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Risk measures for income streams

Georg Ch. Pflug ! and Andrzej Ruszczynski 2

Abstract.

A new measure of risk is introduced for a sequence of random incomes
adapted to some filtration. This measure is formulated as the optimal net
present value of a stream of adaptively planned commitments for consump-
tion.

The calculation of the new measure is done by solving a stochastic dy-
namic linear optimization problem, which, in case of a finite filtration, reduces
to a simple deterministic linear program.

We show properties of the new measure by exploiting the convexity and
duality structure of the stochastic dynamic linear problem. The measure de-
pends on the full distribution of the income process (not only on its marginal
distributions) as well as on the filtration, which is interpreted as the available
information about the future.

1 Introduction: The one-period case

Let I be a random income variable defined on some probability space (2, F, P).
The risk contained in [ is caused by the lack of information about its exact
value. A variable, but predictable value of I is riskless. If a natural catas-
trophe, e.g. a flood, were completely predictable, there would be no risk and
no company would insure against it.

If a decision maker were clairvoyant, he/she would face no risk since
he/she would see the future in a deterministic way and would be able to
adapt to it. For us, normal humans, some but not all information about
the future may be available. The amount of information available may be
expressed in terms of some g-algebra F C F;. The extreme cases are the
clairvoyant (F = F7) and the totally uninformed (F = Fy = {Q, 0}).
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The ultimate goal of engaging in risky entrprises with uncertain income
opportunities is consumption. Consumption, however, can only be realized
after deciding about the amount one wants to commit for this purpose (to
buy a house, a car etc.).

Suppose that the decision maker decides to commit an amount a. In this
case, he/she risks not achieving this decided target, since I may be less than
a. However, he/she may insure against the shortfall event, i.e. the event that
I < a. Tnsurance comes at a price of E(¢[I — a]™), for ¢ > 1.* The costs for
insurance decrease the possible consumption.

If, on the other hand, some surplus is left after consumption, this surplus
is discounted by a factor d < 1, since saving does not provide the same
satisfaction as the consumption committed for.

The expected net present value (ENPV) of the consumption and savings
is therefore

E(a +d[I —a]" — q[I —a] ).

A rational decision maker maximizes the ENPV w.r.t. the available infor-
mation F; i.e. his/her utility functional is

Ur(I) = max{E(a + d[I —a]" — ¢l —a]”) : a is F measurable }. (1)

It is evident that F;, C F, implies that Ug (I) < Ux(I), i.e., more
information gives more utility.
Since I was supposed to be Fr-measurable and

a+dv—al" —qv—a =v—-(1-d)v—a’—(¢g-Dv—a,
one sees that
Ur, (I) =E(I)

and
Ur(I) < E(I)

for any other sub o-algebra F of Fj.

The risk R contained in the random variable I and the information F
is defined as the difference between the maximal utility (the utility of the
clairvoyant) and the actual utility.

Rr(I) = E(I) — UF(I). (2)

Necessarily, Rz(I) > 0. Evidently, the clairvoyant has no risk and the
totally uninformed has the maximal risk in this setup. The risk of the latter

3We use the notation [z]* = max(z,0) and [z]~ = max(—=,0).



is connected to the notion of the conditional-value-at risk (CV@QR). Recall
that the CVQR is defined as

1
CV@R,(I) = max{a — E]E([[ —a]):a€eR}
(see Rockefellar and Uryasev [6]). It is known that

m@mu>=éﬁﬂrwwp
G(G () —

«

- B <6 ) - ).

where G(u) = P{I < u} and G~'(p) = inf{u : G(u) > p} (see [4]).
Lemma 1 For the totally uninformed, i.e. Fo = {Q,0}, we have
Uz, (I) = dE(I) + (1 — d)CY@R,(I)

and
Rz (1) = (1 = d)[E(]) — CV@R, ()],

where o = (1 — d)/(q — d).
Proof. Take a closer look at the function

Us(v) = a+dv—a]" —qlv—a]”
= a+dv—a)+dv—a] —qlv—a]”
= dv+(1—d)a—(¢—d)[v—a] . (3)

Using (3), we find that

Ur,(I) = dE(I) + (1 — d) max {]E(a + =% a]*) La€ R}
— dE(I) + (1 — d)CV@R,(I)],

with a = (1 —d)/(¢q — d).
|
Notice that v — U,(v) is a concave, monotonic utility function for every
fixed a. Recall the following orderings for random variables.

Definition 1 Let IV and I® two random income variables.

e We say that first order stochastic dominance (I <pgp I?) holds, if
E[U(IM] < E[U(I®)] for all monotonic, integrable functions U.
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e We say that second order stochastic dominance (IV) <ggp I?)) holds,
if E[U(I(W] < E[U(I?)] for all monotonic and concave, integrable func-
tions U.

e We say that concave dominance (1Y) <o I?) holds, if E[U(IM] <
E[U(I?)] for all concave integrable functions U.

Obviously, since all U, are monotonic and concave by (3), it follows that
Ur,(I) = max{E(U,(I) : « € R}

is monotonic w.r.t. second order stochastic dominance <ggp and a fortiori
with first order stochastic dominance <rpgp and concave dominance <cc.
By a similar argument, Rz, is antitonic w.r.t. <cc.

More generally, if I(V) and I®® are defined on the same probability space,
and all the conditional distributions satisfy (I(V|F) <gsp (I®|F), then
Ur(IM) < Up(I?). Similarly, if (IMW|F) <ce (IP|F), then Re(IM) >
Rr(I?).

It is necessary to require the ordering of all conditional distributions.

Example 1 Let the probability space have three points, wi, ws, ws, each
having probability 1/3. Let I (w;) = 1.01, I™ (wy) = 1.015, I (w3) = 1.03;
IP(w;) = 1.01501, I®(w,) = 1.0301, I®(w3) = 1.0101. Choose ¢ = 1.2,
d=10.93 and F = {{w1, w2}, ws}. Then
UID) =1.0175 > UIP) = 1.0174,
but IV <ggp 1@,
Notice that U is translation-equivariant, i.e. for all constant b

Ur(T +b) = Ur(I) +b. (4)

This follows directly from the definition.
In contrast, Rx(I) is translation-invariant, i.e. for all constant b

Rr(I+b) =Rr(I). (5)
Since Uy, (Av) = AU, (v), U and Rz are (positively) homogeneous, i.e.
Ur(M) = \Uz(T)



U is concave and R is convex in the following sense: If I; and Iy are two
income variables (they may be dependent), then

Ur(p+ (1 —p)lz) > pUr (1) + (1 — p)Ur(12) (6)
and
Rr(pli + (1 —p)lo) < pRre(ly) + (1 — p)Rx(12). (7)

The proof of (6) goes as follows: Suppose that Ux(Iy) = E(U,, (I1)),
Ur(I) = E(U,, (I2)), then, using (3),

Ur(ply + (1 = p)I2) > E(Upas+1p)as (Pl + (1 = p) 1)
> EpUs, (1) + (1 = p)Us, ()
pUr (1) + (1 = p)Ur(I3).

(7) is easily deduced from that.
If we compound I; and I, with probability p, i.e.,

7 I, with probability p,
| L with probability 1 — p,

E(U,(I)) = pE(U,(11)) + (1 — p)E(U,(I3)) and therefore
Ur(I) < pUr(L) + (1 — p)Ur(D).

Artzner, Delbaen, Eber and Heath [1] have introduced the notion of a
coherent risk measure as a measure being translation-equivariant (they call
it translation-invariant), positive homogeneos, convex in the sense of (7) and
monotonic w.r.t. pointwise ordering. Thus —Ur is a coherent risk measure

in the sense of [1], but R# is not since it is translation invariant in the sense
of (5).

2 Risk of multiperiod income streams

Suppose now that I, I, ..., I is a stream of random incomes which arrive
at times 1,2,...,7. We denote by ({2, F.P) the probability space on which
these random variables are defined. Together with that, a filtration {F;},
t =1,...,T, is defined, so that I, is F;-measurable, for each t = 1,...,T.
The o-subfield F; represents the information available at time . We take
the convention that Fy = {0, 2}.



Analogously to the static case, let a; be the amount to be consumed at
time ¢. The decision about a; must be made at time ¢t —1, so a; must be F;_-
measurable. The consumption of one unit at time ¢ gives a NPV of ¢, > 0.
The shortfall costs are ¢; > 0. The expected shortfall costs are immediately
subtracted from the consumption before period ¢ (this can be interpreted as
an insurance cost). Any surplus occuring in period ¢ increases the income of
the next period. The final surplus is discounted by a factor d > 0. We make
the following assumptions about the sequences {¢;}, {¢;} and the constant d:

Ctgqta t:]-a"'aTa
Ct+1§0t; tzl,...,T—l, (8)
dSCT.

Let K; be the (random) surplus carried from period ¢ to period ¢+ 1. We
have Ky = 0 and

Kt:[Kt,1+It—a,t]+, tzl,,T (9)
The shortfall M, at period ¢ is given by
Mt = [Kt,1 + It - at]f. (10)

Our objective is to maximize the expected consumption minus the expected
shortfall costs. This can be written as the following optimization problem:

T
UL, I, .., Ir) = max ]E[ > (aiay — q M) + dKr (11)
t=1
s.t. a; is F;_i-measurable for t = 1,...,T. (12)

We introduce the dynamic risk measure of the sequence {I;} as
R(ILi,....Ir) =UEL,...,Elr) —U(I,..., IT). (13)

We shall prove in the next section that it is always non-negative, and that it
posesses most of the properties of the risk measure in the static case.

In order to analyze problem (11)—(12) we shall formalize it as a stochas-
tic control problem. We denote by A the space of F;-measurable random
variables having a finite expected value: X; = L£Y(£2, F;,P). We also use the
notation E,{-} for E{-|F;}.



Problem (11)—(12) can be now written as follows: find random variables
a; € Xy_1, My € Xy, and K; € X, t=1,...,T, so as to

T
max E[ Z(ctat — @ M) + dKp (14)
t=1
s.t. Kt:Kt_1+It—CLt+Mt, t:]_,...,T, (15)
KtZO, MtZO, t:]_,...,T, (]_6)

where Ky = 0 and the constraints (15)—(16) are understood in the ‘almost
sure’ sense.

We can view (14)—(16) as a linear programming problem in abstract
spaces. Let us introduce Lagrange multipliers \; € £2(£2, F;, P) associated
with the constraints (15), ¢ =1,...,T. The lagrangian takes on the form

T

L(a, M,K,\) =E> (cia, — qM,) + dEK7 (17)
t=1
T

- ]EZ )\t(Kt - thl — It + a; — Mt) (18)

t=1

The dual functional is defined as

D\ = sup L(K,a,M,\),

(a,M,K)eX
where
Xo={(a, M,K) : a; € X,_1, My € X;, M; > 0,
K,eX, K, >0, t=1,...,T}. (19)
We have

E

T
L(a, M,K,\) =E Y (¢, = Ma+E > (A — q) M, +E(d - \r)Kr
t=1

T
==

T
Asr + MK +E Y N,
t=1
T
(e — Bt M)ag +E D (A — q) M, + E(d — Ar) K7

t=1

+
=
)

I
B

_|_
=
Ty

T
(B — M) +E DY AT,

1 t=1

-
Il



where we have manipulated (by conditioning) the coefficients in front of ay,
M; and K, to obtain elements of the corresponding dual spaces L>(£2, F;_1,P),
L2802, F,P), and L>(2,F;,P). It follows that D(\) < 400 if and only if
the following conditions are satisfied:

E i i=c¢c, t=1,....T,
MN<q, t=1,...,T,
Ar > d,

N>E N, t=1,...,T—1,

and the dual problem is to find

T
min E ) A7, (24)

t=1

subject to (20)—(23).
Kuhn—Tucker optimality conditions and duality relations hold for our
model (14)—(16), similarly to the finite-dimensional case.

Theorem 1 The processes ay, Mt, and Kt, t = 1,...,T, constitute an
optimal solution of (14)-(16) if and only if there exists multipliers \, €
L2, F,P), t =1,...,T, such that conditions (20)-(23) are satisfied to-
gether with the complementary slackness conditions (understood in the ‘al-
most sure’ sense):

~

Mg —X\)=0, t=1,...,T, (25)
KT(S\T - d) == 0, (26)
KA\ —EMp) =0, t=1,....,T—1. (27)

Proof. Consider the affine operator G = (G4, ...,Gr) involved in (15):
Gt(a,M,K):Kt—Kt_l—It+at—Mt. t:]_,,T

We treat it as an operator from the space on which (a, M, K) are defined
(the product of the corresponding L' spaces) to X = X} x --- x Xp. Since
the image of the set (19) under G contains a neighborhood of 0 in X, our
result follows from [2, Thm. 4, §1.1]. O

Theorem 2 Suppose that conditions (8) hold. Then for every sequence
L,..., Iy such that E|I;| < +oo,t =1,...,T, the optimal values of problems
(14)-(16) and (20)-(24) are finite and equal.
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Proof. A feasible solution to the primal problem (14)—(16) is given by a; =
EI,, with the other variables determined by (9)—(10). The objective value at
this point provides a lower bound for the optimal value of the dual problem.
The feasible set of the dual problem, given by (20)—(23), is convex, closed and
bounded in L£2(£2, F1,P) x - - - x L2(£2, Fr,P). Hence, it is weakly* compact
(Alaoglu theorem, see[3, Thm. 6, p. 179]). Therefore the dual problem has
an optimal solution, \. Then every solution (a, M, K) of the conditions (25)—
(27) which satisfies equation (15) is, by Theorem 1, an optimal solution of
the primal problem. Such a solution exists, because we can determine K and
M from (25)—(27), and then choose a (which is not constrained) to ensure
(15). O

It is clear that the optimal Lagrange multipliers S\t(w) can be interpreted
as the (random) costs of a unit of a credit at time ¢ and scenario w. With
such costs it is not profitable to borrow and to lend at each time ¢.

3 Properties of the dynamic risk measure

Trivially, the functionals &/ and R are homogeneous. U is monotonic in
the following sense: If two income processes (It(l)) and (1,5(2)) are defined on
the same probability space (2, (F;),P) with the same filtration F; and if
It(l) < 1,5(2) a.s. for all ¢, then U(Iy,...,I7) <U(I4,...,Ir). More generally,
if all conditional distributions (I;|F;_1) satisty It(l)|.7-"t_1 <5$D It(2)|]-"t_1, then
u,... . Ir) <UL, ..., Ir).

Finally, U is translation equivariant in the following sense:

U([l+bl,...,IT—|—bT) :u([l,---,[T)+Clbl+02b2+---CTbT,

where by, ...,br are constants. We shall also show in this section that U is
concave, so it makes sense to call —U coherent in the sense of [1].
Let us start from the following observation.

Lemma 2 Suppose that conditions (8) hold and that that each I it Fy_1-

measurable and integrable, t =1,...,T. Then
T
U, ....I) =Y aE{L}.
t=1

Proof. The solution

at:]t, Mt:()a Kt:()a t:]_,...,T,



is feasible for the primal problem (14)—(16), while the solution
)\t:Ct, t:]_,...,T, (28)

is feasible for the dual problem (20)—(24). Both have the same objective
values, Zle E{I;}, and, by virtue of Theorem 2, they are optimal for their
problems. O

As a conclusion from this result we obtain a basic property of our risk mea-
sure.

Theorem 3 Suppose that conditions (8) hold. Then for every sequence
L, ..., Iy such that BE|I;| < +oo, t = 1,...,T, the risk measure (13) is
finite and non-negative.

Proof. Under conditions (8) the deterministic solution (28) is feasible for
(20)—(24). Since a feasible solution for a dual problem always provides an
upper bound for the primal problem, for every sequence I, ..., I such that
E|l;| < +oo,t=1,...,T, we have

T
U(I) < D(c) =Y aB{L,} = UE(T}),
t=1
where the last equality follows from Lemma, 2. 0

Theorem 4 Let By, t =1,...,T, be o-subalgebras such that F;_1 C By C F,
t=1,...,T. Then for every sequence I, ..., Ir, with E|I;| < co we have

R(E{L[B1}, ... E{Ir|Br}) < R(L,..., Ib). (29)

Proof. By theorem 2 both U(1y,...,I;) and U(E{l,|B,},... ,E{I7|Br}) are
finite. Let iy, t = 1,..., T, be the optimal solution of the dual problem (20)—
(24) with the income stream E{I;|B;}, t = 1,...,7. Then the multipliers
gy = E{u|B}, t = 1,...,T, are also optimal solutions of this problem.
Indeed, the feasibility follows from

Eiy = B EB{ | B} =By = ¢y, t=1,...,T,

and the optimality is guaranteed by

T T
E Z /,LtE{It |Bt} =E Z ﬂt]E{It |Bt}
t=1 t=1
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The multipliers fi; are also feasible for (20)—(24) with the income stream Iy,
t=1,...,T. Therefore,

T T
UL, .., ;) < EZﬂtIt = EZﬂt]E{[t|Bt}-
—1 t—1

Combining the last two relations and using (13) we obtain the required result.
O

A simple interpretation of Theorem 4 is that the additional information,

represented by By, reduces risk. In particular, if each I; becomes known at

the preceding period, there is no risk at all, as we have shown it in Lemma 2.
Also, combining two income streams cannot increase risk.

Theorem 5 Let [ = (Iy,...,Ir) and J = (Jy,...,Jr) be two streams of
integrable incomes. Then for every v € (0,1)

R(yI + (1 =7)J) <RI + (1 = 7)R({J),
that is, the functional R(-) is convex.

Proof. The result follows from Theorem 2. Let us denote by A the set of
multipliers defined by (20)-(23). We have

T T
U+ (1 =7)]) = fAnelll\l [’YE Z)\tlt +(1-7E Z)‘tjt]
t=1 =1

T T
> ymin E ;Mt + (1= 9)min E ;)\tJt
= UI) + (1 =y)U(J).

Since Lemma 2 implies that

UNWETL + (1 — y)EJ) = UEI) + (1 — y)UET),

our result follows. O

4 Finite filtrations

Let us consider in more detail the case when the filtration F = (Fy, ..., Fr)
is finite. This filtration generates partitions of the probability space €2, which
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may be represented by a rooted tree of height 7". Each node of the tree at layer
t stands for an atom of the o-algebra F;. Subtrees represent subpartitions.

Suppose that the nodes of this tree are numbered {0,1,2,... N}, with 0
being the root. Let

N =11,2,...,N}

be the node set (not including the root). We assume that there are Ny — 1
nonterminal nodes in A/ and that

T:{Ng,...,N}

is the set of terminal nodes. If n is a node in N, then n— denotes its
predecessor and t(n) denotes its time stage (its distance from the root).

The nodes of the tree are marked by the probabilities of the corresponding
elements of the partitions. FEvidently, such a tree represents the filtered
probability space (€2, (Ft)i=1,..1, P).

An income stream I = (I;), which is adapted to the filtration F; assigns
values I,, to each node n € N.

We call such a valuated tree an income stream tree.

The commitment decisions are made at the nonterminal nodes (including
the root), i.e. a is a vector of length Ny with components aq, . . ., ay,_1-

The calculation of the dynamic utility functional U turns out to be a
standard linear program defined on income stream trees. It reads

max Z PnCt(n)an— — Z ant(n)Mn + andKn

Y neN neT

st. Kn+ap. —M,=1,, tn)=1 neWnN,
K,-K, +a, —M,=1, tn)>1 nenN,
M,>0, K,>0 neN,
a, >0, ne WN\T)U{0}.

(30)

This linear program has Ny + 2N nonnegative variables and N equality
constraints. Its optimal value is U(I). The risk is defined as

R(I) =Y cympnln —U).
neN

Let (z,) be the vector of dual variables of (30). We introduce the notation
n+ for the set of all successors of the node n € N\T. Setting z, = p,yn, the
dual has the following form:

12



neN
1
St yp > — Z PmYm, 1€ N\T,
men+ (31)
1
Cng_ meym; TLEN\T,
P men+

y’rLSqn’ nEN7
Y, >d, neT.

The dual process vy, is a submartingale.

5 Examples

Example 2 This example is due to Philippe Artzner. Suppose a fair coin is
thrown three times. Consider two situations:

Situation 1: The income is 1 at the final stage, if more heads than tails
were counted.

Situation 2: The income is 1 at the final stage, if the last throw shows
heads.

The corresponding income stream tree is shown in Figure 2, where an upmove
means heads and a downmove means tails:

Evidently, the two cases leads to exactly the same marginal income dis-
tributions at each stage. On the other hand, Situation 1 is more predictable
and should lead to a smaller risk.

We calculated the linear program (30 with the specification

c=11,0.95,(0.95)%, ¢=1[1.2,1.2-0.95,1.2-(0.95)%], d=(0.93)7
and we have obtained the following results:
UTWD) = 0.4419,U(T?) = 0.4325,

UEIY)) = UETP)) = 0.5-(0.95)% = 0.4512

and therefore
RIMW) =0.0093 < R(I?) = 0.0188.

This analysis shows that process 2 is riskier than process 1, indeed.

13



Figure 1: Left: Tree 1
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Figure 2: The dual submartingale

Right: Tree 2.
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Figure 3: Left: Tree 3; Right: Tree 4.

It is also interesting to look at the dual variables ") and y® given by
(31). They generate a dual process, which lives on the same tree as the
income process. It is illustrated in Figure 5.

Example 3 We modify Example 2 in such a way that a positive income may
also occur at stages 1 and 2. Consider the following income trees:
Assuming that all arc probabilities are 0.5 one gets the result

UIP) =1.3919, R(I®) = 0.0344

UIW) =1.3775, R(I™M) = 0.0487

Since the predicability occurs earlier in tree 3, its risk is smaller. It
is important to notice that hiding some information leads to larger risk:
Suppose that the outcome of throw 2 is not revealed. In this case, the tree
changes to Tree 3a.

The utility and risk for tree 3a are

UTCY) = 1.3825, R(1GY) = 0.0438.

As expected, the risk of tree 3a is larger than the risk of tree 3.
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