, p(e)].
e For all e € C, we have
o [.=le el if |C] =1, and
o [.=le,e] where ¢’ € C'\ {e} if |C| = 2.
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It is not hard to construct the STC+C-formula ¢;, once we have a formula for the
centroids of H[F] and a formula that defines the relation P := {(e,p(e)) | e € Fi, \ C'}.
Thus, we confine ourselves to describe how to obtain these formulas.

We obtain a formula for the centroids of H[F] by pulling back the formula Jcen(x) given
in (2.5) under the transduction ©® = (¢g, (z), E(z,2)). To obtain a formula for the
relation P, we transfer the bundle tree H[F] into a rooted tree where we use a centroid
as root. Let T, be the rooted tree that we obtain by fixing ¢ € C' as the root of H[F].
If |C] = 1, then clearly T, is the rooted tree T/ . If |C| = 2, then the two rooted trees
T cfrl and Te’T2 are subtrees of T.. Thus, for any node e € F, \ C the parent node of e in T,
corresponds to p(e) independent of our choice for . We use a parameterized transduction
similar to the one from Example 8. We let Oq(z,) = (T, ¢, (z), E(z, ") ADconn (2, T, T)).
Then we can pull back a formula that defines the parent relation in a rooted tree under
this parameterized transduction. We can use the pull back to define P if we bound the
parameter variable in such a way that it can only be interpreted by centroids.

6.5.2. The Decomposition Tree of a Block

In this section we create a directed tree 9¥(b) for each block b = (£,1) € B occurring in
the simplified decomposition tree. The set of nodes of ¥(b) includes all subbundle pairs
in £ and 9¥(b) is rooted at . For block by the directed tree 9 (broot) is ([ery, €ry], D).
Thus, we only need to consider the blocks in B \ {byo0t }, which correspond to blocks b,
for e € F;,. For each e € F;;, we will construct a rooted tree 9, := ¥(b,) for block b,
in this section. The nodes of 9, are subbundle pairs, all of which contain terminus e.
We inductively define . by successively determining the parent node of each subbundle
pair [e,a] in £, and removing [e, a] from £.. During this process there might not always
be a subbundle pair in £, that is suitable to be the parent node of [e,a]. We add new
subbundle pairs to £, to make sure this does not happen. In the end we ensure that the
eldest [, becomes the root of ..

Construction of Y.

Let e € F;,. We use a sequence of sets £; of subbundle pairs and a sequence of directed
graphs 9; to help us define the directed tree ¥.. We will maintain the following properties
for all 4 > 0:

(a) le € £,

(b) e € {a,b} for all [a,b] € £,

(¢c) a€ N.oracS, for all [e,a] € £,

(d) Ujgi £ =V(d),

(e) 9; is a directed forest with |£;| connected components, where £; is the set of roots,
(f) 192 Q 191'_;,_1, that iS, V(’lgl) Q V(ﬁz—&-l) and E(ﬁl) Q E(’l9i+1), and

(8) 1€ > |Lipa| if [Ei] > 1.

We start by letting £y := £, and ¥y := (£, (). Thus, the vertices of the directed graph
Yy are the subbundle pairs in £.. Notice that the blocks are defined in a way that £,
cannot be empty and always contains the eldest /.. Further, the set £, \ {l.} is a set of
subbundle pairs [e, a] with a € N, and subbundle pair [, is either of the form [e, ¢] with
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¢ € N, or [e,e]. We have e € S, by Corollary 201 since e € F},,. Thus, £y and 9 satisfy
properties (a)-(e). In the following, as long as |£;| > 1 for i > 0, we recursively add edges
and possibly also new vertices to ¥; to obtain ¥, in the end. The tree ¥, is constructed
from the bottom to the top by identifying some children and assigning them their parent.
After each round, we omit the vertices that already got a parent and again look for new
children that can be assigned a parent in the remaining set of vertices. The set £; is the
set of vertices we need to consider in round i. We continue with this procedure until £;
contains only one subbundle pair, the eldest [.. It is not hard to see, that this must be
the case for some ¢ > 0 due to property (a) and (g). Then we have reached the root of
the tree, which will be I, and 9; = 1. is our decomposition tree for e € F},. Notice that
property (e) ensures that ¥, indeed is a tree.

The following observation is a consequence of properties (b), (¢) and (d) and the definition
of 20.

Observation 207. Let e € F,. For all subbundle pairs p € V(9.) there exists a vertex
¢ with ¢ € N, or ¢ € S, such that p = [e,c|. Furthermore, for all ¢ € N, the subbundle
pair [e,c] € V(Ve).

In the following we explain how to obtain £;11 and ¥;4; from £; and ¥; for ¢ > 0. If
|£;| =1, that is, £; = {l.}, we let £;1; := £; and ;41 := ¥;. Then clearly, all properties
are satisfied for £;,1 and ;1 given that they hold for £; and ;. In the next couple
paragraphs we create the prerequisites to define £,,1 and ;41 in the more complicated
case that £; contains at least two subbundle pairs.

Let ¢ > 0 and |£;| > 1. Notice that |£;| > 1 implies [£;| > 1 for all 0 < j <. For all
[e,a] € £; let
Ri(e,a) :==V(e,a)N U V(e,b).
le.bleLi\{[e.al}

The set R;(e,a) of vertices is a connected subset of the vertex set of Te:

Lemma 208. Let |£;| > 1 and [e,a] € £;. Then Ri(e,a) C S, and T.[Ri(e,a)] is a
subtree of T. and contains vertex e.

Proof. Let |£;] > 1 and [e,a] € £;. As an immediate consequence of Corollary 193
and Lemma 200 we obtain R;(e,a) C S.. Since e € V(e,a) and e € V(e,b) for all
le,b] € £ \ {[e,a]}, we clearly have e € R;(e,a). Now let us assume there exists a
vertex v € R;(e, a) such that there is no path from e to v in T,[R;(e,a)]. We know that
v e V(eya), and let v € V(e,b) for [e,b] € £\ {[e,a]}. As v € R;(e,a) C S, there exists
exactly one path from e to v in T,. Since e,v € V(e,a) and e,v € V(e, b) the vertices on
this path must be a subset of V(e,a) and V (e, b) by Lemma 196. Hence, the vertices on
this path also belong to R;(e,a). O

Let L;(e,a) be the set of leaves of the subtree T.[R;(e,a)]. Clearly, |L;(e,a)| > 1. If
|Li(e,a)| =1, then R;(e,a) are the vertices on the path from e to @’ € L;(e,a) in T,, and
Ri(e,a) =V (e,a’) (Corollary 192). For a subbundle pair [e, a] € £; let R;(e, a) be the set
of subbundle pairs [e, b] € £; with R;(e,a) C V(e,b). Notice that for all subbundle pairs
[e, a] we have [e,a] € R;(e,a). Thus, |R;(e,a)| > 1 for each subbundle pair [e,a] € £;.
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Lemma 209. Let |£;| > 1 and [e,a] € £;. If |Li(e,a)| =1, then |R;(e,a)| > 2.

Proof. Let |£;| > 1, [e,a] € £; and |L;(e,a)| = 1. Further, let a’ € L;(e,a) C R;(e, a).
By definition of R;(e,a) there must exist a subbundle pair [e, ¢] € £; with [e, ¢] # [e, a]
such that o’ € V(e,c). The set R;(e,a) contains the vertices of the only path from e
to @’ in T, (Lemma 208). Since e,a’ € V (e, c), we must also have R;(e,a) C V (e, c) by
Lemma 196. It follows that [e, c] € R;(e, a). O

Let ®U; be the subset of subbundle pairs [e,a] of £; that satisfy all of the following
properties:

1. |Li(e,a)] = 1.

2. [e,a] # L.

3. There is at most one subbundle pair [e, b] € R;(e, a) with |L;(e,b)| > 1 or [e, b] = L.
4. For all subbundle pairs [e, c] € R;(e, a) we have L;(e,a) C L;(e,c).

The following lemma will be used later to show that we assign each node in our tree 9,
to only one parent node.

Lemma 210. Let |£;| > 1. Let [e,a] € Y, and [e, c| € R;(e,a) with |L;(e,c)| = 1. Then
Ri(ev CL) - Ri(eac)'

Proof. Let |£;] > 1, [e,a] € V; and [e, c] € Ri(e,a) with |L;(e, c)| = 1. Since [e,a] € T;
and [e, c] € R;(e,a), we have L;(e,a) C L;(e,c) (property 4). Moreover, it must hold
that L;(e,a) = L;(e,c), because |L;(e,a)] = 1 and |L;(e,c)| = 1. By Lemma 208
the sets R;(e,a) and R;(e, c) are vertex sets of subtrees of T, which both contain the

vertex e. As the two subtrees have the same set of leaves, they must be equal. Thus,
Ri(e,a) = R;(e,c). O

We divide the set U; into the subsets U? and U}. We let U? be the set of subbundle
pairs [e, a] € U; where there exists no subbundle pair [e, b] € R;(e,a) with |L;(e,b)| > 1
or [e,b] = I, and U} be the set of subbundle pairs [e, a] € U; where there exists exactly
one subbundle pair [e,b] € R;(e,a) with |L;(e,b)| > 1 or [e,b] = I..

Now we are ready to define £;11 and ;1. First of all, we add all subbundle pairs in
£:\U; to £,11, and all vertices and edges from ¥; to ¥;11. In the following, we will list
further subbundle pairs that are added to £;11 and more vertices and edges that are
added to 9¥;41.

Let us look at subbundle pairs [e,a] € 0}. There exists exactly one subbundle pair [e, b]

I
in R;(e,a) with |L;(e,b)| > 1 or [e,b] = l.. For each subbundle pair [e, a] € U}, we add
the edge ([67 b]a [G,CL]) to E(’l9l+1>

Before taking a look at the subbundle pairs in 07, let us add a few remarks. Let [e, d]
be a subbundle pair in U} and let [e,b] be the only subbundle pair in R;(e,a) with
|Li(e,b)| > 1 or [e,b] = l.. Then each subbundle pair [e, ] € Ri(e,a)\ {[e,b]} is in T}, as
for each subbundle pair [e, c] € R;(e,a) \ {[e, b]} we have R;(e,c) = R;(e,a) (Lemma 210),
and therefore, L;(e,a) = L;(e,c) and R;(e,c) = R;(e,a). Note that [e, c] # [, because
[e, b] is the only subbundle pair in 9R;(e, a) for which [e, b] = [, might hold. It follows that
[e, b] is also the only subbundle pair in (e, ¢) with |L;(e,b)] > 1 or [e,b] = l.. Thus,

129



6. Capturing PTIME on Chordal Comparability Graphs

we add the edge ([e,b], [e, ¢]) for every subbundle pair in [e, c] € R;(e,a) \ {[e,b]}. Now,
the subbundle pairs in R;(e,a) \ {[e,b]} C VY are not added to £;,; by default, but
the parent vertex [e,b] is an element of £; \ U; and is therefore added to £;4;. Since
Ri(e,a) C £ C V() C V(941), we know that all subbundle pairs in R;(e,a) are
vertices of ¥;11.

Next, let us consider subbundle pairs [e,a] € VY. As |L;(e,a)| = 1, there is only one
element o’ in L;(e,a). Clearly, [e, da'] is a subbundle pair (Observation 195), and o’ € S,
(Lemma 208). We add [e,d'] to £;41 and to V(¢¥;11), and we add the edge ([e,d'], [e, a])
to E(Y;41). We say the subbundle pair [e,d'] is generated by subbundle pair [e, a] in £;.

Again we add some remarks. Since for all [e,c] € R;(e,a) we have |L;(e,c)| = 1 and
le, c] # le, we obtain R;(e,c) = R;(e,a) (Lemma 210), and therefore, L;(e,c) = L;(e, a)
and R;(e,c) = R;(e,a). Hence, every subbundle pair in R;(e,a) is in VY as well. As
Li(e,c) = Li(e,a), we add the edge ([e,d], [e, c]) for each subbundle pair [e, c] € R;(e,a).
Notice that the subbundle pairs in R;(e, a) are not added to £,11 by default as they are
vertices in 0Y; but they are vertices of 9,41 as R;(e,a) C & C V(9;) C V(Jir1).

Observation 211. Let |£;| > 1. If a subbundle pair [e,d’] is generated by a subbundle
pair [e,a] in £;, then R;(e,a) =V (e,d’).

Proof. Let |£;| > 1 and subbundle pair [e, a] be generated by subbundle pair [e, a] in £;.
Then |L;(e,a)| =1, and o’ € L;(e,a). By Lemma 208, R;(e,a) is the vertex set of a path
from e to @’ in T,. Lemma 194 implies that R;(e,a) = V(e,d’). O

Observation 212. If subbundle pair [e,b] becomes the parent of [e,a] € £; in round i of
the construction of 9.. Then [e,b] € £i11 and R;(e,a) C V(e,b).

Proof. Let i be the round of the construction of ¥, where |[e, b] becomes the parent of
[e,a] € £;. Only subbundle pairs in U; get a parent in round ¢ of the construction of 9.
Thus, [e,a] € V. Let [e,a] € VY. Then the parent [e, b] of [e, a] is generated by [e,a] in
£i, and R;(e,a) C V(e,b) follows from Observation 211. (Note that |£;| > 1, because
there cannot be generated any subbundle pairs in £; if |£;| = 1.) Further, the generated
subbundle pair [e, b] is added to £;11. Let [e,a] € U}. Then the parent [e, b] of [e, a] is in
Ri(e,a), and therefore, R;(e,a) C V(e,b). As [e,b] is the subbundle pair in R;(e, a) with
|Li(e,b)| > 1 or [e,b] = I, it holds that [e,b] & ;. Thus, [e,b] € £;41. O

Corollary 213. Let [e,b] be the parent of [e,a] in V.. Then V(e,a) NV (e, b) is a subset
of Se and induces a path from e to some node ¢ in Ty.

Proof. Let [e,b] be the parent of [e,a] in the directed tree ¥.. Let i be the round of the
construction of 9. in which [e, b] becomes the parent of [e,a] € £;. First let us show
that V(e,a) NV (e,b) = Ri(e,a). Let us consider the case where [e, b] is generated by
[e,a] € VY. Then according to Observation 211, R;(e,a) = V(e,b). As R;(e,a) C V(e,a),
it follows that R;(e,a) = V(e,a) NV (e,b). Now let us consider the case where [e,a] € U}
Then [e,b] € £;. Clearly, V(e,a) NV(e,b) C R;i(e,a). Since R;(e,a) C V(e,a) and
Ri(e,a) C V(e,b) by Observation 212, we obtain V(e,a) NV (e,b) 2 Ri(e,a). Thus,
V(e,a) NV (e,b) = R;(e,a) in each case. As [e,a] € U;, we have |L;(e,a)| = 1, and
Corollary 213 follows from Lemma 208. 0
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Let us consider £;,1 and ¥;,1. Clearly, the set £;,1 only contains subbundle pairs that
are already in £; and subbundle pairs that are generated by subbundle pairs [e, a] € 0?
in £;. It is not hard to see that the way we constructed £;,1 and ;4 properties (a)-(d)
and (f) must be satisfied. In order to prove property (e), which says that ¢;,1 is a directed
forest with |£;11] connected components, where £, is the set of roots, we show that
for all [e,a] € VY, the subbundle pair [e,a’] generated by [e,a] in £; does not occur in

Ujgi gj‘

Let us extend our notion of descendant. Let e € Fj,. We say a vertex a is a proper
extended descendant of a vertex b in T, if a,b € V. and a is a proper descendant of
bin T,; ora € No\ V., b € V. and b € V(e,a). Let us denote the “proper extended
descendant”-relation in 7. by <,c.d..

Observation 214. The “proper extended descendant”-relation in T, is a strict partial
order.

Proof. Clearly, <;c.q. is irreflexive. Let us show that <, cq. is transitive. Let a <;c.q. b
and b <,e4. c. Let us consider the case where a,b,c € V.. Then a is a proper descendant
of b and b is a proper descendant of ¢ in T,. Therefore, a is a proper descendant of
cin T,, and a <ped. ¢. In the case that b € N, \ V. or ¢ € N, \ V., we cannot have
a <ped borb<peqa c. Thus, this case cannot occur. Let us consider the case where
a€ N\ V. and b,c € Vo. Then a <peq. band b <,cq. ¢ implies that b € V(e,a) and
that b is a proper descendant of ¢ in T,. By Observation 195, [e, b] is a subbundle pair
and V(e,b) C V(e,a). As e,b € V. and there is a path from e to b in T, Lemma 194
implies that V (e, b) contains all vertices on this path from e to b, which includes c¢. Hence,
ce V(e b) C V(e a). It follows that a <peq. c. dJ

We let a be an extended descendant of a vertex b in T, if a = b or a is a proper extended
descendant of a vertex b in T,.

Corollary 215. The “extended descendant”-relation in T, is a partial order.

Observation 216. Let |£;| > 1. If a subbundle pair [e,a] generates a subbundle pair
le,d’] in £;, then a is an extended descendant of a'.

Proof. Let |£;| > 1. Let [e,a] be a subbundle pair that generates the subbundle pair
[e,a’] in £;. In the case that a € N, \ V., we have a’ € L;(e,a) C R;(e,a) C V(e,a), and
by Lemma 208 o’ € S, C V.. Thus, if a € N, \ V., then a is an extended descendant of a'
Let us consider the case where a € V.. By Lemma 194 [e, a] is a subbundle pair and
V (e, a) consists of all vertices of the path from e to a in T.. As R;(e,a) C V(e,a), the
induced subgraph T.[R;(e, a)] is a subpath of the path T,.[V (e, a)] by Lemma 208. Thus,
the end a of the path T.[V (e, a)] is a descendant of the end a’ of the subpath T.[R;(e, a)]
in T,. It follows that, a is an extended descendant of a'. O

Observation 217. If vertex a is an extended descendant of vertex b in T, then [e,a]
and [e, b] are subbundle pairs and V(e,b) C V (e, a).

Proof. Let a be an extended descendant of vertex b in T,. Let us consider the case
where a € N, \ V.. Then [e,a] is a subbundle pair. If a = b, then, clearly, [e,b] is a
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subbundle pair as well and V(e,b) C V(e,a). If a # b, then b € V, and b € V(e,a) and
it follows from Observation 195 that [e,b] is a subbundle pair and V(e,b) C V (e, a).
Now let us consider the case where a € V.. Then b € V,, and a is a descendant of b.

In this case, it follows from Lemma 194 that [e,a] and [e, b] are subbundles pair and
Ve,b) C Ve, a). ]

Observation 218. Let |£;| > 1. If V(e,b) C V(e,a) for subbundle pairs [e,al, [e,b] € £;,
then a is an extended descendant of vertex b in T,.

Proof. Let |£;] > 1. Let [e,al,[e,b] € £; be subbundle pairs with V(e,b) C V(e,a).
Clearly, a is an extended descendant of vertex b in T, if a = b. Thus, let a # b. In the
case that a € N, \ V. and b € S,, vertex a clearly is an extended descendant of vertex b in
T.. Let us consider the case where a,b € N,. Then V(e,a) NV (e,b) C S, by Lemma 200.
Thus, b € V(e,b) C Se, which is a contradiction according to Observation 199. Now, let us
consider the case where a € V.. Then V' (e,a) C V. by Corollary 192. As V(e,b) C V(e,a),
it follows that b € V.. Since a,b € V., Lemma 194 implies that V (e, a) and V (e, b) consist
of all vertices of the path from e to a and all vertices of the from e to b, respectively. As
V(e,b) C V(e,a), it follows that a is a descendant of vertex b in T.. Therefore, a is an
extended descendant of vertex b in T,. ]

Lemma 219. Let |£;| > 1. Vertex a is not an extended descendant of b in T, for

e allfe,a]l € &, [e,b] € £\ {l.} witha#b, and
e allfe,a] € £i41\ £ and [e,b] € U;<; £\ {lc}-

Proof. Let |£;| > 1. Then |£;| > 1 for all j <i. We prove this lemma by induction. Let
i =0. Let [e,b] € £y \ {lc}. Then b € N,, and there is no vertex a with a # b such that
a is an extended descendant of b in T,. Now let ¢ > 0. As inductive assumption, we
suppose that for each i’ < i vertex a is not an extended descendant of b in 7T, for

o all [e,a] € £, [e,b] € £ \ {lc} with a # b and
e all [e,a] € £y41\ £ and [e,b] € U;<p £\ {le}-

In the following we show the above for i’ = i.

First, let us show that a is not an extended descendant of b in T, for all [e,a] € £; and
all [e,b] € £\ {lc} with a # b. We only need to consider the case where [e,b] € £; \ £,_1
as otherwise a is not an extended descendant of b by inductive assumption. Let us
assume a is an extended descendant of b. Since [e,b] & £,_1, it has to be generated by a
subbundle pair [e,¥] in £;_;. Furthermore, we know [e,b'] € BV ;. Thus, [e, V'] # l.. By
Observation 211, we have R;_1(e,b') = V (e, b).

Let us consider the case where [e,a] € £;_1. According to Observation 217, the set
Ri_1(e,b') =V (e, b) is a subset of V(e,a) as a is an extended descendant of b. Therefore,
[e,a] € Ri_1(e, ), and [e,a] is in VY_, as well. Thus, [e,a] generates [e,b] in £;_1, and
[e,a] is not added to £; per se. Yet, [e,a] is contained in £;, and as [e,a] € VY ,, the
only way for [e,a] to be in £; is if it is generated by a subbundle pair [e,d’] in £;_;.
Then a’ is an extended descendant of a (Observation 216). Further, [e, a] and [e, a'] are
distinct subbundle pairs in £;_; because [e, a] € R;_1(e, V') generates [e, b] with a # b,
and [e, a'] generates [e,a] in £;_1. As [e,a] € BY_;, we have [e, a] # l.. Thus, we have a
contradiction to the first part of the inductive assumption.
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Now let us consider the case where [e,a] & £;_1. Then [e,a] is generated by a subbun-
dle pair [e,a'] in £,_1. Hence, d’ is an extended descendant of a (Observation 216).
It follows that a’ is an extended descendant of b by transitivity of the “extended
descendant”-relation (Corollary 215). Observation 217 implies that V(e,b) C V(e,a').
As R;_i(e,b') = V(e,b), it follows that [e,a’] € Ri_1(e,V'). Since [e,b'], [e,a’] € LY,
and therefore, |L;_i(e,a’)| = 1, Lemma 210 implies that R;,_1(e,a’) = R;_1(e,t’). Conse-
quently, [e,a] = [e,b], a contradiction.

Next, we show that a is not an extended descendant of b in T, for all [e,a] € £;11 \ £;
and [e,b] € U;<; £ \ {lc}. Let [e,a] € £,41\ £ and [e,b] € £;\ {l.} for j <i. Again, let
us assume «a is an extended descendant of b. As [e,a] € £;, it has to be generated by a
subbundle pair [e, a’] in £;. Thus, a’ is an extended descendant of a in T, (Observation 216),
and by transitivity of the “extended descendant”-relation (Corollary 215), also of b in
T.. Further, [e,a’] € BY, and therefore, [e,a’] # l.. By Observation 211, we have
Ri(e,a’) = V(e ,a). Vertex a’ must be different from b: Suppose ' = b. Then a’ = a
as the “extended descendant”-relation is a partial order (Corollary 215). Therefore,
Ri(e,a’) = V(e,a’). According to the definition of R;(e,a’), there exists a subbundle
pair [e, c] € £;\ {[e,d']} with R;(e,a’) C V(e,c). Thus, V(e,a’') C V(e,c). Consequently,
¢ is an extended descendant of a’ by Observation 218, and we have a contradiction to
the first part of the proof. It follows that a’ # b. Let i < i be minimal such that for
all k with i < k < i we have [e,d’] € £4. If j > ¢/, then the distinct subbundle pairs
le,a’] and [e, b] are in £;, a contradiction to the first part of our inductive assumption. If
j < i', we obtain a contradiction to the second part of the inductive assumption since
le,a’] € £\ £iy—1 and [e,b] € £\ {lc} for j < — 1. O

Corollary 220. Let |£;| > 1 and [e,a] € VY. The subbundle pair [e,a’] generated by
le,a] in £; does not occur in J;<; L;.

Proof. Let |£;| > 1. Then |£;| > 1 for all j < i. Let [e,a] € VY and [e,a] be the
subbundle pair generated by [e, a] in £;. First, let us show that @’ # a. Suppose ¢’ = a.
Then V(e,a) = R;(e,a) by Observation 211. According to the definition of R;(e,a),
there exists a subbundle pair [e,c] € £; \ {[e,a]} with R;(e,a) C V(e,c). Therefore,
V(e,a) C V(e,c), and it follows from Observation 218 that ¢ is an extended descendant
of a in T,. Further, [e,a] # I. because [e,a] € VY. Hence, we have a contradiction to the
first part of Lemma 219.

Next, we prove that [e,a’] # l.. Let us suppose [e,a'] = l.. Then [e,d] € £; by
property (a). Since [e,a| generates [e,d’] in £;, we have R;(e,a) = V(e,d’), and I, =
[e,a] € Rile,a). Tt follows that [e,a] is not in VY, and therefore, [e,a] cannot generate
[e,d] in £;, a contradiction.

Now, let us assume the subbundle pair [e,a'] is in £; for j < i. Let us show that
le,a] € £ for all k with j < k < i. Suppose [e,a] € £ for a k' with j < k' < 4,
and let k' be maximal with that property. Since [e,a] € £; we know k' < 4. Thus,
le,a] € Lrry1 \ L and [e,d’] € £\ {lc} for a j < k. By Observation 216, vertex a is an
extended descendant of @’ in T,. Hence, we obtain a contradiction to the second part
of Lemma 219. Consequently, [e,a] € £ for all k with j < k < i. Therefore, we have
le,a] € £, [e,ad’] € £\ {lc} and ¢’ # a. As a is an extended descendant of a’ in T¢, we
have a contradiction to the first part of Lemma 219. O
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We can conclude: Once a subbundle pair is assigned a parent in round ¢ of the construction
of . it will not occur again in £; for all j > ¢, as the only way to add it to £; for j > i is
by generating it from another subbundle pair which Corollary 220 tells us is not possible.
Hence, we obtain the following corollary.

Corollary 221. If [e,a] € £; becomes the child of a subbundle pair in round i of the
construction of 9.. Then [e,a] & £; for all j > i.

It follows immediately from the properties of 9;, the construction of ¥; 1 and Corollary 221
that ¥;41 is a directed forest with |£;,1| connected components, where £, is the set
of roots. Thus, we have shown properties (a)-(f). It remains to show property (g). The
following proposition shows that as long as £; contains more than one element there
always exists a subbundle pair that satisfies properties 1-4 from above, that is, 0; # ( if
|21| > 1.

Proposition 222. Let |£;| > 1. If U; = 0, then there exists a cordless cycle of length
>4 in H.

The application of this proposition in combination with Lemma 209 yields that property (g)
must be satisfied as well: Let |£;,] > 1. Then Proposition 222 implies that U; # 0.
Hence, there exists a subbundle pair [e, a] € ;. For this subbundle [e, a] it holds that
|Li(e,a)] = 1. Consequently, |R;(e, a)| > 2 according to Lemma 209. If [e, a] € 0Y, then
all subbundle pairs in R;(e, a) are in UY and therefore not added to £;,1; in place of
the subbundle pairs in 2R;(e, a) one new subbundle pair is added to £;.1. If [e, a] € T},
then only one subbundle pair from R;(e, a) is added to £;41, the other one are not added.
Hence, in any case it follows that |£;11| < |£;].

Thus, the given sequences £; and 9J; for ¢ > 0 indeed satisfy all the necessary properties.

Now it remains to proof Proposition 222. First we need to lay foundations.

Lemma 223. Let |£;| > 1. The set £; contains only subbundle pairs [e,c| such that
either ¢ € N, or |L;(e,c)| = 1.

Proof. Let [e,c| € £;. According to property (c) either ¢ € N, or ¢ € S.. If ¢ € S, then
V (e, c) is the vertex set of a path from e to ¢ in T, (Corollary 192). If V (e, c) is the
vertex set of a path from e to ¢ in T, then R;(e,c) C V (e, c) is the vertex set of a path
from e to a vertex @’ in T, by Lemma 208. Therefore, |L;(e,c)| = 1. O

Let |£;] > 1. In the following we consider the case that there exists no subbundle pair
that satisfies the above four properties. Thus, let 2; = (). Hence, each subbundle pair
in £; does not satisfy at least one of the four properties. We call all subbundle pairs
le,a] € £;\{lc} with |L;(e,a)| = 1 leaf pairs. A leaf pair [e, a] has to not satisfy property 3
or 4. We show that if [e, a] is a leaf pair, then [e, a] does not satisfy property 3:

Lemma 224. Let i > 0 and |&;| > 1. Further, let B, = 0. If [e,a] is a leaf pair, then
le,a] € £; does not satisfy property 3.
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Proof. Let |£;| > 1, and let there be no subbundle pair that satisfies the above four
properties. Let us assume [e,a] € £; is a leaf pair that satisfies property 3. Then, we can
give a sequence ([e, ay])nen of leaf pairs [e, a,] € £; \ {le} with R;(e,a,) C R;(e,a) and
Ri(e,a,) C Ri(e,an41) for all n € N. In such an infinite sequence of leaf pairs ([e, a,])nen
no two leaf pairs are the same. As the cardinality of £; \ {l.} is finite, we obtain a
contradiction.

Let [e,a1] := [e,a]. Now let [e,a1],...,[e,a,] be the first m leaf pairs of the above
sequence. Let us determine a leaf pair [e, a,,+1] such that all properties are satisfied for
the first m + 1 elements of the sequence. If the leaf pair [e, a,,] does not satisfy property 3,
then [e, a] cannot satisfy property 3 either, because R;(e, a,,) C R;(e,a). Consequently,
le, an] satisfies property 3, and e, a,,| does not satisfy property 4. Thus, there exists a
subbundle pair [e,al,] € R;(e, a,) such that Li(e,a,,) € Li(e,al)). As [e,a,] is a leaf
pair, |L;(e,an,)| =1 and R;(e, a,,) is a path from e to ' € L;(e, a,,) in T, (Lemma 208).
Since [e,al ] € Ri(e, am), the vertices of the path are in V(e,al,). Furthermore, they
must belong to R;(e,al,) as they are in V(e,a,,) NV (e,al,). Now L;(e,an) € Li(e,al,)
implies that a’ is not a leaf of the subtree induced by R;(e,a’,) in T, (Lemma 208). Let
a” € V, be a child of a’ such that a” belongs to the subtree induced by R;(e,al ) in T..
Then @’ € R;(e,a’). Thus, a” € V(e,a},), but a” € V(e,a,,) because a” € R;(e,ay,).
Hence, there must exist a subbundle pair [e, a2,] different from [e, al ] and [e, a,,] such that
a’ € V(e,a?,)). Since e,a” € V, and e,a” € V (e, a?,), the vertices of the path from e to a”
in T, are in V (e, a2,) by Lemma 196. Thus, we have R;(e, a,,) U{a"} C V(e,a?,). As a con-
sequence, [e,al ] and [e,a?,] are distinct subbundle pairs with [e,al ], [e,a2] € Ri(e, an)
and R;(e, a,,) U{a"} C V(e,al,) NV (e,a2). Since [e,a,,] satisfies property 3, there exist
a j € {1,2} such that |L;(e,al))| = 1 and [e,al,] # l.. We let [e,an11] := [e,al,]. Of
course, subbundle pair [e, a,,11] is a leaf pair. Further, [e, a;,+1] was chosen such that
Ri(e,an) C Ri(e,am+1), because R;(e,a,) C V(e,al)NV(e,a2) C Ri(e,ams1). As a
consequence, R;(e, ani1) C Ri(e, an), and therefore, R;(e, ami1) C Ri(e, a). O

Proof (Proposition 222). Let ¢ > 0, |£;] > 1 and U; = (. We consider sequences
(b1, w1), (ba,wa), ..., (bm,wn) of pairs of vertices of length m > 2 with the properties:

A) [e,bi] € & for all k € [m],

B) wy € Li(e, by) for all k € [m],

C) wy € R;(e,b41) for all k € [m — 1] and wy, € R;(e,by), and
D) by # by and wy # wy for all k # k' with k, k' € [m].

We show that such sequences exist. Then we take a shortest one, and show that we can
find a cordless cycle of length > 4.

In order to obtain a sequence of pairs with the above properties, we first construct
another sequence (ay,v1), (az,v2), ..., (an, v,) of pairs of vertices, where n > 2. This new
sequence still satisfies property A and B, that is, for all k € [n] we have (e, ay) € £; and
v € Li(e,ar), but we relax the other properties. Instead of property C, we only require
that

C*) vg € Ri(e,agsq) for all k € [n — 1],

135



6. Capturing PTIME on Chordal Comparability Graphs

and instead of property D we ask for the following properties:

D1) ay # ap and vy # vy for all k, k' € [n — 1] with k # £/,
D2) ay # ap41 and vy # vg4q for all k& € [n — 1], and
D3) there exists a k € [n — 1] such that a,, = ax or v, = vg.

We construct the sequence (ay,v1), (az,v2),. .., (an, v,) inductively. Hence, for all subse-
quences (a1,v1), ..., (a;,v;) with 1 < j < n, we maintain properties A, B (for all k € [j])
and C*, D1, D2 (for all k, k" € [j — 1]), and we append pairs to the subsequence until
property D3 is satisfied.

Let vertex a; be such that [e,a;] = [, and let v; be any vertex in L;(e,a;), then subse-
quence (aq1,v;) satisfies all required properties and does not satisfy property D3. Now let
us assume we have given a subsequence (a1, v1),. .., (a;,v;) that satisfies properties A, B,
C*, D1 and D2 but not property D3. We want to determine (a;4+1,v;41). It is not hard
to see that if properties D1 and D2 are satisfied for all k, k" € [j — 1], but property D3
is not, that is, there does not exist a k € [j — 1] such that a; = aj or v; = v, then
ar # ap and vy, # vy for all k, k" € [j]. Thus, property D1 is satisfied for the sequence
extended by (a;t1,vj41) independent of our choice for aj;; and vj;. As vertex v;
is in Li(e,a;) C R;(e,a;) according to property B, there must exist a subbundle pair
le,a}] € £\ {[e, a;]} such that v; € V(e,a;) NV (e,a}). Thus, v; € Ri(e,a}).

If [Li(e,a})| = 1 and [e, ] # I, then by Lemma 224 we know that [e, @] does not satisfy
property 3. Therefore, there exist at least two subbundle pairs [e, b] € £; such that [e, b]
is in R (e, a}) and additionally |L;(e,b)| > 1 or [e,b] = l.. For each such subbundle pair
e, b] we know that v; € R;(e,b), because v; € V(e,b) (as v; € Ri(e,a}) C V(e,b)) and v;
is also contained in the vertex sets V (e, a;) and V (e, a;), and at least one of the vertices
aj, a; is different from b. As there are at least two vertices b with the described properties,
we pick one of them that is not equal to a; and define it to be a;y1. If [L;(e, a})| > 1 or
le,a}] = l., then we let aji1 be a}. Clearly, this way a;1 # a; and v; € Ri(e,aj41).

Now we have chosen a;1; such that [e,a;41] € £; (property A), v; € R;(e,aj+1) (prop-
erty C*) and |Li(e,aj41)] > 1 or [e,aj41] = l.. If |Li(e,aj41)] > 1, then we choose v, 1
arbitrarily from L;(e,a;41) \ {v;}. This way, v;41 # v;. Thus, properties B and D2 are
satisfied. Let |L;(e,a;+1)| = 1. Then [e, a;j41] must be l. = [e, a1]. We let v;;1 be vy, the
only vertex in L;(e,a;+1). Then property B holds trivially. Since a;i1 # a;j, we have
Jj # 1. As v; # vy (property D1), it follows that v;;; # v;. Hence, property D2 holds.

Now our sequence is extended by (a;j;1,v;4+1) such that properties A, B, C*, D1 and D2
are satisfied. If property D3 is satisfied as well, we are done. Otherwise, we continue
with this recursive construction. As there are only finitely many subbundle pairs in £;
the recursion must terminate at some point.

Now we use sequence S = (a1,v1), (az,v2),..., (a,,v,) to construct a sequence S’ of
the first form. Let k < n be maximal such that a, = a, or v,, = v;. By property D2,
k<n-—2.

If we have a,, = ax, we let S" = (ag, vg),- .., (@n_1,vn—1). Then all properties are satisfied:
Clearly, properties A and B hold. Property C is satisfied, because v,—1 € R;(e,ay)
(property C*) implies v,—1 € R;(e,ax); and property D is satisfied for S as property D1
holds for S. It remains to consider the case where v,, = v but a, # ai. In this case we
use S" = (ags1,Vk+1),-- -, (an,vy,). Then again properties A and B are satisfied. Since vy,
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is in R;(e,ak4+1) (property C*), we obtain that v, € R;(e,ags1). Thus, property C holds.
By the choice of k and property D1, it follows that property D is satisfied. As k <n — 2,
S’ is a sequence of length at least 2.

Now let S” = (by,w1), (b2, w2), ..., (b, wy) with m > 2 be a shortest sequence that
satisfies properties A-D. In the following we prove that C' = by, w1, bo, wa, . .., by, Wi, by
is a cycle of length > 4 without any chords. Since by # by and wy # wy for all k # K
with k, k" € [m] by property D, we only need to show that by # wy for all k, k' € [m]
and that there is no chord between any non-consecutive vertices in C.

First, we show that there is no chord between w; and wj for j, j' € [m] and j # j'. Let us
assume there exist j # j’ such that there is a chord between w; and wj. By Lemma 208
the vertices w; and wj are nodes of T,. As they are adjacent in H, vertex w; is a proper
ancestor of wj in T, or the other way around, according to Corollary 179. Without loss
of generality let us assume that w; is a proper ancestor of w;; and that j = 1. Then
j' # m, because w;; € R;(e,by) (property C) implies that wy € L;(e, by) cannot be a
proper ancestor of W, in T,. Now let us remove the pairs (be, w2),. .., (bj, w; ) from S”".
Note that the resulting sequence has length at most 2. According to property C vertex
wjs is in R;(e,bjr41). Further, all ancestors of wj are in R;(e,bj11) (Lemma 208), and
as w; is a proper ancestor of w;/, we know that w; is contained in R;(e,bjy1). Thus,
we after removing the pairs (by, ws), ..., (bjs,w;) from S”, we obtain an even shorter
sequence that satisfies properties A-D and has length at least 2, which is a contradiction.

Claim 225. For all k € [m] we have by, € N,.

Proof. According to Lemma 223 for all subbundle pairs [e,b] € £;. We have either
|Li(e,b)| = 1L orb € N,. Let us assume there is a k € [m] such that |L;(e, bx)| = 1. Without
loss of generality, let £ = 1. Then wy,, w; € R;(e,b1) (property C). As wy € L;(e, b1) and
Wy, # wy (property D), it follows from Lemma 208 that w, is a proper descendant of
Wy, in T,. Corollary 179 yields that there is an edge between w; and w,,, which is not
possible as shown above. Hence, we obtain a contradiction, and b, € N,. J

Next we show that there are no chords between any vertices b; and b for j # j'. By
Lemma 225 vertex by is in N, for all k € [m]. As all vertices by, with k € [m] are adjacent
to e in H[F| and H[F] is a bipartite graph (Lemmas 80 and 185), there cannot be an
edge between b; and b, for j,j' € [m] with j # j'.

Now we show that there are no chords between any non-consecutive vertices b; and w;
of C. Let us assume there is a chord between the non-consecutive vertices b; and w;
of C. Without loss of generality let j = 1. Then ;' # 1 and j' # m. We prove that
S* = (b, w1),...,(bj,w;) is a shorter sequence that satisfies properties A-D and has
length at least 2. Clearly, S* satisfy properties A, B and D and the length of S* is
at least 2. By Claim 225 we have b; € N,, and Lemma 208 implies that w; € S, as
wj € Li(e,bjs) C R;i(e,bjr) (property B). Since by and w; are adjacent, it follows that
wj € V(e,b1) by Lemma 202. As w;s is also contained in R;(e,b;) € V (e, b;), and
b1 # by by property D, vertex wj is in R;(e,b1). Hence, S* also satisfies property C.
Since S* is shorter than S” we obtain a contradiction.

Now we proved that there is no chord between any non-consecutive vertices in C. It
remains to show that by # wy for all k, k' € [m]. By Claim 225 we have b, € N, for all
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k € [m]. Further, wy € L;(e,by) C Ri(e,by) C S for all k' € [m] by Lemma 208. It
follows from Observation 199 that by # wy for all k, k' € [m)].

Hence, C' is a chordless cycle of length > 4 in H. O

Defining the Decomposition Tree of a Block in FP+C

In this section we show that the decomposition tree . of a block b, for inner termini
e € F, is definable in fixed-point logic with counting.

We only considered one terminus e € Fj, in the last section and defined the sets £;, R;,
Li, Ry, VY, V! and the tree 9; for each i > 0 for this terminus e. As they actually depend
on the terminus e € F, we denote them by £¢, R¢, L¢, RS, (B9)¢, (V})¢ and 9 in the
following.

The terminus e € F}, can be considered as a parameter. Within the following formulas,
the variable x* represents the parameter e € Fj,. Further, we constantly use the ono-to-
one-correspondence between a set P of subbundle pairs that each contain terminus e and
the set of vertices P|.. Thus, when considering a set P of subbundle pairs [e, a] that all
contain the terminus e € Fj,, we use the vertex a to represent the subbundle pair [e, a].

Let us suppose there is an FP+C-formula g, (z* x) such that for all vertices e,a € V(H’)
of an extended valid subgraph H’ we have

H' E=1g,le,a] < e € Fy, and [e,a] € £5.

Note that e € [a, b] for each [a,b] € £F for all i > 0 and e € Fj, (property (c)). Thus, we
have £5|. = ¢, [H e; x] for e € Fy,.

Remember that there are TC-formulas for F, Fj, and the edge relation E(T,) of the side
tree T, of e of H (see (6.15)); and for the subbundle pairs of H and the set V (v, w) for
vertices v, w € V (see (6.16)). Further, there is an STC+C-formula for /. (see (6.17)). It is
not hard to see that with these formulas and ¥¢, (z* ), we can construct FP4C-formulas
VR, (@ 2,y), Yr, (2% 2, y), Y, (2%, 2,27), Yoo (27, z,2") and Yoo (27, z,2") such that for all
vertices e,a,b € V(H') of an extended valid subgraph H’ it holds that

le,a,b) < e€ Fy, [eq]

le,a,b] <= e€ Fy,|ed

H' ): Yo, le,a,b] <= e€ Fy, le,d] € 26 and [e,b] € R{(e,a),
[e,a,b] <= e€ Fy, [e,a] € £ and [e,b] € (VY)(
le,a,b] <= e€ Fp, [e,a] € £ and [e, 8] € € (°U})%(e, a).

We need formulas that define the sets V(9;41) \ V(¥;) and E(9;41) \ E(9;). Except
of the vertices of ¥, the vertex set of ¥5,, contains all subbundle pairs [e, b] that are
generated by a subbundle pair [e,a] € (V)¢ in £¢, that is, all subbundle pairs [e, b] where
b € L(e,a) for a subbundle pair [e,a] € (BY)¢. The set E(J;11) \ E(Y;) contains all
edges ([e, b], [e,a]) where [e,a] € (V?)¢ and [e, b] is the subbundle pair generated by e, a]
in £¢, or where [e,a] € (U})¢ and [e, ] is the one subbundle pair [e,b] € R¢(e, a) with
|LS(e,b)| > 1 or [e, b] = L.
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Clearly, we can define the sets V(9;41) \ V/(9;) and E(9;41) \ E(9;) with the above
formulas. Hence, there are FP+C-formulas 1y (g, )\v(9,) and ¥g,. )\ E@,) such that for
all vertices e, a,b € V(H') of an extended valid subgraph H' we have

H' = Yyw, wweyle.a <<= ee€Fyand le,a] € V(¥ip) \ V(9), (6.18)
H E Vi@, \EW,) e a,b] <= ec Fy and ([e,al,[e,b]) € E(Vi41) \ E(¥;).

The goal are FP+C-formulas that define the vertex set and the edge set of the decompo-
sition tree ¥, of a block b, for e € Fj,. In the following we describe how to obtain them.
The vertex set V(¥.) and the edge set E(¢J.) can be defined in a similar way. We use
a simultaneous inflationary fixed-point operator to define each of the sets. Within this
simultaneous inflationary fixed-point operator we use two relational variables Xy and
Xg such that X{tt = V(9¢) and X! = E(9$), where X, and X§ are the relations we
obtain in the ith round of the recursion when interpreting the formula. Thus, in round
t + 1 of the recursion we define the directed forest ¥§. As there is an STC+C-formula
for the set £. (see (6.17)), we can easily define V(¥§) = £. and E(J5) = 0 and initiate
the recursion such that X{ = V(9§) and XL = F(9). Once we have X{' and X for
¢ > 0, that is, the vertex set and the edge set of the directed forest J§, we can determine
the set of roots of ¥¢. According to property (e) the set of roots of ¥¢ is the set £5. We
let the formula ¢, from the beginning, be the formula that uses the relational variables
Xy and Xp to defines the roots of the directed forest that the pair (X, Xp) of relational
variables will be interpreted with. Then vy, \v(,) and Ygw, )\E@,) define the set
of vertices and the set of edges that we need to add in each round.

We can conclude the following.

Lemma 226. There are FP+C-formulas v 9.y (2* x) and g, (z% x, 2") such that for
all vertices e,a,b € V(H') of an extended valid subgraph H' we have

H' =y, e, d] < e€F, and [e,a] € V(¥,),
H' =gy le,a,b] <= eec Fy and ([e,a, [e,b]) € E(J.).

6.5.3. The Decomposition Tree of a Valid Subgraph

In the last section we created the directed tree ¥(b) for each block b = (£,1) occurring in
the simplified decomposition tree of a valid subgraph H = (V, E) of bundle extension H*
In this section we attach the directed trees ¥(b) for b € B according to the simplified
decomposition tree from Section 6.5.1 to obtain the actual decomposition tree of H.

Definition

The directed tree J(b) for each block b = (£,1) has the property that [ is the root of
it and £ is a subset of its set of nodes. Further, if block b = (£,1) is a child of a block
b’ = (£,!') in the simplified decomposition tree, then the subbundle pair [ is an element
in £'(Observation 206). We can attach the directed tree ¥(b) to the directed tree J(b’)
by gluing them together at the node [, the root of ¥(b), which also occurs in J(b’). We
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obtain the complete decomposition tree by attaching all directed trees for the blocks
occurring in the simplified decomposition tree like that.

First of all, we show the following property:

Lemma 227. Let b, b’ € B be two blocks with b # b'. Then V(9(b)) NV (I(b")) # 0 if,
and only if, b’ is the parent of b, b is the parent of b, or b and b' are children of the block
broot i the simplified decomposition tree. Let p € V(9(b)) NV (I(b')). Then

e p is the root of ¥(b) if b’ is the parent of b,

e p is the root of ¥(b') if b is the parent of b, or

e p is the root of ¥(b) and of 9(b") if b and b' are children of the block b,yp1.
(Then {p} = V(9 (bro0t))-)

Proof. First, let us consider blocks of inner termini. Thus, let us consider b.,, b, € B
where e1, ey € Fj, with e; # es. By Observation 207 every subbundle pair p., € V(9e,)
contains the terminus e; and a vertex from S, or N,,. Similarly, every subbundle pair
Pe; € V(Ue,) contains the terminus e; and a vertex from Se, or N,,. By Lemma 189
we have S,, N'S., = 0. Thus, we have p., = pe, for p.,, € V(J,,) and p., € V(¥e,) if,
and only if, e; and ey are adjacent in H and p., = p., = [e1, e2]. Hence, if there is no
edge between e; and ep in H[F], then the sets of nodes of 9., and ¥, are disjoint. If
there is an edge between e; and ey in H[F], then V(9,,) NV (J,) = {[e1, e2]}. Now, let
V(9e,) NV (Ye,) # 0. Then there is an edge between ey and ey in H[F], and due to the
construction of the simplified decomposition tree either b, is the parent of b,,, b., is the
parent of b,, or b., and b, are the children of the block b, (then e; and es are the
two (adjacent) centroids of H(F'), Lemma 28). Clearly, if b., is the parent of b.,, then
[e1, e2] is the eldest of b, and therefore the root of ¥.,. Analogously, [e1,ez] is the root
of ¥, if b, is the parent of b.,. Let b., and b., be the children of the block b,o0¢. If the
simplified decomposition tree contains the node byoot, then H[F] has two centroids e,
and e,,. It follows that {e1,ea} = {e,,, €, }. Thus, [e1, e2] = [e,, €r,] is the root of ¥,
and ¥,,. Further, the vertex set of ¥(byoot) = ({[€r,,€r,]}, D) is {[e1, e2]}. Now we have
shown Lemma 227 for distinct blocks b, and b, of inner termini e, eq € Fi,.

Next, let us suppose the block byoot = ([€ry, €1y ], {[€ry, €ry]}) 18 involved. The children of
boot are the blocks be,, and ber2 of the two centroids e,, and e,, whose eldest is [e,,, e,].
Thus, [e,,,er,], which is the only node of ¥J(byoot), is the root of ¥, and ¥, . Note
that e,, and e,, are adjacent (Lemma 28). As there is no inner terminus e € Fj, that
is adjacent to e,, and e,, (H(F) is a tree), b, and b, are the only blocks of inner
termini whose directed tree contains the node [e;,, e;,]. O

Now we can define the decomposition tree T = (V, E1) of valid subgraph H = (V, E).
We also denote the tree by T(H) = (Vr(m), Erm)) if it is not clear from the context
what valid subgraph we are referring to.

Let H = (V, E) be a valid subgraph. Let F' be the set of termini of H and F;, be the set of
inner nodes of H[F]. If Fi, = (), then H[F] consists of at most two nodes. If H[F] consists
of only one node e, we let T := ({[e, €]}, (). If it consists of two nodes e, f, we define
T := ({[e, f1},0). Let Fi, # (. Then, let (B, €) be the simplified decomposition tree of H.
For each block b € B we constructed a tree ¥(b) of subbundle pairs in the previous section.
We let Vi := Upeq V(9(b)) be the set of nodes and Er := Jyc E(U(b)) be the set of
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edges of T. It follows from Lemma 227 that 7 = (V, E7) is a directed tree. Each block
b € B is a block b, for an inner terminus e € Fj, except if there are two centroids of H[F],
then 9B additionally contains the block byoet. We know that V(9(broot)) = {[er,, €rp]}
and E(9(byoot)) = 0. Further, subbundle pair [e,,, e,,] is the root of the directed tree
J(be, ) for the terminus e,, € Fi,. Thus, Vi = U.cp, V(¥e) and Er = U.cp, E(Ye)-
Further, note that the root r of the decomposition tree is [e,, e,] for e, € C if |C| =1,
and [e,,, e.,] for e,,, €., € C with e, # e, if |C| = 2, where C' is the set of centroids of
the bundle tree H[F|. Clearly, every directed tree ¥, for e € Fj, is a subtree of T.

Observation 207 implies the following observation.

Observation 228. Let Fy, # (). For all subbundle pairs p € Vi there exists a terminus
e € Fy, and a vertex ¢ with ¢ € N, or ¢ € S, such that p = e, c].

Defining the Decomposition Tree in FP+C

The vertex set V3 and the edge set E of the decomposition tree 7T of a valid subgraph
H can be defined in FP+C.

Since Vi = Ueep, V(¥e) and Er = U.cp, E(Y.) for |[Fin| > 2, we can use the FP4-C-
formulas ¥y (y,) (2% ) and Y, )(2*, r,2’) from Lemma 226 to define the vertex set Vr
and the edge set E, respectively. It is not hard to see that there are FP+C-formulas
Yy, (Y1, y2) and Yg, (Y1, Y2, 21, 22) such that for all extended valid subgraphs H’ and all
vertices o1, 09, p1,p2 € V(H') it holds that

H’ ’: wVT[Ol,OQ] < [01,02] S VT, (619)
H' |= g, [o1,00,p1,p2) <= ([01,02], [p1,p2]) € ET.

Properties of the Decomposition Tree

Let H = (V, E) be a valid subgraph and 7 be its decomposition tree.

Lemma 229. Let [u,v],[z,y] € V5 be subbundle pairs of H with [u,v] # [z,y]. If
V(u,v) NV (z,y) # 0, then there exists a terminus e € F, such that e € {u,v} N {z,y}.

Proof. Let [u,v],[x,y] € V7 be subbundle pairs with [u,v] # [z,y]. From V| > 2 it
follows that Fj, # (). According to Observation 228 we can suppose, without loss of
generality, u € Fi, and v € S, or v € Ny, and x € Fj, and y € S, or y € N,. Note that
u € S, and z € S, by Corollary 201. Let there be a vertex w € V(u,v) NV (z,y).

First, let us assume that w is in the middle of H, that is, w € O. If v € S,, then
w € V(u,v) C S, by Corollary 193. As w € O, we cannot have w € S,. Hence, v € N,,
and similarly we obtain that y € N,. Consequently, we have u,v,z,y € F where u and v
are adjacent and x and y are adjacent. Thus, v and v are in different color classes of the
2-coloring { F1, F»} of the bundle tree H[F]. The same holds for z and y. Without loss of
generality, let u,x € Fy and v,y € Fy. According to Lemma 197, V (u,v) C S, UV, and
V(z,y) €S, UV,. Since w € O, it follows that w € V,, and w € V. Then Corollary 187
implies that v = y. Thus, there is a terminus e € F such that e € {u,v} N {z,y} if
w € O.
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Now let w € S, for a terminus e € F. Let us consider the subbundle pair [u,v]. First, let
v € Sy. Then w € V(u,v) C S, by Corollary 193. Since w € S, N S, Lemma 189 implies
that u = e. Now let v € N,. Then w € V(u,v) C S, UO U S, by Corollary 198. As
w € S, we have e = u or e = v by Lemma 189. Thus, in both cases we obtain e € {u,v}.
Analogously, we obtain e € {x,y} for the subbundle pair [z,y]. Thus, if w € S, for a
terminus e € F, then e € {u,v} N{z,y}.

Hence, there exists a terminus e € F' such that e € {u,v} N{z,y}. Let e € F be this
terminus. We show that e € Fj,. Let us suppose e € F'\ Fj,,. Then by Observation 228
the vertex f,,, in {u,v}\ {e} and the vertex f,, in {z,y}\ {e} must be in F;,. Note that

[u,v] = [e, fun] and [z, y] = [e, fzy]. Since [e, fy] and [e, fz,] are subbundle pairs and
e # fup and e # f,,, vertex e is adjacent to f,, and f,,. As e € F'\ Fj,, which means
e has only one neighbor in H[F], we obtain f,, = f;,. Consequently, [u,v] = [z,y], a
contradiction. O

Corollary 230. Let [u,v],[z,y] € V7 be subbundle pairs of H with [u,v] # [z,y]. If
V(u,v) NV (x,y) # 0, then there exists a terminus e € Fy, such that [u,v], [z,y] € V().

Proof. Let [u,v],[z,y] € V7 be subbundle pairs with [u,v] # [z, y]. Further, let V(u,v)N
V(z,y) # 0. By Lemma 229 there exists a terminus e € F;, such that e € {u,v} N {z,y}.
We prove that [u,v] and [z,y] are nodes of ¥J.. For a contradiction, let us assume
[u,v] & V(¥.). Then there exists an f € Fj, with f # e and [u,v] € V(J¢). According
to Observation 207, f € {u,v}. Thus, [u,v] = [e, f]. As [e, f] is a subbundle pair and
e # f, there is an edge between e¢ and f. Consequently, f € N.. Observation 207
implies that [e, f] € V(U.). Hence, [u,v] € V(J.). Analogously, it can be shown that
[z,y] € V(). O

Lemma 231. Let e € Fy, and let [a,b] be a subbundle pair in ¥.. Further, let k > 0 be
such that [a,b] € L. Then for each i < k there exists a subbundle pair [a;,b;] € £; with
V(a,b) C V(a;,b;). Further, [a;,b;] is a descendant of [a,b] in ..

Proof. Let e € Fy,, and let [a,b] € V(¥,). Let k > 0 be such that [a,b] € £;. We prove
inductively, that there exists a subbundle pair [a;, b;] € £; with V (a,b) C V(a;,b;) such
that [a;, b;] is a descendant of [a, b] in J, for all 0 < i < k. For i = k we let [a, b] := [a, b].
Now let i < k, and let there a subbundle pair [a;;1,b;11] € £;11 that is a descendant
of [Cl,b] with V(CL, b) - V(a,—H, bi+1). If [ai+1, bi+1] is in ,gi, we let [ai, bz] = [a,—H, bi+1].
Then V(a,b) C V(a;,b;) and [a;, b;] is a descendant of [a,b] by inductive assumption.
If [a;11,bi41] is not in £;, it is generated by a subbundle pair [z,y] in £;, and we let
[a;, b;] :== [x,y]. Then ([ai+1,bit1], [as, b;]) is an edge in Y. By Observation 211, it follows
that R;(a;,b;) = V(a;t1,bi+1). (Note that |£;| > 1, because there cannot be generated
any subbundle pairs in &; if |[£;| = 1.) Thus, V(ait+1,bi+1) € V(as,b;). By inductive
assumption, we have V(a,b) C V(a;, b;) and [a;, b;] is a descendant of [a, b] in .. O

Let p = [a, b] be a node of the decomposition tree T = (V, E7) of valid subgraph H. By
W (a,b) we denote the union of all sets V(z,y) where [z,y] is a descendant of [a,b] in T-
Note that V(a,b) C W (a,b) for all subbundle pairs [a,b] € V7.

Lemma 232. Let p = [a,b] be a node of the decomposition tree T. For all children [u,v]
of p, it holds that W (u,v) NV (a,b) = V(u,v) N V(a,b).
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Proof. Let [a,b] € V. Let [u,v] be a child of [a,b] in 7. Clearly, V(u,v) N V(a,b) C
W(u,v) NV (a,b). Let us assume there exists a vertex w € W (u,v) N V(a,b) that is not
in V(u,v) NV (a,b). Let [z,y] be a subbundle pair of minimal depth such that V (z,y)
contains w, and [x,y] is a descendant of [u,v] in 7. According to Corollary 230 there
exists a terminus e € F}, such that [z, y] and [a, b] are nodes of the directed tree ¥.. As
[u,v] lies on the unique path from [a,b] to [z,y] in T, and ¥, is a subtree of T, [u,v]
is a node of ¥, as well. Since w ¢ V(u,v), subbundle pair [z,y] is a proper descendant
of [u,v] in ¥.. Let [2/,y] be the parent of [z,y] in Y. Since [x,y] is of minimal depth
such that V' (z,y) contains w, it follows that w & V(2//y’). Let i be the round during
the construction of ., where [x,y] € £; but [z, y] € £,+1, that is, where we assign [z, y]
to be the child of [z/,y/] € £,41. Then R;(z,y) C V(2,y') by Observation 212. Let us
assume there exist a subbundle pair [¢,d] € £; with [z,y] # [¢,d] and w € V (¢, d). Then
w € Ri(x,y). As R;(x,y) C V(2)y) but w is not in V (2’ y’), we obtain a contradiction.
Thus, [z,y] is the only subbundle pair in £; such that V(x,y) contains vertex w. Since
[2,y'] € £i41 is a descendant of [a, b] in VY., there exists a j > i + 1 such that [a,b] € £;
(which follows from Observation 212 and Corollary 221). By Lemma 231 there must
exist a subbundle pair [a* b*] such that V(a,b) C V(a*,b*) and [a*,b*] € £,41. As [z,y] is
the only subbundle pair in £; such that w € V(z,y) and [a* b*] # [z,y] ([z,y] € Lit1),
the valid [a* b*] is not in £; and must therefore be generated by a subbundle pair [c, d]
in £;. Then R;(c,d) = V(a*b*) and V(a* b*) C V(e,d). Consequently, w € V(c,d) and
[e,d] = [z,y]. Hence, [a* b*] is the parent [z/,y'] of [z, y], which is a contradiction to the
choice of [z, y] since w € V(a*, b*). O

Lemma 233. Let p = [a,b] be a vertex of decomposition tree T. For all children [uy,v;]
and [uz,ve] of p, with [u1,vi] # [ug, va] we have W (uy,v1) N W(ug,v2) C V(a,b).

Proof. Let [a,b] € Vi, and let [u1, v1] and [ug, v2] be children of [a, b] with [uy, vi] # [ug, va).
Let us assume that there exists a vertex w € W (uy,v1) N W (ug,v2) that is not in V(a, b).
Let [z;,y;] be a subbundle pair of minimal depth such that V(x;,y;) contains w, and
[z;,y;,] is a descendant of [uj,v;] in T for j € {1,2}. According to Corollary 230 there
exists a terminus e € Fj, such that [z1, y1] and [z2, y2] are nodes of the directed tree 9., and
so must be [a, b], as it is the least common ancestor of [z1,y1] and [z2,y2]. For j € [2] let
[z}, y;] be the parent of [z}, y;]. Thenw ¢ V (27, y;) for j € [2]. Further, let i; be the round
during the construction of ., where [z}, y;] € £;; becomes the child of [z, y;]. Without
loss of generality let i1 < iy. Then [x1,11] € £;, and [z2,y2] € £;,. By Lemma 231 there
must be a subbundle pair [z3,y35] € £;, with V(za,y2) C V(x3,y35). As w € V(25,v3),
vertex w must be in R;, (z1,y1). Since R;, (z1,y1) C V (2!, y7) (Observation 212) and w
is not in V (2, y]), we obtain a contradiction. O

Observation 234. Let v € V be a vertex of H. Then there is a node [z,y] € Vi such
that v € V(z,y).

Proof. Let v € V be a vertex of H. According to Observation 203 there are termini
e,/ € F such that v € V(e,€'). First, let us consider the case where e # ¢’. Then
e € N by Observation 190. It follows from the construction of the decomposition tree
T and Observation 207 that [e, €'] is a node of 7. Now, let us consider the case where
e = ¢'. If e is the only terminus of H, then [e, ¢] is a node of the decomposition 7. Let
|F| > 1. Then there exists a terminus ¢” € N,. Clearly, v € V(e,€”). Again, it follows
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from the construction of the decomposition tree 7 and Observation 207 that [e, "] is a

node of 7. O

Observation 235. Let {v,w} € E be an edge of H. Then there is a node [x,y] € Vr
such that v,w € V(z,y).

Proof. Let {v,w} € E be an edge of H. According to Observation 204 there are termini
e,/ € F with e # ¢ such that v,w € V(e,e’). Then e € N by Observation 190. It
follows from the construction of the decomposition tree 7" and Observation 207 that [e, €’]
is a node of T. O

Lemma 236. Let [a,b] be a vertex of decomposition tree T. Let [x,y] be a child of [a, b]
inT. Let ve W(z,y) and w € V(a,b) be adjacent vertices of H. Then w € W (z,y) or
veV(a,b).

Proof. Let [x,y] be a child of [a,b] in decomposition tree 7. Let v € W(z,y) and
w € V(a,b) be adjacent vertices of H. According to Observation 235, there exists a
node [s,t] € Vr such that v,w € V{(s,t). If [s,t] = [a,b], then clearly v € V(a,b). If
[s,t] is a descendant of [z, y], then w € W (x,y). In the case that there is a child [z v/
of [a,b] with [z 9] # [x,y] and [s,t] is a descendant of [z 3], we have v € W (2 /),
and Lemma 233 implies that v € V(a,b). It remains to consider the case, where [s,t]
is a proper ancestor of [a,b]. Then there is a path from [s,t] to [a,b] in T. Let [s,t] =
[s0, to], [s1,t1], - - -, [Sk, tk] = [a,b] be this path. We inductively show that v € V(s;, ;)
for all ¢ € [0,k]. Then it follows that v € [a,b]. Clearly, v € V(so,to). Let i € [k].
Suppose v € V(s;_1,t;—1) and let us show that v € V(s;,t;). As v € W(z,y) and
[z,y] is a descendant of [s;,¢;], we have v € W (s;,t;). Then Lemma 232 implies that
v E V(Si,ti) N V(Sifl,tifl). Thus, v € V(Si,ti). ]

Lemma 237. Let [a,b] be a vertex of decomposition tree T. Let [x,y] and [2,y'] be
distinct children of [a,b] in T. Let v € W(x,y) and v' € W(z',y') be adjacent vertices of
H. Thenv' € W(z,y), ve W(z\y') orv,v" € V(a,b).

Proof. Let [z,y] and [2/,y] be distinct children of [a,b] in 7. Let v € W(x,y) and
v € W(a,y') be adjacent vertices of H. According to Observation 235, there exists a
node [s,t] € Vr such that v,v" € V(s,t). If [s,t] = [a,b], then clearly v,v" € V(a,b). If
[s,t] is a descendant of [z, y] or [2,3/], then v/ € W (z,y) or v € W(z/,y). Let us consider
the case where there is a child [z, 2] of [a,b] with [z,2/] # [z,y] and [z,2/] # [« /]
and [s,t] is a descendant of [z, 2']. Then v,v" € W(z, 2'), and Lemma 233 implies that
v,v" € V(a,b). Finally let us consider the case where [s, ] is a proper ancestor of [a, b].

Let [s,t] = [so,to], [s1,t1], - - -, [Sk, tk] = [a, b] be a path from [s,t] to [a,b] in 7. As in the
proof of Lemma 236, we can show that v,v" € V(s;,t;) for all ¢ € [0, k]. It follows that
v,v" € V(a,b). O

Lemma 238. Let [a,b] be a vertex of decomposition tree T. Let [x,y] be a child of
[a,b], and [u,v] be the parent of [a,b] in T. Then V(a,b) NV (z,y) is not a subset of
Vi(a,b) NV (u,v).

Proof. Let [a,b] be a vertex of decomposition tree 7. Let [z,y]| be a child of [a, b], and
[u, v] be the parent of [a,b]. From |Vr| > 2 it follows that F, # 0.
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Let us consider the case where there does not exist an e € Fj, such that [x,y], [a, ], [u, v] €
V(¥e). There exists an e; € Fj, such that [z,y],[a,b] € V (¥, ), and there exists an
es € F;, such that [a,b], [u,v] € V(I,,). Clearly, e; # es. Observation 207 implies
that e; € {x,y},{a,b} and ey € {a,b},{u,v}. Thus, [a,b] = [e1,es]. Observation 207
further implies that [z,y] = [e1, ¢] where ¢ € N, or ¢ € S,,. According to Lemma 200
or Corollary 193, we have V(z,y) N V(a,b) C S,,. Analogously, it can be shown that
V(u,v) NV (a,b) C S,,. Since V(a,b) NV (z,y) is not empty, it follows from Lemma 189
that V(a,b) NV (x,y) is not a subset of V' (u,v) NV (z,y).

Now let us consider the case where there exists an e € Fj, such that [z,y], [a, b], [u,v] €
V(9.). Observation 207 implies that, without loss of generality, v = e, a = e and u = e.
Let [e, b] become the parent of [e,y] in round ¢ of the construction of ¥.. Then [e,y] € £;,
and R;(e,y) C V(e,b) by Observation 212. In the following we show that [e, b] is the only
subbundle pair in £, with R;(e,y) C V (e, b). Suppose there is another one [e, V'].

In the case that [e,b] € £;, we have [e,d] € Ri(e,y). Assume [e,y] € TY. Then
all subbundle pairs in ;(e,y) become children of the same node. Thus, like [e, y]
the subbundle pair [e, '] becomes the child of [e,b] and is not contained in £,4, a
contradiction. Assume [e,y] € Ui. Then there is one subbundle pair in R;(e,y) that
becomes the parent of all other subbundle pairs in 9;(e,y). As all subbundle pairs that
become a child of a subbundle pair are not in £;,;, the subbundle pair [e,d'] must be the
parent of [e,y]. Hence [e, '] = [e, b], a contradiction.

Now let us consider the case where [e,b'] € £;,. Then [e, ] has to be generated by a
subbundle pair [e,y'] in £;. According to Observation 211, we have R;(e,y’) = V (e, V).
Since R;(e,y) C V(e,b'), it follows that R;(e,y) C R;(e,y’). Hence, Ri(e,y) C V(e,y').
Consequently, [e,y] € Ri(e,y). As [e,y’] € VY, it follows that [e,y/] and [e,y] become
children of the same node. Thus, [e,b] = [e, b] a contradiction.

Hence, [e,b] is the only subbundle pair in £,41 with R;(e,y) C V(e,b). Let j be the
round of the construction of ¥, where [e,v] becomes the parent of [e,b]. It follows
from Observation 212 and Corollary 221 that j > i. It holds that [e,b] € £; for all
ke {i+1,...,5}. Inductively we can show for all k € {i +1,...,j} that [e, b] is the
only subbundle in £; with R;(e,y) C V(e,b). Clearly, this is the case for k = i + 1.
Let k € {i +2,...,5}. Let [e,c] € £\ [e,b]. If [e,c] € £4_1, then R;(e,y) is not
a subset of [e,c| by inductive assumption. If [e,c| is generated by a subbundle pair
le, ] € £x—1\ [e, 1], then V(e,c) = Ry_1(e,) C Ve, ), and as R;(e,y) is not a subset
of V(e, ) by inductive assumption, it is not a subset of V' (e, c) either. Consequently,

e, b] is the only subbundle in £; with R;(e,y) C V(e,b).

Since R;(e,y) € V(e,y) and R;(e,y) C V (e, b), it follows that R;(e,y) C V(e,y) NV (e, b),
and therefore, R;(e,y) C V(e,v) NV (e,b). As R;(e,y) € V(e,v), it holds that [e,v] € £;.
Thus, [e, v] has to be generated by a subbundle pair [e, d] in £;. Then R;(e,y) C V(e,v) =
Rj(e,d) (Observation 211). Hence, there must exist at least two subbundle pairs, [e, d]
and another one, in £; that contain R;(e,y), a contradiction. O

6.5.4. The Genealogical Decomposition Tree

We define the genealogical decomposition tree in this section.
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Preliminaries

Let H* = (U,V,E,M, <, L, T, Z) be a bundle extension with underlying graph H = (V,E). Let
F be the set of termini of H, and 0 be the middle of H. Further, for f € F let Sy, T, and
Vs be the side of f, the side tree of f and the vertices of the side tree of f, respectively.
For f € F and v € Vy, let ancy(v) be set of ancestors of v in Ty, and decy(v) be the set
of descendants of v in T;. Let <y be the strict partial order for H from Section 6.4.2
for f € F. We have already seen in Section 6.4.2 that for bundle extensions all of these
sets/relations are definable in transitive closure logic.

For f € F and v € V; we define the side depth sd¢(v) of v regarding f as the number
of proper ancestors of v in Ty, that is, sds(v) := |anc¢(v) \ {v}|. Then sd;(f) = 0 for
each f € F. Surely, we can construct a TC+C-formula ¢gq(z* x, p) that is satisfied for H*
and (f,v,l) € U> x N(U) exactly if f € F, v € Vy and | = sd(v) by using formulas @anc
and ¢y from (6.10) and (6.11). We let sd([a,b]) := min{sds(v) | f € F,v € {a,b} N V;}
be the side depth of a subbundle pair [a,b] € Py, of H. Thus, in order to determine the
side depth of a subbundle pair [a, b], we look which of the two vertices a and b are in Vg,
and for these we determine the side depth in T, ; and we do the same for f;. Then the
side depth of [a, b] is the minimum of the determined values. We also denote the side
depth of a subbundle pair by sd(a, b).

Observation 239. Let [a,b] be a subbundle pair of H. Let sd(a,b) = d. Further, let
feFandv e V. IfveV(a,b), then sdg(v) > d.

Proof. Let [a,b] be a subbundle pair of H. Let sd(a,b) = d. Let v € V(a,b). Without loss
of generality, let a <y, b. Then a =y, v <y, b. Let v € Vy,. Then a is an ancestor of v in
Ty, according to Observation 165. Hence, sdy, (v) > sdy, (a) > sd(a,b) = d. Analogously,
we can show that sdy,(v) > d if v € Vy,. O

Observation 240. Let [a,b] be a subbundle pair of H with a € Vy, and b € Vy,. If
sdy, (a) = sdy,(b) =, then sd(a,b) = 1.

Proof. Let [a, b] be a subbundle pair of H with a € Vy, and b € Vy,. Let sdy, (a) =1 and
sdy,(b) = I. Then sd(a,b) <. Suppose that b € Vy, and sdy, (b) < l. Then a,b € Vy,. By
Observation 170 there is a path from b to a or from a to b in Ty,. As sdy, (a) > sdy, (b),
vertex b is proper ancestor of a in Ty,. Since b € V¢ NVy, = 0 (Observation 158), b
is a leaf of Ty,, a contradiction. Similarly, we can show that there is no a € Vy, with
sdy, (a) < k. Hence, sd(a,b) = k. O

A subbundle pair [a,b] of H is consistent if there exists an i € [2] such that a € Vy,,
be Vs, , and sdy,(a) = sdy, ,(b). We call a consistent subbundle pair of H a consistent
pair of H. If, in addition, a is a leaf of Ty, or b is a leaf of Ty, ,, we say the consistent
pair [a, b] is minimal. We let Py, and P2 respectively, be the set of consistent pairs and
non-minimal consistent pairs of H. It is not hard to see that minimal consistent pairs
are TC+C-definable. Hence, there is a formula pnm(41,%2) such that for each bundle
extension H* with underlying graph H and all a,b € U(H*) we have

H" |= ppamla,b] <= [a,b] is non-minimal consistent pair of H. (6.20)
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Observation 241. A minimal consistent pair is a trivial subbundle pair.

Proof. Let [a,b] be a minimal consistent pair of H. Then there exists an ¢ € [2] such that
acVy and be Vy, ., and ais aleaf of Ty, or bis a leaf of Ty, ,. As 0 =0y, = Oy,, either
a,b € Vy, or a,beVy,. Thus, [a,b] is a trivial subbundle pair. O

Observation 242. A non-minimal consistent pair [a,b] of H is a non-trivial subbundle
pair of H.

Proof. Let [a,b] be a consistent pair of H that is not minimal. As [a,b] is consistent,
there exists an ¢ € [2] such that a € Vs, and b € Vy, ,. Let us assume [a,b] is a trivial
subbundle pair. Then a,b € Vy, or a,b € Vg, ,. It follows that a or bis in Vy, NVy, =0
(Observation 158). Since 0 = 0y, = 0y,, vertex a is a leaf of Vy, or vertex b is a leaf
of Vy,_,, a contradiction. O

An affiliation of a subbundle pair [a, b] € Psy, of H can have two possible forms: If the
side depth sd(a,b) = 0, that is, if a € F or b € F, then [] is an affiliation of [a,b].
If sd(a,b) > 0, then an affiliation of [a,b] is a consistent pair [a’ V] € Py, such that
sd(a,b) = sd(a,b’) + 1 and V(a,b) C V(a,b’'). We denote a subbundle pair p € Py, with
affiliation p’ by p,/, and we name it an affiliated subbundle pair. If the affiliation p’ is
a consistent pair [a, 0], then we denote the affiliated subbundle pair pjy/;| also by parp .
We call p the (underlying) subbundle pair and p’ the affiliation of an affiliated subbundle
pair p,s. If p is a consistent pair, then it has a unique affiliation, which can be determined
given p.

Observation 243. Let [a,b] be a consistent pair of H where a € Vs, and b € Vy,. Then
there exists a (unique) affiliation p’ of [a,b]. Moreover p’ =[] if [a,b] = [f1, f2], otherwise
p' = [d,b'] where ' is the parent of a in Ty, and b’ is the parent of b in Ty,.

Proof. Let [a,b] be a consistent pair of H where a € V¢, and b € Vy,. As [a, ] is consistent
we have sdy, (a) = sdy,(b), or a € Vy,, b € V4, and sdy,(a) = sdy, (b). First let us consider
the latter case. If a € Vs, and b € Vg, then a,b € 0 by Observation 158. As 0 is an
independent set (Corollary 167), there cannot be an edge between a and b. Thus, we have
a =b. Then sdy, (a) = sdy, (b) and sdy,(a) = sdy,(b). Hence, sdy,(a) = sdy, (b) implies
sdy, (a) = sdy,(b). It follows that sdy, (a) = sdy,(b) for all consistent pairs [a,b] with
a €Vy, and b € Vy,. Let sdy, (a) = sdy,(b) = . Then sd(a,b) = [ by Observation 240.

First, let [ = 0. Then sdy, (a) = 0 and sdy,(b) = 0, and therefore, a = f; and b = fo. It
follows that [a,b] = [f1, f2] and [ ] is the (only) affiliation of [a, b].

Now, let I > 0. Then {f1, fa} N {a,b} = 0 because sd(a,b) > 0. Thus, [a,b] cannot have
the affiliation [ ]. Let a’ be the parent of a in T¢,, and 0’ be the parent of b in Ty,. Then
sdy, (a') =sdg (a) —1=1—1=sdy,(b) — 1 =sdy,(b'). Thus, sd(a’b’) =1 — 1 according
to Observation 240. Further o’ <y a and b <y V. Since, a € Vy, and b € Vy,, we have
a =<y, b (Observation 171). By transitivity of <y, a <y, v <y, b implies o’ <y, v <p V/
for all v € V. Thus, V(a,b) C V(d, ). It follows that [d/, V'] is an affiliation of [a, b].

Let us assume there exist another affiliation [a”,0”] of [a,b]. Since [a”,b"] is consistent,
there exists an i € [2] such that a” € Vy,, b € Vy, . and sdy, (a”) = sdy, , (V). Without
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loss of generality, let i = 1. Then a” <y, b" by Observation 171. As [a",0"] is an
affiliation of [a,b], we have sd(a”,0”) = | — 1. From Observation 240 it follows that
sdy, (a”) = sdp, (V') =1—1. Since V(a,b) C V(a",V"), we have a € V(a",0"). Thus,
a” < a <p b, According to Observation 164, a” <y, a implies that ” is an ancestor of
a in Ty,. The only vertex a” € Vy, with sdy, (a”) 4+ 1 = sdy, (a) and a” is an ancestor of a
in Ty,, is the parent of a. Similarly, we can show that ” must be the parent of b. O

Let p’ be the affiliation of a subbundle pair p € Pyp. If p is not consistent and p’ # [ ],
then we still can determine at least one vertex of the affiliation p’.

Observation 244. Let [a,b] be a subbundle pair of H where a € Vy, and b € Vs, with
i,i" € [2]. Let p’ be an affiliation of [a,b]. If {f1, fo} N {a,b} =0, then p' contains the
parent of a in Ty, or p’ contains the parent of b in Ty, .

Proof. Let [a,b] be a subbundle pair of H where a € Vy, and b € Vy, with i,7 € [2]. Let
{f1, f2} N{a,b} = 0. Then [a, b] cannot have the affiliation [ |. Thus, let p’ = [/, ] € Peon
be an affiliation of [a, b]. Let sd(a,b) = [. Then, without loss of generality, a € V¢, and
sdy, (a) = I. As p' is consistent, we have, without loss of generality, a’ € Vy,, b/ € Vy,
and sdy, (o) = sdyf, (V). Then o’ <y, V' according to Observation 171. Since p’ is an
affiliation, we have sd(a’,b') =1 — 1 and V(a,b) C V(a,b’). Observation 240 implies that
sdy, (a’') = [ — 1. Further, a € V(a’,V'). Thus, ¢’ <y, a <, b. From Observation 164 it
follows that a’ is an ancestor of a in Ty, As sdy, (a') + 1 = sdy, (a), vertex o’ is the parent
of a. O

Observation 245. Let [a,b] be a trivial subbundle pair of H where a,b € Vy and f € F.
Then V (a,b) is the vertex set of a directed path with ends a and b in Ty. Let p' # [ ]
be an affiliation of [a,b]. If a (orb) is the first vertex of the path, then p' contains the
parent of a (orb) in Ty.

Proof. Let [a,b] be a trivial subbundle pair of H where a,b € V;y and f € F. Then it
follows from Observation 170 that V' (a,b) is the vertex set of a directed path with ends
a and b in Ty. Let p’ # [] be an affiliation of [a,b]. Without loss of generality, let a
be the first vertex of the path. As p’ # [], we have {f1, fo} N {a,b} = 0. According
to Observation 244, the affiliation p’ contains the parent of a or the parent of b in Ty.
If @ = b, then clearly p’ contains the parent of a in T;. Let a # b, and let us assume
p’ contains the parent b’ of b in Ty, but not the parent of a. Then V' € Sy. Since p/ is
consistent, it follows that sd;(b') = sd(p’). As V' is a descendant of a in Ty, we have
sdf(a) < sdf(b'). It follows that sd(a,b) < sdf(a) < sd(p’). Thus, p’ cannot be an
affiliation of [a, b], and we obtain a contradiction. O

Usually we assume that for an affiliated subbundle pair [a,blqy where a € Vy, and
b e Vy,, vertex a’ is the parent of a in Ty,, or vertex b’ is the parent of b in Ty,,. If [a, b] is
a consistent subbundle pair and it is possible to determine both vertices of its affiliation
then we can omit denoting the determinable vertices in the affiliation and just write
[a, ] for the affiliated subbundle pair. An affiliated subbundle pair p, is trivial if p is
trivial. We call an affiliated subbundle pair p, consistent if p is consistent. An affiliated
consistent pair is a consistent affiliated subbundle pair. An affiliated consistent pair p,/
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is minimal, if p is minimal. We define the side depth sd(p,s) of an affiliated subbundle
pair as the side depth sd(p) of the underlying subbundle pair p.

Let [a,b] be a non-trivial subbundle pair of H. H™(a, b) is the subgraph of H induced by
V(a,b)\ {a,b}. The graph H™(a, b) consist if connected components Ci, ..., Cy. For i € [k],
let H; be the subgraph induced by C;. Note that H; is a valid subgraph of H. More
precisely, H; is the valid subgraph H [, c,) of H defined by the valid triple ([a, b], ¢c;) for
¢; € C;. We define the decomposition forest F([a,b]) (or F(a,b)) as the disjoint union of
the decomposition trees T (Hi),...,T (Hy) of the valid subgraphs Hy, ..., Hi. The set of
roots Rr(qp) of the decomposition forest F(a,b) is the set {rr(m,), ..., 7rm,)} of roots
of the decomposition trees of Hi, ..., Hy. We let Vr(,p) and Ex(y), respectively, be the
set of nodes and the set of edges of the decomposition forest F(a,b).

Note that each subbundle pair of a valid subgraph of H is a subbundle pair of H. Thus, the
nodes of F(a,b) are subbundle pairs of H. Further note that each non-minimal consistent
pair [a,b] € Py, of H is a non-trivial subbundle pair of H by Observation 242. Hence, the
decomposition forest F(a,b) is defined for non-minimal consistent pairs [a, b] of H.

The following corollary is a consequence of Observation 234 and Lemma 184.

Corollary 246. Let [a,b] be a non-minimal consistent pair of H. Let v € V(a,b) \ {a, b}
be a vertex of H™(a,b) Then there is a node [x,y] € Vr(ap) such that v € V(z,y).

Observation 247. Let [a,b] be a non-minimal consistent pair of H. If sd(a,b) = j, then
sd(z,y) = j + 1 for all for all nodes |x,y] of the decomposition forest F(a,b).

Proof. Let [a,b] be a non-minimal consistent pair of H where a € Vg, and b € Vg, and
sdy, (a) = sdy, (b). Since neither a nor b is a leaf of H, we have a € Sy, and b € Sy,. Thus,
[a, b] is a non-trivial subbundle pair. Further, a <y, b according to Observation 171. Let
sd(a,b) = j. Then sdy, (a) = j and sdy,(b) = j by Observation 240.

For each node [z, y] of the decomposition forest F(a,b), there exists a ¢ € V'(a, b) such
that [z,y] is a node of the decomposition tree of the valid subgraph H(, ) of H defined
by a valid triple ([a,b],c). Each node of the decomposition tree of the valid subgraph
H [q0),c) contains at least one inherited terminus. This follows from the definition of the
decomposition tree of H (. if the set of inner termini is empty, and from Observation 228
otherwise. Since the set of inherited termini Fi(q )¢y of H([qz],c) contains only children of
a in Ty, and children of b in Ty,, it follows that = or y is a child of a in Ty, or that x
or y is a child of b in Ty, Without loss of generality, let = be a child of a in T;,. Then
sdy, () = j + 1. Thus, sd(z,y) < j+ 1.

Since [z, y] is a subbundle pair of H(, ), we have z,y € Vi(4 4. Thus, 2,y € V'(a,b)
and a <y, =,y <y, b. Let us assume there is a z € {z,y} and an i € [2] such that z € Vy,
and sdy, (z) < j. Without loss of generality let i = 1. As a <y, z, vertex a is a proper
ancestor of z in Ty, by Observation 164. Thus, sdy, (a) < sdy, (z), a contradiction. It
follows that sd(z,y) = j + 1. O

Observation 248. Let [a,b] be a non-minimal consistent pair of H. Each node [z,y] of
the decomposition forest F(a,b) is either a consistent or a trivial subbundle pair.
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Proof. Observation 248 can be proved similar to Observation 247. It follows from
Observation 228 that each node [z,y] of the decomposition forest F(a,b) is either a
consistent or a trivial subbundle pair if [a, b] is a non-minimal consistent pair of H. [

Observation 249. Let [a,b] be a non-minimal consistent pair of H. Let [p1,pa] € Vr(ap)-
Then there exists a descendant [0y, 03] € Vrayp of [p1,p2] in F(a,b) such that [o1, 03] is
consistent and V(p1,p2) C V(01,02).

Proof. Let [a,b] be a non-minimal consistent pair of H. Let [p1, p2] € Vr(qp). Then there
is a ¢ € V'(a, b) such that [p;, py] is a node of the decomposition tree T (H(qp),)) of valid
subgraph H(jo)c)- Let H := H(jap)) and T := T (H). Let us look at the construction of
the decomposition tree 7.

Let us consider the case where |F| = 1. Let F = {e}. Then T = ({[e,e]},0), and
[p1,p2] = [e,e]. It follows from Corollary 181, that e is a child of a and of b in the
respective side trees. As [a,b] is consistent, [e, e] = [p1, po] is also consistent.

Next let us consider the case where |F| = 2. Let F = {e, f}. Then T = ({[e, f]},0).
Corollary 181 implies that in the respective side trees either e is a child of a and f is a
child of b or the other way around. Since [a, b] is consistent, it follows that [e, f] = [p1, p2]
is consistent as well.

Now let us consider the case where F}, # (). Then there is a terminus e € F}, of H
such that [p1,p2] is a node of the decomposition tree . of block b.. Let us look at the
construction of J.. By property (d) there exists a k > 0 such that [py, ps] € £. According
to Lemma 231, there is a subbundle pair [ry, 2] € £y such that V(py,p2) C V(rq,7r2) and
[r1,72] is a descendant of [p1, pe] in Y. The set £y is the set of all subbundle pairs [e, ¢’
where a’ € N, and possibly £y also contains [e, €.

Let us consider the case where [r1, 2] # [e,e]. Then [ry,r3] is a subbundle pair [e, d/
such that o’ € N, V(p1,p2) C V(e,a’) and [e,d’] is a descendant of [py,ps] in Y. As
e € F and ' € N, the vertices e and o’ are in different color classes of the 2-coloring
{F1,F>} = {Cf,,Cy, } of H[F]. It follows that in the respective side trees e is a child of
a and d’ is a child of b or the other way around. Hence, [e,a’] is consistent. According
to Lemma 184 we have V(py,p2) C V(e,a’). Hence, [01,02] := [e,d’] is a consistent pair
where [01,02] € VE(ap) is a descendant of [p1, p] in ¥, and V(py,p2) € V(o1,09).

Next let consider the case where [r1, 5] = [e,€]. Then [ry, 73] = l.. It follows that [rq,ro]
is the root of ¥, and [r1,72] = [p1, p2]. Thus, v = e, and there exists a subbundle pair
[e,a'] with o/ € N, with v € V(e,a’). Note that N, # 0 as e € F,. It follows from
property (d) that [e,a’] is a node of J, and therefore also a node of 7. Since [py, po] is
the root of ¥, [e,d’] is a descendant of [py, ps]. As in the case above, we can show that
[01,09] := [e,d] is a consistent pair where [01,02] € V() is a descendant of [p1, ps] in
e and V(p1,p2) C V(o01,02). O

Observation 250. Let [a,b] be a non-minimal consistent pair of H. Let [o1,09] and
[p1,p2] be nodes of the decomposition forest F(a,b) and let [o1,09] be the parent of [p1, ps].
Then there is an f € F such that V(o1, 02)NV(p1,p2) is a subset of Sy and V(o1, 02)NV(p1, p2)
induces a path in Ty.
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Proof. Let [a,b] be a non-minimal consistent pair of H. Let [o1, 02], [p1,p2] € Vr(ap), and
let [01,02] be the parent of [p1,p2]. Then there is a ¢ € V'(a,b) such that |01, 02] and
[p1, p2] are nodes of the decomposition tree T (H((q,¢)) of valid subgraph H ). Let
H := H(jq4),c) and T := T(H). It follows from the construction of the decomposition tree
T that there is a terminus e € F;, of H such that [01,09] is the parent of [pi, ps] in the
decomposition tree ¥, of block b.. Corollary 213 implies that V' (01,02) NV (p1,p2) is a
subset of S, and induces a path from e to some node ¢ in T,. According to Lemma 184,
V(o1,02) NV(p1,p2) = V(o1,02) N V(p1,p2). As there is an f € F such that S. C Sy
(Observation 182) and 7, is a subtree of T, we obtain that V(o1, 02) NV(p1, p2) is a subset
of 8y and V(o1,02) N V(p1,p2) induces a path in Ty. O

Definition

Let us define the genealogical decomposition tree Tgen = (V7. , E7,.,) of H. The nodes of
Tgen are affiliated subbundle pairs. We construct Tgen recursively. We let the root rr, . of
the genealogical decomposition tree 7gen be the affiliated subbundle pair [fi, fg][ - We
let Vo := {[f1, f2][ 1} and Ep := 0. Then V;;; and Ej are constructed from V; and E;
as follows: Let C; be the set of affiliated consistent pairs in V; that are not minimal. For
every affiliated consistent pair [a,b] € C; we add to Vj; all affiliated subbundle pairs
Plap) With p € Vr(ap), and to Ejyy the edges { (04 Plas)) | (0,p) € Er(ap}. Further,
for all roots 7 € Rr(,) of decomposition forest F(a,b) we add the edge {[a,b], 7,5} to
Ej+1.

Let m € N be maximal such that V;,, # (). Then
Ve i= U Vm and FEr, . = U E,,.
1€[m] i€[m]

Observation 251. Let 0 < j < m. Then sd(q) = j for all g € V.

Proof. We show Observation 251 by induction. Since sd([f1, f2]; 1) = 0, we have sd(q) = 0
for all ¢ € Vg. Let j > 0 and sd(q) = j for all ¢ € V. Let ¢’ € Vj;1. Then ¢’ = ppay
with p € Vr(qp) for an affiliated consistent pair [a,b] € V; that is not minimal. Since
la,b] € V;, we have sd([a,b]) = j by inductive assumption. Observation 247 implies that
sd(p) = j + 1. Thus, sd(¢') =7 + 1. O

Corollary 252. Let 0 < j <m. Then sd(q') = j for all (¢,¢') € E;.

Proof. Corollary 252 follows from Observation 251 and the fact that for all edges
(g,q¢') € Ej with 0 < j < m, we have ¢ € V. O

Corollary 253. The node [f1, f2][ | has no incoming edges in Tgen.

Proof. Let us assume [f1, f2][ ] has an incoming edge e € B, . It follows that there is
a j > 0 such that e € Ej. As the end of the directed edge e is [f1, f2][ ], 7 must be 0
according to Corollary 252. We obtain a contradiction because Ey = (). O

Observation 254. Let p,y be a node of the genealogical decomposition tree Tgen with
p' # [ ]. Then the affiliation p’ is a consistent pair that is not minimal, and the affiliated
subbundle pair p' is a node of Tgen-
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Proof. Let py be a node of the genealogical decomposition tree 7Tgen with p’ # [ ]. Then
there is a j > 0 such that p,, € V;. The construction of V; implies that p’ is a consistent
pair, and that the affiliated consistent pair p is in Cj_; and therefore in V;_;. Hence,
the affiliated subbundle pair p’ is a node of Tgep. ]

Observation 255. Let py € Vr._, be an affiliated subbundle pair with p’ # [ ]. Then p
is a node of the decomposition forest F(p'). Further, oy € V.. for each node o of the
decomposition forest F(p').

Observations 254, 255 and 248 imply the following corollary.

Corollary 256. Let py € V7, be an affiliated subbundle pair. Then p is a consistent
pair or a trivial subbundle pair.

As minimal consistent pairs are trivial subbundle pairs (Observation 241) and non-
minimal consistent pairs are non-trivial subbundle pairs (Observation 242), we obtain
the following corollary.

Corollary 257. Let py € Vr,, be an affiliated subbundle pair. Then p is either a
non-minimal consistent pair or a trivial subbundle pair.

Observation 258. For all (0, ,py) € E7,,,., we have p’ # [ | and either

o /=0, (0,p) is an edge of the decomposition forest F(p'), and sd(o) = sd(p); or
e /=0, p is a root of the decomposition forest F(p'), and sd(o) = sd(p) — 1.

Proof. Let (0o, py) € E7,,,. The only node [f1, f2][ ) with affiliation [ | has no incoming
edges (Corollary 253). Thus, p" # [ ]. Clearly, we have either p’ = o’ and (0, p) € E(r(), or
p' =oandp € Rr(qp). Sincep’ # [ ], p' is a non-minimal consistent pair (Observation 254).
Then it follows from Observation 247 that sd(o) = sd(p) in the first case. Since p’ # | |
is an affiliation of p, we have sd(p’) = sd(p) — 1, and therefore, sd(0) = sd(p) — 1, in the
second case. O

Corollary 259. For all (¢,q') € E7,., we have sd(q) < sd(¢').

Observation 260. Let o,,py € V7,.,. Then (oo,py) € E7,, if o' # [ ] and either

e ' =0 and (0,p) is an edge of the decomposition forest F(p'), or
e ' =0 and p is a root of the decomposition forest F(p').

Proof. Let oy,py € Vr,,, and p' # []. Let p, € Vj for j > 0. Since p’ # [ ], we have
J > 0. Let us consider the case where p’ = o' and (0,p) € Eryy). As j > 0, it follows
from p, € V; that the set {(s,,t,) | (s,t) € Er(y)} of edges is a subset of E;. Thus,
(0p',ppr) € Ej, and therefore, (0o, p,) € E7,.,. Now let us consider the case where p’ = o
and p € Rr(,. Since j > 0, py € Vj yields that {(p/,ry) | 7 € Rryy)} is a subset of Ej.
Hence, (p', py) € E;, and consequently, (0., py) € BT, O

Lemma 261. The genealogical decomposition tree Tgen is a directed tree.
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Proof. Clearly, Tgen is connected. We first show that 7Tge, is an acyclic directed graph.
For a contradiction let us assume there exists a directed cycle ¢, ..., ¢mn,q1 with m > 1
in Tgen. Thus, (¢i, ¢iv1) € BT, fori € [m—1] and (¢, q1) € E7,.,. Forall (¢,¢') € E7,,
we have sd(q) > sd(q’) according to Corollary 259. Therefore, there exists a d > 0
such that d = sd(g;) for all i € [m]. Let p; be the underlying subbundle pair of ¢; for
i € [m]. It follows from Observation 258 that (pi,...,pm) is a directed cycle in F(a,b), a
contradiction.

Now, let us suppose there exist affiliated subbundle pairs ¢,q1,q2 € V7., such that
(q1,9), (g2, q) are edges in E7,_ and ¢ # q2. Let ¢ = py and ¢; = Piy, for ¢ € [2]. By
Observation 258 we have p’ # []. Now, we cannot have the case that p, = p’ for all
i € [2] as this yields the existence of a subbundle pair with more than one incoming
edge in the decomposition forest F(p’) by Observation 258, a contradiction. Next, let us
assume pj = p’ and ph # p’. (The case p} # p’ and p, = p’ can dealt with analogously.)
Then py = p’ and p is a root of the decomposition forest F(p') (Observation 258). At
the same time, Observation 258 implies that (p;,p) is an incoming edge of p in F(p'), a
contradiction. It remains to consider the case where p| # p’ and p,, # p’. Then p; = p’ and
po = p' by Observation 258. As p’ # [ ], p’ is a consistent pair. By Observation 243 there
exists only one affiliation for a consistent pair. Thus, p| = p}, again a contradiction. [

Defining the Genealogical Decomposition Tree in FP+C

In the following we show that the genealogical decomposition tree Tgen of the underlying
graph H of bundle extension H* is definable in fixed-point logic with counting.

Let H* = (U,V,E,M,<,L, T,Z) be a bundle extension and let H be its underlying graph.
For a pair p = (p1, p2) € U? of elements of H*, we let p denote the multiset [p1, pa]. Let
v, Z, Z be pairs of variables.

For each extended valid subgraph H’ with underlying graph H, there are FP+C-formulas
Yy, (y) and Y, (y,Z) that define the vertex set Vi(g) and the edge set Ey(g) of the
decomposition tree of H (see (6.19)) We pull back these formulas under the parameterized
transduction ©y, (21, T2, x3) presented in (6.14) that maps each bundle extension H* and
every valid triple ([a, b], ¢) of the underlying graph H of H* to the extended valid subgraph
H{(4 1)) of H defined by ([a, b}, c). We obtain FP+C-formulas

7@va —
Pvy = d}VT 1(5()1,$2,373,’y) and

—Oua _
Py =Yg (71, T2, 3,7, Z)

such that for all elements a,b,c € U(H*) and all pairs o,p € U(H*)? of elements of each
bundle extension H* € C¢y,, we have

H =gy, la,b,c,p] <= ([a,b],c) is valid triple of H and p is a node of the decom-
position tree of the valid subgraph H (g, of H, and

H =g, la,b,c,0,p] <= ([a,b],c) is valid triple of H and (0, p) is an edge of the
decomposition tree of the valid subgraph H (g ) of H.
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We can use ¢y, and ¢g, to obtain FP4+C-formulas that define the vertices and edges of
the decomposition forests we let

oy (21, 22,y) := Jx @y, (z1,22,2,y) and

0By (21, %2,Y, 2) := Fx v, (21, T2, 2,7, Z).

Further, we can use these formulas to construct an FP+C-formula ¢pr.(x1,22,y) that
defines the roots of the decomposition forest. Then for all elements a,b € U(H*) and all
pairs 0, p € U(H*)? of every bundle extension H* € C¥, o, we have

H E ovela,b,p] <= [a,b] € Py is non-trivial and o is a node of the
decomposition forest F(a,b),

H' E vp,la,b,0,p] <= [a,b] € Py is non-trivial and (0, p) is an edge of
the decomposition forest F(a,b), and

H' = vr,la,b,p] <= [a,b] € Py is non-trivial and p is a root of
the decomposition forest F(a,b).

Now we define FP+C-formulas ¢y, and g, , respectively, for the vertex set and
the edge set of the genealogical decomposition tree of H. We define ¢y, (y,y') and

PEr e (4,1, z,2') such that for all pairs 0,0,p,p" € U(H*)? of elements of every bundle
extension H* € C¢y , we have

H |= ovr,,, [P, D] — Py € Vr.,, and

H' = ¢p.,,[0,0,p,0] < (65,,135,) € B,

In order to be able to define all affiliated subbundle pairs, we encode the empty mul-
tiset [ ] by [v,v] for elements v € U. Note that for all nodes p, of the genealogical
decomposition tree Tgen with p’ # [] the affiliation p’ is a consistent pair that is not
minimal (Observation 254), and for non-minimal consistent pairs [a, b] we clearly we have

a #b.

Let y = (y1,42) and ¥’ = (y1,y5). Further, let ¢r and @pnm be the formulas from (6.10)
and (6.20), respectively. Then we let

SOVTgen (g7 g,) = lfp (X(?j, g,) — ¢0 Vv wVTgen) (g7 g,)

where
Vo9, 9') == er(y) A er(y2) Ayr # Y2 ANyt = s
wVTgen (371 gl7 X) =3z X(:'j/> 2) A QDPJ‘(E (gl) A Pve (glv :’j)

For p, p’ € U(H*)? of bundle extension H* € C&y . let X7 be the relation defined in round j
of the recursion within the fixed-point operator of Py, We show that for 7 > 0, we
have (5,5') € X7 if and only if 5;, € U;; Vi. As X? = 0), this is clearly true for j = 0. It
is not hard to see that (7, ') is satisfied for 5,5 € U(H*)? of each bundle extension H* if
and only if 5§ = [f1, f2] and § = [v,v] where v € U. Hence, for j = 1 we obtain (5, 5') € X!
if and only if 5., € V5. Now let j > 1 and suppose we have (5,35') € X7 if and only if
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55 € Ui; Vi The relation X7*! contains all (5,5") € X7, and for all (5',¢) € X/ where
s’ is a non-minimal consistent pair and s is a node of the decomposition forest F(s’) the
tuple (5,5) is in X/*!. Hence, (5,5') € X7*! if and only if 5;, € U;;,, Vi. It follows that
Pvr,., is satisfied for p, P’ € U(H*)? of bundle extension H* if and only if ]35, € Vi

Let 2/ = (2, 25). We let
0Br. (9,92 2) = v (5,9) Novy, (2,2) N2y # 25 A
((F =27 N (L5, 2) V (45 = 27 A ons (.2)) ).

It follows from Observations 258 and 260 that ¢p,.  is satisfied for o, o, p,p € U(H*)? of
bundle extension H* if and only if (0, 135/) € Er...

6.6. Canonization

Let G* € C¢y ¢, be an LO-colored graph and let H* = (U,V,E,M, q,L, T, Z) be the bundle
extension of the O-extension of G*. Further let H= (V,E) be the underlying graph of H*
and Tgen be the genealogical decomposition tree of H. In this section, we show that we
can use H* and Tgen to define a canon of the LO-colored graph G* € C¢y -

For every affiliated subbundle pair ¢ € V7, we recursively define a subset W(q) of
vertices of H. For each q € V7., we show that there exists a set R(q) of nodes of Tgen
such that W(q) can be decomposed into {a, b} or V(a,b), and the sets W(r) for r € R(q).
For distinct 71,72 € R(q) the intersection of W(r1) and WW(r2) is contained in a subset of
V which can easily be defined by ¢, actually this subset is contained in a max clique of H.

Later we extend the set YW(q) to the set Wanc(q) for all ¢ € V7 . We define the extended
height of each node q € V., in Tgen. For all r € R(q) the extended height of 7 turns
out to be less than the extended height of ¢q. Based on the extended height of ¢ in Tgen,
we recursively define an isomorphic copy on the number sort of the subgraph HW.nc(q)]
induced by Whanc(q) for each ¢ € V.. Note that we also maintain the side tree relation
for this isomorphic copy and use various colorings of the vertices.

6.6.1. Preliminaries

Let H* = (U,V,E,M,<,L, T, Z) be a bundle extension with underlying graph H = (V,E). We
define the ancestors anc(v) and descendants dec(v) of vertex v € V in H as follows we let

anc(v) := U ancy(v) and dec(v):= U decy(v),
feF(v) feF(v)

where, F(v) := {f € F | v € V4} for v € V. This means for v € Sy with f € F, the sets
anc(v) and dec(v) are the ancestors ancy(v) of v in Ty and the descendants decs(v) of v
in Ty, respectively. If v € 0, then dec(v) = {v} and anc(v) is the set of all ancestors of v
in Ty, and of all ancestors of v in Ty,, that is, anc(v) is the max clique M, € My spanned
by v (Lemmas 161 and 168). Let v € V. The side depth sd(v) of v is the minimum of
sdy(v) for all f € F(v).
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Observation 262. Let v € V\O and sd(v) = j. Then for eachi € {0,...,j} there exists
a unique ancestor w of v with sd(w) = 1.

Observation 263. Let [a,b] be a consistent pair of side depth d. Let v € V(a,b). Then
w € V(a,b) for each ancestor w of v with sd(w) > d.

Observation 264. Let [a,b] be a trivial subbundle pair of side depth d. Let v € V(a,b).
Then w € V(a,b) for each ancestor w of v with sd(w) > d.

Corollary 265. Let [a,b] be a consistent pair of side depth d. Let v € V(a,b). If w is
an ancestor of v with sd(w) = d, then w € {a,b}.

Let ¢ be an affiliated subbundle pair in V7, of side depth d > 0. Let [a,b] be the
underlying subbundle pair of q. We define the side ancestors agq,bq, ag_1,bq_1, ..., ag, by
of q as follows: We let ag := a and by := b. If d = 0, then all side ancestors of ¢ are
defined. Let d > 0. Then the affiliation of ¢ is a consistent pair [@/,b/] of side depth d — 1.
Observation 254 implies that [a/,b'] is not minimal. Thus, @b’ & 0, and it follows that
there is only one ancestor of a’ of depth ¢ and one ancestor of b’ of depth i for each
i €{0,...,d—1} (Observation 262). Recall that for an affiliated subbundle pair [a, b],/ 1
we assume vertex a’ is the parent of a, or vertex b’ is the parent of b in T'. Now, for every
i €40,...,d— 1}, we let a; be the ancestor of a’ of depth i, and b; be the ancestor of
b' of depth i in T. We denote the set {agq, bg, ag—1,b4-1,-..,a0,bp} of side ancestors of
the affiliated subbundle pair ¢ by anc(q). We let ag_1,b4_1, - - ., ag, by be the proper side
ancestors of q.

Note that for all affiliated subbundle pairs ¢ of side depth d with side ancestors
ag,bg, . .., a0, bg, we have {ag,bo} = {f1,f2} and ag = a and by = b. If d > 0, then
q is the affiliated subbundle pair [a4, bala,_, b, ,- By Observation 243, [a;_1, bi—1] is the af-
filiation of [a;, b;] for all ¢ € [d] and [ ] is the affiliation of [ag, bg]. It follows that [a;_1, b;i—1]
is a non-minimal consistent pair of H of side depth i — 1 for all i € [d]. Observation 254
implies that [ao, bo]; | and [a;, bila,_, ,_, for all i € {1,...,d} are nodes of Tgen.

Observation 266. Let g, € Vr, . . Letd and d' be the side depth of q and r, respectively.
Further, let a;,b; fori € {0,...,d} be the side ancestors of q and a},b; fori € {0,...,d'}
be the side ancestors of r. Let 0 < j < min{d,d'}. If a; = a;- and b; = b;v, then a) = a;
and b; = b; for alli e {0,...,5}.

Observation 267. Let g € V7, be an affiliated subbundle pair of side depth d with side
ancestors a;,b; for i € {0,...,d}. Then V(aj,b;) C V(aj,by) for all j,5" € {0,...,d}
with j > 4.

Next we define the decomposition forests F;(q) for ¢ € {0,...,d} of q. Since [a;_1,b;_1]
is a non-minimal consistent pair for ¢ € [d], the decomposition forest F(a;_1,b;—1) is
defined. We let F;(q) := F(a;—1,bi_1) for i € [d]. Further, we let Fy(q) be the directed
tree ([f1, f2],0) and if [a,b] is consistent and not minimal we let Fyi1(q) := F(a,b).
According to Observation 247, the nodes in F;(q) are subbundle pairs of side depth i for
each i. Further, [a;, b;] is a node of F;(q) (Observation 255). For all nodes [u, v] of F;(q)
we denote by W!(u,v) the union of all sets V(z,y) where [z,y] is a descendent of [u,v] in
Fi(q). We let C;(g) be the set of all children of [a;, b;] in F;(q) for i € {0,...,d}. If [a,b]
is consistent and not minimal, we let Cy441(q) be the set of roots of Fy11(q), otherwise
we let Cy11(q) be empty. Clearly, Cy(q) = 0.

156



6.6. Canonization

Observation 268. Let q,r € Vr_ . Letd and d' be the side depth of q and r, respectively.
Further, let a;,b; for i € {0,...,d} be the side ancestors of q¢ and a;,b; fori € {0,...,d'}
be the side ancestors of v. Let 0 < j < min{d,d'}. If a; = a} and b; = b}, then
Filq) = Fi(r) for alli < j+1.

Observation 269. Let q,r € Vz_ . Let d and d' be the side depth of q and r, respectively.
Further, let a;,b; for i € {0,...,d} be the side ancestors of q¢ and a;,b; fori € {0,...,d}
be the side ancestors of r. Let 0 < j < min{d,d'}. If a; = a} and b; = b}, then
Ci(q) = Ci(r) for alli <j.

Let [u,v] and [/, v'] be adjacent nodes in F;(g). According to Observation 250 there
is an f € F such that V(u,v) NV(u,v') is a subset of Sy and induces a path in Ty. Let
z([u, v], [u/,v']) be the vertex from V(u,v) NV(u,v") that has maximal depth in Ty.

Let J(q) be the set of all indices j € [0,d] such that subbundle pair [a;, b;] has a parent
node [a},b7] in F;(q). Notice that for j = 0 node [a,b] = [ao,bo] is the only node in
Fo(q). Thus, 0 & J(q). For j € J(q), let p;j(q) := z([a;, b;], [a},b7]). Let d > 0. Then

for all i € [0,d] we let Pi(q) := {aq—1,ba—1} U{p;(q) | j € J(¢),j > i}. For d = 0, node
[a,b] = [ag, bo] has the affiliation [ ] and J(q) = 0. We let Py(g) := 0 in this case.

Observation 270. Let g € V... Then Pi(q) N0 =10 for all i € [0,d].

Observation 271. Let q,r € Vz_ . Let d and d' be the side depth of q and r, respectively.
Further, let a;,b; for i € {0,...,d} be the side ancestors of q¢ and a;,b; fori € {0,...,d}
be the side ancestors of r. Let 0 < j < min{d,d'}. Let a; = a} and b; = b;. Then for all
i < j, we have i € J(r) <= i€ J(q), and p;(q) = pi(r) ifi € J(q).

6.6.2. The Set W(q)

It the following let g always be an affiliated subbundle pair in V7, of side depth d > 0
with underlying subbundle pair [a,b] and side ancestors a;, b; for i € {0, ..., d}.

We define a set W(q) of vertices of H recursively. In order to do this we define the set
W;(q) for all i € [d] and the set CF(q), which is a subset of C;(q), for all i € [d + 1].
We let CL1(q) := Cas1(q) and CH(q) := Ca(q). Further, we let Wy(q) := Wi(a,b)
where [a,b] = [aq, bg] for the underlying subbundle pair of q. Now let i < d. We let
CF(q) be the subset of C;(q) that contains all subbundle pairs [u, v] € C;(q) where the
vertex z([u,v], [a;, b;]) is contained in W,y1(¢) and is not an ancestor of any vertex in
P;(q). For each [u,v] € CFP(q) we add all vertices in W/ (u,v) to W;(q). Finally, we let
W(q) := Uica Wi(q). Then

W(q) = W(a,b)U U U Wl (u,v).

i<d [up]eCF (q)

Observation 272. Let g € V7, be an affiliated subbundle pair with underlying subbundle
pair [a,b]. Then V(a,b) C W(q).

Proof. Let q € V7., be an affiliated subbundle pair with underlying subbundle pair [a, b] of
side depth d. We have V(a,b) C W(a,b) and Wi(a,b) = Wa(g). Thus, V(a,b) CW(q). O
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Observation 273. Let q € Vz, ., be an affiliated subbundle pair of side depth d with
side ancestors a;,b; for i € {0,...,d}. Let j € [d+ 1] and [u,v] € C{(q). Then
[U’7U]ajfl,bj—1 € VTgen'

Proof. Let q € V1., be an affiliated subbundle pair of side depth d with side ancestors
ai, b for i € {0,...,d}. Let j € [d] and [u,v] € C{(q). Tt follows inductively from
Observation 254 and from Observation 255 that [u, v]ja,_, 5, ] € V7. Let j =d+1
and [u,v] € CF(q). Then [aq,bg] is consistent and not minimal. It follows from the
construction of Tgen. That [u, v]a,p, € V7., O

Observation 274. Let q € Vz,., be an affiliated subbundle pair of side depth d with
side ancestors a;,b; for i € {0,...,d}. Let j € [d+ 1] and [u,v] € C{(q). Let r :=
[, V]a; 16,1 € VTren- Then W?(u,v) = W;(r).

Proof. Let q € V7., be an affiliated subbundle pair of side depth d with side ancestors
a;, b; for i € {0,...,d}. Let j € [d+1] and [u,v] € C(q). Let r:= [u,v]q,_, »,_,. Then
r € Vr., (Observation 273). According to Observation 268 we have F;(q) = F;(r). Thus,
Wi (u,v) = Wi(u,v). As Wj(r) = Wi(u,v), it follows that Wi(u,v) = Wj(r). O

Observation 275. Let ¢ = [a,b],y € V7, be minimal consistent. If a = b, then
W(q) = {a}.

Proof. Let q = [a,b],y € V7., be minimal consistent, and a = b. Then a € 0. Let d be
the side depth of ¢ and a;,b; for i € {0,...,d} be the side ancestors of ¢q. Let us show
that Wi([a,b]) = {a}. As a = b, it follows that [a,b] # [f1, fo]. Thus, p’ = [ag_1,ba—1].
As [a,b] is consistent, it follows from Observations 243 and 165 that {a} is a connected
component of H7(%-1:ba-1)  Hence, the decomposition tree of H({ay_ 1 bas]a) 15 ({[a, 0]}, 0).
Thus, W)([a,b]) = {a}. Therefore, Wy(q) = {a}.

Let us show that C§ | (¢) = 0. Assume [u,v] € C§ ;(¢). Then z := z([u,v], [ag—_1,ba—1]) €
Wia(q). Hence, z € {a}. It follows from Observation 250 that z ¢ 0, a contradiction.
Hence, CJ_(q) = (. Therefore, Wy_1(q) = 0. Inductively, it follows that C¥(¢) = @ and
W;(¢q) =0 for all j € [0,d — 1]. Consequently, W(q) = {a}. O

Observation 276. Let g € Vz,, be an affiliated subbundle pair of side depth d with side
ancestors a;, b; fori € [0,d]. Then Wj(q) C V(aj,b;) for all j,j" € [0,d] with j > j'.

Observation 277. Let q = [a,b],y € V7, be an affiliated subbundle pair of side depth d
with side ancestors a;,b; for i € [0,d]. Let j € [d] and w € W;(q). Let z € anc(w) be an
ancestor of w with sd(z) > j. Then z € Wj(q).

Proof. Let q = [a,b],y € V7, be an affiliated subbundle pair of side depth d with side
ancestors a;, b; for i € [0,d]. Let j € [d] and w € Wj(q). First let us show that there is a
subbundle pair [z,y] € F;(q) such that w € Wj(z,y). If j = d, then w € W(a, b), and we let
[2,y] = [a,b]. If j < d, then w is contained in a set Wj(u,w) for a subbundle pair [u,w] €
CP(q), and we let [z, y] := [u, w]. Thus, there is a subbundle pair [z, y] € F;(q) such that
w € W(x,y). As [aj1,bj 1] is consistent and not minimal and F;(q) = F(a;-1,b;-1), it
follows from Observation 249 that there exists a consistent pair [s, ] which is a descendant
of [z,y] in Fj(q) such that w € V(z,y) C V(s,t). Then V(s,t) C W}(x,y). According to
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Observation 247 the side depth of [s,t] is j. By Observation 263, each ancestor of w of
side depth at least j must also be in V(s,t) C Wi(z,y) C W;(q). Let z € anc(w) be an
ancestor of w with sd(z) > j. Then vertex z is in Wj(q). O

Lemma 278. Let q = [a,b],y € V7, be an affiliated subbundle pair of side depth d
with side ancestors a;,b; for i € {0,...,d}. For all j € [d] and all [u,v] € CF(q),
the affiliated subbundle pair r := [u,v]| is a node of Teen and it holds that
W(r) NV(a;,b;) C V(u,v) NV(aj;,b;).

aj—1,b5-1]

Proof. Let q¢ = [a,b],y € Vr,_, be an affiliated subbundle pair of side depth d with
side ancestors a;,b; for i € {0,...,d}. Let j € [d] and [u,v] € CP(g). It follows from
Observation 273 that r := [u, V][4, , s, 1] € VTen- Let ai, b} for i € {0,...,j} be the side
ancestors of r. Then a, = a; and b, = b; for all i € {0,...,7 — 1} by Observation 266.
Let w be an arbitrary vertex in W(r) N V(a;,b;), and let k& < j be maximal such that

w € Wy(r).

First let us consider the case where k = j. Then w is in Wj(r) = W}(u, v) (Observation 274).
Thus, w € Wj(u,v) N V(a;,b;). Since [u,v] is a child of [a;,b;] in the decomposition
forest Fj;(q), it follows from Lemma 232 and Lemma 184 that Wj(u,v) N V(a;,b;) C
V(u,v) NV(aj,b;). Thus, w € V(u,v) NV(ay,b;).

Next let us consider the case where k < j. As w € V(aj,b;), vertex w must also
be contained in V(ay,by) (Observation 267). Let [x,y] € CL(r) be such that w €
Wy (z,y). Then [z,y] is a child of [a}, )] in the decomposition forest F(r). According
to Observation 268 we have Fi(q) = Fi(r). Therefore, Wi (z,y) = Wi(z,y). Thus,
w € Wi(z,y) N V(ag,by), and [z,y] is a child of [a,by] in the decomposition forest
Fi(q). Lemmas 232 and 184 yield that W} (z,y) N V(ag, br) C V(z,y) N V(ak, bi). Hence,
w € V(z,y) NV(ak, by).

According to Observation 250, there is an f € F such that V(x,y) N V(ag, bg) is a subset
of Sy and V(z,y) NV(ag, by) induces a path in Ty. Let d,, := sd¢(w) be the depth of w
in Ty. Clearly, d,, > j since w € V(a;,b;) and V(a;,b;) contains only vertices w’ € Vy
with sds(w') < j (Observation 239). Let wy := z([z, y], [ak, bx]). Then vertex w is an
ancestor of wy, in Vy. Since [ag, bg] = [a}, b}, we have wy, = z([z, y], [a},, b},]) and vertex
wy, must be in Wi, 1(r) by definition of CF(r). As vertex w has side depth d,, > j > k+1,
Observation 277 implies that w € Wi.1(r), which is a contradiction to the choice of k. O

Lemma 279. Let ¢ = [a,b]y € V7., be an affiliated subbundle pair of side depth d with
side ancestors a;,b; fori € {0,...,d}. For allj € {1,...,d+ 1} and all [u,v] € Cf(q),
it holds that W(r) C W(q) where r = [u,V]{a,_, »,_,]-
Proof. Let ¢ = [a,b],, € V7., be an affiliated subbundle pair of side depth d with
side ancestors a;,b; for i € {0,...,d}. Let j € [0,d + 1] and [u,v] € CF(g). Let
7= [U,V][q;_, b,_,]- By Observation 273 we have r € V. Let a}, ] for i’ € {0,...,j} be
the side ancestors of . Observation 266 implies a; = a; and b = b; for alli € {0,...,7—1}.

Let j =d+ 1. Then r = [u,v]sp and [u,v] is the root of F(a,b) = F(al, b)) = Far1(r).
Thus, [u,v] does not have a parent in Fg41(r), and d+ 1 ¢ J(r). As a; = aq and
bl, = bq for all i € {0,...,d}, we have J(r) = J(q) and p;(q) = pi(r) for all i € J(q) by
Observation 271. Since, a); = a and b}, = b, we obtain P;(r) \ {a,b} = Pi(q) \ {ad—1,ba—1}

159



6. Capturing PTIME on Chordal Comparability Graphs

for all i € {0,...,d}. As [a,b] is the affiliation of [u,v], [a,b] is non-minimal consistent
by Observation 254. Thus, ay_1 and b;_1 are ancestors of a and b, respectively. Hence,
each ancestor of some vertex in P;(q) is an ancestor of some vertex in P;(r) for all
ie€{0,...,d}.

Let us show that Wy(r) € Wa(q): We have Wd+1( ) € Wal(q), because Wii1(r) C V(a,b)
by Observation 276 and V(a,b) C W%(a,b) = Wy(q). All subbundle pairs [z,y] in C(r)
are children of [a),,b))] = [a,b] in Fy(r) = Fa(q) (Observation 268). Thus, W}(z, y)
Wl (z,y) CWi(a,b). It follows that Wy(r) € Wy(q). Claim 1 yields that W(r ) C W(g).

Claim 1. Let [ < min{j,d}. Let Wi(r) C W(q), Further, let each ancestor of some
vertex in Py (q) be an ancestor of some vertex in Py (r) or not be in W(r) for all k£ <.
Then W(r) C W(q).

Proof. Let I < min{j,d}. Let W;(r) C W;(q), and let each ancestor of some vertex in
Pi(q) be an ancestor of some vertex in Py (r) or not be in W(r) for all k < [. Let us prove by
induction that W,,,(r) € Wy, (q) for all m € {I,...,0}. Clearly, we have W,,(r) C Wi, (q)
for m = I. Let m < [ and let us assume Wy, 1(r) € Wy,11(q). Since aj_; = a;1 and
V;_y =bj_1andm < < j, we have C,,(r) = C,,(q) (Observation 269). Let [z,y] € CL ().
Then [z,y] € Cp,(r). Further, the vertex z := z([z,y], [a],,b),]) = z([z,y], [am, bm]) is
contained in W,,+1(r), and therefore, in W,,11(q) by inductive assumption. Moreover,
z € W(r) is not an ancestor of any vertex in P, (r). It follows that z is not an ancestor of
any vertex in P,,(q). Hence, [z,y] € CZ (q), and W (z,y) € Win(q). Since F,,(q) = Fuu(r)
(Observation 268), we have W (z,y) = We (z,y). Thus, W (z,y) € Wy,(q). It follows that
Win (1) C Wi (q). 3

Next, let j =d. As a/, | = ag—1 and b);_; = bg_1, we have J(r) \ {d} = J(¢) \ {d} and
pi(q) = pi(r) for all i € J(g)\{d} by Observation 271. If [a, b] has no parent in F4(q), then
Pi(r)\ {pa(r)} = Pi(q) for all k € {0,...,d}, and each ancestor of some vertex in Py(q)
is an ancestor of some vertex in Py(r). If [a,b] has a parent in Fy(q), then there exists a
vertex pq(q), and Pg(r) \ {pa(r)} = Pi(q) \ {pa(q)} for all k € {0,...,d}. According to
Lemma 278, W(r) NV(a,b) C V(u,v) NV(a,b). Therefore, all vertices in W(r) N V(a,b)
are ancestors of py(r) = z([u, v], [a,b]). Since p4(q) € V(a,b), every ancestor w € V(a,b)
of pa(q) is an ancestor of pg(r) or not in W(r). It follows that every ancestor w of p4(q)
is an ancestor of a, b or pg(r), or not in W(r). Hence, each ancestor of some vertex in
Py (q) is an ancestor of some vertex in Py(r) or not in W(r) for all k € {0,...,d}.

Let us show that Wy(r) € Wa(q): Since a;_; = ag—1 and b);_; = bg_1, it follows that
Fa(q) = Fa(r) (Observation 268). As [u,v] is a child of [a,b] in Fy(g), we obtain
W) (u,v) C Wj(a,b). Hence, Wy(r) € Wy(q). Claim 1 implies that W(r) C W(q).

Finally, let j < d. Since a}_; = a;_; and b)_; = b;_1, we have J(r)\{j} = J(¢)\{Jj,. .., d}
and p;(q) = p;i(r) forall i € J(r)\{j} by Observation 271. Hence, for all k € {0,...,j—1},
it holds that

Br(r) \ {aj—1,b51,pi(r)} = Pr(q) \ {aa-1,ba1} ULpi(q) [ 1 € [5,d] N T(q)})-
Let i € {0,...,5 — 1} and [z,y] € CP(r). Let the vertex z; := z([z,y], [a;, b;]) be an

ancestor of ag_1 (or bz_1). In the following, we prove that z; also is an ancestor of
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aj—1 or pj(r) (or bj_y or p;j(r)). Let us assume that z; is a proper descendant of
aj—1 (OI‘ bjfl). Then z; € {ad,l,. .. ,aj} or z; € {bdfl,. . .,bj}. Hence, z; € V(aj,bj)
according to Observation 267. Since [z,y] € CFP(r), we have z; € W;11(r). Thus,
zi € W(r)NV(a;,b;). By Lemma 278 we know that W(r) N V(a;, b;) C V(u,v) NV(a;,bj).
Therefore, the intersection of V(u,v) NV(a;,b;) must contain z;. Then z; is an ancestor
of p;(r) = z([u, v], [a;, bj])-

Let i € {0,...,5 — 1} and [z,y] € CF(r). Let the vertex z := z([z,9], [a;,b;]) be an
ancestor of p;(q) with I € [j,d] N J(g). We show that z; is also an ancestor of some
vertex in {aj_1,b;_1,p;(r)}. Since pi(q) € V(a;,b;), we have p;(q) € V(a;,b;) according
to Observation 267. Further, sd(p;(q)) > j according to Observation 239. As p;(q) € 0
(Observation 270), there is a unique ancestor of p;(q) of side depth k for all k < j
(Observation 262). By Corollary 265 the unique ancestor of p;(g) of side depth j is a;
or bj. If sd(z;) < j, then z; is an ancestor of aj_; or bj_;. Let sd(z;) > j. According
to Observation 263, z; € V(aj,b;). Since [x,y] € CF(r), we have z; € Wi;1(r). Hence,
zi € W(r)NV(a;, b;). It follows from Lemma 278 that z; € V(u,v)NV(a;,b;). Consequently,
z; is an ancestor of p;(r) = z([u, v], [a;, b;]).

Let i € {0,...,j — 1}. Suppose Wiyi(r) € Wit1(q). Since a_; = a;—; and b = b;_1,
we have C;(r) = C;(q) (Observation 269). Let [x,y] € CP(r). Then [z,y] € C;(q). The
vertex z; := z([x,y], [ai, b;]) is in Wii1(r), and z; is not an ancestor of any vertex in
P;(r). Let us show that [z,y] € CF(q). Assume that [z,y] & CF(q). Since z; € Wiy1(r) C
Wii1(q), it follows that z; is an ancestor of some vertex in P;(g). As z; is not an
ancestor of any vertex in P;(r), the vertex z; cannot be an ancestor of any vertex in
Pi(q) \ ({adg=1,ba-1} U{pi(q) | I € [j,d] N J(q)}). Further, it follows from the above
two paragraphs that z; also cannot be an ancestor of ag_1 or by_1, or of any vertex in
{pi(q) | L € [j,d]NJ(q)}. We obtain a contradiction. Consequently, W;1(r) € Wit1(q)
implies that CI'(r) C CF(q).

Let us show that W;(r) € Wj;(q): According to Observation 274, we have Wj(r) = W} (u, v).
As [u,v] € CF(g), we have W}(u,v) € Wj(q). Thus, W;(r) € W;(q).

Since W;(r) € W;(q) and Wi11(r) € Wiy1(q) implies that CF(r) C CFP(q) for every
i€{0,...,j — 1}, we can show inductively that W;(r) C W;(q) for all i € {0,...,j} (cf.
the proof of Claim 1). Hence, W(r) C W(q). O

6.6.3. Decomposing W(q) for Non-Minimal Affiliated Consistent Pairs ¢

All affiliated subbundle pairs ¢ € V7, are either non-minimal consistent or trivial
according to Corollary 257. We first consider non-minimal consistent affiliated subbundle
pairs q € V7—gen.

Let ¢ be a non-minimal affiliated consistent pair of side depth d with side ancestors a;, b; for
i €{0,...,d}. Let us consider specific subsets C;*"(q) of Cf'(g) for all j € {0,...,d+1}.
Let C% (q) := Cl\1(q), and for all j € {0,...,d} let C5*"(q) be the set of all subbundle
pairs [u,v] € C}(g) where z([u,v], [a;,b;]) is a or b. For j € [d+ 1] we let R;(q) be the
set of all [u,v]q; , s, , Where [u,v] € C{*"(q). We let R(q) := Ujejg41) Rj(@)-

Lemma 280. Let ¢ = [a,b],y € V., be a non-minimal affiliated consistent pair. Then
W(q) is the union U of the set {a,b} and of all sets W(r) for r € R(q).
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Proof. Let g be a non-minimal affiliated consistent pair of side depth d with side ancestors
a;, b; for i € {0,...,d}. By Lemma 279 we already know that U is a subset of W(gq). We
now prove inductively that U contains all vertices in W(q). For all j € {0,...,d} let U;
be the union of {a,b} and of all sets W;([u, v]a,_,p,_,) for k€ {j,...,d+1}\ {0} and
[u,v] € C{"(q). Then U;<,U; = U. We use induction to show that W;(q) C Uj for all
j€{0,...,d}.

Let us show that Wy(q) C Ug. The set Wy(q) = Wi(a,b) is the union of V(a,b) and
W!(x,y) for all children [x,y] of [a,b] in Fy(q).

First let us prove that V(a,b) C Uy. As ¢ is consistent and not minimal, the set
CL 1 (q) = C$P (q) is not empty. We have [u),v'] € CF, | (¢) if and only if [}, ¢'] is a root
of the forest Fyy1(¢) = F(a,b). By Corollary 246, the union of all sets Wj, , (u’,v") for
[W,v'] € C¥,1(q) is exactly the set V(a,b) \ {a,b}. Let [u/,v] € C},(q) and 7' = [/, v']4.
Then Way1(r') = Wi, (¢, v") by Observation 274. As a consequence, the union of all sets
Wai1(r') for v’ = [, v']4p with [u), 0] € CL 1 (q) = CLY(g) is the set V'(a,b). Thus, we
have V(a, b) C U,.

If d = 0, then [a,b] has no children in F,;(q), and this already proves that Wy(q) C Up.
In the following let d > 0.

Now let [z,y] be a child of [a,b] in Fu(q), that is, let [z,y] € CF(q). Let us show
that Wi(z,y) € Ug. Let r := [2,yla, 1, .- According to Observation 274, we have
Wl(z,y) = Wy(r). If z := z([x,y], a4, ba]) is a or b, then [z, y] € CL(q), and Wy(r) C Uy
according to the definition of Uy, and therefore, Wi(z,y) C Uy. Let z be not a or b.
Then z is in V™(a, b), and there is a subbundle pair [/, v'] € C¥,,(q) = C$% (g) such that
z € Wy, (u,v'). Let v’ := [u,v']qp. Then, Wy(r') C Uq according to the definition of
Ug. IEWi(z,y) € Wy(r'), then Wi(z,y) C Uy. Thus, let us show that Wi(x,y) € Wa(r').
Since Fa(q) = Fa(r') (Observations 268), we have W(z,y) = W} (z,y). We prove that
[z,y] € CF(r'). Then it follows that W} (x,y) C Wa(r'), and therefore, Wi (x,y) C Wa(r").

Observation 269 implies that Cy4(q) = Cga(r’). Consequently, [z,y] € Cq(r’). It follows
from Observation 274 that W), (u,v') = Wyyi(r'). Since z € Wi, (u,v’), we have
2z € Wi1(r'). In the following paragraph we show that z is not an ancestor of any vertex
in Py(r') = {a,b} U {pa(r’) | d € J(r')}. Then it follows that [z,y] € C¥'(+"), and we are
done.

Let us show that z is not an ancestor of any vertex in Py(r") = {a,b} U {pa(r’) | d € J(r")}.
As [u,v'] is a root of the forest Fyi1(q) = Far1(r’) (Observation 268), we have d+1 ¢ J(r').
Suppose d € J(r'), and assume z is an ancestor of py(r’). Let [a¥ b*] be the parent of [a, b]
in F4(r"). Since [z,y] is a child of [a,b] in F4(q) = Fa(r') (Observation 268), it follows
from Lemma 238 that V(z,y)NV(a,b) is a subset of V(a, b)NV(a* b*). As z = z([z, y], [a, b])
and pa(r’) = z([a, b], [a*, b*]), we obtain a contradiction according to Observation 250 and
Lemma 184. Thus, if d € J(r'), then z is not an ancestor of py(r'). Since z is not a or b,
vertex z is not an ancestor of any vertex in Py(r’) = {a,b} U{pa(r’") | d € J(1")}.

In order to do this, we have to show that Wf(u,v) C Uj for all [u,v] € Cf'(q). As Cf(q) =

this clearly is the case for j = 0. Thus, let j > 0. Let [u,v] € CF(q) and let r :=
[, v]a; s b;_,- Observation 274 implies that W;(r) = W}(u,v). Let z := z([u, ], [a;, bj]).
According to the definition of U; we have W;(r) C U; if z is a or b. Hence, if z is a or b,

Next let us assume that W;11(q) C Uj4q for j € {0,...,d—1}. We prove that W;(q) C Uj.
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then Wi(u,v) C U;. Let z be neither a nor b for the rest of the proof. As [u,v] € CF(q),
vertex z is in Wj11(g). Hence, it also is in Uj4; by inductive assumption.

Let us consider the case where z € Wj.1(r') for v’ := [0/, '], with [u),v'] € CT 1 (q) =

(). As [u),v'] is a root of the forest Fgy1(q) = Fay1(r’") (Observation 268), we have
d+1¢ J(r"). Hence, Observation 271 implies that P;(r’) \ {a, b} = P;(¢q) \ {ad—1,b4—1}.
Since [u,v] € CJ'(g), vertex z is not an ancestor of an vertex in P;j(q). As z is neither a
nor b, vertex z is not an ancestor of an vertex in P;(r’). According to Observation 269,
we have C,;(q) = C;(r’). Hence, [u,v] € C;(r'). Since [u,v] € C;(r’), z € Wj1(r") and
vertex z is not an ancestor of an vertex in P;(r’), we obtain that [u,v] is contained in
CF(r'). Consequently, W' (u,v) € W;(r'). As [u,v'] € C(q), we have W;(r') C U
according to the definition of U;. Since F;(q) = F;(r') (Observations 268), we obtain
Wi (u,v) = w;’ (u,v). Tt follows that W}(u,v) C Uj.

Finally, let vertex z be in the set Wj1(s) where s = [, yla, , 5, , With k€ {j+1,...,d}
and [z,y] € C°"(q) C CL(q). Thus, z([z,v], [ak, bk]) is @ or b. By Observation 271,
we have Py(s) \ {a-1,be-1,00(5)} = Pi(@) \ ({aa-1.ba1} U{m(a) | k < L < d}). As
vertex pi(s) = z([x,y], [ak, bg]) is either a or b, the only vertex that is an ancestor of
some vertex in P;(s) but not an ancestor of any vertex in P;(q) is px(s), that is, a or
b. Note that a,b € 0 because ¢ is consistent and not minimal. Since [u,v] € CF(q),
vertex z is not an ancestor of any vertex in Pj(¢q). As we assumed that z is not a
or b, it follows that vertex z is not an ancestor of any vertex in Pj(s). According
to Observation 269, C;(q) = C;(s). Therefore, [u,v] € C;(s). Since [u,v] € C;(s),
z € Wji1(s) and z is not an ancestor of any vertex in P;(s), we obtain that [u,v] € C (s).
Consequently, W3(u,v) € W;(s) C U;. As F;(q) = F;(s) (Observations 268), it follows
that Wi(u,v) = Wi(u,v). Hence, Wj(u,v) C Uj. O

Lemma 281. Let q € Vz_, be a non-minimal affiliated consistent pair. Let 1,3 € R(q)
with r1 # ro. Then W(r1) N W(r2) C anc(q).

Proof. Let q = [a,b],y € V7, be a non-minimal affiliated consistent pair of side depth
d with side ancestors a;,b; for ¢ € {0,...,d}. Let r,ro € R(q) with r; # ro. Let
ki ko € {1,...,d+ 1} and let [uy,v1] € C{2"(q) and [ug, vo] € C2"(g) be such that 7y :=
[ul?vl]ak171,5k171 and T = [uvi?}aszl,b@fl'

Let us assume there exists a vertex w such that w € W(r1) N W(r2) and w ¢ anc(q). For
each w € (W(r1) N W(r2)) \ anc(q) let I;(w) be the maximal I < k; such that w € W(r;).
Let w € W(r1) N W(r2)) \ anc(q) be such that for all w’ € (W(r1) N W(r2)) \ anc(q) we

have

o [j(w') <lj(w) for each j € {1,2} or
e there exists a j’ € {1,2} such that I;(vw’) < I;(w).

From now on we denote /;(w) and ly(w) by l; and ls, respectively. Without loss of
generality, let 1 <o, and if I; = Iy, then let k1 < k.

We check multiple cases. The first case is that I; = ky and I; < l;. We know that
w € Wy, (r1) and w € Wy, (re). As Iy < Iy < ko, Observations 266 and 276 imply
that W, (r2) C V(ai,,b;,). We obtain that w € V(ay,b;,). Thus, w is contained in
Wi, (r1) NV (ay,, by,). Since Iy < Iy, we have l; < d, and according to Lemma 278 we have
W(r1) NV(ay,,b,) € V(uy,v1) NV(ay, by ). Thus, w is contained in V(uy,v1) NV(ay,, by, ).
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As Iy = ki, we have ky < d. Hence, the vertex z([ui,v1], [ak,,bk,]) is a or b. By
Observation 250, each vertex in V(uy,v1) N V(ak,,bk, ) is an ancestor of a or of b. As
k1 = l1, vertex w is an ancestor of a or of b. Thus, w € anc(q), a contradiction.

Next, let |; = kil, l1 =1y and Iy < ko. As li=kiandw € Wll (7“1), we have w € qul (ul,vl)
according to Observation 274. Subbundle pair [u,v1] is a child of [a;,, b, ] in F, (q).
Further, w € W, (r2) and w & W,,11(r2). Since ly < ks, there exists a child [u}, v})]
in Cf,(ry) such that w € W2 (u),vy). By Observation 268, Fi,(r2) = Fi,(¢). Hence,
W;2 (uhy, vy) = W}, (uh,vh). Observation 269 yields that Cp,(r2) = Ci,(q). As Iy = la, the
subbundle pair [uf,v5] is a child of [a;,,b;,] in Fi,(q) as well. According to Claim 1,
[u1,v1] # [uh, vy]. By Lemmas 233 and 184, we have W} (u1,v1) NW}, (us, vy) € V(ay,, by, ).
Therefore, w is contained in W} (u1,v1)NV(ay,, by, ), which is a subset of V(uy, v1)NV(ay,, by, )
according to Lemmas 232 and 184. Since [; = k1, we have w € V(uy,v1) NV(ag,,bg, ). As
k1 < ko, we have ky < d, and z([uy, v1], [ak, , bk, ]) is @ or b. By Observation 250, it follows
that w is an ancestor of a or b, a contradiction.

Claim 1. Let [; = kl, l{ =1y and Iy < ky. Then [ul,vl] 75 [u’g,vé]

Proof. Let Iy = kq, l; = ls and Iy < ko. Assume [uy,v1] = [u), vh]. As ky < ko, we have
k1 < d, and we know that z; := z([u1,v1], [ak,, bk, ]) is @ or b. Without loss of generality,
let 21 = a.

First let us consider the case where ks = d+ 1 and k; < d. Then a,b € Py, (r2). Since
ly = ki < d and [uy, vy] € C[(ry), vertex z1 = z([uh, vy), [ar,, by,]) cannot be an ancestor
of any vertex in Py, (r2), a contradiction.

Next let us consider the case where ko = d + 1 and k; = d. We have Wy, (r2) C V' (a, b)
according to Observation 276. Since [uh, vh] € Cf. (r2), that is, [u1,v1] € Cf, (r2), the vertex
z1 = z([u1, v1], [ak, , bk, ]) must be in Wy, 41(r2) = Wi, (r2). We obtain a contradiction,
because z; = a and a & W, (r2).

Finally let us consider the case where ky < d. Then zy := z([ug, vo], [ak,, bk,]) is a or b.
First, let zp = a. It follows that py,(r2) = a. As ly < ko, and [uy,v5] € Cf,(r2), that
is, [u1,v1] € Cf (r2), the vertex z1 = z([u1,v1], [ax,, bx,]) cannot be an ancestor of any
vertex in Py, (r2). As z1 = a and py,(r2) = a € Py, (r2), we obtain a contradiction. Now,
let zo = b. Since a € V(a,b), we have a € V(ak,,by,) by Observation 267. As z; = a,
we further have a € V(uy,v1). Thus, a € V(uy,vy). Hence, a € W (uj,vy) € W(ra).
According to Lemma 278, W(rq) N V(ak,, bx,) C V(uz,v2) N V(ak,,bk,). It follows that
a € V(uz,v2) NV(ak,,br,). As 2o = z([ug, v2], [ak,,bk,]) is b, we have a,b € V(ug,vs) N
V(ag,, br, ). Since g is consistent and not minimal, we obtain a contradiction according to
Observation 250. 3

Now let I; = k; and I} = I and I = ky. Then w € W} (u1,v1) and w € W} (up,vs). If
ki1 =d+ 1, then le (u1,v1) and wzl (u2,v2) must be disjoint as [uy,v1] and [ug, vs] are
different roots of the decomposition forest Fy.1, and therefore disjoint subsets of V™ (a,b).
Let k1 < d. Then [u1,v1] and [ug, v2] are distinct children of [ay, , bk, | in Fi, (¢), and similar
to the case above we can apply Lemma 233 and Lemma 232 (and Lemma 184) to show
that w € V(uy,v1) NV(ag,, bk, ). Further, we have k; < d and therefore z([uy, v1], [ak, , bk, ])
is a or b. Consequently, w is an ancestor of a or b (Observation 250), a contradiction.
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Finally, let I; < ky (and l; < l3). We know that w € W, (r1) and w € W), (r2). Let
[u},v]] be a child in Cf (r1) such that w € W;* (u},v}). First we show that w € V(a;,,b;,).
If [; < lg, then W, (r2) C V(ay,,b;,) by Observation 276 and w € V(ay,,b;,). Now let
Iy =ly. Then ky < ko and I; = Iy < ko. Thus, let [uh, v}] be a child in Cﬁ(rg) such that
w € W;* (uy,vy). From Observation 268 it follows that J;, (r1) = Fi, (q) = Fi, (r2). Hence,
W, (uy, vy) = Wy (us, vy). The subbundle pairs [u}, vi] and [uj, vy] are children of [az, , by, ]
in Fj, (r1). According to Claim 2, we have [u], v]] # [uj, v5]. By Lemmas 233 and 184 it
holds that W' (uf,vy) VW' (ug, vy) C V(ay,, by, ). Hence, w € V(ay,, by, ).

Claim 2. Let I} = ls, l1 < k1 and Iy < ko. Then [u], v}] # [u), v)].

Proof. Let I = lg, I < ki and ly < ko. Let us assume that [u],v]] = [u),v5]. Let
z = z([ul, vi], [ai,, by, ]). As [uf,v]] € Cf (r1) and [uh, vh] € Cf (r2), we have z € Wi, 41(r1)
and z € W, 11(r2). Thus, l1(2) = lo(2) > I3 = l3. Tt follows from the choice of w that
z € anc(q). Note that z is not an ancestor of any vertex in P, (r1). If k; =d + 1, then
a,b € P, (r), and we obtain a contradiction. Let k; < d. Then z; := z([u1, v1], [ak,, bk, ])
is a or b. Without loss of generality, let z; = a. Since 21 = py, (1), we have a € P}, (r1).
Further ay,_1,bg,—1 € P, (r1). Consequently, vertex z must be an ancestor of b and
a descendant of by,. By Observation 267, z € V(ag,, by, ). According to Lemma 278,
W(r1) N V(ak,, bk, ) C V(ug,v1) N V(ak,, bk, ). It follows that z € V(uy,v1) N V(ag,,bx, ).
Thus a, z € V(u1,v1) N V(ag,, bk, ). Since ¢ is consistent and not minimal, we obtain a
contradiction according to Observation 250. J

According to Lemmas 232 and 184, the set W, (uf, v]) NV(ay,, by, ) is a subset of V(uj,vy)N
V(ai,,by,). Thus, w € V(uj,v)) NV(ay,b,), and w is an ancestor of the vertex w} :=
z([u), v1], [ai,, by ]) (cf. Observation 250). We know that w} is contained in Wy, +1(r1),
because [u},v]] € Cf(r1) and I < ky. Let m := sd(w). If m > I +1, then w € Wy, 41(r1)
according to Observation 277, and we obtain a contradiction because [y is the maximal
I < ky with w € Wy(r1). Let m <13 + 1. Then Wi, +1(r1) € V(am, bm) (Observation 276)
and each ancestor of w] of side depth m is a,, or b,, (Corollary 265). Thus, w € {a,, b}
is a side ancestor of ¢, a contradiction. O

Lemma 282. Let g € V7, be a non-minimal affiliated consistent pair. Let r1,r1 € R(q).
Let wy € W(r1) and wy € W(ra) be adjacent vertices of H. Then wy € W(ry) U anc(ry),
wy € W(ra) Uanc(ry) or wy, ws € anc(q).

Proof. Let q¢ = [a,b],y € V7, be a non-minimal affiliated consistent pair of side depth
d with side ancestors a;,b; for i € {0,...,d}. Let r1,m € R(q). Let wy € W(r1) and
wy € W(rz) be adjacent vertices of H. Let k; € {1,...,d + 1} and [u;,v;] € Ci"(q) be
such that r; := [ui’vi]aki—lybki—l for i € [2].

Let j; € [0, k;] be maximal such that w; € W, (r;) for ¢ € [2]. Let i € [2]. Let us show
that there exist an [z, 4] € Cj,(¢) such that w; € Wj (4,y:) € W, (ri). If j; = ki, then
w € Wj (u;,v;) = W, (r;) according to Observation 274, and clearly [u;, v;] € Cj,(g). Thus,
we let [z, yi] := [u;, vi] if ji = ki. Let j; < k;. Then w; € Wi (uj, v;) € Wj,(r;) for a child
[uj, vj] € CF(r;). According to Observations 269 and 268 we have Cj,(r;) = C;,(¢) and
Fi.(ri) = Fj.(q). Consequently, [uj,v;] € Cj,(q) and w; € W] (uj,vi) € Wj,(r;). We let
[mi,yi] = [u’- 7),-] if Ji < k;.

1) 71
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Clearly, if [x1,31] = [22,y2], then wa € W] (x1,41) € W, (r1) € W(r1) Uanc(r). Thus,
let [z1,y1] # [22, 9]

First let us consider the case where j := 31 = j2 and j =d+ 1. Then k; = ks =d + 1,
and [z;,y;] = [u;,v;] and [u;,v;] € Cgi1(q) for each i € [2]. By Observation 276,
Was1(ri) €V (a,b). Thus wy,ws € V(a,b). Since [x1,y1] # [x2, y2], [x1,11] and [z2, yo]
are distinct roots of the decomposition forest F411(q). It follows from Observation 234
and Lemma 184 that W{(z1,y1) and Wj(22,y2) are two connected components of H™(a, b).
Thus w; € w;l(;cl, y1) and wy € Wg(.’L’Q, y2) cannot be connected, a contradiction.

Next let us consider the case where j := j;3 = j2 and j < d. As [z1,y1] and [z, y2]
are children of [a;,b;] in Fj(q), Lemmas 237 and 184 imply that wy € Wj(x1,41),
wy € W?(xg,yg) or wi,ws € V(aj,b;). Hence, wy € W) (r1) € W(r1), w1 € Wj,(r2) C
W(r1) or wy,ws € V(aj,b;j). If wa € W(r1) or wi € W(ry), then we are done. Thus,
let wy, ws € V(aj,b;). Since w; € w;’»(a:i,yi), it follows from Lemmas 232 and 184 that
w; € V(z;,y;) NV(a;,b;) for all i € [2]. According to Observation 250, w; is an ancestor
of the vertex z; := z([z;, i), [a;, b;]).

7Y Y1 1) 71
zi is in Wj11(ri). As w; is an ancestor of z; and w; &€ W;41(r;) according to the choice
of ji, Observation 277 implies that sd(w;) < j. Since w; € V(aj;,b;), it follows from
Observation 239 and Corollary 265 that w; is a; or b;. Hence, w; € anc(q).

Let i € [2] and let j < k;. Then [z, y;] = [uf, vj] where [u],v]] € CJ(r;). Tt follows that

Let i € [2] and let j = k;. Then [x;, y;] = [u;, v]. Since [u;, v;] € Ci"(q) and k; = j < d,
the vertex z; is a or b. It follows that w; is an ancestor of a or b. Thus, w; € anc(q).

It follows that wy,ws € anc(q).

Now let us consider the case where j; # jo. Without loss of generality, let j; < j2. Then
Jj1 < d. According to Observation 276, Wj,(r2) C V(a;,,bj,). Thus, ws € V(aj,,b;,).
Since wy € Wj (x1,%1), we have wy € W] (z1,91) or wy € V(ay,,bj,) according to Lem-
mas 236 and 184. Hence, wy € Wj, (1) € W(r1) or wy € V(a;,,b;,). If wy € W(ry), we
are done. Thus, let w; € V(ay,,bj, ). Since wy € W (z1,¥1), it follows from Lemmas 232
and 184 that wy € V(z1,y1) NV(aj,,bj, ). According to Observation 250, w; is an ancestor
of the vertex 21 := z([z1, 1], [aj,, b;,]).

Let j1 < k1. Then similar to the corresponding case for j = j; = js and j < d, we can
show that wy is aj, or bj,. Since j; < jo < ky, we have wy € anc(rs).

Let j; = ky. Then similar to the corresponding case for j = j; = jo and j < d, we
obtain that w; is an ancestor of a or b. If w; € anc(rg), we are done. Thus, let
wy € {ag,...,aky} U{ba,...,bg,}. Then ko < d. Hence, jo < ko < d. According to
Observation 267, w; € V(aj,,bj,). Since wy € W), (x2,y2), it follows from Lemmas 236
and 184 that wy € V(aj,,b;,) or w1 € W (z9,y2). Consequently, wy € V(aj,,b;,) or
wi € Wy, (r2) € W(ra). If wy € W(rs), we are done. Therefore, let wy € V(aj,,b;,). Since
wy € W?Q (x2,y2), it follows from Lemmas 232 and 184 that wy € V(z2,y2) N V(aj,, bj,).
According to Observation 250, w; is an ancestor of the vertex zo = z([x2, y2], [aj,, bj,])-

Let jo < ko. Then similar to the corresponding case for j = j; = js and j < d, we can
show that ws is aj, or bj,. Hence, wy, ws € anc(q).

Let jo = ko. Then similar to the corresponding case for j = j; = jo and j < d, we obtain
that ws is an ancestor of a or b. Then wq, ws € anc(q). O
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6.6.4. Decomposing W(q) for Trivial Affiliated Subbundle Pairs ¢

In the following let us consider affiliated subbundle pairs ¢ € V7, that are trivial.
For a trivial affiliated subbundle pair ¢ let us define subsets C%(g) of CJ'(q) for all
j €40,...,d}. Forall j€{0,...,d} we let C;-ri"(q) be the set of all subbundle pairs
[u,v] € CF(q) where z([u,v],[a;,b;]) is in V(a,b). For j € [d] we let R;(q) be the set of
all [u,v]a;_, p;_, where [u,v] € C¥"(q). We let R(q) := Ujera Ri(@)-

Lemma 283. Let g € V7, be a trivial affiliated subbundle pair. Then W(q) is the union
U of the set V(a,b) and of all sets W(r) where r € R(q).

Proof. Let q = [a,b],y € Vz_, be a trivial affiliated subbundle pair of side depth d with
ancestors a;, b; for i € {0,...,d}. According to Observation 272, we have V(a,b) C W(q).
By Lemma 279 it follows that U is a subset of W(q). We now prove inductively that
U contains all vertices in W(q). For all j € {0,...,d} let U; be the union of V(a,b)
and of all sets W;([u,v]a,_,5,_,) Where k € {4,...,d} \ {0} and [u,v] € C{¥(g). Then
Uj<aU; = U. We use induction to show that W;(q) € Uj for all j € {0,...,d}.

Let us show that Wy(q) = Wi(a,b) C U,. Clearly, we have V(a,b) C Uy. Let us show
that W%(u,v) C Uy for all children [u,v] of [a,b] in Fy(q), that is, for all [u,v] € CJ(g).
As Cf'(q) = 0, there is nothing to show for d = 0. Let d > 0. For all [u,v] € C{(q)
the vertex z([u,v], [a,b]) is in V(a,b). Thus, [u,v] € CF(q) and Wy([u,v]ay_; bs.) € Ud
according to the definition of Uy. Since Wi (u,v) = Wy([u,v]a, b, ,) (Observation 274),
the set Wi (u,v) is in Uy for all [u,v] € CH(q).

Next let us assume W;jy1(q) C Ujqq for j € {0,...,d — 1}. We show that W;(¢q) C U;.
In order to do this, we have to show that W}(z,y) € U; for all [z,y] € C{(g). As
C{ (q) = 0, this clearly is the case for j = 0. Thus, let j > 0. Let [z,y] € C}(¢) and let
z = z([z,y], [a;,b;]). As zis in W;11(q), it also is in Uj4; by inductive assumption.

If z is in V(a,b), then [z,y] € C¥V(q) and W;([x,yla;_,b;_,) is a subset of U;. Hence,
Wi(z,y) = Wi([z,Yla;_,.b;_,) (Observation 274) is a subset of U;. Thus, let 2z be not in
V(a,b) for the rest of this proof.

Let z be in Wj1(r) for r = [u,v]a,_, 5, , With k€ {j +1,...,d} and [u,v] € C{¥(q) C
Cf (q). Thus, z([u,v], [ax, b]) is in V(a,b). In the following we show that [x,y] € CF'(r).
According to Observation 269, we have C;(¢q) = Cj(r), and therefore [z,y] € C;(r).
Further, z € W;1:(r). Hence, it remains to show that z is not an ancestor of any vertex
in Pj(r). As [z,y] € C[(q), vertex z is not an ancestor of any vertex in Pj(¢). By
Observation 271, we have

Pi(r) \ {ar—1,be—1,p1(r)} = Pj(@) \ ({aa-1,0a13 U{pi(q) | k <1 <d, 1 € J(g)})

Clearly, z is not an ancestor of any vertex in P;(r) \ {ax—1,br—1,pr(r)}. As z is not an
ancestor of ag_1 or bg_1, and k < d , it follows that z is not an ancestor of a;_1 or bg_1.
The vertex pg(r) = 2([u, v], [ag, bx]) is in V(a,b). We assumed that z is not in V(a,b). As
z is not an ancestor of ag_1 or bg_1, Observation 245 implies that z is not an ancestor
of pr(r) = z([u,v], [ak, bx]). Consequently, vertex z is not an ancestor of any vertex in
P;(r). Hence, [z,y] € CF(r). It follows that Wj(z,y) C Wj(r) is a subset of U;. By
Observation 268 we have F;(q) = F;(r). Thus, wg-(az,y) = Wj(z,y). As a consequence,

W;I»(.’L’,y) - Uj. 0
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Observation 284. Let ¢ = [a,b]y € Vr,.. be a trivial affiliated subbundle pair of
side depth d with side ancestors a;,b; for i € {0,...,d}. Let j € {1,...,d}, and let
[u,v] € CY™(q). Further, let v := [u,v]q;_,p,_,- Then W(r)NV(a,b) does not contain
any proper descendants of z([u,v], [a;,b;]) € V(a,b).

Proof. Let q = [a,b],y € V7, be a trivial affiliated subbundle pair of side depth d with
side ancestors a;, b; for i € {0,...,d}. Let j € {1,...,d}, and let [u,v] € C}riv(q). Further,
let r := [u,v]q, ,p; .. Let us assume there exists a proper descendant ¢ € V(a,b) of
z = z([u,v], [a;, b;]) € V(a,b) in W(r). Suppose [ is maximal with ¢ € W(r).

Let us consider the case where [ = j. As ¢ € V(a,b), we have ¢ € V(a;,b;) by Observa-
tion 267. According to Lemma 278, it holds that W(r) NV(a;,b;) C V(u,v) NV(a;,b;).
Hence, ¢ € V(u,v) NV(a;,b;), and by Observation 250 vertex ¢ must be an ancestor of
z = z([u,v], [a;, b;]), a contradiction.

Now let us consider the case where [ < j. Then there is a subbundle pair [x,y] € C'(r)
such that ¢ € W) (z,y). We have 2’ := z([z, y], [a;, bi]) € Wi1(r). As ¢ € V(a,b), it follows
that ¢ € V(a;, b;) by Observation 267. According to Lemmas 232 and 184, it holds that
Wi (x,y) NV(ay, b)) CV(z,y) NV(ag,b). Thus, ¢ € V(z,y) NV(a, b). By Observation 250,
vertex ¢ is an ancestor of 2’ = z([x, y], [a;, bi]). As c € V(a,b), we have sd(c) > d according
to Observation 239. Since 2z’ € Wj11(r) we obtain ¢ € Wj41(r) by Observation 277, a
contradiction to the choice of [. O

Lemma 285. Let q = [a,b],y € V7., be a trivial affiliated subbundle pair. Letry,ry € R(q)
with 71 # 9. Then W(r1) N W(r2) C anc(q) UV(a,b).

Proof. Let q = [a, ],y € V7, be a trivial affiliated subbundle pair of side depth d with side
ancestors a;, b; for i € {0,...,d}. Let r1,79 € R(q) with 71 # ro. Let ki, ko € {1,...,d}
and let [ug,v1] € CJMY(q) and [ug,vs] € CV(q) be such that ry := [uy,v1] and
T2 1= [UZa v2]ak271,bk271'

Ay —1,bk1 -1

Let us assume there exists a vertex w such that w € W(r1)NW(r2) and w ¢ anc(q)UV(a, b).
For each w € (W(r1) N W(r2)) \ (anc(q) UV(a,b)) let I;(w) be the maximal | < k; such
that w € Wy(rj). Let w € W(r1) N W(r)) \ (anc(q) U V(a,b)) be such that for all
w' € W(r1) N W(r2)) \ (anc(q) UV(a,b)) we have

o [j(w') <lj(w) for each j € {1,2} or
e there exists a j' € {1,2} such that [;(w’) < [;(w).

From now on we denote l;(w) and lo(w) by l; and [y, respectively. Without loss of
generality, let [y <o, and if I; = Iy, then let k1 < ks.

We check multiple cases. The first case is that Iy = k; and I; < ;. We know that
w €W, (r1) and w € Wy, (r2). As I3 < la < ko, Observations 266 and 276 imply that
Wi, (r2) € V(ay,, b, ). We obtain that w € V(ay,,b;,). Consequently, w is contained in
Wi, (r1)NV(ag,, by, ). Asly < d, we have W(r1)NV(ay,, by, ) € V(ug,v1)NV(ay,, by, ) according
to Lemma 278. Thus, w is contained in V(uy,v1) N V(ay,,b,) = V(ui,v1) N V(ak,, b, )-
Since [u1,v1] € CFV(q), the vertex z1 := z([u1, v1], [ak, , bk, ]) is in V(a,b). It follows from
Observation 250 that z; ¢ 0 and that each vertex in V(uy,v1) N V(ag,, bk, ) is an ancestor
of z1 € V(a,b). As [a,b] is trivial, Observation 245 implies that each ancestor of z; is
either in V(a, b) or an ancestor of a or b. Hence, w € anc(q) U V(a,b), a contradiction.
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Next, let I; = ky and [y = l. As 1y = k; and w € W;,(r1), we have w € W?I(ul,vl)
according to Observation 274. Subbundle pair [uy,v;] is a child of [a;,, b, ] in Fi, (q).
Further, w € W, (r2) and w & W,4+1(r2). Let us show that there is a subbundle pair
[z,y] € Cf (¢) with [z,y] # [u1,v1] and w € W] (x,y). Let Iy = ko. Then [uy,v5] € Cf(q)
and w € Wi, (ra) = W} (uz,v2) (Observation 274). As r; # r and r; and ry have
the same affiliations, it follows that [uj,v1] # [ug,v2]. Thus, we let [z,y] := [ug, v]
in this case. Let ly < ko. Then there exists a subbundle pair [u),v5] in C[(r3) such
that w € W (uj,v3). By Observations 269 and 268, we have Ci,(r2) = Ci,(q) and
Fi,(re) = Fi,(q). Hence, [u), v)] in Ci(q) and W2 (uy, vh) = w;g (uh,vh). Since I} = lo, we
have [uf, vh] in Cf)(¢q) and w € W, (uf, vh). Further, [uy, vh] # [u1,v1] by Claim 1. Thus,
we let [x,y] := [u),v5]. Then subbundle pairs [u,v1] and [z, y] are children of [a;,, b, ] in
Fi,(q). By Lemmas 233 and 184, we have W, (uy,v1) W, (z,y) € V(ay,, by, ). Therefore, w
is contained in W; (u1,v1) NV(ay,, by, ), which is a subset of V(u1,v1) NV(ay,, by, ) according
to Lemmas 232 and 184. Since I; = ki, we have w € V(uy,v1) N V(ak,, by, ). As [ug,v1] €
Ci'¥(q), the vertex z([uy, v1], [ak,,bx,]) is in V(a,b). According to Observation 250, w
is an ancestor of z([ui, v1], [ak,, bk, ]) € 0. Since [a,b] is trivial, Observation 245 implies
that w is in anc(q) U V(a,b), a contradiction.

Claim 1. Let Iy = k1, I3 =z and ls < ka. Then [uq,v1] # [ub, vh)].

Proof. Let Iy = ki, Iy =l and ls < ky. Assume [uq,v1] = [ub, v5]. We know that z; :=
2([ug, v1], [ag, , bk, ]) and 29 := 2([ug, va], [ak,, br,]) are in V(a,b). As [ub, vh] € Cf;(rg), that
is, [u1,v1] € Cf, (r2), the vertex z1 = z([u1,v1], [ak, bk, ]) is not an ancestor of any vertex
in Py, (r2). Hence, the vertex z; is not an ancestor of z3 = py,(r2). Since [a, ] is trivial
and z1, z9 € V(a,b), Observation 170 implies that the vertex z; is a proper descendant of
zp. Tt follows from [uy,v1] = [u), vs), that vertex 21 is in V(uy, vy) C W2 (uy, vy) € W(ra).
According to Observation 284, the set W(rs) N V(a,b) does not contain any proper
descendants of zo = z([ug, V2], [ak,, bk,]). Since z; € W(ry)NV(a, b) is a proper descendant
of z9, we obtain a contradiction. J

Finally, let [ < k1 (and [ < l3). The proof of this case is identical to the proof of the
same case in Lemma 281. Only Claim 2 needs to be proved differently.

Claim 2. Let Iy = Iy, I} < ky and Iy < ko. Let [u],v]] € Cﬁ(rl) be such that w €
Wy (u),v]), and [uh, vy] € Cf)(r2) be such that w € W (uh, vy). Then [u), v]] # [uh, vh).

Proof. Let Iy =y, Iy < ky and Iy < ko. Let [u], v]] € C[](r1) be such that w € W} (u},v}),
and [uh, vy] € C[ (r2) be such that w € W;?(uh,vh). Assume [u},v]] = [uh,vh]. Let
z = z([uf, vi], lag,, b)) As [uf, vi] € CF (r1) and [u), v3] € Cf (r2), we have z € W, 41(r1)
and z € W, 11(r2). Thus, l;1(z) = lo(z) > [ = l5. It follows from the choice of w that
z € anc(q) UV(a,b). Note that z is not an ancestor of any vertex in Fj, (ry).

According to Observation 170 there is an f € F such that V' (a,b) is the vertex set of a
directed path in T;. Without loss of generality, let f = f; and let a be the first vertex of
this path and b the last one. Then it follows from Observation 245 that ag,...,aq are
the ancestors of a in Ty,. As [u1,v1] € C{V(q), the vertex z; := z([uy, v1], [ak, , bx,]) is in
V(a,b). According to Observation 250, z; ¢ 0. Thus, z € Sy,. Since z; = py, (1), we
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have z; € P, (r1). Further ay,—1,bx,—1 € P, (r1). Consequently, vertex z must be either
a proper descendant of z; and in V'(a,b), or an ancestor of by_; and a descendant of by, .

First let us assume z is an ancestor of by and a descendant of bg,. As [ag_1,b4_1]
is non-minimal consistent, this implies that k; < d and z € Sy,. By Observation 267,
z € V(ag,,bg,). According to Lemma 278, W(ry) N V(ag,,bk,) C V(ug,v1) N V(ak,, bk, )-
Since z € W, 11(r1) € W(r1), it follows that z € V(uy,v1) N V(ag,, bk, ). Consequently,
21,2 € V(ug,v1)NV(ag,,bg, ). As 21 € Sy, and z € Sy,, we obtain a contradiction according
to Observation 250.

Now let us assume z is a proper descendant of z; and in V(a,b). We know that z is
in Wy, 11(r1) € W(r1). According to Observation 284, the set W(r1) NV(a,b) does not
contain any proper descendants of z; = z([uy, v1], [ak, , bk, ]). Since z € W(r1) NV(a,b) is
a proper descendant of z1, we obtain a contradiction. a

O

Observation 286. Let q € V7., be a trivial affiliated subbundle pair of side depth d and
with side ancestors a;,b; for i € {0,...,d}. Let k € [d] and r € Rx(q). Let j < k and
[z,y] € CF(r). Let w € V(z,y) NV(a;,b;) and w & Wiyi(r). Then w € {a;,b;}.

Proof. Let q = [a,b],y € V7., be a trivial affiliated subbundle pair of side depth d and
with side ancestors a;,b; for i € {0,...,d}. Let k € [d] and r € Ri(q). Let j < k and
[z,y] € C}(r). Let w € V(z,y) NV(a;,b;) and w & Wy (r). As j < k and [z,y] € CF(r),
the vertex z := z([z,y],[a;,b;]) is in Wj11(r). According to Observation 250, w is
an ancestor of z. Since w € Wj;1(r), Observation 277 implies that sd(w) < j. As
w € V(aj,bj), we have sd(w) = j by Observation 239.

If j < d, then [a;,b;] is consistent and it follows from Observation 239 and Corollary 265
that w is a; or b;. If j = d, then w € V(a,b). According to Observation 245, V(a,b) is
the vertex set of a directed path with ends a and b in T;. Without loss of generality,
let a be the first vertex of the path and f = f; Then Observation 245 also implies that
sdy, (a) = d and sdy, (v) > d for all v € V(a,b) \ {a}. Since vertex b is the only vertex
that might be in Vy,, it follows that w is @ or b. Hence, w € {a;,b;}. O

Observation 287. Let ¢ = [a,b]y € V7, be a trivial affiliated subbundle pair of
side depth d and with side ancestors a;,b; for i € {0,...,d}. Let k € [d] and r =
(U, V]ap 1 brr € Re(q). Let w € V(u,v) NV(ag,bg). Then w € anc(q) U V(a,b).

Proof. Let q = [a,b],y € V.., be a trivial affiliated subbundle pair of side depth d and
with side ancestors a;, b; for i € {0,...,d}. Let k € [d] and r = [u,v]q, .., € Ri(q)-
Let w € V(u,v) NV(ag, by). Since [u,v] € C¥V(q), the vertex z := z([u,v], [ax, bx]) is in
V(a,b). According to Observation 250, vertex w is an ancestor of z. Observation 245
implies that w € anc(q) U V(a,b). O

Lemma 288. Let q € Vz_, be a trivial affiliated subbundle pair. Let ri,r1 € R(q). Let
wy € W(r1) and we € W(ra) be adjacent vertices of H. Then wy € W(ry) U anc(ry),
wy € W(ry) Uanc(ry) or wy,wy € anc(q) UV(a,b).

Proof. Let q¢ = [a,b], € Vr_, be a trivial affiliated subbundle pair of side depth d
with side ancestors a;,b; for i € {0,...,d}. Let r,r;1 € R(q). Let w; € W(r1) and
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wy € W(rz) be adjacent vertices of H. Let k; € {1,...,d} and [u;,v;] € CV(q) be such
that r; = [u;, vy] for i € [2].

Ak, —1,0k, -1

Let j; € [0, k;] be maximal such that w; € Wj,(r;) for ¢ € [2]. Let i € [2]. Let us show
that there exist an [z;,y;] € Cj,(¢) such that w; € wji (@i, yi) CW;,(r5). If §; = k;, then
w € Wi (u;,v;) = W, (r;) according to Observation 274, and clearly [u;, vi] € Cj,(q). Thus,
we let [:L',,yz] = [ug, vi] if ji = ki Let j; < ki Then w; € Wi (uj, v;) € Wj, (r;) for a child
[uj, vj] € CF (r;). According to Observations 269 and 268 we have Cj, (rl) Cj,(q) and
Fj.(ri) = Fj.(q). Consequently, [uj,v;] € Cj,(q) and w; € W] (uf,v;) € Wj,(r;). We let
(i, yi] == [ul, / v] if 7, < ki.

Clearly, if [x1,y1] = [22,y2], then wa € W] (21,y1) € W, (r1) € W(r1) Uanc(r). Thus,
let [z1,y1] # 72, yal.

First let us consider the case where j := j; = jo. As [21,y1] and [z2,y2] are children
of [aj,b;] in Fj(q), Lemmas 237 and 184 imply that wy € Wj(z1,y1), w1 € W}(x2,y2)
or wi,ws € V(aj;,b;). Consequently, we € W), (r1) € W(r1), w1 € Wj,(r2) € W(r1)
or wy,wy € V(aj,b;). If wy € W(r1) or wi € W(ry), then we are done. Thus, let
wy,wy € V(aj,bj). Since w; € Wi(w;,y;), it follows from Lemmas 232 and 184 that
w; € V(.’ﬁi,yi) ﬂV(aj,bj) for all 7 € [2]

Let i € [2] and j < k;. Then [z;,1;] = [uj, vj] where [u],v]] € C}(r;). According to the
choice of j;, we have w; & W;11(r;). It follows from Observation 286 that w; € {a;,b;}.
Consequently, w; € anc(q) UV(a,b). If i € [2] and j = k;, then [z;,y;] = [us, v], and
it follows from Observation 287 that w; € anc(q) U V(a,b). It follows that w;,ws €

anc(q) UV(a,b).

Now let us consider the case where j; # jo. Without loss of generality, let j; < ja.
According to Observation 276, WjQ(rg) C V(aj,,bj,). Thus, wy € V(a;,,b;,). Since
wy € W] (x1,91), we have wy € W) (21,91) or wi € V(ay,,bj,) according to Lemmas 236
and 184. Hence, wy € W, (r1) C W(rl) or wy € V(aj,,bj,). If we € W(r;), we are done.
Thus, let wy € V(ajl, bj,). Since wy € W} (z1,y1), it follows from Lemmas 232 and 184
that wy € V(z1,y1) NV(aj,,bj,).

Let ji < k1. Then [z1,11] = [u},v]] where [u},v]] € C (r1). According to the choice
of j1, we have w; & W;,11(r1). Observation 286 implies that w; € {a;,,b;, }. Since
J1 < j2 < ko, we have w; € anc(rs).

Let j; = k1. Then [z1,y1] = [u1,v1] and Observation 287 yields that w; € anc(q) UV(a, b).
If wy € anc(rg), we are done. Thus, let wy € V(a,b) U {ag—1,...,ar,} U{bi—1,...,bk,}.
Clearly, jo < k. According to Observation 267, w; € V(a;,, bj,). Slnce Wy € sz (xgij) it
follows from Lemmas 236 and 184 that wy € V(ay,,bj,) or w1 € W), (x2,y2). Consequently,
wy € V(aj,,bj,) or wy € Wj,(ra) € W(ra). If wy € W(re), we are done. Therefore,
let wy € V(aj,,bj,). Since wy € Wj, (2,y2), it follows from Lemmas 232 and 184 that
Wy € V(.I,'Q, yg) N V(an, bj;,).

Let jp < ka. Then (23, y2] = [uh, vh] where [uh, vy] € C (rz). According to the choice of
J2, we have wy & Wj,11(r2). It follows from Observation 286 that ws € {aj,,b;, }. Hence,
wi,ws € anc(q) UV(a,b).

Let jo = ko. Then [z9,y2] = [u2,v2], and it follows from Observation 287 that wy €
anc(q) UV(a,b). Consequently, wq,ws € anc(q) UV(a,b). O
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6.6.5. The Set W,..(¢) and its Decomposition

For an affiliated subbundle pair ¢ with underlying subbundle pair [a, b] let Wanc(q) be
the set W(q) U anc(q). As a and b are already in W(q) we only need to add the proper
side ancestors of ¢ to W(q) to obtain Wanc(q).

Lemma 289. Let q € V., be an affiliated subbundle pair. For all r € R(q) it holds that
Wanc (74) g WanC(Q)‘

Proof. Let q = [a,b],y € V7, be an affiliated subbundle pair of side depth d with side
ancestors a;, b; for i € {0,...,d}. Let i € [d+ 1] and r := [u,v]{q,_, ,_,] € V7., Where
[u,v] € CF(g). We show that all proper side ancestors of 7 are in Wiapnc(q). Then it follows
from Lemma 279 that Wanc(1) € Wanc(q). If i < d, then all proper side ancestors of r are
proper side ancestors of ¢ by Observation 266, and therefore in Wy (q). Let ¢ = d + 1.
Then a and b are the proper side ancestors of r of side depth d. Clearly, a and b are in
Wane(q). According to Observation 266 all proper side ancestors of side depth at most
d — 1 are in Wanc(q). O

Lemma 290. Let g € V7., be a non-minimal affiliated consistent pair. Then Wanc(q)
is the union U of the set anc(q) and of all sets Wanc(r) where v € R(q). Further, let
r1,72 € R(q) with 1 # r1. Then Wanc(r1) 0 Wance(12) C anc(q).

Proof. Let q € V7., be a non-minimal affiliated consistent pair of side depth d with side
ancestors a;, b; for i € {0,...,d}. As anc(q) € Wanc(q), it follows from Lemma 289 that
the set U is a subset of Wanc(q). Further, W(q) is a subset of U (Lemma 280). As all
side ancestors of ¢ are also in U, we obtain Wan.(q) C U, and therefore Wanc(q) = U. For
every subbundle pair [u,v] € C{°"(q) where k € {1,...,d + 1}, the proper side ancestors
of r = [u, v]a, ,p, , are also side ancestors of ¢q. Hence, it follows from Lemma 281 that
Wane (1) M Wanc(r2) C anc(q) for all r1,79 € R(q) with ry # r O

Lemma 291. Let q € V7., be a non-minimal affiliated consistent pair. Let {wi,ws}
be an edge of HWanc(q)]. Then wi,ws € anc(q) or there is an r € R(q) such that
w1, Wy € Wane(T).

Proof. Let q € V7, be a non-minimal affiliated consistent pair of side depth d with side
ancestors a;, b; for i € {0,...,d}. Let {wy, w2} be an edge of HWanc(q)]. As ¢ is non-
minimal consistent, Cgy1(q) # 0. Let 441 € Ra+1(q). Then anc(q) C anc(rg41). Thus,
according to Lemma 290 we can assume there exist r1, 79 € R(q) such that wy € Wanc(71)
and wy € Wapc(r2). There is nothing to show if 71 = ry. Thus, let 71 # ry. For i € [2] let
ki € {1,...,d+ 1} and [u;,v;] € C"(q) be such that r; = [u;, vi]a,, b, - Note that
ui, v; € W(r;) by Observation 272. Consequently, Wane(;) = W(r;) U (anc(r;) \ {us, v;})
Let wy € W(r1) and wy € W(r3). Then it follows from Lemma 282 that wy € Wane(71),
w1 € Wanc(r2) or wy, ws € anc(q). Hence, wy, ws € anc(q) or there is an r € R(q) such
that wy, wy € Wane(T).

Let wy € anc(ry) \ {u1,v1} and we € anc(ry) \ {ug,v2}. Then wy, ws € anc(q).

Let wy € anc(ry) \ {ui,v1} and wy € W(rg). The case where w; € W(r1) and ws €
anc(ra) \ {ug,v2} can be shown analogously. (The proof of this case is similar to the

172



6.6. Canonization

proof of Lemma 282.) If wy is an ancestor of a,—1 or bg,_1, then wy, ws € Wanc(r2).
In the following let w; be a proper descendant of ay,_1 or bg,—1. Then ky < ki and
wp € {akl_l, .. .,akQ} U {bkl—h - ,ka}. Thus ko < d. Let jo < ko be maximal with
wy € W, (r2). According to Observation 267, wy € V(aj,, bj,).

Let jo = ky. Then wy € WZQ (u2,v9) according to Observation 274. It follows from
Lemmas 236 and 184 that we € V(ag,,bk,) or wy € WZQ (ug,v9). Consequently, wy €
V(ak,, bi,) or w1 € Wy, (r2) C W(re). If wy € W(rz), then wq, ws € Wanc(r2) and we are
done. Therefore, let wy € V(a,,by,). Since wy € Wi (u2,v2), it follows from Lemmas 232
and 184 that wo € V(ug, v2) N V(ak,, bk, ). According to Observation 250, ws is an ancestor
of the vertex zo = 2([uz, val, [ar,, br,]). Since [uz,vs] € C2"(q) and kg < d, the vertex z;
is a or b. It follows that ws is an ancestor of a or b. Thus, wy,wy € anc(q).

Let ja < k. Then there exists a [uy, vh] € CJ, (r2) such that wy € W2 (uh, vh) € W, (r2).
Since wy € V(aj,, bj,), it follows from Lemmas 236 and 184 that wy € V(aj,,b;,) or wy €
W2 (us, v3). Consequently, wy € V(ay,,bj,) or wy € Wy, (ra) € W(r2). If w1 € W(r2), then
w1, Wy € Wanc(r2) and we are done. Therefore, let wy € V(ay,,bj,). Since wy € W2 (ugy, v3),
it follows from Lemmas 232 and 184 that wy € V(uj,v5) NV(aj,,bj,). According to
Observation 250, wy is an ancestor of the vertex zo = z([u), v5), [aj,, bj,]). It follows that
2o is in Wj,41(r2). As wso is an ancestor of z; and wy & W;,11(r2) according to the choice
of ja, Observation 277 implies that sd(w2) < j2. Since wy € V(aj,,bj,), it follows from
Observation 239 and Corollary 265 that ws is aj, or bj,. Hence, wy,wy € anc(q). O

Lemma 292. Let q € V.., be a trivial affiliated subbundle pair with underlying subbundle
pair [a,b]. Then Wanc(q) is the union U of the set anc(q) UV(a,b) and of all sets Wanc ()
where v € R(q). Further, let r1,r2 € R(q) with r1 # r1. Then Wanc(r1) N Wane(r2) C
anc(q) UV(a,b).

Proof. Let q € V7, be a trivial affiliated subbundle pair of side depth d with underlying
subbundle pair [a, b] and side ancestors a;, b; for i € {0,...,d}. Since anc(q) C Wanc(q),
it follows from Lemma 289 and Observation 272 that the set U is a subset of Wanc(q).
Further, W(q) is a subset of U (Lemma 283). As all side ancestors of ¢ are also in U, we
obtain Wanc(q) C U, and therefore Wanc(¢) = U. For every subbundle pair [u,v] € CiFV(q)
where k € {1,...,d}, the proper side ancestors of [u, v] are also side ancestors of

ak—1,bp—1
q. Hence, it follows from Lemma 285 that Wanc(71) N Wanc(72) € anc(q) U V(a, b) for all
r1,r2 € R(q) with r1 # 7. dJ

Lemma 293. Let q € V7, be a trivial affiliated subbundle pair. Let {wy, w2} be an
edge of HWhanc(q)]. Then wq,wy € anc(q) UV(a,b) or there is an r € R(q) such that
w1, W2 € Wane(r).

Proof. Let ¢ € Vr,., be a trivial affiliated subbundle pair of side depth d with side
ancestors a;, b; for i € {0,...,d}. Let {wy,ws} be an edge of HWanc(¢)]. By Lemma 292,
Wanc(q) is the union U of the set anc(q) U V(a,b) and of all sets Wayc(r) where r € R(q).

If wy,wy € anc(q) UV(a,b), there is nothing to show.

Let wy € anc(q)UV(a,b) and wy € Wanc(r) where r € R(g). (The case where wy € Wanc(r)
for an r € R(q) and ws € anc(q) UV(a,b) can be shown analogously.) Let k € [d] and
[u,v] € Ci¥(q) be such that r = [u,v]a,_,p,_,- If w1 € anc(r) or wy € anc(r) \ {u,v} C
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anc(q), then we are done. Thus, let wy € V(a,b) U {ag—1,...,ar} U{bs_1,...,br} and
wy € W(r). Let j be maximal such that wy € W;(r). As j < k, we have wy € V(aj,b;)
according to Observation 267.

Let us show that there exist an [z,y] € C;(q) such that wy € Wi(z,y) C Wy(r). If j =k,
then w € Wi(u,v) = W;(r) according to Observation 274, and clearly [u,v] € C;(q).
Thus, we let [z,y] := [u,v] if j = k. Let j < k. Then w € Wj(u',v") C W;(r) for a
child [u/,v] € CF(r). According to Observations 269 and 268, we have C;(r) = C;(q)
and Fj(r) = Fj(q). Consequently, [u',v'] € C;(¢) and w € Wi(u',v") C Wj(r). We let
[x,y] := [u/, 0] if j < k.

Since wy € V(a;,b;) and wy € Wi(x,y), it follows from Lemmas 236 and 184 that
wy € V(aj,b;) or wy € Wi(x,y). Consequently, wy € V(aj,b;) or wy € Wi(r) € W(r). If
wy € W(r), we are done. Therefore, let wy € V(ay,b;). Since wy € Wj(z,y), it follows
from Lemmas 232 and 184 that wy € V(z,y) NV(aj, b;).

Let j < k. Then [z,y] = [v/,v'] where [u/,v'] € CF'(r). According to the choice of 7,
we have wy & Wjy1(r). It follows from Observation 286 that wy € {a;,b;}. Hence,
wy, we € anc(q) UV(a,b).

Let j = k. Then [z,y] = [u,v], and it follows from Observation 287 that wy € anc(q) U
V(a,b). Consequently, wy,ws € anc(q) U V(a,b).

Now, let w1 € Wane(r1) and wg € Wanc(r2) where r1,79 € R(q). There is nothing to show
if 7y = 7. Thus, let 71 # 7. For i € [2] let k; € {1,...,d} and [u;,v;] € C}'V(g) be such

that r; = {ui?vi]aki—hbki—l'

Let wy € W(r1) and wy € W(ry). Then it follows from Lemma 288 that we € Wanc(r1),
w1 € Wanc(r2) or wy, ws € anc(q) UV(a,b). Hence, wy, ws € anc(q) UV(a,b) or there is
an r € R(q) such that wy,wy € Wapc (7).

Let wy € anc(ry) \ {v1,v1} and we € anc(rz) \ {ug, v2}. Then wy, ws € anc(q).

Let w; € anc(ry) \ {ui,v1} and we € W(ry). The case where w; € W(r;) and
wy € anc(ry) \ {u2,v2} can be shown analogously. If w; is an ancestor of ay, 1 or by, 1,
then wy, wy € Wanc(r2). In the following let w; be a proper descendant of ay,—1 or by,_1.
Then ko < k1 and wy € {akl_l, ce ,ak2} U {bkl—h ce ,ka}. Let jo < ko be maximal with
wy € W, (r2). According to Observation 267, wy € V(a;,, bj,).

Let jo = k. Then wy € WZQ (ug,vy) according to Observation 274. It follows from
Lemmas 236 and 184 that we € V(ag,,by,) or w; € WZQ (ug,vy). Consequently, wy €
V(aky, by) O w1 € Wiy (r2) € W(re). If wy € W(ra), then wy,ws € Wanc(r2) and
we are done. Therefore, let we € V(ag,,br,). Since wy € WZZ (u2,v9), it follows from
Lemmas 232 and 184 that wy € V(ugz,v2) N V(ag,, bg,). According to Observation 287, we
have wy € anc(q) UV(a,b). Hence, wy,ws € anc(q) UV(a,b).

Let ja < k. Then there exists a [uy, v] € C}, (rz) such that wy € W2 (uh, vh) € W, (r2).
Since w; € V(aj,, bj,), it follows from Lemmas 236 and 184 that wy € V(a;,,b;,) or wy €
W32 (uy, vy). Consequently, wy € V(aj,,bj,) or wy € Wi, (r2) € W(ra). If wy € W(ra), then
w1, Wy € Wanc(r2) and we are done. Therefore, let wy € V(aj,,bj,). Since wa € W32 (ug, v5),
it follows from Lemmas 232 and 184 that wy € V(ub, vy) NV(aj,, bj,). According to the
choice of jo, we have wy & Wj,11(r2). It follows from Observation 286 that wy € {a;,, bj, }.
Hence, wy,wy € anc(q) UV(a,b). O
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6.6.6. Canonization

Let G* be an LO-colored graph, and let H* = (U, V,E,M, <,L, T, Z) be the bundle extension
of the O-extension of G* Let H = (V,E) be the underlying graph of H. We use the
genealogical decomposition tree of H to define a canon of the LO-colored graph G* in this
section.

In this section, we first define the extended height of each node q € V7., in Tgen. For
all r € R(q) the extended height of r turns out to be less than the extended height of g.
Based on the extended height of g in Tgen, we recursively define an isomorphic copy on
the number sort of the induced subgraph H[Wanc(q)] for each g € V7. We also maintain
the edge relation of the side trees for this isomorphic copy and color the vertices of this
isomorphic copy with different types of colors. We use module colors, inclusion colors,
integration colors and affiliation colors. The module colors correspond to the colors of
the color relation L of H*. The inclusion color of a vertex tells us whether the vertex is a
vertex of G* or not. We obtain the inclusion color from the unary relation Z of H*. The
integration colors mark the vertices p;(q) for j € J(¢q) and the affiliation colors mark
the vertices that are contained in the affiliation p’ of ¢ if p’ # [ ]. Integration colors and
affiliation colors are of importance during the recursive construction of isomorphic copies.

For every affiliated subbundle pair ¢ € Vr_, let us define a string of numbers, the
extended height hey(q) of g. Let d be the side depth and a;, b; for i € {0,...,d} be the
side ancestors of ¢. First let us consider the decomposition forests F;(q) for i € {0, ...,d}.
Let [z,y] be a node in F;(q). We let h!(z,y) be the height of [z, y] in F;(q). We define
the extended height of q as the string hex(q) = ho(ao, bo)h1(a1,b1) ... hq(aq, bg). Note that
the decomposition forest Fo(q) is ([f1, f2][1,0) for all ¢ € V7. Thus, the only node
[f1, f2][ ) in Fo(q) has height 0. Hence, for all ¢ € V7, the first character of the extended
height is 0.

Let ¢; and go be two affiliated subbundle pairs in V7, and let hex(q1) = ki - .. k:cll1 and
hex(q2) = k3K ... kj, be their respective extended heights. We define a linear order on
the extended height as follows. We let hex(q1) < hex(q2) if either

o dy >dy and ki = k? for all i € {0,...,ds}, or
e there exists a j < min{d,,dy} such that kj < k% and k} = k7 foralli € {0...,j—1}.

Clearly, the root [f1, fo][ | of Tgen is the only node of Tge, that has the maximal extended
height 0. Let ¢ € V7, . It is not hard to see that for each r € R(q) we have hex(r) < hex(q)-
Further, we observe the following.

Observation 294. Let q € V1, be of minimal extended height. Then q is minimal
consistent.

Proof. Let ¢ = py € V7., be of minimal extended height. First let us show that ¢ is
consistent. Suppose ¢ is not consistent. As [f1, fi][ is consistent, we have p’ # [ ] and p’
is a non-minimal consistent pair by Observation 254. According to Observation 249 there
exists a (proper) descendant o of p in F(p') such that o is consistent. It follows from Obser-

vation 255 that o, is a node of Tgen. Let aq,bg, ag—1,b4-1,. .., ao, by be the side ancestors
of ¢. Then hex(0p) = ho(ao,bo) - .- ha—1(ag—1,bi—1)ha(aq,bqs). Note that p = [aq4, bg] and
P = [ag—1,ba—1]. Let o = [a),,b]}], then a), b, ag_1,b4-1,- .., ao, by are the side ancestors
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of oy (Observation 266) and hex(0p) = ho(ag, bo) . . . ha—1(ad—1, ba—1)hq(al;, b);). As ois a
proper descendant of p, we have hq(al;, b)) < hi(aq,bq). Hence, hex(0p) < hex(q).

Now let us show that ¢ = p,s is minimal consistent. Suppose it is non-minimal con-
sistent. Then the decomposition forest F(p) is defined. Let o be a root of F(p).
According to the definition of Tgen, the affiliated subbundle pair g is the parent of o, in
Tgen- Let the side depth of ¢ be d and ag, bg, ..., ap, by be the side ancestors of ¢. Let
o = [a%b*]. As p = [aq, bg] is the affiliation of 0,, the side depth of o, is d + 1 (Observa-
tion 258) and a*, b*, aq, by, . . ., ao, by are the side ancestors of o, (Observation 266). Thus,
hex(0p) = hex(q)has1(a®,b*), and hex(0p) < hex(q)- O

For every affiliated subbundle pair ¢ in V7, we define its canonization template H,
which is a 6-tuple H; = (V, Ey, T, Ly, Zy, 1;) that consists of the following sets:

o V, is the subset Wapnc(q) of vertices of H defined in the previous section.

e E, is the edge relation E of H restricted to the set Wanc(q), that is, E, := EN qu_

e T, is the relation T of H restricted to the set Wanc(q). We let T, :=T'N Vq2. We call
T, the parent relation of H.

e L, is the color relation L of bundle extension H* restricted to the vertex set
Wane(q), that is, L, := LN (V, x M?). For every vertex v € V,, the relation L,(v) :=
{(m,n) € M | (v,m,n) € L,} is the representation of the module that vertex v
stands for. We call L,(v) the module color of v.

e Z, CV,x{0,1} is a binary relation that colors all vertices of Wanc(¢q) with two
colors, which indicate whether the vertex is included in the vertex set of G*
or was added later on. We let Z, := {(v,i) € V, x {0,1} | 1z(v) = i} where
1; is the characteristic function of the unary relation Z of H*. We call the set
Zy(v) :={i € {0,1} | (v,1) € Z;} = {1z(v)} the inclusion color of v.

e [, CV, x[d] is a binary relation used to mark the vertices p;(q) for j € J(q). We
let d be the side depth of g. Remember that 0 ¢ J(g). Thus, there does not exist a
vertex po(q). We let I, := {(v,j) € V; x [0,d] | I,(v) = j}, and for all v € V,, we
let I,(v) :={j € J(¢) | pj(¢) = v}. We call I,(v) the integration color of v for all
v € V. Note that for j € J(g) the vertex p;(q) is not necessarily in V;.

Note that there are linear orders on the module colors, the inclusion colors and the
integration colors: The linear order < on the set M of basic color elements of H* can be
extended to a linear order on the module colors, and the natural linear order < can be
extended to a linear order on the inclusion colors and the integration colors.

In the following we define a total preorder < on d-tuples of vertices of V,. We use
lexicographic extensions <jox and <y, of the natural linear order < and of the linear
order < on the set M of basic color elements of H*. Let (a1, ...,aq), (b1,...,bq) € qu. We
define (al, ce ,ad) < (bl, ceey bd), if

(Lg(ar), ..., Le(aq)) <tex (Lg(b1), ..., Lq(ba), or

(Lg(ar), ..., Le(aq)) = (Lg(b1),...,Ly(bg)) and
(Zq(al)v cee >Zq(ad)) <lex (Zq(bl)v cee >Zq(bd))7 or
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(Ly(ar).-. . Ly(aq)) = (Ly(br).-... Ly(ba)) and
(Zy(ar).... Zy(aq)) = (Zy(bn).....Z,(bs)) and
(Iq(al),...,lq(ad)) <jex (Lg(b1), ..., 14(ba))-

In the following, we define what it means that K is an extended copy of H; (on the
number sort) for ¢ € V7. In short, an extended copy of H; consists of an isomorphic
copy on the number sort of the structure (V;, E,,T,) and of the adapted color relations
from #Hj; though the form of the integration colors is slightly changed. Moreover, an
extended copy of H; is equipped with an additional color relation used to mark the
vertices that correspond to the vertices of the affiliation of q.

For an affiliated subbundle pair ¢ € V7, let & be the set of all 7-tuples of relations
K= (VN EF, TN LY, ZI 1, AY) where

g tg>
= [IVall; LY CVF <,
IC K£\2 i K
@QW) ZE CVE x {01},
Ty S (V5% I CVE XVl x Ve,
K K
Ay SV, x V.
For all k € V:]’C, we let
LK(k) = {(m,n) € M2 | (k,m,n) € quc}v
Zy (k) :={i € {0, 1} | (k,7) € Z},
Iy (k) = {(i,v) € [Vl x Vg | (k,i,0) € Iy ),
A (k) ={veV|(w, U)EAK}

Similar to the canonization template we call LX (k) the module color of k, ZX (k) the
inclusion color of k and IX (k) the integration color of k for each k € V/*. Further, AX(k)
is the affiliation color of k € Vq’c.

A semi-extended isomorphism between H; and K is an isomorphism h: V, — [|V,]]

between (Vy, B, Ty) and (V,*, E;C,Tq’c), so that for all v € V,

= q( ), (6.21)

={(lv)1161()}

Let ¢ = py € V7., be an affiliated subbundle pair with p’ # []. Let p’ = [a/,0']. We call
H; symmetric in a’ and b’ if there exists an automorphism f on the structure (V;, £y, T,)
such that for all v € V;, the vertices v and f(v) have the same colors.

Let ¢ € V7., and let p’ be the affiliation of ¢. Let (g := V. We all call K affiliation-
correct if p' =[] and AF =0, or p’ # [ ] and the following holds: Let p’ = [a/,V/]. There
exist ki, ko € Vq’C with k1 # ko such that Aq’C(k) = forall k € Vq’C \ {k1, k2}, and
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o AN (ki) ={a'} and Al (ko) = {'}, or
o AX(k1) = Dag and AKX (ky) = {a/b'}.

Let K} be affiliation-correct. Let p’ be the affiliation of q. An extended isomorphism
between H; and K7 is a semi-extended isomorphism h between H; and K where
p' = [a/ V] # [ ] implies that either

o Ay (h(a')) ={a'} and AF(n (b)) = {0},

o Al(h(a')) = {a,b'} and AK(h(V')) = Dag or
o Al(h(a')) = Dag and AL (h(V')) = {da/, '}

only if H; is symmetric in o’ and b’ 2

For each q € V7,,,, we call K an extended copy of H; (on the number sort), if Ky is
affiliation-correct and there is an extended isomorphism between H; and K7.

In the subsequent section, we recursively define an extended copy K of H; on the
number sort for all affiliated subbundle pairs ¢ € Vr,.,. The extended copy K7, that
is the relations Vq’C, E(IZC,T(;C,LQ’C, Z(’ZC,I(;C,AQC, can be defined in FP+C. We describe the
construction of K in a way that illustrates how the necessary FP+C-formulas can be
defined. We also add a few notes to the end of the following section that sketch how the

extended copy K can be defined in FP+C.

Let G* be an LO-colored graph, and let H* = (U, V,E,M, <,L, T, Z) be the bundle extension
of the O-extension of G* For the affiliated subbundle pair ¢ = [fi, f2][, it holds
that Wanc(q) = V(f1, f2) = V (Observation 272). Thus, we can use the FP4C-definable
extended copy K = (Vq'C, EéC,Tq’C, szc, ZZIC,I;C, Aq’C) of H; for ¢ = [f1, f2](] to define the
canon K* of LO-colored graph G*. Let Z* := {k € VX | Z) (k) = {1}}. Then we define
K* := (U5 V* EXM, <, L*, <*) where

U :=V*UM,

* ,_ /7K *
V=V 77,

* . K * *
E*:=E; NV x V"),
L* =Lk,

<= SHV*H Ugsu (HV*H X M).

It is not hard to see that we can use FP+C-formulas for the sets Vq’C, El’f, szc, Zéc to define
an FP+C-transduction O that maps the bundle extension H* of the O-extension of an
LO-colored graph G* € Cfy, ¢, to the canon of K* of G*. In order to obtain an FP4-C-
canonization of the class C¢y ¢, we apply Proposition 12 and compose the transduction ©’
from Section 6.4.1, which maps each LO-colored graph G* € C¢ ¢, to an isomorphic copy
of its O-extension, the transduction 8 from Section 6.4.2, which maps each O-extension
to an isomorphic copy of its bundle extension, and the transduction O.

% Note that if H} is symmetric in @’ and b/, we can also have AX (h(a’)) = {a’} and AN (h(b)) = {v'}
for an extended isomorphism h between Hj and K.
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6.6.7. Defining the Extended Copy

Now we inductively define the extended copy K7 of Hj for every g € Vr,,,. The induction
is based on the extended height. We start with all ¢ € V., of minimal extended height.

Affiliated Pairs of Minimal Extended Height

First of all, we show that we can define the extended copy K7 of H; for all ¢ € V7., of
minimal extended height hec(q) =0...0. Then g # [f1, f2][]. Let [a,b] be the underlying
subbundle pair, d be the side depth and a;, b; for i € [0, d] be the side ancestors of q. As ¢
is of minimal extended height, ¢ must be minimal consistent according to Observation 294.
Because of the minimal extended height, C;(q) is empty for all i < d, and [a, ] is a leaf of
Fa(q). Consequently, we have W(q) = Wi(a,b) = V(a,b) and Wanc(q) = V(a,b) U anc(q).
As [a, b] is minimal consistent, [a,b] is trivial (Observation 241) and a or b is a leaf of
H. Without loss of generality, let b € 0. By Observation 170, V' (a, b) is the vertex set of
a directed path with ends a and b in Ty for an f € F. Since b € 0, vertex a is the first
vertex of the path. It follows from Observation 243 that V' (a,b) U anc(q) is the set of
all ancestors of b. By Corollary 169, vertex b spans a max clique M, which is equal to
V(a,b) Uanc(q). Thus, V;, = M and E, = (];1) We let the vertex set VX and edge set
EJ of the extended copy K be the set [[M]|] and the set {{k,l} | k,l € [[M|],k # I},
respectively. In order to define the remaining relations, we assign the vertices of V; to
the numbers in Vq’C. We distinguish between the following cases.

First let us consider the case where a = b. Then both a and b are leaves. In order to
define the remaining relations of K, we compare the module, inclusion and integration
colors of ag,...,aq 1 and by,...,bg_1. Let a := (ag,...,aq_1) and b := (bg,...,bg_1).
Let us assume a < b. Then H; is not symmetric in ag—1 and b;_1. We assign a; to
h(a;) =i+1foralli € [0,d—1] and b; to h(b;) = d+ 1+ for all i € [0,d]. Further, we let
(k,1) € T} if and only if (h~'(k),h (1)) € T, for all k,l € V. We transfer the module,
inclusion and integration colors of the vertices in V; to the numbers in Vq’C according to
assignment h (cf. the rules in (6.21)). Then h is a semi-extended isomorphism between
H; and the extended copy K7 that we define. To complete the definition of the extended
copy K, of H;, we let the affiliation color of d be {as1} and the affiliation color of 2d
be {bg-1}. Then K is affiliation-correct, and h is an extended isomorphism between
H; and Kj. Thus, K; is an extended copy H;. Let us denote the extended copy Kj
defined in this case by K;(a, b). If b < @, then we define K analogously, that is, we
let Kj := K (b,a). Now, let neither @ < b nor b < a. Then H; is symmetric in ag—1
and by—1. As a consequence, K (a, b) and K. . (b,a) are equal if the affiliation colors are
removed. In this case, we use the assignment h from above to define the parent relation
and to transfer all module, inclusion and integration colors according to the rules in
(6.21). Finally, we let the affiliation color of d be {a4_1,bs—1} and the one of 2d be Dug.
Then we obtain an extended copy K; of Hj.

Next let us consider the case where a # b. Without loss of generality, let b be the leaf.
Then there is an f € F such that V(a,b) is the vertex set of the directed path from a to
b in Ty (Observation 245). Let the length of the path be [ and let this path from a to b
be a = a4, agi1,---,aq41 = b. Then we assign b; to h(b;) =i+ 1 for alli € {0,...,d —1}

179



6. Capturing PTIME on Chordal Comparability Graphs

and a; to h(a;) =d+ 1+ forall i € {0,...,d +1}. As above we use h to define the
parent relation and transfer all module, inclusion and integration colors according to the
rules in (6.21). We let the affiliation color of d be {bs—1} and the affiliation color of 2d
be {aq-1}. Again we obtain an extended copy K of H;.

Affiliated Pairs of Non-Minimal Extended Height

Now let ¢ € V7, be an affiliated subbundle pair whose extended height hey(g) is not
minimal, and let us assume that the extended copy K, of Hj for each q € Vr,, of
extended height hex(q") < hex(q) is defined. Let [a,b] be the underlying subbundle pair,
d be the side depth and a;, b; for i € [0, d] be the side ancestors of ¢. In the following we
define the extended copy K.

Non-Minimal Consistent Affiliated Pairs

First let us consider affiliated subbundle pairs ¢ € V7, that are consistent and not
minimal. To define K7 we construct two candidates Kf and ICZ for the extended copy of
H,, which do not have affiliation colors.

Let ¢ € {a,b}. We illustrate the construction of Kg. Without loss of generality, let
¢ = a. The set Wanc(q) is the union U of the set anc(q) and of all sets Wayc(r) for
r € R(q), and the pairwise intersection of these sets forming U is a subset of anc(q)
according to Lemma 290. Furthermore, each edge of H{Wanc(q)] is an edge of H[anc(q)]
or HWanc(r)] for an r € R(q) by Lemma 291. For all affiliated subbundle pairs r € R(q)
there is a j € [d + 1] and a [u,v] € C{*"(q) such that r = [u,v]s; ,p, ,. Thus, we
have hex(r) < hex(q). Consequently, for these affiliated subbundle pairs r we already
constructed the extended copies K and we can use them to construct K.

Let us start to construct Kg. First we construct the part Cf o(q) of Ky that is based on

the set of number vertices corresponding to anc(g). We assign numbers to all vertices in
anc(q) by mapping a; to h(a;) =i+ 1 for alli € {0,...,d} and b; to h(b;) = d+ 2+ for
all i € {0,...,d}. Here, we assign the smaller numbers 1,...,d+1 to ag, ..., ag, because
we fixed a. When constructing ngnc(q), we assign them to bg,...,bo. Note that anc(q)
is a clique in H, which follows from Observation 267 and the fact that each z € V(a;, b;)
with z # a; and z # b; is adjacent to a; and b;. (cf. Observation 190). Thus, we
let the numbers 1,...,2d + 2 be the vertices of ngnc(q), and we add all edges between
these numbers to Ianc( 0 We use the assignment h to transfer all module, inclusion and

integration colors from the vertices in anc(q) to their corresponding numbers (cf. the
rules in (6.21)), and to define the parent relation on {1,...,2d+2} in KT ) accordingly.
We do not add affiliation colors to ICZDC( 0

Let k € [d+ 1]. We show that there is a linear order < on the set of all extended copies
I where r € Ry(q). Suppose there are linear orders <; and <4, respectively, on the set
of all integration colors and on the set of all affiliation colors occurring in any extended
copy K} for r € Ri(q). We know that <Jjx and < are linear orders on the set of all
module colors and the set of all inclusion colors, respectively. As the natural linear order
< is a linear order on the vertices of each extended copy K for r € Ri(q), it is not hard
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to see that we can define a linear order <j on the set of all extended copies K with
r € Ry(q) if linear orders <; and <j4 exist.

First let us show that there is a linear order <4 on the set of all affiliation colors
occurring in extended copies KF where r € Ry (q). Each r € Ri(q) has the affiliation
[ak—1,bk—1]. As a consequence, in each extended copy K* where r € Ri(q) there can
only occur the affiliation colors Qag, {ar—1}, {bg—1} and {ax_1,bx—_1}. As we fixed a we
let Oag <a {ar—1} <a {bk—1} <a {ar-1,bk—1}. (In the case that b is fixed, we define
Do <a {br—1} <a {ar-1} <a {ar—1,bk-1}.)

Next let us show that there is a linear order <; on the set of all integration colors
occurring in extended copies K where r € Ri(q). As all affiliated subbundle pairs
r € Ri(q) have the same affiliation [ag_1,bx—1], Observation 271 implies that there is
at most one integration color that contains [/ as its first component for every | < k — 1.
For | = k there might be multiple integration colors with [ as its first component. If
l =k =d+ 1, then there is no integration color with [ as its first component in any
extended copy K with r € Ri(q), since the underlying pair [u,v] of r is a root in Fgyq
for all r € Ri(q). Let l = k < d+ 1. The set Ry(q) contains only affiliated subbundle
pairs 7 where 7 = [u, v][q, _, 5,_,] and [u,v] € C{*"(q). For all [u,v] € C{*"(q) the vertex
z([u, v], [ak, bg]) is a or b. Thus, the integration colors with [ = k as first component
are either {(k,a)} or {(k,b)}. As we fixed a, we let {(k,a)} <; {(k,b)}. For fixed b,
we have {(k,b)} <; {(k,a)}. If we additionally let (i,v) <; (i’,v") whenever ¢ < i’ for
all integration colors (i,v), (#,v") € N X V occurring in any extended copy K} where
r € Ri(q), then <; is a linear order on the set of all integration colors occurring in
extended copies K where r € Ry(q).

In the following we describe the construction of K. We already assigned number vertices
to the vertices in anc(q) and defined ,anc( 9 Now we basically attach a copy of each
extended copy K for r € R(q) to K, ). We start with k = d + 1 and attach copies of
the extended copies K for r € Ry(q) for each k € [d + 1] in the order given by the linear

order <j.

Let k € [d + 1]. In order to attach a copy of the extended copy K for r € Ry(q) to
Kanc(q)> we first identify the number vertices of K that correspond to vertices in anc(q).

anc

Let k = d+ 1. Then [aq, by] is the affiliation of r and anc(q) C anc(r). Thus, K} contains
vertices corresponding to ag, ..., ag and by, ..., by. We can easily find the number vertices
in K for @ = a4 and b = bg in K} using the affiliation color: There exist either two
number vertices whose respective affiliation colors are {a} and {b}, then the vertex
colored with {a} corresponds to a and the one colored with {b} corresponds to b, or two
number vertices whose respective affiliation colors are {0.¢} and {a,b}. In the second
case H; is symmetric in @ and b, and as we fixed a, we suppose the vertex colored with
{0agr} corresponds to a and the one colored with {a,b} corresponds to b. We can use the
parent relation to determine the number vertices corresponding to the ancestors of a and
b. Note that [a, b] is non-minimal consistent. Thus, aq4,...,ao are the ancestors of a and
b4, . ..,bo the ancestors of b. Hence, if kK = d + 1, we can identify the number vertices
corresponding to the vertices in anc(q).

Let k < d+ 1. Let r = [u,v]q, ., Where [u,v] € C{*(g). Thus, the vertex z :=
z([u, v], [ag, b)) is @ or b. Let us assume z = a. The set Wianc(r) contains the set anc(r) and
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therefore the side ancestors ag_1,...,a0 and by_1,...,by. Since z € V(u,v), we have a €
V(u,v) € W} (u,v) C Wg(r). It follows from Observation 277 that W;(r), and therefore
also Wanc(r), contains a = agq, . . ., ag. Since z([u, v], [ak, bx]) = a, Observation 250 implies

that bg,...,bq are not in V(u,v). Consequently, by, ..., by are also not in W(r) C Wapc(r)
by Lemma 278. It follows that Way(r) Nanc(q) = {aqg, .., a0, bk+1,-..,b0}. We can
identify the number vertex corresponding to ag4 in K} with help of the integration color.
The integration color of the vertex corresponding to a4 is (k,aq). We can identify the
number vertex corresponding to by_; with help of the affiliation color. Either there exists
a number vertex with affiliation color {b;_1} in K} or H} is symmetric in ax—q and by_;.
Since there is (only) one vertex with integration color (k, aq) in K}, which is a descendant
of the number vertex corresponding to ax_; but not of the number vertex corresponding
to bx—1 (aq = pi(r) ¢ 0, Observation 270), H! cannot be symmetric in ax_1 and by_;.
Thus, there exists a number vertex with affiliation color {bx_1} in KC}. Using the parent
relation we can determine all number vertices corresponding to ancestors of a and by_;.
Consequently, if k < d+ 1, we can also identify the number vertices corresponding to the
vertices in anc(q).

Now that we can identify the number vertices of K} that correspond to vertices in anc(q),
we describe how the extended copies K} are attached to KJ ). Let A, be the set of
number vertices in K that corresponds to anc(q) N Wanc(r), and let g: A, — anc(q) be
the assignment that maps each vertex in A, to the vertex in anc(q) it corresponds to.
Let R} (q) be the set of 7’ € Ry(q) with ! = K. Let m, := |R}.(¢)|. We simultaneously
create copies of the extended copies K} for all r € Rj,(¢) and attach them to /anc( 0 We
create m, copies (Kr);, i € [m,], of K by renumbering the number vertices in K*. To
obtain (K});, we renumber each vertex ¢ € A, to h(g(c)), and we renumber all vertices in
VK \ A, so that they obtain numbers from n+ 1+ (i — 1) - [V \ A, to n+i- [V \ A,
where n is the sum of |anc(q)| and of |V, \ anc(q)| for all 7’ € R;(q) with j > k and all
1" € Ri(q) where K}, <; K;. Now we can attach the copies (K7); to K¢, ) by simply
joining them. When we do that we remove the affiliation colors, and remove all integration
colors (i,v) where ¢ > k. As [ay_1,by—1] is the affiliation of r, we have p;(r) = p;(q) for
all j € J(r) with j < k (Observation 271), and we can (and have to) copy the integration
colors (j,v) where j < k.

After attaching all K for r € R(q) to K, ) we obtain Kg. Let us look at the integration
colors of the number vertices in Kf. Let j € [0,d]. Let us show that if j € J(q) and
Pj(q) € Wanc(q), then there is a number vertex in f with the integration color (j, p;(q)).
Let j € J(¢) and p;(q) € Wanc(q). If pj(q) € anc(q), then there is a vertex in ’anc(q)’ and
therefore in KCf, with the integration color (j,p;(q)). Let p;(q) € W(q) \ anc(q). Then
there is a k € [d+ 1] and an r € Ry(q) such that p;(q) € Wanc(r) by Lemma 290. If
J < k, we copied the integration color (j,p;(r)) = (4,p;(¢)) (Observation 271). Let j > k.
Then p;(q) € V(aj,b;) € V(ag,by) according to Observation 267. Let 7 = [u,v]a, b, ,
where [u,v] € Ci°"(¢). Since anc(r) \ {u,v} C anc(q) (Observation 266), we have
pj(q) € W(r). Thus, p;(q) € W(r) NV(ak,br). As j > k and j € J(q), we have k < d,
and it follows from Observation 278 that p;(q) € V(u,v) NV(ax, bi). Since [u,v] € C{(q),
the vertex z([u, v}, [ax, b)) is a or b. Consequently, p;(q) € V(u,v) N V(ag,by) € anc(q)
by Observation 250. Since p;(¢q) € W(q) \ anc(q), the case where p;(q) € Whanc(r) for an
r € Ri(q) and j > k cannot occur.

*

> We also

Finally let us define the extended copy Kj. To define the extended copy K
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construct ng. Note that the integration colors of Kf and ICZ are the same, and for each

j € J(q) there is at most one integration color with j as its first component. Since K
and ICg do not have affiliation colors, we can linearly order them. First let us consider
the case where ¢ = [fi, f2][ ). For ¢ = [f1, f2][ }, an extended copy K does not contain
affiliation colors. Let K be the minimum of Kf and ICg. Then we let K be Kf. Now
let us consider the case where g # [f1, fo][). If KF is smaller that ICZ, then we set the
affiliation color of d to {aq—1} and the affiliation color of 2d+1 to {bg_1}. If K? is smaller
than K, we set the affiliation color of d and 2d + 1 to {bs—1} and {a41} respectively. If
ICg = ICZ, then 7—[2 is symmetric in ag_1 and by_1, and we set the affiliation color of d to
{bd—1,aq-1} and the one of 2d + 1 to {0}.

Trivial Affiliated Pairs

Now let g € V7, be a trivial affiliated subbundle pair. Note that this implies ¢ # [f1, f2][}-
Let [a, b] be the underlying subbundle pair, d be the side depth and a;, b; for i € {0,...,d}
be the side ancestors of q.

First, let ¢ be minimal consistent and a = b. According to Observation 275, we have
W(q) = {a}. It this case we define K; analogous to the case where ¢ € V7., is of minimal
extended height and a = b.

In the following let a # b or ¢ be not minimal consistent. As [a,b] is trivial, there exists
an f € F such that a,b € V. According to Observation 245, V(a,b) is the vertex set of a
directed path with ends a and b in Ty. Without loss of generality let a be the first vertex
of the path, then ag4_; is the parent of a in T; (Observation 245). Let us assume a € 0.
Then a = b and Observation 245 implies that agy_; and by_; are the parents of a in the
respective side trees. Thus, sdy, (a) = sdy,(a) = d. Hence, [a, b] is consistent and a = b,
a contradiction. Consequently, a € Sy. It follows that there exists a unique f € F with
a,b € Vs, and that we can identify the vertex ¢ € {a, b} that is the first (last) vertex of
the path induced by V(a,b) in Ty by choosing the the vertex ¢ € {a,b} where sds(c’) is
minimal (maximal). In the following, let us suppose that f = f; and that a is the first
vertex of the path induced by V(a,b) in T¢,. Further, we suppose a4—1 is the parent of a
in Ty,.

Let us illustrate the construction of Ky in the case that a # b or ¢ is not minimal consistent.

The set Wanc(q) is the union U of the set anc(q)UV(a, b) and of all sets Wianc(r) for r € R(q),
and the pairwise intersection of these sets forming U is a subset of anc(q) according
to Lemma 292. Furthermore, each edge of HWanc(¢)] is an edge of H[anc(q) U V(a, b)]
or of HWpe(r)] for an r € R(q) by Lemma 293. For all affiliated subbundle pairs
r € R(q) there is a j € [d] and a [u,v] € C}"(q) such that 7 = [u,v]s;_, p;,_,. Thus, we
have hex(r) < hex(q). Consequently, for these affiliated subbundle pairs r we already
constructed the extended copies K and we can use them to construct K.

Let A, := anc(q) U V(a,b). We first construct the part K7 of Ky that is based on
the set of number vertices corresponding to anc(q) U V(a,b). We assign numbers to all
vertices in A;. V(a,b) is the vertex set of the directed path from a to b in Tf,. Let the
length of the path be [ and let this path from a to b be a = ag, aqs1,...,aq1; =b. We
assign b; to h(b;) =i+ 1 for all i € {0,...,d — 1} and a; to h(a;) = d+ 1 + i for all
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i€{0,...,d+1}. The set A; = anc(q) UV(a,b) is a clique in H: Since V'(a,b) induces
a path in Tf,, Corollary 166 implies that V(a,b) is a clique. Inductively, it follows from
Observation 267 and the fact that each z € V(a;,b;) with z # a; and z # b; is adjacent to
a; and b; for each i € [0,d] (Observation 190) that anc(q) U V(a,b) is a clique. Thus, we
let 1,...,2d+1+1 be the vertices of legq, and we add all edges between these numbers to
Iquq. As usual, we use h to define the parent relation and transfer all module, inclusion
and integration colors according to the rules in (6.21). Remember that a4_; is the parent
of a in Ty,.> We let {bs_1} be the affiliation color of d and {a4—1} be the affiliation color
of 2d.

Let k € [d] and let m € [d,d +l]. Note that V(a,b) = {aq4, ag+1,--.,aa+1}- Let Ry m(q)
be the set of all affiliated subbundle pairs r € Ry(q) where r = [u,v]q, ,p, , for
[u,v] € CiV(q) and sdy, (2([u,v], [ak, bk])) = m. Then for all r = [u, v]a,_, b, € Rim(q)
we have z([u, v], [ag, bi]) = am. Thus, Ry(q) is the union of all Ry, ,,(q) where m € [d,d + 1].
We show that there is a linear order <j,, on the set of all extended copies K; where
7 € Ri.m(q). In order to show this, we only need to show that there are linear orders <;
and <4, respectively, on the set of all integration colors and on the set of all affiliation
colors occurring in any extended copy K for r € Ry, ,(q).

First, let us show that there is a linear order <4 on the set of all affiliation colors occurring
in extended copies K} where r € Ry, ,(q). Each r € Ry ,,,(q) has the affiliation [ax_1, bx_1].
Therefore in each extended copy K with r € Ry ,,,(q) there can only occur the affiliation
colors {Dag}, {ar—1}, {bk—1} and {ax_1,bx_1}. We can identify the vertex f € F with
a,b € Vy, the first vertex of the path induced by V(a,b) in T; and its parent in T¢, which
we supposed to be agz—1. Thus, we let {06} <a {ar—1} <a {br—1} <a {ag—1,bp-1}. (If
bg—1 is the parent of the first vertex of the path induced by V(a,b) in Ty, we define
{Dagr} <a {br-1} <a {ax—1} <a {ar-1,b-1}.)

Let us show that there is a linear order <; on the set of all integration colors occurring
in extended copies K} where r € Ry ,,,(q). As all affiliated subbundle pairs r € Ry ,,,(q)
have the same affiliation [ag_1, bx—1], Observation 271 implies that there is at most one
integration color that contains [ as its first component for every [ < k — 1. Clearly,
for I > k there are no integration colors with [ as first component. For [ = k there
might be multiple integration colors with [ as first component. The set Ry, (¢) contains
only affiliated subbundle pairs r where r = [u, v](,, , 4, ,] such that [u,v] € C}"¥(q) and
sdy, (2([u, v], [ag, bx])) = m. Then z([u, v], [ak, bx]) = am,. Thus, the only integration color
with [ = k as first component is {(k, a,,)}. We obtain the linear order <; if we define
(1,v) <1 (¢,v") whenever i < ¢’ for all integration colors (7, v), (¢,v") € N x V occurring in
any extended copy K where r € Ry ,,(q).

In the following we describe the construction of K. We already assigned number vertices
to the vertices in A, and defined legq. Now we basically attach a copy of each extended
copy K for r € R(q) to K%, We start with £ = d +1 and m = d + [ and attach copies
of the extended copies K} for r € Ry(q) for each k € [d] and each m € [d,d + ] in the
order given by the linear order <y ,,.

Let k € [d] and let m € [d,d 4+ []. In order to attach a copy of the extended copy
KCt for r € Ry m(q) to K% , we first identify the number vertices of K} that corre-
spond to vertices in anc(q) U V(a,b). Let r € Ri.(q). Let v = [u,v]q, , ., Where

3 This is important if a = b.
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[u,v] € Ci¥(q). Then z([u,v],[ak,bk]) = @m. The set Wanc(r) contains the set anc(r)
and therefore the side ancestors ag_1,...,a9 and bg_1,...,by. Since a,, € V(u,v), we
have a,, € V(u,v) C W/ (u,v) C Wi(r). It follows from Observation 277 that Wi(r), and
therefore also Wanc (), contains the vertices a,, ..., ax. Since z([u,v], [ak, bk]) = am, Ob-
servation 250 implies that the vertices agyi, ..., am+1 and by_1, ..., by are not in V(u,v).
Since agiy, ..., am+1 and bg_1,. .., b are in V(ag, by) (Observation 267), it follows that
Agily -y Ami1 and bg_1,...,by are not in W(r) C Wane(r) by Lemma 278. Hence,
Wane(r) N (anc(q) UV(a, b)) = {am,...,a0,bk+1,...,b0}. We can identify the number
vertex corresponding to a,, in K} with help of the integration color. The integration
color of the vertex corresponding to a,, is (k,a,,). We can identify the number vertex
corresponding to bx_; with help of the affiliation color. Either there exists a number
vertex with affiliation color {by_1} in K} or H is symmetric in a;_; and by_;. Since
there is (only) one vertex with integration color (k,a,,) in K, which is a descendant of
the number vertex corresponding to ar_; but not of the number vertex corresponding
to bx—1 (am = pi(r) € 0, Observation 270), H* cannot be symmetric in ax_; and bg_;.
Thus, there exists a number vertex with affiliation color {by_1} in K. Using the parent
relation we can determine all number vertices corresponding to ancestors of a,, and b;_1
in K. Consequently, we can identify the number vertices corresponding to the vertices
in anc(q) UV(a,b) in K.

Now that we can identify the number vertices of ) that correspond to vertices in A,, we
can attach the extended copies K to K A, . This is done analogously to the case where
q € V7,., is non-minimal consistent. When we attach the copies of IC for r € Ry.,,(q) to
K%, we remove the affiliation colors, and remove all integration colors (i,v) where i > k.
As q[ak,l, bi—1] is the affiliation of r, we have p;(r) = p;(¢) for all j € J(r) where j < k
(Observation 271), and we can (and have to) copy the integration colors (j,v) where
Jj<k.

After attaching all K for r € R(q) to K7 we obtain K. Let us look at the integration
colors of the number vertices in 7. Let j € [0,d]. Let us show that if j € J(q) and
Pj(q) € Wanc(q), then there is a number vertex in KCj with the integration color (j,p;(q))-
Let j € J(q) and pj(q) € Wanc(q)- If pj(q) € Ay, then there is a vertex in K7 , and
therefore in Ky, with the integration color (j,p;(q)). Let p;(q) € W(q) \ A, Then there
is a k € [d] and an r € Ry(q) such that p;j(¢) € Wanc(r) by Lemma 290. If j < k,
we copied the integration color (j,p;(r)) = (j,p;j(q)) (Observation 271). Let j > k.
Then p;(q) € V(a;,b;) € V(ag, by) according to Observation 267. Let r = [u, v]a, b, .
where [u,v] € C{"V(q). Since anc(r) \ {u,v} C anc(q) (Observation 266), we have
p;(q) € W(r). Thus, p;j(q) € W(r)NV(ax, bi,). It follows from Observation 278 that p;(q) €
V(u,v) NV(ag,bg). Since [u,v] € C¥V(q), the vertex z := z([u, ], [ax, bg]) is in V(a,b).
By Observation 250, z ¢ 0. Consequently, p;(q) € V(u,v) N V(ax,br) € anc(q) U V(a,b)
by Observation 245. Since p;(q) € W(q) \ Ay, the case where p;(q) € Wanc(r) for an
r € Ri(q) and j > k cannot occur.

Defining £ in FP+C

We can define K7 in simultaneous inflationary fixed-point logic.

Clearly, we can represent each affiliated subbundle pair ¢ € V7., by a 4-tuple of vertices
in V. Let ¢ € V* denote the 4-tuple that represents q. (cf. Section 6.5.4, Defining the
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Genealogical Decomposition Tree in FP+C). Since the genealogical decomposition tree
is definable in FP+C, there exists an FP+C-formula which defines the total preorder on
V.. that is induced by the linear order on the extended heights.

Let S:={V,E,T,L,Z,I,A}. For each relation S € S we define Qg := qungen {q} % S(’f.
We can use a simultaneous inflationary fixed-point operator that recursively defines
the relations Qg for S € S in relational variables Xg for S € S. For S € § let ng
be the relation defined in round 4 of the recursion within the simultaneous inflationary
fixed-point operator.

For each node ¢ € V. of minimal extended height, it should be easy to see that we can
define the extended copy K7, that is, all relations S(IIC with S € S, in FP+C. We construct
our simultaneous inflationary fixed-point formula such that initially for all ¢ of minimal
extended height and all S € S every tuple in {¢} x SJ is added to the relation X§. In
round ¢ > 1 of the recursion, we first check whether for all » € R(q) the extended copy
K is already defined. We can do this for r € R(q), for example, by testing whether there
exists a number k € N(U) such that (7, k) € X{; . If for all » € R(q) the extended copy
K7 is already defined, we use the extended copies K} to define K7, that is, all relations
SZZC with S € §. From the description of the construction of Ky, it should be verifiable
that the relations S(’f with S € § can be defined in FP+C given Xé‘l forall S €S.
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Introduction

We introduce a new logic for logarithmic space in this part. We define the logic LREC,
an extension of first-order logic with counting, and show that it captures logarithmic
space on directed trees. Afterwards, we present an extension LREC_ of LREC. The logic
LREC_ captures logarithmic space on the class of interval graphs and the class of chordal
claw-free graphs (and on the class of undirected trees). Except for the results regarding
chordal claw-free graphs, the results of this part are joint work with Martin Grohe, André
Hernich and Bastian Laubner, and have been published in [32] and [33].

The logic LREC is an extension of first-order logic with counting by a “limited recursion
operator”. The logic is more complicated than the transitive closure and fixed-point
logics commonly studied in descriptive complexity, and it may look rather artificial at
first sight. To explain the motivation for this logic, recall that fixed-point logics may be
viewed as extensions of first-order logic by fixed-point operators that allow it to formalize
recursive definitions in the logics. LREC is based on an analysis of the amount of recursion
allowed in logarithmic space computations. The idea of the limited recursion operator is
to control the depth of the recursion by a “resource term”, thereby making sure that we
can evaluate the recursive definition in logarithmic space. Another way to arrive at the
logic is based on an analysis of the classes of Boolean circuits that can be evaluated in
logarithmic space. We will take this route when we introduce the logic in Chapter 7.

LREC is easily seen to be (semantically) contained in FP+C. We show that LREC contains
DTC+C, and as LREC captures LOGSPACE on directed trees, this containment is strict.
Moreover, LREC is not contained in TC+C. Then we prove that undirected graph
reachability is not definable in LREC. Hence, LREC does not contain transitive closure

logic TC, not even in its symmetric variant STC, and therefore LREC is strictly contained
in FP+C.

It can be argued that our proof of the inability of LREC to express graph reachability
reveals a weakness in our definition of the logic rather than a weakness of the limited
recursion operator underlying the logic: LREC is not closed under (first-order) logical
reductions. To remedy this weakness, we introduce an extension LREC_ of LREC. It turns
out that undirected graph reachability is definable in LREC_ (this is a convenient side
effect of the definition and not a deep result). Thus LREC_ strictly contains symmetric
transitive closure logic with counting. We prove that LREC_ captures LOGSPACE on the
class of interval graphs. Afterwards, we show that the class of chordal claw-free graphs
admits LREC_-definable canonization. On the one hand, this proves that canonization of
chordal claw-free graphs is possible in logarithmic space. On the other hand, it shows
that LREC- captures LOGSPACE on the class of chordal claw-free graphs.

This part is organized as follows: We introduce the logic LREC in Chapter 7 and prove
that its data complexity is in LOGSPACE. Then in Chapter 8, we prove that directed tree
isomorphism and canonization are definable in LREC. As a consequence, LREC captures
LOGSPACE on directed trees. In Chapter 9, we study the expressive power of LREC and
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prove that undirected graph reachability is not definable in LREC. The extension LREC_
is introduced in Chapter 10. Finally, our results on interval graphs and chordal claw-free
graphs are presented in Chapter 11 and Chapter 12.
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In this chapter, we introduce LREC as a first step towards the logic LREC_, to be
introduced in Chapter 10. LREC is already expressive enough to capture LOGSPACE on
directed trees, but still lacks several important properties. For example, it is unable to
capture LOGSPACE on undirected trees and interval graphs (cf. Remark 350), and is not
closed under first-order reductions (Chapter 10). On the other hand, although LREC_
could have been introduced without the detour via LREC, its definition is much easier to
grasp by developing an understanding of LREC first.

Let us start our development of LREC by looking at how certain kinds of Boolean circuits
can be evaluated in logarithmic space.

Figure 7.1.: Boolean formula

Figure 7.1 shows a Boolean formula, i.e., a Boolean circuit whose underlying graph is a
tree. It is easy to evaluate such circuits in logspace: Start at the output node, determine
the value of the first child recursively, then determine the value of the second child, and
so on. For example, for a node that corresponds to an A-gate, we determine the values of
the children (one after the other) recursively until we reach a child with value 0 or the last
child. Once we reached a child with value 0, we know the value of the node is 0 as well.
If we reached the last child and its value is 1, we know the values of all children must
have been one, and we know the value of the node is 1. To evaluate the formula we only
have to store the current node and its value (if it has been determined already), since
the parent node and the next child of the parent (if any) are uniquely determined by the
current node. It is known that Boolean formula evaluation is complete for LOGSPACE
under NC'-reductions [1]." In contrast, Boolean circuit evaluation is PTIME-complete.

Let us now turn to formulas with threshold gates, which, in addition to Boolean gates,
may contain gates of the form “> ¢” for a number i; such a gate outputs 1 if, and only if,

! Boolean formula evaluation is only complete for LOGSPACE if input formulas are represented as
graphs (e.g., by the list of all edges plus gate types). It was however shown in [6] that the problem is
complete for NC! under AC%-reductions if input formulas are given by their natural string encoding.
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Figure 7.2.: Boolean formula with threshold gates

at least ¢ input gates are set to 1. An example is shown in Figure 7.2. To evaluate such
formulas in logarithmic space, we again start at the root and evaluate the values of the
children recursively. For each node we count how many 1-values we have seen already. To
this end, when evaluating the values of the children of a node v, we begin with the child
with the largest subtree (i.e. the subtree with the largest number of nodes) and proceed
to children with smaller subtrees. Let s be the size of the subtree of v. Then the first
child of v has a subtree of size at most s/1, the second one has a subtree of size at most
s/2 and so on. Thus, the ith child of v in this order has a subtree of size at most s/i. As
log(s) =log(s/i) +log(i), we can use log(s/i) bits to determine the value of the ith child
and log(i) bits to store a counter for the number of 1-values seen so far. It is easy to
extend the algorithm to formulas with other arithmetic gates such as modulo-gates.

Figure 7.3.: Circuit with the 16-path property

As a more complicated example, let us consider the following type of circuit. A circuit C'
has the m-path property if for all paths P in C the product of the in-degrees of all but the
first node on P is at most m. For example, formulas have the 1-path property, whereas
the circuit in Figure 7.3 has the 16-path property. It is not hard to see that for every
k > 1, circuits C having the |C|*-path property can be evaluated in logspace. The idea
here is very similar to the one for evaluating circuits with threshold gates. We start at
the root node and evaluate the children recursively. After “entering” a node v from one
of its parent nodes, say p(v), we check whether v evaluates to 1 by counting the number
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of children that evaluate to one using the above-mentioned strategy, and return with
this information to p(v). In order to return to p(v), we need to remember p(v), which
we do by storing the index of p(v) among all the in-neighbors of v. This requires only
log, d~(v) bits of storage, where d~ (v) denotes the in-degree of v. The space for writing
down the index of the predecessor p(v) for each vertex v on the path from the root to the
currently visited vertex is thus bounded by the sum of the logarithms of the in-degrees of
the vertices v on that path. Since C has the |C|*-path property, this sum is bounded by
log,|C|*, and thus logarithmic in the size of C. Another way of evaluating the circuit is
to first “unravel” the circuit to a tree (i.e., a formula) which can be done in logarithmic
space due to the |C|*-path property, and then to evaluate the formula as above.

The logic LREC allows it to recursively define sets X of tuples based on graphs G that
have the |G|¥-path property for some k > 1.

We turn to the formal definition of the logic LREC. To define the syntax, let 7 be
a vocabulary. The set of all LREC|7]-formulas is obtained by extending the formula
formation rules of FO4C[r]| by the following rule: If w,v,w are compatible tuples of
variables, p, 7 are non-empty tuples of number variables, and g and ¢ are LREC|7]-
formulas, then

¢ = [lreca s @, pc)(w,T) (7.1)
is an LREC[7]-formula, and we let free(y) := (free(¢g)\ (@UD)) U ( free(¢c) \ (aUp)) U UT.

To define the semantics of LREC|7]-formulas, let A be a 7-structure and « an assignment
in A. The semantics of LREC[7]-formulas that are not of the form (7.1) is defined as
usual.

Let ¢ be an LREC[r]-formula of the form (7.1). We define a set X C A" x N recursively
as follows. We consider E := ¢g[A, a;u,v] as the edge relation of a directed graph
G with vertex set V := A%. Moreover, for each vertex a € V we think of the set
C(a) := {(n) | n € pc[A, afa/u];p]} of integers as the label of a. Let aE := {b € V | ab € E}
and Eb:= {a € V| ab € E}. Then, for all @ € V and £ € N,

(a,0) € X <= (>0 and HbedE’ <b, HE_EH)EX}

Notice that X contains only elements (a, ¢) with ¢ > 0. Hence, the recursion eventually
stops at £ = 0. We call X the relation defined by ¢ in (A, «). Finally, we let

€ C(a). (7.2)

(40) ¢ = (a(w),{a(r))) € X.

Example 295 (Boolean circuit evaluation). Let o := {E, Py, P, P, Py, P1}. A Boolean
circuit C' may be viewed as a o-structure, where E(C) is the edge relation of C, and
P,(C) contains all x-gates for x € {A,V,—,0,1}. Suppose C has the |C|-path-property.
Then,

©(2) == 3ry, 2 ((Irecayp wr, ©cl(2, (11,72)) AVr(r < ri Ar < ry))

with ¢g(z,y) := E(z,y) and
pc(z,p) == (Pa(z) ANty E(z,y) =p) V (Py(z) Ap > 0) V (P-(z) Ap=0)V Pi(x)

states that gate z evaluates to 1.
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For example, let C be the circuit in Figure 7.1, and let o be the assignment in C
mapping z to the root of Cy, 1 to 11, and ry to 11. Figure 7.4 shows the graph G = (V,E)
with V:= CY, E := ¢g[C4, a; x, y], and labels defined by ¢c. The vertices a—k of G are

Clz(VrEuP/\aPVuP—UPO)Pl)

where

P, = {avg}
P, = {b}
P = {d}
Py = {fal}

P = h,i k
011 0 111y T leemhiE

Figure 7.4.: The graph G for circuit C; from Example 295. Each vertex is labeled with a
subset of [0, 11].

precisely the vertices of C4, and each vertex is labeled with a subset of N(C7) = [0, 11].
Let X be the relation defined by [lrec, ,, @e, @c](z, (r1,72)) in (C1, ). Let £ > 0. For a
leaf v of G, we have (v,¢) € X if and only if 0 occurs in the label of v. Hence, (v,f) € X
for v € {c,e,h,j,k}, but (f,£) ¢ X and (i,¢) ¢ X. Since (e,?) € X, (f,1) € X and 1
occurs in the label of b, we also have (b,¢ + 1) € X. However, note that (g, + 1) ¢ X
because there are only three children v of g with (v,¢) € X, but 3 does not appear in the
label of g. Consequently, (d,¢+2) € X. Since we now have (b,/+2) € X, (¢,{+2) € X,
and (d,f + 2) € X, we have (a,f 4+ 3) € X. Hence, (a,¢) € X for all ¢ > 4, and in
particular for ¢ = (11,11). Therefore (C1, o) = .

For the circuit C; above, we could have replaced the tuple (71, 72) in the formula ¢ by a
single number variable r. Due to the subtraction of 1 and the rounding when recursively
evaluating whether (v,¢) € X for v € V and ¢ € N (see (7.2), the definition of X), a
single number variable r does not suffice for circuits C' that have the |C|-path property
in general. However, as circuits are acyclic, each path has length at most |C| — 1 and a
binary number (71, 72) suffices to compensate the subtractions and roundings. J

Example 296 (Deterministic transitive closure). Let G = (V, E) be a directed graph
and a,b € V. Then there is a deterministic path from a to b in G if there exists a path
V1,...,0, from a = v, to b = v, in G such that for every ¢ € [n — 1], v;41 is the unique
out-neighbor of v;. Figure 7.5a shows a directed graph with a deterministic path from ¢
to d.

Let 9 (u,v) be an LREC|r]-formula, and let 5, be tuples of variables such that u,, 5,

are pairwise compatible. We devise a formula ¢(5s,t) such that for any 7-structure A

and assignment « in A, we have (4, a) = ¢(5,t) if and only if in the graph G = (V, E)
defined by V := A" and E := ¢[A, a; u, 0] there is a deterministic path from «(5) to a(?).
Note that there is such a path precisely if, in the graph obtained from G by reversing the

edges, there is a path vy, ...,v; from «a(t) to «(5) such that for every i € [n — 1], vy is
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(a) A graph with a deterministic path (b) The associated labeled graph defined
from ¢ to d by ¢k and ¢

Figure 7.5.: Illustrations for Example 296

the unique in-neighbor of v;. Therefore, we can choose ¢ like this:

o = Irllrecyap pe(v, 1), wc(v,p)](t,7), (7.3)

where p and 7 are |u|-tuples of number variables, and
ee(v,1) = ¥(u,0) AV ((u,0) - 0 =10), @c(v,p) :=0=5V(0#5Ap#0).

Informally, g (v, u) removes all edges ab of G, where a has more than one out-neighbor,
and reverses the remaining edges. All that remains is to check whether there is a path

from «a(t) to a(s) in the graph defined by ¢g. The node labeling formula ¢¢ is chosen
in such a way that the latter is true if and only if («a(t),¢), for an £ < |V, appears in
the relation X defined by [lrecs a5 ¢e, @cl(t,7) in (A4, «). If, for example, G is the graph
in Figure 7.5a, and if «(5) = ¢ and a(t) = d, then the labeled graph defined by ¢g and
¢c is as shown in Figure 7.5b, and it is easy to see that (d,4) € X, while, for example,

(e,0) ¢ X for all £ > 0. 4

As from now, we use

[dtcas ¥)(5,1) (7.4)

as an abbreviation for the LREC-formula in (7.3). It follows that DTC < LREC. Hence,
we can do simple arithmetics in LREC, for example, addition and multiplication; we can
also use the formula #u1y = p (where u is a tuple of individual variables) to express that
{a € A" | (A, afa/u)) E ¢} = (a(p)), in a structure A with an assignment « in A.

Remark 297. In the preceding example, the set X turned out to possess a certain
monotonicity property: If (a,¢) € X for some £, then (a,?¢') € X for all ¢/ > ¢. In general,
however, the relation X defined by an lIrec-operator does not possess this property.
For instance, consider the circuit C; from Example 295, only now, let ¢ € P;. Then
C(i) = [0, 11], and the relation X contains (d, 1) and (d,2), but not (d, 3). 4

Example 298 (Reachability on graphs with maximum degree 2). Let H be the class of
all graphs H where each vertex has degree at most 2. By using the formula expressing
deterministic reachability from Example 296, we show that there exists an LREC-formula
¢ expressing reachability on H. Consider

Y(z,y) = E(z,2") NE(y,y) Na' =y Nz # )
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7. The Logic LREC

where z = (z,2) and y = (y,v’). For each graph H € H, let G’ = (V', E’) be the directed
graph defined by V' := H® and E’ := ¢[H;z,y]. It is easy to see that |aF’| < 1 for all
a € V'. Further, let a,b € V(H) such that a # b, and a and b are not adjacent. Then a is
connected to b in H, that is, there exists a path a = ag, a1, ..., a,, = boflengthm > 2in H,
precisely if there exists a directed path (a,a’) = (ag, a1), (a1,a2), ..., (am-1,am) = (V',b)
of length m —1 > 1 in G’, that is, there exist o/, b’ € V(H) such that o’ # b and (a, d’) is
connected to (b',b) in G'. Thus,

(s, t) :=s =1tV E(s,t) VI (s £t Al[dtczz ¥](s,$,t,1))

defines reachability on H. J

The following theorem shows that the data complexity of LREC is in LOGSPACE.

Theorem 299. For every vocabulary 7, and every LREC[7|-formula ¢ there is a deter-
ministic logspace Turing machine that, given a T-structure A and an assignment o in A,
decides whether (A, a) E ¢.

Proof. We proceed by induction on the structure of ¢. The case where ¢ is not of the
form (7.1) is easy. Let ¢ be of the form (7.1), i.e., let

¢ = [lrecasp ¢E, wc)(W0,T).

Let G = (V,E) be the graph with vertex set V = A" and edge set E = ¢g[A, a; 4, ).
Further, let C(a) := {(n) | n € ¢c[A, afu/a];p]} for all @ € V, and let X C V x N be the
relation defined by ¢ in (A4, ). We construct a deterministic logspace Turing machine
that decides whether (a(w), (a(r))) € X.

The machine is constructed in two steps. The first step consists of constructing a
deterministic logspace Turing machine M; that, given A and « as input, computes a
labeled directed tree T that is obtained basically from “unraveling G starting at o(w)
with “resource” (a(r)). The second step is to devise a deterministic logspace Turing
machine M that takes T" as input and decides whether its root, (a(w), (a(7))), belongs
to X. The composition of M; and M, finally yields the desired machine.

We define a labeled directed tree T" whose set W of vertices consists of all the sequences
((ag, o), - .., (@m, L)) of pairs from V x N for some m € N such that

L. (ao, bo) = (e(w), (a(r))),
2. a;+1 € a;E for all ¢ < m, and
3. iy = [ﬁj for all i < m.

There is an edge from ((ao, £o), - - -, (@m, m)) to ((ag, &), - ., (@, £..)) in Tif m' = m+1,
and (a;, 0;) = (a;,¢;) for all ¢ < m. We label each vertex v = ((ao, %), - - -, (@m,lm)) € W
with the set C(v) := C(a,,), and with the number fail(v) € {0,1} such that fail(v) = 1 iff
l, = 0. Note that fail(v) =1 only if v is a leaf in T. Clearly, T is a labeled directed tree

rooted at («a(w), (a(r))).
Define Y C W such that

veY <= |[{weY |wisachild of v}| € C(v) and fail(v) =0 (for every v e W).
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Claim 1. For every v = ((ao,%);--.,(am,%m)) € W we have v € Y if and only if
(@m, b)) € X. In particular, (a(w), («(7))) € X if and only if (a(w), (a(7))) € Y.

Proof. The proof is by induction on the rank r, of v in T If v is a leaf in T, then r, = 0;
and if v is not a leaf in T, then r, is one more than the maximum of the ranks of v’s
children. For every v = ((ag, 4o), - -, (@m, lm)) € W, let A(v) := (am, lm)-

Suppose that r, = 0, that is, v is a leaf in 7. Consider (a,¢) = A(v). Then aE is the
empty set or £ = 0. First consider the case that ¢ = 0. In this case, (a,f) ¢ X by the
definition of X, and we have fail(v) = 1, which implies v ¢ Y. Next consider the case
that aE is the empty set and ¢ > 0. In this case,

VEY <= 0ec(v)=Ca) < (a0 € X,

as desired.

Suppose now that r, = r + 1, and that the claim is true for vertices w with r,, < r. In
particular, since v is not a leaf we must have fail(v) = 0. This implies £ > 0, and

veY < |[{weY |wisa child of v}| € C(v)

<= |{Mw) € X | wis a child of v}| € C(v) by the induction hypothesis.
(7.5)

Let W’ be the set of all children w of v such that AM(w) € X, and let f: W' — A" be
such that for all w € W/, f(w) is the first component of A(w). Then f is a bijection from

W' to the set of all tuples b € aE with

-1
<b, WD e x. (76)

As a consequence, the number of all tuples b € aE with (7.6) is precisely |[W’|. Hence, by
(7.5) and £ > 0,

veY < [W'ec(v)=Ca) < Av)=(a,l) eX. N

By Claim 1, it suffices to compute T, and use 7" to decide whether its root, (a(w), («(7))),
belongs to Y. This is precisely what the two machines M; and M, mentioned at the
beginning of this proof do. We now prove the existence of such machines.

Claim 2. There is a deterministic logspace Turing machine that takes A and « as input
and outputs 7.

Proof. We first construct a deterministic logspace Turing machine M that takes A and
« as input and outputs the vertices of T' (represented as sequences ((ag, o), - - -, (Gm, &m))
as above). This machine makes use of a deterministic logspace Turing machine Mg that
takes A, o and a pair (a,b) € V? as input and decides whether ab € E. Such a machine
exists by the induction hypothesis. Once M is constructed, we can easily compute the
edges and the labels of T, using a deterministic logspace Turing machine for computing
the labels C(a) for each a € V as guaranteed by the induction hypothesis.
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7. The Logic LREC

In what follows, we describe how M computes the vertices of T from A and . We basically
do a depth-first traversal (cf. Section 2.8.1) in G starting in o(w) with “resources” (a(r)).
Let k' be the length |w| of tuple w and k be the length |7| of tuple 7. In each step, we
visit some vertex a € V with available “resources” ¢ < |N(A)|*. We also maintain the
length m of the (non-simple) path P = (ay, ..., a,,) on which a = a,, was reached from
a(w) = ag, and for each i € [m] a number e; € [0, |Ea;| — 1] with the following property.
For each b € A% let by, ... ,Bp be the elements of Eb ordered lexicographically according
to their representation in the input string. Let pre(b, i) := b;. Then the number e; will
have the property that a;,_; = pre(a;, e;). As long as [ > 0, i.e. our “resources” suffice,
we move from @ to some vertex b € GE, and we update £ to be

decr(¢,b) = V_ 1J .

|Eb|
This ensures that the space needed to store the numbers ey, ..., e, is logarithmic in
|W| (which we shall prove later). Finally, upon visiting a = a,,, we write the sequence
(@0, %), ..., (@m,¥tm) to the output tape, where the ¢; are the values for the available

“resources” ¢ maintained along the (non-simple) path P.

More precisely, we proceed as follows. In each step, we store a € V, m € N and numbers
€1,-..,em, additionally to the given values a(w) and [y := («(7)). (In the first step, we
let a := a(w) and m :=0.) Let ag,...,a, be such that a,, = a, and a,_; = pre(a;, e;)
for each i € [m]. (We will have ap = a(w) in each step.) Further, let 4y, ..., ¥, be such
that ¢; = decr(¢;_1, a;) for each i € [m]. Let ¢ := {,,. Notice that each of the a; and ¢;
can be computed in logarithmic space given a, m, ey, ..., ey, ¢ and [y as input. For all
b € V let <; be the linear order on bE that corresponds to the lexicographic order on the
representations of the vertices in bE in the input string. We can perform the following
moves:

e down: If GE # () and ¢ > 0, then we update a to be the first element in the linear
order <; on aE, we increase m by one, and we let e,, be such that a,,—1 = pre(a, e,,).

e over: If m > 0 and a is not the last element in <z ,, then we update a to be
the successor of a with respect to <z, _,, we keep m, and we update e,, such that
am—1 = pre(a, ep,).

e up: If m > 0, we update a to be a,,_1, and decrease m by one.

The following procedure outputs all the vertices of T. Let a := a(w) and m := 0. We
repeat the following:

1. If the last move was down, over or there was no last move, this corresponds to
a first visit of the vertex a with ¢ on the current path. Therefore, we write the
sequence (ag, £o), - .-, (Gm, ) to the output tape. Then we perform the first move
out of down, over or up that succeeds.

2. If the last move was up, this corresponds to a return from a child b of @. Therefore,
we do not write anything to the output tape. We perform the first move out of
over or up that succeeds.

Maintaining the vertex a € V and the last move needs space O(log |U(A)|). Notice that

by = (a(M) < (UA)]+1)F - 1. (7.7)
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Since ¢; = decr(l;—1,a;) < ¢;—1 — 1 for every i € [m], this implies
m < by — Ly < by < (JUA)|+ 1"
Hence, m can be maintained in space O(log |U(A)]).

Now, ¢; = VEL}LTJ < |ZET_1| yields |Ea;| < le for i < m, as £; > 0 for all ¢ < m. Therefore,

a ¢ /
[TIEad < 7 - [Eau] < fo- Bl < (U(A)] + 1", (78)
i=1 m—

where the last inequality follows from (7.7). Each of the numbers e; needs space
n; := [logy|Ea;|]. Let Z be the set of all i € [m] with |Ea;| > 2. As 27 < [, |Eay|, we
have |Z| < logy(|U(A)| 4+ 1) by (7.8). Hence,

m (7.8) )
Yo=Y [logylEai|] < |Z| +1log, [[IEa:| < 2log,(JU(A)] + 1)*.
i=1 i€l i€T

As a consequence, we can store the numbers eq,...,e, as a single number e with

1 = 2logy(|U(A)| + 1)F+F bits, reserving ; bits in e for the number e;. We reserve the
last 7, bits for e,,, of the remaining bits we reserve the last 7,,_1 bits for e,,_1, and so
on. To extract e; from e, we start by computing 7, from a = a,,. Let e,, be the number
represented by the last 7, bits of e, and let a,,—1 := pre(am,, e,,). We then compute 7,1
from a,,_1, let e,,,_1 be the number corresponding to bits 7 — 1y, — m—1 + 1 to n — nyy, of
e, and let @,,—o := pre(@m—1, €m—1). We continue this way until e; is found. J

Claim 3. There is a deterministic logspace Turing machine that takes T as input and
decides whether the root (a(w), («a(7))) of T belongs to Y.

Proof. Let vy := (a(w), (a(7))). On input T, a deterministic logspace Turing machine can
decide whether vy € Y as follows. The idea is to traverse the tree in a depth-first fashion
(see Section 2.8.1), and count, for each node that is visited, the number of children that
belong to Y. To implement this in logarithmic space, we proceed in steps as follows.

In each step, we are in a node v of T, which is vy in the first step. With each node v;
on the path vy, v1,...,v, from vy to v = v,, we associate £,(i) bits of memory for a
counter ¢(i) from 0 to 2 — 1, where £,(i) will be specified below. The counter c(i)
counts the number of children of v; that have already been processed and belong to Y
(excluding the child of v; in whose subtree we are currently in). We guarantee that the
sum of the numbers ¢, (i) over i € [0,m] is bounded by 3 - log,|W|. Moreover, it will be
easy to determine /,(7) from v and i in logspace; so we can store the counters in a bit
string of length at most 3 -log,|WW|, and identify the bits that belong to ¢(i) from that bit
string in logspace, given v and i. We ensure that there is always enough space to keep
the counters in memory by visiting the children of each node in decreasing order of the
number of nodes in the children’s subtrees.

We need the following definitions and assumptions:

e The size s(v) of a node v € W is the number of nodes in the subtree of T rooted
at v. It is easy to compute this number in logarithmic space: all we need to do
is to initialize a counter, iterate over all nodes of T, and for each such node move
upwards and increment the counter by 1 if v is reached.
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7. The Logic LREC

e Let v € W, and let wy, ..., w, be the children of v such that s(w;) > s(wy) > --- >
s(wyp); children of the same size are ordered in lexicographic order based on their
representation in the input string. For each node, we suppose that its children are
ordered this way. Let child(v, j) := wj; for every j € [p]. The node child(v, j) is
easy to compute in logarithmic space, given v and j.

e Let v e W, let vg,vy,...,v, be the path from vy to v, and let i € [0, m]. Then

(i) = [Mog2d]s  ifi <m and child(vij) = v,
o [log,|W[], ifi=m.?

This number is easy to compute in logspace given v and ¢ as input.

In the following we extend the depth-first tree traversal from Section 2.8.1 such that at
each node v the counters ¢(i), ¢ € [0, m], of the ancestors of v are computed as well. At
each step, we need to remember the current node v, m, the counters ¢(0),...,c(m) and
our last move. We extend the moves of the depth-first tree traversal from Section 2.8.1
as follows:

e down: If v has children, then we update v to be the first child of v, we increase m
by one, and set ¢(m) := 0.

e over: If m > 0 and v is not the last child of its parent node, then we increase
c¢(m—1) by one if ¢(m) € C(v) and fail(v) = 0 (we finished processing v), we update
v to be its next sibling, and set ¢(m) := 0.

e up: If m > 0, we increase c¢(m — 1) by one if ¢(m) € C(v) and fail(v) = 0 (we
finished processing v), we update v to be its parent node, and decrease m by one.

Now, in the initial step, we set v := vy, m := 0 and ¢(0) := 0. We repeat the following
until no further move is possible, in which case we have reached the root of the tree.
Then, we “accept” if and only if ¢(0) € C(vg) and fail(vy) = 0.

1. If our last move was down, over or there was no last move, we perform the first
move out of down, over or up that succeeds.

2. If our last move was up, then we are backtracking and we perform the first move
out of over or up that succeeds.

It should be clear that this procedure correctly decides whether vy € Y.

Concerning the space for the counters, let jo, j1,. .., jm—1 be such that child(v;, j;) = vit1
for every ¢ < m. Then

Y (i) =Y Mlogyjil < Y (L+logyjs) = [{i <m|j; =2} +log, [[gi  (7.9)
i<m i<m <m <m
Jji>2 ji>2

Now let us consider the size s(v;41) of the nodes v; 1 for every i € [0,m — 1]. We have

s(vig1) < s(v) for every i € [0,m — 1]. (7.10)

7

To see this, let us consider w; := child(v;, j) for every j < j;. By the choice of child(,-),
we have s(w;) > -+ > s(wj;,). Consequently, if s(wj,) = s(viy1) > s(vi)/ji, then

2 This ensures that £, (m) is easy to compute in logarithmic space as well.
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s(wy) + -+ + s(wj,) > s(v;), which is impossible. As a consequence of (7.10), we have

. . . (7.10) S(UZ') S(Uo)
> 2 log, | W d ; _ < Wl
i <m|ji=2}| <log[W|  an 11 < 11 W]

a i<m i<m (’Ui+1) S(Um)

(7.11)

Altogether, this yields

N9 . : (7.11)
ZEU(Z) < {i<m]|j; > 2} +log, H Ji Flogs|W|+1 < 3logy|W|+1,

i<m <m
which implies }, ., £,(i) < 3logy|W|. 4
Altogether, this concludes the proof of Theorem 299. OJ

Remark 300. It follows from Example 296 that DTC+C < LREC. This containment is
strict as directed tree isomorphism is definable in LREC (we will show this in the next
chapter), but not in DTC+C [18]. On the other hand, it is easy to see that the relation X
defined by an LREC-formula of the form (7.1) in an interpretation (A, ) can be defined
in fixed-point logic with counting. Hence, LREC < FP+C, and this containment is strict
since we show in Chapter 9 that undirected graph reachability is not LREC-definable. _
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8. Capturing LOGSPACE on Directed Trees

In this chapter we show that LREC captures LOGSPACE on the class of all directed trees.
Our construction is based on Lindell’s logspace tree canonization algorithm [53]. Note,
however, that Lindell’s algorithm makes essential use of a linear order on the tree’s
vertices that is given implicitly by the encoding of the tree. Here we do not have such a
linear order, so we cannot directly translate Lindell’s algorithm into an LREC-formula.
We show that we can circumvent using the linear order if we have a formula for directed
tree isomorphism. Hence, our first task is to construct such a formula.

8.1. Directed Tree Isomorphism

Let T be a directed tree. For every node v € V(T') let T, be the subtree of T" rooted at
v, let size(v) := |V(T,)| be the size of v, and let #,(v) be the number of children of v of
size s. We construct an LREC[{ E'}]-formula ¢~ (x,y) that is true in a directed tree 7" with
interpretations v,w € V(T') for z,y if and only if T, = T,,. We assume that |V (T")| > 4,
but it is easy to adapt the construction to directed trees with less than 4 vertices.

We implement the following recursive procedure to check whether T, = T,,:

1. If size(v) # size(w) or if #,(v) # #,(w) for some s € [0, |V (T})| — 1], then return
“T, % Ty
2. If for all children ¥ of v there is a child % of w and a number k such that
a) Ty = Ty,
b) there are exactly k children w of w with T} = T, and
c) there are exactly k children ¢ of v with T; = Ty,
then return “T, = T,,".
3. Return “T,, 27T,

Clearly, this procedure outputs “T, = T,,” if and only if T,, = T,,.

To simplify the presentation we fix a directed tree T" and an assignment « in 7', but the
construction will be uniform in T and «.

We construct a directed graph G = (V,E) with labels C(v) C N for each v € V as follows.
Let V:= N(T)xV(T)*x N(T). The first component of each vertex is its type; the meaning
of the other components will become clear soon. Although G will not be a tree, it is
helpful to think of it as a decision tree for deciding T, & T;,. For each pair (v, w) € V(T)?
we designate the vertex a, ., = (0,v,w,v,w,0) to stand for “T,, = T,,”. Let us call (v, w)
easy if v, w satisfy the condition in line 1 of the procedure (i.e., size(v) # size(w), or
#.(v) # #,(w) for some s € [0,|V(T,)| — 1]). Note that the set of all such easy pairs
is LREC-definable.! If (v,w) is easy, then a,,, has no outgoing edges and C(a,.,) = 0.

! Using the dtc-operator (7.4) from Example 296 we can construct an LREC[{E}]-formula defining the
descendant relation between vertices in a directed tree, and using this formula it is easy to determine
the size and the number of children of size s of a vertex.

202
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n = # children of v

n >0

=0
av,w,f;,ﬁz,k ‘ av,w,ﬁ,ﬁ),k

v v

Q1 Qi

n==% ‘n:k

Figure 8.1.: Sketch of “decision tree” for deciding T}, = T,,. Here, 0,0 range over the chil-
dren of v; w, w range over the children of w; and k € [#g,e(s)(v)]. Moreover,
0,0, W, w all have the same size. Labels indicate which integers n belong to
the set C(a) labeling each vertex a. If ¥ is the only child of v of size size(?d),
then a; 4 is the only child of @y w60 k-

On the other hand, if (v, w) is not easy, then G contains the following edges and labels
(see Figure 8.1 for an illustration):

e The vertex a,, has an outgoing edge to ay w4 = (1,v,w,d,w,0), for each child
0 of v. Furthermore, C(a@y,.) = {n} where n is the number of children of v. This
corresponds to “for all children ¢ of v...” in the above procedure’s step 2.

e The vertex a,.  has an outgoing edge to Gy w00,k = (2,v,w, 0,0, k), for each
child @ of w with size() = size(d) and each k € [#,e;)(v)]. Furthermore,
C(@yw,n) = N(T) \ {0}. This branching corresponds to “...there is a child @ of w
and a number k such that...”.

e The vertex a, 4, has an outgoing edge to as . If ¥ is the only child of v of
size size(?), then this is the only outgoing edge, and we let C(ayuwsmk) = {1}
Otherwise, there are additional outgoing edges to di’w’ﬁvak =3+ i,v,w,0,%,k)
for i € {0,1}, and we let C(@yw.0.0,k) = {3}. This corresponds to conditions 2a—2c.

e The vertex a’ i has outgoing edges to a; . for each child w of w of size size(?),

v,w,0,W,

and @, ,, 5, has outgoing edges to @,y for each child ¢ of v of size size(w) = size(0).
Furthermore, C(al, ,, ;5 4) = {k}. The vertex a;, ,, ; ; , corresponds to condition 2b

for ¢ = 0, and to 2c for : = 1.

From the above description it should be easy to construct LREC[{ E'}]-formulas ¢g(u, u)
and ¢c(u,p) with variable tuples u = (¢, x,y, 2,9, qr) and @' = (¢, 2,y 2,7, q},), such
that pg[T;u,u'] = E, and [T, a; p| = C(a) for each a € V.

Let
qu(xv y) = dr (“v"ﬂ r Z fh’ A [lrecﬁ,ﬂ',p PE, QOC}(<07 xr,Y,x,Y, O)v f));

where 7 is a 4-tuple of number variables. Let X be the relation defined by ¢~ in (T, ).
Then:

Lemma 301. For all v,w € V(T) and all £ > size(v)*,
(G, l) €X <= T,=T,.

Proof. The proof is by induction on size(v). Let size(v) = 1. If (ay 4, £) € X, then (v, w)
is not easy, which implies size(w) = 1 and hence T,, = T,,. Now suppose that T, = T,,.
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8. Capturing LOGSPACE on Directed Trees

Then size(w) = 1 which implies that (v, w) is not easy. Furthermore, as v has no children
in T', we know that @, , has no children in G and C(a,,,) = {0}. Hence, (ay,¢) € X for
all £ > 1 = size(v)™.

In order to show Lemma 301 for vertices v € V(T') with size(v) > 1, let us observe the
following. All vertices in Figure 8.1 except the type O-vertices have exactly one incoming
edge. For the in-degree of a type 0-vertex a,,s we show the following claim.

Claim 302. Let (v,w) be not easy. Let v' be a child of v of size s, and let w' be a child
of w of size s' in T. Further, let G, be a type 0-vertex.

a) If #4(v) =1, the in-degree dy y Of Gy is 1.
b) If #4(v) > 1, the in-degree dyw Of Gy is at most d := 3 - #, (v)>.

Proof. First note that vertex a,.,s can only have incoming edges from

1. vertices Gy /' k, where v and w are the (unique) parents of v’ and w’, respectively,
and k € [#, (v)];

cos g0
2. vertices @y, , 1 ks

cog gl
3. vertices @, , 4 ks

where v, w, k are as above and @ is a child of w of size s’; and
where v, w, k are as above and 9 is a child of v of size s'.

Let us deal with the case that #,, (v) > 1 first. Then clearly each of the three cases above
yields at most #, (v)? incoming edges. Hence, the in-degree of @, is at most d.

Now let #,,(v) = 1. Then case 1 yields one incoming edge for vertex @, , . Next, let
us consider case 3. Since v’ is the only child of v of size s, vertex ay ,, ., is the only
candidate for an incoming edge. But as #, (v) = 1, vertex @, is the only child of
Qy,w,0w',1- Hence, there are no edges adjacent to vertex &11}7w7v,7w,’1. Similarly, we can show
for case 2 that there cannot exist an incoming edge from a vertex angm@w,@l where w” is
a child of w of size s. As a consequence, a,, has exactly 1 incoming edge. J

We use Claim 302 to prove the following claim.

Claim 303. Let (v,w) be not easy. Let v' be a child of v of size s, and let w' be a child
of w of size s in T. Further, let G,y be a type O-vertex, and let dy,. be the in-degree of
vertex yyy . If £ > size(v)?, then €' > (s')%, where

a) L(K - 3)/dv’,w/J if #o (?.}) =1, and
b) = L(f - 4)/dv’,w/J Zf #S,(U) > 1.

A
AR

Proof. Let s :=size(v) — 1. We have s > s’ > 1.

a) If #,(v) =1, then d,,v =1 by Claim 302, and we have

U=0-3>(s+1D'=3>s">(s)
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b) If #, (v) > 1, then dy,y < d where d =3 - #,/(v)? by Claim 302, and we have

(-4 -4 x / 4 (s+1)% ® st+4.53
"> -1>—-1> -- -1>——-2>—— -2
= dv/@/ - d —d 3.22 - d - d
s H#o () () H4-# (0 () #o (V) 1 4 H#He(V) g
> 2 > M) — T (6?2
* 2 .
226 20 -2 > ()

For the inequalities marked by the symbol “x” we use #,(v) > 2, the inequality
marked by “®7” is a consequence of the binomial theorem, and for the inequality

marked by “x” we use s > #,/(v) - s a

Now let size(v) > 1. Let £ > size(v)*. We show that (@, ., ¢) € X if and only if T, & T,
for all v,w € V(T') where (v, w) is not easy. Since (@, ., ¥¢) € X as well as T,, = T, implies
that (v, w) is not easy, we obtain that the statements “(a,,¢) € X” and “T, = T,,” are
equivalent for all v,w € V(7).

Let (v, w) be not easy. This implies that size(w) = size(v) and #,(v) = #,(w) for all
t € N. It is easy to see that (a,.,¢) € X if and only if (@, ,6,¢ — 1) € X for all children
0 of v in T'. This again is precisely the case if for all children ¢ of v in T there is a child
W of w of size § := size(?) in T and a number k € [#;(v)] such that (ay.w,e0k ¢ —2) € X.
If we continue this and go through the complete “decision tree” from Figure 8.1, we
obtain that (@, ¢) € X if and only if for all children © of v in T there is a child @ of w
of size § :=size(?) in T and a number k € [#;(v)] such that

* (@0, [(—3)/dsa]) € X,

o there are exactly k children w of w of size § such that (as., |(€ —4)/dow]) € X if
#:(v) > 1, and

o there are exactly k children ¢ of v of size § such that (asw, (¢ —4)/dsw]) € X if
#5(’0) > 17

where d,,» denotes the in-degree of vertex @, for all v,w’ € V(T). By Claim 303 and
the induction hypothesis, this is equivalent to: For all children © of v in T there is a
child @ of w of size § := size(?) in T and a number k € [#;(v)] such that

o T =Ty,
o there are exactly k children w of w of size § such that T}, = T} if #,(v) > 1, and
e there are exactly k children v of v of size § such that Ty = Ty, if #,(v) > 1.

As T,y = T,y implies size(v') = size(w’) for all v/, w’ € V(T') and the last two properties
hold for k = 1 if #;(v) = 1, this corresponds to Step 2 of the procedure given at the
beginning of Section 8.1, which is equivalent to T, = T,, for not easy pairs (v, w). O

Corollary 304. Let v,w € V(T)?. Then, T = ¢=[v,w] if and only if T, = T,.

Proof. Let v,w € V(T)?. Then T = ¢~[v,w] holds precisely if (@, ., |N(T)|" —1) € X.
Furthermore, |N(T)|" — 1 > |[V(T)* > size(v)*. Therefore, by the preceding lemma,
(@, IN(T)|" = 1) € X is equivalent to T, = T, and the corollary follows. O
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8. Capturing LOGSPACE on Directed Trees
8.2. Defining an Order on Directed Trees

Lindell’s tree canonization algorithm is based on a logspace-computable linear order on
isomorphism classes of directed trees. We show that a slightly refined version of this
order is LREC-definable.

Let T be a directed tree. For each v € V(T) let 7 (v) 1= (size(v), #1(v), - - ., #aino()—1(v))
be the profile of v.2 Let < be the total preorder on V(T), where v < w whenever
m(v) < 7(w) lexicographically, or 7(v) = w(w) and the following is true:

(A) Let vy,...,vy, and wy,...,w,, be the children of v and w, respectively, ordered
such that v; < --- < v, and wy =< -+ < wy,. Then there is an i € [m] with v; < w;,
and for all j < i we have v; < w; and w; < v;.

Note that v < w and w < v if, and only if, T,, = T,,. We denote v < w and w =< v by
v ~ w. We show that < is LREC-definable.

In order to do this, we first present a statement (B) that is equivalent to (A). For all
t,u € V(T) let 6,(t) be the number of children « of u with u' ~ ¢. We call a child ¢
of v good if 0,(0) > 60,(0) and for all children v' of v with size(v') < size(?) we have

0, (v) = 0, (V)).

(B) There is a good child ¢ of v, a child @ of w of size s := size(?) and a k € [0, #,(v) —1]
such that:
1. there are exactly k children w of w of size s with w < ¥;
and if k£ > 0, then
2. for all k children w’ of w of size s with w’ < © we have 6, (w') = 0,,(w');
3. W <7
4. there are exactly k — 6,(@) children v of v of size s with v < ; and
5. for all k — 6,(w) children v’ of v of size s with v" < @ we have 6,(v") = 6,,(v").

Lemma 305. Let v, w be nodes of a directed tree T, and w(v) = w(w). Then (A) and (B)
are equivalent.

Proof. Let v,w be nodes of T, and 7(v) = 7(w). First, we show that (A) implies (B).
Let v1,..., U, w1,...,wy, and i € [m] be as in (A). Notice that for all nodes v/, w’ of T,
size(v') < size(w’) implies v/ < w. We let © := v;. Clearly, v; is a good child. Let
s 1= size(0). Let [[,1'] C [m] be the set of indices j where size(v;) = s (which is precisely
the case if size(w;) = s). If there does not exists a j € [I,!'] such that w; < v;, we let
k := 0 and & be an arbitrary child of w of size s. Then all conditions of (B) are satisfied.
Now suppose there is a j € [[,{'] such that w; < v; and let j be maximal. Then, we let
W :=w; and k := j — [+ 1. Again, it is not hard to verify that that all conditions of (B)
are satisfied.

Next, we prove that (B) implies (A). Let 0, w, s and k be as in (B), and let vy,..., v,
and wi,...,w, be the children of v and w, respectively, such that v; < --- < v, and
wy = -+ 2wy, Let [[,I'] C [m] be again the set of indices j where size(v;) = s. As 0
is a good child and 7(v) = m(w), we have v; ~ w; for all j < [. Thus, without loss of
generality assume | = 1. If £ = 0, then 0 < w; (condition 1), and therefore v; < w;.

2 Lindell’s order can be obtained by replacing 7(v) with 7’(v) := (size(v), #children of v).
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8.2. Defining an Order on Directed Trees

If v1 < wy, then statement (B) is satisfied with 7 := 1. If v; ~ wy, then ¥ ~ w;, and (B)
is satisfied for ¢ := 6,,(w1) + 1 as ¥ is a good child. Now let k£ > 0. By condition 1 we
have wy < © and U < wgy1. Condition 2 implies that there are indices i1, ..., with
i1 < --- < i such that v;; >~ w; for all j € [k]. Let ¥’ be maximal such that v ~ wy.
Then k" = i;. Condition 2 also yields that we have 0, (v;) = 6,,(v;) only for those j € []
where j = i, for an r € [k]. Since & < ¥ (condition 3), there exists a j € [k] such that
W = w; and 0,(0) = 6,(0). It follows from condition 4 and 5 that ¥’ = k and vy, ~ .
Thus, v; ~ w; for all j € [k]. Now we can argue analogous to the case where k = 0: As
0 < W41, we have vg11 = Wgt1. If Vg1 < Wiy1, then statement (B) is satisfied with
i:=k+1. If vgyq ~ wiy, then 0 ~ w1, and (B) is satisfied for i := k + 0y, (wi1) + 1
as ¥ is a good child. O

To simplify the presentation, we again fix a directed tree T' and an assignment «, and we
assume that |V(T')| > 5.

We apply the lrec-operator to the following graph G = (V,E) with labels C(v) C N for
each v € V. Let V:= N(T) x V(T)* x N(T). For each (v,w) € V(T)?, the vertex
Ay = (0,v,w,v,w,0) represents “v < w”. If 7(v) < w(w), then a,,, has no outgoing
edges and C(ay,,) = {0}. If 7(v) > 7(w), then a,,, has no outgoing edges and C(ay,,) = 0.
Note that the relation “m(v) < m(w)” is LREC-definable. Suppose that 7(v) = w(w).
Then G contains the following edges and labels, and the “decision tree” in Figure 8.2
checks precisely the conditions in (B).

Figure 8.2.: Gadget for deciding v < w when 7(v) = w(w). Here, 0 ranges over good
children of v, nodes @, w,w’ range over children of w, nodes ©,v' over
children of v, and k € [0, #gj,e(3)(v) — 1]. Moreover, w, 1w, w’,9,v" all have
size s := size(?), and 0,(w’) = 6,,(w’) and 6,(v') = 0,,(v'). The dashed edges
from @y .50, to s and to &i’w’@mk for i € {1,2,3}, exist only if £ > 0.
Labels indicate which integers n belong to the set C(a) labeling each vertex a.

e The vertex a,,, has an outgoing edge to Gy 5.0,k = (1, v, w, D, 0, k), for each good
child ¢ of v, each child @ of w of size s := size(d) and each k € [0, #,(v) — 1].
Furthermore, C(ay,,) = N(T)\{0}. This branching corresponds to “There is a good
child ¥ of v, a child @ of w of size s := size(0) and a k € [0, #,(v) — 1] such that...”
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8. Capturing LOGSPACE on Directed Trees

e The vertex @y w0,k has an outgoing edge to aj , 5 41 = (2,v,w,9,W, k). If k=0,
this is the only outgoing edge, and we let C(@yws.wk) = {1}. Otherwise, there
are additional outgoing edges to a4 and to &i’w’@mk = (24 4,v,w, 0,0, k) for all
i € {1,2,3}, and we let C(Gywsw,k) = {b}. This corresponds to conditions 1-5
in (B).

e The vertex &SM@@,

size(0), and a,,, ; 4 has outgoing edges to @, for each child w' of w of size

size(w') = size(v) with 0,(w’) = 6,(w’). Note that 6,(w') = 6,(w’) is LREC-

definable. Furthermore, C(a, , ;%) = {k} for i € {0,1}. The vertex a , ; o1

corresponds to condition 1 for ¢ = 0, and to 2 for ¢ = 1.

e The vertex a2, ; » » has outgoing edges to @ for each child ¢ of v of size size(w),

. has outgoing edges to ay; for each child w of w of size

and @, ; 4 has outgoing edges to @, 4 for each child v’ of v of size size(v') =
size(w) with 6,(v') = 0,,(v"). Moreover, C(al, , 5 5x) = {k — 0,(@)} for i € {2,3}.

The vertex at

.00,k corresponds to condition 4 for ¢ = 2, and to 5 for 7 = 3.

Using the formula ¢~ from the previous section it is now straightforward to construct
LREC[{ E'})-formulas ¢g(u, ') and ¢c(u,p) that define the edge relation E of G and the
sets C(a) for each a € V, where u and @' are as in the definition of ¢~. Let

d=<(z,y) == Ir (V' 7 > 77 A(lrecaap e, @c)((0,2,y,2,9,0),7),

where 7 is a 5-tuple of number variables. Let X be the relation defined by ¢~ in (7', «v).
We then have:

Lemma 306. For all v,w € V(T) and all | > size(v)?,

(Qpuw,l) €X <= v=<w.

Proof. The proof is similar to the proof of Lemma 301.

We prove this lemma by induction on size(v). Suppose size(v) = 1. If v < w, then
m(v) < m(w), and by the construction of G this immediately implies (@, ., ¢) € X for all
0> 1 = size(v)5. Now let (Gyu,¢) € X. Then 7(v) < m(w). We cannot have 7(v) = 7(w),
because then 0 ¢ C(a,.) (see Figure 8.2), so that X would contain at least one tuple of
the form ((1,v,w,?,-,-),¢ — 1) with ¢ a child of v. But such a tuple does not exist, since
v has no children. It follows that 7w(v) < m(w) which implies v < w.

In order to show Lemma 306 for vertices v € V(T') with size(v) > 1, let us consider the
in-degrees of the vertices of G first. All vertices in Figure 8.2 except the type O-vertices
have exactly one incoming edge. For the in-degree of a type O-vertex a,,  we show the
following claim.

Claim 307. Let w(v) = w(w). Let v’ be a child of v of size s/, and let w' be a child of w
of size s' in T. Further, let Gy, be a type O-vertex.

a) If #4(v) =1, the in-degree dy y Of Gy is at most 1.
b) If #4(v) > 1, the in-degree dyy Of Gy is at most d :=5 - #,,(v)>.
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Proof. Vertex a,,, can only have incoming edges from

1. vertices Gy k, Where v and w are the (unique) parents of v' and w’, respectively,
and k + 1 € [#,(v)] (note that #,, (v) = #, (w) since w(v) = 7(w));

vertices @l , .. s k., Where v, w, k are as above and 9 is a child of v of size s;
) 1

vertices al

ook, Where v,w, k are as above and ¥ is a child of v of size §/;

frag 72
vertices ay ., 4 k>

feaq a3
vertices @y ., 4 k>

where v, w, k are as above and ¥ is a good child of v of size §';

Guk N

where v, w, k are as above and ¥ is a good child of v of size s'.

Let us deal with the case that #,, (v) > 1 first. Clearly, each of the five cases above yields
at most #, (v)? incoming edges in this case. Hence, the in-degree of @, is at most d.

Now let #,/(v) = 1. Then k = 0 for all possible in-neighbors of @, . If k = 0, then
vertices of type 1 only have edges to vertices of type 2. Thus, vertex a,, can only have
in-neighbors of type 2. Since #, (v) = 1 there exists only one child ¢ of v of size s

— . . -0 .
Hence, Gy, can at most have an incoming edge from the vertex @y, , 0. (This edge

only exists if w’ is a good child of w of size s.) J

We use Claim 307 to prove the following claim.
Claim 308. Let (v) = w(w). Let v’ be a child of v of size s, and let w' be a child of w
of size s' in T. Further, let @y be a type O-vertex, and let dy .y > 0 be the in-degree of
vertex yyy . If £ > size(v), then €' > (s')%, where €' := | ({ — 3)/dy ]
Proof. Let s :=size(v) — 1. We have s > s’ > 1.

a) If #,,(v) =1, then dy,v =1 by Claim 307, and we have

U =0-3>(s+1)°-3>s > (s).
b) If #, (v) > 1, then dy < d where d =5 - #,,(v)? by Claim 307, and we have

, -3 -3 x £ 3 (s+1)° s 4551
ézde/—127—1zg—5 S R
f H#g () () 5 FHe () () #o(0) 5 5 H#g (W)
> 5#(U)2 22 () () - 2

x 23 5-
> S+ Zay oo > ().

For the mequahtles marked by the symbol “x” we use #, (v) > 2, the inequality
marked by “®” is a consequence of the binomial theorem, and for the inequality
marked by “x” we use s > #,,(v) - §. a4

Now let size(v) = s + 1 for some s > 1. Let £ > size(v)®.

First, suppose that m(v) # m(w). If (ayw, ) € X, then 7(v) < w(w), which implies v < w.
If v < w, then 7(v) < m(w), and it follows from the construction of G that (a, ., ¥f) € X
for all £ > 1, in particular, for all £ > size(v)®.

Let 7(v) = w(w). By going through the complete “decision tree” from Figure 8.2, we
obtain that (@, ., ) € X if, and only if, there exists a good child © of v, a child @ of w
of size § := size(0) and a k € [0, #,(v) — 1] such that
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e there are exactly k children w of w of size § where (aus, [(¢ —3)/dws]) € X,
and if k£ > 0, then

e there are exactly k children w’ of w of size § with 6,(w') = 6, (w’) such that
(@ur o, [(€=3)/dus]) € X,

* (G, [(€=2)/das]) € X,

e there are exactly k — 6,(@) children ¢ of v of size § with (as, | (¢ —3)/dsw]) € X,

e there are exactly k — 6,(@) children v’ of v of size § with 6,(v) = 6,,(v") such that

(@0, (£~ 3)/dv.a]) € X.

As usual, d,,, denotes the in-degree of vertex a, ., for all v",w” € V(T'). By Claim 308
and the induction hypothesis, this is equivalent to: There exists a good child © of v,
a child @ of w of size § := size(0) and a k € [0, #,(v) — 1] such that

e there are exactly k children w of w of size § where w < ¥;

and if k£ > 0, then

e there are exactly k children w’ of w of size § with 0, (w') = 6,,(w’) such that w’ < v,
o W <D,
e there are exactly k — 0, () children v of v of size § with v < @, and
e there are exactly k — 6,(w) children v’ of v of size § with 6,(v) = 6,,(v') such that
v <.
It follows from Lemma 305 that the above is equivalent to v < w. ]

Corollary 309. Let v,w € V(T). Then, T | ¢<[v,w] if and only if v < w.

8.3. Canonizing Directed Trees

We now construct an LREC-formula ~(p, p) such that for every directed tree T we have
T = (|[V(D)],~[T;p,P]). As a linear order is available on the number sort, this yields
an LREC-canonization of the class of directed trees. Since DTC captures LOGSPACE on
ordered structures [41], we immediately obtain:

Theorem 310. LREC captures LOGSPACE on the class of directed trees.

Directed tree isomorphism is in LOGSPACE by Lindell’s tree canonization algorithm, but
not TC+C-definable [18]. Thus, we obtain:

Corollary 311. LREC £ TC+4+C on the class of all directed trees.

We use l-recursion to define a set X C V(T) x N(T)? (for the sake of simplicity,
we omit the “resources” in this description) such that for every node v € V(T') the
set X, :=={(m,n) € N(T)*| (v,m,n) € X} is the edge relation of an isomorphic copy
([|V(T,)]], Xu) of T,,. Each node of T is numbered by its position in the preorder traversal
sequence, e.g., the root is numbered 1, its first child v; is numbered 2, its second child v
is numbered 2 + size(v1), and so on.

To apply the Irec operator, we define a graph G = (V,E) with labels C(v) C N for each
v €V as follows. Let V:= V(T) x N(T)?, where (v,m,n) € V stands for “(m,n) € X,?"
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If v is a leaf, then X, should be empty, so for all m,n € N(T') we let (v,m,n) have
no outgoing edges and define C((v,m,n)) := (). Suppose that v is not a leaf and w is
a child of v. Let D, be the set of all children w’ of v with w’ < w, and let e, be the
number of children w’ of v with T}, = T,,. For each i € [0,e, — 1], the set X, will
contain an edge from 1 to py; = 2 + Y cp,, size(w’) + i - size(w), and the edges in
{(pwi—1+m,pw;—1+n)| (m,n) € X,}. Hence, we let (v,1,py,,;) have no outgoing
edges and define C((v, 1, py;)) := {0}. Furthermore, for all m,n € N(T') and all i < ey,
we let @ := (v, py,i — 1+ m, py,;—1+n) have an edge to (w, m,n) and define C(a) := {e,}.

It is now easy to construct LREC-formulas ¢g(x1, p1, p}, x2,p2,05) and ¢c(x1, p1, P}, q)
that define the graph G and the labels C(-). Let

v(p,p') := Fx3r (“ZB is the root” A V7' ' <r A [Ir€C(a, 1 p! ), (w2,papl)oq PE» PC] ((z,p,p"), r))

Noting that the in-degree of each vertex (v, m,n) is at most e,, it is straightforward to
show that ~ defines an isomorphic copy of a directed tree:

Lemma 312. Let X be the relation defined by formula v in T, let v € V(T) and let
X, :={(m,n) | ((v,m,n),l) € X for some £ > size(v)}. Then T, = ([|V(T,)]], X.).

Proof. The proof is by induction on size(v). Clearly, the lemma is true if size(v) = 1.
Suppose that size(v) = s + 1. By the induction hypothesis, for each child w of v we have
T = ([[V(Tw)], Xuw)-

Let ¢ > size(v). For all children w of v and all m,n € N(T'), the in-degree of (w, m,n) in G
is at most e,, and e,, -size(w) < size(v). Thus, [(£—1)/e,| > [(size(v) —1)/ey | > size(w).
As a consequence, we have {(py; — 1 +m,py; —1+m) | (m,n) € X,,} C X, for each
child w of v and ¢ < e,. Furthermore, by construction, we have (1,p,;) € X, for

each child w of v and ¢ < e, and there are no more edges. It is easy to see that
T, = ((|V(T)[], X.). 0

8.4. Colored Directed Trees

The results of the previous sections extend to colored directed trees with a linear order on
the color set and, in particular, to LO-colored directed trees (see Section 2.3.4 for exact
definitions). In the following we only consider colored directed trees that have a linear
order on their colors. It will be straightforward how to extend the results to LO-colored
directed trees.

For each colored directed tree S, the linear order on the colors of S induces a total preorder
< on the set V(S) of nodes of S. Let < be as in Section 8.2. We define a refinement <’
of < by letting v <’ w whenever v < w, or: v < w and w < v and v < w. It should be
obvious how to modify ¢~ (z,y) to an LREC[{ E, <}|-formula ¢~ (z,y) defining <’. Thus,
there is an LREC-definable total preorder <’ on V(S) which induces a linear order on
the isomorphism classes of the colored subtrees of S.

We use the total preorder <’ for canonization of colored directed trees S. We let the
universe U(S) of the colored directed tree S be the union of its set V'(S) of nodes and
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set C(S) of colors. For a colored directed tree S, let R(S) be the set of all tuples
(v,c,w,d) € (V(S) x C(S))? where v is colored with ¢, the color of w is d and there is an
edge from v to w in S. We call R the colored edge relation of colored directed tree S.
For canonization we extend the vertex set X C V(T) x N(T)? from Section 8.3 to a set
X' CV(S) x (N(S) x C(S5))2 CU(S) x (N(S) x U(S))? such that for every v € V(.9)
the set X/ := {(m,c,n,d) € (N(S) x C(S))? | (v,m,c,n,d) € X'} is the colored edge
relation of an isomorphic copy of .5,,.

To apply the Irec operator, we define a graph G = (V,E) with labels C(v) C N similar
to the one in Section 8.3. We let V := U(S) x (N(S) x U(S))% If v is a color or
a leaf, then X! should be empty. Thus, we let (v,m,c,n,d) have no outgoing edges
and define C((v,m,c,n,d)) = 0 for all m,n € N(S), ¢,d € U(S). In the following
let us suppose v € V(S) is not a leaf and w is a child of v. Again, let D, be the
set of all children w' of v with w’ < w, and let e,, be the number of children w’ of
v with S, &£ S,s. Further, let ¢, and ¢, be the respective colors of v and w in the
colored directed tree S. Now, for each i € [0,e, — 1], we let X/ contain an edge from
1 colored by ¢, to py; = 2 + > ,cp, size(w') 4 i - size(w) colored by c,, and the
“colored edges” in {(pw,; —1+m,c,py; —1+n,d) | (m,c,n,d) € X, }. Therefore, we let
(v, 1, €y, Puw.is Cw) have no outgoing edges and define C((v, 1, ¢y, Puw,is cw)) := {0}. Moreover,
forallm,n € N(T'),c,d € U(T) and all i < e, welet a := (v, py;—1+m, ¢, pyi—1+n,d)
have an edge to (w,m,¢,n,d) and define C(a) := {ey}.

Now it is not hard to construct the formulas necessary to define the graph G and the
labels C(-). We can use these formulas to obtain an LREC-formula that defines the colored
edge relation of an isomorphic copy of a colored directed tree with the set [|V(S)|] of
nodes and the set C(S) of colors. Note that there is a linear order on the set C'(S) of
colors, and of course, the linear order on the number sort is a linear order on the set of
nodes. Thus, we can use the colored edge relation of the isomorphic copy to define a
canon of S.

We obtain that the class of colored directed trees with a linear order on its color set
admits LREC-definable canonization. Analogously we can show that there also is an LREC-
canonization of LO-colored directed trees. As a consequence, we obtain the following
corollary.

Corollary 313. LREC captures LOGSPACE on the class of colored directed trees with a
linear order on its color set and on the class of LO-colored directed trees.
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9. Inexpressibility of Reachability in Undirected Graphs

While LREC captures LOGSPACE on directed trees, its expressive power still lacks the
ability to define certain important problems on undirected graphs that can be defined
easily in other logics such as STC with logspace data complexity. As an example, we
show in this chapter that LREC cannot define reachability in undirected graphs:

Theorem 314. There is no LREC[{E}|-formula ¢(x,y) such that for all undirected
graphs G and all v,w € V(G), G = ¢lv,w] iff there is a path from v to w in G.

As an immediate corollary we obtain:

Corollary 315. STC £ LREC

To prove Theorem 314, we show that reachability is not LREC-definable on a certain
class of undirected graphs. This class, called C throughout this chapter, is defined in
terms of the following family of graphs G,,, for n > 1. Here, each graph G, consists of
2 - n? vertices, which are partitioned into layers Vi',..., VL, V2 ... V2 with |[V/| = n.
Any two vertices in consecutive layers Vij and Vz]+1 are connected by an edge, that is, the
set E(G,,) of edges of G,, is the set of all binary subsets {v,w} with v € V and w € VZJH
where i € [n — 1] and j € [2]. For example, the graph G5 is shown in Figure 9.1.

Vi Ve
Vy 15
Vi vy

Figure 9.1.: The graph G5. The gray areas highlight the different layers of Gs.

Now, the class C is defined as follows. We also define the subclass C>4 of C for d > 1,
which we need in order to prove Theorem 314.

C :={G | G is a graph such that G = G,, for some n > 1}.
C>q :={G | G is a graph such that G = G,, for some n > d}.

The key property of the graphs in C that enables us to show that reachability on C is not
LREC-definable is that they are rich in a certain kind of automorphisms. Indeed, let v
and w be nodes occurring in the same layer of GG,,. Then there is an automorphism of G,
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9. Inexpressibility of Reachability in Undirected Graphs

swapping v and w, and fixing the remaining vertices point-wise. To see why this could
be useful at all, consider an LREC-formula ¢ of the form [Irecg, 4,5 ¥&, @c](w,T), where
(for the sake of a nicer illustration of the idea) all free structure variables of ¢g are among
i1 Utly. Suppose we want to decide membership of a tuple (ag, £y) in the relation X defined
by ¢ in (G, @), for an assignment «. First, we would compute the graph G with vertex
set GU and edge set E defined by g, and then we would recurse to decide which of the
tuples (aq, ¢1), for successor nodes a; of ag in G and ¢; = |(¢p—1)/|Eaq||, belong to X. To
decide membership of each of the tuples (a;, ¢1) in X, we again have to recurse to decide
which of the tuples (ag, ¢2), for successor nodes ay of a; in G and ¢ = [(¢; — 1)/|Eas|],
belong to X, and so on. Exploiting the above-mentioned automorphisms enables us to
show that along each branch (ag, ¢y), (a1, ¥¢1), (az,¢2),... of the “recursion tree”, we see
only a constant number of tuples (a;4+1,%;+1), where a;+1 does not contain all the vertices
of G, that occur in a;, or vice versa. Thus, on this branch we are left with finitely many
subpaths “in between” those tuples on which all tuples contain the same vertices of G,,.
If all those subpaths had constant length, then the whole “recursion tree” would have
constant depth, so that we could easily find an FO+C-formula that is equivalent to ¢ on C
(provided ¢ and ¢ are equivalent to FO+C-formulas). Since reachability is not FO+C
definable on C, this would immediately imply Theorem 314. In general, the subpaths
do not have constant length (due to number variables that may occur in u; and usg), so
that we move to a logic that is more expressive than FO+C, but still lacks the ability to
define reachability on C.

More precisely, we show that every LREC[{ F'}]-formula ¢ is equivalent to a formula in
the infinitary counting logic L ,(C) on the subclass C>4 of C' where d is a constant that
depends only on ¢. The infinitary counting logic £} ,(C) was introduced in [51] (see
also [52, Section 8.2]). The fact that £ (C)-formulas without free number variables
are Gaifman-local [51] then yields that reachability is not £} (C)-definable on C>4, and
hence not LREC-definable.

9.1. The Logic £} _,(C)

Before delving into the details of translating LREC-formulas into £}, (C)-formulas, we
give here a brief review of the logic £} (C). For a detailed account, we refer the reader
to [52, Section 8.2].

L., (C) on the one hand extends FO+C by allowing for infinite disjunctions and conjunc-
tions, and on the other hand imposes restrictions so as to make the resulting logic not
too powerful. While in the context of FO+C, we equipped structures A with a counting
sort N(A) = [0,|U(A)|], in the context of L’ ,(C) we extend this counting sort to the
set of all natural numbers. Furthermore, £} (C)-formulas may use any natural number
n € N as a constant, which is always interpreted as n.

L:,(C) is a restriction of the extremely powerful logic £, (C), which is defined as
follows. A term t is a structure variable, a number variable or a non-negative integer.
If ¢ is a structure variable, we call t structure term, and otherwise number term. The
atomic formulas of L, (C)[7] have the form

1. R(x1,...,x,), where R € 7 is of arity r, and x1, ..., z, are structure variables; or
2. t = u, where t and u are either structure terms or number terms.
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9.1. The Logic L ,(C)

The set of all L, (C)[7]-formulas is the smallest set that contains all atomic formulas,
and is closed under the following formula formation rules:

3. If p € Loow(C)[7], then = € Loow(C)[7].

4. If & C Loow(C)[7], then \/ & and A ® belong to Lo, (C)[T].

5. If ¢ € Loow(C)[7] and u is a variable, then Juyp and Vup belong to Lo (C)[7].

6. If ¢ € Loow(C)[7], = is a structure variable and p a number variable, then 3Pz ¢
belongs to L, (C)[7].

7. If ¢ € Loow(C)[7], T is a tuple of free structure variables of ¢, and p is a number
variable, then #Z ¢ = p belongs to L., (C)[r].!

The semantics of Lo, (C)[7]-formulas constructed as in 1, 2, 3, 5 and 7 is as usual. The
semantics of formulas of the form \/ ® or A ® is “at least one ¢ € ® is satisfied” and “all
¢ € ® are satisfied”, respectively. Formulas of the form 32Px¢ have the meaning “there
are at least p assignments to x for which ¢ is satisfied”.

L (C)[r]-formulas are those Lo, (C)[7]-formulas whose rank is bounded. Here, the
rank rk(p) of an Lo, (C)[7]-formula ¢ is defined as follows. We have

rk(¢) = 0 for atomic formulas ¢,
rk(—¢p) = rk(yp),
tk(V @) = k(A @) = sup,cq rk(y),
rk(Juyp) = rk(Vuyp) = rk(p) if u is a number variable,
rk(EIucp) = 1k(Vup) = rk(IZPup) = 1 +1k(¢p) if u is a structure variable, and

rk(#1 ¢ = p) = [Z] + k().

Now, an L, (C)[7]-formula ¢ belongs to L, (C)[r] if there is a number n € N with
rk(p) < n.

Formula (8.5) in [51] shows that every predicate on N is definable by an L% (C)[7]-
formula of rank 0. Thus, we can assume that 4+, —, -, <, and every further predicate on
natural numbers is available. Further, we can extend the tuple of variables z in formulas
of form 7 to arbitrary individual variables:

Observation 316. Let ¢ be an L, (C)[r]-formula, p be a number variable and u be a
non-empty tuple of individual variables with exactly k occurrences of structure variables.
Then there exists an L%, (C)[r]-formula ¢ of rank at most k + rk(p) such that

(4,0) E¥ <= alp) =|{a € A" | (4,ala/u]) | ¢} < oo.

Observation 316 is proved in Section A.2 in the Appendix. We use
Uy = p
as an abbreviation for the £ (C)[r]-formula ¢ in Observation 316, and note that

o rk(#uyp = p) < k + rk(p) where k is the number of occurrences of structure
variables in u.

! Originally, in [51] and [52, Section 8.2], #% ¢ is defined as a number term of logic Leow(C)[7] that is
interpreted as the value |[{@ € A" | (4, a[a/4]) = ¢}|. Clearly, every formula as defined above is an
Loow (C)[7]-formula regarding the original definition. Moreover, Proposition 8.8 in [52] shows that
the two versions of this logic, and also the resulting versions of logic L%, (C)[r], are equivalent.
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9. Inexpressibility of Reachability in Undirected Graphs

As shown in [51], every L (C) formula without free number variables is Gaifman local.
To make this precise, we need some more notation. Given an undirected graph G and
vertices v, w € V(G), let dist”(v,w) denote the length of a shortest path from v to w
in G, or oo if there is no such path. For all k > 1, all tuples v = (vy,...,v;) € V(G)¥
and all 7 € N, let BS(0) := {w € V(Q) | 3i € [k]: dist(v;, w) < r}, and define N ()
to be the subgraph of G induced by B(v). The following theorem is stated in [51] for
arbitrary vocabularies:

Theorem 317 ([51], restricted form of Theorem 3.8). For every L (C)[{ E}]|-formula
@(Z) without free number variables, there is an v € N such that for all graphs G and all
a,b € V(G with (N%(a),a) = (NY(b),b) we have: G |= pla] <= G |= ¢[b].

Using Theorem 317, it is straightforward to show that:

Corollary 318. Let d > 1. There does not exist an L}, (C)[{E}]-formula p(z,y) such
that for all G,, € C>q and all v,w € V(G) we have G,, = p[v,w] iff there is a path from
v tow in G,.

Proof. For a contradiction, suppose that ¢(z,y) is an £, (C)[{ E}]-formula such that
for all G,, € C>4 and all v,w € V(G,) we have G,, |= ¢[v,w] iff there is a path from v
to w in G,,. Let r € N be as guaranteed by Theorem 317. Let d' := max{2r + 3, d}.
We can now pick vertices v, w1, ws € Gg with (NTGd' (v,wy),v,wy) = (Ner' (v, wa),v,ws)
such that w; is reachable from v, but ws is not reachable from v. Since Gy = ¢lv, w1],
we then have Gy = ¢[v, ws], a contradiction. O

9.2. Translation of LREC-Formulas into £’  (C)-Formulas

We now describe the translation of an LREC-formula ¢ into an £} (C)-formula ¢ that
is equivalent to ¢ on C>4 for a constant d that depends only on ¢. The translation
proceeds by induction on the structure of ¢, where the only interesting case is that of
LREC-formulas ¢ of the form

[Ireca, @, 5 e, Pc)(W,T).

To decide whether ¢ holds in a given graph G, under an assignment «, ¢ needs to check
whether the tuple (ag, ¢), for ag := a(w) and ¢y := (a(r)), belongs to the relation X
defined by ¢ in (G, «). To this end, it looks at the directed graph G with vertex set G
and edge set @g[G,, o; U1, Up], or rather at its £o-unraveling G(%:%) at aq:

Definition 319. The ¢-unraveling of a directed graph G = (V,E) at a vertex v € V is the
directed tree G("*) defined as follows:

1. The nodes of G**) are all finite sequences ((vg, £), ..., (vn,€n)) € (V x N)**1 where
(vo, o) = (v,£), (vo,...,v,) is a (non-simple) path in G, and ¢;=|(¢;—; —1)/|Ev;||
for every i € [n].

2. There is an edge from a node ((vg, £), - - -, (Um, €m)) to a node ((v), 6), ..., (v),2,))
whenever n = m + 1, and (v}, ;) = (v;, ¢;) for every i < m.

)77

3. Each node ((vo, %), .-, (Vm, lm)) is labeled with (v, €p,).
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9.2. Translation of LREC-Formulas into L%, (C)-Formulas

For each node of G(%-%) checks whether its label belongs to X. Clearly, this suffices
to decide whether (ag, {y) € X.

Our construction is based on the following property of G(@-f0);

Lemma 320. Let pg(uy,us,ug) be a formula, where the variable tuples u; and us are
compatible. Let n > |uy|+|ug|+2 and let o be an assignment for pg in G,,. Let ag := a(ug).
Further, let G = (V,E) be the graph with V := G and E := @g[G,, a; Uy, us). Consider a
node ((@g,4o), - - - (Gm, m)) in GO where £ < |N(G,)|" — 1. Then, the size of

Z:={ie[m]|(a-1VUag) NV(G,) # (a; Uag) NV (G,)}

is bounded by a constant that depends only on |uy|, |ug| and r.

Proof. We first show that the size of

K := {Z el | a;—1 N V(Gn) g (ELZ U ELE) N V(Gn)}
={ieZ|(a1Vag)NV(Gy) € (a; Uag) NV(Gp)}

is bounded by a constant that only depends on ||, |ug| and r. To this end, consider an
ieKandabea_1NV(G,) such that b ¢ a; Uag. Let us call an element &' € V(G,,) a
sibling of b if b and b belong to the same layer in G,,. A sibling of b is good if it does not
occur in a@; U ag. For instance, b is a good sibling of b. There exist at least

n—la; Uag| > n — (|a1] + |ugl)

good siblings of b in the graph G,,. Each good sibling ¥’ gives rise to an automorphism
fo: V(G,) = V(G,) of G, that fixes all the vertices in V(G,,) \ {b,V'} point-wise, maps
b to b, and maps b’ to b. As a consequence, for each good sibling ' we have

Gn ): 2 [diflaaiagLE] < Gn ': YE [fb/ <&i717éi7dE)]
— G, E ¢e|fy(ai-1), @i, ag),

where fi(a) is the tuple obtained from a tuple a by replacing each element b” in a that
belongs to V(G,,) with fiy (b"). Thus, fi(a;—1)a; € E for each good sibling b’ of b. This
implies
|Ea;| > n —di,

where dy = |uy| + |ug|.

Observe that, by the definition of G we have £y = £ < [N(G,,)[" < (2n% +1)" < (2n)%.
Further, we have |Ea,,| < (2n2)™! and ¢y - |Ea,| > 1% |Ea,| (cf. inequality (7.8)).
Hence,

(2n)2r D > 2n)? - (2n)2") > - [Ean| > ] [Eal

i=1

I1Eal > [[(n—di) = (n—dy)*.

el €L

%

For n > dy + 2 this implies |K| < log,,_4, (2n)20 18D < 2(r + |41])(1 + log,,_4, ), which
is bounded by a constant dy that only depends on |u4], |ug| and r.
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9. Inexpressibility of Reachability in Undirected Graphs

To conclude the proof, consider a maximal set Z' C 7 such that there are no ¢,7’ € 7’
and k € K with ¢ < k <4i'. We show that |Z'| is bounded by a constant ds that depends
only on |u;|, |ug| and r. This then implies the lemma as

IZ] < (K[ +1) - (ds + 1) < (d2 + 1) - (d3 + 1).
Let ¢min := minZ’ and imay := maxZ’, and notice that

(@ipa—1 Uae) NV (Gy) C (i, Yae) NV(G,) C -+ C (a4, Ude) NV(Gy).

Since (a,,,, U ag) N V(G,) contains at most ds := |uy| elements that do not belong
to the set (a;,,,—1 U ag) N V(G,), there are at most ds indices i € [imin, imax] With
(@1 Uag) NV (Gy) € (a; Uag) NV (G,). Hence, |I'| < ds, as desired. O

We are now ready to show that each LREC[{ E'}]-formula ¢ is equivalent to an L*_ (C)[{E}-
formula on a subclass C_ 4 of C, where d depends on formula (.

Lemma 321. For every LREC[{ E}]-formula ¢(u), there is an L, ,(C)[{ E}]-formula @(u)
and a constant d, such that for all G, € C>q, and all a € G¥, we have:

Gy | vlal <= G = ¢lal.

Proof. As mentioned above, we proceed by induction on the structure of ¢. The only
interesting case is that of an LREC[{ E'}]-formula of the form

Y = [lrecaha%ﬁ ©YE, @c](@,f)

Let ug be an enumeration of all variables in free(pg) that are not listed in uyus, and let
tc be an enumeration of all variables in free(yc) that are not listed in up. Further, let
dy = max{dy,, dy, |u1| + |ug| + 2}.

We aim to construct, for all integers n > d, and £ < |[N(G,)|" — 1, an L% (C)[{E}-
formula 1, ¢(1, Ug, tc) such that for all assignments « in G, and all a € G,

Gn ): wmg[(i,()é(’ELE),Oé(ﬂc)] — (&76) € Xa

where X is the relation defined by ¢ in (G, ). Furthermore, the rank of each v, o will
be bounded by a constant that depends only on ¢, so that

P = \/ (“the universe has size 2n2” A “F represents the number £” A Y o(W, Ug, Uc) )
n>dy,
2<(2n2+1)171

is an L5, (C)[{ E'}]-formula that is equivalent to ¢ on Cxg4,.
Construction of vy (U1, g, uc): Fix n > d, and € < IN(G)|"l = 1. To simplify the
presentation, we also fix an assignment « in G,,, and the graph G = (V,E) with V := G

and E := @g[Gy, a; U1, Ug); the formula 1, (U1, ug, uc) we are going to construct will
however not depend on «. Let ag := a(ug) and ac := a(uc). For every a € V, let

tne(@) == max {t eN ‘ there is a node (g, %), . . - , (@m, £m) in G such that t equals

i € [m] | (@1 Uae) N V(Gn) # (@ Uas) 0V (G} -
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As n > |uq| + |ug| + 2, Lemma 320 implies that there is a constant ¢* that only depends
on ¢ such that

tne(a) <t* forallaeV.
In what follows, we construct, for all ¢ < t*, an L%, (C)[{ E}]-formula 4}, ,(t1, tg, tc)
such that for all a € V with ¢, ¢(a) < t, we have:

Gn = U la,ag,ac] <= (a,0) € X,

where X is the relation defined by ¢ in (G, ). Furthermore, the rank of wfz,z will not
depend on n or £. The desired formula %, can then be defined as:

wn,é =

Construction of @bnz(ul, ug, uc): We construct the formulas %e(ulv ug, uc) by induction
on t. For t = 0, we define wn’é(ul, Ug, Uc) to be an arbitrary unsatisfiable formula with

bounded rank. The idea for the construction of wf;}l(ﬁl, ug, uc) for t > 0 is as follows.
Let a € V, and

Q(a) := {(am,m) | ((ao, %), ..., (Am,lm)) € V(G(‘w)) and for all i € [m] we have:
(a;— 1UaE)ﬂV( n) = (a; Uag) NV (Gy)}.

To check whether (@,f) € X, we “guess” the set X = Q(a) N X, and then simply check
whether (a, /) € X. To guess X, we can use an infinite disjunction over all subsets R of
Q(a). Then we only need to verify for each R whether R indeed corresponds to X. For
the latter, we count, for each pair (a’, ') € Q(a), the number of pairs (a”, ¢”) such that
a'a’ €E, E” = |[(¢'—1)/|Ea"|] and (a”,¢") € X, and check that (a’,¢) € R whenever this
number belongs to the label of @’ defined by ¢¢. How do we check whether (a”,¢") € X7
If (¢’ Uag) NV (G,) = (a" Uag) NV (G,), that is, if (a”,¢") € Q(a), then we simply check
whether (a”,¢") € R. Otherwise, we use the formula %,w

Let ¢g and ¢¢ be L7, (C)[{E£}]-formulas that are equivalent to ¢g and ¢¢ on Cxq,,
respectively. Such formulas exist by the induction hypothesis. Using g we construct, for
each ¢’ € [0,¢], an L (C)[{E}]-formula x, (u1, @}, ug) such that for all a,a’ € GU*,

Gy E xela,d ag) — (@',0) € Q(a).

Here, 4} is a tuple of distinct variables that is compatible with, but disjoint from u;. We
let M (uy,ug) be the set of all tuples u where w is obtained from ) by replacing each
structure variable with a structure variable from @ U @ty and each number variable with
an integer from N(G,) = [0,2n?]. Hence, all tuples @ € M (uy,ug) are compatible to
and all structure variables of 4 also occur in @; or ug. Note that for all a,a’ € V with
(aUag) NV(G,) = (& Uag) NV (G,,) there is a u € M (uy,ug) such that afa/u|(u) = a'.
We let

X = \/ \/ ( /\ “(a(Wi—1) Ualte)) NV(Gy) = (a(w;) Ua(ig)) NV (G,)”

meN (@g,...,0m) i€[m]
eM(u1,up)™

Ao =11 A J\ r(Wio1, Wi, lig) A W = T}
i€[m]

1
A Flg...3l (zo_z AN = bEa(w)‘J” A zmzz’)>

1€[m)|
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9. Inexpressibility of Reachability in Undirected Graphs

Let Q' be the set of all pairs (¢/,¢'), where ¢ € [0,¢] and @' € M(u1,ug). Intuitively,
each R’ C Q' corresponds to a guess of Q(a) N X as described above. For each R’ C ',
let 95!} (U, g, tic) be

A <Xe' (u, ', ug) — 3p Hp(#a”(sog(ﬂ/, u”, ug) NOp (W) =p
(@' 0)eR’
A “a(p) represents a(p)” A we (', p, ac))>

A (XZ/(ala @ ig) — 3p3p (" (o (W, 0", i) Ao () = p
(@' ")eQ’

(@ e)gH A“a(p) represents a(p)” A (i, B, ac>))

where

— =1 = = = «(= ”
O (@) = \/ (ugl! _ \"Ea(ﬂ//)d " A ((XZ” (@, ", ug) A (@', 0") € R )
27€l0,0']

\/(_|X‘€// (a/, 'ITL”, 'ELE) /\ QZJ;’Z// (’EL", ﬂE, ac) )))

and “(a", ") € R"” stands for /(. pyep (@*= u" A £*={"). Then it is not hard to see
that the formula

(W, uc) =\ bl (e, 1)
R'CQ’
(w1,0)ER’

is as desired. Clearly, there is a constant ¢ that does not depend on n or £ such that
rk(yrl)}) < e+ k(¢ ,) forall £ > 0. As t* does not depend on n or ¢, the rank of ¢,
does not depend on n or /. ]

To conclude this chapter, we proof Theorem 314 which follows from Lemma 321 and
Corollary 318.

Proof (Theorem 314). Let us assume there is an LREC[{ E'}]-formula ¢(x,y) that defines
reachability on the class of all undirected graphs. By Lemma 321 there is a constant
d, and an L} (C)[{E}]-formula ¢(x,y) that defines reachability on Csq,. This is a
contradiction to Corollary 318. O
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10. LREC_ - An Extension of LREC

The proof of the previous chapter’s Theorem 314 indicates that LREC is not closed under
logical reductions, not even under very simple first-order reductions.! Indeed, there is
a first-order reduction that maps a graph G,,, for n > 4, as defined in Chapter 9 to a
disjoint union G, of two paths on n vertices each, by identifying vertices in the same
layer (see Example 322). Reachability on the class of all graphs isomorphic to G, for an
n > 4 is LREC-definable (see Example 298). Hence, if LREC was closed under first-order
reductions, then reachability on the class of all graphs isomorphic to G,, for some n would
be LREC-definable, contradicting the previous chapter’s results.

Example 322. Consider the FO[{ E'}, { E'}]-transduction © = (0y(x),0~(x,y), 0p(z,y))
with Oy (z) := T, O~(z,y) == Vz(E(z,2) < E(y,2)) and g(z,y) := E(z,y). Recall
the definition of the graphs G,, from Chapter 9. For n > 4, the equivalence relation ~
generated by O0~[Gp; x,y] is 0x[Gr; x, y] itself. It relates any two vertices that occur in
the same layer of G,,. Hence, for n > 4, O[G,] is the disjoint union of two paths of
length n. a

In this chapter, we introduce an extension LREC_ of LREC whose data complexity is still
in LOGSPACE, and thus captures LOGSPACE on directed trees, while being closed under
logical reductions. The idea is to admit a third formula ¢— in the lrec-operator that
generates an equivalence relation on the vertices of the graph defined by k.

Let 7 be a vocabulary. The set of all LREC_[r]|-formulas is obtained from LREC|7] by
replacing the rule for the lrec-operator from Chapter 7 as follows: If @, v, w are compatible
tuples of variables, p, 7 are non-empty tuples of number variables, and ¢—, g and ¢¢ are
LREC_-formulas, then the following is an LREC_[r]-formula:

@ = [lreca s Y=, P&, @c](w,T). (10.1)
We let free(yp) := (free(p=) \ (@ U 0)) U (free(eg) \ (2 U D)) U (free(pc) \ (U p)) Uw U T

To define the semantics of LREC_[7|-formulas ¢ of the form (10.1), let A be a T-structure
and « an assignment in A. Let Vg := A% and Eq := @g[A, a; u,v]. We define ~ to be the
reflexive, symmetric, transitive closure of the binary relation ¢_[A, «;u,v] over V. Now
consider the graph G = (V,E) with

V:="Vy/. and E:= {(a/-,b/.) € V?|abeE}.
To every a/.. € V we assign the set
C(a/~) := {(n)] there is an @’ € a/. with n € ¢c[A,ala’/u];p]}

of labels. Then the definition of X can be taken verbatim from Chapter 7. We let
(A, a) E ¢ if and only if (a(w)/~, (a(F))) € X. As for LREC, we have:
! First-order transductions are defined analogous to L-tranductions where L > STC (see Definition 1),

only that FO-transductions require the formula 6~ to not just generate but to define an equivalence
relation.
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10. LREC- - An Extension of LREC

Theorem 323. For every vocabulary T, and every LREC_[7]-formula ¢ there is a deter-
ministic logspace Turing machine that, given a T-structure A and an assignment « in A,

decides whether (A, ) = .

Sketch. The proof is a straightforward modification of the proof of Theorem 299. The
only difference is that, when we deal with LREC_-formulas of form (10.1), we use the
vertex set V, the edge set E, and the labels C(-) as defined above to compute the set X.
It is easy to compute these sets by first computing the relation ~ from ¢_[A, «;u,v]
using Reingold’s logspace algorithm for undirected reachability [62]. Note that once ~
has been obtained, the equivalence class of every element a € A% can be determined. [J

The following example shows that undirected graph reachability is definable in LREC_.
This does not involve an implementation of Reingold’s algorithm in our logic, but just
uses the observation that the computation of the equivalence relation ~ boils down to
the computation of undirected reachability.

Example 324 (Undirected reachability). The following LREC_-formula defines undi-
rected graph reachability:

@(s,t) = [lrecxvyvp (p:(x,y), @E(xay)v (pc($,p)](8,1),

where p_(x,y) = E(z,y), ve(x,y) =z # x and pc(z,p) := x = t. To see this, let G be
an undirected graph and a an assignment in GG. Define ~, V, E, C and the set X as above.
Clearly, the set V consists of the connected components of G. Furthermore, the set E is
empty since ¢ is unsatisfiable. Therefore, for all v € V(G) we have (v/.,1) € X iff
0 € C(v/~). The latter is true precisely if a(t) € v/, i.e., if v and «(t) are in the same
connected component of G. It follows that for all v,w € V(G) we have G |= ¢[v, w] if
and only if v and w are in the same connected component of GG, that is, if there is a path
between v an w in G. a

Remark 325. It follows immediately from the previous example that STC+C < LREC_.
Actually, the containment is strict, because LREC £ STC+C by Corollary 311. Note also
that LREC_ < FP+C. J

The following proposition shows that we can pull back arbitrary LREC_-formulas under
parameterized LREC_-transductions. Hence, LREC_ is closed under LREC_-reductions.

Proposition 326 (Transduction Lemma). Let 7,7y be vocabularies. Let ©(X) be a pa-
rameterized LREC_[7y, 72|-transduction, where {-tuple u is the tuple of domain variables.”
Further, let (1, ...,%x,p1,.-.,0r) be an LREC_[m2]-formula where x1,...,x, are struc-
ture variables and p1, ..., py are number variables. Then there exists an LREC_[]|-formu-
lap=®(X, Uy, ... U, q1,- -, Qr), where iy, ..., U, are compatible with @ and G, . .. ,q are
(-tuples of number variables, such that for all (A,P) € Dom(©(X)), all ay,...,a, € A
and all 0y, ...,y € N(A),

2 Note that X denotes a tuple of individual variables, and does not contain any relational variables.
We stick to the capitalized letter “X” just out of habit.
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Al P[P ay,. .. a5, 01,...,)] <= i/~ .. 0./~ € U(O[A,P]),
(fi1)ys---, (M), € N(OIA,P]) and
O[A, Pl = vp[arfa, - Gfs (Ta)g - - ()]

where = is the equivalence relation of (A, P) under ©.

The proof of Proposition 326 can be found in Section A.1.1 in the Appendix.

Remark 327. Since in STC+C (and actually in STC) it is possible to transform trees
into directed trees (see Example 8), the results from Chapter 8 and the fact that LREC_
is closed under logical reductions imply that LREC_ captures LOGSPACE on the class of
all trees, directed as well as undirected. J
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11. Capturing LOGSPACE on Interval Graphs

With the added expressive power of LREC_, it is not only possible to capture LOGSPACE
on the class of all trees, but also on the class of all interval graphs, as we shall show in
this chapter. Basically, interval graphs are graphs whose vertices are closed intervals, and
whose edges join any two distinct intervals with a non-empty intersection. They form a
well-established and widely investigated class of graphs, and it was recently shown [47]
(see also [50]) that interval graph canonization is in LOGSPACE.

To prove that LREC_ captures LOGSPACE on interval graphs, we proceed as in the case of
directed trees. First, we describe an LREC_-definable canonization procedure for interval
graphs, and then we use the fact that DTC (and hence LREC_) captures LOGSPACE on
ordered structures. Our canonization procedure combines algorithmic techniques from
[47] with the logical definability framework in [49]. Parts of this chapter can be found in
more detail in [50].

11.1. Background on Interval Graphs

In this section, we define interval graphs and state some basic properties. For a more
detailed exposition, we refer the reader to [50].

Definition 328 (Interval graph, interval representation). Given a finite collection Z of
closed intervals I; = [a;,b;] C N, let Gz = (V, E) be the graph with vertex set V =T,
joining two distinct intervals I;, I; € V by an edge whenever I; N I; # (. We call Z an
interval representation of a graph G if G = Gz. A graph G is an interval graph if there
is an interval representation of G.

Figure 11.1 shows an interval graph G together with an interval representation of G.

} a |
b c d
} | } |} |
e
—o
/ g h
— F —
7 k
— —

Figure 11.1.: An interval graph G and an interval representation of G.

An interval representation Z of a graph G is called minimal if the set |JZ C N is
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11.2. Twinless Modular Decompositions

of minimum size among all interval representations of G. Clearly, for any interval
representation Z there exists a minimal interval representation Z,,;, such that G; = Gz

min *

We denote the set of all max cliques of G by M. Let Z be a minimal interval represen-
tation of G and I, denote the interval in 7 that corresponds to vertex v € V.

Lemma 329 ([50], Lemma 4.3.1). For each k € JZ, the set M (k) = {v | k € I,} is a
maz clique of G. Furthermore, for any max clique M of G, we have ey Ly = {k} for
some k € JZI. O

Thus, any minimal interval representation of G induces a linear order on Mg which has
the property that each vertex is contained in consecutive max cliques. It is known [23, 57]
that a graph G is an interval graph if and only if its max cliques can be brought into a
linear order, so that each vertex of GG is contained in consecutive max cliques.

Thus, max cliques play an important role for the structure of interval graphs. Our
canonization procedure essentially relies on bringing the max cliques of an interval graph
into a suitable order.

The maximal cliques of an interval graph G = (V, E) can be handled rather easily in our
logic:

Vertices w,w’ € V' span a max clique A if A is the only max clique containing w and w'.

Lemma 330. Each max clique of an interval graph can be spanned by two vertices.

Proof. Let Z be a minimal interval representation of G, and let M be a max clique of G.
By Lemma 329, there is a k € N such that (N, .5, [y = {k}. Thus, there are vertices
w,w’ € M with min I, = k and with max I,,» = k. Suppose there is a max clique M’ of G
with w, w’ € M’ Then (¢ Iy = {k'} for some k' € N. As min I,, = k and max I,,, = k
we have k = k/, and therefore, M = M’ O

As a consequence (see Section 2.8.2), the max cliques of G as well as the equivalence
relation on vertex pairs defining the same max clique are first-order definable.

11.2. Twinless Modular Decompositions

Our canonization procedure relies on a specific decomposition of graphs, which we call
twinless modular decomposition. It is similar to the modular decomposition introduced
by Gallai (see Section 3.2). The basic building blocks are also modules.

As in Gallai’s modular decomposition, the twinless modular decomposition decomposes
graph G into its connected components W1, ..., Wy if G is not connected, and into the
connected components Wi, ..., W}, of the complement graph G of G if the complement
graph G is not connected. For graphs G with more than one vertex where both G and
G are connected, the set of maximal proper modules of G is a partition of G’s vertex
set, which is used to decompose the graph G in Gallai’s modular decomposition. For
the twinless modular decomposition, we use a slightly different partition into modules
Wi, ..., W} in this case. We define it in Section 11.4. The main difference between our
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11. Capturing LOGSPACE on Interval Graphs

decomposition and Gallai’s is that we do not bother to create extra modules for sets of
pairwise connected twins' since we can handle them perfectly well with our methods.

Let Wg be the set of modules Wy, ..., Wy if G has more than one vertex, and Wy := {V'}
if V| = 1. Let ~¢ be the equivalence relation on V corresponding to the partition Wg
(i.e., v ~¢ w whenever v, w € W; for some i € [k]). Let us consider the graph

Le:=V/wy,EL,), where EL, :={(u/wy,v/~g) ]| (u,v) € E}.

Intuitively, Lg is the graph obtained from G by collapsing all the modules in W¢ into
single vertices. Since each pair of modules W;, W; € Wg, © # j, is either completely
connected or completely disconnected, G is completely determined by Lg and the graphs
G[W;], for i € [k], where G[W;] denotes the subgraph of G induced by the vertices in
W;. By decomposing the G[W;], i € [k], inductively until we arrive at singleton sets
everywhere, we obtain G’s twinless modular decomposition.

We define the twinless modular decomposition tree T(G) of a graph G recursively. If
|V| =1, then T(G) is the rooted tree that consists of only one node, node V, which is
the root of T'(G). Let |V| > 1. Then, the twinless modular decomposition tree T'(G) is a
rooted tree which consists of a node V, which is the root of T'(G), and of subtrees T'(G[W])
for all W € Wg. We obtain T'(G) by adding an edge from V' to the root of T(G[W]) for
all W € Wg. This twinless modular decomposition tree is uniquely determined for every
graph G.

Notice that for an interval graph G where G is not connected, all except one connected
component of G must contain only a single vertex. Each of these single vertices is adjacent
to all other vertices in G. We call a vertex with that property an apex. Thus, if G is an
interval graph with G disconnected, then Wg = U,ca{{a}} U{V \ A} where A is the set
of apices, and the graph L¢ is isomorphic to a complete graph. Also, if G contains an
apex, then either |V| =1 or G is not connected.

The following three sections are about defining and canonizing the graph Lg for an
interval graph G. This is easy for unconnected graphs G or graphs that have at least one
apex. Thus, we will consider connected graphs without any apices.

11.3. Extracting Information About the Order of Maximal Cliques

Throughout this section let G be a connected interval graph without any apices.

We call a max clique C' a possible end of G if there is a minimal interval representation
T of G so that C' is minimal with respect to the order induced by Z.

Now we pick a max clique M of G. We assume it to be a possible end of GG, and present
a recursive procedure that turns out to recover all the information about the order of the
max cliques induced by choosing M as an end of G.

Let M € Mg. The binary relation <,; is defined recursively on the elements of Mg as

!'We call two vertices v and w twins if N(v) U {v} = N(w) U {w}.
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11.3. Extracting Information About the Order of Maximal Cliques

follows:

Initialisation: M <j; C for all C' € Mg\ {M}

JE € Mg with E <y Dand (ENC)\D #0 or

3E € Mg with C <y E and (EN D)\ C # 0. (%)

C-<MD if{

By exploiting the definition’s symmetry, <3, can be defined through a reachability query
in the undirected graph Oj;, which has pairs of max cliques from Mg as its vertices, and
in which two vertices (A, B) and (C, D) are connected by an edge whenever A <), B
implies C' <), D with one application of (¥%). Hence:

Lemma 331. There exists an STC-formula that for any interval graph G and for any
mazx clique M of G defines the relation <.

We now state a few important properties of <j;. Recall that a binary relation R on a
set A is asymmetric if ab € R implies ba € R for all a,b € A. In particular, asymmetric
relations are irreflexive.

Lemma 332 ([49], Lemma IV.3, Corollary IV.6, Lemma IV.7). Let M be a maz clique
of an interval graph G. Then the following properties are equivalent:

o <, 18 asymmetric,
o <) is a strict weak order (that is, <ps is irreflexive, transitive, and incomparability

is an equivalence relation),
o M is a possible end of G. O

Since <) is STC-definable and asymmetry of <j; is FO-definable, the preceding lemma
gives us a way to define possible ends of interval graphs in STC+C.

If M is a possible end of an interval graph G, we have the following connection between
<u and a minimal interval representation of G, which has M as its first clique.

Lemma 333 ([49], Lemma IV.7). Let M be a possible end of an interval graph G. Let
T be a minimal interval representation of G, which has M as its first clique, and let <z
be the linear order I induces on the max cliques of G. Then <) C 7. O

Lemma 334. Let C C Mg be a set of mazx cliques with M & C. Suppose that for all
B e Mg\ C and any C,C" € C it holds that BN C = BNC". Then the maz cliques in C
are mutually incomparable with respect to <.

Proof. By a derivation chain of length k we mean a finite sequence Xg < Yy, X1 < Y7,
ooy Xk <um Y such that Xg = M and for each i € [k], the relation X; <), Y; follows
from X;_1 <) Yi—1 by one application of (¥ ). Clearly, whenever it holds that X <, Y
there is a derivation chain that has X <, Y as its last element.

Suppose for contradiction that there are C,C’ € C with C <y C. Let M <, Yo,
X1 <m Vi, ..., Xi <m Yy be a derivation chain for C <, C'. Since X, = C, Y, = (',
and M ¢ C, there is a largest index 4 so that either X; or Y; is not contained in C.

If X; ¢ C, then X1 € CandY; = Y € C and it holds that (Xz N Xi+1) \Yi+1 75 .
Hence, X; N X; 11 # X; NY;11, contradicting the assumption of the lemma. Similarly, if
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11. Capturing LOGSPACE on Interval Graphs

Y; € C, then Y11 € C and X; = X;;; € C and it holds that (Y; N Y1) \ Xip1 # 0. Thus,
Y;NYi1 # YN X1, again a contradiction. O

The width of a vertex v € V in G, denoted width(v), is the number of max cliques
of G that v is contained in. Recall from Section 11.1 that the equivalence relation
on vertex pairs defining the same max clique is first-order definable. Note that, since
equivalence classes can be counted in STC+C [49, Lemma I1.7], the width of a vertex is
STC+C-definable on the class of all interval graphs.

Lemma 335 ([49], Lemma IV .4, Corollary IV.5). Suppose M is a possible end of G and
C is a maximal set of <pr-incomparable mazx cliques. Then

e BNC=BNC" forallC,C"€C, Be Mg\C,
e Sc:=Ucec C\Uperme\c B is a module of G, and
o Se ={velJC| width(v) <|C|}. O

Finally, let ~§, be the equivalence relation on V for which z ~§; vy if and only if
x = y, or there exists a maximal set C of incomparable max cliques (with respect
to <ar) with [C] > 1 so that z,y € Sc. Let Gy = G/¢ = (V/.c,Ey), where
Ey i={(u/wc,v/ic) | (u,v) € E}. It is easy to check that ~§, and the graph G are
STC+C-definable.

If C is a maximal set of <)s-incomparables in G with |C| > 1, then there is precisely one
max clique M¢ in Gj; which contains all the equivalence classes associated with C, i.e.,
Me ={v/.c | veUC}. We conclude:

Lemma 336. <), induces a strict linear order on Gy’s mazx cliques. In particular, Gy
is an interval graph. O

11.4. Modules WW; and the Graph Lg

We are now ready to give the definition of the set W, which we mentioned in Section 11.2,
for connected interval graphs G without an apex. Furthermore, we take a look at the
graph L¢g from Section 11.2 and its properties. In particular, we prove that Lg and an
isomorphic copy of Lg on the number sort are STC+C-definable.

Let G = (V, E) be a connected interval graph without an apex. Then G contains more
than one max clique. Let B be the set of all maximal proper subsets C of M with the
property that for any B € Mg \ C we have BNC = BN’ for all C,C" € C. We must
have [PB¢| > 3 since G is connected and no vertex may be included in all max cliques
of G. Furthermore, if C,C’ € B¢ and C # C’, then C N C" = ). To see this, suppose that
DecCnC. Then BNA=BND=BNC forall A;C € CUC and B¢ CUC. As
Mg\ (CUC’) is not empty (|Bg| > 3), CUC’ is a proper subset of M satisfying the
above property, which contradicts the maximality of C and C’. We conclude that P¢ is a
partition of Mg.

For each C € B¢ with |C| > 2 we define S¢ =JC \ U(M¢ \ C). The correspondence in
names to the modules Se as defined in Lemma 335 is intended, of course, and makes
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11.4. Modules W¢ and the Graph Lg

sense since the sets C € P enjoy the same interaction properties with the rest of the
graph as maximal sets of <j-incomparable max cliques (cf. Lemma 335).

We can now define the modules Wg mentioned in Section 11.2 for connected interval
graphs G without an apex. We let S := {S¢ | C € B¢ with |C| > 2}, and define

Wei=Su | {{v}}.
’UEV\US

From the fact that B is a partition of Mg, we conclude that Wy forms a partition
of V, whereby inducing the equivalence relation ~g on V. In the following, we call this
equivalence relation alternatively ~gq,.

In the following we construct graphs isomorphic to Lg that will help us to define Lg in
STC+C. Let Zjs be the max clique which is <j/-maximal in G ;. Now we forget about
< and consider <z,, on Gjs. We write

L= Gu/ on = (V(Gu)/ on, E(Gu)/ onr)

with E(Gar)/ e = {(u/ _cusv/ _cun) | (w,v) € E(Gy)}. Lemma 336 implies again
zZ zZ zZ

M M M
that <z,, induces a strict linear order on the max cliques of Lj,.

Lemma 337. Let G be a connected interval graph that does not have an apex, and let
My, ..., My be its possible ends. Then all of the graphs Ly, | € [k], are isomorphic
to Lg.

Proof. Equivalence relation ~sg, does the same as ~§;, only that it is based on P
instead of the (finer) partition of max cliques induced by a strict weak ordering <.

Our goal is to show that each Ly with M € {M;, ..., M} is isomorphic to G/ch' For

this it is enough to show that the concatenation of equivalence relation ~§; with Ng]\”j is
equal to ~g,. Whenever C € P and M ¢ C, Lemma 334 implies that the max cliques
in C are <js-incomparable. As the sets in ¢ were chosen to be maximal, C is also a

maximal set of </-incomparables (Lemma 335). It follows that ~g, is equal to ~§; on

Ungceqe C-

When forming Gy = G/ ~G each maximal set of <js-incomparable max cliques C is
replaced by the max clique M¢ = {v/.¢ | v € JC}. Note that this is also true when
C consists of just one max clique. As a result, B¢ induces a partition Pj; of the max
cliques of G. Also, if Cys is the equivalence class of By, which contains M, then Cps
is the only equivalence class of ), which is possibly not a singleton. As |Pa/| > 3, we
have ZM Q CM

The final step is to show that ~g,, equals N%A;

on Gy If U/Nlc\:/[ is a vertex of Gj; and
v/.c is an equivalence class of ~§; with [v/~g | > 1, then v/ ¢ is only contained in one
max clique of Gj;. Hence, P, inherits from P the property that it partitions the set
of max cliques Mg,, of G into maximal sets C so that for any B € Mg,, \ C we have
BNC =BnNC for all C,C" € C. Arguing analogously as above, it follows that ~g,,
equals N%‘; . Therefore, ~g, is equal to the concatenation of ~§ with N%‘j and Ly is

isomorphic to Lg. 0
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11. Capturing LOGSPACE on Interval Graphs

The following two corollaries are consequences of Lemma 337.

Corollary 338. The graph L¢g is an interval graph, for all interval graphs G.

Proof. Clearly, Lg is an interval graph if G is not connected or has an apex. For connected
graphs G without apices, it follows from Lemma 336 and the previous lemma that L¢ is
an interval graph. O

Corollary 339. The graph Lg is STC+C-definable for all interval graphs G, that is,
there are STC+C-formulas o~ and @y, such that ¢~ defines the equivalence relation ~¢,
and g, the edge relation of the graph Lg.?

Proof. If G is not connected or G contains an apex, then ~g is STC-definable. If G
is connected and does not contain an apex, then for each possible end M of G the
concatenation of equivalence relation ~§; with N%\j is equal to ~¢, which was shown
in the proof of Lemma 337. The STC+C-definability of equivalence relation ~¢ is a
direct consequence of the STC+C-definability of the possible ends M and the equivalence
relation ~§;, Lemma 336, which allows us to define max clique Zj;, and the STC+C-

. a
definability of ~; .

Since all equivalence classes of ~¢ are modules of GG, the edge relation of L can be
defined as the set of all edges of G between vertices in different equivalence classes. [

Notice that, if A is a max clique of GG, then
ALG = {U/NG ’ vE A}

is a max clique of Lg, and that all max cliques of Lg are of this form. In particular,
for each possible end M of G the max clique M, is a possible end of L¢, and for each
possible end N of L¢ there exists a possible end M of G such that N = M.

Lemma 340. Let G be a connected graph without any apices.

1. For each possible end N of Lg the relation <y is a strict linear order on the max
cliques of Lg.

2. The graph Lg has ezactly two ends N1, Ny € My, and the strict linear order <y,
is the reverse of <n,_,.

Proof.

1. Let is assume <y is not a strict linear order. Then <y is a strict weak order
(Lemma 332) and there exists a set C of <y-incomparable max cliques of Lg. By
Lemma 334 we have BNC = BN’ for all C,C’" € C and all B € M, \ C, which
is a contradicting to the construction of L.

2We do not define the graph L¢ explicitly, but rather implicitly within G. That is, we do not
single out a representative of each equivalence class v/~ of ~¢, but treat all vertices in v/~ as
representatives of v/~.
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11.4. Modules W¢ and the Graph Lg

2. Let G be a connected graph without any apices. Then My, | > 1. Thus, there exist
at least two possible ends of L. Let us assume there exists two possible ends N and
N’ of Lg such that N is neither the <py/-least nor the <j/-most max clique. There
are minimal interval representations Z and Z’, which have N and N’ as first clique,
respectively. As <y and <y are strict linear orders, they are the strict linear
orders that Z and Z’ induce on the max cliques of G by Lemma 333. Lemma 333
also implies that N’ is not the <y-largest max clique. Clearly, N <y N’ and
N’ <n N. Let A be the set of max cliques A of Lg with N/ <y A, and A’ be the
set of max cliques A of Lg such that N </ A. Further, let B be the set of max
cliques B of Lg where N <y B <y N, and let B’ be the set of max cliques B of
L with N’ <n+ B <n/ N.

First, assume there exists a max clique A € A such that N <y A, and let A be
< n-least with that property. Let A; be the <y-predecessor of A. Thus, A = N’
or A; € A. As A is <y-least with that property, we have Ay <y+ IN in both cases.
Let C:={N"e My, | N"<y A}. Then |[C| > 2 and My \ C # (). We show that
for any B € My, \ C we have BNC = BN’ for all C,C’" € C. Let C € C. Then
we have CNAC AiNAas C <y Ay <y A. Further, we have AANACNNA
since A1 <y N <y A. Finallyy NN A C CnN A follows from N <y C <y A. It
follows that C' N A = NN A for all C' € C. Thus, each vertex that is contained in
AN C for any max clique C' € C is contained in all max cliques in C. Now, each
vertex that is in the intersection of B € My \ C and any max clique C € C, is also
in ANC'. Therefore, each vertex in BN C' for any max clique C € C is contained in
all max cliques in C. As a consequence, we obtain CNB=C'"NBforall C,C' €C
where |C| > 2, which is a contradiction to the construction of L.

Next, let us assume there does not exist a max clique A € A such that N <y/ A.
Thus, A C B and A" C B. Let A be the <y-predecessor of N'. If A € A’, let
C:={N"e My, | A<y N"}. As above we can show that C N A= N'n A for all
C € C, which analogously leads to a contradiction. If A ¢ A’, then let A’ be the
=< y-successor of the < y-largest max clique of all max cliques in A’. Then A’ <y N’,
and A" <y A’ for all A”e€ A'. Further, let C := {N"€ My, | N"<n A’}. Again,
it is possible to show that C N A’ = NN A’ for all C' € C and derive a contradiction.
Thus, there are precisely two ends Nj, No € My . It follows from Lemma 333 that
the strict linear order <y, is the reverse of <y, _,. O

Lemma 341. There exists an STC+C-formula p that defines all pairs (u,v), (u,v') € V?
such that (u,v) and (u,v") span maz cliques M and A of G, where My, is an end of Lg,
and AL appears within the first || max cliques of Lg with respect to <My -

Proof. According to Lemma 340 there are exactly two strict linear orderings of Lg’s max
cliques, each the reverse of the other. By Corollary 339 we can define Lg in STC+C.
Further, we can define the ends of Lg (Lemma 332), and for an end N of Lg we can
define the strict linear order <y (Lemma 331) in STC+C. Hence, given max cliques M
and A, we can check whether M, is an end of Lg and whether Ay appears within the
first |3 ] max cliques of Lg regarding <, in STC+C. O

Lemma 342. There is an STC+C-formula that is satisfied for all pairs (u,v) € V? and
numbers p € N(V) where (u,v) spans a maz clique A of G and there is a strict linear
order < on the max cliques of Lg such that AL, appears at position p regarding <.
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Proof. By Corollary 339 we can define Lg in STCH+C. Further, we can define the ends
of Le (Lemma 332), and for an end N of Lg we can define the strict linear order <y
(Lemma 331) in STC+4C. Hence, given max clique A, we can check whether Ay appears
at position p regarding <y for some end N of Lg in STC+C. O

Lemma 343. There is an STC+C-formula that defines an isomorphic copy of Lg on
the number sort for all interval graphs G. We denote this isomorphic copy of Lg on the
number sort by K(Lq).

Proof. Lemma 343 is easy to see for graphs that are not connected or contain an apex. For
connected interval graphs G that do not have any apices, Lemma 343 follows directly from
the definability of L (Corollary 339) and Section IV.B (and Remark IV.2) in [49]. In
Section IV.B in [49] Laubner shows that there is an STC+C-formula ¢ that defines for each
interval graph an ordered copy on the number sort if there is an STC+C-definable strict
linear order on the graph’s max cliques. More precisely, let < be an STC+C-definable
strict linear order on the graph’s max cliques. Let A, be the <-least max clique of G
containing v. Then then the binary relation <, were

G {Av < Ay, or
V<7 W —
A, = A, and width(v) < width(w)

is a strict weak order on the vertex set where two vertices are incomparable iff they
are connected twins. If [v] denotes the equivalence class of vertices incomparable to v,
then [v] is represented by the numbers from the interval [a + 1,a + |[v]|], where a is
the number of vertices which are strictly <@-smaller than v. This way we obtain an
isomorphic copy of a graph on the number sort. It is not hard to see that this isomorphic
copy is STC+C-definable. Let us consider the strict linear orders <y of Lg for ends N
of Lg. The graph Lg, the ends N and these strict linear orders are STC+C-definable
(Corollary 339, Lemma 332, Lemma 331). For each possible end N, formula ¢ can use
<y to define an ordered copy of Lg. We choose the ordered copy that is lexicographically
minimal as canon K (L¢) of L. Clearly, K(L¢) is STC+C definable. O

Let G be a connected interval graph. We call Lg symmetric if (Lg, <y,) is isomorphic
to (Lg, <n,) where { N7, N2} is the set of ends of Lg.® Note that [Mp.| = 1 iff G has
an apex. Thus, Lg is symmetric for interval graphs G with apices.

Corollary 344. Let G be connected. If |My.| =1 or Lg is not symmetric, then there
is an STCH+C-formula that defines the distinguished strict linear order <., on Lg’s
maz cliques such that (Lg, <L) is isomorphic to (K (L), <k(Ls)) where <k (1) 5 the
lexicographically minimal strict linear order on the mazx cliques of the ordered graph
K(Lg).*

Proof. Let G be connected. If |[My,| =1, then L¢ is a complete graph, and the unique
strict linear order on the max cliques of Lg is STC+C-definable. Now let Lg be not

3 (La,<nN,) is a structure, if <y, is understood as a binary relation on pairs of spanning vertices of
max cliques of Lg instead of pairs of max cliques.

4 Again, we understand a strict linear order on the max cliques of a graph as a binary relation on
pairs of spanning vertices of max cliques.
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symmetric. Then G is a connected graph without any apices. Similar to formula ¢ from
the proof above, we can define a formula v that defines the strict linear order <y for
the possible end N’ € My, for which formula e defines the canon of Lg. As L¢ is not
symmetric, and there exist only two ends N that lead to strict linear orders <y which are
the reverse of each other (Lemma 340), v defines a distinguished strict linear order <.
Further, [|N'[] is the < y/-least max clique of K'(Lg). Thus (L, <nv) = (K(La), <[n7)),
and <y is the strict linear order on the max cliques of K (L¢) that is lexicographically
minimal. 0

11.5. The Colored Twinless Modular Decomposition Tree

To obtain a complete invariant of an interval graph G = (V, E), we construct a refinement
of the twinless modular decomposition tree, the colored twinless modular decomposition
tree, in this section.

Let us consider the twinless modular decomposition tree T'(G) of an interval graph G. We
call a module W € V(T'(G)) a decomposition module if W =V, or |[W| > 1 and G[W?*]
is a connected graph, where W* is the parent of W in T(G). All modules W where
G[W*] is not connected are called component modules. We let Wi be the set of all
decomposition modules and Wg™ be the set of all component modules occurring in the
twinless modular decomposition tree of G. Note that all nodes of the twinless modular
decomposition tree are either decomposition modules, component modules or singleton
sets with a parent W* where G[W*] is connected. Further, note that component modules
cannot be adjacent. Therefore, each component module is a connected component of a

decomposition module.

Let P':={(M,n) | M € Mg, n € [|V]]}. Recall the definition of the width of a vertex
from Section 11.3, and that it is STC+C-definable. For each (M,n) € P’, define Vi,
as the connected component of G[{v € V' | width(v) < n}] which intersects with M if
non-empty or the empty set otherwise, and let Gar, := G[Varn]. Now let P be the set of
those (M, n) € P’ for which the following properties are satisfied:

1. The number n is maximal among those n’ with the property that Vis, = Varp.

2. For all m" > n where Vi, is a module, V), is a subset of a non-singleton
equivalence class of ~Gopmrs OF there exists a vertex a € Vasm \ Vi, that is an
apex of Gy .

As max cliques, the width of vertices and connectivity are STC+C-definable, Vi, is
STC+C-definable as well. Further, with regard to Corollary 339 it is not hard to see that
the above two properties are STC+C-definable. Therefore, we can make the following
observation.

Observation 345. There is an STC+C-formula pp(x,y,p) such that for all interval

graphs G = (V, E), allv,w € V, and all n € [|V]], we have G = ¢[v,w,n] iff vertices v
and w span a max clique M of G and (M,n) € P.

In the following we show that the sets Vs, with (M, n) € P are precisely the connected
components of the graphs induced by the decomposition modules.

233



11. Capturing LOGSPACE on Interval Graphs

Lemma 346. The set D is a connected component of G[W] for a decomposition module
W if, and only if, there exists a pair (M,n) € P such that D = Vi,

Proof. Notice that for all modules W of G and all max cliques C of G with CN'W # ()
the set W N C is a max clique of G[W], and every max clique of G[W] is of that form.
Further, an easy induction shows that for all modules W € W U WE™ the following
properties are satisfied:

(A) Let C,C" € Mg be max cliques of G with C' # C” where CNW # () and C'NW # ().
Then for max cliques CNW, C'"NW of G[W] we have CNW # C' N W.

(B) Let C:={C € Mg | CNW # (}. Then for all B € Mg\ C and all C,C" € C we
have BNC =BnNC"

(C) Let C be the set from (B). Then W = (Joe Voo where ¢ := |C] if G[W] has an
apex and ¢ := |C| — 1 if G[W] has no apices, and for each C' € C the set Vi is a
connected component of W.

In order to show Lemma 346, we also need the following properties:

Claim 1. If V) is a connected component of G[W] for a decomposition module W
of G, and Vi © Vi for an [ > k, then W C V.

Proof. Let ¢ be defined as in Property (C) for decomposition module W. Then we have
Ve = Ve by Property (C). Let k' be the maximum width of a vertex in W. Clearly,
k' < cand Vir. = Vagpr. Thus, Vs, = Ve, and we can assume that & > k" Further,
for each [ > k with Vi, € Vayy we have Vi € Woas Vi € W leads to a contradiction,
because G[Vyy,] is connected and Vs, € Vasy is a connected component of G[W]. Thus,
Vg \ W is non-empty. As the connected component Vi is a subset of Vi N W, the
set Vary N W is also non-empty. Now G[Viy,] being connected implies that there exists
a vertex v € Vj; \ W that is adjacent to a vertex in Vi; N W. Since W is a module, v
is adjacent to all vertices in W. Further, width(w) < k' <[ for all vertices w € W. It
follows that W C V. 2

Claim 2. Let (M,d) € P' and Vi 4 be a module in Wiee U W™, If Va4 is a clique,
then there exists only one max clique C' € Mg with C' N Vyq # 0.

Proof. Since Vy;q is a clique, there must exist a max clique B € Mg with Vi g C B.
Let us assume, there exists a max clique B’ € Mg different from B with B’ N Vj; 4 # 0.
According to Property A we have BN Vg # B' N Vi q and therefore B’ N Vg € Vi a.
Since Vi q is a module, B’ UV} 4 is a clique, a contradiction to B’ being a max clique.

Claim 3. Let (M, d) € P" and Vjs4 be a module in W UWE". Further, let 0 < d' < d
be such that Vis¢ C Vara, and let A # () be the set of apices of Gjr4. Then we have
Vira € Vara \ A.

Proof. Let Virq € Wgec UWEg", and let 0 < d’ < d be such that Vs ¢ € Varqg. Thus,
Vim,a # 0. Further, let C be the set of max cliques C € Mg with C N Vg # 0 and
¢ := |C|. Clearly, ¢ > 1 and for all vertices v € Vjs4 we have width(v) < ¢. In the
following we show that width(a) = ¢ for each apex a of Gys4: Let a be an apex of Gy 4,
and let us assume that there exists a max clique C € M¢g with CNVyq # 0 and a ¢ C.
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Apex a is adjacent to the vertices in C'N V) 4, and since Vi 4 is a module and each vertex
in C' N Vg is adjacent to the vertices in C'\ Vs 4, a is also adjacent to the vertices in
C\ Vira. Therefore, C' U {a} is a clique, which is a contradiction to C' being a maximal
clique of G.

As the set A of apices of G4 is non-empty, there exists a vertex a € Virq with
width(a) = c. Thus, we have ¢ < d. It follows that Va4 = Vas, because width(v) < ¢
for all vertices v € Vi q. Now Vasra € Vasg implies d' < ¢. Since width(v) = ¢ for all
apices a € A, we conclude Viy g C Viara \ A. J

To proceed with the proof of Lemma 346, we first show that if D is a connected component
of G[W] for a decomposition module W € Wi and M € Mg with M N D # (), then
there is an n € N such that (M,n) € P and Vi, = D.

We proof this by induction on the depth of the twinless modular decomposition tree:
Clearly, if D is a connected component of G[V] for the decomposition module V' (i.e., a
connected component of G), then D = V) y| for a max clique M with M N D # (), and
(M, |V]) € P.

Now, let D be a component of G[W] for a module W € Wi with W # V. Let ¢ be
the number ¢ of max cliques of G intersecting with W if G[W] has an apex and ¢ — 1
if G[W] has no apices. According to Property C, Vi, = D. Let n be maximal with
Vin = Vare. Then (M,n) € P' and D = V),,. Choosing (M, n) like that ensures that
Property 1 is satisfied for (M, n).

It remains to show Property 2. Let m’ > n and let Vi, be a module. According to
Property 1 we have Viar,, C Varm. Thus, Claim 1 implies W C Vi,

=

First, let us assume there exists an apex a of G ,. If there exists an apex of G
in Vi \ W, we have shown Property 2. Thus, let us suppose all apices of Gy, in
particular a, are in W. Since W is a module and a € W, the vertex sets Vys s \ W and
W must be completely connected. If W contains two vertices w,w’ that are not adjacent,
then in the minimal interval representation the interval of each vertex in Vs, \ W
has to intersect with the intervals of both w and w’. Thus, the intervals of all vertices
in Vagm \ W intersect with each other and each vertex in Vys,,,, \ W is an apex, a
contradiction. Next, let us assume W is a clique. Let W* be the parent module of W
in the twinless modular decomposition tree of G. Since W is a decomposition module,
|[W| > 1 and G[W*] contains either an apex, or is connected and contains no apices.
G[W*] cannot contain an apex, because then all vertices in W* form a clique and W
is not contained in the set Wgpy+ of modules. If G[W*] is connected and contains no
apices, then W = S¢ for C € Py« where C is a set of max cliques of G[W*] with |[C| > 2
(see Section 11.4). As G[W] is connected, W = V) ,,. According to Claim 2 there exists
only one max clique C' of G with C N W # (). Consequently, C’ := C N W* is the only
max clique in G[W*] with C' N W # (), a contradiction. Hence, W cannot be a clique,
and we have shown that there are no apices of Gz, in W.

Now let us assume that there does not exist an apex of Gps,. Thus, ~Goag ot is
constructed as described in Section 11.4. Let W’ be the parent module W* of W in
the twinless modular decomposition tree of G if W* is a decomposition module, or if
W* is a component module, let W’ be the parent of module W* Then W', like W, is
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a decomposition module. Further, let D’ be the connected component of G[W'] that
contains . Notice that no matter what set we chose for W, we have D’ = W* According
to Property C, there exists an n’ € [|[V|] such that D" = V). Let n’ be maximal with
that property. Therefore, W* = Vi, and W* is a component of a graph that is
induced by a decomposition module. By inductive assumption we have (M, n') € P. If
Vi = Varme, then Vi, is a subset of the non-singleton equivalence class W of ~¢ Mo
and we are done. Therefore, let us assume Vi s # Varme -

If n < m/, then Vig,, CW C W* = Vi € Vire. As (M,n’') satisfies Property 2
and there does not exist an apex in Gy, the set Vi, and therefore also the set
Vi S Vi, is a subset of a non-singleton equivalence class of ~¢,, .

=

It remains to consider the case m’ < n’. Then Vir,, CW C Vg € Vg = W If
G[W*] = G[Varn| contains an apex, then W = Vs, \ A where A is the set of apices
of Gy According to Claim 3, Vigyy € Varn \ A. But this implies Vi € W, a
contradiction. Therefore, let us assume W* = V), is connected and does not contain
an apex. Then W = S¢ for a C € Py« with [C| > 2 where Py« is the set of
all maximal proper subsets C’ of Mg+, the set of max cliques of G[W*], with the
property that for any B € Mgy« \ ¢’ we have C N B = C"'N B for all C,C" € C'. For
all C € Mg+ with C N Vg # 0, let f(C) be the set C N Vi, As Vi is a
module, the set {f(C) | C € Mgpw+),C N Vim # 0} is the set Mg, of max cliques
of Gy Let f(C) be the set {f(C) | C € C}. Then f(C) is exactly the set of max
cliques of G/, that have a non-empty intersection with W. Let f(C), f(C') € f(C) and
f(B) € Mg,, ., \ f(C). Then f(C)N f(B) = f(C")N f(B), because C N B = C'N B and
therefore (C' N Vi) N (BN Varm) = (C' N Vi) N (B N Vg ). Further, [f(C)| > 1,
since |C| > 1 and for C,C" € C € Mgy~ with C # C' we have CNW # C'NW
according to Property A. Consequently, (C' N Virm) N W # (C' N Vi) N W and
f(C) # f(C") for max cliques f(C), f(C') € f(C). We obtain that there exists a subset
f(C) of Mg,, ., with f(C) C f(C') such that f(C') € Bg,,,.,. As there exists no max
clique f(B) € Mg,, ., \ f(C") with f(B)N'W # 0, it holds that W C Sg/) and we have
shown that Vi, is a subset of the non-singleton equivalence class Sy of ~Goagmt -

For the other direction, let (M,n) € P, we need to show that Vs, is a connected
component of a graph induced by a decomposition module. We prove this by induction
on n. Clearly, this holds for n = |V(G)|, so let n < |V (G)|. Let p be minimal such that
p > nand (M,p) € P. Since (M, |V]) € P such a number exists. By inductive assumption
we know that Vs, is a connected component of a graph induced by a decomposition
module. Thus, Vi, is a module occurring in V(T'(G)), the nodes of the twinless modular
decomposition tree of G.

Since (M,n) € P, (M,n) satisfies Property 2. Thus, Vi, is a subset of a non-singleton
equivalence class of ~g,, , or there exists an apex of Gy in Vary \ Varn.

Let Vir,, be a subset of a non-singleton equivalence class W of ~q,, . As G[Var,] is
connected, the equivalence class W is a decomposition module. Let D be the connected
component of G[W] that contains Vi ,,. If Vas, = D, then V), is a connected component
of the graph G[W] induced by decomposition module W, and we are done. If Vj,, is a
proper subset of D, we obtain a contradiction to the choice of p, since we have already
shown that for the connected component D of G[W] there must exist an m € [|V|] such
that (M, m) € P and Vi, = D, and n < m < p.
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Now let there be a vertex a € Vi, \ Vs, that is an apex of Garp. Let A be the set of
apices of Gyrp. According to Claim 3 we have Vs, C Var, \ A. Further, [Vyr, \ A =1
implies that v € Vs, \ A is also an apex. Consequently, |Vir, \ A| > 1. Therefore, we
have either shown that Vi, is a connected component of the non-singleton class Vi, \ A
of ~¢,, , or obtain a contradiction to the choice of p. O

We are now ready to define the colored twinless modular decomposition tree. An
illustration of the tree can be found in Figure 11.2.

Formally, the colored twinless modular decomposition tree of G is defined as T = Tg =
(Vir, ET, f1), where V7 is the set of nodes, E7 is the set of edges and fr: Vi — Cr is
the coloring of 7. Thus, C7 is the set of colors. In the following we define the set Vi
and E7 of nodes and edges, respectively, and the coloring f7 with the set C7 of colors.
The set Vi is the union of the following sets:

e the set V of component nodes vy, , one for each set Vi, with (M,n) € P,

o the set A of arrangement nodes aqy,,,, one for each set Vi, with (M,n) € P
and each non-empty subset Q@ € Q(Lg,, ), where Q(Lg,, ) is a set of strict linear
orders on the max cliques of Lg,, .. We let

- Q(Lay,.,) = {<LGM,H} where <z =~ is the distinguished strict linear order
from Corollary 344, if | M LGM,n| =1lor Lg,,, is not symmetric, and
— Q(Lay,.,.) = {=<n,, <N, } where N1, N are the two ends of Lg,, ,, otherwise.

e the set S of module nodes sy,y,, ,, one for each set Vs, with (M,n) € P and each
non-singleton equivalence class W of ~¢,, ., and

e {sy}, where sy is a special node acting as the root of 7.

We color the nodes in V by assigning to each vy,,, € V the ordered graph K(Lg,, )
The nodes in A4 remain uncolored, and may therefore be exchanged by an automorphism
of T whenever their subtrees are isomorphic. Each sw,y,,, € S is colored with the size of
W and the set c(sw,y,,,) of integers corresponding to the positions that the max clique
A of Lg,,, which contains W takes in the orders Q(Lg,,, ) of Lag,, .-

The edge relation E7 of T is now defined with all edges directed away from the root sy .

e The root sy is connected to all vy,, , € V with n = |[V].

e Each vy, , € V is connected to all nodes in A of the form aq,v,, . Therefore, vy, ,
is connected to one or three nodes.

e Each aq,v,, , € A is connected to all those sy, , € S so that @ is the set of orders
of Lg,,, under which the max clique A of Lg,, , which contains W e V(Lg,,,,)
attains its minimal position.

e Every swy,,, € § is connected to those nodes Wy € V for which Vi, is a
connected component of the graph induced by module W, that is, for each max
clique B of G with BNW # 0 the node sy, ,, € S is connected to vy, € V with
n' =max{m <n | (V) € P}.

The point of the arrangement nodes A is to ensure that the order of submodules is
properly accounted for. If our tree did not have such a safeguard, exchanging modules in
symmetric positions might give rise to a non-isomorphic graph, but it would not change
the tree, so 7 would be useless for the task of distinguishing between these two graphs.

Lemma 347 below shows that our colored twinless modular decomposition trees are a
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Figure 11.2.: An interval graph and its colored twinless modular decomposition tree.
Each component vertex vy is represented together with the interval graph
Ly whose canon is the color of vy. The colors of module vertices are
indicated in the gray fields next to them.
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complete invariant of interval graphs, so colored twinless modular decomposition trees
can be used to tell whether two interval graphs are isomorphic.

Lemma 347 ([47],[50]°). Let G and H be interval graphs. If their colored twinless
modular decomposition trees are isomorphic, then so are G and H. O

We will later need STC+C-definability of this colored tree. We define the colored twinless
modular decomposition tree T as an LO-colored directed tree (defined in Section 2.3.4).
More precisely, we understand 7¢ as a tuple (V U [n], E, <], L) where (V, E) is a directed
tree, <p, is the natural order on [n] with n € N, and L C V x [n]* is a relation that
assigns to each vertex b € V a color Ly, := {(m,m’) | (b,m,m') € L}. It is easy to bring
the colored twinless modular decomposition tree into this form. For example, if b is a
component node, say vy,, ., then L is the representation of the canon of Ly,, . (see
Section 4.2), that is, L consists of all pairs (m,m’) where {m,m'} is an edge of K(Ly,, )
and the pair (ny,nz) where ny is the number of vertices of K(Ly,, ). Furthermore, if b
is a module node, say swy,, ., then L, consists of the pair (0,m) where m is the size of
the equivalence class W, and of all pairs (1,m) where m’ € ¢(b).

In order to define the colored twinless modular decomposition tree 7 we show that there
are STC+C-formulas 6y (1), O~(u, '), 0g(u,w') and 6 (u,r,r"), where u, u' are compatible
tuples and 7,7’ are number variables, such that for all interval graphs G,

e 0~[G;u,u'] generates an equivalence relation =,

o V5 :=0y[G;u]/~ is the set of nodes of Tg,

o Br:={(a/x,b/~) € V2| (a,b) € O5[G;u,u']} is the edge relation of T¢, and

o L1 :={(a/~,n,n') € V7 x N(G)? | (a,r,7") € 0L[G;u,r,r']} is the color relation

of Tg.

We let @ be the tuple (p, iy, ., Uq, tw) where

’L—LVM,n = (xMayMapn)
ﬂ’Q = (levprxszyNg)
’lj,W = (:CA7 Z/A)
The tuple @’ is defined analogously.

Remember that the sets Vi, and therefore the induced subgraphs Gy, are STC4+C
definable, and that STC+C is closed under logical reductions.

First, let us sketch how formula 0y is defined. Variable p identifies the type of the node.
For all «, we let 0y |G, a;p] be a subset of {0,1,2,3}. Type 0 corresponds to the root
node sy, type 1 to component nodes vy,, , € V, type 2 to arrangement nodes aq,v,,,, € A
and type 3 to module nodes sy, ,, € S.

5 The graphs Lg,,, resemble the concept of overlap components used in [47] for the definition of
a similar kind of modular decomposition tree. Overlap components are connected components of
the subgraph of G in which only those edges are present for which the closed neighborhood of
neither endpoint is strictly contained in the closed neighborhood of the other (intuitively, their
intervals overlap or are equal). It can be checked that overlap components and graphs Lg,, , only
differ in the way they treat vertices that are contained in just one max clique: overlap components
treat them as further modules (which they trivially are), the Lg,, ,, graphs directly put them into
their unambiguous places. In [47] the authors show Lemma 347 for this similar kind of modular
decomposition tree. A detailed proof of Lemma 347 can be found in [50].
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11. Capturing LOGSPACE on Interval Graphs

e For a(p) € {1,2,3}, we let Oy [G, «; zar, yar, pn] be the set of triples (v, w,n) where
v, w span a max clique M of G and (M,n) € P.

e For a(p) = 2 and a(znr, ym, pn) = (v,w,n) where v, w span max clique M of G,
we let Oy |G, a;xN,, Yn,, TNy, YN,] De the set of tuples (vy,,wn,,vN,, wn,) Where
for all i € [2],

— vp,,wn,; span a max clique M; of G such that N, := (Mi)LGM B is an end of
Lg,,, if Lg,,., is symmetric, and 7

— un,,wy, span a max clique M’ of G such that N’ := MiGNIn is the end of
Lg,,,, for which <y is the distinguished order on the max cliques of La,, ..
(cf. Corollary 344) otherwise.

e For a(p) = 3 and a(zpr, yar, Pn) = (v, w,n) where v, w span max clique M of G, we
let Oy [G, a; x4, y4] be the set of pairs (va,wa) where v4, w4 span a max clique A
of G and there exists a non-singleton equivalence class W of ~g,, = such that

ANW # 0.

We define the equivalence relation ~ such that 6y [G, a;u]/~ is the set of nodes of 7¢.
We let tuples a,a’ € T, be equivalent if they have the same type, and satisfy all of the
following properties for the respective type.

e Type 1, 2 or 3: Vertices v, w and v/,w’ span the same max clique and n = n’.

e Type 2: Vertices vy,,wy, and vjy ,wy, span M; and M| such that N; = N; for
N; == (M;)Lg,, , and Nj := (Mi)/LGM,n for all i € [2], and {Ny, Na} = {N{, N3 }.
Note that this way we obtain 3 equivalence classes if the graph Lg,, ,, is symmetric.

e Type 3: Vertices v4, w4 and v/y, w’y span max clique A and A’, and ALGM,n: AILGM,H'

Thus, there exists a non-singleton equivalence class W of equivalence relation ~g,, .

such that ANW # 0 and A’ NW # 0.

Now let us consider the edge relation. We let formula 92}/ (u,u’) define the edges connecting
vertices of type 7 with vertices of type i'. We let

9115772(17'7 ﬁ/) = aVM,n = aQ/M,n’
9%3('&7[&/) = ﬂVM,n: a,VM,n A p(le,le,xA7yA) A p($N27yN27$A7yA>7 and
9%’3(6,&’) = (wa,ya) = (2%, vhy) A V¢ is maximal with pp (), vh,d) A ¢ < ¢

where formula p is defined in Lemma 341 and formula ¢p in Observation 345. Given the
above formulas, it should be clear how to define .

It remains to define ;. We can define the coloring of all vertices of type 1 in STC+4C
according to Lemma 343. The coloring of all vertices of type 3 is STC+C-definable
by Lemma 342 and Corollary 339, which says that the equivalence relation ~¢,, , and
therefore the sizes of the respective equivalence classes of ~¢,, , are STC+C-definable.

In Section 8.4 we described how to define a total preorder <’ on the nodes of an LO-colored
directed tree, that is, a strict linear order on the isomorphism classes of the colored
subtrees identified by its root nodes. We use this total preorder =’ in the next section
for canonization.
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11.6. Canonization

This section deals with the canonization of interval graphs, that is, how to construct an
LREC_-formula &'(p, ¢) such that G = ([|[V(G)|], K'|G; p, q]) for each interval graph G. As
a result we obtain the following;:

Theorem 348. LREC_ captures LOGSPACE on the class of all interval graphs.

We use the colored twinless modular decomposition tree and the total preorder =<’
(Section 8.4) on its nodes for canonization. We apply l-recursion on the colored twinless
modular decomposition tree, and as we have done for canonizing trees we build the canon
from the leaves to the root of the tree. Recursively, we construct the canon by first
building the disjoint union of the canons of the components of submodules, then use the
arrangement nodes to insert all submodules at the correct side and build the canon of
the corresponding component of a module.

In the following we explain the canonization procedure in more detail. The following
lemma shows that it suffices to give an LREC_-formula k(p, ¢) such that for every interval
graph G we have G = ([|V(G)|], k[Ta;p, q]). It follows from the Transduction Lemma
(Lemma 326) and the fact that the colored twinless modular decomposition tree of an
interval graph is STC+C-definable.

Lemma 349. If there exists an LREC_-formula k(p,q) such that for all interval graphs
G we have G = ([|V(G)|], k[Ta; p, q]) and k[Tg;p,q) C [|[V(G)|]?, then there also exists an
LREC_-formula /'(p,q') such that for all interval graphs G, G = ([|V(G)|], K'[G; P’ ']).

Proof. As showed at the end of Section 11.5, the nodes, edges and colors of the colored
twinless modular decomposition tree of an interval graph G are definable by STC+C-
formulas 0y (u), 0~(u,v), 0g(u,v) and 01 (u,r,r'), where u, v are compatible tuples and
r,r’ are number variables. We can use these formulas to define the STC+C-counting
transduction ©% = (O (), O~(,v),0g(t, v), 0 (@, r,r')). The definition and more infor-
mation on counting transductions can be found in Section 2.5.4. Note that ©#[G] = 7.
According to Proposition 14, there exists an STC+C-transduction © with O[G] = #[G].
Thus, there exists an STC+C-transduction © with ©[G] = T¢.

We now apply the Transduction Lemma (Lemma 326) with the transduction © to
obtain an LREC_-formula £~ (,7) such that for all m,n € N(G)¥, G |= x=®[m, 7]
i (), (M) € N(O[G]) and O[G] bkl , (Wl As klTaip,a) C V(G2 the
condition (M), (n); € N(O[G]) can be replaced by (m),(n), € N(G). Hence, the
tuples ', ¢ of number variables in £~ © can be identified with single number variables
P, ¢, which yields the desired formula £'(p’,¢'). O

In general, the canonization procedure is similar to the one of directed trees. To apply
l-recursion we use a graph G = (V,E) with labels C(v) C N for all v € V. We let
V := V(Ta) x N(7g)? be the vertices of G and for all component nodes vy,,, € V,
(Wasn»P,q) € X stands for “(p,q) € EvVM,n?”’ where E”VM,n is the edge relation of an

isomorphic copy ([|VM,n|]>Eva,n) of Gar .

In the following we explain the edge relation E and labels C of graph G.
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FEdges introduced by module nodes.

In 7g, each node swy,,,, € S is connected to those VW € V for which Vi, is a
connected component of the graph induced by module W.5 We can use the available total
preorder <’ on the children of syy,,, to construct the edge relation of the canon of the
disjoint union of the children’s canons from the edge relation of the canons of the children.
For a node s € § and a child v := Wy € Y of s, let D, be the set of all children v’ of
s with v" <’ v, and e, be the number of children v’ of s defining modules Vs, such
that Vi, and Vi, induce subgraphs that are isomorphic (i.e., v/ <’ v and v <" /).
For all p,q € N(7¢)? and all i € [0,¢e, — 1], we let 5 := (s, py; + P, pui + ¢) have an edge
to (v,p,q) where p,; == ZUVM/n’ en, |V | +4 - |[Varn| and define C(5) = {e,}. Notice

that here we can have an in-degree greater than 1.

Edges introduced by arrangement nodes.

Let us consider a node aq,v,,,, € A. Its children in 7g are nodes sy, ,, for submodules W
of the module V}y,, and we need to integrate the canons of them into the canon K(Lg,, ,)
of Lg,,,. In order to do this, we need

e the edge relation of K(Lg,, ), which is encoded in the color of the parent node of
AQ Vs, n s

e the size of the vertex set of K(Lg,, ), which is also encoded in the color of the
parent node of aq vy, .,

e the size of each submodule W corresponding to a child swy,, , of agv,, ., which is
encoded in the color of the respective child, and

e for each submodule W corresponding to a child sy, ., the set c(swy,,.,) of
possible positions of the max clique of Lg,,, that contains the submodule W
regarding the strict linear orders in Q(Lg,, ). This set of positions is also encoded
in the color of the respective child sy, ..

We assume that the canon K (Lg,, ) is assigned to the first part [1, [V (Gy,,,.)|] of the
number sort. Notice that on the number sort we have a distinguished order < Loy, )

on the max cliques of K(Lg,, ) (see Corollary 344).

For the children nodes swy,,, of agy,,, we already know that (swy,,.,p,q) € X
corresponds to “(p,q) € Ew?”, where Eyw is the edge relation of an isomorphic copy
([[W]], Ew) of G[W]. Now we create the necessary edges in G such that (aq,v,,...p,q) € X
corresponds to “(p,q) € E{/M)n?” where E{/M,n contains the following edges: For each
child swv,,, of agv,, .., we take the edges of the canon of G[W] and shift them into
another range of the number sort, that is, we add to the number vertices of every edge of
the canon of G[W] the size of the vertex set of K(Lg,, ) and the sizes of all modules
W’ corresponding to certain other children sy y,, , of a or of siblings of a. We will
specify the children later. Further, E{/Mm contains for each child sywv,, . of agv,,, edges
between certain vertices of the canon K (Lg,, ) and the vertices of the shifted canon
of G[W]. More precisely, we use the total preorder <’ on the nodes of 75 and the set
c(8w,vas.,) of positions to determine a subset pos(sw,vy,.,.) € c(sw,vy,.,) of positions that
indicate where to integrate the canon of G[W] into K(Lg,, ) in order to obtain a canon
of G, For each position r € pos(sw,y,,, ) we determine the max clique of K(Lg,,,,)

at position r regarding the order < Loy, ) and find the minimal vertex m in this max

6 Here, we can include node sy, where we let W correspond to V.
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clique that can represent module W (a vertex that is in no further max clique). We let
Ey,, . contain the edges between each neighbor of m in K(Lg,, ), and every vertex of
the shifted canon of G[W]. Notice that W is a module, and therefore, these are the edges
connecting the shifted canon of G[W] with the rest of the graph.

We obtain the edge relation of the canon of G'yr,, in the subsequent step, when considering
the edges introduced by component nodes. Then, we add the edges of the canon K (Lg,, ,,)
to the set E{,M‘n of edges, and afterwards remove all the vertices m representing non-
singleton equivalence classes W and close the gaps such that the vertex set of the canon

is [|Varnl]-
Now let us define the edges of G introduced by arrangement nodes.

First, we define the set of positions pos(s) for every module node s := sy, , € S. If
c(s) is a singleton set, then the position is already determined and we let pos(s) := ¢(s).
In the following, let ¢(s) be not a singleton set. Let a be the parent of s. Notice that in
this case, a has two siblings and the graph Lg,, , is symmetric. If there does not exist
a sibling a’ of a with |c(s")| = 2 for a child s’ of @/, then we let pos(s) := {max(c(s))}.
Now, let there be a sibling a’ of a with |¢(s")| = 2 for a child s’ of @’ Note that there can
exist only one sibling @’ with this property.

o If a <’ d/, then we let pos(s) := {min(c(s))}.
o If a’ <’ a, then we let pos(s) := {max(c(s))}.
o If neither a <" @’ nor @’ <’ a, then we let pos(s) := c(s).

If neither a <’ @’ nor a’ <’ a, the subtrees of Tg rooted at a and a’ are isomorphic. As
a consequence, the non-singleton equivalence classes W of ~¢,, , occur in symmetric
positions regarding each strict linear order < € Q(Lg,,., ), and each pair W, W’ of non-
singleton equivalence classes in symmetric positions induces isomorphic subgraphs.

Let a := aqy,,., € A, and let D, be the set of all nodes s that are a child of a or a child
of a sibling of a. Let Pos(a) := Usep(q) Pos(s). The set Pos(a) is the set of all positions
r of a max cliques A regarding <K(Lay,.,) where a vertex of A has to be replaced by
the canon of G(W) for a non-singleton equivalence class W. For all r € Pos(a), let
P(r) := {r" € Pos(a) | v < r} and size(r) := |W| where r € pos(sw,v,,.,,). The position
r specifies a max clique A of K(Lg,,,) regarding <x(rs,, )- The value size(r), for
r € Pos(a), is the size of the module whose induced subgraph has to replace a vertex of
A. Note that size(r) is well-defined: Only if @ and a sibling a’ of a have each a child s
such that |c(s)| = 2, and neither a <’ @’ nor a’ <’ a, there can be (exactly) two nodes
SW,Var., With r € pos(sw,vy,,. ). One is a child of a and the other one a child of a’. As
neither a <’ @’ nor @’ <’ a, the colored subtrees rooted at a and @’ are isomorphic. The
size of W is encoded in the color of each node swy,, .. Thus, the two nodes sy,
with 7 € pos(sw,v,,.,,) have to correspond to modules W of equal size. Hence, size(r) is

well-defined.

Now let s be a child of a. Let d, := |V(Lg,,,)| + > ep( size(r’). For all r € pos(s)
and p,q € N(Tg)? where d, + p,d, + q € N(75)?, we let a := (a,d, + p,d, + q) have an
edge to (s, p,q) and define C(a) = {| pos(s)|}. Further, let |IW| be the size of the module
corresponding to s. Let m, be the minimal vertex in the max clique of K(Lg,, ) at the
position 7 € pos(s) that is in no further max clique of K(Lg,, ), and let N(m,.) be the set
of neighbors of m, in K(Lg,,,, ). For all r € pos(s), p € N(m,) and q € [d, +1,d, + [W|],
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we define C(a,p,q) = C(a,q,p) = N(Tg). For all p,q € N(Tg) where we have not yet
assigned a color to vertex (a,p,q) of G we let C(a,p,q) = 0. Notice that C(a,p,q) = 0
and there are no outgoing edges of (a,p, q) for all p,q € N(7¢) if a does not have any
children.

Note, that we only obtain in-degrees larger than 1, that is, in-degrees of 2, if the graph
Lg,,,, is symmetric and we insert pairs of isomorphic graphs G[W] for non-singleton
equivalence classes W of ~¢,, . in symmetric positions at both sides.

FEdges introduced by component nodes.

Let v = vy,,,, € V. We now define the edge relation of G such that (vy,,,.,p,q) € X
stands for “(p, q) € By, 77, where E,, is the edge relation of an isomorphic copy of
G on the number sort. Thus, we add the edges of the canon K (L . ) to the set of
edges E{/Mw which is the edge relation defined through X in the previous step, remove
all vertices m representing non-singleton equivalence classes W and close the gaps such
that the vertex set of the isomorphic copy is [|Vasn|]-

Let R := {m, | r € Pos(a)} be the subset of vertices of K(Ly,, ,) that represent non-
singleton equivalence classes and have to be removed. Let n; be the size of the vertex
set of K(Ly,, ), and let <":= <x(7,)\r be the natural linear order on the the numbers
in N(7T¢) \ R. For all p in [|[N(7¢)| — |R|], we let f(p) = ¢ if ¢ is at position p in <. For
all p,q € [1,n — [R]], we let C(v,p,q) = N(Tc) if {f(p), f(¢)} is an edge in K(Ly,,,)
and C(v,p,q) = () otherwise. Also we let C(v,p,q) = 0 whenever p or ¢ is contained in
[|N(Ta)| —|R|I+1,|N(Ta)|]. Welet v := (v,p, q) have an edge to (a, f(p), f(g)) and define
0() = {1} for all pairs (p, ), (4, ) € [N(T0)| — |R]) x [ns — |R| + 1LIN(T0)| - |R]).

Finishing the construction.

In order to actually perform l-recursion we need sufficient “resources”. Taking a look at
the in-degrees, we notice that they are only larger than one when we treat isomorphic
connected components while building the disjoint union, or when the graph Lg,, ,
is symmetric and we insert the induced subgraphs of non-singleton modules twice in
symmetric positions at both sides. Either way, an in-degree of d means that we insert at
least d disjoint isomorphic copies into the graph on the number sort. Hence, it suffices to
use a binary resource term.

Remark 350. It is possible to show that there is no LREC+TC[{E'}]|-sentence ¢ such

that for all connected interval graphs G, G we have G1 UGy = ¢ if and only if G; = Gs.
The proof is based on similar ideas as the proof of Theorem 314. J
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We show that the class of chordal claw-free graphs admits LREC_-definable canonization
in this chapter. As a result, LREC_ captures logarithmic space on the class of chordal
claw-free graphs.

A graph is chordal if all its cycles of length at least 4 have a chord, which is an edge that
connects two non-consecutive vertices of the cycle. Chordal graphs can be characterized
in various interesting ways (see [2]). In particular, chordal graphs are the intersection
graphs of subtrees of a tree [5, 22, 67]. A tree representation, called a clique tree, can
be computed in linear time [38]. In a clique tree each node of the tree corresponds to a
max clique of a chordal graph. Clique trees of chordal graphs are properly defined in
Section 12.1.

1
2 3 4

Figure 12.1.: The claw K13 = ([4], {{1,2},{1,3},{1,4}})

A claw-free graph is a graph that does not have a claw as an induced subgraph. A claw
is a graph that is isomorphic to the complete bipartite graph K; 3. Figure 12.1 shows
a picture of a claw. There exists a variety of types of claw-free graphs. For instance,
the graph of the icosahedron, complements of triangle-free graphs, the Schlafli graph
and proper circular arc graphs are claw-free graphs [9]. Further, claw-free graphs are
generalizations of line graphs. The line graph G’ of a graph G = (V, E) is the graph with
vertex set ' where there is an edge between two vertices of G’ whenever the corresponding
edges are adjacent in G. For a given graph G the line graph G’ is illustrated in Figure 12.2.
It is not hard to see that line graphs are claw-free.

Figure 12.2.: The line graph G’ of a graph G
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In 2010 Grohe showed that FP+C captures polynomial time on chordal line graphs, that
is he showed that there exists an FP+C-canonization of chordal line graphs [29]. At the
same time he conjectured that his result can be generalized to chordal claw-free graphs.
Our result confirms his conjecture and improves it by showing that chordal claw-free
graphs admit LREC_-definable canonization. Hence, LREC_ captures LOGSPACE on the
class of chordal claw-free graphs.

In order to prove that chordal claw-free graphs admit LREC_-definable canonization, the
strategy is the following: According to Proposition 19, it is sufficient to show that there
exists an LREC_-definable (parameterized) canonization of connected chordal claw-free
graphs. To define such a canonization we use the clique tree of these graphs. We show
that for connected chordal claw-free graphs the clique tree is unique. Further, the clique
tree has a special structure, and the max cliques of it intersect in specific ways. We color
every max clique with information about its intersection with other max cliques. We
know that there is an LREC_-canonization (for several types) of colored trees. However,
before we can canonize the colored tree, we have to define it in our logic. In order to
do this, we first show that the clique tree can be defined in first order logic. Then we
transform the clique tree into a directed tree, and color each max clique by using an
LO-coloring. We obtain what we call the supplemented clique tree, and show that it is
definable in STC+C. Next we apply the LREC_-canonization of LO-colored trees to the
supplemented clique tree and obtain the canon of this colored directed tree. Due to the
LO-coloring the information about the max cliques is also contained in the coloring of
the canon of the supplemented clique tree. This information and the ordering of the
nodes of the canon allow us to determine the max cliques of the canon of the graph
by reconstructing the clique tree. Having the max cliques of the canon we can easily
construct the canon.

12.1. Introduction of Clique Trees

In this section we introduce clique trees of chordal graphs and show some basic properties
of clique trees of chordal claw-free graphs.

Clique Trees of Chordal Graphs

Chordal graphs are the intersection graphs of subtrees of a tree [5, 22, 67]. A clique tree
of a chordal graph specifies such a tree representation.

Let G be a chordal graph, and let M be the set of max cliques of G. Further, let M,
be the set of all max cliques that contain a vertex v of G. A clique tree of G is a tree
T = (M, &) whose vertex set is the set M of all max cliques, where for all v € V the
induced subgraph T[M,] is connected. Hence, for each v € V the induced subgraph
T[M,] is a subtree of T'. The subtrees T[M,] of T for all v € V are a tree representation
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of G, which shows that G is an intersection graph of subtrees of a tree:

There is an edge, between vertices v and w is G.

There is a max clique M that contains vertices v and w.
There is a max clique M that is a node of T'[M,] and T[M,,].
The subtrees T'[M,] and T[M,,] of T' intersect.

111

Clique trees were introduced independently by Buneman [5], Gavril [22] and Walter [67].
An example of a clique tree of a chordal graph is shown in Figure 12.3. A detailed
introduction of chordal graphs and their clique trees can be found in [2].

Figure 12.3.: A graph and a clique tree of it

Let T = (M, &) be a clique tree of a chordal graph G. It is easy to see that clique tree T
satisfies the clique-intersection property:

Let My, My, M3 € M be nodes of the tree T. If Ms is on the path from M; to
Ms, then M7 N M3 C Ms.

Clique Trees of Chordal Claw-free Graphs

In the following we consider chordal claw-free graphs GG. For each vertex v, we prove that
the set of max cliques M, induces a path in each clique tree. We use this property and
further ones to show that the clique tree of a connected chordal claw-free graph is unique
in the following section.

Lemma 351. Let T be a clique tree of a chordal claw-free graph G = (V, E). Then for
allv € V the induced subtree T[M,] is a path in T.

Proof. Let us assume that there exists a vertex v € V' such that the graph T[M,] is not
a path in T. As T[M,] is a subtree of T, there exists a max clique B € M, such that
B has a degree of at least 3. Let Ay, Ay, A3 € M, be three distinct neighbors of B in
T[M,]. Since A; and B are distinct max cliques, we have A; € B. Thus, for all i € [3]
there exists a vertex a; € A; \ B, and for each ¢ € [3], we have A; € M,,, B € M,, and
M, is connected in T. As T is a tree, Ay, Ag, and A3 are all in different connected
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components of T[M \ {B}]. Therefore, My, N M,, = 0 for all i, € [3] with i # 7.
Now, we can show that {v,a1,a9,as} induces a claw in G, which contradicts G being
claw-free. For all ¢ € [3], there is an edge between v and a;, because v, a; € A;. To show
that vertices a; and a; are not adjacent for i # i’, let us assume the opposite. If there
exists an edge between a; and a;/, then there must be a max clique M containing a; and
ay. As a consequence, M is in My, N M,,,, which is a contradiction as M,, N M,,, must
be empty. O

Lemma 352. Let T be a clique tree of chordal claw-free graph G = (V, E). Further, let
v eV, and let Ay, Ag, A3 be distinct maz cliques in M,,. Then As lies between Ay and
As on the path T[M,] if and only if Ay C Ay U As.

Proof. First, let us assume Ay C A; U A3 and let us prove that max clique As must
be between max cliques A; and As on the path T[M,]. For a contradiction let us,
without loss of generality, suppose A; is situated between A, and Az. Then the clique
intersection property implies that Ay N A3 C A;. Further, it follows from A; C A; U A3
that As \ A3 C A;. Consequently, we have A; C Ay, which is a contradiction to A; and
Ay being distinct max cliques.

Now let max clique A, lie between max cliques A; and As on the path T[M,]. In order to
prove that As C A; U A3, let us assume there exists a vertex as € Ay \ (41 U A3). For the
following part of the proof an illustration can be found in Figure 12.4. Let P = By, ..., B;
be the path T'[M,] (Lemma 351). Without loss of generality, let A; = B;, for all ¢ € [3]
where ji, jo,j3 € [l] with j1 < jo < j3. Further, let A} := B;, 41 and A5 := Bj,_1, and
let a; € Ay \ A} and a3 € A3\ Af. Since A; and A}, and A3 and Af are distinct max
cliques, such vertices exist. We show that the set {v,a1,a2,a3} induces a claw in G,
which is a contradiction as G is claw-free. Clearly, for all ¢ € [3] vertices v and a; are
adjacent. It remains to show that there is no edge between a; and a; for all i,i" € [3].
We proceed analog to the previous proof. Let T’ be the subgraph of T after removing the
edge between A; and A}, and the edge between A3 and Aj. Then 7" consists of three
connected components, containing the sets M,,, M,, and M,,, respectively. Again
an edge between vertices a; and a; for 7 # ¢/ implies that there exists a max clique M

containing a; and ay, which means M € M,, N M,,,, a contradiction. ]
Aq Al A, Al As
@_ ay N ax Y. as Y.. Q
N
By Bj,  Bji11 B; Bj,-1 B; B

Figure 12.4.: Nlustration for the proof of Lemma 352
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12.2. Uniqueness of the Clique Tree for Connected Graphs

In the following we show that the clique tree of a connected chordal claw-free graph
is unique. Notice, that this is a property that does not hold for unconnected graphs.
Given an unconnected chordal (claw-free) graph, each subgraph induced by a connected
component has a clique tree. We can connect the clique trees for the connected components
in an arbitrary way to obtain a clique tree of the entire graph. Further, connected chordal
graphs in general also do not have a unique clique tree. For example, the claw is a
connected chordal graph having multiple clique trees (see Figure 12.5a). We can also
consider star graphs in general, that is, graphs K, , for n > 0. For n > 3 the clique
trees of star graph K, are not even necessarily isomorphic as shown in Figure 12.5b for
the K174.

Tl @@ L W)W
SR IONOEESR R IOND.C

(a) The K; 3 and two clique trees (b) The K; 4 and two non-isomorphic clique trees

Figure 12.5.: Examples for connected chordal graphs where the clique tree is not unique

Lemma 353. Let T) = (M, &) and Ty = (M, &) be clique trees of a chordal claw-free
graph G = (V, E). Then for every v € V. we have Ti[M,]| = To[M,)].

Proof. According to Lemma 351, T1[M,] and T>[M,] are paths in 77 and T3, respectively.
Clearly, the paths have the same vertex set M,. Let us assume there exist distinct max
cliques A, B € M, such that, without loss of generality, A, B are adjacent in 77[M,] but
not adjacent in T5[M,]. As A, B are not adjacent in T5[M,], there exists a max clique
C € M, which lies between A and B on the path T5[M,]. Thus, AN B C C according to
the clique-intersection property. In T1[M,] max cliques A and B are adjacent. Therefore,
either A is between B and C, or B lies between A and C'. Without loss of generality,
let A lie between B and C' on the path induced by M, in 7T;. Then A C B U C by
Lemma 352. Thus, we have A\ C' C B. In combination with AN B C C, this yields that
A\ C C C. Consequently, A\ C must be empty, which is a contradiction to A and C
being distinct max cliques. O

Lemma 354. Let T be a clique tree of a connected chordal claw-free graph G. Then

T = TIM.).

veV

249



12. Capturing LOGSPACE on Chordal Claw-Free Graphs

Proof. Clearly, the graphs T' and T" := |J,,cyy T[M,] have the same vertex set, and T” is
a subgraph of T'. Let us assume there exist max cliques A, B € M such that there is an
edge between A and B in T but A and B are not adjacent in T". First of all, we show
that AN B = (). Suppose there exists a vertex v € AN B. Then A and B are vertices
on the path induced by M,. As there is an edge between A and B in T, max cliques A
and B must be adjacent in T'[M,] and therefore in 7", a contradiction. Thus, we have

AN B=0.

Next, we show that this implies that GG is not connected. Let C4 and Cg be the connected
components of T that we obtain after removing the edge between A and B. Further,
let W4 :=JC4 and Wy := |JCg. We prove that W4 and Wg form a partition of the
vertex set V' such that no pair of vertices a € Wu, b € Wpg is connected in G. Then G
cannot be connected and we have a contradiction. First we show that {W4, Wg} is a
partition of V. Clearly, WyUWpg =V, and since A C W, and B C Wg, W4 and Wg are
non-empty. It remains to show that W, and Wg are disjoint. Thus, let us suppose there
exists a vertex w € W4 N Wpg. Then there exist max cliques M4 € C4 and Mg € Cp,
with w € My and w € Mp. The path T[M,,] must contain the edge between A and B.
Thus, w € AN B, a contradiction. Hence, W4 N Wpg = 0. Now let us assume there exist
vertices a € Wy, b € Wy which are connected in G. Since W, and Wp form a partition
of V, there must exist vertices a’ € Wy, b/ € W which are adjacent in G. Thus, there
exists a max clique M with a’,b’ € M. As either M € C4 or M € Cg, we obtain that
a,b € Wy or d',b/ € Wpg, a contradiction. O

As a direct consequence of Lemma 353 and Lemma 354 we obtain the following corollary,
which is the main result of this section.

Corollary 355. Let T1 and T3 be clique trees of a connected chordal claw-free graph G.
Then T1 = TQ.

12.3. Structure of the Clique Tree

The clique tree plays an important role in the subsequent canonization of connected
chordal claw-free graphs. Thus, we analyze the structure of clique trees of connected
chordal claw-free graphs in this section.

In the previous section we showed that a connected chordal claw-free graph G has a
unique clique tree. In the following let G be a connected chordal claw-free graph G and
let T be its clique tree.

Lemma 356. Let v € V. Then for allw € V' \ {v} the induced subgraph T[M, \ M| is
connected.’

Proof. Let P = Ay,...,A; be the path T[M,], and let us assume T[M, \ M,] is not
connected. Then there exist i, j, k € [l] with i < j < k such that A4;, A, € M, \ M,, and
Aj € M,,. By Lemma 352 we have A; C A; U Aj. Thus, vertex w € A; is also contained
in A; or Ag, a contradiction. L]

L We define the empty set as connected.
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12.3. Structure of the Clique Tree

Let P and Q be two paths in 7. We call (4, A, {Ap, Ag}) € V? x (}) a fork of P and
Q, if P[{A", A, Ap}] and Q[{A4’, A, Ag}] are induced subpaths of length 3 of P and @),
respectively, and neither Ap occurs in @ nor Ag occurs in P. Figure 12.6 shows a fork of
paths P and Q. We say P and Q fork (in B) if there exists a fork (A’, A, {Ap, Ag}) of
P and @ (with A = B).

A A Ag
Q
Figure 12.6.: A fork (A’, A,{Ap, Ag}) of paths P and Q

Lemma 357. Let v,w € V. If the paths T|M,] and T[M,] fork, then T[M,] and
T[M,y)] are paths of length 3.

Proof. Clearly, if T[M,] and T[M,,] fork, then they must be paths of length at least 3.
It remains to prove that their length is at most 3. For a contradiction, let us assume
the length of T[M,] is at least 4. Let (A1, B, {Aa, AL}) be a fork of T[M,] and T[M,)]
where Ay € M, \ M,, and A, € M,, \ M,,.

First let us assume there exists a max clique Ay € M, such that P = Ag, A1, B, Ay
is a subpath of T[M,] of length 4. According to Lemma 356, M, must not be a
separator of T[M,]. Thus, we have Ay € M,, (see Figure 12.7a). Now Ay and A; are
distinct max cliques. Therefore, there exists a vertex u € Ay \ Ag. As P is a subpath
of T[M,] and P' = Ay, A1, B, A} is a subpath of T'[M,,], vertex u is not only contained
in A; but also in B, Ay and A, by Lemma 352 (see Figure 12.7b). As a consequence,
T[M,] 2 T[{ A1, B, Ay, AL}] is not a path, a contradiction to Lemma 351.

AO A1 B AQ Al B A2 A3
/N /u'\ /N /'\ /'\ /'\ v
\_/ \_/
e
w
(b) ()

Figure 12.7.: Hlustrations for the proof of Lemma 357

Next, let us assume there exists a max clique Az € M, such that P = Ay, B, Ay, A3 is a
subpath of T[M,] of length 4. Further, P’ = Ay, B, A} is a subpath of T[M,]. As A;
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12. Capturing LOGSPACE on Chordal Claw-Free Graphs

and B are max cliques, there exists a vertex u € B\ A;. By Lemma 352, vertex u is also
contained in Ay, A3 and A} as shown in Figure 12.7c. Now let us consider the paths
T[M,] and T[M,]. Q = As, As, B, Ay is a subpath of T[M,], and Q' = A3, Ay, B, A, is
a subpath of T[M,]. Clearly, (A, B,{A;, AL}) is a fork of T[M,] and T[M,]. According
to the previous part of this proof, we obtain a contradiction. ]

Let B be a max clique and let there be vertices u, v, w € V such that the paths T[M,],
T[M,] and T|M,] pairwise fork in B and M, N M, N M,, = {B}. Then we call max
clique B a fork clique.

Observation 358. Let u,v,w € V such that T[M,], T[M,] and T|M,)] pairwise fork
in B and M, N M, N M, ={B}. Then there exist distinct maz cliques Ay, Az, A3 € M
in the neighborhood of B such that

Mu :{AlanAQ}a
Mv :{A27B;A3}7
Mw :{A?nBaAl}'

Proof. By Lemma 357 the paths T'[M,], T[M,] and T[M,] are of length 3. Thus,
IMy| = |My| = IMy| = 3. As T[M,] and T[M,] fork in B, there exist distinct max
cliques Ay, As, A3 € M in the neighborhood of B such that

Mu = {AQ, B, Al} and

M, = {A27 B7 A3}
Since T'|M,] and T|M,,] fork in B, there exists a max clique A5 # A3 or a max clique
Al # As such that

M, ={A4,, B, A}} or, respectively,
Mw — {A/27 Ba A3}>
In the first case, the intersection of M,,, M, and M,, does not only contain B but also

As. Hence, the first case cannot occur and we must have the second case.

Lastly, we know that T[M,,] and T[M,,] fork in B. Since Aj is distinct from A; and A,,
and A, # As, it follows that A} = A;. O

Figure 12.8.: A fork triangle around fork clique B
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We say that the max cliques Aj, Ay, As form a fork triangle around B. Figure 12.8 depicts
such a fork triangle around a fork clique B. Clearly, a fork clique B is a node of degree
at least 3.

Lemma 359. Let v,w € V, and let B € M be a maz clique. If T[M,] and T[M,] fork
in B, then B is a fork clique.

Proof. Let T[M,] and T|M,] fork in B. Then T[M,] and T[M,] are paths of length
3 by Lemma 357. Let M, = {As, B, A1} and M, = {4y, B, A3} with A; # A3 (see
Figure 12.9). Since B and A, are max cliques, there exists a vertex w € B\ A;. Now,
we can apply Lemma 352 to the paths T'[M,] and T[|M,], and obtain that w € A; and
w € As. As T[M,,] and T[M,] fork, the path T|M,,] must be of length 3 by Lemma 357,
and cannot contain any further max cliques. Hence, B is a fork clique and Ay, As; and
As form a fork triangle. O

Figure 12.9.: Hlustration for the proof of Lemma 359

Lemma 360. Let z € V. If the path T[M;] contains a fork clique, then |[M,| =3 and
the fork clique is in the middle of path T|M.,].

Proof. Let B be a fork clique on T[M.]. Consequently, there exist u,v,w € V and
neighbor max cliques Aj, Ay, A3 of B such that M, = {4, B, A2}, M, = {As, B, A3}
and M,, = {A3, B, A1}. Let W be the set {A1, Ay, A3} of max cliques that form a fork
triangle around B. Let us consider |M,NW]|. If IM,NW| < 1, then M, is a separator for
at least one of the paths T'[M,], T[M,] or T[M,,] as shown in Figure 12.10a and 12.10b,

(a) M. AW =0 (b) (M. NW| =1 (¢) IM.AW| =2

Figure 12.10.: Illustrations for the proof of Lemma 360
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and we have a contradiction to Lemma 356. Clearly, we cannot have |M, N W| = 3,
since T'[M,] must be a path. It remains to consider | M, N W| = 2, which is illustrated
in Figure 12.10c. In this case, M, forks with one of the paths T'[M,], T[M,] or T[M,,)]
in B, and must be of length 3 according to Lemma 357. Obviously, fork clique B is in
the middle of the path T[M,]. O

Let B be a max clique. If for all v € B max clique B is an end of path T[M,], we call
B a star clique. Thus, B is a star clique if, and only if, every vertex in B is contained
in at most one neighbor max clique of B. A picture of a star clique can be found in
Figure 12.11. Clearly, every max clique that is a leaf of clique tree T is a star clique.

Figure 12.11.: A star clique of degree 5

Lemma 361. Let B be a maz clique. If B is of degree at least 3, then B is a star clique
or a fork clique.

Proof. Let us assume B is of degree at least 3 and not a star clique. Thus, there exists a
vertex u € B and two neighbor max cliques Ay, As of B in T which also contain vertex u.
Let C be a neighbor of B with C' # A; and C' # As. Since {B, C'} is an edge of the clique
tree of GG, there must be a vertex w € V such that B,C € M, according to Lemma 354.
See Figure 12.12 for an illustration. By Lemma 356 the induced subgraph T[M, \ M,]
must be connected. Thus, we have A; € M,, or As € M,,. Hence, T[M,] and T[M,,)]
fork in B, and Lemma 359 implies that B is a fork clique. O

Figure 12.12.: Illustration for the proof of Lemma 361
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Now let us consider nodes of T' of degree at least 4.

Lemma 362. Let B be a max clique. If B is of degree at least 4, then B is a star clique.

Proof. Let us assume max clique B is of degree at least 4, but B is not a star clique.
According to the previous lemma, B must be a fork clique. Thus, there exists vertices
u,v,w € V and max cliques Aj, Ay, A3 such that M, = {41, B, Ay}, M, = {Ay, B, A3}
and M,, = {As, B, A1}. Now let C be a neighbor of B in T that is distinct from A;, A
and As. According to Lemma 354 there must be a vertex z € V such that B,C' € M, (see
Figure 12.13a). Since T[M,, \ M,] must be connected (Lemma 356), we have A; € M,
or A3 € M,. Without loss of generality, let A; € M. (see Figure 12.13b). Furthermore,
T[M, \ M,] has to be connected. Thus, max clique A2 or max clique As is in M, but
then T'[M.] is not a path. Hence, we obtain a contradiction to Lemma 351 and B is a
star clique. O

Figure 12.13.: Illustrations for the proof of Lemma 362

Corollary 363. If B is a fork clique, then the degree of B is 3, and the neighbors of B
form a fork triangle.

Thus, a fork clique has exactly 3 neighbors forming a fork triangle. Further, it only
consists of vertices that are contained in exactly two of its neighbor max cliques by
Lemma 360. Figure 12.14 shows a sketch of a fork clique and its fork triangle.

Figure 12.14.: A fork clique
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Lemma 364. Let B be a fork clique. Then every neighbor of B in clique tree T is a
star clique.

Proof. Let us assume max clique A is a neighbor of fork clique B, and A is not a star
clique. Then there exists a vertex z € A and two neighbor max cliques C and C5 of A
with C; # Cy, z € C} and z € C5. First let us suppose Cy # B and Cy # B as depicted
in Figure 12.15a. Since B is a fork clique and the degree of B is 3 (Corollary 363), there
exists a vertex u € B such that v € A and A is an end of T[M,]. Clearly, M, is a
separator of T'[M.] which is a contradiction to Lemma 356. Next let us assume that,
without loss of generality, C; = B. This case is illustrated in Figure 12.15b. Then the
path T[M,] contains fork clique B. By Lemma 360 we have | M| = 3 and fork clique B
is in the middle of path T[M,]. Hence, we have a contradiction to Cy € M. O

Figure 12.15.: Illustrations for the proof of Lemma 364

12.4. Defining the Clique Tree in FO

In this section we use the property that each max clique of a chordal claw-free graph can
be spanned by three vertices to define the clique tree of a connected chordal claw-free
graph in first order logic.

Remember, vertices by, ba, b3 € V' span a max clique A € M if A is the only max clique
that contains the vertices by, bg, b3. Thus, vertices by, bo, b3 € V' span max clique A € M
if and only if My, N My, N My, = {A}.

Lemma 365. Fvery maz clique of a chordal claw-free graph G is spanned by three
vertices.

Proof. Let T be a clique tree of GG. Let us consider an arbitrary max clique B, and let
v € B be an arbitrary vertex that is contained in max clique B. By Lemma 351, the
induced subgraph T[M,] is a path P = By,...,B;. Let B = B;. Now let us pick two
more vertices. If i > 1, let u be a vertex in B\ B;_1, and let w be a vertex in B\ B if
1<l. Welet u=wvif i =1, and we let w =v if i =[. Then u, v, w span max clique B.
Clearly, B contains all of the three vertices. It remains to show, that there does not exist
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a max clique A € M with A # B and u,v,w € A. Let us suppose such a max clique A
exists. Since v € A, max clique A is a node on path P. Without loss of generality let
A =B forj<i. Asu¢ B;_1, we have j <i— 1. Since T is a tree, {B;_1} separates
A = Bjand B = B; in T. Thus, every path connecting A and B in 7" must contain B;_;.
Asu € A and u € B the path T[M,] contains A and B, and therefore connects the two
max cliques. Hence, it must also contain max clique B;_;. We obtain a contradiction,
because u &€ B;_1. O

As a direct consequence of Lemma 365, there exists an at most cubic number of max
cliques in a chordal claw-free graph.

Now we use the property that for chordal claw-free graphs all max cliques are spanned by
three vertices to define the clique tree of a connected chordal claw-free graph. We showed
in Section 2.8.2 that if all max cliques of a graph can be spanned by three vertices, then
there exists an FO-formula (presented in (2.2)) which decides for three vertices whether
the vertices are spanning vertices of a max clique. Moreover, we showed in (2.4) that
the equivalence classes of spanning vertices that are spanning the same max cliques are
FO-definable. We use these equivalence classes to represent the max cliques, and obtain
the following corollary.

Corollary 366. The mazx cliques of a chordal claw-free graph are FO-definable.

In fact, given a tuple of spanning vertices we can also decide which vertices belong to the
max clique that is spanned: There further exists an FO-formula (see (2.3), Section 2.8.2)
that is satisfied for vertices vy, v, v3, w in a chordal claw-free graph G if and only if the
vertices v, v2,v3 span a max clique A and w € A. We need this property to define the
edge relation of the clique tree of a connected chordal claw-free graph G.

Lemma 367. There exists an FO-formula that defines the edge relation of the clique tree
of a connected chordal claw-free graph G.

Proof. We have to show that there exists an FO-formula that decides whether two max
cliques are adjacent. By Lemma 354 there is an edge between two max cliques in the
clique tree if, and only if, there is an edge between the max cliques on a path T M,] for
a vertex v of G. Further, we know for max cliques A, B € M, that they are adjacent
precisely when there does not exist a max clique C € M,, with C C AU B (Lemma 352).
Thus, there is an edge between max cliques A and B if, and only if, there exists a vertex
v such that v € A and v € B and for all max cliques C' with v € C we have C € AU B.
Clearly, this can be put in form of a first order formula. O

Corollary 368. There exists an FO-transduction that defines the clique tree of G for
every connected chordal claw-free graph G.

12.5. Directed Clique Trees

Now we transfer the clique tree into a rooted tree. We show that there exists a parame-
terized STC-transduction, which reduces each connected chordal claw-free graph to one
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of its rooted clique trees. In this transduction, the root of the clique tree represents the
parameter. Further, we summarize the basic structure of rooted clique trees.

Let R be a leaf of the clique tree T" of a connected chordal claw-free graph G. We call
such a max clique R a leaf max cligue. We transform clique tree T into a directed tree
by rooting T' at max clique R. We let g be the edge relation of this directed tree, and
we denote this directed clique tree rooted at R by T% = (M, Eg).

Each tree can be transformed into a directed tree in STC when additionally given a node,
the root node of the directed tree (see Example 8 in Section 2.5.2). Thus, there is an
STC-formula which given the spanning vertices of R and spanning vertices of max cliques
A and B decides whether there is an arc from A to B in T% It is not hard to see that we
can use this formula to construct a parameterized transduction which given a connected
chordal claw-free graph defines the directed clique tree T® of G. The spanning vertices
of R are the parameter of this transduction.

Let us briefly consider the directed clique tree T and summarize its basic structure.
Since the root of T is a leaf of T, each node of T with more than one child is of
degree at least 3 in T'. Hence, the following corollary is an immediate consequence of
Lemma 361.

Corollary 369. If maz clique A is a node in the directed clique tree T® with at least
two children, then A is a star clique or a fork clique.

If max clique A is not a fork clique, then max clique A is a star clique or A has at most
one child. Therefore, the vertices occurring in A are contained in at most one child of A.
If max clique A is a fork clique, it has exactly two children (Corollary 363), and the
vertices in A can be contained in both of its children. Moreover, we know that there
actually exist a vertex in A that occurs in both of its children. We can use this property
to identify fork cliques. Further, the three neighbors of fork cliques are star cliques
(Lemma 364). Hence, if we have a fork clique, we know the vertices in that fork clique
only occur in its three neighbors and in no further descendants or ancestors.

12.6. The Supplemented Clique Tree

We want to use the directed clique tree and its properties to construct the canon of
a connected chordal claw-free graph G. Therefore, we include some of the structural
information about each max clique into the directed clique tree by means of an LO-coloring.
(LO-colored graphs were introduced in Section 2.3.4.) We present this LO-colored directed
clique tree, called supplemented clique tree, in this section. Further, we show that every
connected chordal claw-free graph can be reduced to such a supplemented clique tree by
means of a parameterized STC+C-transduction.

Let G be a connected chordal claw-free graph, and T be the directed clique tree of G
rooted at a leaf max clique R. We color every max clique A in T# with a binary numeric
relation, which encodes certain properties of A in T For example, if n is the number of
vertices in A that are not contained in any child max clique of A, we add (0,n) to the
color of A. We also add a pair to the color of a max clique A to encode the number of
vertices that are in A and its parent max clique if it exists. Further, we need to know
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the number of vertices in A that are contained in at least two children max cliques of
A. If this number is different from 0, then clearly A is a fork clique and we also know
how many vertices in A are contained in both children of A. We construct the color of A
such that it includes all these numbers.

We call such a colored directed clique tree of a connected chordal claw-free graph G a
supplemented clique tree of G. Hence, a supplemented clique tree of a connected chordal
claw-free graph G is a 3-tuple S¥ = (./\/l Er, P) where

e R is a leaf of the clique tree of G,
o TH .= (M,ER) is the directed clique tree of G with root R, and
e P C M x [[M]}?is a ternary relation where
— (A,0,n) € P iff n is the number of elements in A that do not occur in any
child of A in TE
— (A,1,n) € P iff n is the number of elements contained in the intersection of
A and the parent of A in T if A# R, and n =0 if A = R,
— (A,2,n) € P iff n is the number of elements in A that occur in at least two
child max cliques of A in T

We understand the supplemented clique tree S as an LO-colored graph. Thus, in its
structural representation the supplemented clique tree ST corresponds to the 6-tuple
(MU0, V], M, ER, [0,|V]], <jo,v|j» P), where [0, [V|] is the set of basic color elements and
<[o,[v|] is the natural linear order on [0, |V[]. In order to be able to consider supplemented
clique trees instead of connected chordal claw-free graphs, we need a (parameterized)
transduction defining us (an isomorphic copy of) the supplemented clique tree ST for
every connected chordal claw-free graph. So far, we have shown in Section 12.4 that
there exists a parameterized STC-transduction which reduces every connected chordal
claw-free graph G to the directed clique tree T = (M, Eg) where root max clique R is
determined by the parameters of the transduction. We can extend this parameterized
transduction by STC+C-formulas that define the set of basic color elements [0, |V'|], the
linear order <o |y on the basic color elements and the color relation P. (By using
the formulas for the max cliques and edge relation from Section 12.4, the properties
encoded in the color of a max clique are easily expressible in STC+C.) We obtain
a parameterized counting transduction? that defines us the supplemented clique tree
SE = (MU0, V], M, Er, [0, [V}, <jo,vj, P) of each connected chordal claw-free graph
G. Now we apply Proposition 14. As a result, we obtain a parameterized STC+C-
transduction that defines an LO-colored graph isomorphic to S¥ for every connected
chordal claw-free graph G.

12.7. Canonization

In the following we describe how we obtain an LREC_-canonization of the class of
connected chordal claw-free graphs.

From the previous section we know that there exists a parameterized STC+C- and
therefore LREC_-transduction that gives us (an isomorphic copy of) the supplemented
clique tree in form of an LO-colored directed tree. Further, in Section 8.4 we showed how

2 Counting transductions are introduced in Section 2.5.1.
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to obtain an LREC-canonization of LO-colored directed trees. As a consequence, there
exists a parameterized LREC_-transduction for the composition of both transductions by
Proposition 12. Hence, there is a parameterized LREC_[{E},{V, E, M, <, L, <}]-trans-
duction ©(z) that maps every connected chordal claw-free graph G to the canon K (ST)
of the supplemented clique tree ST, where the parameters are the spanning vertices of
the root max clique R (of the underlying directed tree) of the supplemented clique tree.

In order to prove that there exists a parameterized LREC_-canonization of connected
chordal claw-free graphs, we show that there is an LREC_[{V, E, M, <, L, <} {E, <}]-
transduction ©’, which maps the canon of the supplemented clique tree to a canon
(K, <k) of the original graph G. Then we can again apply Proposition 12 and obtain
an LREC_-transduction for the composition of ©(z) and ©’, which is a parameterized
LREC_-canonization of the class of connected chordal claw-free graphs.

We let the canon (K, <j) of graph G defined by transduction ©' consist of an isomorphic
copy K of G on the number sort. We let [|[V|] be the vertex set of K. Further, we let
<k be the natural linear order on [|V|]. As [|V]] is the set of basic color elements of the
supplemented clique tree S¥ the set of basic color elements M (K (S%)) of the canon K (ST)
of the supplemented clique tree S® also contains exactly |V | elements. Hence, we can easily
define the vertex set of the canon by counting the number of basic color elements. We let
© = (6u(p),0r(p,p'),0<(p,p')) be the LREC_[{V, E, M, <, L, <}, {E, <}|-transduction,
where

eu(p):=3q(p<qgAp#0A #xM(zx)=gq), and
O<(p,p') =p<p.

In order to show the existence of 6g(p,p’), which, given the canon of a supplemented
clique tree of G, defines the edge relation of isomorphic copy K of G on the number sort,
we exploit the property that LREC_ captures logarithmic space on ordered structures.
Hence, it suffices to present a logspace algorithm that, given the canon of a supplemented
clique tree of G and two numbers, decides whether the pair of numbers belongs to the
edge relation of the isomorphic copy K of graph G on the number sort.

In the next section we present a logspace algorithm that outputs the max cliques of the
canon. As every edge is a subset of a max clique and every two vertices in a max clique
form an edge, we make the following observation.

Observation 370. Let My be the set of all mazx cliques of a graph H. Then the set
Unemy (1\2/[> of all binary subsets of maz cliques of My is the edge relation of H.

We can extend each logspace algorithm that outputs the max cliques of the canon to a
logspace algorithm that decides whether a pair of numbers is an edge of the canon. We

simply conduct a logspace computation that goes through all pairs of distinct vertices of
each max clique and compares them to the given pair of numbers.

12.8. Algorithm for Computing the Max Cliques of the Canon

In this section we present an algorithm such that for every connected chordal claw-free
graph G, given the canon K(S%) of a supplemented clique tree S¥ of G, the algorithm
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computes the max cliques of an isomorphic copy K of G on the number sort with vertex

set [|[V]].

The algorithm performs a post-order depth-first traversal on the underlying tree of
the canon K (S*) of the supplemented clique tree S Each node of the canon K(S*)
corresponds to a max clique in the supplemented clique tree S and for each node in
K (ST) the algorithm constructs a copy of the corresponding max clique on the number
sort. In order to construct the max cliques the algorithm uses the information we have on
the structure of the clique tree and the information on the structure of the max cliques
that is contained in the coloring of the nodes.

In the following we describe the algorithm. We start with its structure, then focus on its
basic idea and necessary observations, until we finally present it. Afterwards, we prove
its correctness and show that its data complexity is in LOGSPACE.

For the canon K(S%) = (U, Vi, Ex, Mk, <4k, Li,<x) of the supplemented clique tree,
which is an ordered LO-colored graph, we can easily compute the natural colors in
logspace. Hence, for simplicity we assume the canon K (S%) of the supplemented clique
tree is colored with the natural colors. Therefore, My = [0, |V'|] and dx = <jo jv/|]-

Post-Order Depth-First Tree Traversal

Let G be a connected chordal claw-free graph, and K (S%) be the canon of the supple-
mented clique tree S of G. The algorithm uses post-order traversal (see e.g. [63]) on
the underlying directed tree of K (S%) to construct the max cliques of the canon K of G.
Like pre-order and in-order traversal, post-order traversal is a type of depth-first tree
traversal, that specifies a linear order on the nodes of a tree. Depth-first tree traversal
was introduced in Section 2.8.1.

Keep in mind that the universe, and therefore the nodes, of the canon of the supplemented
clique tree are linearly ordered. Thus, we have a linear order on the children of a node,
and we assume the children of a node to be given in that order.

Figure 12.16.: Post-order traversal

The post-order traversal sequence consists of every node we visit during the depth-first
traversal in order of its last visit. During depth-first traversal we visit each node with
children twice: After we visit it for the first time, we go down to its first child, and after
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we finished traversing its children we visit it for the second time. Nodes without children
are visited only once. It follows that we obtain the post-order traversal sequence by
successively adding all nodes visited during depth-first traversal that are not followed
by the move down. The post-order traversal is depicted in Figure 12.16 (cf. Figure 2.1,
which illustrates the depth-first traversal).

Let my,...,mpq be the post-order traversal sequence for the canon K (ST) of the
supplemented clique tree S® Then, m, ... , M| M| is @ permutation of the nodes of the
underlying directed tree of K(S%). We know there exists an isomorphism I between
K(S®) and SE. For all k € [|M]] the isomorphism I maps the node my, of the underlying
directed tree of K(S*) to a max clique Ay, := I(mj4) in the supplemented clique tree S,
Notice that the nodes m; and A contain the same information in their color. We call
Ay, ..., Ajpq the traversal sequence transferred by isomorphism I. The isomorphism I
also transfers the ordering of the children of a node. Figure 12.17 shows an example of a
canon K (S) and its post-order traversal sequence my, . .. ;mr), and the corresponding
supplemented clique tree S® and its transferred traversal sequence Ay, ... VIE

Ay, A3 Ay

03 02 05
11 11 13
20 20 20

(a) Canon K(ST) and its post-order (b) The supplemented clique tree S and its
traversal sequence transferred traversal sequence

03 02 05
20 20 20
Figure 12.17.

Clearly, in the post-order traversal sequence of a tree, a proper descendant of a node
occurs before the node. Regarding the supplemented clique tree ST, this means:

Observation 371. Let Ay, ..., Axq be the transferred post-order traversal sequence on
SE and let i,i' € [|[M|]. If maz clique A; is a proper descendant of maz clique Ay in T%,
then i < i’
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Intersections of Max Cliques with preceding Max Cliques in the transferred
post-order traversal sequence

We traverse the underlying directed tree of K (S) in post-order, and we construct the
max cliques of an isomorphic copy of G on the number sort during this post-order
traversal. So for each node my, of the directed tree we construct a max clique B,,, of
numbers, which is the max clique of the canon of G corresponding to max clique Ay of
graph G.

In order to construct these max cliques B,,, during the traversal of the underlying
directed tree of K (SR), we have to decide on numbers for all vertices that are supposed
to be in such a max clique. The numbering happens according to the post-order traversal
sequence. The hard part will be to detect which vertices have already occurred in a max
clique corresponding to a node we have visited before reaching my, and to determine
the numbers they were assigned to. Then we can correctly create new numbers for
newly occurring vertices and reuse the ones that have already occurred. Thus, in the
following we take the transferred post-order traversal sequence A, ..., Ay and study
the intersection of a max clique A with max cliques that precede Ay in the transferred
traversal sequence.

An important observation in this respect is that if Ay is a fork clique, then the vertices
in Aj only occur in the two children and the parent max clique of fork clique Ay
(Corollary 363). Thus, apart from the two children of Ay the vertices in Ay are not
contained in any other max clique previously visited in the transferred traversal sequence.
Further, each vertex in A occurs in at least one child max clique of A;. Hence, each
vertex in Ay is contained in a max clique that was visited before.

If max clique Ay is not a fork clique, we so far only know that the vertices in Ay occur
in no more than one child max clique of Ay, because if Ay is not a fork clique, then it
has only one child or is a star clique (Lemma 361). In the following we show that each
vertex in non-fork clique Ay that occurs in a max clique that is visited before Ay is either
contained in exactly one child of A or in the first child of a fork clique A; if Ay is the
second child of A;.

Lemma 372. Let Ay,..., Ajrq be the transferred post-order traversal sequence on Sk,
Let k € [[M]] and let v € Ay. If there exists a j < k such that v € A; and A; is not a
descendant of Ay in the underlying directed tree T™ of ST, then A; is the first and Ay
the second child of a fork clique.

Proof. Let j < k and v € A; N Ay. Further, let A; be not a descendant of Aj. As j <k,
max clique A; also cannot be a proper ancestor of A; by Observation 371. Consequently,
the smallest common ancestor A4; of A; and Aj must be a proper ancestor of A; and
Ay. Thus, A; has at least two children. Since max clique A; cannot be the root of the
directed tree T® (the root is a leaf of the clique tree), A; is a node of degree at least 3
in T. Lemma 361 yields that A; is either a star or a fork clique. According to the
clique intersection property vertex v is contained in A; and every max clique on the
path between A; and Ay. Thus, A; must be a fork clique, and 7'M, must be a path of
length 3 (Lemma 357). Therefore, A; and A, are the children of fork clique 4;. Since
J < k, we have that A; is the first and Ay, the second child of A;. O
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Lemma 373. Let Ay,..., Ajn be the transferred post-order traversal sequence on SE,
Let k € [|[M]] and v € Ay. If there exists a j < k such that v € A; and Ay, is not a fork
clique, then there exists exactly one i € [|[M|] such that v € A; and either

1. A; is a child of Ay or
2. A; is the first child of a fork clique and Ay, the second one.

Proof. Let j <k and v € A; N Ay, and let Ay be not a fork clique. If A; is a descendant
of Ay, then there exists an ¢ € [[M]|] such that v € A; and A; is a child of Aj by the
clique intersection property. If A; is not a descendant of Ay, then by the previous lemma
there exists an i € [|M|], that is, i = j, such that A; is the first and Ay, the second child
of a fork clique. Thus, there exists an i € [|M]|] such that v € A; and property 1 or 2 is
satisfied. Now, let us assume there exist i1,iy € [|[M]] with i1 # i3 such that v € A, ,
and property 1 or 2 is satisfied regarding i,, for m € [2]. Clearly, property 2 cannot be
satisfied regarding both, ¢; and 75. Let us consider the case where property 1 is satisfied
for i1 and property 2 is satisfied for i5. Then A;, is the first child of a fork clique A4,
and Ay is the second one. According to Lemma 364 max clique Ay is a star clique. If v
is contained in A;, and in a child max clique A;, of Ay, then by the clique intersection
property, we also have v € A, and v € A;, which is a contradiction to A being a star
clique. Next let us consider the case, where property 1 is satisfied regarding i, and i,.
Then Aj has at least two children, and since it cannot be the root of T it must be
a node of degree at least 3. As max clique Ay is not a fork clique, it must be a star
clique by Lemma 361. Now, the set M, contains two children of Aj. Therefore, the path
T|M,] also contains Ay, but not as an end, a contradiction to Ay being a star clique. [

Now, if Ay is a fork clique, then we know the vertices of Aj all occur in its two children,
which occur before A within the transferred traversal sequence. If A; is not a fork clique,
then by Lemma 373 the vertices in Ay that occur in max cliques before Ay within the
transferred traversal sequence are precisely the vertices in the pairwise intersection of
Ay, with its children, and the intersection of A; with its sibling if Ay is the second child
of a fork clique. Further, Lemma 373 yields that these intersections are disjoint sets of
vertices.

Algorithm to Construct the Max Cliques B,

We now include the new knowledge about the intersection of max cliques with preceding
max cliques into our construction of the sets B,,. For the numbers in B,,, we will maintain
the property that if a number [ € B,,, is contained in more ancestors of By, than a number
' € B,,, then [ > I'. Thus, for each child max clique By of max clique B,, the intersection
By, N By, contains precisely the |By N By,| largest numbers of By. In the following we
present an algorithm that computes the sets B,,.

During the algorithm, we need to remember or compute a couple of values: At each step
of our traversal, we let count be the total number of vertices we have created so far. We
update this number after each visit of a node in the post-order traversal sequence of
the directed tree. Sometimes we need to recompute this number for another node m/.
We denote this recomputed value by count(m’). Note, that this is the updated value of
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count after visiting m’ Further, we exploit the information contained in the color of a
node m. We let

e inOchildren(m) be the number of vertices that are contained in the max clique
represented by m but do not occur in a max clique corresponding to any child of m,

e inparent(m) be the number of vertices that are contained in the max clique
represented by m and the max clique represented by its parent (if m is the root of
the tree, then inparent(m) will be 0), and

e in2children(m) be the number of vertices that are contained in the max clique
corresponding to m and in at least two max cliques represented by children of m.

We also need the boolean values

e isforkclique(m) which indicates whether m corresponds to a fork clique, and
e isforkchild2(m) which indicates whether m is the second child of a node corre-
sponding to a fork clique.

With help of the above values, we can complete the algorithm. Thus, let us describe
the algorithm at a node m during the post-order traversal. The algorithm distinguishes
between the following cases. For each case we list the numbers belonging to max clique
B,,, and indicate the values used to determine the numbers in B,,.

1. Node m corresponds to a fork clique (isforkclique(m) = true).
Let m/ be the first child of m, and m” the second one. We determine count(m’), and
we know count(m”) = count. Further, we need inparent(m’) and inparent(m”),
and in2children(m). We let B,, be the set of numbers in

[count(m') — inparent(m’) + 1, count(m')] and
[count(m”) — inparent(m”) + in2children(m) + 1, count(m”)].
We do not increase count.

2. Node m does not correspond to a fork clique (isforkclique(m) = false).
Let my, ..., my be the children of m where k > 0. Now for all j € [k] we determine
isforkclique(m;), and distinguish between the following two cases.

a) isforkclique(m;) = false:
We determine count(m;) and inparent(m;) and we add to B,, the numbers
in

[count(m;) — inparent(m;) + 1, count(m,)]

b) isforkclique(m;) = true:
Let m} and m/ be the children of m;. We add to B,, the numbers in

[count(m;) — inparent(m]) + in2children(m;) + 1, count(m})] and

[count(m]) — inparent(m]) 4 in2children(m;) + 1, count(mj)].

Further, we determine isforkchild2(m) and depending on the value, we do the
following.
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c) isforkchild2(m) = false:
We increase count by inOchildren(m), and add to B,, the vertices in

[count — inOchildren(m) + 1, count].

d) isforkchild2(m) = true:
Let p be the parent of m, and let m’ be the first sibling of m. We increase
count by inOchildren(m) — in2children(p). We add to B,, the vertices in
the intervals

[count(m’) —inparent(m’)+1, count(m’) —inparent(m’)+in2children(p)],
[count — inOchildren(m) + in2children(p) + 1, count].

In the following we illustrate the algorithm with an example.

] 1 \ m; \ Case \ B, count
0

1{mi|2 ¢ 1,6] 6
2| my |2 c¢ [7,9] 9
3|mg |2 c¢ [10, 11] 11
41 my |2 ¢ [12,16] 16
5| ms |2 a)formsg | [9,9]

2 a) for mgs | [11,11]

2 a) for my | [14,16]

2 d) [4,4] U[17,19] | 19
6 | me | 1 [4,6] U[19,19] | 19
7| m7 |2 b)formgs | [5,6]U][19,19]

2 ¢ 120, 22] 22

Table 12.1.: The algorithm applied to the example in Figure 12.17a

Example 374. The algorithm can be applied to the canon K(S*) depicted in Fig-
ure 12.17a. Table 12.1 shows the computed values at each step of the algorithm. It
contains for each node m; of the post-order traversal sequence the cases that need to be
considered, for each case the obtained partial intervals forming B,,,, and the value of
count. Figure 12.18 shows the max cliques B,,, for all 4. J

Correctness of the Algorithm

Now we show that the presented algorithm returns the max cliques of a graph K with
vertex set [|V]] that is isomorphic to G.

We prove that there is a bijection h between V and [|V|], so that for all k € [|[M]] we
have h(Aj;) = By,,. Then h is a graph isomorphism between G and graph K on the
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Figure 12.18.: The clique tree with the max cliques B,,,, i € [7]

number sort, because for all v,v' € V:

There is an edge between v and v’ in G.
<" There exists a k € [|[M]] with v,v" € Ay.
<=  There exists a k € [[M|] with h(v), h(v') € By,.
There is an edge between h(v) and h(v') in K.

We prove the existence of bijection h by showing the claim below by induction along the
post-order traversal sequence. First, we introduce the necessary definitions used in the
claim.

Let T® be the underlying directed clique tree of the supplemented clique tree S For
all max cliques A € M and for all v € A we let #anc4(v) be the number of max
cliques in T® that contain vertex v and are an ancestor of A. Clearly, for every vertex
v € A the number #anca(v) is at least 1. Let Ay, ..., Ajrq be the transferred traversal
sequence. For i € [|M]] and ¢ € [2] let S¢ be the set of vertices v of max clique A;, where
#anca, (v) > c. Thus, if max clique A; has a parent max clique P; in T then S} is the
set of vertices in A; N P,. Hence, inparent(m;) = |S}|. If again P; has a parent in T%
then Sf is the subset of vertices of A; which are contained in P; and the parent of P;.
For example, if A; is a fork clique with children A; and A;, then A; is the disjoint union
of S} and SJZ. Further, if Ay is the parent max clique of fork clique A;, then Ay is the
disjoint union of S? and SJZ.

Claim 375. For all | € [|[M|] there exists a bijection h; between A; U ---U A; and
[count(my)], such that for alli € [I] we have

1. hi(A;) = B,

2. #ancy,(v) < #ancga, (V') for all vertices v,v' € A; with hi(v) < hy(v') if A; is
neither a fork clique nor the second child of a fork clique,

3. hy(S}) = [count(m;) — inparent(m;) + 1, count(m;)] if A; is neither a fork clique
nor the second child of a fork clique, and

4. hi(S?) = [count(m;) — inparent(m;) + in2children(p;) + 1, count(m;)] if A; is
the second child of a fork clique. (We let p; be the parent of m;.)
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Proof (Claim 375). We prove Claim 375 by induction on [ € [0, |M]]. Notice that [ =0
is not included in the claim, but we extend it to I = 0. Although there does not actually
exist a node mg, we let count(mg) be 0. This makes sense, since 0 is the initial value of
count. We let hg: ) — () be the empty mapping. Clearly, hy meets all the requirements.
Now let I > 0 and let there be a bijection h;_; with properties 1 to 4 for all i € [l — 1].
We show the existence of bijection h;.

First, let us consider the case where m; corresponds to a fork clique. Clearly, A; is a subset
of the set of vertices occurring in A;’s children max cliques and count(m;) = count(m;_1).
Thus, we let h; := h;_1, and we know by inductive assumption that it is a bijection.
By inductive assumption we also know that h; satisfies properties 1 to 4 for all i < [.
Therefore, it remains to show these properties for i = [. As A; is a fork clique, and cannot
be the second child of a fork clique, properties 2, 3 and 4 trivially hold for ¢ = [. Thus,
we only have to show that h; satisfies property 1 for ¢ = [, that is, hi(A;) = By,

So let us prove that hj(4;) = B,,,. Let m; and m; with i < j < [ be the first and
second child of m;. Since m; cannot correspond to a fork clique or the second child
of a fork clique, we have hj(S}) = [count(m;) — inparent(m;) + 1, count(m;)] by
inductive assumption. Analogously, we know /;(S7) = [count(m;) — inparent(m;) +
in2children(my;) + 1, count(m;)] because m; corresponds to the second child of a fork
clique. We obtain that By, = hy(S}) Uhi(S7). As A is a fork clique, A; is the disjoint
union of S} and S7. Hence, we have By, = hi(A;).

Next, let m; be a node that does not correspond to a fork clique. By Lemma 373 we know
that there are inOchildren(my) vertices in A := A; \ U,.; 4; if A; is not the second
child of a fork clique, and inOchildren(m;) — in2children(my4) vertices in Aj if A;
is the second child of a fork clique (then m;,; is the parent of m;). Thus, A; and the
set By, of newly occurring numbers in B, have the same cardinality. We let h; be an
extension of h;_; that bijectively maps the vertices in Aj to the numbers in By, such that
hi(v) < hy(v") implies #ancy, (v) < #ancy, (V') for all v, € A]. Then h; is a bijection
between A; U---U A; and [count(m;)]. By inductive assumption we already know that
h; satisfies properties 1 to 4 for all ¢ < [. Thus, we only need to show them for ¢ = [.

Let us show property 1: Let m;,,...,m;, with 49 < --- < 4 < [ be the children
of m;. Further, if m; corresponds to the second child of a fork clique, then let m;,
be its sibling. Clearly, i < 1. According to Lemma 373 max clique A; is the dis-
joint union of A; and the sets A; N A;; for j € [k] if A; is not the second child
of a fork clique, and for j € [0, k] otherwise. Consequently, h;(A;) is the disjoint
union of hy(A)) and hy(A; N A;;) for all feasible j < k. First, let us consider the
children of my, that is, all m;, with j € [k]. For each child m;, of m; we have
AN A = 51 Now suppose for the child m;, we have 1sforkcllque(mz ) = false.
Then AZ is neither a fork clique nor the second Chlld of a fork clique. Therefore, we have
hi(Ar N AJ) = m(S},) = M-1(S},) = [count(m;;) — inparent(m;;) + 1, count(mzj)]
by inductive assumption. Next, let us assume isforkclique(m;,) = true. Then
m;; corresponds to a fork clique. Let m; and my be the children of m;;. Since
my is the second child of a fork clique we know be inductive assumption h;(S2) =
hi—1(S7) = [count(m; ) — inparent(m; ) + in2children(m;,) + 1, count(m,)]. Further,
m; is neither a fork clique nor the second child of a fork clique. Thus, h(S}) =
hi—1(S}) = [count(m;) — inparent(m;) + 1, count(m;)]. The set S? contains ex-
actly the vertices v € S} with #anca,(v) # 2. Consequently, property 2 yields
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hi(S?) = [count(m;) — inparent(m;) + in2children(m;,) + 1, count(m,)]. Clearly,
since A;; is a fork clique, hy(A; N A;;) = h(S},) is the disjoint union of h(S?) and hy(S%).
Now let m; correspond to the second child of a fork clique, and let us consider m;,, the sib-
ling of m;. The node m;, is neither a fork clique nor the second child of a fork clique. Thus,
we have hy(S}) = hi—1(S},) = [count(m;,) — inparent(m;,) + 1, count(m;,)]. Since the
set A; N A;, contains precisely the vertices v € S} with #ancy, (v) = 2, that is, the
vertices in the parent A;1; of A;, and A; that are contained in both of A;;1’s children max
cliques, property 2 implies h;(A;NA;,) = [count(m;,) —inparent(m;,)+1, count(m;,)—
inparent(m;,) + in2children(m;1)], where my 1 is the parent node of m; and m;,. Fi-
nally, by definition of h; we know h;(Aj) = [count(m;)—inOchildren(m;)+1, count(m;)]
if m; does not correspond to the second child of a fork clique, and h;(A)) = [count(my;) —
inOchildren(m;)+ in2children(m;1)+1, count(m;)] otherwise. Thus, we have shown
that the disjoint union of h;(A;) and the sets hy(A; N A;;) for all feasible j < k is exactly
the set B,,,. Hence hi(A;) = By,

We prove the remaining properties separately for star cliques and for max cliques
that are neither star nor fork cliques. We first consider the case where A; is a star
clique. Let us show property 2. We have to prove that #anca,(v) < #ancgy,(v') for
vertices v,v" € A; with hj(v) < hy(v') if A; is neither a fork clique nor the second
child of a fork clique. Thus, let A; be a star clique that is not the second child of
a fork clique. Let A;,...,A; with ¢y < ...,i; be the children of A;. As shown
above A is the disjoint union of of Aj and A; N A;; for all j € [k]. As A; is a star
clique we know #ancy,(v) = 1 for all v € AN A;; for j € [k]. Now let us consider
v,v" € A with hy(v) < (V). If v € A\ 4] and v' € A;, we have #ancy, (v) = 1 and
therefore #ancy, (v) < #ancy, (v'). It remains to consider the case where v € Aj. Since
hi(v) < hy(v') and each number in h(A)) is greater than every number in h(A; \ 4)), we
also have v’ € A]. Then #ancy, (v) < #ancy, (v') follows directly from the construction
of h;. To show property 3 we let A; again be a star clique that is not the second
child of a fork clique. We have already seen that #ancy,(v) = 1 for all v € A4;\ Aj.
Therefore, we have S} C A]. Now h;(S}) = [count(m;) — inparent(m;) + 1, count(my)]
follows directly from property 2. It remains to show property 4. This time, let A; be
a star clique that is the second child of a fork clique A;11. According to Lemma 373,
all vertices in A; are either contained in a child max clique of A;, in its sibling max
clique, or in Aj. We know #ancy,(v) = 1 for all v € A; that are also contained in
a child of A;, and #ancy,(v) = 2 for v € A; if and only if v is also contained in the
sibling max clique of A;. Consequently, S? must be a subset of Aj, and property 2 yields
hi(S?) = [count(m;) — inparent(m;) + in2children(m 1) + 1, count(my)].

Now let us consider max cliques A; that are neither fork nor star cliques. Then A;
cannot be the parent or a child of a fork clique as children of fork cliques are star cliques
according to Lemma 364. Further, A; must have precisely one child and a parent, since
A; has at most one child by Corollary 369 and max cliques of degree 1 are trivially star
cliques. To show property 2 let us consider v,v" € A; with h;(v) < hy(v"). The child A;_4
of A; is neither a fork clique nor the second child of a fork clique. Thus, according to the
inductive assumption we have #ancy, , (v) < #anca, , (V') for v,v’ € A;_;. Further, if
v,v" € A = A\ Ai_1, then #ancy, (v) < #ancy, (v') follows directly from the construction
of hy. Since every number in h(A)) is greater than each number in h(4; \ 4j), it remains
to consider v,v" with v € A;\ A; and v € A]. Let us assume #anc(v)4, > #ancy, (v')
for such v and v'. Then M, is a separator of the path induced by M, in the clique
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tree of G, which is a contradiction to Lemma 356. Thus, #anc(v)s, < #ancy,(v)
for all v,v" € A; with hy(v) < hy(v"). Next, let us show property 3. We know that
Sllfl =A;NA;_1. As A;_q is neither a fork clique nor the second child of a fork clique,
we have (S} ;) = [count(m;_1) — inparent(m;_1) + 1, count(m,;_1)] by inductive
assumption. Further, the set h;(A]) is precisely the interval [count(m;_1)+1, count(my)].
Hence, hi(A4;) is the interval [count(m;_;) — inparent(m;_1) + 1, count(my)], and
property 3 follows directly from property 2. Finally, property 4 holds trivially since A,
cannot be the second child of a fork clique. O

For | = | M| bijection h; is a bijection between V' and |V| such that h(A;) = B,,, for
all i € [|[M]|]. Thus, the above claim proves the existence of a graph isomorphism h
between G and graph K.

Corollary 376. Graph K is an isomorphic copy of G on the number sort.

The Algorithm needs Logarithmic Space

It remains to analyze the data complexity of the algorithm. During the depth-first
traversal, we need to remember the current node, the last move and count. As we want
to visit the vertices in post-order, we also compute the next move at each node. If it is not
down, then we visit the current node for the last time and it belongs to the post-order
traversal sequence. Clearly, post-order depth-first traversal is possible in logspace.

At each node m, we use the values of inOchildren(m'), inparent(m’), in2children(m’),
isforkclique(m'), isforkchild2(m') and count(m’) for the necessary nodes m’ to
distinguish between the different cases and to compute the partial intervals that form
By,.

We can easily determine the values inOchildren(m’), inparent(m’) and in2children(m’)
for nodes m’ of the tree in logspace. We obtain these values from the color of m’. Further,
we can use the value of in2children(m’) to determine in logspace whether a node m’
corresponds to a fork clique, that is, whether isforkclique(m’) = true, because only
fork cliques A have the property that there exists vertices in A that occur in (at least) two
child max cliques of A. Additionally, we have to compute isforkchild2(m’). Clearly,
this is possible in logarithmic space as well by deciding whether m’ is the second child of
a node corresponding to a fork clique. We do not need to remember any of the above
values. We can recompute them whenever we need them.

To compute the partial intervals that form B,,, we may also have to recompute count(m')
for a certain nodes m’ of the tree. The recomputation is possible in logarithmic
space: After visiting a node m”, count stays the same, if isforkclique(m”) is true. If
isforkclique(m”) is false, then depending on the value of isforkchild2(m”), count
is increased by inOchildren(m”) or by inOchildren(m”) — in2children(p”) where p
is the parent node of m”. Thus, we can easily recompute count(m’) by a new post-order
traversal.
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13. Conclusion

In this thesis, we have proved various new capturing results for the complexity classes
PTIME and LOGSPACE. We conclude this thesis with this work’s implication for future
research and open problems raised by our results.

In the first part of the thesis, we showed that FP4+C captures PTIME on the class of
permutation graphs as well as on the class of chordal comparability graphs. To this end,
we stated and proved the Modular Decomposition Theorem. Of course, the question
arises whether this theorem can be use to prove capturing results on further classes of
graphs. It is also an open question whether a tool similar to the Modular Decomposition
Theorem, can be obtained for generalizations of the modular decomposition, like the
split decomposition (also called join decomposition). The class of circle graphs and the
class of parity graphs (which both contain the class of distance-hereditary graphs), are
both classes of graphs that are well-structured with respect to split decompositions. It
would by interesting to find out whether a “Split Decomposition Theorem” can be used
to prove that FP+C captures PTIME on any of these two graph classes.

In order to prove the Modular Decomposition Theorem, we showed that the modular
decomposition of a graph is definable in STC. As a side result, we proved that there
exists a logarithmic-space algorithm that computes the modular decomposition tree of a
graph. This is of particular interest for the design of logarithmic-space algorithms in the
context of algorithmic graph theory, where modular decompositions found a variety of
applications.

In the second part of this thesis, we introduce the new logics LREC and LREC_ which
extend first-order logic with counting by a recursion operator that can be evaluated
in logarithmic space. By capturing LOGSPACE on trees, interval graphs and chordal
claw-free graphs, we obtain the first logical characterizations of LOGSPACE on non-trivial
natural classes of unordered structures. It would be interesting to extend our results to
further classes of structures such as the class of planar graphs or classes of graphs of
bounded tree width. The author conjectures that LREC_ captures LOGSPACE on the
class of all planar graphs equipped with an embedding.

The expressive power of LREC_ is not yet well-understood. For example, it is an open
question whether directed graph reachability is expressible in LREC_, and even whether
LREC_ has the same expressive power as FP4-C. The fact that directed graph reachability
is complete for NL indicates that the answer to both questions is negative.

It is obvious that our capturing results can be transferred to non-deterministic logarithmic
space (NL) by adding a transitive closure operator to LREC_. However, a natural “non-
deterministic” variant of our limited recursion operator that allows directed graph
reachability to be expressed would yield a logic that contains TC and contributes more
to the question of what constitutes NL. We leave it as an open problem to find such an
operator.

271



272



A. Appendix

A.1. Proofs of Properties of Transductions

This section contains the proof of the Transduction Lemma for fixed-point logic with
counting (Proposition 11) and for the logic LREC_ (Proposition 326). Further it contains
the proof of Proposition 12, which states that the composition of two transductions is
again a transduction.

A.1.1. Proof of the Transduction Lemma

In the following we prove the Transduction Lemma introduced in Section 2.5 for fixed-point
logic with counting and for the logic LREC_ introduced in Chapter 10.

Transduction Lemma for FP+C

Before we prove the Transduction Lemma for fixed-point logic with counting, we repeat
it and use this repetition to described the variable tuples and the assigned values in more
detail.

Proposition 11 [Transduction Lemma] (repeated). Let 71,72 be vocabularies, let

G(X) - (edom(X)a HU(X7 a)yez( 77 aaﬂl)a <0R(X7 ﬂR,la <o 7aR,ar(R)))R€7-2>

be a parametrized FP+C[ry, Ty]-transduction, and let ¢(x1,. .., T, p1,...,Pr, Y1,...,Y},) be
an FP+C[ry|-formula where x1, ...,z are structure variables, p1,...,px number variables
and Yy, ..., Y, relational variables. Let { be the length of w. Then there exists an FP+C[r]-
formula ¢~ (X, Uy, ..., U, q1y- -y Qrs L1, - - , Zyu), where w1, ..., U, are compatible with ,
q,---,qx are L-tuples of number variables and for each m € [u] variable Z,, is a relational

variable of type t(Y,X%), such that for all (A, P) € Dom(©(X)), all ay,...,a, € A%, all
ny,...,0x € N(A) and all S,, € A% with m € [],
A ¢ O[Pay, ... a5 01, 05, S1,. .., S,
& Gifns---,an/~ € UO[A, P),
(n)y, ... ()4 € N(O[A, P]),
<Sm>:m € O[A, P|¥™ for all m € [u] and

~
)

O[4, P] = ¢[a1/%,...,a,€/z, <ﬁ1>A,---,<m>A,<51>XfM--,<Su>,4,%]7

where = is the equivalence relation as defined in Definition 7.

273



A. Appendix

Proof. The proof uses induction on the structure of ¢. We assume that all structure
variables, number variables and relational variables occurring in ¢ are among x1, . .., Tk,
p1,--.,px and Yq,...,Y),, respectively. To simplify the presentation, we consider a fixed
pair (A, P) € Dom(60(X)) and let ~ be the equivalence relation as defined in Definition 7.
We also consider fixed a1, ...,a, € A%, fiy,...,nx € N(A)* and S,,, € A%m for m € [u].
The reader should consider (A4, P) and these tuples to be universally quantified in the
statements where they occur.

Using 0~(X,u, @), it is easy to construct an IFP+C-formula 0 (X, u,u’) such that
0L[A, P;u,u'] is the equivalence relation generated by relation 0x[A, P;u,u']. Let
Xs(X, 1) := Fu/ (0y (X, a') ANOL(X,d,u)). Then for all a € AY,

A= xo|Pd] < a/~ € U(O[A,P)).

The construction from the proof of Lemma 2.4.3 in [50] shows how to count definable equiv-
alence classes in DTC+C. Using this construction, we can construct an IFP+C-formula
87 (X, q) such that for all 7 € N(A)’ we have A = 5#[P n] whenever (n), = |U(O[A, P])|.

We let xu(X,q) := 3¢ (6#(X,q )A“q < @”). Then for all n € N(A)*, we have
AE xulP,n] < (), € N(O[A, P)).

For m € [u] let r,, be the arity of relational variable Y,,,, and let t(Y;,) = (t1,...,%.,) be
its type. Let s(Y,) := {i € [r] | ti = s} and n(Y,,,) := {i € [rw] | ti = n}. Further, let
(v1,...,0r, ) be a tuple of variables that has the same type as Z,,. We let

Xm(X, Zn) = V0, ...Y0,,, (Zm(vl,...,vrm)—) ( A (X, 5) AN\ Xn()_(,vi))).

i€5(Yim) ien(Ym)
Then for all S, € A%m,

A Xm[P,Sm] <= (Sm)y7 € O[A, P]'m

Finally, let - B -
= /\ XS(Xaﬂk) A /\Xn(XaCYI) A /\ Xm(XaZm)-

kelx] le[N] me[u]
Then,
AEX[P, a1, G, 01,10, 51, .-, Sy = Gifa, .. a5/~ € U(O[A, P)),
(A)as- o i)y € N(O[A, P]) and
(Sm)rm € O[A, P]¥ for all m € [].
Given mp-formula ¢(z1,..., 2, p1,...,Pr, Y1,...,Y,) we now construct a 7-formula

¢ (X, U1, U, Q1y- - @ps Z1,s - - -, Z,) inductively as follows:

1. Suppose that ¢ = R(xg,,...,zk,), where ky,..., k; € [5]. Let I := {ky,...,k;}.
Then,

¢ = X A (3t} e ( A (eg(X,ak,a;) AHU(X,E;)) A@R(X,ﬂgl,...,ﬂgi)> .
kel
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. Assume ¢ = Y, (2, ..
m e [/.L] Let I := {kl, ..

9 = xA (3 s <

kel

-7Ikljpl17.--
., k;}. Then,

I\ O<(X, g, W) N Zo (- - U, Ty s -

A.1. Proofs of Properties of Transductions

,plj) with ki,...,k € [&], l1,...,]; € [A\] and

76[j)> :

. If ¢ = 2 = xpr, where k, k' € [k], then

¢~ 1= X A OL(X, U, ).

4. If ¢ = pyx prr, where x € {=,<} and [,1’ € [\], then

7. Suppose that ¢ = Qu with Q € {V,3} and u € {z4,..
=V and u = x, we let

oo

07 = XA Q.

. If ¢ = =), then
¢~ == x Ay
. If ¢ = 1 x g, where x € {A, V}, then

079 = O x O,

that

Ty D1y -5t In case

»© = x A Vi (XS(X7 Uy) — w—e)_

The other cases can be dealt with similarly.

- Assume ¢ = #(zp T Py, )Y = (P

and ly,...,lj4; € [A]. Based on the construction from the proof of Lemma 2.4.3

,plj) where ki, ..., k; € [K]

in [50], it is possible to construct an IFP4C[r]-formula

such that for all a, . ..

and all my ...
Al 8[Pay, ... a7y, ..
= ’{(ak1 S
(G
:<77_"Llj+l,...
where
We let
»=© = x AG.

§(X, ty,. ..

y Uy qpy e -

,a, € A% allng, ..

77_7‘)\7817"

a(j)nZlv-"7Z,u(jllv"'a(jlj)

L,y € N(A) all S, C A% with m € [y]

7ml']

Sy Ty

?a’ki/z7 <ﬁlj+1>A7 ] <,ﬁ’lj+]-/>A ) ’A ):

@[Ral,...,an,nl,...,nA,S’l,...,S’M]}'

2 >A,®[AJ5] ’

4

(s ) g oapy = 2 (M), - IN(OLA, P

s=1
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9. Suppose that

¢ = ifp(Ym(xkp"'a T, pln"‘?plj) «— w>(xk:’l7"'axk:.apl’17"'7pl;.)

where ki, ..., ki, ky,. .. kp € [K], I, .. 0,0, .., 1) € [N and mo€ [p]. Let index set
I:={ky,...,k;}. Then,

(b_@ = X/\lfp(Zm(akla cey ﬂk“ QZU' cey Qlj) — w_e)(akia 7ﬂk£7(jl'17"'7ql;.)'

It is straightforward, though tedious, to verify that ¢~© is as desired. O

Transduction Lemma for LREC_—

In the following we prove the Transduction Lemma for the logic LREC_ (Proposition 326).

Proof. In order to prove the Transduction Lemma for LREC_, it suffices to adjust the
proof of the Transduction Lemma for FP+C (Proposition 11) from Section A.1.1. LREC_-
formulas do not contain relational variables and fixed-point operators. Thus, we do not
have to consider formulas of the form 2 and 9. Instead we consider the following case:

10. Suppose that
Y= [lrecﬁl,ﬁz,é Y= ¥E, @C](ﬁ&f)

where ¢ = (P, -y Pen)s T = Dryy- -+, Pry) and v = (xkf,...,xkf,plf,...,pl;) for
all s € [3]. Then,

0 © = xA EIF"([h“ecﬁiﬁé,Eu oL, ¢5 % e (W5, 7)) A B(T, T )

where

90/: = SD;G) \ \/ 9;()27 ak}laﬂki)a

heli]

e =3¢ (g ® A B, "))
and & = (Geyy--++Gey, )y ™ = (Gryy -+ -5 Gry) and 0 = (ﬂkf,...,ﬂk;,(jl;,...,(jl]s,) for all
s € [3]. Further, 7" and ¢’ are tuples of number variables of length || and ||,
respectively, such that the number variables in 7’ and &’ do not occur in gy, ..., ¢x;
and f is defined as follows. The formula §(7/,7”) has the property that for all
e N(A)

d
A Bliry, .. iy, m] == (M)y =) (fir,)4 - IN(O[AD" .
h=1

Formula B(¢,¢") is defined analogously. Constructing § as desired is a not too
difficult exercise. [
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A.1.2. Proof of Proposition 12 (Composition of Transductions)

In the following we prove the subsequent proposition from Section 2.5.3. Notice, that the
tuples of domain variables are named differently.

Proposition 12 (repeated). Let 71, 75 and 73 be vocabularies. Let ©1(X;) be a param-
eterized L[1y, To]-transduction, and let Oy (}7) be a parameterized L[ro, T3]-transduction

where v and w are the respective tuples of domain variables. Then there exists a parameter-
ized L[y, 73)-transduction ©(X) with X = (X1, X2) such that Xo = Y™, tuple w™? is the
tuple of domain variables, and for all 7 -structures A and all P € AX with P = (]51, ]52),

(A, P) € Dom(6(X)) <= (A, P,) € Dom(6; (X)),
Q:= (P . €61[A,P]" and
(©1]A, Pl]a@) € Dom(@g(Y)),

where 2 is the equivalence relation of (A, Py) under ©1, and for all (A, P) € Dom(0(X)),

O[A, P] 2 0,[0:[A, P1],Q].

Proof. We can construct L[ry, 73]-transduction

@(X) - (Qdom(X)a QU(Xv ﬂ)aez(Xaﬂ>a/)v (HR(Xa ﬂR,la o 7aR7ar(R)))RET3)

from L[ry, 7o)-transduction 6, ()_( 1) and L[rs, 73]-transduction © (1_/),

@1 (Xl) = (eldom(Xl)a QIU(XD 6)7 le(Xh v, ﬁl)? (Gls(le ﬁs,la s >Q_]S,ar(5)))S€7—2) and
2(Y) = (B2dom (V) 20 (Y, @), 02

by using the Transduction Lemma (Proposition 11) on the formulas of G, (Y).

We let
Odom(X) 1= 0140 (X1) A F0 01 (X1,0) A fag ot (X)),
O (X, 1) == 025,°" (X, ),
O~ (X, 0, 1') =0, (X,q,a'), and
QR(X, UR T, - - - 7ﬂR,ar(R)) = 92]}@1()2, UR1, - - - 7aR,ar(R)) for all R € 73.

Further, we let ~; be the equivalence relation of (A, P_’l) under Oy.
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Then for all 7y-structures A and all P € AX with P = (P1, P5), we have

(A, P) € Dom(0(X))
< AE 04 [P] and Oy[A, P;u] #0

<:>A):91dom[P1]v HELGA{):A)ZelU[PhZI], A)Zaggoeml[ﬁ] and QU[A,P,TL}#w
<:>A):91d0m[f_)1], 91U[A,P1;1_)] #@, A'ZQQ(IO%[P] and HaEAﬂ:A'ZHU[P,C_L]

— (A, P) € Dom(0,(X1)), Al=0;91[P] and Ja € A": A = 6,,°' [P, a]
’ 91 [A) Pl] ): 92d0m[@]

— (4,P) € Dom(6,(X1)), Q= (), co[AP]

. Q

and Ja€ A" ((a)) . €©1[A, P1]” and 044, P1] | 0,0[Q, (@) . ])

= (4, P) €Dom(6,(X1)), Q=(P),_ €6:[AP]
and 3be ©,[4, P]": ©1[A, P\] E 021(Q, ]

= (4, P) €Dom(6:(X1)), Q=(P)};_ €0Oi[AP,
and  0y[01[A, P, Q; @) # 0

< (A, P) € Dom(6,(X1)), Q= (), €Oi[AP
and (©1[4, P],Q) € Dom(02(Y))

]}7

]Y

For all (A, P) € Dom(6©(X)) and a € A" we have
A ): QU[pv C_L]
— Ak 0,;°[Pa
= AR 0,;°(P, Py, a]
<~ @1[A,P1] ’: QQU[Q, l_)] where Q = <P2>A,z1 S @1 [A,Pl

A,
and
A 05[P,a,d]
— AR 0,°'[Pa,d]
— AE60,°[P, P a,d]
= O4[A, Pi] E 022[Q,5,F] where Q := (), _ € ©,[A,P]"
bi=(a)} ., €O1[A P]",
and B':= (a), _ € ©[A,P)]"
Thus,
acOy[A Py < <a>jm € 05[01[A, 1], Q; w] and
(a,) € 0=[A, Py, @) = ((@)) (@)} ., ) € 02=[01[4, P), Qs 0, 0]
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A.2. Proof omitted in Section 9

Let ~ be the equivalence relation generated by 6~[A, P;u,4'] and % be the equivalence
relation generated by 6.[01[A, P1], Q;w,w']. Then we also have
—\w _/>w

a~ad = (a), . ~(a

Now, it is not hard to see that mapping h which assigns each equivalence class a/x
to the equivalence class <EL>Zzl /~» is a bijection between the universe U(O[A, P]) =
Ou[A, P;ﬂ]/z_of @[A,P] and the universe U(0,[0,[A, P1],Q]) = 0oy [01[A, P1], Q; 1] /w,
of @2[@1 {A, P1], Q]

Similarly to the equivalences (A.1) and (A.2), we obtain

(@R, -, GRar(R)) € Or[A, Piugy,. .. URar(R)]
= (<aR71>Z)z17---a<aR,ar(R)>Z’zl) € Oop[01[A, P1],Q; W 1, - - ., WRar(R)]-
Therefore, mapping h is an isomorphism. O

A.2. Proof omitted in Section 9
In the following we prove Observation 316 from Section 9.1.

Observation 316 (repeated). Let ¢ be an L (C)[r]-formula, p be a number variable
and u be a non-empty tuple of individual variables with exactly k occurrences of structure
variables. Then there exists an L, (C)[7]|-formula 1) of rank at most k such that

(A,0) v < a(p) = {a € A" | (4,ala/a]) £ p}] < .

Proof. Without loss of generality, let ¢(q, z,u’) be an L% (C)[r]|-formula and u = qzy
where

q is an /-tuple of number variables,
Z is a kq-tuple of structure variables that occur free in ¢,
y is a ko-tuple of structure variables that do not occur free in ¢,

[ ]
[ )
[
e ' is an enumeration of all free variables that are not listed in .

We have k = ky + ks.
If k1 =0, let

w'(a’,p)::\/ \/ </\cp(i,z_/)/\ /\—mp(i,ﬁ')/\pzm).
m ) i

If k1 > 0, let
V(' p) = (sosum(ﬂ’,p) AP (o (@, 9') = 1 < p)),

where
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Poun (@', ) =\ (303)5 g e ( N #zeli,z,9)=p; A Y p; = p>.

n>0 1€[0,n]* ico,n)¢

If k5 = 0, then
(U, p) =y (d@, p)

If k5 > 0, then

b(ip) = (#e (@ =2) =r A W@, p) A p=9-17).
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