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Abstract

Despite the fact that the standard model of particle physics has been con-
firmed in many high energy experiments, the existence of the Higgs boson
is not assured. The Higgs boson is a central part of the electroweak theory
and is crucial to generate masses for fermions and the weak gauge bosons.
The goal of this work is to set limits on the mass and the decay width of the
Higgs boson. The basis to compute the physical quantities is the path integral
which is here evaluated by means of Monte Carlo simulations thus allowing for
fully non perturbative calculations. A polynomial hybrid Monte Carlo algo-
rithm is used to incorporate dynamical fermions. The chiral symmetry of the
electroweak model is incorporated by using the Neuberger overlap operator.
Here, the standard model is considered in the limit of a Higgs-Yukawa sector
which does not contain the weak gauge bosons and only a degenerate doublet
of top- and bottom quarks are incorporated.
Results from lattice perturbation theory up to one loop of the Higgs boson

propagator are compared with those obtained fromMonte Carlo simulations at
three different values of the Yukawa coupling. At all values of the investigated
couplings, the perturbative results agree very well with the Monte Carlo data.
A main focus of this work is the investigation of the resonance parameters of

the Higgs boson. The resonance width and the resonance mass are investigated
at weak and at large quartic couplings. The parameters of the model are
chosen such that the Higgs boson can decay into any even number of Goldstone
bosons. Thus, the Higgs boson does not appear as an asymptotic stable
state but as a resonance. In all considered cases the Higgs boson resonance
width lies below 10% of the resonance mass. The obtained resonance mass
is compared with the mass obtained from the Higgs boson propagator. The
results agree perfectly at all values of the quartic coupling considered.

Finally, the effect of a heavy fourth generation of fermions on the upper
and lower Higgs boson mass bound is studied. All numerical results presented
in this work involve extensive finite volume analysis. In particular the Higgs
boson mass significantly depends on the lattice volume and thus an extrapo-
lation to infinite volume is inevitable. Both mass bounds are revised in the
presence of a quark doublet with a mass around 700 GeV. The upper bound of
the Higgs boson mass is only slightly enhanced by about 200 GeV with respect
to the standard model. The lower bound however, is altered significantly by
a factor of about five to ten.
The strong dependence of the lower mass bound on the quark mass moti-

vated to explore the Higgs boson mass bounds at a fixed cut off of 1500 GeV
and varying quark masses. Preliminary data for the upper Higgs boson mass
are presented. A detailed analysis at strong Yukawa couplings of both, the
lower and the upper, mass bounds in a non perturbative fashion is certainly
needed and may provide a reliable basis in favour or disfavour of a potential
fourth generation of heavy quarks.
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Zusammenfassung

Trotz der vielfachen Bestätigung des Standardmodells in Hochenergieex-
perimenten, ist die Existenz des Higgs-Teilchens nicht gesichert. Das Higgs-
Teilchen ist essentiell für die Erzeugung von Massen für Fermionen und Eich-
bosonen der schwachen Wechselwirkung. Ziel dieser Arbeit ist es, die Masse
und die Zerfallsbreite des Higgs-Teilchens einzugrenzen. Grundlage für die
Berechnung physikalischer Größen ist dabei das Pfadintegral, welches mittels
Monte-Carlo Simulationen bestimmt wird. Ein polynomieller Hybrid-Monte-
Carlo-Algorithmus berücksichtigt dabei alle dynamischen Freiheitsgrade der
Fermionen. Die chirale Natur der Fermionen werden mit Hilfe des Neuberger-
Overlap-Operators beschrieben. In dieser Arbeit wird das Standardmodell auf
den Higgs-Yukawa-Sektor eingegrenzt, welcher keine Eichbosonen enthält und
lediglich ein degeneriertes Quark-Doublet berücksichtigt.
Anhand des Higgs-Teilchen-Propagators werden die Ergebnisse aus der Git-

terstörungsrechnung bis zu einer Schleife mit denen aus der Monte-Carlo-
Simulation verglichen. Für die untersuchten Parameter, stimmen die Ergeb-
nisse aus der Störungstheorie mit den Monte-Carlo-Daten sehr gut überein.
Ein Schwerpunkt dieser Arbeit ist die Analyse der Resonanzparameter

des Higgs-Teilchens. Die Resonanzmasse und die Resonanzbreite werden bei
schwachen als auch bei starken quartischen Kopplungen untersucht. Die Pa-
rameter des Modells sind dabei so gewählt, dass das Higgs-Teilchen in je zwei
Goldstone-Teilchen zerfällt. Folglich erscheint das Higgs-Teilchen nicht als
asymptotisch stabiles Teilchen, sondern als Resonanz. In allen Fällen liegt
die Resonanzbreite unter 10% der Resonanzmasse. Die Resonanzmasse wird
sodann mit der Propagatormasse verglichen. Für alle betrachteten Kopplun-
gen gibt es eine hervorragende Übereinstimmung beider Größen.
Zuletzt gilt es, den Einfluss einer schweren vierten Generation von Quarks

auf die obere und untere Massenschranke des Higgs-Teilchens zu untersuchen.
Alle numerischen Resultate involvieren eine umfassende Analyse der Volu-
menabhängigkeit. Insbesondere die Masse des Higgs-Teilchens hängt stark
vom zugrunde liegenden Gittervolumen ab und bedarf daher zwingend einer
Extrapolation ins unendliche Volumen. Beide Massenschranken werden unter
dem Einfluss eines 700 GeV schweren Quark-Doublets untersucht. Während
sich die obere Massenschranke des Higgs-Teilchens im Vergleich zum Stan-
dardmodell nur um etwa 200 GeV nach oben verschiebt, ist der Einfluss auf
die untere Schranke, mit einem Faktor von fünf, signifikanter.
Die starke Abhängigkeit der unteren Massenschranke des Higgs-Teilchens

von der Quarkmasse ist Anlass, diese bei festem “Cut off” von 1500 GeV
und variierender Quarkmasse zu untersuchen. Für die obere Schranke werden
dazu vorläufige Resultate präsentiert. Eine umfassende und nicht-perturbative
Untersuchung der oberen und unteren Massenschranken bei starken Yukawa-
Kopplungen ist notwendig und legt eine sichere Basis für oder gegen eine
etwaige vierte Generation von schweren Fermionen.
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1 Introduction
The emergence of quantum mechanics and the theory of special relativity opened
the door to a modern perspective of physics leaving the classical Newtonian physics
behind. Both theories required a new interpretation of physical quantities. The
special theory of relativity embeds space and time in a four dimensional space-time.
The fundamental principles of relativity are reflected in a symmetry, namely the
Poincaré invariance of the action. The early days of quantum mechanics suffered
from the lack of a consistent interpretation of particles and their paths. The under-
standing of quantum mechanics was a long journey of mistakes and illumination;
the initial path is reflected in [38].
The unification of the special theory of relativity and quantum mechanics in-

evitably led to relativistic quantum field theory. Within the classical theory, the
electromagnetic forces were already formulated in a way that was easy to incorpo-
rate with special relativity. Eventually it was Dirac who accomplished to provide
a linear differential equation, which allowed to describe electrons within a quantum
field theory. The symmetries of the action, which describes the relevant physics
and helped to formulate the principles of relativity, turned into a more general idea
and strongly constrained the possible interactions of elementary particles. Local
symmetries, also known as local gauge invariance, enabled to incorporate all under-
lying symmetries of the original classical theory. Furthermore, the electromagnetic
potential emerged as an additional degree of freedom. These degrees of freedom
within a relativistic quantum field theory are known as gauge bosons. In the case
of quantum electromagnetism, the gauge boson is the photon and it belongs to the
simplest symmetry group within the standard model of particle physics, the Uem(1).
The relativistic quantum theory of electrodynamics also revealed another aspect,

namely the need for renormalization. While the theory was able to predict exper-
imental results at leading order of perturbation theory in the electromagnetic cou-
pling, higher orders involved infinities and could not generate meaningful results.
The distinction between the parameters of the theory and physical observables then
led to the general theory of renormalization. In the modern view of quantum field
theory, the symmetries of the model together with the requirement of renormaliz-
ability restrict the structure of mutual interactions in such a way that the most
general form of such a theory coincides with the empirically motivated model.
Improvements in experimental measurements and observations of atomic interac-

tions allowed to arrange all known interactions within four fundamental forces. The
electromagnetic, weak, strong and gravitational force. While the gravitational force

1



2 Chapter 1 Introduction

acts on large distances, the others are microscopic and describe interactions of elec-
trons and the constituents of protons and neutrons. The standard model of particle
physics embeds the first three forces in a relativistic quantum field theory and its
predictions and implications have been extensively tested in the last decades. The
strong interaction describes quarks and gluons, which are the constituents of pro-
tons and so called mesons. However, it turns out that the quarks are not exposed in
the observable spectrum of the theory but that they form bound states and excited
states thereof which constitute the observed heavy particles, the so called baryons
and mesons.
The symmetry of the standard model is given by the group structure SUW (2) ×

UY (1) × SU(3). The elementary particles and their transformation property un-
der the above symmetry together with the requirement of renormalizability then
define the standard model of particle physics. An overview of the particle content
is presented in figure 1.1. The leptons and quarks build up the ordinary matter.
The leptons are arranged within a SUW (2) doublet and their mutual interaction is
dictated by the weak SUW (2) × UY (1) symmetry. The gauge bosons of the weak
symmetry are the massive W± and the Z boson. The quark fields are also arranged
within a SUW (2) doublet and thus they interact with the weak gauge bosons. More-
over, each quark is arranged within a SU(3) vector. The interactions induced by the
SU(3) symmetry describe the strong interaction which is mediated by the gluons.
The strong interaction confines the quarks in bound states. These bound states
finally build up the known spectrum of hadronic particles such as the proton, the
neutron, or the π mesons. The Higgs particle in figure 1.1 is highlighted and indi-
cates that of all particles embedded within the standard model of particle physics,
the Higgs boson is the only one which has not yet been observed. The Higgs boson
plays a crucial role in the generation of masses for the fermions. It is known that
all leptons, quarks and weak gauge bosons are massive.
Despite its outstanding success, a major key in the framework of the standard

model is yet lacking to be confirmed experimentally. The symmetries of the elec-
troweak sector of the theory do not permit massive fermions or massive gauge bosons.
It is experimentally known that the weak gauge bosons as well as the leptons and
the quarks are massive. The weak gauge bosons mediate the weak force similar to
the photon mediating the electromagnetic force. As a consequence, the symmetry
in the weak sector of the standard model must be broken. The above fact is incor-
porated into the model by the concept of spontaneous symmetry break down, which
is modelled with the scalar sector by involving the Higgs boson.
This work is dedicated to investigate the properties of the Higgs boson from first

principles. In particular the Higgs boson mass bounds and its resonance width
will be computed within the framework of lattice field theory. The path integral
formulation of quantum field theory allows to access observables of the theory by
numerical Monte Carlo integration techniques.
The model is restricted to the electroweak sector with its SUW (2) × UY (1) sym-
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Figure 1.1: The figure shows the particle content of the standard model of elementary
particle physics. The leptons and quarks correspond to the usual matter. While quarks
are confined in bound states such as the proton or the neutron, leptons can be observed
directly in high energy experiments. The photon, the weak gauge bosons and the gluons
mediate the electromagnetic, the weak and the strong nuclear forces between the fermions.
The Higgs boson, highlighted in red, plays a crucial role in the generation of masses for
the fundamental particles. It has not been observed yet; its mass and resonance width are
the main topic of this thesis.

metry. The largest couplings to the Higgs boson are the so called Yukawa couplings,
which define the interactions between the fermions and the Higgs boson. Among all
Yukawa couplings, it is the top quark whose coupling to the Higgs is by far larger
(a factor of roughly 40) than all remaining Yukawa couplings. Furthermore, it is
known that the Higgs boson couples weakly to the mediators of the weak forces
(the W±, Z bosons). Though neglecting them alters the theory conceptually, it is
expected that their influence on the mass of the Higgs boson is negligible. Scattering
processes however, can be described by using the Goldstone bosons instead. The
last statement is phrased in the Goldstone equivalence theorem and is made more
clearer in Chapter 2. From the arguments above, it is expected that the restrictions
may not have a significant influence on the final results. Since the investigation of
chiral gauge theories on the lattice is still an open and demanding subject on its own,
being able to neglect the gauge boson degrees of freedom is a great simplification.
Recently, an extensive study of the upper and lower Higgs boson mass bound was

performed within this model [30, 31]. For the upper Higgs boson it was necessary
to consider an analytic propagator, and the Higgs boson mass was extracted from
the pole of the real part of the propagator. Indeed, the time dependence of the
Higgs boson propagator which yields the time correlator is not sufficient in order to
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extract the Higgs boson mass. The Higgs boson is an elementary particle but it does
not appear as an asymptotic state as it decays into any even number of Goldstone
bosons respectively weak gauge bosons. The time slice correlator is then dominated
by the masses of the Goldstone bosons and the Higgs boson mass lies within a con-
tinuous spectrum of two particle energies. Though the analysis of the propagator
can determine the mass of the Higgs boson as a resonance by means of analytic
continuation, it depends on an analytic function. A generic form of the Higgs boson
propagator is not known and one has to utilize the functional form of the propagator
suggested by one loop perturbation theory. A priori, one cannot know, whether at
large couplings, other functions than in the one loop approximation may dominate
the behaviour of the propagator. Furthermore, the resonance width, which is con-
nected with the imaginary part of the complex Higgs boson propagator, is neglected.
Hence, another method to extract the resonance mass is highly appreciated. Such
a method is the finite size technique proposed in [46]. It is genuinely non perturba-
tive and does not need any knowledge of the propagator. In three distinct physical
setups both techniques will be contrasted in Chapter 4.
The second main focus of this work is to investigate the effect of a heavy fourth

generation of quarks on the aforementioned Higgs boson mass bounds. An exten-
sion of the standard model with a fourth generation of heavy quarks and leptons,
arranged within a SUW (2) doublet, permits to alter the model in a way such that
it is compatible with electroweak precision measurements. A fourth generation of
fermions provides various prospects to augment the model to enable a deeper under-
standing of flavor physics and mass hierarchies [40]. The main motivation, however,
is that it may satisfy the three Sakharov conditions [55] such that the observed
baryon asymmetry of the universe is consistent with theory [16, 41]. It is impor-
tant to mention that within the standard model the Sakharov conditions cannot be
realized when experimental constraints on the Higgs boson mass and CP violating
phase in the CKM matrix are taken into account. Large Yukawa couplings give rise
to potential non perturbative effects and the method at hand is perfectly suited to
study such effects.
In the following, the structure of the chapters are summarized briefly. Chapter 2

introduces the model in continuous space time and the translation to a finite dis-
crete space time lattice is discussed. Once the model is defined, its symmetries and
the transformation properties of the fields in continuum and in finite volume are
discussed in detail. Thereafter the simulation strategy is explained and the basic
technique to extract mass eigenvalues is presented. The Källen-Lehman representa-
tion of the interacting two point function will play a role throughout this work and
thus some details are given at the end of the chapter.
Chapter 3 gives explicit results on the one loop approximation of the scalar prop-

agators. The result is used to fit numerical data and to extract the resonance mass.
The chapter closes with perturbation theory on a finite discretized space time lat-
tice. The calculations show an agreement of physical quantities obtained by means
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of the Monte Carlo simulation with those computed within bare perturbation theory.
The one loop contribution of the Neuberger overlap operator is also computed and
compared with numerical data to high precision for the first time. At small values
of the Yukawa couplings, the perturbative result may be used to study the effect of
the technical parameters of the overlap operator.
As announced before, Chapter 4 describes the finite volume technique in order to

extract resonance parameters. In [54] a modification of the method was proposed.
Both methods allow to access the scattering phases from Monte Carlo simulations.
The aforementioned modification turned out to be very helpful as it allows to collect
the necessary number of scattering phases in order to perform a good fit to extract
the resonance parameters. Finally, the results obtained from the finite size tech-
niques are compared with the results obtained from the analysis of the propagator.
Chapter 5 addresses the question of a fourth generation of heavy quarks. The

Higgs boson mass bounds are explored in the presence of a heavy quark of roughly
700 GeV. The bounds are compared to those established for the standard model
quarks.





2 Definition of a chirally invariant
Higgs-Yukawa model

Within the electroweak standard model, the pure Higgs-Yukawa sector describes
the interaction between fermions and scalar particles. This electroweak sector of
the standard model plays a crucial role in the understanding of mass generation
for fermion and W and Z bosons. In the complete electroweak standard model
a local SU(2) gauge symmetry is established in order to describe the weak inter-
actions. Phenomenologically it is known that weak interactions treat left handed
components of the fermions different than the right handed components. An ex-
plicit fermion mass term is therefore not allowed. Furthermore, it is known that
the weak gauge bosons are massive, but mass terms for gauge bosons are not com-
patible with local gauge symmetry. The electroweak sector of the standard model
utilizes the scalar sector in order to keep the SUW (2) × UY (1) model manifestly
invariant and renormalizable while at the same time allowing a mechanism, which
provides a framework in which the weak gauge bosons as well as the fermions acquire
a mass. One of the fundamental ingredients of this mass generation, the so called
Higgs mechanism, is the necessity of the Higgs boson, which is supposed to appear
as a resonance in the particle spectrum. Though theoretical predictions based on
the electroweak theory have been verified in experiments in the last decades, the
Higgs boson itself has not yet been observed. In addition, despite experimental
and perturbation theory based constraints on the Higgs boson mass and width are
available, much less is known about eventual non-perturbative properties concern-
ing the Higgs boson resonance. Constraining the Higgs boson resonance parameters
reliably also with non-perturbative calculations is therefore of great importance for
phenomenology and for experiments, in particular in light of the just started LHC.
The main focus in this work is to explore potential non-perturbative features

within the pure Higgs-Yukawa sector. The Higgs-Yukawa model considered here ne-
glects all gauge boson interactions and considers only a degenerate fermion doublet.
As explained below, both restrictions are reasonable with respect to the quantities
which are of interest in this work. Furthermore, a chiral gauge theory involves con-
ceptual difficulties and is beyond the scope of this work. As it is the aim to compute
mass bounds and resonance parameters of the Higgs boson at a number of couplings,
including possibly non-perturbative accessible values, the main contributions arise
from the strongest couplings in the fermion-scalar sector. On the contrary, the weak

7
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coupling
g2

8M2
W

= GF√
2
⇒ g = 0.357

tan θW = g′

g
⇒ g′ = 0.652

is known to be small and thus the contribution of gauge bosons to the mass of the
Higgs boson is sub-dominant with respect to those stemming from the heavy top-
and bottom-quark doublet as well as from large quartic couplings of the scalar self-
interaction. Furthermore, the Goldstone equivalence theorem [53] states that the
contributions of theW± and Z bosons to scattering amplitudes are identical to those
of the Goldstone bosons in a theory without gauge bosons. This ensures to extract
scattering phases reliably which in turn will be used to compute the resonance width
and resonance mass and associate them to the resonance parameters of the Higgs
boson in the electroweak sector of the standard model.
The standard model top quark is roughly a factor 40 larger than the mass of

the bottom quark (mt = 171.2(2.1) GeV ,mb = 4.20(0.17) GeV [8]). Of course,
it would be physically more realistic to perform calculations with such a mass-
splitting realized. However, while in the mass degenerate case (mt = mb) it can be
ensured that the determinant of the fermion matrix when considered on a lattice
is strictly real valued, a mass splitting within the fermion doublet allows for a
complex phase in the fermion determinant which in turn is numerically difficult
to compute. Nevertheless, the effects of a mass splitting, adjusted to the physical
situation, on the lower Higgs boson mass bound has been investigated in [25]. All
results presented in this work will however be based on a mass degenerate fermion
doublet. Chapter 5 explores the mass bounds of the Higgs boson in the presence of
a heavy mass degenerate fourth generation of quark doublets. What is of particular
interest concerning the fourth generation of fermions is the relative change of the
Higgs boson mass bounds. Since for a top quark mass of mt = 171.2(2.1) GeV also
a mass degenerate quark doublet was considered, it suffices to use a mass degenerate
doublet for the fourth generation quarks in order to quantify the relative shifts of
the Higgs boson mass bounds.
In this chapter, first the continuum model is introduced and its symmetries are

discussed. The translation of these continuum symmetries to a finite discretized
space time lattice plays an important role in the investigation of Higgs-Yukawa
models and thus some details on the transformation properties of the fields are
discussed. Afterwards, the formulation of the Higgs-Yukawa model on the lattice is
given and once again the symmetries are exposed. The symmetry on the lattice has
to be modified but finally it yields the correct symmetries when the limit to zero
lattice spacing is performed. The last part focuses on the simulation strategy. The
line of constant physics as well as the method to determine the upper and the lower
Higgs boson mass bound is explained. Finally, the observables which are used to
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compute the Higgs boson mass and the fermion mass are defined and some analytic
details on the propagator is given in order to discuss the unstable nature of the
Higgs boson for large quartic or large Yukawa couplings.

2.1 The continuum formulation and its symmetries
The Higgs-Yukawa model is defined by the Lagrangian and the corresponding gen-
erating functional for the Green functions of the theory. With regard to the later
lattice version of the model, the Euclidean version of the model will be considered
here. The particle content contains the scalar sector and the heaviest quark doublet
consisting of the top and the bottom quark. Due to the neglect of gauge bosons the
Lagrangian exhibits a global SUW (2) × UY (1) inner symmetry rather than a local
symmetry. The Euclidean action is given by

LHYE = 1
2 (∂µϕ)† · (∂µϕ) + 1

2m
2ϕ† · ϕ+ λ

(
ϕ† · ϕ

)2

+ t /D t+ b /D b+ yb

(
t
b

)T
L

· ϕ bR + yt

(
t
b

)T
L

· ϕ̃ tR + h.c.. (2.1)

The scalar fields are defined on R4

ϕ :R4 → C

while the fermion fields are complex Grassmann fields. ϕ̃ transforms like a SUW (2)
vector and is given by

ϕ̃ := iσ2ϕ
∗ =

(
ϕ∗2
−ϕ∗1

)
/D is a shorthand notation for the contraction of the free Dirac operator with the
gamma matrices

/D = γEµ ∂µ

where γEµ are the Euclidean gamma matrices which are explicitly given by

γ1,2,3 := −iγMinkowski
1,2,3

γ4 := γMinkowski
0

γ1,2,3 =
(

0 −iσ1,2,3
iσ1,2,3 0

)
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The Euclidean gamma matrices are hermitian γ†µ = γµ. The Pauli matrices σ1,2,3
are given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The explicit expression for the Euclidean gamma matrices is then

γ1,2,3 =
(

0 −iσ1,2,3
iσ1,2,3 0

)
, γ4 =

(
0 1
1 0

)
, γ5 =

(
1 0
0 −1

)
.

The scalar field ϕ is a complex doublet which transforms in the fundamental rep-
resentation with respect to SUW (2) transformations. It can be easily shown that ϕ̃
also transforms like a SUW (2) vector such that the combination

(
t b

)
L
· ϕ̃ is indeed

manifestly SUW (2) invariant.
Besides the global Baryon number conservation and Euclidean invariance, which

translates to Poincaré invariance in Minkowski space, the model possess a SU(2)W×
U(1)Y symmetry which shall be demonstrated with the help of the Yukawa term
involving the scalar and the fermion fields

(
t b

)
L
· ϕ bR:

ϕ′ := V · ϕ · V −1 = e−iε
ATA · ϕ,

V ∈ SU(2), TA : A ∈ {1 . . . 3} are generators of SU(2).
Q′ := V ·Q · V −1 = e−iε

ATA ·Q,

Q :=
(
tL
bL

)
b′R := bR

t′R := tR

With the above transformation properties it is clear the above Lagrangian is
SU(2)W invariant if the fields in the Lagrangian (2.1) are substituted with the
primed fields. It is vital for the SUW (2) transformation, that it does not affect
the right handed fields at all (here: t′R = tr, b

′
R = br). The quantum number with

respect to SUW (2) is given by the eigenvalue of the third generator T 3 and is 1
2 for

the upper component and −1
2 for the lower component of the SUW (2) doublet. The

transformation properties of UY (1) affects both components of the fermion fields
and the scalar fields.
The quantum number of the UY (1) symmetry has to be chosen such that the

electric charges of fermions are reproduced in the broken phase. The electric charges
of the quarks are given in fractions such that the observed mesons and baryons e.g.
the proton have unit charge. The charge of the top quark is 2

3 while the charge of
the bottom quark is −1

3 . The transformation properties of the fields with respect to



2.1 The continuum formulation and its symmetries 11

UY (1) are given by

ϕ′ := U · ϕ · U−1 = e−iεY · ϕ = e−i
ε
2 ϕ

Q′L := U ·QL · U−1 = e−iεY ·QL = e−i
ε
6 QL

b′R := U · bR · U−1 = e−iεY · bR = e+i ε3 bR

t′R := U · tR · U−1 = e−iεY · tR = e+i 2
3 ε tR (2.2)

With the above rules at hand it is easy to show that the Yukawa terms are also
symmetric under UY (1)

(
t′

b
′

)T
L

· ϕ′ b′R =
(
t
b

)T
L

e+i ε6 ·
(
e−i

ε
2ϕ
) (

e+i ε3 bR
)

=
(
t
b

)T
L

· ϕ bR.

Within the standard model, there exists a symmetric and a spontaneously broken
phase. They are characterized by the value of the scalar vacuum expectation value
(vev ), which vanishes if the ground state respects the symmetry of the Lagrangian
and which is non-zero otherwise. The Higgs mechanism exploits the fact that the
scalar vacuum expectation value

〈Ω |ϕ |Ω〉

can have a non vanishing value. The above expression for the vacuum expecta-
tion value is not an invariant observable under the electroweak symmetry and an
infinitesimal symmetry transformation of the scalar field yields

〈Ω |ϕ′ |Ω〉 =
〈
Ω
∣∣∣ e−iεAΓAϕ

∣∣∣Ω〉
=
〈
Ω
∣∣∣ {1− iεAΓA

}
ϕ
∣∣∣Ω〉

= 〈Ω |ϕ |Ω〉 − iε
〈
ΩΓ†A

∣∣∣ϕ ∣∣∣Ω〉 .
Here ΓA stands for an arbitrary generator of some given symmetry. From the above
relation one concludes that the scalar vacuum expectation value is zero if

ΓA |Ω〉 = 0, A ∈ {1, . . . N}

The scalar vev is non zero if at least one the generators ΓA applied to the vacuum
state does not vanish, i.e. at least one of the symmetries is broken. The mechanism
of broken symmetries allows to define a gauge theory with massless gauge bosons
and chirally invariant fermions such that the theory is perturbatively renormalizable.
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Depending on the vacuum state however, the theory may exhibit a phase where the
gauge bosons are massive and the scalar vacuum expectation value generates mas-
sive fermions. This phase corresponds to the phenomenologically observed massive
W± and Z bosons and massive fermions. The Goldstone theorem states that for
each broken generator of a continuous global symmetry, the spectrum of the theory
contains a massless scalar particle, the Goldstone boson. In the case considered
here, the electroweak symmetry algebra contains four generators, the identity and
the three Pauli matrices. As will be shown below, the scalar vev is invariant under
a Uem(1) symmetry and thus three Goldstone bosons are then expected in the spec-
trum of the theory. As the scalar doublet consists of four real valued scalar fields,
there is one massive scalar particle left, which will be denoted as the Higgs boson.
The hypercharge is chosen such that the Higgs boson is neutral, i.e. the quantum
number of the Higgs field with respect to Uem(1) transformations is zero.
In order to keep the arguments as transparent as possible, it will be assumed that

the vev has the following form

ϕ0 := 〈Ω|ϕ|Ω〉 =
(

0
v√
2

)
, v = const.

Clearly if |v| > 0, it is not invariant under general SUW (2)×UY (1) transformations
but it does not break all symmetries. Choosing a subgroup of SUW (2)×UY (1) with
ε1 = ε2 = 0 and ε3 = ε yields

ϕ′0 = e−iT
AεAe−iεY ϕ0, ε1 = ε2 = 0, ε3 = ε

⇒ ϕ′0 = e−i(T 3+Y )εϕ0, T 3ϕ0 = −1
2ϕ0, Y ϕ0 = 1

2ϕ0

= ϕ0.

Hence, the combination of the generators

Q = T 3 + Y

gives an unbroken U(1) symmetry and its eigenvalues will be identified with the
electric charge. The hyper-charges in equation (2.2) are chosen such that eigenvalues
of Q yield the correct electric charges for the neutral Higgs boson and the charged
quarks.
The path integral is the basic quantity in order to define the Euclidean quantum
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field theory

F [O] := N
∫ ∏

x∈R4

dϕ(x)︸ ︷︷ ︸
Dϕ

∏
x∈R4

dϕ†(x)︸ ︷︷ ︸
Dϕ†

∏
x∈R4

dψ(x)
∏
x∈R4

dψ(x)︸ ︷︷ ︸
DψDψ

×O
(
ϕ, ϕ†, ψ, ψ

)
e−SE(ϕ,ϕ†,ψ,ψ). (2.3)

The fermionic variables ψ and ψ collect the top and bottom quark fields

ψ :=
(
t
b

)
, ψ :=

(
t
b

)
.

The Normalization N is chosen such that F [O] evaluates to unity for O ≡ 1

⇒ N =
∫
DϕDϕ†DψDψ e−SE(ϕ,ϕ†,ψ,ψ).

The expectation value of observables are then defined by the path integral

〈O
(
ϕ, ϕ†, ψ, ψ

)
〉 = F [O].

There are various methods to evaluate the path integral, which can roughly be
classified by those which rely on perturbative expansions that have to be truncated
in order to be calculable and those which are based on a discretized and finite
space time lattices. The latter allows for both, perturbative and non-perturbative
evaluations of the path integral. The non-perturbative calculations rely heavily on
numerical simulations of the model. Though the validity of perturbation theory
depends on the values of the (renormalized) couplings of the model, perturbation
theory turned out to be extremely useful in its predictive power. Within the non-
perturbative framework of lattice field theory the model can be evaluated at any
point of the bare parameter space and is capable to reveal eventual non perturbative
effects based on first principles.

2.2 The model on a discretized space-time lattice
This work relies on a discretized Euclidean space time lattice in order to evaluate the
path integral. While the discretization of the scalar field can easily be performed by
substituting the derivatives with the lattice nearest neighbor coupling, the fermion
sector is known to suffer from conceptual difficulties.
The scalar lattice action and some notations will be defined below. A short

overview on lattice chiral symmetry is discussed afterwards. It is common in lattice
field theory to rewrite the scalar sector by rescaling the fields with a factor

√
2κ and
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furthermore, the scalar doublet can be expressed as a quarternion

φ :=
(
ϕ̃1 ϕ1
ϕ̃2 ϕ2

)
=: φ0I− iσjφj, φµ ∈ R.

It will turn out to be useful to introduce the following notations

θµ := (I,−i~τ) , θµ := (I,+i~τ)
⇒ φ = φµθµ, φ† = φµθµ.

The rescaled fields are:
Φµ := 1√

2κ
φµ.

Finally the scalar fields in the usual notation (2.1) can be recovered by identifying(
ϕ1
ϕ2

)
=
√

2κ
(

Φ2
x + iΦ1

x

Φ0
x − iΦ3

x

)
.

Based on the scalar part in the Lagrangian (2.1), the scalar lattice action is derived
by replacing the integral with a finite sum and the derivatives with finite differences.
The detailed derivation is shifted to the appendix A. The scalar lattice action is given
by

SΦ = −κ
∑
x,µ

Φ†x (Φx+µ + Φx−µ) +
∑
x

Φ†xΦx + λ̂
∑
x

(
Φ†xΦx −Nf

)2
.

The lattice spacing a is set to unity. As mentioned before, the couplings are scaled by
the κ parameter. The parameterization of the Lagrangian in (2.1) can by recovered
with the identities:

λ = λ̂

4κ2 , m2
0 = 1− 2Nf λ̂− 8κ

κ
, yt,b = ŷt,b√

2κ
.

Lattice Higgs-Yukawa models aim to investigate the spontaneous breakdown of
the SU(2)W × UY (1) symmetry into a remaining U(1)em symmetry. While in the
symmetric phase all considered fermions are exactly massless and the particle spec-
trum reflects the underlying symmetry of the Lagrangian, the broken phase (also
known as the Higgs phase) contains massive fermions and reveals a non-degenerate
spectrum of scalar particles. The phase structure of the considered Higgs-Yukawa
model has been explored in a series of papers [26–29].
As was claimed at the beginning of this chapter, chiral symmetry is of primal

conceptual importance for the model. Chiral symmetry can be established with the
relation

γ5D +Dγ5 = 0.
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Henceforth, the above relation will be denoted as the continuum chiral symmetry.
The continuum chiral symmetry forbids a fermion mass term in the Dirac operator.
An explicit mass term, which mixes right and left handed components of the fermion
spinor, is also not compatible with the electroweak SUW (2) symmetry because it
treats left handed components different than right handed components. In the
continuum theory the projectors P±

P± := 1
2 (1± γ5) , P 2

± = P±,

I = P+ + P−, P±P∓ = 0

are used to define the left and right handed components

ψL := P−ψ, ψR := P+ψ.

Given the exact continuum chiral symmetry and the above projectors, the free part
of the Lagrangian (2.1) can be written as a sum of right and left handed spinor
fields

ψ /Dψ = ψR /DψR + ψL /DψL.

Here the relation P±D = DP∓ was used, which makes explicit use of chiral symme-
try. An explicit mass term mixes both chiral components

ψψ = ψLψR + ψRψL

and hence it is not invariant under SUW (2) transformations as it violates chiral
symmetry.
Establishing chiral symmetry on the lattice is more complicated and was a long

lasting challenge. The main conflict in the lattice formulation of massless fermions is
phrased in the Nielson-Ninomiya theorem. The theorem states that there is no lat-
tice Dirac operator such that the fermion action simultaneously fulfils the following
conditions [50]:

1. chiral symmetry

2. describes a single physical fermion

3. locality

4. invariance under translations

In 1982 Ginsparg and Wilson [34] proposed a relation which defines a class of lat-
tice Dirac operators and which is since then known as the Ginsparg-Wilson relation

γ5D +Dγ5 = aDγ5RD. (2.4)
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a is the lattice spacing and R is a positive constant in momentum space. The
Ginsparg-Wilson relation can be utilized to construct a lattice modified chiral sym-
metry which recovers the desired continuum symmetry in the limit a→ 0. In order
to define chiral symmetry on the lattice, it is therefore necessary to modify the
projectors P± such that they take the Ginsparg-Wilson type chiral symmetry into
account. Starting from the Ginsparg-Wilson relation, this can be easily seen by

γ5D +Dγ5 = aDRγ5D

⇒ γ5D +Dγ5 (1− aRD) = 0.

The lattice modified lattice projectors are then given by

P̂± := 1
2 (1± γ̂5) , γ̂5 := γ5 (1− aRD) .

P̂± are indeed projectors; some relations involving the lattice projectors are summa-
rized below

P̂± + P̂∓ = I, P̂ 2
± = P̂±, P̂±P̂∓ = 0, γ̂2

5 = I, γ̂5P̂± = ±P̂±.

The modified projectors are used to define the chiral components of the spinor fields
on the lattice

P±D = 1
2 (1± γ5)D using eq. (2.4)

= 1
2D (1∓ γ5 (1− aRD)) = DP̂∓.

Finally the left and right handed spinor fields on the lattice are defined by

ψR = P̂+ψ, ψL = P̂−ψ,

ψR = ψP−, ψL = ψP+.

As in the continuum theory the free part of the fermion Lagrangian can be written
as sum of the left and right handed lattice spinor fields

ψDψ = ψLDψL + ψRDψR + ψLDψR + ψRDψL︸ ︷︷ ︸
=0

.

It is easily shown that the last term vanishes

ψLDψR = ψPRD P̂Rψ = ψD P̂LP̂Rψ = 0.

The Ginsparg-Wilson relation allows to define the left and right handed components
of the lattice spinor fields and ensures that there is no mixture between these com-
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ponents even for finite lattice spacing a. The lattice modified projection operators
are vital to the SUW (2) transformations as they allow to perform transformations
which only affect the left handed component of the spinor fields.
In order to define the lattice action, a Ginsparg-Wilson type Dirac operator has

to be introduced. The here presented results are based on the Neuberger overlap
operator [51], which satisfies the Ginsparg-Wilson relation and is given by

D(ov) = ρ

a

{
1 + A√

A†A

}
, A = DW − ρ

a
, 0 < ρ < 2r (2.5)

ρ is chosen to be 1
R
. DW is the Wilson Dirac operator which lifts the unwanted

doublers but it does not fulfil the Ginsparg-Wilson relation (2.4). The operator
will be constructed from its eigenvalues in momentum space. The eigenvectors and
eigenvalues of the doublet operator D(ov)I is summarized:

Ψp,ζεk
x = eip·x · uζεk(p), uζεk(p) =

√
1
2

(
uεk(p)
ζuεk(p)

)
, ζ = ±1, ε = ±1, k ∈ {1, 2}

uεk(p) =
√

1
2

 ξk
ε p̃θ̄√

p̃2
ξk

 for p̃ 6= 0 and uεk(p) =
√

1
2

(
ξk
εξk

)
for p̃ = 0,

θ = (I,−i~τ),
θ̄ = (I,+i~τ).

uεk is the usual four component spinor and Ψ are the eigenvectors. Finally the
corresponding eigenvalues are

νε(p) = ρ

a
+ ρ

a
·
εi
√
p̃2 + a r2 p̂

2 − ρ
a√

p̃2 + (a r2 p̂2 − ρ
a
)2
.

The momenta p̂ and p̃ are defined by the discretized lattice momenta

p̂µ = 2a sin
(
π

Lµ
nµ

)
, nµ ∈ {0, . . . , Lµ − 1}

p̃µ = a sin
(

2π
Lµ
nµ

)
, nµ ∈ {0, . . . , Lµ − 1} .

In the above relation there shall be no sum over repeated indices.
The Neuberger overlap operator respects all conditions listed as prerequisites of

the Nielson-Ninomiya theorem except the continuum chiral symmetry and thus it
is not a contradiction to the above no-go theorem. The locality of the Neuberger
operator is not obvious but it has been shown in [39] that it is indeed local in the
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sense that D(ov)
xy exhibits an exponential decay with respect to the spatial distance

|x− y|.
Given a Dirac operator satisfying the Ginsparg-Wilson relation, it is possible to

translate the chirally invariant Higgs-Yukawa model on a finite discretized space
time lattice. An action involving the lattice spinor fields was proposed in [47] where
auxiliary fields were introduced in order to keep the transformations of the spinors
as in the continuum formulation. These auxiliary fields though, do not propagate
and can be eliminated. The transformation properties then involve the modified
projection operators and will be given below. The lattice fermion action is given by

SF =
∑

x,y,α,β

(
t
α
x

b
α

x

)
I2

{
Dαβ
x,y + ŷ

(
P−φP̂− + P+φ

†P̂+
)αβ
x,y

}(
tβy
bβy

)
.

The fermion matrix which will be used more often throughout this work is defined
by

Mαβ
xy =

(
D(ov)

)αβ
xy

+ ŷΦµ
x

(
Pαβ

+ θ†µ + Pαβ
− θµ

)(
1− 1

2aR
(
D(ov)

)αβ
xy

)
︸ ︷︷ ︸

P±P̂±

, (2.6)

θ = (I,−i~τ),
θ† = (I,+i~τ).

While the free-fermion Neuberger Dirac operator can be analytically constructed
from its eigenvectors and eigenvalues in momentum space, the coupling to the scalar
field in position space prohibits such an approach. In the simulations it becomes
therefore necessary to perform fast Fourier transformations of the scalar fields. The
fast Fourier transformation is known to be of order N log (N) where N is the length
of the vector to be transformed. The complex scalar field has in general four degrees
of freedom and thus N is identical to 4TL3. Nevertheless, it is the fast discrete
Fourier transformation, which allows to evaluate the fermionic action efficiently.
The largest lattice volumes, which could be simulated with the above model, were
404. On a modern computing centre such as the “Norddeutscher Verbund für Hoch-
und Höchstleistungsrechnen” (HLRN), about 40 configurations could be produced
per day. The analysis of scattering phases which will be discussed in Chapter 4 needs
large lattices in order to probe the system below the inelastic threshold of the two
Goldstone system. Sophisticated preconditioning of the fermion matrix as well as
adequate computing resources are inevitable in order to extract physical quantities.
Finally, after the conceptual properties of the electroweak symmetry on the lattice

has been elaborated, the symmetries of the lattice action can be summarized. The
Euclidean quantum field theory is manifestly invariant under global O(4) symmetry
and translations. Both reflect the Poincaré symmetry in Minkowski space. Fur-
thermore, finite volume and the boundary conditions reduce the continuous O(4)
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symmetry to the cubic symmetry. All physical quantities in this work are obtained
after an extrapolation to infinite volume. Additionally, the action is invariant under
global SUW (2) × UY (1) transformations. Contrary to the continuum transforma-
tion rules, special care is needed where the lattice chiral projectors are used. The
chiral components of the adjoint fields ψ are projected with the usual projector
P± while the fields ψ are transformed with the lattice modified operator P̂±. The
transformation properties are:

SUW(2) transformations: UY(1) transformations:

φ′ := e−iε
ATAφ φ′ := e−i

ε
2φ

φ′† := φ†e+iεATA† φ′† := φ†e+i ε2

Q′L = P̂−

(
t
b

)′
:= e−iε

ATAP̂−

(
t
b

)
Q′L := e−i

ε
6 P̂−

(
t
b

)

Q
′
L =

(
t
b

)′
P+ :=

(
t
b

)
P+e

+iεATA† Q
′
L :=

(
t
b

)
P+ e

+i ε6

t′R = P̂+t
′ := P̂+t = tR t′R := e−i

2
3 εP̂+t

t
′
R = t

′
P− := tP− = tR t

′
R := tP− e

+i 2
3 ε

b′R = P̂+b
′ := P̂+b = bR b′R := e+i 1

3 εP̂+b

b
′
R = b

′
P− := bP− = bR b

′
R := bP− e

−i 1
3 ε

TA, A ∈ {1, . . . , 3} are the generators of SUW (2) and fulfil the SU(2) algebra.
The hyper charges Y are the same as in the continuum theory and are taken from
(2.2).
The full Euclidean discretized action defined in given by

S = −κ
∑
x,µ

Φ†x (Φx+µ + Φx−µ) +
∑
x

Φ†xΦx + λ̂
∑
x

(
Φ†xΦx −Nf

)2

+
∑
x,y

(
t
α
x

b
α

x

){
I2D

αβ
x,y + ŷ

(
P−φP̂− + P+φ

†P̂+
)αβ
x,y

}(
tβy
bβy

)
. (2.7)

The above defined lattice Higgs-Yukawa model has recently been studied in vari-
ous context relevant for phenomenology. The phase structure of the model has been
analyzed with the help of a large N expansion and was confronted with numerical
data [26–29]. Due to the triviality of the theory, the maximal and minimal Higgs
boson mass can be determined in dependence of the cut off of the theory. The
procedure is explained in the next section. The final results on the mass bounds
of the Higgs boson are published in [30, 31]. Recently, the interest in the existence
of a heavy fourth generation of fermions has been renewed [14, 21, 40, 41]. Heavy
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fermions can alter the afore mentioned mass bounds and may reveal non pertur-
bative effects. The upper bound for the fermion mass, which can be generated via
Yukawa couplings, is constrained to be around 550 GeV. This constraint was com-
puted in perturbation theory and relies on partial wave unitarity. The Higgs boson
mass bounds were reconsidered in a scenario, where the heavy fourth generation top
quark has a mass of around 700 GeV. These results were published in [32, 33].

2.3 Simulation strategy
The simulation algorithm is a polynomial hybrid Monte Carlo (pHMC) algorithm
which incorporates dynamical overlap fermions. The polynomial algorithm and its
benefits are described in [22–24] and an implementation of the algorithm and im-
provements are given in [25]. Some aspects of the algorithm are sketched here in
order to explain the chosen parameters of the simulation algorithm.
The path integral was given in (2.3) and is repeated here

F [O] := N
∫
DΦDψDψ O

(
Φ, ψ, ψ

)
e−S(Φ,ψ,ψ).

The integral over the Grassmann fields t, t, b, b can be expressed in a determinant

F [O] := N
∫
DΦ det (M)O

(
Φ, ψ, ψ

)
e−SΦ(Φ).

whereM is given in (2.6). Any hermitian, positive definite matrixA can be rewritten
with the help of a Gaussian integral

detA =
∫

dωdω† e− 1
2ω
†A−1ω.

Computing the determinant of a large matrix like M is a numerically demanding
task and hard to manage for large lattice volumes. It is therefore a convenient
alternative to compute the Gaussian integral up a desired precision. The fermion
matrix M is neither positive nor is it hermitian. To circumvent this issue one
considers the matrixMM†, which per construction fulfils the necessary properties.
The path integral can now be written as

F [O] := N
∫
DΦDωDω† sgn (M)O

(
Φ, ψ, ψ

)
e−SΦ(Φ)−SF (ω,ω†)

SF
(
ω, ω†

)
:= 1

2ω
†
(
MM†

)− 1
2 ω

It can be shown that the fermion determinant is real and thus the sign of the
determinant has to be determined when it is computed with the help of a Gaussian
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integral. sgn (M) in the above equation stands for the sign of the determinant of
the fermion matrix.
In order to show this, it is sufficient to construct an operator V such that

VMV † =M∗.

Given such an operator, one can show that if λ is an eigenvalue with eigenvector η
of the fermion matrixM, then λ∗ is an eigenvalue with eigenvector ξ∗ = V Tη∗. The
above statement is easy to verify

M · η =λη
⇒ η† · V V −1︸ ︷︷ ︸

=I

M†V = λ∗η† · V

(
V † · η

)†
V −1M†V = λ∗

(
V † · η

)†
ξ := V †η

⇒ ξ†MT = λ∗ξ†

⇒M · ξ∗ = λ∗ξ∗.

The operator V is given by

V := σ2Cγ5, C := γ4γ2.

The part of the fermion matrix can be collected within a matrix B

Bαβ
xy := Φµ

x

(
Pαβ

+ θ†µ + Pαβ
− θµ

)
⇒Mαβ

xy =
(
D(ov)

)αβ
xy

+ ŷ Bαβ
xy

(
1− 1

2aR
(
D(ov)

)αβ
xy

)
.

The Pauli matrix σ2 does not affect the Wilson operator and transforms only the
operator B. At the same time the charge conjugation C and the operator γ5 does
not alter B but the Wilson operator

σ2Bσ2 = B∗

Cγ5 DWγ5C
† =

(
DW

)∗
The overlap operator is a power series in DW and the above properties directly apply
to the overlap operator. Hence, the operator V transforms the fermion matrix to
its complex conjugate and ensures that the determinant of the fermion matrix is
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strictly real valued. The latter follows from

0 = det (M− λI) = det
{
V (M− λI)V †

}
= det (M∗ − λI)

⇒ det (M− λ∗I) = 0.

The inverse square root of the fermion matrix is computed via a polynom of finite
degree

P
(
MM†

)
=
(
MM†

)− 1
2 .

As the polynom is truncated at a finite degree, a systematic error is introduced,
which however, can be avoided by introducing a weight factor which corrects for
potential lack of precision in the polynomial approximation. The weight factor in
the algorithm used here is defined by

SF
(
ω, ω†

)
:= 1

2ω
†MM†−

1
2ω

= 1
2ω
†
{(
MM†

)− 1
2 + P

(
MM†

)
− P

(
MM†

)}
ω

⇒ W
(
Φ, ω†, ω

)
:= e

− 1
2ω
†
(
(MM†)−

1
2−P(MM†)

)
ω
. (2.8)

After separating the weight factor from the fermionic action, the expectation value
of observables is given by

F [O] = N
∫
DΦDωDω† sgn (M)

O
(
Φ, ψ, ψ

)
W
(
Φ, ω†, ω

)
e−SΦ(Φ)− 1

2ω
†P(MM†)ω.

There are different ways to treat the weight factor. Here, the weight factor is
computed during the simulation for each successive configuration Φ. Comput-
ing the weight factor during the simulation has the advantage that the quantity
ω†P

(
MM†

)
ω has to be evaluated anyway as it appears in the fermionic action.

The only additional cost is therefore to compute the inverse square root of the ma-
trix MM†, which is done up to machine precision with a Lanczos based method.
A detailed overview of the algorithm and its extension to treat

(
MM†

)−α
for any

real number α is given in [25].
The basic principle of the Monte Carlo integration method is to substitute the

high dimensional integral over a domain D by a so-called importance sampling. In
this method, the measure is changed according to the probability distribution of the
integrand. If for instance only the the scalar field is considered, this amounts to
sample field configurations with the weight N e−SΦ . The simulation algorithm pro-
vides a set of successive field configurations and the expectation value of observables
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are given by averaging over the field configurations

〈O〉 = lim
N→∞

1
N

N∑
i=1
O (Φi) sgn (M) .

Details on the algorithm and improvements of the algorithm including the Fourier
acceleration to reduce the auto correlation times and the preconditioning techniques
to reduce the condition number of the fermion matrixMM† are given in the refer-
ences at the beginning of this section.
The polynomial approximation used to compute the inverse square root of the

fermion matrix induces mainly two technical parameters which have to be tuned
depending on the chosen bare parameters of the theory. The polynom is truncated
at a finite degree and it is defined on a finite interval [ε, λ]. The interval is always
scaled with λ such that the upper bound of the interval is identical to one (λ = 1).
The lower bound ε depends strongly on the parameter space. It has to be tuned
such that only a minor fraction of the eigenvalues of the fermion matrix lay below
this bound. The eigenvalues below ε are then taken into account exactly by the
weight factor. The degree of the polynom determines the cost of the simulation,
i.e. the lower the degree the lower the cost. However, the degree determines also
the magnitude of the fluctuation of the weight factor, i.e. the higher the degree the
lower the fluctuations. A highly fluctuating weight factor may cause large statistical
errors in the considered observable and thus, one has to find a balance between
the fluctuation of the weight factor and the polynom degree for the special case of
interest.
The rest of this section deals with the definition of observables which determine

the phase structure of the model and the strategy to extract the masses of the
particles in the theory.
The bare parameters of the theory are λ0,m0 and y0 (or, equivalently κ, λ̂, ŷ).

The subscript zero denotes that all considered parameters are not renormalized.
The observables which are evaluated within this work and the addressed questions
focuses on the broken phase of the model. The parameter κ respectively m0 has
thus to be chosen such that the simulation point is above the phase transition
line. Furthermore the obtained non zero magnetization, which indicates the broken
phase, is scaled such that the scalar vev meets the phenomenologically known value
of 246 GeV. The latter scale is also used to determine the cut off (Λ) of the theory.
Within the broken phase, the parameter κ orm0 is tuned to achieve the desired value
of the cut off. Calculations performed within the electroweak standard model imply
top quark masses of around 175 GeV. The bare Yukawa coupling y0 is tuned such
that the physical value of the simulated top quark mass is reached. In Chapter 5
effects of higher top quark masses are investigated. The bare Yukawa coupling is
then free to take any value, but the specific phenomenological questions addressed
there restraints the range of desired top quark masses and accordingly determines
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the bare Yukawa coupling. Finally, there is one bare parameter λ0 left unspecified
in the model. Due to the fact that the Higgs boson has never been observed in an
experiment, its mass and its scattering properties are unknown. Hence, there is no
constraint on the bare quartic coupling. It is however known that the renormalized
quartic coupling is bounded [48]. The renormalized quartic coupling can never be
smaller than zero because in that case, the model does not possess a minimum.
The triviality of the model implies that at arbitrary large values of the cut off, the
renormalized quartic coupling necessarily needs to vanish. Hence, at any given finite
value of the cut off, there is a maximal value of the renormalized quartic coupling.
The highest possible Higgs boson mass within this model is thus reached at the
above mentioned maximal value of the renormalized quartic coupling. It has been
shown in [25] that the lowest Higgs boson mass is reached at vanishing bare quartic
coupling λ0 and correspondingly the largest renormalized quartic coupling is reached
at infinite bare quartic coupling.
The symmetric and the broken phase of the model are distinguished by the mag-

netization which is zero in the symmetric phase and greater than zero in the broken
phase. The magnetization is given by

mag := |Φ| =
(∑

α

Φ2
α

) 1
2

, Φα = 1
V

∑
x∈Z4

L

Φα(x). (2.9)

V is the number of discrete space time points V = L3T . The bare scalar vev is
obtained after the magnetization is rescaled with the factor

√
2κ

v :=
√

2κ mag . (2.10)

The renormalized value of the scalar vev is then

vR :=
√

2κ mag√
ZG

(2.11)

where ZG is the field renormalization factor of the Goldstone fields. The straight
forward definition of the scalar vacuum expectation value 〈Φ〉 is not invariant under
the symmetries of the model and thus the ensemble average necessarily vanishes. It
was argued before that the special form of the vacuum expectation value ϕ0 respects
the Uem(1) symmetry. There it was assumed that one of the degenerate vacua is
chosen. The Monte Carlo algorithm however, does not a pick a certain ground state,
instead it averages over all degenerate vacua. The usual procedure in context of the
path integral formulation is to add an external current which couples to one of the
scalar field components

SΦ[J ] := SΦ + J
∑
x∈Z4

L

Φ0
x.
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This current breaks the symmetry explicitly and expectation values of observables
are a functional of the external current J . The physical result is then obtained
after to limiting procedures. First one has to take the infinite volume limit at fixed
external current J and subsequently the limit for vanishing external current has to
be taken

〈O〉 = lim
J→0

{
lim
V→∞

〈O[J ]〉
}
.

The above limiting procedure implies an enormous numerical task. It was shown in
[36, 37] that the definition (5.5) of the scalar vev converges to the vev obtained after
taking the twofold limit of V → ∞ and J → 0. The vev is taken according to the
definition (5.5) throughout this work unless otherwise stated.
In order to compute the renormalized vevR one needs the renormalization factor

Z of the scalar field. It is known that the Higgs boson field renormalization factor
and the Goldstone field renormalization factor are very close to each other. Here the
latter will be used in order to determine the renormalized vevR. In the action defined
in (2.7) the value of the lattice spacing has been set to unity. Hence, all obtained
lattice results can only be given in units of the lattice spacing and consequently a
conversion of the lattice spacing into physical units is needed. The scalar vev is a
dimensionful quantity and therefore the renormalized vevR expressed in lattice units
is given by

vevR
a

:= 1√
ZG

vev
a
.

The physical value of the renormalized vev is known to be around 246 GeV and thus
the above equation can be used to set the lattice spacing a

Λ := 1
a

=
√
ZG

vev 246 GeV .

Λ is the cut off the theory which is here defined to be the inverse lattice spacing.
There is no unique definition of the cut off and it rather represents a scale near
which the results will strongly depend on the lattice regulator.
The work presented here follows roughly two strategies. In the first scenario one

aims to explore the maximum and the minimum attainable Higgs boson masses at
varying cut off values. In a second scenario it is attempted to follow the line of
constant cut off in order to investigate the dependence of the resonance parameters
of the Higgs boson on the strength of the quartic coupling. Both strategies belong
to distinct physical situations, i.e distinct renormalized quantities. The qualitative
picture of the phase transition is shown in figure 2.1. The magnetization gets larger
with increasing distance from the critical κ line into the broken phase. yielding
decreasing cut off values Λ. In this work, all physical results in lattice units are at
most half the size of the cut off in lattice units which avoids unacceptably large cut
off effects [48]. Physical results are therefore obtained within a narrow band above
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(a) (b)

Figure 2.1: The figure shows the qualitative structure of the phase diagram. The solid
line represents the line of critical κ which separates the symmetric phase from the broken
phase. Above the critical κ line the mass spectrum does not reflect the symmetries of the
Lagrangian and contains a non degenerate scalar particles and massive fermions. The left
image (a) shows the phase transition line at zero bare quartic coupling and (b) shows the
phase transition at vanishing Yukawa coupling.

the phase transition line. The region is shown in figure 2.1 between the solid phase
transition line and the dotted line. Performing simulations at constant values of
the cut off and keeping, e.g. the top quark mass fixed in physical units means a
fine tuning of the bare parameters of the theory which in practice turns out to be a
rather demanding task.
A major part of this work is devoted to the extraction of mass eigenvalues and

therefore some details on the determination of masses in lattice quantum field theory
and the connection to particle masses from the continuum Minkowski space propaga-
tor is given below. The physical mass (mphys) of a particle is given by the eigenvalue
of the squared four momentum operator which is an invariant of the Poincaré alge-
bra. The mass can be extracted from the pole of the two point function (propagator)
in momentum space

G−1
M

(
p2,m2

0, λ0, y0; Λ̃
) != 0.

Λ̃ is a regulator of the theory which is in general not the lattice regulator. In the
following the subscript M will indicate the quantity in Minkowski space where the
inner product of four vectors are taken with the metric diag (+1,−1,−1,−1).
The Källen-Lehmann representation for the two-point function gives an explicit

relation for the propagator in the interacting theory (see e.g. [12]). For a scalar field
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it is
G′M (x− y) =

〈
0
∣∣∣T {ϕ(x)ϕ†(y)

} ∣∣∣ 0〉
=
∫ ∞

0
ds2ρ(s2)∆

(
x− y; s2

)
.

∆
(
x− y; s2

)
:=
∫ d4k

(2π)4 e
−ik(x−y) i

k2 − s2 + iε
.

∆ denotes the free scalar propagator of a scalar field with mass s. G′M is the
propagator of the fully interacting theory in Minkowski space time. The Källen-
Lehmann relation shows that the propagator in the interacting theory is given by
a superposition of free propagators. It can be shown that the spectral weight ρ is
positive and real valued. The Fourier transform of the interacting propagator is
denoted by G̃′M and is given by

G̃′M(p2) :=
∫ ∞
M2

ds2ρ(s2) i

p2 − s2 + iε
.

M2 is the smallest eigenvalue of the squared momentum operator P 2 of one particle
states excluding the vacuum. In case of a stable particle the one particle states with
the energy momentum relation

E(~p) =
√
~p2 +m2

phys

can be separated from the spectral weight.The propagator of the interacting theory
can then be written as

G̃′M(p2) = iZ

p2 −m2
phys + iε

+
∫ ∞
M2
th

ds2 iρ(s2)
p2 − s2 + iε

. (2.12)

ρ is the contribution of multi-particle states and M2
th is the threshold value of a

continuous spectrum of multi-particle states

ρ(s2) = 0, s2 < M2
th.

The propagator in the interacting theory has an isolated pole on the real p2 axis in
the limit ε→ 0+ and a branch cut starting from p2 = M2

th induced by multi-particle
states. In a theory where the propagator of an unstable scalar particle is considered,
there is no more isolated pole below the branch cut. The branch cut induces new
Riemann sheets and the pole of the propagator moves to the second Riemann sheet.
In order to locate the pole, the interacting propagator can be continued to complex
momenta and one can define G′C(z) which is analytic in the complex plane

G′C(z) :=
∫ ∞
M2

ds2ρ(s2) i

z − s2 .
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The Sokhotsky-Weierstrass theorem yields

lim
ε→0+

∫ b

a
dx f(x)
x± iε

= P
∫ b

a
dxf(x)

x
∓ iπf(0)

⇒ lim
ε→0+

∫ ∞
−∞

dxδ(x− x0)
x± iε

= lim
ε→0+

1
x0 ± iε

= P
∫ ∞
−∞

dxδ(x− x0)
x︸ ︷︷ ︸

0

∓iπδ(x0)

⇒ lim
ε→0+

1
x± iε

= ∓iπδ(x). (2.13)

Using (2.13) the spectral weight is given by the discontinuity across the branch cut

lim
ε→0+

G′C(p2 + iε) =
∫ ∞

0
ds2 iρ(s2) lim

ε→0+

1
p2 − s2 + iε

= +π ρ(p2)
lim
ε→0+

G′C(p2 − iε) = −π ρ(p2)

⇒ lim
ε→0+

{
G′C(p2 − iε)−G′C(p2 + iε)

}
= 2π ρ(p2).

The pole of G′C is given by a zero of the inverse propagator

G′−1
C = G′∗C

|G′C|
.

The discontinuity of G′−1
C is related to another function σ(x) which is related to the

spectral weight by

lim
ε→0+

G′−1
C (p2 + iε) |G′C(p2 + iε)| = lim

ε→0+
G′∗C(p2 + iε) = π ρ(p2),

lim
ε→0+

G′−1
C (p2 − iε) |G′C(p2 − iε)| = −π ρ(p2),

lim
ε→0+

{
G′−1

C (p2 + iε)−G′−1
C (p2 − iε)

}
= 2π σ(p2),

σ(p2) = ρ(p2)
|G′C(p2)| .

Finally the analytic continuation of G′−1
C downwards to the second Riemann sheet

is defined by

G′−1
II (p2 − iε) := G′−1

C (p2 + iε)
⇒ lim

ε→0+
G′−1
II (p2 − iε) = lim

ε→0+
G′−1

C (p2 − iε) + 2π σ(p2).
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G′−1
II has no discontinuity across the real axis. In order to write down an explicit

expression one assumes that the parameters of the theory are chosen such that the
pole in the second Riemann sheet lies close to the real axis. In view of equation
(2.12) G′−1

II can be approximated by

G′−1
II (p2) ≈

p2 −m2
phys

iZ
+ 2π σ(p2)

Γ
Z

:= 2πσ(p2) ≥ 0, 0 < Z ≤ 1

⇒ G′−1
II (p2) ≈

p2 −m2
phys + iΓ
iZ

. (2.14)

The above equation shows that a pole of the propagator in the second Riemann
sheet is associated with a non-zero width that is proportional to Γ.
In the framework of Euclidean Monte Carlo simulations, one usually computes

the two point correlator which is intimately connected to the time dependence of
the Minkowski propagator. The final part of this chapter shows the relation between
the correlator and the time dependent propagator.
The time dependence of the analytically continued propagator is given by

G′C(t) =
∫ dp0

2π e
−ip0tG′C(p2)

∣∣∣∣
~p=0

.

Using the result (2.14)

G′C(t) =
∫ ∞
−∞

dp0

2π e−ip0t

{
iZ

p2
0 −m2

phys + iΓ +G
′
C(p2

0)
}
.

G
′
C is a smooth function of p2. The integral can be solved with the help of the

residue theorem which yields the sum of the singularities of the integrand within a
closed contour. There are two poles in the first term

p0 =
√
m2
phys − iΓ, p0 = −

√
m2
phys − iΓ.

The contour is defined along the real axis and is closed in the lower half of the
complex p0 plane. Figure 2.2 shows a sketch of the contour integral. After some
calculations, which are given in the appendix A, the time dependence of the propa-
gator is

G′C(t) = −Z
2
√
m2
phys − iΓ

e−i
√
m2
phys
−iΓ t + . . .

⇒ G′C(t) ≈ −Z
2mphys

e−imphys t e
− 1

2
Γ

mphys
t + . . .
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(a) (b)

Figure 2.2: The figure shows a sketch of the complex p2 plane and the contour (blue)
along which the integral of p0 is evaluated. Only the pole in the lower half will contribute
to the integral.

The time dependence is given by an oscillatory factor, which directly contains the
physical mass of the particle and an exponential damping factor which is related
to the width of the particle. One has to keep in mind that the above result does
not refer to the physical propagator. It is the analytically continued propagator and
is defined in the complex p0 plane. The physical propagator of a theory with an
hermitian Hamiltonian has real eigenvalues and thus, is only defined for real values
of p0. The Euclidean time correlation function, which is obtained from Monte Carlo
simulations are of course physical and as such it necessarily involves real values of
the energy in the argument of the exponential. The latter statement can easily be
derived by using the Hamiltonian as the generator for time evolution and a complete
set of eigenstates.
The physical part of the Euclidean Higgs boson propagator can be computed from

Monte Carlo data
G̃H(p̂2) :=

〈
H̃−p̂H̃p̂

〉
H̃p := a4∑

x

e−ip̂xHx.

The hat above the momentum variable indicates the discrete lattice momentum
p̂ ∈ ΓL,T

ΓL,T :=
{
p ∈ R4|p0 = 2π

T
n0, pi = 2π

L
ni,

n0 ∈ Z : 0 ≤ n0 < T, ni ∈ Z : 0 ≤ ni < L
}
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Similarly, the Goldstone propagator is given by

G̃G(p̂2) :=
〈
G̃−p̂G̃p̂

〉
A fit of the Monte Carlo data to the analytic propagator G′C for positive momenta,

allows to determine the physical pole at some negative or complex momentum. The
field renormalization factor for the Goldstone boson is then defined by

Z−1
G (−µ2) :=

(
1− ∂

∂p2 ΣG(p2)
∣∣∣∣
p2=−µ2

)

where ΣG is the self energy contribution of the Goldstone boson, which will be given
in Chapter 3.
In the case of unstable or massless particles, it will not be possible to define the

mass at the pole of the physical propagator. Instead, the renormalization conditions

<
{
G−1
H (p2)

} ∣∣∣∣
p2=−M2

H

= 0, <
{
G−1
G (p2)

} ∣∣∣∣
p2=−M2

G

= 0, (2.15)

will be utilized in order to define the renormalized masses. The above definition is
consistent with previous work performed within this model [25] and [48].
Finally the fermion time slice correlator will be discussed. As mentioned before,

the fermionic degrees of freedom are integrated and are represented by the determi-
nant of the fermion matrix. Correspondingly, the time slice correlator of fermions
is not directly accessible. The fermion propagator and thus the fermion correlator
can be constructed from the matrix elements of M−1. The fermion mass can be
extracted from either the left or the right handed components of the spinor. In
the following arguments only the left handed components are discussed, but it is
straight forward to apply the arguments for the right handed components. The left
handed correlator Cf (t0 − t1) is given by

Cf (t0 − t1) :=
〈
Tr
{(
P̂LΨ

)
(t0,~p=0)

(
Ψ̄PL

)
(t1,~p=0)

}〉
.

The ~p = 0 component is obtained by performing a sum over all space time points.
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In fact, this corresponds to a Fourier transformation
〈
Tr
{(
P̂LΨi

)
(t0,~p=0)

(
Ψ̄iPL

)
(t1,~p=0)

}〉
= 1
V 2

4∑
α=1

∑
~x,y

P̂
t0,~x,α,i; t′0,~x′,α′,i
L〈

Ψt′0,~x
′,α′,i Ψ̄t′1,~y

′,β′,i

〉
P
t′1,~y,β

′,i; t1,~y,α,i
L

= 1
V 2

4∑
α=1

∑
~x,y

P̂
t0,~x,α,i; t′0,~x′,α′,i
L

M−1
t′0,~x
′,α′,i; t′1,~y′,β′,i

P
t′1,~y
′,β′,i; t1,~y,α,i

L

The index i at the fermion fields Ψ denotes either the top or the bottom quark.
Within this work, it will not play a role, as a degenerate quark doublet is assumed.
The matrix elements of the inverse fermion matrix is then obtained by a conjugate
gradient (CG) algorithm. The starting- and the solution vector of the CG algorithm
are give according to

M†M · u =M†PL · v
⇒ u =M−1PL · v

⇒ P̂L · u = P̂LM−1PL · v

The vector v is chosen such that on time slice t′, spinor index α and all ~b ∈ R3, v is
equal to 1, i.e.

∀~b ∈ R3 : v
(
{t′,~b}, α

)
≡ 1

With the above choice of v, a sum over the space time is automatically performed.
The CG algorithm returns the vector u, after the multiplication of the chiral pro-
jector P̂L from the left and performing a sum over all space time points one finally
obtains the fermion correlator.
The top and bottom quarks in this model are stable particles and hence the

time slice correlator will be utilized in order to extract the fermion masses. With
the correlator at hand, one can either fit an exponential function and extract the
fermion mass from the argument of the exponential or one can compute the effective
masses given by

logCeff (t) := log C(t+ 1)
C(t) = log

{
e−mf (t+1)emf t

}
= −mf .

Due to the hyper cubic symmetry and periodic boundary condition of the fields, the
measurements of correlators on the lattice follow rather a hyperbolic cosine function
than an exponential

C(∆t) := cosh
(
m
(

∆t− T

2

))
.
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T is the lattice extent in temporal direction. Hence the effective masses Ceff are
ratios of cosine hyperbolicus

Ceff (∆t) = C (∆t+ 1)
C (∆t)

=
cosh

(
m
(
∆t+ 1− T

2

))
cosh

(
m
(
∆t− T

2

)) .

Using the identity

cosh (x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y)

Ceff can be written as

Ceff (∆t) = 1
cosh

(
m
(
∆t− T

2

))
 cosh (m) cosh

(
m
(

∆t− T

2

))
+

sinh (m) sinh
(
m
(

∆t− T

2

))
= cosh(m) + sinh(m) tanh

(
m
(

∆t− T

2

))
.

For large arguments |m
(
∆t− T

2

)
| � 1 the hyperbolic tangent can be approximated

tanh(x) = sinh(x)
cosh(x)

= ex − e−x

ex + e−x
, assuming x� 1

= ex (1− e−2x)
ex (1 + e−2x) → 1.

In the case x� 1 an anlogous calculation yield tanh(x)→ −1

⇒ Ceff =

 cosh(m)− sinh(m) = e−m, m� 1
cosh(m) + sinh(m) = e+m, m� 1

The above calculation shows that the effective masses computed on the lattice indeed
represents an exponential even though the correlators itself do not. It is useful to
choose |∆t| away from T

2 in order to justify the approximation tanh(∆t− T
2 )→ ±1.

Figure 2.3 shows the fermion correlator and the logarithm of the effective masses
for a selected run at y0 = 3.12305 and infinite bare quartic coupling. The data was
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computed on a 163 × 32 lattice. The given fermion masses presented in this work

(a) (b)

Figure 2.3: The figure shows the fermion correlator (a) and the logarithm of the effective
masses (b) for a selected run with bare parameters y0 = 3.12305 and infinite bare quartic
coupling. The data was computed on a 163 × 32 lattice.

are computed with the help of the effective masses.



3 Analytic properties and
perturbative calculations

Section 3.1 of this chapter summarizes perturbation theory in the Euclidean contin-
uum and some details on the renormalization procedure are presented. Finally the
renormalized expressions for the Higgs boson propagator as well as the Goldstone
boson propagator are given. The next section deals with lattice perturbation theory
and focuses especially on the perturbative expansion of the fermion-Higgs coupling.
The expansion takes care about the modifies chiral lattice projectors and the Neu-
berger overlap operator. Finally the results are compared with results obtained from
Monte Carlo simulations.

3.1 Perturbative expansion in the continuum
This section deals with perturbation theory in the Euclidean continuum. The per-
turbative expansion in the renormalized couplings of the theory is a powerful tool as
long as those couplings are small enough. Perturbation theory can provide analytic
expressions for observables such as the propagator. It is the aim of this chapter
to investigate the perturbative predictions in the Higgs-Yukawa model in order to
compare them with those obtained from numerical simulation. In the case of small
couplings, the analytic expression suggested by perturbation theory will be utilized
to determine the pole of the propagator after fitting its parameters to the data ob-
tained by the Monte Carlo simulations. It turns out that the functional form of
the scalar propagators can describe the numerical data even for large bare couplings
very well.
The starting point is the Lagrangian given in (2.1) and is repeated here

LHYE = 1
2 (∂µϕ)† · (∂µϕ) + 1

2m
2ϕ† · ϕ+ λ

(
ϕ† · ϕ

)2

+ t /D t+ b /D b+ yb

(
t
b

)T
L

· ϕ bR + yt

(
t
b

)T
L

· ϕ̃ tR + h.c..

The footing of perturbation theory is the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula which relates transition probabilities to Green functions of the
theory. The derivation is given in many text books about quantum field theory e.g.

35
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[42]

〈k1s1; . . . ; kmsm; out|p1s
′
1; . . . ; pns′n; in〉 =

(2π)4 δ4

 m∑
i=1

ki −
n∑
j=1

pi

(√Z)n+m m∏
i=1

uαi (ki, si)

× G̃amp (k1, . . . , km;−p1, . . . ,−pn)αm,...,α1,β1,...,βn

n∏
j=1

uβj
(
pj; s′j

)
.

The left hand side denotes the matrix element of asymptotic ‘in’ and ‘out’ fields in
momentum space. s and s′ are the spin eigenvalues of the field operators and G̃amp

is the Fourier transform of the amputated connected Green function which can be
expanded with the help of Feynman diagrams. u denotes the usual spinors in the
case of fermions; in the case of scalar fields they are identical to one. The Green
functions of the theory are given by the path integral in equation (2.3)

〈Ω |T {O(xa)O(xa) · · ·}Ω〉 = N
∫
DϕD

{
t, t, b, b

}
e−S(ϕ,t,t,b,b)O(xa)O(xa) · · ·

The expansion in terms of Feynman diagrams makes use of the fact that the action
can be split up in a free Gaussian part and an interaction term

S
(
ϕ, t, t, b, b

)
= Sϕ0 (ϕ) + Sf0

(
t, t, b, b

)
+ SI

(
ϕ, t, t, b, b

)
=: Sϕ,t,b0 + Sϕ,t,bI .

The interaction is treated as a perturbation such that the exponential series in SI
can be truncated after some finite terms. The resulting integral is Gaussian with
some polynomial factor and in principle such an integral can be calculated exactly

〈Ω |T {O(xa)O(xa) · · ·}Ω〉 = N
∫
DϕD

{
t, t, b, b

}
e−S

ϕ,t,b
0 (ϕ,t,t,b,b)

N∏
n=0

1
n!
{
−SI

(
ϕ, t, t, b, b

)}n
O(xa)O(xa) · · · (3.1)

The aim of this chapter is to derive a perturbative expression for the Goldstone
and the Higgs boson propagator in Euclidean field theory. All calculations are
therefore restricted to the broken phase where the scalar expectation value is non
zero. Furthermore it is assumed, that the scalar vev takes the formula

〈ϕ〉 =
(

0
v√
2

)
.
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The Higgs boson and the Goldstone boson fields are then defined by

ϕ =
(
G1 + iG2

v +H + iG3

)
(3.2)

where the physical fields H,Gi have vanishing vacuum expectation value.
The quality i.e. the convergence property, of a perturbative series strongly de-

pends whether one is able to expand at the right minimum. In the broken phase
the minimum of the action is shifted away from the origin and it is necessary to
perform the perturbative expansion with respect to the shifted field h in order to
obtain reliable results with the leading order terms. The Lagrangian rephrased in
the physical fields H,Gi is given by

L = t /Dt+ yv tt+ b /Db+ yv bb+ 1
2(∇H)2 + 1

2
(
8λv2

)
H2 + 1

2∇G
T∇G

+ λH4 + λ
(
GT G

)2
+ y H (tt) + y H

(
bb
)

+ 2λ
(
GT G

)
H2

+ 4λv GT GH + 4vλH3 + y
{
G1

(
tLbR − bLtR

)
+ iG2

(
bLtR + tLbR

)
+ iG3

(
bLbR − tLtR

)
+ h.c.

}
. (3.3)

The minimum of the potential at tree level is given by

m2 + 4λv2 = 0.

The broken phase thus contains a massive scalar particle and massive fermions. The
bare masses are

m2
ϕ = 8λv2 = −2m2, m2 < 0

mf = y v.

It is well known that the full two point function can be expressed in a geometric se-
ries. The bare propagator can then be written in terms of the one particle irreducible
part Σ

G−1
(
p2,m2, . . . ; Λ

)
= p2 +m2 − Σ

(
p2,m2, . . . ; Λ

)
.

In the following the Goldstone and the Higgs boson self energy contributions are
computed up to one loop with a finite energy cut off as a regulator for the Feynman
integrals.

3.1.1 The Higgs boson propagator
From the Lagrangian (3.3) one infers the interaction terms which contribute to the
one particle irreducible Feynman diagrams of the Higgs boson. Table 3.1 shows an
overview of the relevant interaction terms and their Wick contractions. The first
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column identifies the corresponding Feynman graph, which is displayed in figure
3.1. The second column shows the coupling in the Lagrangian (3.3) from which the
specific interaction arises while the third column shows the order in the perturbative
expansion of the interaction term. The next column shows one of the possible
Wick contractions associated to the interaction term. There are in general several
Wick contractions to each such interaction term which however, lead to the same
analytic expression. Feynman diagrams are symbolic representations of the Wick
contractions and those diagrams which lead to identical analytical expressions are
topologically equivalent. The last column of the table gives the symmetry factor
which denotes the number of topologically equivalent Feynman diagrams.
The expansion of the two point function in equation (3.1) up to the second order

gives

〈Ω |T {H(x)H(y)} |Ω〉 = N
∫
DϕD

{
t, t, b, b

}
e−S

ϕ,t,b
0 (ϕ,t,t,b,b){

1− SI
(
ϕ, t, t, b, b

)
+ 1

2S
2
I

(
ϕ, t, t, b, b

)}
H(x)H(y).

Table 3.1: The table below shows the relevant interaction terms in the Lagrangian
which contribute to the one particle irreducible diagrams of the Higgs boson prop-
agator. The first column is an identifier for the corresponding diagrams shown in
figure 3.1. SI is a part of the interaction Lagrangian. The middle column shows the
order in the expansion of the exponential of the interaction term. The next column
displays a Wick contraction and its multiplicity is given in the last column.

SI Perturbative expansion Wick contraction type fac.

A λH4 −λ
(
H4
)
x1

Hx (HHHH)x1
Hy 12

B 2λ
(
GT G

)
H2 −2λ

(
GGH2

)
x1

Hx
(
GT GH2

)
x1

Hy 2

C 4λvH3 (4λv)2

2

(
H3
)
x1

(
H3
)
x2

Hx (HHH)x1
(HHH)x2

Hy 36

D 4λv
(
GT G

)
H (4λv)2

2 (GGH)x1
(GGH)x2

Hx(GT GH)x1(GT GH)x2Hy 4

E y
(
Htt

) y2

2
(
Htt

)
x1

(
Htt

)
x2 Hx

(
Htt

)
x1

(
Htt

)
x2

Hy 2

F y
(
Hbb

)
y2

2

(
Hbb

)
x1

(
Hbb

)
x2

Hx(Hbb)x1(Hbb)x2Hy 2

The above relations correspond to the position space two point Green function.
As one is interested in the momentum space propagator, a Fourier transform has
to be performed. The spatial integrals within the action SI =

∫
d4xLint and the

exponentials arising from the position space representation of the propagators can
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be performed which lead to δ distributions which in turn makes it easy to perform
some of the momentum space integrals. The δ distribution represents the translation
invariance or equivalently the total momentum conservation. This procedure is well
known and can be found in many text books on quantum field theory e.g. [42]. The
momentum space two point function then reads∫

d4xd4y eip1x+ip2y 〈Ω |T {H(x)H(y)} |Ω〉 = (2π)4 δ (p1 + p2) G̃(2) (p1, p2) .

The Wick contraction of the scalar fields are

H(x) H(y) = ∆H(x− y)

=
∫ d4q

(2π)4 e
−iq(x−y) 1

q2 +m2
ϕ

GT (x) G(y) =
3∑
i=1
GTi (x) Gi(y)

= 3
∫ d4q

(2π)4 e
−iq(x−y) 1

q2 +m2
G

.

Though the bare Goldstone boson mass as well as the renormalized Goldstone boson
mass vanishes an explicit mass term is kept which can be set to zero. It is the aim
to use the perturbative form of the propagator as a fit function for the numerical
Monte Carlo data. The Goldstone bosons acquire a mass in finite volume and thus
it will be valuable to keep the explicit mass term in the following derivation.
The leading terms in the propagator are given by∫

d4xd4y eip1x+ip2y 〈Ω |T {H(x)H(y)} |Ω〉 =
∫

d4xd4y eip1x+ip2y{
H(x)H(y)− 12λ

∫
d4x1 Hx (HHHH)x1

Hy . . .
}

= (2π)4 δ (p1 + p2)


∆̃ (p1)− 12λ ∆̃ (p1)

[∫ d4q

(2π)4
1

q2 +m2
ϕ

]
︸ ︷︷ ︸

=:D(m2
ϕ;Λ)

∆̃ (p2) + . . .


The Wick contractions in 3.1-A and 3.1-B describes tadpole diagrams and will be

abbreviated by D(m2; Λ) where Λ is a regulator of the integral. The scalar loops
which arise from the contractions in 3.1-(C,D) gives the first contribution to the
two point function which depends on the external momenta. The momentum space
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representation is given by

I1
(
p2,m2,Λ

)
:=
∫ d4q

(2π)4
1

q2 +m2
1

(p+ q)2 +m2
.

The contraction of the fermion fields yields

tα tβ = −tβ tα =
∫ d4q

(2π)4 e
−iq(x−y)

(
1

/q +mf

)
αβ

.

The contraction related to the Higgs-Yukawa coupling as shown in table 3.1E and
3.1F gives a trace of the fermion matrices

(tα tα)x1
· (tβ tβ)x2

=
∫ d4q d4k

(2π)8

(
−e−iq(x2−x1)

/q +mf

)
βα

(
e−ik(x1−x2)

/k +mf

)
αβ

.

The contribution of the fermion loop to the momentum space, one particle irre-
ducible, two point function yields

J(p2,mf ,Λ) := −
∫ d4q

(2π)4 Tr
[(

1
/p+ /q +mf

)(
1

/q +mf

)]
, q0 < Λ

Where p is again an external momenta.

A/B C/D E/F G

D(m2,Λ) I1(p2,m2,Λ) J(p2,mf ,Λ) I2(p2,m2
ϕ,m

2
G,Λ)

Figure 3.1: The figure shows the different type of one loop integrals contributing to the
one particle irreducible two point function of scalar particles . The dashed lines denote a
scalar propagator while the solid lines correspond to fermion propagators.

Though the tadpole diagrams can be calculated easily, an explicit expression will
not be given, as they cancel during the renormalization procedure anyway. The self
energy contribution to the Higgs boson up to one loop is

Σ
(
p2,m2

H ,m
2
G, λ, y; Λ

)
= −12λ D(m2

ϕ)− 12λ D(m2
G)

+ 18 (4λv)2 I1(p2,m2
ϕ,Λ) + 6 (4λv)2 I1(p2,m2

G,Λ) + y2J(p2,mf ,Λ) (3.4)

The explicit expressions for the integrals are given below. The bare Goldstone
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boson mass and in fact the renormalized Goldstone boson mass vanishes due to the
Goldstone theorem. Here the mass mG will be kept explicitly since the final aim
is to compare the perturbative results with the numerical studies where due the
finite volume Goldstone bosons are not exactly massless. Furthermore, the explicit
appearance of the Goldstone mass will be helpful to check the consistency of the
calculation since it provides an infrared regulator.
As was mentioned in Chapter 2, there are some subtleties connected with unstable

particles. For the calculations below, it is therefore assumed that the Higgs boson is
stable. The bare parameters of the model shall be chosen such that the Higgs boson
does not decay into two Goldstone bosons. This also implies that artificial Goldstone
boson mass takes a non zero positive value. The renormalization condition for the
Higgs boson propagator is then chosen to be

G−1
H

(
p2 = −µ2,m2

H ,m
2
G, λ, y; Λ

)
= 0.

µ is an arbitrary mass scale which will be discussed later. The above renormalization
condition can be inverted and leads to an expression in terms of the renormalized
mass µ2. It is not necessary to solve the above equation for µ2, instead it is suffi-
cient to get an expression of µ2 which is correct up to the considered order in the
perturbative expansion.

G−1
H

(
p2 = −µ2,m2

H ,m
2
G, λ, y; Λ

)
= −µ2 +m2

H − Σ
(
−µ2,m2

H ,m
2
G, λ, y; Λ

)
⇒ m2

H = µ2 + Σ
(
−µ2,m2

H ,m
2
G, λ, y; Λ

)
.

Though the self energy term contains the bare Higgs boson mass mH , it is perfectly
fine to replace them by the renormalized mass µ. The error induced by this substi-
tution is of order λ4 while the above relation is of order λ2 in the expansion of the
interaction Lagrangian. Taking the tree level relations between the bare quartic and
the Yukawa couplings which are denoted by λR, yR, the renormalized Higgs boson
propagator is then given by

ZH
{
GR
H

(
p2,M2

H ,M
2
G, λR, yR; Λ

)}−1
= p2 + µ2−{

Σ
(
p2, µ2,M2

G, λR, yR; Λ
)
− Σ

(
−µ2, µ2,M2

G, λR, yR; Λ
)}
.

ZH is the Higgs boson field renormalization factor. The renormalized propagator
has the form

GR
H

(
p2,M2

H , . . .
)

= 1
p2 +M2

H −∆ΣH (p2,M2
H , . . .)

= 〈HR(−p)HR(p)〉
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In order to sustain the above form, the renormalized fields have to be introduced.
They are given by

HR := 1√
ZH

H.

It can be shown that the field renormalization factor ZH only depends on ps and
due to O(4) invariance (respectively Poincaré invariance in Minkowski space), the
Z factor must be a constant [42]. Λ still denotes the implicit cut off of the theory.
Here the dependence of the cut off Λ will be kept explicit to indicate that the
theory has only a Gaussian fix point, i.e. the theory is trivial. One can see that
the renormalized propagator contains the difference of self energy terms and as will
be shown below, all divergences up to the considered order in perturbation theory
are cancelled within the difference such that the renormalized propagator is finite.
Here the renormalization point will be chosen at the physical Higgs boson mass
µ2 =

(
mH
phys

)2
=: M2

H which is also known as the on-shell renormalization scheme.
In the following explicit expressions for the integrals are presented. A detailed

calculation is given in the appendix B. The scalar one loop integral with a single
bosonic mass term yields

I1(p2,m2,Λ) =
∫ d4q

(2π)4
1

q2 +m2
1

(p+ q)2 +m2
, q0 < Λ

= 1
(4π)2

1 + ln
(

Λ2

m2

)

−
√

1 + 4m2

p2 ln
 1 +

√
1 + 4m2

p2 − iε Sgn (p2)

−1 +
√

1 + 4m2

p2 − iε Sgn (p2)

.
The iε- terms are kept explicitly although in Euclidean space the limit ε→ 0 could
safely be performed. Finally the propagator has to be analytically continued to
Minkowski space time where these iε terms will be helpful in order to choose the
right contour integrals around the singularities.
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The fermionic integral evaluates to

J(p2,mf ,Λ) =
∫ d4q

(2π)4Tr
 1(
/p+ /q +mf

) 1(
/q +mf

)
 , q0 < Λ

= 1
4π2

Λ2 + 3m2
f log

(
Λ2

p2

)
−m2

f

− 1
2p

2
(

log
(

Λ2

p2

)
− 6∆I3

(
p2,

m2
f

p2

)
− 1

3

), (3.5)

∆I3(p2,
m2
f

p2 ) =
m2
f

p2 −
5
3 + 11

12 log
(
m2
f

p2

)

+ 1
8

(
7−

4m2
f

p2

)√√√√1 +
4m2

f

p2 log


√

1 + 4m2
f

p2 + 1√
1 + 4m2

f

p2 − 1

 .
As mentioned before the tadpole diagrams do not contribute to the renormalized

propagator and just the definition is given

D(m2) =
∫ d4q

(2π)4
1

q2 +m2 .

The renormalized Higgs boson propagator depends on the difference of the one
particle irreducible parts

∆Σ
(
−µ2, µ2,M2

G, λR, yR; Λ
)

=

Σ
(
p2, µ2,M2

G, λR, yR; Λ
)
− Σ

(
−µ2, µ2,M2

G, λR, yR; Λ
)
.

Inserting (3.4) yields

∆Σ
(
p2,M2

H ,M
2
G, λR, yR; Λ

)
= +18 (4λRv)2

(
I1(p2,M2

H ,Λ)− I1(−M2
H ,M

2
H ,Λ)

)
+ 6 (4λRv)2

(
I1(p2,M2

G,Λ)− I1(−M2
H ,M

2
G,Λ)

)
+ y2

R

(
J(p2,Mf ,Λ)− J(−M2

H ,Mf ,Λ)
)
.

The capital letters MH,G,f denote the physical mass of the scalar Higgs boson and
the Goldstone bosons while the subscript f stands for the quarks. The differences in
the brackets involving the function I1 are independent of the regulator Λ. The con-
tribution of the fermion is more subtle as it contributes to the field renormalization
factor of the Higgs boson.
The contribution to the Z factor can be seen by decomposing the fermionic con-
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tribution to the Higgs boson self energy in its invariant constituents with respect to
the Euclidean symmetry

Σf
H(p2,mf , y,Λ2) := −y2

(
a(p2) p2 + b(p2)m2

f

)
︸ ︷︷ ︸

J(p2,mf ,Λ)

. (3.6)

where a, b are dimensionless scalar functions. Both functions can be expanded
around p2 = −M2

H . From the expression (3.5), it is clear that both scalar func-
tions are divergent in the limit Λ → ∞. While divergences in b can be absorbed
into the bare mass mH , the divergences in a cannot. The divergent term in a is
logarithmic and ∂p2a(p2) is finite. To isolate the divergent part, an expansion of the
functions a, b at p2 = −M2

H gives

a(p2) = a(p2 = −M2
H)︸ ︷︷ ︸

:=a1

+ (p2 +M2
H) ∂

∂p2a(p2)
∣∣∣∣
p2=−M2

H

+ . . .︸ ︷︷ ︸
:=ã(p2)

b(p2) = b(p2 = −M2
H)︸ ︷︷ ︸

:=b1

+ (p2 +M2
H) ∂

∂p2 b(p
2)
∣∣∣∣
p2=−M2

H

+ . . .︸ ︷︷ ︸
:=b̃(p2)

.

(3.7)

a1 and b1 are divergent as Λ becomes large. In the above case

a1 = − 1
4π2

{
1
2 log

(
Λ2

−M2
H

)
− 3∆I3(−M2

H)− 1
6

}

b1 = 1
4π2

{
Λ2

m2
f

+ 3 log
(

Λ2

−M2
H

)
− 1

}
.

The field renormalization factor is defined by the partial derivative of the self energy
with respect to the squared momentum. At the considered order in perturbation
theory, there is no contribution from the scalar loop integrals. From the above
calculation it is clear that the term a1 contains the fermionic contribution to the ZH
factor as it is proportional to p2.

G−1
H

(
p2,m2

H ,m
2
G, λ, y; Λ

)
= p2 +m2

H − ΣH,G
H

(
m2
H ,m

2
G, λ; Λ

)
− Σf

H (mf , y; Λ) .

ΣH,G
H denotes the contributions of the Higgs boson self interaction and the inter-

actions to the Goldstone bosons to the self energy of the Higgs boson. The Higgs
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boson field renormalization factor shall be given by

ZH := 1− ∂

∂p2 Σf
H

(
p2,mf , y; Λ

) ∣∣∣∣
p2=−M2

H

− ∂

∂p2 ΣH,G
H

(
p2,m2

H ,m
2
G, λ; Λ

) ∣∣∣∣
p2=−M2

H

= 1 + y2a1

⇒ 1
ZH

= 1− y2a1 +O
(
y4
)
.

In the last step the representations given in (3.6) and (3.7) was used. ã an b̃ vanish
as the expression is evaluated at p2 = −M2

H .

1
ZH

G−1
(
p2,m2

H ,m
2
G, λ, y; Λ

)
=(

1− y2a1
) {
p2 +m2

H + y2
(
p2 (a1 + ã) +m2

f (b1 + b̃)
)
− ΣH,G

H

(
p2,m2

H ,m
2
G, λ; Λ

)}
.

Neglecting all terms of order y4 and y2λ2 such as y2a1ΣH,G
H , the above relation

reduces to

G−1 (p2,m2
H ,m

2
G, λ, y; Λ)

ZH
= p2 +m2

H +m2
f y

2 (b1 − a1)

+ y2
(
ã(p2)p2 + b̃(p2)m2

f

)
− ΣH,G

H

(
p2,m2

H ,m
2
G, λ; Λ

)
⇒ Σf

H

(
p2,mf , y; Λ

)
= −y2

{
m2
f (b1 − a1) + ã(p2)p2 + b̃(p2)m2

f

}
+O

(
y4
)

⇒ ∆Σf
H

(
p2,mf , y; Λ

)
:= Σf

H

(
p2,mf , y; Λ

)
− Σf

H

(
−µ2,mf , y; Λ

)
= −y2

{(
ã(p2)− ã(−µ2)

)
p2

+
(
b̃(p2)− b̃(−µ2)

)
m2
f

}
+O

(
y4
)
.

In the above expression for the self energy contribution of the fermions the difference
a1−b1 is clearly divergent as Λ is taken to infinity (or arbitrarily large). Also the field
renormalization factor ZH which explicitly contains the cut off dependent term a1
diverges with rising cut off. However, the main point is, that the divergent parts do
not appear anymore with powers of the squared momenta such that all divergences
cancelled within the difference of the one particle irreducible terms. From the point
of Euclidean lattice field theory one would equivalently phrase that, it is always
possible to tune the bare Higgs boson mass mH and the field renormalization factor
ZH with arbitrary but finite values of the cut off such that the physical quantities



46 Chapter 3 Analytic properties and perturbative calculations

are held fixed. The points in the bare parameter space for varying cut off values
defines the line of constant physics. Keeping in mind that here the underlying theory
renders a trivial theory as the cut off is large enough, one has to restrict the line of
constant physics to some finite interval of cut off values.
After this lengthy treatment on the the specific details about the renormalization

of the fermionic contribution, the renormalized Higgs boson propagator is given by

Z
(
GR
H

(
p2,M2

H ,M
2
G, λR, yR; Λ

))−1
=

p2 +M2
H + 18 (4λRv)2

(
I1(p2,M2

H ,Λ)− I1(−M2
H ,M

2
H ,Λ)

)
+ 6 (4λRv)2

(
I1(p2,M2

G,Λ)− I1(−M2
H ,M

2
G,Λ)

)
−∆Σf

H

(
p2,Mf = yrvR, yR; Λ

)
.

Figure 3.2 shows the Higgs boson propagator for some arbitrary values of the
couplings and the masses. The first image shows a stable Higgs boson. The plot
was made by taking an artificial value for the Goldstone mass larger than zero.
Generally Goldstone bosons are massless and thus the Higgs boson can decay into
any even number of Goldstone bosons. The second image shows that the continuous
multi-particle states are induced below the pole at the Higgs boson mass if the
Goldstone mass is taken to be zero.

3.1.2 The Goldstone boson propagator
The interactions of the Goldstone boson are again inferred from the Lagrangian in
(3.3). Table 3.2 shows an overview of the relevant interaction terms and their Wick
contractions. The first column identifies the corresponding Feynman graph which
is displayed in figure 3.1. The second column shows the coupling in the Lagrangian
in (3.3) from which the specific interaction arises while the third column shows the
order in the perturbative expansion of the interaction term. The next column shows
one of the possible Wick contractions associated to the interaction term and the
last column gives the symmetry factor which denotes the number of topologically
equivalent Feynman diagrams. In contrary to the Higgs boson mass corrections,
the renormalized mass of the Goldstone boson is known from the general Goldstone
theorem which is discussed in many books about quantum field theory, e.g. [42].
However, for the sake of completeness the Goldstone propagator is discussed roughly.
Compared to the Higgs boson propagator there is one new type of integral aris-

ing from the Wick contractions which contains two mass scales I2(p2,m2
ϕ,m

2
G,Λ).

Furthermore, there are three massless Goldstone bosons which amounts t an overall
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(a) (b)

Figure 3.2: The following figure shows the Higgs boson propagator for some arbitrary
values of the couplings. The red curve denotes the imaginary part and the black curve
denotes the real part of the inverse Higgs boson propagator. The first image shows a
stable Higgs boson at some artificial value for the Goldstone mass larger than zero. The
multi-particle states are induced at the threshold value p2 = 4M2

H and the analytic inverse
propagator develops a non trivial imaginary part. The second image shows an unstable
Higgs boson. The Goldstone mass is chosen to be MG = 1

4MH . The continuous multi-
particle states are now induced below the ‘pole’ of the Higgs boson mass.

factor of three. The self energy of the Goldstone boson propagator reads

1
3ΣG

(
p2,m2

ϕ,m
2
G, λ, y; Λ

)
= −12λ I1

(
p2,m2

G,Λ
)
− 4λ I1

(
p2,m2

ϕ,Λ
)

+ 4 · (4λv)2 I2
(
p2,m2

ϕ,m
2
G,Λ

)
+ Σf

G

(
p2,mf , y; Λ

)
.

Σf
G denotes the fermionic contribution to the Goldstone boson self energy which will

not be explicitly given. The Goldstone boson mass is anyway known from the Gold-
stone theorem and although in the framework of lattice Monte Carlo simulations,
the Goldstone bosons are not exactly massless, they are stable particles such that
the Euclidean two point correlation function is a reliable tool to extract their masses
in finite volume.
In the following the integral I2 and the renormalization of the Goldstone boson

propagator will be discussed. The appendix B contains a detailed calculation of the
integrals. The renormalization condition for the Goldstone bosons shall be

G−1
G

(
p2 = −µ2, ζ,Λ

) != 0.
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Table 3.2: The table below shows the relevant interaction terms in the Lagrangian
which contribute to the one particle irreducible diagrams of the Goldstone boson prop-
agator. The fermionic contributions are not considered due to the reasoning at the
beginning of this section. The first column is an identifier for the corresponding di-
agrams shown in figure 3.1. SI is a part of the interaction Lagrangian. The middle
column shows the order in the expansion of the exponential of the interaction term.
The next column displays a Wick contraction and its multiplicity is given in the last
column.

SI Perturbative expansion Wick contraction type fac.

A λ
(
GT G

)2
−λ

(
GT G

)2
GTx (GTG GTG)x1Gy 4 · 3

B 2λ
(
GT G

)
H2 −2λ

(
GT G H2

)
x1

GTx (GT G HH)x1Gy 2

G 4λv
(
GT G

)
H (4λv)2

2

(
GT GH

)
x1
·
(
GT GH

)
x2

GTx (GT GH)x1(GT GH)x2Gy 4 · 2

ζ stands for the collective set of bare parameters

ζ =
(
m2
ϕ,m

2
G, λ, y

)
.

As mentioned at the beginning of this chapter, the bare Goldstone boson mass
mG will be kept explicitly though its value is known to be zero, in order to be
able to compare the results with the propagator obtained from lattice Monte Carlo
simulations. Using the expression for the Goldstone boson self energy one gets

−µ2 +m2
G − ΣG

(
−µ2, ζ; Λ

)
= 0.

Solving the above equation for m2
G and substituting m2

G in the inverse propaga-
tors causes only an error of order λ4 which is beyond the one loop approximation
performed here. The propagator is then given by

G−1
G

(
p2, ζ,Λ

)
= p2 + µ2 −

(
ΣG

(
p2, ζ; Λ

)
− ΣG

(
−µ2, ζ; Λ

))
+O

(
λ4
)
.
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The difference of the self energy terms is then given by

1
3∆ΣG

(
p2, µ2, ζ; Λ

)
= 1

3ΣG

(
p2, ζ; Λ

)
− 1

3ΣG

(
−µ2, ζ; Λ

)
= −12λ

(
I1
(
p2,m2

G,Λ
)
− I1

(
−µ2,m2

G,Λ
))

− 4λ
(
I1
(
p2,m2

ϕ,Λ
)
− I1

(
−µ2,m2

ϕ,Λ
))

+ 4 (4λv)2
(
I2
(
p2,m2

ϕ,m
2
G,Λ

)
− I2

(
−µ2,m2

ϕ,m
2
G,Λ

))
+
(
Σf
G

(
p2,mf , y; Λ

)
− Σf

G

(
−µ2,mf , y; Λ

))
.

As will be shown shortly, the divergences in the scalar loop integrals I1/2 can be
eliminated by a redefined bare mass. The integral expression I1 has already been
presented in the last subsection while dealing with the one loop results for the Higgs
boson. The integral I2 is

I2(p2,m2
ϕ,m

2
G,Λ) = 1

32π2

2 + log
(

Λ4

m2
Gm

2
ϕ

)
+

(
m2
G −m2

ϕ

)
p2 log

(
m2
G

m2
ϕ

)

+ log
(
p2 +m2

G +m2
ϕ − p2 κ(p2) + iε Sgn (p2)

p2 +m2
G +m2

ϕ + p2 κ(p2)− iε Sgn (p2)

)
κ(p2)

.
κ2(p2) :=

4 p2m2
ϕ +

(
p2 +m2

G −m2
ϕ

)2

p4 .

The terms involving the cut off Λ are independent of the squared momentum and
thus the difference

I2
(
p2,m2

ϕ,m
2
G,Λ

)
− I2

(
−µ2,m2

ϕ,m
2
G,Λ

)
does not depend on the cut off. Neglecting the fermionic contributions, the renor-
malized Goldstone boson propagator is given by(

GR
G

)−1
= p2 + µ2 −∆ΣG

(
p2, µ2, ζR; Λ

)
where ζR stands for the renormalized set of couplings. The analytic form of the
above Goldstone propagator will be used to fit the numerical data on the euclidean
part obtained by Monte Carlo simulations.
Figure 3.3 shows the Goldstone boson propagator obtained from Monte Carlo

simulation. The two plots correspond to different physical situations. The above
analytical form is used as a fit function. The left image 3.3a corresponds to a small
value of the bare quartic coupling (λ̂ = 0.01). The Yukawa coupling is chosen such
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that the top quark is about 175 GeV (ŷ = 0.36274). The parameter κ is 0.12950
and yields a cut off of approximately 900 GeV. One can observe that the tree level
fit function (blue) and the one loop result (red) are equally good. The second plot
3.3b shows the Goldstone boson propagator at infinite bare quartic coupling. The
Yukawa coupling is chosen such that it corresponds to a heavy 700 GeV (ŷ = 2.2)
quark and the parameter κ is 0.21300 and yields a cut off of about 3500 GeV. Again
the blue curve corresponds to a fit to the tree level propagator and the red curve
denotes the fit to the one loop result. Obviously the tree level result is a too crude
approximation in order to extract the finite volume Goldstone boson mass and the
field renormalization factor ZG. The right image also shows that even at infinite bare
quartic coupling and rather large Yukawa couplings the analytical form is suitable
to serve as a good fit function.

(a) (b)

Figure 3.3: The figure shows the Goldstone boson propagator for two different physical
situations. The left image corresponds to small bare quartic and Yukawa couplings while
the right image corresponds to infinite bare quartic couplings and Yukawa couplings which
belong to a quark mass of about |GEV700. The solid curves are fits of the Monte Carlo
data to the analytic form derived above. The blue curve denotes the tree level relation
and the red curve belongs to the one loop result. While at small bare couplings, the tree
level result is in agreement with the one loop result, the situation changes drastically in
the case for large couplings. The right image also shows that even at infinite bare quartic
coupling and rather large Yukawa couplings the analytical form is suitable to serve as a
good fit function.
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3.2 Lattice perturbation theory
The basic principles of perturbation theory as explained at the beginning of this
chapter are also valid on a finite discretized space time lattice. Of course one has to
expand the lattice action instead of the continuum action given in (2.1). Further-
more, the scalar propagator as well as the fermion propagator is modified.
The main difficulty will be to resemble the coupling structure with the modified

chiral projection operators given in the lattice action. Due to the finite set of lattice
momenta the integrals are replaced by finite sums which cannot be expressed in
a closed formula. The latter also implies a regulator such that no explicit cut off
regulator has to be chosen. Finally the sums are evaluated numerically and the
perturbative result for the propagator is confronted to those obtained from some
selected Monte Carlo simulations.
The Euclidean discretized action is given in (2.7). The observable of interest in

this section is the Higgs boson propagator. The scalar interactions lead to the very
same diagrams as in the continuum model and hence they will not be discussed in
detail. The couplings to the fermions need more care since the modified projection
operators do not share the same (anti-) commutator relations as in the continuum.
The fermion action and the fermion matrix were introduced in Chapter 2 equation

(2.6)

SF =
∑

x,y,α,β

(
t
α
x

b
α

x

)
IMαβ

xy

(
tβy
bβy

)

Mαβ
xy =

(
D(ov)

)αβ
xy

+ ŷΦµ
x

(
Pαβ

+ θ†µ + Pαβ
− θµ

) (
1− 1

2aR
(
D(ov)

)αβ
xy

)
.

As within the framework of perturbation theory in the continuum, it will be assumed
that the scalar vacuum expectation value has the form

Φ0
x = v +Hx.

Isolating the Higgs couplings in the above fermion matrix gives

Mαβ
xy =

(
D(ov)

)αβ
xy

+ ŷ (v +Hx)
(

1− 1
2aR

(
D(ov)

)αβ
xy

)
+ . . . .

As usual in perturbation theory, the free (Gaussian) part of the action will be



52 Chapter 3 Analytic properties and perturbative calculations

separated from the rest of the action which defines the interacting part

SF = S0
F + SintF

S0
F :=

(
t
α
x

b
α

x

){(
D(ov)

)αβ
xy

+ ŷv
(

1− 1
2aR

(
D(ov)

)αβ
xy

)}(
tβy
bβy

)

SintF := ŷ Hx

(
t
α
x

b
α

x

)(
1− 1

2aR
(
D(ov)

)αβ
xy

)(
tβy
bβy

)
+ . . .

The interaction with the other scalar fields is left out as only the Higgs boson
propagator will be of interest in this chapter. The free fermion propagator is then
given by the inverse fermion matrix containing only bilinears in the fermion fields

(∆f )αβxy :=

 1
D(ov) + ŷv

(
1− 1

2aRD(ov)
)

αβ

xy

.

It is useful to introduce the abbreviation K which is defined by

K := 1− 1
2aRD

(ov).

The contribution of the fermions to the Higgs boson self energy is then given by the
following type of Wick contractions

Gf
H(x− y; ŷ) = −ŷ2 Hx


(
t
b

)α
x1

Hx1Kαβx1x2

(
t
b

)β
x2



(
t
b

)σ
y1

Hy1Kσκy1y2

(
t
b

)κ
y2

Hy.

Gf
H denotes the fermionic contribution the Higgs boson propagator. The above

expression is equivalent to

Gf
H(x− y; ŷ) = −ŷ2 ∑

x1,x2,y1,y2

1
Ω
∑
q1

eiq1(x−x1)∆q1

1
Ω
∑
k1

eik1(x1−x2)Kαβk1

1
Ω
∑
q2

eiq2(x2−y1)∆βσ
f,q2

1
Ω
∑
k2

eik2(y1−y2)Kσκk2

1
Ω
∑
q3

eiq3(y2−x1)∆κα
f,q3

1
Ω
∑
q4

eiq4(y1−y)∆q4 .
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The sums over the position variables x1, x2, y1, y2 can be evaluated such that

Gf
H(x− y; ŷ) = −ŷ2 1

Ω2

∑
q1,q4

eiq1x−iq4y∆q1∆q4

∑
k1,q2

Kαβk1 ∆βσ
f,q2∑

k2,q3

Kσκk2 ∆κα
f,q3δk1,q1+q3δk1,q2δk2,q2−q4δq3,k2 .

Finally the sums over q1, k1, q2, k2 can be performed by using the Kronecker δ

Gf
H(x− y; ŷ) = −ŷ2 1

Ω
∑
q1

eiq1(x−y)∆q1∆q1

∑
q3

Kαβq1+q3∆βσ
f,q1+q3K

σκ
q3 ∆κα

f,q3

⇒ G̃f
H(p; ŷ) = −ŷ2∆p∆p

∑
q

Kαβp+q∆βσ
f,p+q Kσκq ∆κα

f,q.

The final expression describes a fermion loop in lattice momenta. The amputated
two point Green function is then obtained by cancelling the scalar Higgs boson
propagators. The above expression is the analogue to the corresponding fermion
loop in the continuum and there are no new type of interactions which arise from
the discretized action.
The expression for the self energy contributions arising from the fermions is then

given by
Σf
H (p̂, ŷ,mf ) = −ŷ2∑

q

Kαβp+q∆βσ
f,p+q Kσκq ∆κα

f,q

= −ŷ2∑
q

Tr {Kp+q∆f,p+q Kq∆f,q}

mf = ŷv.

The final expression is

Σf
H (p̂, ŷ,mf ) =

− ŷ2∑
q

Tr


(

1− 1
2aRD

(ov)
)
p+q

 1
D(ov) +mf

(
1− 1

2aRD(ov)
)

p+q(

1− 1
2aRD

(ov)
)
q

 1
D(ov) +mf

(
1− 1

2aRD(ov)
)

q

. (3.8)

It is the aim to compare the results from the one loop perturbation theory to
results obtained by Monte Carlo simulations. In the case where the bare quartic
coupling vanishes, the above fermion loop is the dominant contribution to the Higgs
boson mass. Figure 3.4 shows a comparison between the perturbative results and
the Monte Carlo result on the Higgs boson propagator. The bare quartic coupling is
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(a) (b) (c)

Figure 3.4: The figure shows the results obtained from one loop perturbation theory at
vanishing bare quartic coupling contrasted with results obtained from Monte Carlo simu-
lation. Three values of the Yukawa coupling are chosen ŷ ∈ {0.17644, 0.35288, 0.70576}. κ
tuned in order to keep the cut off in the three cases fixed (κ ∈ {0.12434, 0.12303, 0.11814}).
The images are ordered from left to right with rising Yukawa coupling. The calculations
where performed on a 84 lattices.

chosen to be zero and the cut off is |GEV520 for the first image and 440 GeV for the
other two. The three images correspond to three different Yukawa couplings while
the cut off was aimed to be constant. The left image corresponds to y0 = 0.35382,
the middle plot corresponds to y0 = 0.71139 generates a physical top quark mass
of 175 GeV. Finally the last image was generated at a Yukawa coupling of y0 =
1.45192 and corresponds to a physical top quark mass of about 350 GeV. About
100 000 configurations were produced for each set of parameters in order to reduce
the statistical errors. The figure shows an excellent agreement between one loop
perturbation theory and the numerical data obtained from Monte Carlo simulations.
The scalar vacuum expectation value can either be calculated by taking the general

form of the action (2.7) and assume an arbitrary value for the scalar vev . In general,
the vacuum expectation value of the Goldstone bosons and Higgs bosons do not
vanish and the tadpole diagrams are the leading contributions to their vacuum
expectation value. Up to the considered order in perturbation theory it is then fine
to tune the vev such that the tadpole diagrams vanish. An alternative approach was
proposed in [17] which does not depend on the phase of the theory. It is based on the
effective potential where the classical minimum of the potential yields the ground
state and hence the vacuum expectation value. The effective potential is based on
an expansion in loops instead of weak couplings and it turns out that the effective
potential is much more reliable in predicting the scalar vacuum expectation value
than the analysis of tadpole diagrams. The effective potential in the Higgs-Yukawa
model was investigated in [25] and will not be presented here.
Finally, the dependence of the parameter ρ in the definition of the Neuberger

operator (2.5) on the Higgs boson propagator is shown in figure 3.5. The plots are
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obtained with the help of the perturbative one loop result. Again the effect of the
fermions should be dominant in the case where the quartic bare coupling vanishes.
The numerical data corresponds to ρ = 1 and is identical to the data presented in
the middle plot in figure 3.4. Figure 3.5 shows three different values of ρ which
were computed within perturbation theory. The final plot shows the summary of all
chosen values of ρ ∈ {0.5, 0.75, 1.0}. The data in figure 3.5 were performed on a 84

Figure 3.5: The figure shows the dependence of the Higgs boson propagator on the pa-
rameter ρ of the Neuberger operator. The Yukawa coupling is ŷ = 0.35288 and corresponds
to the middle plot in figure 3.4. The calculations where performed on a 84 lattice.

lattice which is two small in order to obtain physical results. Nevertheless, it turns
out that there is a strong dependence of the Higgs boson self energy on the parameter
ρ. From the latter one infers that for all three values of the parameter ρ, one has
to adjust the bare parameters of the theory such that Higgs boson propagator is
evaluated at the same value of the cut off.





4 Resonance parameters of the
Higgs boson

This standard model Higgs boson as well as the Higgs boson in the Higgs-Yukawa
model considered here, is not a stable particle. If the Higgs boson mass is larger than
twice the weak gauge boson masses (2M±

W or 2MZ), it will decay and only the weak
gauge bosons are in the spectrum of the asymptotic theory. The same applies for
the pure Higgs Yukawa model, where the Higgs boson decays into any even number
of Goldstone bosons. In fact the Goldstone bosons are massless particles and thus
the Higgs boson is never in the spectrum of the asymptotic theory. In the following
discussion however, the Goldstone bosons will be treated as generic scalar particles
with explicit mass provided by a coupling to an external source.
Fugure 4.1 shows the current experimental status on Higgs boson searches at

LHC and Tevatron [44]. The image shows the ∆χ2 = χ2 − χ2
min against the Higgs

boson mass. The yellow area denotes the excluded mass ranges from direct Higgs
boson searches at LEP-II (up to 114 GeV) and Tevatron (158 GeV to 175 GeV).
The solid line represents a fit of the standard model to high precision electroweak
measurements and shows that the preferred value of 8935

26 GeV is already excluded.

As discussed in Chapter 2, a signature of the decaying particle is left in the
propagator after it has been analytically continued into the complex plane. The
physical Higgs boson propagator, which is always real valued, exhibits a branch cut
at the threshold energy for the production of two weak gauge bosons or respectively
two Goldstone bosons. In the case, where the Higgs boson is stable, the Higgs boson
propagator will have a pole before the branch cut which identifies the physical Higgs
boson mass. In the unstable case, the Higgs boson propagator still has the branch
cut, but no pole before the branch cut.
In order to characterize the unstable Higgs boson, it is necessary to consider the

analytic continuation of the physical propagator to the complex plane. The analytic
continuation was discussed in Chapter 2 in detail. The physical propagator will be
denoted by G : R → R and its analytic continuation shall be GC : C → C. The
physical propagator is then obtained by taking the limit ofGC (z) where z approaches
the real axis from below. As discussed in Chapter 2, the analytic continuation has
no discontinuity along the branch cut and the physical Higgs boson mass is given
by locating the complex pole in the second Riemann sheet.
The existence of an unstable particle though, is revealed through a “resonant”

57
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Figure 4.1: The figure shows the experimental exclusion limit on the Higgs boson mass
[44]. The vertical axis shows ∆χ2 = χ2 − χ2

min and the horizontal axis denotes the
Higgs boson mass. The yellow range shows the excluded mass range from direct Higgs
boson searches at LEP-II and Tevatron. The solid curve is a fit of the standard model
to electroweak precision measurements while the blue band corresponds to the theoretic
uncertainty which is associated to higher order calculations in perturbation theory.

behaviour of the total cross section in the two body scattering of the corresponding
asymptotic final states. In the following, it is the aim to clarify the role of resonances
in cross sections and to roughly sketch the connection between the two point Green
function and the so-called scattering phase.
This chapter starts with the current mass bounds obtained from numerical simu-

lations. For the upper Higgs boson mass bound, where the Higgs boson decays into
Goldstone bosons, an analytic structure of the Higgs boson propagator had to be as-
sumed. Afterwards the connection of the total cross section and the resonance mass
as well as the resonance width is discussed in continuum field theory. An analogous
relation in finite volume was worked out by Lüscher [46] and the method is briefly
explained. Finally the numerical results for the scattering phase are presented. The
obtained resonance parameters are compared to those obtained by means of the
Higgs boson propagator.
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4.1 Mass bounds of the Higgs boson
The current upper and lower Higgs boson mass bounds, which were obtained from
lattice simulations in the Higgs-Yukawa model described in chapter 2, were es-
tablished within an extensive investigation of Euclidean two point correlators (see
[30, 31]). In the case of the lower bound, the Higgs boson turns out to be a stable
particle and its mass is given by the pure ground state energy. These can be ac-
cessed with the help the time correlators. The analysis of the upper Higgs boson
mass involves an unstable Higgs boson, which decays into Goldstone bosons. In
order to access the unphysical propagator GC a functional form of the propagator
which is motivated by perturbation theory was assumed. The real part of the pole
in the second Riemann sheet was located after a fit of the propagator to the numer-
ical data. The same procedure can be performed for the lower Higgs boson mass,
where the Higgs boson is a stable particle and the results are consistent with those
obtained from the Euclidean two point correlation functions.
Nevertheless, a genuinely non perturbative analysis of the resonance parameters

is desirable as one cannot know, whether the functional form of the propagator may
receive severe contributions at larger values of the renormalized coupling, which is
not any more reflected in the one loop approximation. Furthermore, it not clear
whether it is sufficient to identify the Higgs boson mass by locating the zero of the
real part of the propagator instead the complex pole.

4.1.1 Observables and Higgs boson mass bounds
This section introduces the basic observables and gives some details on the deter-
mination of mass parameters in the framework of Euclidean lattice field theory.
Finally the current numerical bounds for the upper and lower Higgs boson mass are
discussed.
The definitions of the Higgs and the Goldstone boson fields were given in (3.2)

and are repeated here

ϕ =
(
G1 + iG2

v +H + iG3

)
.

v is a constant and corresponds to the scalar vacuum expectation value. Within the
Higgs-Yukawa model it is connected with the magnetization (see (2.9) and (2.10))

mag := |Φ| =
(∑

α

Φ2
α

) 1
2

, Φα = 1
V

∑
x∈Z4

L

Φα(x)

v :=
√

2κ mag

⇒ vR :=
√

2κ mag√
ZG

.
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ZG is the field renormalization factor of the Goldstone fields. The physical vev (vR)
is known to be 246 GeV. The simluation strategy and the tuning of the bare param-
eters is discussed in section 2.3. The basic definitions of the Higgs and Goldstone
boson masses are given in Chapter 2 equation (2.15).
Goldstone bosons are almost massless on the lattice with a mass of mG ∝ 1

L2 .
Therefore, the Higgs boson mass receives particular finite size effects of the order
O( 1

L2 ) which does not follow the usual exponentially suppressed finite size effect
given by O

(
e−mL

)
. An infinite volume extrapolation is therefore inevitable. Fur-

thermore, the masses in lattice units must be significantly smaller than the cut off
in order to avoid too large discretization effects. At the same time the finite volume
must be large enough such that the compton wave length of the Higgs boson and the
fermions are smaller than the lattice extent. The above constraints are summarized
by

m̂ · Ls,t > 2, m̂ <
1
2Λ.

Ls denotes the spatial extent and Lt corresponds to the temporal extent of the
lattice. The mass m̂ refers to the mass in lattice units.
The upper and the lower Higgs boson mass bounds have been investigated earlier.

The results were obtained mainly within the λφ4 model. An analysis of the Higgs
resonance in the λφ4 at infinite bare quartic coupling is published in [35]. The model
considered in this work involves the coupling of the Higgs boson to the fermion fields
and incorporates all dynamics of the fermionic degrees of freedom. The model is
therefore more realistic with respect to the standard model of particle physics. It
is the aim to compare the conceptual aspects of extracting the mass of an unstable
particle and thus only those mass bounds will be considered which were obtained
within the pure Higgs-Yukawa model using overlap fermions.
The lower Higgs boson mass is determined at vanishing bare quartic coupling

and thus the resonance width is expected to be very small. It is then sufficient
to determine the zero of the real part of the Higgs boson propagator in order to
compute the Higgs boson mass. Furthermore, the time dependence of the Higgs
boson correlator is dominated by the physical Higgs boson mass. However, the
finite size effects have to be investigated and finally an extrapolation to infinite
volume has to be performed. The results for the lower Higgs boson mass together
with the finite size analysis is presented in figure 4.2 and was published in [30]. The
figure summarizes the volume dependence of the Higgs boson mass and shows the
obtained infinite volume extrapolation of the Higgs boson masses. The image in
figure 4.2b compares the obtained infinite volume results in the case of a degenerate
quark doublet with results obtained from the effective potential at different values
of the number of fermion doublets and also for non degenerate quark doublets.
The numerical data agrees very well with the perturbative prediction with a single
degenerate fermion doublet (Nf = 1, yb

yt
= 1). The solid line represents the physical
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situation with three generations of fermions and a mass splitting within the fermion
doublet (yb

yt
= 0.024).

(a) (b)

Figure 4.2: The figure shows the published bounds for the lower Higgs boson mass. Image
(a) shows the volume dependence of the Higgs boson mass together with a linear and a
quadratic extrapolation to infinite volume. Image (b) shows the final result of the lower
Higgs boson mass. The dashed curves are perturbative results obtained from the analysis
of the effective potential. The numerical data agrees very well with the perturbative
prediction with a single degenerate fermion doublet (Nf = 1, ybyt = 1). The solid line
represents the physical situation with three generations of fermions and a mass splitting
within the fermion doublet (ybyt = 0.024).

The upper Higgs boson mass suffers from the conceptual difficulties which were
already mentioned at the beginning of this chapter and which are discussed in more
detail in Chapter 2.3. For the sake of completeness the basic procedure is roughly
summarized in the following.
An analytic expression for the Higgs boson propagator is suggested by renormal-

ized perturbation theory. The inverse renormalized Higgs boson propagator is then
given by (

GR
H

)−1 (
p2,M2

H , . . .
)

= p2 +M2
H − ΣH

(
p2,M2

H , . . .
)

(the dots indicate the dependence on the parameters and the cut off of the model).
MH denotes the ‘physical’ Higgs boson mass. The physical propagator is real valued
and a fit to the lattice propagator data can be performed where the physical Higgs
boson mass and the renormalized quartic coupling are taken as free fit parameters.
It was sufficient to compute the inverse Higgs boson propagator up to on loop in
the scalar fields. The contribution of the fermion loop was neglected. However,
the field renormalization factor ZH was taken into account although ZH does not
receive any contributions from the scalar one loop approximation. The leading order
contribution to the scalar field renormalization factor arises from the fermion loop.
The upper Higgs boson mass bound has been published in [31] and is shown in figure
4.3.
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(a) (b)

Figure 4.3: The left image (a) shows the finite size effects of the Higgs boson mass and
an extrapolation to infinite volume, The results are summarized in the final plot (b). The
shaded region indicates the maximal and the minimal value of the upper Higgs boson
mass bound which is attainable within the standard deviations of the fit parameters.
Furthermore, the right image (b) displays the upper Higgs boson mass in dependence of
the cut off Λ in the pure λφ4 theory and in the Higgs-Yukawa model involving dynamical
overlap fermions. The results are taken from [31].

4.2 Resonance mass and width of the Higgs boson
Though the established numerical results presented in [30, 31] agree with analytically
expected curve, it is based on a one loop result of the Higgs boson propagator.
Furthermore, the pole of the Higgs boson was identified on the real p2 axis, though
a resonance is in general displaced from the real axis. In the case where the width
Γ is small with respect to the physical resonance mass, the above restriction to the
real axis is a good approximation. A priori, the resonance width and the mass is
unknown and a genuinely non perturbative analysis of the resonance parameters is
desirable in order to confirm or disprove the above approach.
The method to compute the resonance parameters in finite volume was proposed

in [46] and it has been successfully employed in QCD and in the pure λφ4 theory
[19, 35].
From the unitarity of the S-matrix, many aspects of resonances and analyticity

properties of the Green functions can be determined independent of the underlying
interactions. The basic quantity of interest will be the forward scattering amplitude
which is parametrized by the total centre of mass energy. The unitarity condition
of the S-matrix then yields a relation between the forward scattering amplitude and
the centre of mass energy which can be solved by introducing a phase, the so called
scattering phase.
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In the following, the scattering phase in continuum field theory will be discussed.
Afterwards the main aspects of the analogous relation on a finite, discretized lattice
will be elaborated. The latter is a short summary of the detailed calculations given
in [46].

4.2.1 The scattering phase in the continuum and in a finite box
The unitarity of the S-matrix is one of the fundamental prerequisites in quantum
field theory. It reflects the conservation of probabilities for transitions between
asymptotic states.
The short discussion below on the scattering phases in continuum quantum field

theory follows the detailed presentation in [42, 56].
The S-matrix can be decomposed into the free part and the part which is respon-

sible for interactions
S = I + iT.

The unitarity condition then yields

S†S = I

⇒ T †T = −i
(
T − T †

)
.

The matrix expression can be written in its matrix elements by projecting onto
asymptotic states

〈f |T | i〉 = (2π)4 δ (Pf − Pi)Tfi. (4.1)

where Pf , Pi is the total momentum in the final or initial state respectively. Written
in matrix elements, the unitarity for the interacting part of the S-matrix reads

Tfi − T ∗if = i
∑
n

(2π)4 δ4 (Pn − Pi)T ∗nfTni. (4.2)

In the last step a complete set of states has been inserted in (4.1). The sum contains
a finite number of one particle states and an integral over a continuous spectrum of
states. In order to ease the notation the sum shall represent the finite one particle
states as well as the integral over the continuous spectrum of states. In the special
case of forward scattering, the final state is identical to the initial state and the right
hand side of equation (4.2) is related to the total cross section. Equation (4.2) then
reduces to

={Tii} = λ
1
2
(
s,m2

a,m
2
b

)
σtot(i).

λ is kinematical factor which is completely determined by the initial state variables

λ ≡ λ(s,m2
a,m

2
b) :=

(
s2 +m4

a +m4
b

)
− 2sm2

a − 2sm2
b − 2m2

am
2
b .
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s denotes the total centre of mass energy of two incoming scalar particles s =
(pa + pb)2. Furthermore, the matrix elements of T can be expanded in partial waves

Tfi = 16π
∑
J

(2J + 1)P J (cos θ) T Jfi(s).

P J denotes the J th Legendre polynom. The above relation holds for spinless par-
ticles. If the total energy

√
s is below the inelastic threshold, the sum over the

complete set of states (4.2) reduces to the two particle states. The projection to the
J th angular momentum part yields

T J(s)− T J∗(s) = 2i
√
λ

s
T J
†(s)T J(s).

The above equation is solved by

2
√
λ

s
T J(s) = −i

(
e2iδJ (s) − 1

)
= 2 eiδJ (s) sin δJ(s). (4.3)

δJ is called the scattering phase. Using the optical theorem, which is a consequence
of the unitarity of the S-matrix and does not depend on the details of the interaction,
the left hand side of equation (4.3) can be associated with the total cross section of
the two particle initial state |i〉.

σtot = 8π
q
√
s

∞∑
J=0

(2J + 1)=
{
T J
}

(4.4)

q is the centre of mass momentum. It must be stressed that the above equation is
only valid for energies below the inelastic threshold. In the vicinity of a resonance,
the total cross section will exhibit a peak which resembles the Breit-Wigner curve.
The left hand side can thus be parametrized with the resonance mass and the reso-
nance width. It is only valid if the energy E is close to the resonance mass (see [53]
or (2.14))

σtot =

∣∣∣∣∣∣ 1
p2 −m2 + imΓ

∣∣∣∣∣∣
2

(4.5)

where m is the resonance mass and Γ is the resonance width. The final relation
(4.3), (4.4), and (4.5) connects the energy of the two particle system with the scat-
tering phase δ. Accordingly it can be used to determine the resonance mass, if the
scattering phase is known. An analogous relation in finite volume will be presented
below.
The main result in Lüscher’s work [46] is the connection between the two parti-
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cle energies in a finite box and the scattering phase in infinite volume. Once the
scattering phases are determined through the analysis of the two particle energies
in lattice simulations, it will allow to compute the resonance mass and width of
unstable particles. A brief overview of the method is given below. The main idea
is reduced to the special case of interest here. Within the Higgs-Yukawa model, the
Higgs boson dominantly decays into Goldstone bosons. The two particle state of
interest is thus a singlet which corresponds to the A+ symmetry sector. The rep-
resentations of the cubic symmetry O(3,Z) on the lattice can be derived from the
irreducible representation of O(3). Equation (4.14) shows a decomposition in in har-
monic polynomials. The A+ representation corresponds to the trivial representation
and belongs to vanishing angular momentum.
In order to express the above relation between the scattering phases and the

energy level in a finite box, it is sufficient to investigate the scattering phase in non
relativistic quantum mechanics. The non relativistic result can be transferred to the
case of quantum field theory [45, 49].
Consider therefore a non-relativistic system in infinite volume. The Hamiltonian

shall be given by a potential which has a finite range

H = − 1
2µ∆ + V (r), r = |~r|, V (r) ≡ 0 if r > R > 0. (4.6)

The potential shall be invariant under rotations. The wave functions can then be ex-
panded in spherical harmonics and the coefficients then solve the radial Schrödinger
equation. Far away from the potential r > R the radial part of the wave function is
then given by a superposition of spherical Bessel and Neumann functions

ψ(~r) =
∞∑
l=0

l∑
m=−l

Ylm (θ, ϕ)ψlm(r),

ψlm(r) ∝ αl(k) jl(kr) + βl(k)nl(kr), E = k2

2µ.

Ylm denotes the spherical harmonics which are solutions of the angular part of the
Laplace operator in (4.6). jl and nl are the spherical Bessel and Neumann functions.
For real and positive values of k, the scattering phase is defined by

e2iδl(k) = αl(k) + iβl(k)
αl(k)− iβ(k) . (4.7)

The above steps can be found in many text books on quantum mechanics (see e.g.
[52]).
The main task is now to derive an expression in finite but continuous space time

volume. After defining the underlying Hamiltonian, the main steps shall be sum-
marized. In a box of size L3 , the wave functions are assumed to fulfil periodic
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boundary conditions

ψ (~r + ~nL) = ψ (~r) , ∀~n ∈ Z3

H = − 1
2µ∆ + VL (~r) , VL (~r) :=

∑
~n∈Z3

V (|~r + ~nL|) .

It can be shown that, far away from the range of the potential, the radial part of
the wave function can still be written as

ψlm ∝ {αl(k) jl(kr) + βl nl(kr)} . (4.8)

The asymptotic form of the wave function is also preserved if one introduces a finite
angular momentum cut off Λ. Though the spectrum of the cut off Hamiltonian HΛ
is different from the original Hamiltonian (4.6), it can be shown that they approach
each other in the limit Λ→∞. The cut off Hamiltonian is given by

HΛ := − 1
2µ∆ +QΛV (r)

QΛ :=
Λ∑
l=0

l∑
m=−l

Ylm (θ, ϕ)ψlm(r).

Out of the range of the potential the eigenvalue equation then reduces to the
Helmholtz equations

HΛψ(~r) = Eψ(~r)
⇒
(
∆ + k2

)
ψ(~r) = 0.

In order to keep the main arguments as transparent as possible, the main steps will
be enumerated below

1. Construct all singular periodic solutions of the Helmholtz equation.

2. Decompose the Green functions in spherical harmonics.

3. The energy spectrum is given by the asymptotic boundary conditions (4.8).

4. Restrict to spinless scalar particles.

5. The relation between the scattering phase and the two particle energy follows
from the zero of a determinant.

The crucial points of the above steps shall be briefly discussed. A complete and
detailed demonstration of the steps is given in [46].
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1. Singular periodic solutions of the Helmholtz equation
If a solution in the exterior region Ω is given

Ω =
{
~r ∈ R3 : |~r + ~nL| > R, ∀~n ∈ Z3

}
such that its spherical components ψlm satisfies (4.8), it can be guaranteed
that there is a unique eigenfunction of HΛ which coincides with the above
solution in Ω.
Within a finite box, the possible momenta are discrete and given by

PL :=
{
~p ∈ R3|~p = ±2π

L
~n, ~n ∈ Z3

}
. (4.9)

In the following, it will be assumed that the parameter k2 in the Helmholtz
equation is not in the above set of lattice momenta. The case where k is in
the above set must be treated seperately but does not change the final results
(see section 4 in [46]).
The Green function of the Helmholtz equation are solutions of(

∆ + k2
)
G(~r, k2) = −

∑
~n∈Z3

δ (~r + ~nL) .

Using the Fourier transform G(~r, k2) = 1
L3
∑
p∈PL e

i~p~r one easily finds

G(~r, k2) = 1
L3

∑
p∈PL

ei~p~r

p2 − k2 .

On the other hand the Neumann function obeys
(
∆ + k2

)
n0(kr) = −−4π

k
δ (~r) .

With the help of the Neumann function, the Green function can be decomposed
into a singular and a regular part

G(~r, k2) = k

4πn0(kr) + Ĝ(~r, k2).

It is clear that derivatives with respect to ~r acting on the above Green function
yields further singular solutions of the Helmholtz equation. Not all of them
are linear independent as one can always use the Helmholtz equation ∆ψ(~r) =
−k2ψ(~r) to map the second order derivative of the Green function to the Green
function itself. All linear independent solutions are obtained with the help of
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the harmonic polynomials

Ylm(~r) := rlYlm(θ, ϕ)
⇒ Glm(~r, k2) := Ylm(∇)G(~r, k2).

The solutions Glm are also decomposed in its singular and its regular part

Glm(~r, k2) = −1l
4π Ylm(θ, ϕ)kl+1nl(kr) + Ĝlm(~r, k2).

2. Expansion in spherical harmonics
A generic singular solution is now given as a linear combination of the above
Green functions G,Glm. The expansion of the regular part in yields

G(~r, k2) = k

4πn0(kr) +
∞∑
l=0

l∑
m=−l

glmYlm(θ, ϕ)jl(kr) (4.10)

Glm(~r, k2) = −1lkl+1

4π

Ylm(θ, ϕ)nl(kr) +
∞∑
j=0

j∑
s=−j
Mlm,jsYjs(θ, ϕ)jj(kr)

 .
(4.11)

In the case (4.10) the coefficients glm are given by a generalized Zeta function

glm = il

πqlL
Zlm(1; q2), q = kL

2π

Zlm(s; q2) :=
∑
~n∈Z3

Ylm(~n) 1
(n2 − q2)s .

The special case where l = 0 and m = 0 will be relevant for the Higgs boson
resonance. The above equations can be simplified considerably when restricted
to this case

g00 = 1
πL
Z00

(
1; q2

)
= 1
πL

∑
~n∈Z3

1√
4π

1
n2 − q2 .

3. Energy eigenstates
From equation (4.8) one infers that the general solution of the spherical com-
ponents is given by

ψlm(r) = blm {αl(k) jl(kr) + βl nl(kr)} . (4.12)

At the same time, the general singular periodic solution of the Helmholtz
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equation with degree Λ can be represented as a linear combination of the
Green functions Glm

ψ(r) :=
Λ∑
l=0

l∑
m=−l

vlmGlm(~r, k2).

Inserting the expansion (4.11) into (4.12) yields

blmαl(k) =
Λ∑
j=0

j∑
s=−j

vjs
−1j
4π kj+1Mjs,lm

blmβl(k) = vlm
−1l
4π k

l+1.

The second equation determines vlm. The first equation is then

blmαl(k) =
Λ∑
j=0

j∑
s=−j

bjsβj(k)Mjs,lm. (4.13)

In order to express the above relation as a matrix equation one defines opera-
tors in the vector space of elements blm, l ∈ {0, . . .Λ} ,m ∈ {−l, l}

Alm,js := αl(k) δljδms, Blm,js := βl(k) δljδms.

The linear equation (4.13) for the coefficients is then equivalent to

Λ∑
j=0

j∑
s=−j

(A−BM)lm,js bjs = 0.

A non trivial solution exists, if the determinant det (A−BM) vanishes. The
matrices A,B are connected to the definition of the scattering phase in (4.7)

(A+ iB)lm,js = αl(k) δljδms + iβl(k) δljδms
= (αl(k) + iβl(k)) δljδms

Analogously
(A− iB)lm,js = (αl(k)− iβl(k)) δljδms

⇒ (A− iB)−1
lm,js = 1

αl(k)− iβl(k) δljδms

The scattering phase, expressed in the matrix elements of A,B is then

e2iδl =
(A+ iB)lm,js
(A− iB)lm,js

.
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Using the scattering phase, one can rewrite the condition for the determinant

det
(
e2iδ − U

) != 0, U = M+ i

M− i
.

The zeros of the determinant determines k and thus the energy eigenvalues.
Again, the special case for l = 0 and m = 0 simplifies the above equation.
In particular, the above matrix equations involving A and B turn into simple
scalar equations. The relation for the scattering phase is then

e2iδ0 = α0 + iβ0

α0 − iβ0
.

The energy eigenvalues k are then determined by

e2iδ0(k) = M(k) + i

M(k)− i

M is just a scalar and is specified in the following steps.

4. Energy spectrum in the A+
1 sector

So far, the energy eigenvalues k were considered in a finite box. In the fol-
lowing the energy spectrum will be discussed in a discretized box with cubic
symmetry. The Hamiltonian is invariant under discrete rotations. Hence, its
eigenstates can be characterized in irreducible representations of the cubic
group. The representations of the cubic group are derived from the irreducible
representations of O(3). The spherical harmonics Ylm are a basis in the space
of all harmonic polynomials of degree l. Their transformation under a rotation
R ∈ O(3) is given by

Ylm(R~r) =
l∑

s=−l
D(l)
ms(R) Yls(~r). (4.14)

The representations of the full cubic group O(3,Z) is given by the represen-
tations of the special cubic group and parity. The parity of the harmonic
polynomials is P = −1l. The A+

1 sector is then obtained for l = 0. The (+)
sign indicates the positive parity. A+

1 corresponds to the trivial representation
and thus D(l)

ms(R) is just a scalar. In this work, only the A+
1 sector will play a

role and the further discussion is restricted to this sector.
The condition for the determinant is then

e2iδ0 = M+ i

M− i
. (4.15)
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whereM is just a scalar in this case. Using equations (4.10) and (4.11)

M = 1
π

3
2 q
Z00(1; q2), q = kL

2π .

5. The scattering phase and the two particle energy
The last equation for the determinant (4.15) can be split up in its real part
and its imaginary part. A simple calculation for the real part then yields

tan(δ0) = 1
M

.

The final result is then given by

tan δ0(k) = π
3
2 q

Z00(1; q2) , q = kL

2π . (4.16)

The final result for the non relativistic case given in equation (4.16) can now be
transferred into quantum field theory by using the arguments at the beginning. The
momentum variable k is then not any more given by the quantum mechanical energy
eigenvalue E = k2

2µ but by the relativistic formula

W = 2
√
m2 + k2. (4.17)

The mass m denotes the mass of the particle in the initial state. It was assumed
that the initial state particles are spinless and have equal masses. The restriction
suites to the situation considered here. The method is more general and is able to
incorporate distinct masses and spins. Furthermore, the arguments were restricted
in order to analyse resonances even though it could equally well be used to analyse
bound states which is then associated to a negative energy of the two particle system.
The above result gives the connection between the two particle energy eigenvalues

and the scattering phase. The energy levels can be computed from lattice simula-
tions and hence, the momentum k is given by inverting equation 4.17. k is then an
arbitrary number and is not restricted to the lattice momentum. The arguments at
the beginning in fact excluded the case where k takes values which coincide with
some lattice momentum. This restriction is not necessary and the general deriva-
tion in the deferred work treats these momenta separately. Once the momentum
k is known, the scattering phases are accessed by solving the final equation (4.16)
numerically. From the discussion at the beginning of this chapter one knows that
the total cross section is associated with the scattering phase (see (4.4)) and near
a resonance it closely resembles a Breit-Wigner curve. The Breit Wigner curve is
parametrized by the resonance mass and its width and thus a fit to the numerically
obtained scattering phases yields the resonance parameters. In the above argument
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it was assumed that the only contribution to the A+
1 sector arises from the l = 0

angular momentum configuration. In fact this is not true. The next angular mo-
mentum contribution comes from l = 4. However, at low momentum k it is known
that the phase shifts δl(k) are suppressed by δl(k) ∝ k2l+1 [52]. In the following it
will be assumed that the lowest angular momentum contribution dominates and all
higher momenta can be neglected.
The above result is valid for the centre of mass frame. In order to compute the

two particle energies from lattice simulations, one has to consider particles with
opposite spatial momenta. Due to the fact that the lattice momenta are restricted
to the set given in (4.9) the total centre of mass energy gets easily beyond the
inelastic threshold where the above result is not valid any more.
The analysis of scattering phases has been extended to moving frames in [54]

where one of the two particles is at rest. This method allows to compute scattering
phases for smaller energy levels and the method is complementary to the centre of
mass frame and allows to compute more data for the scattering phases from the
same configurations. The obtained two particle energies have to be translated back
to the centre of mass frame. In general, the choice of a moving frame implies that
one has to consider irreducible representations of a sub group of the cubic group.
The remaining symmetry depends on the selected directions of the moving frame.
The corresponding irreducible representations are given in [54]. The modification of
the relation between the two particle energy in the moving frame and the scattering
phase is given by

tan δ0(q) = γqπ
3
2

Zd00(1; q2) , q = p∗L

2π .

p∗ denotes the momentum which has been transferred back to the centre of mass
frame by a Lorentz boost. The modified Zeta function is defined by

Zd00(s; q2) = 1√
4π

∑
r∈Pd

1
(r2 − q2)2 , Pd :=

{
~r ∈ R3|~γ−1

(
~n+ 1

2
~d
)
, ~n ∈ Z3

}
.

The vector ~d is related to the total momentum of the moving frame ~P . γ is the
usual Lorentz factor. Below are some definitions which are needed to compute the
modified Zeta function

~P := 2π
L
~d

γ = 1√
1− v2

, ~v =
~P

WL

~γ−1~n = γ−1~n|| + ~n⊥.

WL denotes the two particle energy in the moving frame which can be computed with
time slice correlators. The corresponding observables are defined in the next section.
~n|| and ~n⊥ is a decomposition of the vector ~n in its parallel and perpendicular parts
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with respect to the centre of mass velocity ~v

~n|| :=
(~n · ~v)~v
v2

~n⊥ := ~n− ~n||.

4.2.2 Numerical results
As mentioned in the last section, the Higgs boson decays dominantly to any even
number of Goldstone bosons, if kinematically allowed. The physical set-up chosen
here allows always for such a decay. The bare parameters as well as the physical cut
off, the Higgs boson propagator mass, the Goldstone boson mass and the obtained
Top quark mass are summarized in table 4.1. Details on the finite size analysis and
the extrapolation to infinite volume are described below.

Table 4.1: The table summarizes the bare parameters for the Monte Carlo simulations
which were performed in order to determine the scattering phases. The next columns
show the Higgs boson mass extracted from the propagator, the Goldstone boson mass
quark mass and the renormalized vev . The last column shows the cut off (Λ). The
latter physical quantities are obtained after an extrapolation to infinite volume. The
large statistical uncertainty at λ = 1.0 for Mp

H is owed to some technical difficulties at the
computing centre. Only lattice volumes up to 203 × 40 could be considered for the final
extrapolation of the Higgs boson propagator to infinite volume.

κ λ̂ ŷ J Mp
H Mp

G mt [GeV] vR Λ [GeV]

0.12950 0.01 0.36274 0.001 0.278(1) 0.085(2) 174(1) 0.2786(3) 883(1)
0.24450 1.0 0.49798 0.002 0.386(28) 0.133(4) 179(2) 0.1637(5) 1503(5)
0.30200 ∞ 0.57390 0.002 0.405(4) 0.129(1) 178(1) 0.1539(2) 1598(2)

The Goldstone theorem ensures that the Goldstone bosons are massless. Due to
an external current which couples to one of the scalar fields in the complex SUW (2)
doublet, the symmetry is broken explicitly in the Lagrangian. The Goldstone bosons
acquire a mass and they form a vector under cubic rotations. The magnitude of
the current J is chosen such that the ratio of the Higgs boson mass Mp

H to the
Goldstone boson mass is roughly 3. Here and below the superscript p in Mp

H and
Mp

G denotes that the mass was extracted from the analysis of the momentum space
propagator and a fit formula motivated from perturbation theory. The resonance
mass which corresponds to the physical Higgs boson mass is obtained with the help
of the correlation matrix analysis [11, 49] and a fit of the corresponding scattering
phases to the generic Breit-Wigner curve.
Figure 4.4 shows the infinite volume extrapolation of the renormalized scalar vev

and the top quark mass obtained from the fermion time slice correlator. The infinite
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volume results are obtained after a linear fit to the data starting from lattice volumes
of at least 163×40. The procedure above reflects the method which has been followed
in order to determine the mass bounds of the Higgs boson [30, 31].

(a) (b)

Figure 4.4: The figure shows the finite size effects of the scalar vev and the fermion mass
for the three selected values of the quartic coupling. The top quark mass is computed
from the fermion time slice correlation function. The figure shows also an extrapolation
to infinite volume starting from lattice volumes of at least 163.

In the following, the results on the scattering phases and the correponding cross
sections are presented. The scattering phases are computed from the energy levels
which are obtained from the analysis of the correlation matrix given below. Once
the scattering phases are computed, the optical theorem provides the connection to
the total cross section. Near the resonance, the cross section exhibits the form of
a relativistic Breit-Wigner function which will be used as a fit function in order to
extract the resonance mass and the width. Finally, an infinite volume extrapolation
of the energy eigenvalues are presented and contrasted to the Higgs boson resonance
mass.
The Higgs field is a singlet under cubic rotations and transforms as elements in

the A+
1 representation. The two particle energies discussed in the previous section

are constructed from the two particle Goldstone singlet GTG as it has the same
quantum numbers as the Higgs boson.
The analysis of the resonance parameters involves several lattice volumes with

identical bare parameters in order to compute the momentum dependence of the
scattering phase. As shown in table 4.1, there are three distinct set of simulation
parameters which shall be characterized with the value of the bare quartic coupling
(λ ∈ {0.01, 1.0,∞}). For each of the three values of the quartic coupling the simula-
tions were performed on lattice volumes up to 404. The temporal extent is always set
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to 40. Table 4.2 shows the lattice volumes for the three different quartic couplings.

Table 4.2: The following table lists the spatial extent Ls of the
lattice volumes L3

s × Lt. The temporal extent is always set to
40. Furthermore, the approximate auto correlation times computed
according to [57] is given in the last column.

λ Ls τ

λ = 0.01 12, 16, 18, 20, 24, 32, 36, 40 < 2.0
λ = 1.0 12, 16, 18, 20, 24, 36, 40 ≈ 5
λ =∞ 12, 16, 18, 20, 24, 32, 40 < 3

In the following the two particle energies of the two Goldstone boson states will
be discussed. Once these energy levels are known, the unstable nature of the Higgs
boson can be studied by the method described at the beginning of this chapter.
The Goldstone bosons are stable particles such that their ground state energy can

be calculated from the two point time correlation function. The concept of time
correlators is widely used in lattice field theory and there are reliable techniques to
extract mass eigenvalues from such correlators. The method of choice in this work,
is the analysis of the correlation matrix [11]. The correlation matrix in the centre
of mass is defined by

Ccm
αβ (∆t) := 1

Lt

∑
|t−t′|=∆t

〈Oα(t)Oβ(t′)〉c .

where Lt is the tomporal size of the lattice. Throughout this chapter the tempo-
ral extent will be Lt = 40. The subscript c denotes that the disconnected part of
the correlator has been subtracted. It has been shown in [49] that the eigenvalues
of the correlation matrix decay exponentially with rising time separation ∆t. The
strength of the exponential decay is determined by the energy levels of the particle
states, which are interpolated by the corresponding operators. The advantage of
this method in contrast to the correlation function, which also exhibits an expo-
nential decay, is that the energy eigenvalues computed from the correlation matrix
respect the mutual interaction of different operators (Oα(t)Oβ(t′), α 6= β) which are
in general complex such that they cannot be accessed in a straight forward man-
ner from the time correlation function. Furthermore, the corrections to the energy
levels obtained from the correlation matrix analysis is of order O

(
e−∆EN+1,nt

)
. N

denotes the number of independent observables considered in the correlation ma-
trix. ∆EN+1,n is the difference of energy levels ∆EN+1,n = EN+1 − En [11]. In the
following the operators which contribute to the two Goldstone system are collected.
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The definition of the observables in the centre of mass frame are straight forward

O0(t) := H̃(~0, t)

O1(t) := 1√
3

1
|Q1|

∑
~n∈Q1

G̃T (~n, t)G̃(−~n, t)

Q1 =
{
~n ∈ Z3|n2 = 0

}
, |Q1| = 1

O2(t) := 1√
3

1
|Q2|

∑
~n∈Q2

G̃T (~n, t)G̃(−~n, t)

Q2 =
{
~n ∈ Z3|n2 = 1

}
, |Q2| = 6

O3(t) := 1√
3

1
|Q3|

∑
~n∈Q3

G̃T (~n, t)G̃(−~n, t)

Q3 =
{
~n ∈ Z3|n2 = 2

}
, |Q3| = 12.

The correlation matrix is thus a 4× 4 matrix.
In order to collect more data on the scattering phases, the modification of the

method to a moving frame was analysed as well. The moving frame is characterized
by a constant vector ~d which indicates the momentum of the frame. The observables
for the moving frame are constructed such that one of the Goldstone bosons is at
rest while the other can take any momentum allowed on the lattice. The selection
of a constant vector ~d breaks the cubic symmetry and thus special care is needed
while constructing the observables. Fortunately, it turns out that the A+

1 sector
does not need much modification and explicit relations are given in [54]. The lowest
energy eigenstates are associated to the lowest possible relative momentum and thus
only moving frames with momentum ~d = (0, 0, 1) and permutations thereof will be
considered. The observables are

~di = ~ei

O~di,0(t) := H̃(~d, t)

O~di,1(t) := G̃T (~di, t)G̃(~0, t)

O~di,2(∆t) := 1
4

∑
~n∈Qdi,2

G̃T (~n+ ~di, t)G̃(−~n, t)

Qdi,2 =
{
~n ∈ Z|~n · ~di = 0, n2 = 1

}
O~di,3(t) := G̃T (2~di, t)G̃(−~di, t).

~ei is the unit three-vector in direction i. The correlation matrix in the moving frame
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is then given by

Cmf
αβ (∆t) := 1

3
1
Lt

∑
|t−t′|=∆t

3∑
i=1

〈
O∗~di,α(t) O~di,β

(t′)
〉
c

α, β ∈ {1, 2, 3} .

The energy levels obtained from the moving frame are connected to energy levels in
the corresponding centre of mass frame by Lorentz transformation. The collection
of all energy levels in both frames are presented in table C2 and C3 in appendix C.
Figure 4.5 shows the energy eigenvalues from the correlation matrix analysis.

Only those eigenvalues are displayed which belong to the ground state of the Higgs
boson. The figure also shows an extrapolation to infinite volume by a linear fit. All
obtained mass eigenvalues are in good agreement to the fitted line and no higher
order corrections in 1

L2
s
are visible. Due to the smaller errors for the smaller lattice

volumes, the linear fit is dominated by the latter. Therefore, it is sufficient to
consider only lattice volumes up to 323 × Lt in order to perform an extrapolation
of the generalized eigenvalues to infinite volume. Here however, all available lattice
volumes were considered.

Figure 4.5: The figure shows the energy eigenvalues of the Higgs boson obtained by the
correlation matrix analysis. The eigenvalues are plotted against the inverse squared lattice
size in order to perform an extrapolation to infinite volume.
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The relative momentum k in the rest frame is given by inverting the equation

Wk = 2
√
mG + k2 (4.18)

The Goldstone boson mass is obtained by a separate correlation matrix analysis
involving the three one particle Goldstone fields.
The two particle energies in the moving frame have to be transformed to the

centre of mass frame by Lorentz transformation. Once the centre of mass energy is
known, the relative momentum is given again by inverting equation (4.18).
Figure 4.6 shows the obtained scattering phases for the three different physical

situations. The scattering phase takes values in the intervall [0, π] and is plotted
against the momentum k. If the scattering phase δ(k) passes through π

2 it indicates
the existence of a resonance. Hence, all three set-ups involve an unstable Higgs
boson and its resonance parameters are obtained by a fit of the obtained scattering
phases to the Breit-Wigner function. The cross section can be decomposed into
spherical harmonics and is then given by

σ(k) = 4π
k2

∞∑
j=0

(2j + 1) sin2 (δj(k)) (4.19)

≈ 4π
k2 sin2 (δ0(k)) . (4.20)

As was mentioned in the beginning of this chapter and in Chapter 2, the total cross
section resembles a Breit-Wigner curve near a resonance. As argued before, the
contribution of the higher angular momenta j > 0 are neglected. Here the Breit
Wigner function is used as a fit function in order to extract the resonance mass
and the width. The first column in figure 4.6 shows the cross sections and the
Breit-Wigner fit. The explicit form of the fit function is

f(k) := 16π M2
HΓ2

H

(M2
H − 4m2

G)
(
(W 2

k −M2
H)2 +M2

HΓ2
H

) .
The solid curve in the second column in figure 4.6 is then obtained by inverting

equation (4.19) which gives the scattering phases.
Finally table 4.3 summarizes the results obtained by the different approaches.

The physical Higgs boson mass is compared to the mass obtained from the Higgs
propagator and the energy eigenvalues obtained with the help of the correlation
matrix analysis. The latter results were obtained after an extrapolation to infinite
volume.
The analysis of the resonance parameters of the Higgs boson within the pure

Higgs-Yukawa model shows that at a cut off of about 1.5 TeV, the width is at most
10% of the resonance mass. Figure 4.7 shows the obtained resonance widths of the
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Table 4.3: The table summarizes the obtained final results on the resonance mass
and the resonance width of the Higgs boson. λ̂ denotes the bare quartic coupling.
The first line is a preliminary result from Chapter 8 in [25]. Λ is the cut off of the
theory. The following two columns display the resonance parameters computed from
the scattering phases. ΓpH is the width obtained from perturbation theory where a
non vanishing mass for the Goldstone bosons has been considered. Finally the mass
extracted from the propagator as well as the mass eigenvalues computed with the
help of the correlation matrix is shown. The latter results were obtained after an
extrapolation to infinite volume as shown in figure 4.4 and figure 4.5.

λ̂ Λ [GEV] Res. mass
MH

Res. width
ΓH

ΓpH Prop. mass
Mp
H

GEVP

0.01 593(1) 0.428(3) 0.009(3) 0.0076(2) 0.433(3)
0.01 883(1) 0.2811(6) 0.007(1) 0.0054(1) 0.278(2) 0.274(4)
1.0 1503(5) 0.374(4) 0.033(4) 0.036(8) 0.386(28) 0.372(4)
∞ 1598(2) 0.411(3) 0.040(4) 0.052(2) 0.405(4) 0.403(7)

Higgs boson against the renormalized quartic coupling. The figure also shows the
width expected from perturbation theory. Furthermore, the resonance mass is in
perfect agreement with the mass obtained from the propagator as well as the Higgs
mass extracted from the generalized eigenvalue problem. The simulations at λ = 1.0
and λ = ∞ belong to a cut off of around 1.5 TeV. It was necessary to reduce the
cut off to 880 GeV for the smallest quartic coupling λ = 0.01 in order to meet the
resonance condition (M

p
H

mG
≈ 3). As one can see from table 4.3, the Higgs mass is

well below the cut off. Especially for the smallest quartic coupling λ = 0.01 the
resonance region is very small (mG = 0.09(1) ⇒ 0.18 ≤ Wk ≤ 0.36) which in turn
necessitates large lattice volumes in order to obtain energy eigenvalues which lead
to scattering phases near the resonance mass. The plots in figure 4.6 show that the
analysis of the moving frame is of great importance to extract reliable results.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The figure shows the scattering phases obtained in the three different physical
situations for λ ∈ {0.01, 1.0,∞} ordered vertically. The red points refer to scattering
phases obtained from the analysis in the centre of mass frame as originally proposed in
[46]. The blue points denote the scattering phases computed within a moving frame.
The modification was proposed in [54]. The vertical dotted line indicates the inelastic
threshold. The computations were performed on various lattice volumes L3

s × 40 where
Ls ∈ {12, 16, 18, 20, 24, 32, 40}.
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Figure 4.7: The figure summarizes the obtained values for the resonance width of the
Higgs boson at various quartic couplings. The X-Axis denotes the renormalized quartic
coupling which is defined by λR = Mp

H
2−Mp

G
2

8v2
R

. The Y-Axis shows the relative width of the
Higgs boson. The grey points denote the Higgs boson resonance width computed within
perturbation theory where the Goldstone bosons were considered as generic massive scalar
particles. The dashed line connects the points obtained from perturbation theory.





5 Beyond the Standard model: A
fourth generation of fermions

Though the richness and precision of theoretical predictions in the framework of
the standard model is unique and remarkable, its well known deficits necessitates
to think about extensions of it. Even ignoring the main conceptional caveat, that
gravity is not included at all and cannot be included in a straight forward way, the
model fails to describe phenomena which are accessible in present experiments and
observations. The most prominent of those are

• the baryon asymmetry in the universe,

• the lack of a candidate for dark matter and dark energy,

• the strong CP problem.

An extension of the standard model with a fourth generation of heavy quarks and
leptons (SM4) arranged within a SUL(2) doublet permits to alter the model in a
way such that it is compatible with electroweak precision measurements. A fourth
generation of fermions provides various prospects to augment the model to enable
a deeper understanding of flavour physics and mass hierarchies [40]. The main
motivation, however, is that SM4 may satisfy the three Sakharov conditions [55]
such that the observed Baryon asymmetry of the universe is consistent with theory
[16, 41]. It is important to mention that the standard model (in the following SM3)
does not allow for a strong first order phase transition and the only CP violating
source in SM3 can be parameterised with a phase in the CKMmatrix which is known
to be too small to explain the Baryon asymmetry. Another source of CP violation
within SM3 is the term

θGµνG̃
µν

which can be added to the standard model Lagrangian as it is consistent with
the symmetries of the model. θ is a measure for CP violation induced by strong
interactions. Experimental data, however, constraints this parameter to be smaller
than 10−10. At this point it shall be mentioned that there are other modifications
of SM3 without involving further fermions, such as the axion mechanism (see [21]
and references therein), which may provide enough CP violation in order to satisfy
the Sakharov condition.

83
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The main arguments against a fourth generation were given in the beginning of
1990 where precise measurements of the Z boson peak and width were performed in
SLAC and CERN [2–5, 7, 18]. Assuming that the neutrino mass of a potential fourth
generation is below MZ/2 ≈ 45 GeV it could be proven that there are indeed just
three generations [10]. An alternative method was followed by analysing the S and
T parameter as described in [Frampton:1999xi]. Assuming that the heavy fermion
doublet is degenerate it was concluded that three fermion generations are favoured.
A non-degenerate fermion doublet however, reduces this tension and allows a further
heavy fermion generation in the sense that the deviation from the measured value
of the S parameter is below 3σ [21].
SM4 does not present a solution for all deficits within SM3 but it may be a viable

extension towards a more complete theory. A detailed and comprehensive review on
this topic is given in [21].
The existence of a fourth generation with its strong coupling to the scalar sector

necessitates to reinvestigate the Higgs boson mass bounds. Moreover, the large
Yukawa couplings may give rise to genuine non-perturbative effects which can be
treated with the numerical method described in chapter 2.
In this chapter the Higgs boson mass bounds are evaluated in the presence of

a fourth generation of heavy quarks. Similar to the argument in the case of the
standard model, only the heaviest fermion doublet will be considered. Further details
on the model is given in section 5.1. The focus of the computation is to determine
the mass bounds for varying values of the cut off and a fixed heavy degenerate quark
doublet with a mass of about 700 GeV. In a second set-up the heavy quark mass
is varied between 200 GeV and 700 GeV while the cut off is held constant at about
1500 GeV.
The final results from the lattice simulations are obtained after an extrapolation

to infinite volume. The main outcome is that the lower Higgs boson mass bound
strongly depends on the mass of the heavy quarks while the upper Higgs boson mass
is only slightly enhanced with respect to the standard model.
Although the simulation strategy and the relevant observables have been discussed

in Chapter 2, some aspects are repeated in this chapter in order to give a self
consistent and complete presentation.

5.1 The model
Heavy fermions are realized through large couplings to the scalar doublet. These
large couplings dominate the contribution to the Higgs mass with respect to the
weak gauge bosons and the light fermions. Thus it is reasonable to neglect the
weak gauge bosons and restrict the model solely to the heavy fourth generation of
fermions. Moreover, a degenerate doublet of heavy quarks is considered in order to
get a first estimate of the Higgs boson mass bounds. The model is then given by
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the Euclidean Lagrangian

LHYE = 1
2 (∂µϕ)† · (∂µϕ) + 1

2m
2ϕ† · ϕ+ λ

(
ϕ† · ϕ

)2

+ t′ /D t′ + b′ /D b′ + y′b

(
t′

b
′

)T
L

· ϕ b′R + y′t

(
t′

b
′

)T
L

· ϕ̃ t′R + h.c.. (5.1)

ϕ̃ transforms like a SU(2) vector and is given by

ϕ̃ = iτ2ϕ
∗, τ2 is the Pauli matrix .

The following analysis have been performed by means of Monte Carlo simulations.
The method is based on a discretized space time lattice. The above Lagrangian
exhibits a global SU(2)W × U(1)Y symmetry. Implementing chiral symmetry on
such a lattice involves several difficulties. However, a consistent lattice modified
chiral symmetry can be defined with the help of the Neuberger overlap operator
[51]. The lattice modified chiral symmetry converges in the continuum limit to the
desired continuum symmetry. Details on the simulation algorithm and the lattice
modified chiral symmetry are given in Chapter 2. The Euclidean lattice action is
given by

S = −κ
∑
x,µ

Φ†x (Φx+µ + Φx−µ) +
∑
x

Φ†xΦx + λ̂
∑
x

(
Φ†xΦx −Nf

)2

+
∑
x,y

ψ
α

x

{
I2D

αβ
x,y + ŷ′

(
P−φP̂− + P+φ

†P̂+
)αβ
x,y

}
ψβy . (5.2)

ψ is the spinor doublet of the heavy t′ and b′ quarks

ψ =
(
t′

b′

)
. (5.3)

The scalar fields are arranged in a quarternion

φ :=
(
ϕ̃1 ϕ1
ϕ̃2 ϕ2

)
=: φ0I− iσjφj, φµ ∈ R.

Furthermore, it is common to scale the fields with a factor of
√

2κ

Φµ := 1√
2κ

φµ.
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The couplings in the Lagrangian (5.1) are then recovered with the relations

λ = λ̂

4κ2 , m2
0 = 1− 2Nf λ̂− 8κ

κ
, yt,b = ŷt,b√

2κ
.

Details on the simulation algorithm is given in [25].
The φ4 theory is assumed to be trivial in space time dimensions larger than three.

Aizenman proved analytically [6] that the model is indeed trivial in dimensions
larger than five. There were many numerical studies which were consistent with the
triviality picture also for four space time dimensions. The triviality is inherently
connected to the scalar sector and thus also the Higgs-Yukawa model is assumed to
be trivial in four space time dimensions. That means any set of bare parameters
yields a free, i.e. gaussian theory as the cut off gets arbitrarily large. An interacting
Higgs-Yukawa model therefore implies a finite intrinsic cut off and renormalized
quantities implicitly depend on this cut off.
As the Higgs boson has not yet been discovered experimentally, its mass bounds

at a given cut off are of great importance for phenomenology. The strategy in this
work is to evaluate the model at the physical point of interest and to derive the
upper and lower Higgs boson mass bounds which are attainable within this model.
The bare parameters of the theory are λ0,m0 (or, equivalently κ) and y0. The

subscript zero denotes that all considered parameters are not renormalized. The
observables which are evaluated within this work and the addressed questions focuses
on the broken phase of the model. The parameter κ respectively m0 has thus to be
chosen such that the simulation point is above the phase transition line. Furthermore
the obtained non-zero magnetization, which indicates the broken phase, is set such
that the scalar vev meets the phenomenologically known value of 246 GeV. The
latter scale is then used to determine the cut off (Λ) of the theory. Within the
broken phase, the parameter κ or m0 is tuned to achieve the desired value of the cut
off. The calculations presented in this chapter aim to generate quark masses higher
than the standard model top quark. Hence, the bare Yukawa coupling has to be
tuned such that the masses of the heavy fourth generation quark doublet lies above
175 GeV. Finally λ0 remains to be fixed. It was shown in [31] and [30] that the upper
Higgs boson mass is reached at infinite bare quartic coupling while a vanishing bare
quartic coupling yields the lower mass bound, as expected from perturbation theory.

5.2 Current Mass bounds related with a fourth
generation

While experimental data constrains the lower bound of a potential heavy fourth
generation quark mass, theoretical calculations relying on partial wave expansion
and unitarity can provide an upper bound above which perturbation theory fails.
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The upper bound is either saturated or it defines an energy at which non perturbative
effects dominate over the leading order prediction from perturbation theory.
The current lower bound for the b′ quark mass is established by the CDF collab-

oration [1]
mb′ ≥ 338 GeV .

The perturbative method to determine an upper bound on the heavy fermion and
the Higgs boson mass relies on unitarity and partial wave expansion. The differential
cross section is given by the squared modulus of the scattering amplitude which in
turn can be calculated in a perturbative expansion of Feynman diagrams

dσ(α→ β)
dΩ = |f(α→ β)|2,

f(α→ β) = −4π2

E

√
k′E ′1E

′
2E1E2

k
Mβα︸ ︷︷ ︸

Feynman amplitude

.

The partial wave analysis is an expansion of the Feynman amplitude in terms of
spherical harmonics. Unitarity of the partial wave amplitudes then defines an upper
bound on the involved renormalized parameters. This method was used in [43] where
an upper bound for the Higgs boson mass could be derived

M2
H = 4π

√
2

GF

≈ 1 TeV .

It is important to notice that this analysis was performed by truncating the Feynman
amplitude such that contributions of the order 1

M4
W

could be neglected. This proce-
dure is justified as long as perturbation theory is viable. Higgs boson masses above
a TeV are not excluded and would just indicate the break down of perturbation
theory.
The above method of partial wave unitarity was also applied for heavy fermions

by [15]. The upper bound for heavy fermions was constrained to be lower than

mt′ ≤ 550 GeV .

5.3 Observables and extraction of mass eigenvalues
The simulation algorithm produces a set of scalar fields, a so called ensemble, which
is sampled with a distribution corresponding to the action given in equation (5.2).
The expectation value of any observable depending on the scalar field is then given
by an ensemble average. The vacuum expectation value of the scalar field (vev ) will
be computed in order to distinguish the broken phase from the symmetric phase.
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The bare vev is defined by

vev :=
√

2κ |Φ| =
√

2κ
(∑

α

Φ2
α

) 1
2

(5.4)

Φα = 1
V

∑
x∈Z4

L

Φα
x . (5.5)

The straight forward definition of the scalar vacuum expectation value 〈ϕ〉 is not
invariant under the symmetries of the model and thus the ensemble average neces-
sarily vanishes. The usual procedure in the context of the path integral formulation
is to add an external current which couples to one of the scalar field components.

S[J ] := S + J
∑
x

Φ0
x.

√
2κ Φ0 is then identified with the Higgs field. The current J breaks the symmetry

explicitly and expectation values of observables are a functional of the external
current J . The physical result is then taken in the twofold limit

〈O〉 = lim
J→0

lim
V→∞

〈O[J ]〉 .

The above limiting procedure implies an enormous numerical task. It was shown in
[36, 37] that the definition (5.5) of the scalar vev converges to the vev obtained after
taking the limits V → ∞ and J → 0. The vev is taken according to the defintion
(5.5) throughout this chapter.
In order to compute the renormalized vevR one needs the renormalization factor

Z of the scalar field. It is known that the Higgs boson field renormalization factor
and the Goldstone field renormalization factor are very close to each other. Here the
latter will be used in order to determine the renormalized vevR. The action defined in
(5.2) does not depend on the lattice spacing a and consequently the obtained lattice
results are expressed in lattice units. The scalar vev is a dimensionfull quantity and
therefore the renormalized vevR expressed in lattice units is given by

vR
a

:= 1√
ZG

v

a
.

The renormalized vevR is known phenomenologically from W boson scattering and
the width of the Z boson resonance

246 GeV = vR
a

⇒ Λ := 1
a

=
√
ZG 246 GeV

v
.
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The lattice spacing is then determined such that the renormalized vevR assumes the
phenomenologically known value of 246 GeV. Once the lattice spacing is fixed the
cut off can be defined as the inverse lattice spacing.

5.3.1 Extraction of mass eigenvalues
The gloabl SUW (2)× UY (1) symmetry allows to transform the scalar doublet such
that it takes the form

ϕx =
(
G2
x + iG1

x

v +Hx − iG3
x

)
.

The Higgs and Goldstone boson propagator are then given by a discrete Fourier
transformation

H̃p̂ :=
∑
x

e−ip̂xHx,

G̃p̂ :=
∑
x

e−ip̂xGx,

G̃−1
H

(
p̂2
)

=
〈
H̃−p̂H̃p̂

〉
,

G̃−1
G

(
p̂2
)

= 1
3

3∑
i=1

〈
G̃i−p̂G̃ip̂

〉
.

The hat above the momentum variable indicates the discrete lattice momentum
p̂ ∈ ΓL,T

ΓL,T :=
{
p ∈ R4|p0 = 2π

T
n0, pi = 2π

L
ni,

n0 ∈ Z : 0 ≤ n0 < T, ni ∈ Z : 0 ≤ ni < L
}
.

The time slice correlator is a widely used method to extract low lying energy
eigenvalues from lattice simulations. Its time dependence can be derived from first
principles. The time slice correlator is defined by

C(∆t) :=
∑
t,t′

|t−t′|=∆t

〈O(t)O(t′)〉c

〈O(t)O(t′)〉c := 〈O(t)O(t′)〉 − 〈O(t)〉 〈O(t′)〉 .

In order to clarify the peculiarities of the time slice correlator some details are given
below.

C(∆t) =
∑
t,t′

|t−t′|=∆t

∑
n

〈Ω|O(t)|n〉 〈n|O(t′)|Ω〉
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|n〉 are eigenstates of the Hamilton operator and fulfil the completeness relations∑
n

|n〉 〈n| = I

⇒ C(∆t) =
∑
t,t′

|t−t′|=∆t

∑
n

〈Ω|eiHt O(0) e−iHt|n〉 〈n|eiHt′ O(0) e−iHt′|Ω〉

=
∑
t,t′

|t−t′|=∆t

∑
n

〈Ω|O(0) e−iEnt|n〉 〈n|eiEnt′ O(0)|Ω〉

=
∑
t,t′

|t−t′|=∆t

∑
n

e−iEn∆t 〈Ω|O(0)|n〉 〈n|O(0)|Ω〉

=
∑
t,t′

|t−t′|=∆t

∑
n

e−iEn∆t
∣∣∣ 〈Ω|O(0)|n〉

∣∣∣2

The time slice correlator falls off exponentially and for large time separations ∆t� 1
the lowest energy eigenvalue will dominate the exponential decay. Higher energy
eigenvalues are only accessible if one can find suitable observables O(t) such that
their projection onto lower lying energy states O(t) |n〉 vanish. This is possible if
these eigen states are separated from the lower eigenstates by distinct quantum
numbers.
The case of the Higgs boson is more complicated. A one particle Higgs boson state

has the same quantum numbers as a two Goldstone system. Due to the finite volume,
the Goldstone particles acquire a mass. In the case were the bare quartic coupling
is small and the one particle Higgs boson state has a lower energy eigenvalue than
the two particle Goldstone system, the Higgs boson is a stable particle. Its energy
eigenvalue can be determined reliably with the help of the time slice correlator.
The upper mass bound, which is obtained at infinite bare quartic coupling, cannot
be extracted with the correlator. The spectrum is dominated by the two particle
Goldstone states and various excitations thereof. Another approach to extract the
mass of the Higgs boson is to locate the pole of the propagator.
By definition, particle masses of fundamental particles are given by the pole of

their propagator in momentum space. The Euclidean propagator of a scalar particle
is given by

G−1
E (p2) = p2 +m2

0 − Σ(p2; Λ).

In case that the particle of interest is a resonance, special care is needed. An
unstable particle can decay into lighter particles which is reflected by a branch cut
along the negative p2 axis. The branch cut starts from the threshold value given
by the two particle energies of the lighter particles in the theory. The pole of the
analytic propagator is complex. In this case the renormalized mass is defined by the
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vanishing real part of the inverse Euclidean propagator

<
{
G−1
E

(
p̄2 = −m2

R

)}
= 0

p̄ = (imR, 0, 0, 0).

The above definition is consistent with the relations given in [48].
The Euclidean propagator can be computed from lattice simulations but as the

above equation shows, one needs an analytic continuation to negative squared mo-
menta in order to locate the pole. This can only be achieved if an analytic expression
for the Euclidean propagator is available. In this work, the functional structure mo-
tivated by one loop perturbation theory will be employed in order to locate the
pole of the Higgs boson propagator. The one loop result is computed in detail in
Chapter 3. The final result is
(
GR
H

(
p2,M2

H ,M
2
G, λR, yR; Λ

))−1
=

1
Z

p2 +M2
H + 18 (4λRv)2

(
I1(p2,M2

H ,Λ)− I1(−M2
H ,M

2
H ,Λ)

)
+ 6 (4λRv)2

(
I1(p2,M2

G,Λ)− I1(−M2
H ,M

2
G,Λ)

)
−∆Σf

H

(
p2,Mf = yrvR, yR; Λ

).

I1(p2,m2,Λ) = 1
(4π)2

1 + ln
(

Λ2

m2

)

−
√

1 + 4m2

p2 ln
 1 +

√
1 + 4m2

p2

−1 +
√

1 + 4m2

p2

.
Σf
H denotes the contribution of the fermions to the self energy of the Higgs boson.

In all cases considered here, the branch cut induced by the fermions in the analytic
continuation of the Higgs boson propagator lies beyond the branch cut induced by
the Goldstone bosons. Due to statistical errors of the numerical data, it will not
be possible to resolve the structure of the branch cut induced by the fermions. The
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functional structure is then reduced to

fH
(
p2,M2

H ,M
2
G, A,B, Z

)
=

1
Z

p2 +M2
H + A

(
I1(p2,M2

H ,Λ)− I1(−M2
H ,M

2
H ,Λ)

)

+B
(
I1(p2,M2

G,Λ)− I1(−M2
H ,M

2
G,Λ)

).
In this work the upper as well as the lower Higgs boson mass bound will be

determined on the basis of the Higgs boson propagator. In Chapter 3 a perturbative
expansion of the Higgs boson propagator is given up to one loop and includes bosonic
as well as fermionic loops. It is assumed that the functional structure of the one loop
Higgs boson propagator is also valid for larger values of the renormalized quartic
coupling. The perturbative expansion of the propagator will be used as a fit function
in order to determine the parameters of fH . After a successful fitting procedure, fH
can be continued into the complex p2 plane and the pole can be located numerically
for negative squared momenta.
Finally the fermion time slice correlator will be discussed. The fermion mass can

be extracted from either the left or the right handed components of the spinor.
In the following, only the left handed components are discussed, but it is straight
forward to apply the arguments for the right handed components. The left handed
correlator Cf (t0 − t1) is given by

Cf (t0 − t1) :=
〈
< Tr

{(
P̂Lψ

)
(t0,~p=0)

(
ψ̄PL

)
(t1,~p=0)

}〉
.

The fermionic degrees of freedom are not directly accessible but the above expecta-
tion value can be reconstructed from the matrix elements of the fermion matrix as
described at the end of Chapter 2.

5.4 Cut off dependent Higgs boson mass bounds
The Higgs boson mass bounds for the standard model top and bottom quark have
been established in [30, 31]. This chapter aims to explore the effect on the mass
bounds in the presence of a heavy degenerate top bottom doublet.
The perturbative upper bound for a heavy degenerate quark mass is assumed

to be around 550 GeV. The simulations performed here therefore attempt to attain
fermion masses above the perturbative unitarity bound. The following section shows
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the dependence of the Higgs boson mass at cut off values ranging from 1500 GeV to
3500 GeV while the heavy top- bottom quark mass was held fixed at around 676±22
GeV. The particle masses and the vacuum expectation value of the scalar field can
have strong dependence on the lattice size and therefore a finite size analysis and
an extrapolation to infinite volume is inevitable.
Here the final results on the lower and upper Higgs boson mass bound are pre-

sented. The results are compared with the established results for the standard model
fermions to visualize the effect of a fourth generation of fermions.

5.4.1 Numerical results
In order to vary the cut off, several simulations with different values of m0 and
y0 had been performed. λ0 is set to zero for the lower Higgs boson mass bound
while the simulations for the upper Higgs boson mass bound are performed at infi-
nite bare quartic coupling. For each value of m0, y0 the achieved heavy top quark
massmt′ was evaluated to make sure that its values stayed within 3% with respect to
676 GeV. Finally the simulation was performed on various lattice volumes with iden-
tical parameters. Table 5.1 shows the chosen bare parameters and the obtained auto
correlation time which was computed with the so called gamma method described
in [57].

Table 5.1: The table shows an overview of the chosen bare parameters. The
fermion mass was evaluated at each value of the cut off in order to ensure, that the
fermion mass is within 3% with respect to the average fermion mass of 676 GeV.
Stat. is the number of configurations produced on a 163×32 lattice with the given
parameter set. τ is the auto correlation time. The temporal extent aT was set to
32 in all cases.

κ m2
0/a

2 λ0 y0 Ls [a · L] Stat. τ Λ [GeV]

0.09442 2.59098 0.0 3.21224 12, 16, 18, 20, 24 20000 1.3 3498± 48
0.09463 2.56747 0.0 3.20867 12, 16, 18, 20, 24 15000 1.2 2929± 27
0.09485 2.54296 0.0 3.20495 12, 16, 18, 20, 24 15000 0.8 2548± 22
0.09545 2.47669 0.0 3.19486 12, 16, 18, 20, 24 20000 0.7 1883± 16
0.09560 2.46025 0.0 3.19235 12, 16, 18, 20, 24 20000 0.8 1786± 18
0.09605 2.41124 0.0 3.18486 12, 16, 18, 20, 24 20000 1.5 1511± 20

0.21300 −∞ ∞ 3.37068 12, 16, 18, 20, 24 6000 7 3566± 48
0.21500 −∞ ∞ 3.35497 12, 16, 18, 20, 24 6000 3 2701± 17
0.22200 −∞ ∞ 3.18159 12, 16, 20, 24 15000 4 2563± 38
0.22320 −∞ ∞ 3.17303 12, 16, 20, 24 15000 3 2299± 21
0.22560 −∞ ∞ 3.15610 12, 16, 20, 24 15000 4 1932± 14
0.23040 −∞ ∞ 3.12305 12, 16, 20, 24, 32 15000 3 1516± 7
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Figure 5.1 shows finite size effects of the scalar vev , the Higgs boson propagator
and the fermion mass as well as the infinite volume extrapolations. The first row

(a) (b) (c)

(d) (e) (f)

Figure 5.1: The figure shows the finite size effects and the infinite volume extrapolation
of the renormalized vev , the mass from the pole of the Higgs boson propagator and the
quark masses. The first row corresponds to vanishing bare quartic coupling and the second
row is computed at infinite bare quartic coupling. The obtained results of the observables
are plotted against the inverse squared spatial extent of the underlying lattice simulation.
The red straight line is a linear fit of the data starting from a lattice extent of L = 16.
The intercept of the linear fit with the vertical axis is taken as the infinite volume result.

corresponds to vanishing bare quartic coupling and the second row shows the be-
haviour for infinite bare quartic coupling. The results for the observables are plotted
against the inverse squared spatial lattice extent. The infinite volume extrapolation
is performed using a linear fit involving lattice sizes of at least L = 16. The inter-
cept of the linear fit at vanishing inverse squared lattice extent is then taken as the
infinite volume result of the observable.
It is the aim to keep the quark masses fixed while the cut off is varied. In numerical

simulations, where the result of observables involve statistical errors, it is a difficult
task to satisfy such a condition to arbitrary good precision. In this work the quark
masses are about m′t = m′b = 676 ± 22 GeV. Figure 5.2 shows the infinite volume
result of the quark masses at various cut off values. The corresponding result for
the standard model case is also presented.
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(a) (b)

Figure 5.2: The figure shows the infinte volume extrapolation of the quark masses. The
left plot (a) shows the result from the previous work [30, 31] in the standard model where
the top quark mass was fixed at mt = mb = 173 ± 3 GeV. The right plot (b) shows the
case of a heavy quark doublet. The quark mass is m′t = m′b = 676± 22 GeV.

Finally figure 5.3 shows the infinite volume result for the Higgs boson mass bounds
at cut off values between 1500 GeV and 3500 GeV.
It is known from [48] that the upper Higgs boson mass bound follows the functional

form

mup
H

a
= Am ·

{
log(Λ2/µ2) +Bm

}−1/2
. (5.6)

Am, Bm are free fit parameters and µ is an arbitrary scale, which is set to µ = 1
TeV.
Compared to the standard model case, the relative shift in the upper Higgs boson

mass is less than 200 GeV and the cut off dependence is weaker. The bound is well
compatible with the logarithmic decay given in (5.6). All parameter sets have been
computed on lattices with spatial extent of Ls ∈ 12, 16, 18, 20, 24 in order to analyze
the finite volume effects and to perform an infinite volume extrapolation (see table
5.1 for details on the simulation).

5.5 Higgs boson mass bounds with varying top quark
masses

The previous section aimed to attain top prime masses (mt′) above the upper bound
from partial wave unitarity considerations. In order to explore the heavy quark
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(a) (b)

Figure 5.3: The figure shows the infinte volume extrapolation of the Higgs boson masses.
The mass was extracted from the pole of the Higgs boson propagator. For a direct compari-
son, the results obtained in previous work [30, 31] is displayed in the left plot (a). The right
plot (b) shows the case of a heavy quark doublet. The quark mass is m′t = m′b = 676± 22
GeV.

masses in the whole allowed region the cut off was kept constant at around 1.5 TeV
and several top prime masses were simulated ranging from about 200 GeV up to
700 GeV. As observed in the previous chapter, the cut off effects as well as the finite
size effects may play a significant role at a cut off of Λ = 1500 GeV and thus it will
be mandatory to perform computations on large lattices such as 324.
As before, it is the aim to study the Higgs boson mass bounds. It turned out

that the lower Higgs boson mass bound for large quark masses is numerically more
demanding. The required computing time in order to reduce the relative statistical
error of observables comparable to those for the upper bound is about a factor three
larger. Due to restrictions in computing time and real time, only the upper Higgs
boson mass bound with varying top prime masses was studied. Table 5.2 shows
an overview of the chosen bare parameters, the obtained cut off Λ and technical
details about the simulations such as the number of produced configurations and
the corresponding auto correlation time τ .

5.5.1 Numerical results
Table 5.2 shows the bare parameters of the model. At each value of the bare Yukawa
coupling, the parameter κ or equivalently m2

0 has to be tuned such that a cut off of
about 1500 GeV is reached. Table 5.2 also shows the obtained cut off values on a
163×32 lattice. The final result for the cut off has to be taken after an extrapolation
to infinite volume.
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Table 5.2: The table shows the chosen bare parameters, the obtained cut off Λ
as well as the lattice sizes, the number of configurations and the auto correlation
time τ .

m2
0/a

2 λ0 y0 Lattice Extension
[a · L]

Stat.
163 × 32

τ Λ [GeV]

−∞ ∞ 3.12305 12, 16, 20, 24, 32 20000 3 1516± 7
−∞ ∞ 2.04124 12, 16, 20, 24, 32 20000 2.8 1419± 4
−∞ ∞ 1.30930 12, 16, 20, 24, 32 20000 2.6 1481± 3
−∞ ∞ 0.96970 12, 16, 20, 24, 32 20000 1.6 1558± 4

(a) (b) (c)

Figure 5.4: The plot shows the finite size effects and the infinite volume extrapolation of
the scalar vev , the Higgs boson mass obtained from the pole of the propagator and the
quark mass. The data is computed at infinite bare quartic coupling and thus corresponds
to the upper Higgs boson mass. It was aimed to keep the cut off constant while the quark
masses are varied between 200 GeV and 700 GeV.

Figure 5.4 shows the finite size effects of the scalar vev , the Higgs boson mass and
the quark masses. Though the infinite volume extrapolation of the scalar vev appears
reliable, the finite size effects of the Higgs boson mass are strong and it seems to be
necessary to perform the linear fits to infinite volume starting from lattice sizes of
at least Ls = 24.
Finally figure 5.5 summarizes the final result on the Higgs boson mass bounds. In

order to give a complete overview, the result from the previous section is repeated
and displayed in the left image. The right image 5.5b shows the infinite volume
result for the upper Higgs boson mass. The mass is extracted from the pole of the
propagator. In contrast to the previous case, the finite size effects of the Higgs boson
mass is much stronger and therefore the extrapolation to infinite volume had to be
performed with lattice volumes of at least 243 × 32.
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(a) (b)

Figure 5.5: The figure summarizes the final result on the investigation of the Higgs boson
mass bounds in the presence of a heavy fourth generation of quarks. The left plot shows
the cut off dependent upper and lower Higgs boson mass bounds while the heavy quark
mass was held fixed at around 676± 22 GeV. The right image (b) shows the upper Higgs
boson mass bound at a constant cut off of about 1500 GeV while the heavy quark mass is
varied between 200 GeV and 700 GeV.

5.6 Conclusion
The Higgs boson mass bounds have been studied in the presence of a heavy fourth
generation of quarks. The model is restricted to the scalar sector and the heavy
fermion doublet. The dominant contribution to the Higgs boson mass is expected to
arise due to the large Yukawa coupling connected to heavy top prime quark. Hence,
it seems acceptable to neglect all other contributions from particles which couple to
the scalar sector within the standard model. Furthermore, the model is restricted to
a degenerate fermion doublet which ensures that the fermion determinant is strictly
real valued. The large Yukawa coupling necessitates a genuine non perturbative
analysis which also respects the chiral nature of the electroweak model. Within
this work, the basic physical observables are computed with the help of a polyno-
mial hybrid Monte Carlo algorithm and the quark fields were incorporated with the
Neuberger overlap operator which satisfies an exact chiral lattice symmetry.
An upper bound for a heavy top prime mass is suggested by perturbation theory

on the basis of partial wave analysis and is about m′t = 550 GeV. Hence, the cut off
dependence of the Higgs boson mass bounds have been investigated in the presence
of a top prime quark with a mass above the unitarity bound. The achieved top
prime mass is around 670 GeV. In a second approach the upper Higgs boson mass
bound has been computed at varying top prime quark masses and constant cut off
Λ = 1500 GeV.
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Figure 5.3b shows the upper and the lower Higgs boson mass bound in the presence
of a heavy top prime quark with a mass of about 670 GeV. Figure 5.3a shows the
analogous case for the standard model. The Higgs boson mass bounds are plotted
against the cut off of the theory which is varied between 1500 GeV and 3000 GeV.
All results were taken after an extrapolation to infinite volume. Figure 5.2 shows
the finite size analysis of the scalar vev , the Higgs boson mass and the top quark
mass. The first row corresponds to the lower Higgs boson mass bound where the
bare quartic coupling is set to zero and the second row shows the case for the upper
Higgs boson mass bound at infinite bare quartic coupling. The extrapolation to
infinite volume are performed from lattice volumes of at least 163 × 32 and the
infinite volume result is given by the intercept of the linear fit with the Y-Axis.
Similar to the case in the standard model, the upper bound is well compatible

with the logarithmic decay given in equation (5.6). The presence of a heavy top
quark has only mild effects on the upper Higgs boson mass bound. Compared to
the standard model, the upper Higgs boson mass is shifted by about 25%. However,
the lower Higgs boson mass is drastically raised by a factor of about five. The above
results indicate that in the presence of a heavy top prime quark with a mass of
about 670 GeV, Higgs boson masses below 500 GeV are excluded.
The strong dependence of the lower Higgs boson mass on the top prime mass

motivates to investigate the dependence on top prime masses systematically. A first
attempt is presented in figure 5.5 and shows the upper Higgs boson mass bound.
The cut of is held fixed at around 1500 GeV while the top prime mass is varied
between 200 GeV and 700 GeV. The figure also shows that the finite size effects
are stronger for the chosen value of the cut off and the it is necessary to compute
the Higgs boson mass on lattice volumes up to 324. The linear fit, from which the
infinite volume result is extracted, involves lattice volumes of at least 203 × 32. As
inferred from the investigation of the cut off dependence, the upper Higgs boson
mass is influenced only mildly by a heavy top quark and the main contribution to
the Higgs boson mass seem to be caused by the quartic scalar interaction.
It is certainly desirable to increase the number of configurations especially in the

case for y0 = 0.96970 where the finite size effects seem to be stronger than in the
other cases. If one considers the result for the standard model case [30, 31] shown in
figure 5.2, the Higgs boson mass is slightly above 600 GeV which deviates from the
above mentioned point at y0 = 0.96970 by about 2σ. Furthermore, the lower Higgs
boson mass bound has not been investigated and is deferred to future work. As
mentioned before, the lower Higgs boson mass bound is expected to have a strong
dependence on the quark mass and is certainly of phenomenological interest. In this
context it is appreciable to extend the analysis with higher dimensional terms in the
action which may have a important influence on the lower mass bound. Another
conceptually and physically interesting question is the highest possible top quark
mass which is attainable within this model. The result should be contrasted to the
upper bound of the top prime mass suggested by unitarity considerations.





6 Summary and conclusion
The Discovery of the Higgs boson would represent a further triumph for the standard
model of elementary particle physics. With the upcoming experimental measure-
ments at the LHC at Cern the chances for such a discovery are very high. However,
the precise value of the Higgs boson mass cannot be provided by the standard model
itself. Still, the theoretical tools within quantum field theory allow to set at least
bounds on the Higgs boson mass and the corresponding widths.
Experimental measurements in the past decades could exclude a wide range of

energies for the Higgs boson mass. The LEP experiments [9] state that the Higgs
boson mass is above 114 GeV while preliminary data from the Tevatron experiments
exclude a Higgs boson mass range between 158 GeV and 175 GeV [13]. The Higgs
boson mass bounds were also addressed in perturbation theory. The perturbative
mass bound of the upper Higgs boson mass relies on the triviality of the scalar sec-
tor, i.e. the renormalized quantities of the model necessarily vanish as the cut off
approaches infinity. Hence, at each finite value of the cut off there is a maximal
value for the renormalized quartic coupling which in turn implies an upper bound
for the Higgs boson mass. Within perturbation theory the lower Higgs boson mass
bound is derived from vacuum instability arguments. In both cases, it is not clear
whether perturbation theory is applicable and therefore a genuine non perturbative
analysis is necessary. The numerical method used in this work allows to compute the
Higgs boson mass bounds from first principles. These bounds are also useful from
a different point of view: once the Higgs boson mass is deduced from experimen-
tal measurements, the established numerical mass bounds can be used to infer the
energy scale Λ where physics beyond the standard model has to play a significant
role and should reveal signatures in high energy experiments. Furthermore, the nu-
merical bounds on the Higgs boson mass may provide a stringent phenomenological
criterium in order to distinguish the standard model Higgs boson from other not yet
observed particles or bound states with the same quantum numbers.
The path integral formulation of quantum field theory allows to access physical

observables numerically within the framework of lattice field theory. The latter
approach offers a genuinely non perturbative too. The model under consideration
in this thesis is the pure Higgs-Yukawa sector of the electroweak standard model
which consists of a complex scalar Higgs doublet and a fermion doublet coupled to
the scalar sector. The model closely resembles the weak interaction of the standard
model. The chiral nature of the weak interaction is realized with the help of the

101
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Neuberger overlap lattice Dirac operator which enables to incorporate an exact chiral
symmetry on the lattice.
It shall be remarked that the model does not contain gauge bosons and considers

only a mass degenerate top quark doublet. Adding gauge fields in order to study a
chiral gauge theory is still a challenge for the lattice formulation and goes far beyond
the scope of this thesis. In particular, many important algorithmic improvements
used in the simulation of the Higgs-Yukawa model cannot be transferred in the
presence of gauge fields. Disregarding the gauge fields can be justified since the
weak coupling constants are known to be small and thus the largest contribution to
the Higgs boson mass is expected to arise from the Yukawa coupling between the
Higgs boson and the top quark.
Within the past years large efforts have been undertaken to investigate the Higgs

boson mass bounds in the framework of lattice field theory [20, 30, 31]. However,
the decay width of the Higgs boson was not taken into account assuming that its
effects are small. The main aim of this work is to treat the Higgs boson as a
true resonance and to investigate the unstable nature of the Higgs boson from first
principles. The resonance character of the Higgs boson manifests itself in the pole
structure of the propagator. Chapter 2 and Chapter 3 therefore present a detailed
discussion on the Higgs boson propagator and its pole structure. The calculation of
the Higgs boson propagator within perturbation theory yields an analytic expres-
sion which is checked with numerical data to high precision. The full agreement
of the perturbative expression and the numerical result, even at moderately large
values of the Yukawa coupling, justifies to employ the perturbative functional form
of the analytic propagator as a fit function for numerical data. The so obtained
analytic fit function of the propagator then allows to compute the Higgs boson mass
by locating the pole of the real part of the propagator in the complex plane. The
influence of a non vanishing decay width which is connected to the imaginary part
of the propagator is neglected. This procedure is compared with the Higgs boson
mass obtained from the analysis of the scattering phases. The computation of the
scattering phase within lattice field theory is based on the analysis of the volume de-
pendence of energy eigenvalues [46]. Due to the finite volume of lattice simulations,
the allowed lattice momenta are discrete. Hence, there are only a few two particle
energy eigenvalues which are separated by distinct relative momenta and which lie
in the elastic scattering region. In order to collect enough scattering phases near
the resonance, it is therefore necessary to perform simulations on lattice volumes
of at least 323 × 40. An extension of the finite size method has been proposed in
[54] and is based on the analysis of the energy levels within a moving frame. This
allows to compute scattering phases in the resonance region already on 243 × 40
lattices. For the present set of parameters, it turns out that the analysis of the
moving frame energy eigenvalues are inevitable in order to extract the resonance
parameters reliably. The centre of mass and the moving frame have been used for
three different values of the quartic couplings. In all cases it was made sure that the
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Higgs boson can decay into two Goldstone particles and thus appears as a resonance.
The simulations were performed on lattice volumes up to 404 and the analysis of the
scattering phases in the rest frame as well as in the moving frame supplied enough
data in order to perform a reliable Breit-Wigner fit near the resonance. The ob-
tained results of the resonance mass and the width are presented in table 6.1. The
results are also compared with those obtained from the analysis of the Higgs boson
propagator and the energy eigenvalues obtained from a correlation matrix (GEVP)
analysis [11, 49]. In all three cases the Higgs boson width is not larger than about

Table 6.1: The table summarizes the obtained final results on the resonance mass
and the resonance width of the Higgs boson. λ̂ denotes the bare quartic coupling.
The first line is a preliminary result from Chapter 8 in [25]. Λ is the cut off of the
theory. The following two columns display the resonance parameters computed from
the scattering phases. ΓpH is the width obtained from perturbation theory where a
non vanishing mass for the Goldstone bosons has been considered. Finally the mass
extracted from the propagator as well as the mass eigenvalues computed with the
help of the correlation matrix is shown. The latter results were obtained after an
extrapolation to infinite volume as shown in figure 4.4 and figure 4.5.

λ̂ Λ [GEV] Res. mass
MH

Res. width
ΓH

ΓpH Prop. mass
Mp
H

GEVP

0.01 593(1) 0.428(3) 0.009(3) 0.0076(2) 0.433(3)
0.01 883(1) 0.2811(6) 0.007(1) 0.0054(1) 0.278(2) 0.274(4)
1.0 1503(5) 0.374(4) 0.033(4) 0.036(8) 0.386(28) 0.372(4)
∞ 1598(2) 0.411(3) 0.040(4) 0.052(2) 0.405(4) 0.403(7)

10% with respect to the resonance mass. Therefore, the corresponding total cross
section exhibits a clear resonance peak even at the strongest value of the quartic
coupling. Thus, the presented analysis gives quantitative results for the Higgs boson
decay width and beyond that, it provides an a posteriori justification for the Higgs
boson mass bounds in [30, 31].
Table 6.1 shows the first study of the dependence of Higgs boson resonance pa-

rameters on the quartic coupling based on first principles. The mass obtained from
the propagator is in good agreement with the resonance mass obtained from the
scattering phases. The data in table 6.1 also shows that the analysis of the cor-
relation matrix offers a reliable and simple method which is perfectly compatible
with the previous methods explained above. Figure 6.1 summarizes the obtained
total cross sections for the three different values of the bare quartic couplings. The
displayed curves are the final fit results shown in figure 4.6.
Finally the simulation algorithm is used to explore the model at large Yukawa

couplings in order to generate heavy fermions much above the standard model top
quark mass. The existence of a heavy fourth generation of fermions is of phenomeno-
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Figure 6.1: The figure shows the total cross section of the Higgs boson within the Higgs-
Yukawa model. With regard to the standard model, this cross section is associated to the
decay of the Higgs boson into the weak gauge bosons W±, Z. The highest peak belongs to
the smallest bare quartic coupling λ̂ = 0.01 and corresponds to a Higgs boson resonance
mass ofMH = 248±1 GeV and the resonance width is ΓH = 6.2±0.9 GeV. The next peak
is obtained at λ̂ = 1.0 and corresponds to MH = 562± 2 GeV and ΓH = 50± 6 GeV. The
last peak is associated to infinite bare quartic coupling and corresponds to MH = 618± 5
GeV and ΓH = 60±6 GeV. The cut off value for the three different couplings is displayed in
table 6.1. In all cases, the resonance width is less than 10% with respect to the resonance
mass and thus the corresponding total cross section exhibits a clear resonance peak.

logical interest since it is not excluded by present high precision measurements. It
provides various prospects to augment the model to enable a deeper understanding
of flavour physics and mass hierarchies. It also serves as a source for CP violation.
In addition it may give rise to a sufficiently strong first order phase transition such
that the Sakharov conditions can be fulfilled in order to explain the observed Baryon
asymmetry in the universe. It turns out that the upper and lower Higgs boson mass
bounds indeed need to be revised in the presence of a heavy 700 GeV fermion dou-
blet as studied here. The Higgs boson mass is extracted from the propagator as
described in [30, 31]. The cut off is varied between 1500 GeV and 3500 GeV. Figure
6.2 summarizes the final results on the mass bounds and shows the corresponding
results for the standard model top quark doublet. The results show that the upper
bound is only slightly affected; the relative shift in the upper Higgs boson mass is
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about 200 GeV. The lower bound however, is drastically raised by a factor of about
five to ten. The strong dependence of the lower bound on the heavy fermion mass
motivates to investigate both bounds at varying top quark masses while the cut off
is held fixed. A first computation has been performed at a cut off of 1500 GeV.
The obtained results on the upper Higgs boson mass bound are presented in figure
5.5. The figure confirms the expected mild dependence of the upper Higgs boson
mass on the Yukawa coupling. While the top quark mass is varied between 200 GeV
and 700 GeV the effect on the upper Higgs boson mass is less than 25%. The

(a) (b)

Figure 6.2: The figure shows the infinite volume extrapolation of the Higgs boson masses.
The mass is extracted from the pole of the real part of the Higgs boson propagator. For
a direct comparison, the results for the standard model top quark doublet is displayed in
the left plot (a). The right plot (b) shows the case of a heavy quark doublet. The quark
mass is about 700 GeV

established results severely restrict the mass range of a heavy fourth generation of
fermions. For example, even if a Higgs boson of 400 GeV is found at the LHC, a
heavy top quark with a mass of 700 GeV cannot be realized.
As mentioned before it will be interesting to explore especially the dependence

of the lower Higgs boson mass bound on the heavy top prime mass. It turns out
that the lower bound is numerically more demanding and therefore this is beyond
the scope of this work. Nevertheless it is feasible and certainly of phenomenological
interest. Another crucial question is the dependence of the lower Higgs boson mass
bound on higher dimensional terms in the action. Furthermore, it is both of con-
ceptual and of phenomenological importance to explore the highest possible fermion
mass attainable within this model. The current bounds from partial wave unitarity
conditions suggest a heavy top quark of at most 600 GeV. Top quark masses above
this threshold value indicate non perturbative effects which are perfectly suitable
to be explored with the numerical method on hand. It would be very interesting
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to check, whether the here considered Higgs-Yukawa model indeed exhibits a non
perturbative regime which would immediately necessitate the framework of lattice
field theory to reveal its properties.



Appendix A: Lattice Parametrization
The action was already given in (2.1). The scalar part of the action can be defined
on a finite and discrete lattice by substituting the derivatives with finite differences
and the integrals by a sum over the space time lattice. The fermionic part is more
complicated and is discussed in Chapter 2. The calculations presented below show
that the announced relation for the lattice parametrization of the Higgs-Yukawa
model indeed resembles the continuum notation. The well known Lagrangian of the
Higgs-Yukawa model is given in (2.1) and is repeated here

LHYE = 1
2 (∂µϕ)† · (∂µϕ) + 1

2m
2ϕ† · ϕ+ λ

(
ϕ† · ϕ

)2

+ t /D t+ b /D b+ yb

(
t
b

)T
L

· ϕ bR + yt

(
t
b

)T
L

· ϕ̃ tR + h.c..

The subscript E denotes the Euclidean version of the standard model electroweak
sector. The action is then given by

S =
∫

d4x LHYE (∂µϕ(x), ϕ(x), ∂µψ(x), ψ(x)) , ψ(x) =
(
t(x)
b(x)

)

In order to clarify the lattice parametrization, it is not necessary to consider the
fermion sector. Hence, the below calculations shall focus only on the scalar part.
Furthermore, the calculations are straight forward in the case an N component
scalar vector and therefore the calculations are restricted to the one component
scalar theory.
The derivatives are substituted by finite differences ∂µ → ∆f

µ where the finite
difference operator is defined by

∆f
µf(x) := 1

a
{f(x+ aµ̂)− f(x)} ,

∆b
µf(x) := 1

a
{f(x)− f(x− aµ̂)} .

In the following, the scalar fields restricted to the lattice points shall be denoted by
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the same variable ϕ.

⇒ Sϕ = a4 ∑
x,µ

1
2

{ 1
a2

(
ϕ(x+ aµ̂)− ϕ(x)

)(
ϕ(x+ aµ̂)− ϕ(x)

)}
+

a4 ∑
x

1
2m

2
0ϕ

2(x) + λa4 ∑
x

ϕ4(x)

= a4 ∑
x,µ

1
2a2

{
ϕ2(x+ aµ) + ϕ2(x)− 2ϕ(x+ aµ)ϕ(x)

}
+

a4 ∑
x

1
2m

2
0ϕ

2(x) + λa4 ∑
x

ϕ4(x)

= −a4 ∑
x,µ

1
a2ϕ(x+ aµ)ϕ(x) + 4 a4∑

x

1
a2ϕ

2(x)

+ a4 ∑
x

1
2m

2
0ϕ

2(x) + λa4 ∑
x

ϕ4(x)

For numerical simulation it is common to rescale the field with a parameter κ such
that

φ =
√

2κ ϕ, a ≡ 1

= −2κ
∑
x,µ

φ(x+ aµ)φ(x) +
∑
x

{
8φ2(x) +m2

0 κ φ
2(x) + 4λκ2φ4(x)

}

= −2κ
∑
xµ

φ(x+ aµ)φ(x) +
∑
x

{
(8 +m2

0)κ φ2(x) + 4λκ2φ4(x)
}

⇒ λ̂ = 4λκ2 ⇒ λ = λ̂

4κ2

=
∑
x

{
− 2κ

∑
µ

φ(x+ aµ)φ(x) + λ̂

(
(8 +m2

0)κ
λ̂

φ2(x) + φ4(x)
)}

κ is a free parameter and can be chosen such that the last line in the above equation
can be simplified

(8 +m2
0)κ

λ̂
= −2 ⇒ m2

0 = −2̂̂λ
κ
− 8

⇒ S =
∑
x

{
− 2κ

∑
µ

φ(x+ aµ)φ(x) + λ̂
(
−2 φ2(x) + φ4(x) + 1− 1

)}

=
∑
x

{
− 2κ

∑
µ

φ(x+ aµ)φ(x) + λ̂
((
φ2(x)− 1

)2
− 1

)}

=
∑
x

{
− 2κ

∑
µ

φ(x+ aµ)φ(x) + λ̂
(
φ2(x)− 1

)2
− λ̂

}
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However, it is common to choose κ such that

(8 +m2
0)κ− 1
λ̂

= −2 ⇒ m2
0 = 1− 2λ̂− 8κ

κ

In that that case the action is

S =
∑
x

{
− 2κ

∑
µ

φ(x+ aµ)φ(x) + φ2(x) + λ̂[φ2(x)− 1]2 − λ̂
}
.





Appendix B: Perturbative
calculations
This appendix collects some perturbative calculations in detail. The below calcula-
tions will need the use of Feynman parameterization and some solutions of trigono-
metric and logarithmic integrals. To keep the argumentation free of technical details,
some mathematical identities are elaborated at the beginning.
The Feynman parametrization of loop integrals lead to integrals of the following

types:
1.
∫
dx 1

−x2+x+c

2.
∫
dx ln(−x2 + ax+ c)

3.
∫
dx x2

−x2+x+c

These are elementary integrals and can be solved easily. The results and some
steps are summarized below.
• C1(x) =

∫
dx 1

−x2+x+c
First we rewrite the denominator as

1
−x2 + x+ c

= 1
η2 − y2

η2 = 1
4 + c, y = x− 1

2 .

Decomposing the fraction into parts leads to

1
η2 − y2 = 1

2η

(
1

y + η
+ 1
η − y

)

= 1
2η

d
dy (ln(η + y)− ln(η − y))

= d
dy

1
2η ln

(
η + y

η − y

)
.

So the indefinite integral can be written as

C1(x) = 1√
1 + 4c

log
(√

1 + 4c+ (2x− 1)√
1 + 4c− (2x− 1)

)
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Special care is now needed in order to evaluate the indefinite integral in the
corresponding limits, as the logarithm as well as the the square root may need
to be analytically continued into the complex plane. The iε prescription of the
propagator is then needed to decide on which Riemann surface the log has to
be evaluated. Further, the well known rules about the real logarithms are not
valid for complex arguments. The upper limit x = 1 induces a negative sign
in the denominator of the argument of the logarithm. On the other hand the
numerator is negative for the lower limit x = 0.
The definite integral in the limits x = 0 to x = 1 is then

∆C1 = 1√
1
4 + c

ln
 1

2 +
√

1
4 + c

−1
2 +

√
1
4 + c

 .

• C2(x) =
∫
dx ln(−x2 + ax+ c)

j2(x) := ln(−x2 + x+ c)

= ln
(
−y2 + η2

)
; y := x− a

2 , η2 = a2

4 + c.

j2(y) = d
dy

(
y ln(η2 − y2)

)
+ 2y2

η2 − y2

= d
dy

(
y ln(η2 − y2)

)
− 2

(
−y2

η2 − y2 + η2

η2 − y2 −
η2

η2 − y2

)

= d
dy

(
y ln(η2 − y2)

)
− 2

(
1− η2

η2 − y2

)

= d
dy

(
y ln(η2 − y2)− 2y

)
+ 2η2

(
1

η2 − y2

)

= d
dy

(
y ln(η2 − y2)− 2y

)
+ 2η2 1

2η
d
dy ln

(
η + y

η − y

)

= d
dy

{
y ln(η2 − y2)− 2y + η ln

(
η + y

η − y

)}
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Inserting the definition of η and y we get in the boundaries x ∈ [0, 1]

∆C2 = 1
2

(a log(c)− (a− 2) log(a+ c− 1)

+
√
a2 + 4c log

(
a−
√
a2 + 4c− 2

a+
√
a2 + 4c− 2

)

−
√
a2 + 4c log

(
a−
√
a2 + 4c

a+
√
a2 + 4c

)
− 4


The special case a = 1 will be useful which shall be denoted by

∆C1
2 := ∆C2(a = 1) = −2 + log(c) +

√
4c+ 1 log

(√
4c+ 1 + 1√
4c+ 1− 1

)

• C3(x) =
∫
dx (−x2 + x+ c) log (−x2 + x+ c)

As before we can rewrite the integral with η and y and we get

j3(y) = η2 ln
(
η2 − y2

)
− y2 ln

(
η2 − y2

)
= η2 j2(y)− y2 ln

(
η2 − y2

)
−y2 ln

(
η2 − y2

)
= d

dy

{
−1

3y
3 ln

(
η2 − y2

)}
− 2y4

3 (η2 − y2)

= dy

− 1
3y

3 ln
(
η2 − y2

)

− 1
9

(
3η3 ln

(
y + η

y − η

)
− 2

(
y3 + 3η2y

))
⇒ j3(y) = 1

9

6 log
(
y + η

y − η

)
η3 + 2

(
y3 − 6yη2

)

− 3
(
y3 − 3yη2

)
log

(
η2 − y2

).
In the given limits, the above integral is

∆C3 = 1
3

(
(6c+ 1) log(c)

− 1
2 (4c+ 1)

3
2 log

(
−
√

4c+ 1− 1√
4c+ 1 + 1

)
−
(

4c+ 5
6

))
.
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The three types of loop integrals I1, I2, J will be discussed. As the loop contribu-
tions involves products of propagators, the identity

1
Aa

1
Bb

= Γ(a+ b)
Γ(a)Γ(b)

∫ 1

0
dx xa−1x̄b−1

(xA+ x̄B)a+b , x̄ = 1− x

will be used. Γ is the Gamma function. Scalar one loop integrals have the form

Ã(a, ξ) :=
∫ d4k

(2π)4
1

(k2 − ξ + iε)a

After performing a Wick-Rotation:

Ã(a, ξ) = (−1)ai
∫ d4k

(2π)4
1

(k2 + ξ)a

Where k is now a Euclidean four vector. The following calculations are entirely
performed in Euclidean space time. It is therefore useful to define

A(a, ξ) =
∫ d4k

(2π)4
1

(k2 + ξ)a .

The integral only depends on the norm of the 4 dimensional vector, expressed in
spherical coordinates it reads∫

d4k −→ π2
∫ ∞

0
dk2 k2.

And so
A(a, ξ) = 1

(4π)2

∫ ∞
0

dk2 k2

(k2 + ξ)a

The special cases a = 1, 2 will be needed later.

• a = 1
Define:

I(ξ, L) :=
∫ L

0
dz z

z + ξ

The indefinite integral gives∫
dz z

z + ξ
= z − ξ ln(z + ξ)
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z

z + ξ
= z

z + ξ
+ ξ

z + ξ
− ξ

z + ξ
(B1)

= 1− ξ

z + ξ
(B2)

= d
dz (z − ξ ln(z + ξ)) (B3)

⇒ I(ξ, L) = (z − ξ ln(z + ξ))
∣∣∣∣z=L
z=0

(B4)

= L− ξ ln(L+ ξ) + ξ ln(ξ) (B5)

= L+ ξ ln( ξ

L+ ξ
) (B6)

L is the regulator of the integral and will be referred to as the cut off Λ:

A(1, ξ,Λ2) = 1
(4π)2

{
Λ2 − ξ ln

(
Λ2 + ξ

ξ

)}

• a = 2

A(2, ξ,Λ2) = 1
(4π)2

∫ Λ2

0
dk2 k2

(k2 + ξ)2

The integrand can be rewritten g(z) = z
(z+ξ)2

g(z) = z

(z + ξ)2 = −z d
dz

1
z + ξ

(B7)

= − d
dz

(
z

z + ξ

)
+ 1
z + ξ

(B8)

= d
dz

(
− z

z + ξ
+ ln (z + ξ)

)
(B9)

(B10)

The indefinite integral is then given by

G(z) := − z

z + ξ
+ ln (z + ξ) (B11)

⇒ G(L)−G(0) = ln(L+ ξ)− L

L+ ξ
− ln(ξ) (B12)

= ln
(
L+ ξ

ξ

)
− L

L+ ξ
(B13)
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⇒ A(2, ξ,Λ2) = 1
(4π)2

{
ln
(

Λ2 + ξ

ξ

)
− Λ2

Λ2 + ξ

}

It is common to give the result containing only the leading terms in ξ
Λ2 . Therefore

the argument of the logarithms have to be expanded

ξ

Λ2 + ξ
=

ξ
Λ2

1 + ξ
Λ2

(B14)

:= x

1 + x
≈ 0 +

(
1

1 + x
− x

(1 + x)2

) ∣∣∣∣∣∣
x=0

x = x+O(x2) (B15)

⇒ ξ

Λ2 + ξ
= ξ

Λ2 +O
( ξ

Λ2

)2
 (B16)

Analogously:

Λ2

Λ2 + ξ
≈ 1− ξ

Λ2 (B17)

the fermion loop involves an integral of the follwing type

B(a, ξ,Λ2) :=
∫ d4q

(2π)4
q2

(q2 + ξ)a , a = 2.

The procedure analogous to the calculations given for the evaluation of the integrals
A (n, ξ, λ2).
The above relations will be useful to calculate the one loop scalar and fermion
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contributions. Finally the main results shall be summarized:

A(1, ξ,Λ2) =
∫ d4k

(2π)4
1

(k2 + ξ)

= 1
(4π)2

{
Λ2 − ξ ln

(
Λ2 + ξ

ξ

)}

≈ 1
(4π)2

{
Λ2 − ξ ln

(
Λ2

ξ

)}

A(2, ξ,Λ2) =
∫ d4k

(2π)4
1

(k2 + ξ)2

= 1
(4π)2

{
ln
(

Λ2 + ξ

ξ

)
− Λ2

Λ2 + ξ

}

≈ 1
(4π)2

{
ln
(

Λ2

ξ

)
− 1

}

B(2, ξ,Λ2) =
∫ d4q

(2π)4
q2

(q2 + ξ)2

= 1
(4π)2

{
Λ2 (Λ2 + 2ξ)

Λ2 + ξ
+ 2ξ log

(
ξ

Λ2 + ξ

)}

≈ 1
(4π)2

{
Λ2 + 2ξ log

(
ξ

Λ2

)}

The scalar loop integral with a single scalar mass is denoted by I1 and is given by
Σ2 is given by:

I1
(
p2,m2,Λ

)
:=
∫ d4q

(2π)4
1

q2 +m2
1

(p+ q)2 +m2 , q0 < Λ

Introducing Feynman parameters, the integral is rewritten as

I
(
p2,m2,Λ

)
=
∫ 1

0
dx

∫ d4q

(2π)4
1

(x(q2 +m2) + x̄((p+ q)2 +m2))2

=
∫ 1

0
dx

∫ d4q

(2π)4
1

(q2 + p2x̄+ 2pqx̄+m2)2

=
∫ 1

0
dx

∫ d4q

(2π)4
1

((q + px̄)2 − p2x̄2 + p2x̄+m2)2

=
∫ 1

0
dx

∫ d4q

(2π)4
1

((q + px̄)2 +m2 + p2xx̄)2
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Performing a shift in the integration variable q

q −→ q + px̄

yields

⇒ I1
(
p2,m2,Λ

)
=
∫ 1

0
dx

∫ d4q

(2π)4
1

(q2 +M2(p2,m2, x))2

M2(p2,m2, x) := m2 + p2xx̄

⇒ I1(p2;m2,Λ2) =
∫ 1

0
dx A(2,M2,Λ2)

= 1
(4π)2

∫ 1

0
dx

{
ln
(

Λ2 +M2

M2

)
− Λ2

Λ2 +M2

}

≈ 1
(4π)2

∫ 1

0
dx
{

ln
(

Λ2

M2

)
− 1

}

It is sufficient to solve the integral over x by taking only the leading term in M2

Λ2

I1(p2,m2,Λ2) := 1
(4π)2

∫ 1

0
dx

{
ln
(

Λ2

M2(p2,m2, x)

)
− 1

}

= 1
(4π)2

∫ 1

0
dx

{
ln
(

Λ2

m2 + p2xx̄

)
− 1

}

= 1
(4π)2

∫ 1

0
dx

{
ln
(

Λ2

m2 + p2x− p2x2

)
− 1

}

= 1
(4π)2

∫ 1

0
dx

ln
 Λ2

p2(m2

p2 + x− x2)

− 1


= 1

(4π)2

∫ 1

0
dx

ln
(

Λ2

p2

)
− 1 + ln

 1
m2

p2 + x− x2


= 1

(4π)2

{
ln
(

Λ2

p2

)
− 1−

∫ 1

0
dx ln

(
−x2 + x+ m2

p2

)}

= 1
(4π)2

{
ln
(

Λ2

p2

)
− 1−∆I2

(
a = 1, c = m2

p2

)}

= 1
(4π)2

 ln
(

Λ2

p2

)
− 1

−

−2 + ln(m
2

p2 ) +
√

1 + 4m2

p2 ln

√

1 + 4m2−iε
p2 + 1√

1 + 4m2−iε
p2 − 1
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I1(p2,m2,Λ2) = 1
(4π)2

1 + ln
(

Λ2

m2

)

−
√

1 + 4m2

p2 ln
 1 +

√
1 + 4m2

p2 − iε Sgn (p2)

−1 +
√

1 + 4m2

p2 − iε Sgn (p2)


The mixed scalar loop integral which arises in the self energy contribution of the

Goldstone boson is defined by

I2(p2,m2
ϕ,m

2
G,Λ) =

∫ d4q

(2π)4
1

q2 +m2
G

1
(p+ q)2 +m2

φ

, q0 < Λ.

Again introducing Feynman parameters, the denominator can be written in the form
suitable to use to the integral expressions given above

I2(p2,m2
ϕ,m

2
G,Λ) =

∫ 1

0
dx
∫ d4q

(2π)4
1{

x (q2 +m2
G) + x̄

(
(p+ q)2 +m2

φ

)}2 .

After expanding the denominator, define Q := q + px̄ and the integral can be
expressed in the shifted variable Q. The boundary terms that arise due to the finite
cut off q0 < Λ are neglected

I2(p2,m2
ϕ,m

2
G,Λ) =

∫ 1

0
dx
∫ d4Q

(2π)4
1{

Q2 +m2
φ − p2x2 +

(
m2
G −m2

φ + p2
)
x
}2 .

With
ξ = m2

φ + (m2
G −m2

φ + p2)x− p2x2
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I2 takes the form

I2(p2,m2
ϕ,m

2
G,Λ) =

∫ 1

0
dx A(2, ξ,Λ2)

= 1
16π2

∫ 1

0
dx

ln
 Λ2

−p2x2 +
(
p2 +m2

G −m2
φ

)
x+m2

φ

− 1


= 1

16π2

∫ 1

0
dx

ln

Λ2

p2
1

−x2 +
(
m2
G

p2 −
m2
φ

p2 + 1
)
x+ m2

φ

p2

− 1


= 1

16π2

 ln
(

Λ2

p2

)
− 1

−
∫ 1

0
dx ln

(
−x2 +

(
m2
G

p2 −
m2
φ

p2 + 1
)
x+

m2
φ

p2

).
Setting

a = m2
G

p2 −
m2
φ

p2 + 1,

c =
m2
φ

p2

yields

I2(p2,m2
ϕ,m

2
G,Λ) = 1

16π2

{
ln
(

Λ2

p2

)
− 1−∆C2

}
.

After substituting the variables a, c finally the result is

I2(p2,m2
ϕ,m

2
G,Λ) = 1

32π2

2 + log
(

Λ4

m2
Gm

2
ϕ

)
+

(
m2
G −m2

ϕ

)
p2 log

(
m2
G

m2
ϕ

)

+ log
(
p2 +m2

G +m2
ϕ − p2 κ(p2) + iε Sgn (p2)

p2 +m2
G +m2

ϕ + p2 κ(p2)− iε Sgn (p2)

)
κ(p2)

.
κ2(p2) :=

4 p2m2
ϕ +

(
p2 +m2

G −m2
ϕ

)2

p4
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The fermion loop is given by

J(p2,mf ,Λ) =
∫ d4q

(2π)4 Tr

 1(
/p+ /q +m

) 1(
/q +m

)
, q0 < Λ

=
∫ d4q

(2π)4

Tr
[ (
/p+ /q −m

) (
/q −m

) ]
((p+ q)2 −m2) (q2 −m2)

= 4
∫ 1

0
dx

∫ d4q

(2π)4
q2 +m2 + pq

((q + px)2 + p2xx̄−m2)2 , q → q + px

= 4
∫ 1

0
dx

∫ d4q

(2π)4
q2 − p2xx̄+m2

(q2 + p2xx̄−m2)2 , M2(p2, x) := p2xx̄−m2

= 4
∫ 1

0
dx

∫ d4q

(2π)4
q2 −M2(p2, x)

(q2 +M2(p2, x))2

= 4
∫ 1

0
dx


∫ d4q

(2π)4
q2

(q2 +M2(p2, x))2

−M2(p2, x)
∫ d4q

(2π)4
1

(q2 +M2(p2, x))2


= 4

∫ 1

0
dx

{
B(2,M2,Λ2)−M2 A(2,M2,Λ2)

}
= 1

4π2

∫ 1

0
dx

(
Λ2 +M2 + 3 M2 log

(
M2

Λ2

))

= 1
4π2

{
Λ2 + 1

6(p2 − 6m2
f ) + 3

∫ 1

0
dx M2 log

(
M2

Λ2

)}

We will concentrate on the part

j(x) := M2(p2, x) log
(
M2(p2, x)

Λ2

)
.

M2(p2, x) is defined as:

M2(p2, x) := p2xx̄−m2 = p2
(
−x2 + x+

m2
f

p2

)
.
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⇒ j(x) = p2
(
−x2 + x+

m2
f

p2

)
log

p
2
(
−x2 + x+ m2

f

p2

)
Λ2

 (B18)

= p2
(
−x2 + x+

m2
f

p2

){
log

(
−x2 + x+

m2
f

p2

)
+ log

(
p2

Λ2

)}
. (B19)

These types of integrals are summarized at the beginning of this appendix.

J(p2,m2
ϕ,m

2
G,Λ) = 1

4π2

Λ2 + 1
6(p2 − 6m2

f ) + 3 p2∆C3(c =
m2
f

p2 )

+ 3
6(p2 − 6m2

f ) log
(
p2

Λ2

)
= 1

4π2

Λ2 − log(Λ2)
(1

2p
2 − 3m2

f

)

−m2
f + p2

(1
6 + 3∆C3

)
+
(1

2p
2 − 3m2

f

)
log

(
p2
)

= 1
4π2

m2
(

Λ2

m2 + 3
m2
f

m2

(
log

(
Λ2
)
− log

(
p2
))
−
m2
f

m2

)

+ p2
(1

2 log
(
p2
)
− 1

2 log
(
Λ2
)

+ 3∆C3 + 1
6

)
∆C3(p2, c =

m2
f

p2 ) =
m2
f

p2 −
5
3 + 11

12 log
(
m2
f

p2

)

+ 1
8

(
7−

4m2
f

p2

)√√√√1 +
4m2

f

p2 log


√

1 + 4m2
f

p2 + 1√
1 + 4m2

f

p2 − 1

 .



Appendix C: Two Particle Energy
Levels
This appendix summarized some technical aspects and lists numerical data which is
related to the computation of the scattering phases. Table C2 shows the two particle
energies obtained in the centre of mass frame. The analysis has been performed with
different number of operators in the correlation matrix. Starting from the operator
with the lowest energy eigenvalue, the number of operators is increased successively
such that the determined error from the Jackknife analysis stayed below 10 %.
A modification of the original work of Lüscher [46] was performed in [54]. The

analysis in the centre of mass frame necessitates rather large lattice volumes which
is numerically very demanding. The modified method incorporates a moving frame
and allows to compute relevant scattering phases already at moderate lattice volumes
such as 243. An overview of the energy eigenvalues obtained from the moving frame
is listed in table C3.
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Table C2: The table below lists the obtained set of two particle energies in the
centre of mass frame. The number of observables are chosen such that the deter-
mined error is below 10 %. The three different physical situations are identified
by the three different values of the bare quartic couping.

λ = 0.01 λ = 1.0 λ =∞

Ls = 12 0.155(3)
0.295(5)

0.233(9)
0.420(8)

0.229(8)
0.45(1)
1.960(1)

Ls = 16 0.161(3)
0.280(5)

0.24(1)
0.393(9)

0.242(4)
0.44(2)
1.538(1)

Ls = 18 0.164(3)
0.277(4)

0.255(7)
0.399(9)

0.250(8)
0.43(1)
1.4(5)

Ls = 20 0.162(4)
0.29(1)

0.27(2)
0.395(8)
0.62(2)

0.265(6)
0.42(1)
1.20(3)

Ls = 24 0.166(4)
0.27(1)

0.24(2)
0.380(9)
0.59(2)

0.27(1)
0.43(2)
0.64(3)
0.96(7)

Ls = 32 0.171(8)
0.285(8)

0.25(1)
0.40(1)
0.47(1)
0.58(2)
0.76(3)

0.25(1)
0.40(1)

Ls = 36
0.167(9)
0.28(3)
0.36(1)

0.27(1)
0.38(1)
0.44(3)
0.70(3)

Ls = 40 0.162(7)
0.283(8)

0.28(2)
0.37(2)
0.42(2)
0.50(3)
0.63(2)

0.23(2)
0.43(3)
0.44(4)
0.47(3)
0.58(5)
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Table C3: The table below list the obtained set of two particle energies in the
moving frame. Energy values which exeed the elastic region are grey as they cannot
be used to compute the scattering phase. The three different physical situations
are identified by the three different values of the bare quartic couping in the lattice
notation.

λ = 0.01 λ = 1.0 λ =∞

Ls = 12 0.570(8) 0.62(2)
0.72(1)

0.617(5)
0.753(7)

Ls = 16 0.492(4) 0.511(5)
0.585(5)

0.507(4)
0.607(8)

Ls = 18 0.42(1)
0.45(1)

0.470(6)
0.539(4)

0.48(2)
0.557(6)

Ls = 20 0.396(1)
0.423(4)

0.459(6)
0.525(8)
0.81(3)

0.449(7)
0.538(6)

Ls = 24 0.347(5)
0.383(5)

0.418(6)
0.49(1)
0.70(2)
0.79(1)

0.42(1)
0.498(9)
0.69(2)

Ls = 32
0.296(7)
0.343(6)
0.64(1)

0.442(7)

Ls = 36 0.270(5)
0.329(4)

0.347(6)
0.413(5)

Ls = 40 0.256(3)
0.328(5)

0.337(9)
0.413(8) 0.42(2)
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