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Abstract

In this paper we consider the polynomial regression model in the presence of multiplicative mea-
surement, error in the predictor. Consistent parameter estimates and their associated standard
errors are derived. Two general methods are considered, with the methods differing in their
assumptions about the distributions of the predictor and the measurement errors. Data from
a nutrition study are analyzed using the methods. Finally, the results from a simulation study
are presented and the performances of the methods compared.
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1 INTRODUCTION

Much work has been done in the estimation of regression coefficients in the presence of additive
measurement error in the predictors. A detailed account of the developments for linear regression
models can be found in Fuller (1987). Carroll, et al. (1995) summarize much of the recent work
for nonlinear regression models. Considerably less work has been done for cases of nonadditive
measurement error however. Hwang (1986) derives a consistent estimator for the coefficients of
the ordinary linear model under multiplicative measurement error by modifying the usual normal
equations of least squares regression. To apply this method, one requires consistent estimates of the
moments of the measurement errors. One of the general methods we will consider is a special case
of Hwang’s estimator. For this method we do not require that any distributional assumptions be
made about the unobserved predictor, other than the usual i.i.d. assumptions. We will consider two
distributional forms for the measurement errors, and propose methods for estimating their moments.
For the second general method we will consider, we model the distribution of the unobserved
predictor as well. Fitting this method will require estimating the distribution of the predictor
conditional on its mismeasured version. We will apply our methods to a nutrition data set taken

from the Nurses Health Survey. We also present the results from a simulation study.
1.1 The Polynomial Regression Model

The polynomial regression model under multiplicative measurement is given by

P

Y=o+ Z BrXF + ﬁ;HZi + €,
k=1

Wij = XiUsj,

1=1,....,n, j=1,...,m

where Uj; is the measurement error associated with the jth replicate of the error—prone predictor
of X;, namely W;;, and Z; is a vector of covariates assumed to be measured without error. Further
assumptions are that all elements of (¢;), (U;;), and (X;) are mutually independent, the (X;) assume
positive values only, the (¢;) have mean zero, and the (U;;) have either mean or median one. We
will consider three possible models for the distribution of the (X;, U;;). No further distributional

assumptions will be made about the (Z;) and (e;).



OLS fit for Energy Vs. Vitamin A

Average Energy

Average Vitamin A

Figure 1: Least squares quadratic fit for Nurses.

1.2 Nurses Health Survey

The Nurses Health Survey includes measurements of energy intake and vitamin A intake for 168
individuals calculated from four 7-day food diaries. We will model Y = long—term energy intake
as a quadratic function of X = long—term vitamin A intake plus error. No important effects were
evident among the possible covariates so we will only consider the regression of Y on X. Food
diaries are an imprecise method for calculating long—term nutrient intakes so the reported vitamin
A intakes are presumed to be measured with error. Long—term energy intake is also estimated
imprecisely when using food diaries, but for the purpose of illustrating our methods we will take
such measurement errors to be additive, thus absorbing them into the (¢;). A scatter plot of the
averages of the energy replicates against the averages of the vitamin A replicates is given in Figure
1. The p-value for the quadratic term in the ordinary least squares (OLS) fit of the energy replicate

averages as a quadratic function of the vitamin A replicate averages is .002.

1.3 Effects of Multiplicative Measurement Error on Curvature

One question to consider is whether the curvature exhibited in the OLS fit of the Nurses data
accurately reflects the curvature in the underlying relationship between Y and the unobservable X.
To see the effect that measurement error can have on curvature, consider the plots given in Figure
2. The top two plots are of Y vs. X and Y vs. W for data generated from a linear regression model

with right—skewed, multiplicative measurement errors. Note the curvature exhibited in the plot of
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Figure 2: Plots for two simulated data sets: (a) Y vs X for linear model, (b)Y vs W for linear
model, (¢) Y vs X for quadratic model, (d)Y vs W for quadratic model.

Y vs. W. Measurement errors of this type can also have the effect of dampening the curvature of
the underlying model. The second pair of plots are for data generated from a quadratic regression
model with #2 < 0. The common feature of the two pairs of plots is that the measurement errors
tend to “stretch” the data along the X—axis, giving a distorted view of the true relationship between

Y and X.

1.4 Diagnostics for Multiplicative Measurement Error

Measurement error models have been most fully developed for the additive error case, W = X + U,
with U being either a mean— or median—zero error term that is independent of X. A convenient
diagnostic for assessing additivity when X is independent of the mean—zero measurement error
term are plots of |W;; — Wyy| against W;; + Wy, for various j # k, where W;; is the jth repli-
cate for individual 7. In the appendix we show that under the additive model, one would expect
to see no correlation in these plots. If, however, the multiplicative model, W = XU, is more
appropriate, then an additive error model is appropriate when considering the logarithm of W.
Plots of |log(W;;) — log(Wi)| against log(W;;) + log(Wj) therefore provide a ready diagnostic for
multiplicative measurement error.

For our analysis of the Nurses data we will define Y; to be the average of the four energy
replicates for individual 72, W;; to be the average of the first two vitamin A replicates for individual

1, and Wjs to be the average of the third and fourth vitamin A replicates for individual 7. The
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Figure 3: Measurement error diagnostics for Nurses data.

diagnostics for the Nurses data are given in Figure 3. The correlation coefficient for the plot of
[log(W;1) — log(Wi2)| against log(W;1) 4 log(Wi2) is —.02, suggesting that the measurement errors
are additive in the log—scale, and hence multiplicative in the untransformed scale. To see that
an additive model is not appropriate for the data in the original scale, note the strength of the
correlation in the plot for the untransformed data, which has a corresponding correlation coefficient

of .50.

1.5 Models for (X,U)

We will consider two distributional forms for the measurment error, U. The first form is where
U can be expressed as exp(V), where V is mean-zero and symmetric. The second form is a
special case of the first, that U is lognormal(0,02). Note that in both cases we have that W is
median—unbiased for X. (The assumption of median as opposed to mean unbiasedness is not really
important since there is no way to distinguish between the two cases in practice. The advantage
to assuming median—unbiasedness in the case of lognormal measurement error is that it simplifies
the identification of parameters.) When working with the first distributional form for U, we do not
place any distributional assumptions on X other than that X is nonnegative with finite moments.
We call this the nonparametric case. For the second distributional form of U, the case of lognormal
measurement error, we consider two possibilities for X. The first is where once again we assume
only that X is nonnegative with finite moments, which we call the semiparametric case. The second

form is that X, conditional on Z, is distributed lognormal(ag + o Z,02), which we will call the



Table 1: Three estimation scenarios.

Model U X\|Z
Nonparametric exp(V'), V mean-zero symmetric nonnegative
Semiparametric lognormal(0,02) nonnegative
Parametric lognormal(0,02) lognormal(ag + o} Z,02)

parametric case. The three scenarios are summarized in Table 1. Note that the semiparametric
model is a special case of the nonparametric model, and that the parametric model is a special case
of the other two models. Also note that these names refer only to the assumptions placed on the
X and U. For example, the parametric model is not fully “parametric” in that we do not assume
anything beyond independence and a zero expectation for the (¢;). We believe this is one of the

attractive features of our method.

1.6 Unbiased Estimating Functions for Polynomial Regression under Multi-
plicative Measurement Error

We derive consistent estimators for the coefficients of the polynomial regression model using the
theory of estimating equations. An advantage to formulating estimators in terms of estimating
equations is that the theory provides a general method for computing asymptotic standard errors. A
brief overview of the method is provided in the appendix. A more detailed description can be found
in Carroll, et al. (1995). In practice, the estimating function, ¥(-), is not formulated independently,
but rather is a consequence of the estimation method being considered. For example, a maximum
likelihood approach would imply taking ¥(-) to be the derivative of the log—likelihood.

Note that for the polynomial regression model, an unbiased estimating function for B =

(o, 55.;_17 Bi,. .- ,Bp)t when the distribution of U is known is
-k
(Y =B = By Z = U AW [er) (1, 21!
774 —k+1
\I/(Y,WZ,B) = (Y_ﬂo_ﬂ;+1Z)W/Cl —ElfﬂkW + /Ck—l—l

(Y — Bo— Bhy Z)W ey — S0 BW P J ety

where W is the average of the replicates of W, and ¢, is the kth moment of U. In practice, the
distribution of U will be unknown and the ¢, will have to be estimated. Unbiased estimating
functions for the nonparametric and semiparametric cases can be found by modifying U(-) to

incorporate the estimation of the c;. We take up methods for estimating the ¢ in the next section.



For the parametric case, we take an alternative approach that allows us to exploit our knowledge
of the distributional form of X. Defining T; = r; ' 37 log(W;j), i = 1,...,n, and noting that
E(Y|T,Z) = fo+B,1 2+ B E(X*|T, Z), a method for estimating B is to regress the ¥; on the Z;
and on estimates of the E(X*|T;, Z;). Simple calculations give us that the conditional distribution
of X given (T, Z) is lognormal with parameters (o3, + 202T) /(07 + 20%) and oo /(05 + 207),
where p,, = ap + otZ. The exact form of the unbiased estimating equation for the parametric

case is given in the next section.

2 ANALYSIS OF MEASUREMENT ERROR
2.1 Error Parameter Estimation

Computing estimates of the E(Uk) in the nonparametric and semiparametric cases requires that
we obtain estimates for the moments of U. Let m; denote the kth moment of U. An estimator for
my, in the nonparametric case is given by my = [E? E;-;él {nry(r; — 1)} 1 (Wij/Wil)k]l/Q, which
follows from the fact that [E{(Wij/Wil)k}]l/Z = my, for all i,7,k,I. For the semiparametric
and parametric models, in which U is lognormal(0,02), we can take G2 to be the mean-square
error resulting from an ANOVA on the log(W;;), which is unbiased for o2. Since the kth moment
of lognormal(0,02) is exp(k?02/2), an estimator for my, in the semiparametric case is then given
by mi = exp(k%52/2). Moments of U for the nonparametric and semiparametric cases can be
estimated by substituting the my into the expansions of the F (ﬁk) For the parametric model, in
addition to 2, we need estimators for ag, oy, and o2. Estimates for ap and a; are given by the
regression of the log(W;;) on the Z;. By the independence of X and U, an unbiased estimate for

o2 is given by 62 = —52 + 3.1 37 (nr;) " H{log(W;j) — dp — &t Z; }2.

2.2 Unbiased Estimating Equations for the case of two replicates

An unbiased estimating function for the nonparametric estimator whenr; =2, 7= 1,...,n, is given

by

(Y — Bo — B Z — S B [er)(L, 21!
(Y = 6o — B Z2)W /er — S8 W e
VMY, W, Z,Bp) = | (Y — fo — BLy Z)W" [ey — 38 B feriy |
—m? + S {(W1/Wa) + (W2 /Wh)}

—m3, + § {(W1/We)™ + (Wo/ W)}



where Byp = (ﬁo,ﬁf,ﬂ,ﬁl, ey Bpymi, ,mgp)t, with the ¢, treated as functions of the m2. For

the semiparametric estimator, an unbiased estimating function is

-7k
Y = Bo—Bh1Z =SV BW [er)(1, Z")
g s < | ¢ AW~ T A
W, 4,5sp) =
= =k
(Y = Bo = By 2N fep = S BT 7 ey
—202 + {log(W;) — log(W)}?
where Bsp = (S, ﬂ;_H, Bi,---, By, 02)t, with the ¢, treated as functions of o2. Finally, an unbiased

estimating function in the parametric case is given by

(Y = Bo — Bp1Z — 28 Brow) (1, Z")!
(Y = Bo — B51Z)v1 — X8 Browvr
VMY, W, Z,Bou) = (Y = Bo — BLy1 Z)vp — 38 Brvwvy ,
{log(W1) + log(W2) — 2cg — 204 Z} (1, Z*)?

—202% — 202 + {log(W1) — ap — ozﬁZ}2 + {log(W3) — ag — a'iZ}2
—202 + {log(W1) — log(W>)}?

where we define v, = E(X*|T, Z), and Bey = (ﬂo,ﬂéﬂ,,@l, ey Bpy g, 1,02, 02)t. We will call the
solution to this estimating equation the conditional mean estimator, in reference to the conditioning
on T and Z. We prefer this name over “parametric” estimator since the latter suggests a likelihood—
based estimator. Note that a likelihood estimator would require assuming a distributional form for

€, something we wish to avoid.

2.3 Asymptotic Variance Comparisons

Asymptotic variances for the estimators are found by taking one—term Taylor series approximations
of U(-) at the estimates, B. An outline of the derivations for the case of quadratic regression without
covariates is given in the appendix. The variances are calculated under the assumptions of the
parametric model, with the additional assumption of finite and constant variance for the (¢;). We
can use these formulae to calculate the asymptotic relative efficiency (ARE) of the conditional mean
estimator relative to both the nonparametric and semiparametric estimators for various parameter
values. This allows us to assess the gain in efficiency that results from choosing to model X when the
parametric model holds. Plots of the AREs for Bg are shown in Figure 4. The AREs were computed
using the parameter estimates for the Nurses data given in the next section, except that o2 was
allowed to vary, and are plotted as a function of the ratio of the coefficients of variation for U and X.

This allows us to see how the efficiency of the conditional mean estimator varies with changes in the
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Figure 4: ARE of C.M. estimator vs. C.V.(U)/C.V.(X) for Nurses.

relative amount of measurement error. The plot is consistent with our simulation studies in that
under the parametric model, the nonparametric and semiparametric methods produce virtually

identical estimates for large n. More results from our simulation study are given later.

3 NUMERICAL EXAMPLE
3.1 Diagnostics for U and X for the Nurses Data

In order to determine which of the three methods is the most appropriate for the Nurses data,
we must characterize the distributions of U and X. We can assess the lognormality of U by
constructing the Q-Q plot for log(W;1/Wia), i = 1,...,n. If U is lognormal, this plot should look
like that for normally distributed data. If the lognormality assumption for U is valid, a diagnostic
for lognormality of X is the Q-Q plot for log(W;1) + log(W;2), i = 1,...,n. For lognormal X, this
plot should also look like a Q—Q plot of normally distributed data. Examination of these plots
in Figure 5 suggests that the lognormality assumption is reasonable for both X and U. Taken
together, the above diagnostics suggest that the conditional mean estimator is reasonable for the

Nurses data.

3.2 Regression Fits for the Nurses Data

Plots of the fitted regression functions are given in Figure 6. We computed 95% confidence intervals

for the estimates of Oy using bootstrap percentiles. Confidence intervals for the NP, SP, CM, and
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Figure 5: Q-Q plots for log(W1/W2) and log(W1)+log(W2) for the Nurses data.

OLS estimators respectively were: (-.121,-.014), (-.165,-.015), (-.051,-.014), and (-.022,-.006). Our

simulation results demonstrated that bootstrap percentiles provided the most reliable intervals.

4 SIMULATION STUDY

4.1 Overview

A simulation study was carried out to assess the relative performance of the three methods un-
der the parametric model without covariates. Generating parameter values were taken from the
fit of the conditional mean estimator for the Nurses data. Parameter values used were B =
(.464,.398, —.029)!, py = 1.613, 02 = .094, and 02 = .076. The (¢;) were taken to be i.i.d. N(0,02),
with 02 = .101 being the mean of the squared deviations of the data about the conditional mean

fit.

4.2 Some Descriptive Statistics

Given in Table 2 are the medians, MADs, and estimated root mean square errors of Bz for 5000
simulated data sets. The sampling distributions for the nonparametric and semiparametric esti-
mators, although asymptotically normal, were found to be highly skewed for n = 168, making
necessary the use of the more robust medians and MADs to assess the bias and standard errors.
As one might expect, the OLS estimates were the least variable, but were also the most biased.

We see that the conditional mean estimator provided the most favorable tradeoff between bias and
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Figure 6: Nonparametric, semiparametric, conditional mean, and OLS fits for the Nurses data.

Table 2: Summary statistics for Bz, Bo = —.029.

median MAD sqrt(MSE)

NP -0.035 0.018 .019
SP -0.036  0.020 .021
CM -0.028  0.010 013
OLS -0.012  0.004 .016

variance reduction. It is important to note that the nonparametric and semiparametric models
both contain the parametric model as a special case, and so are not “incorrect” models for the
simulated data. What is evident, however, is that there may be considerable gains to be made if

one is willing to model the distribution of the predictor, X.

4.3 Bootstrap—Percentile Confidence Interval Widths and Coverages

The performances of 95% bootstrap—percentile confidence intervals for G were examined by gen-
erating 500 data sets at the Nurses parameter estimates and computing bootstrap intervals based
on 1000 with-replacement samples. Empirical coverage probabilities and mean confidence inter-
val lengths for the 500 intervals are given in Table 3. We see that only the confidence intervals
for the conditional mean estimator provided both accurate coverage and reasonable length. Fur-

ther simulations showed that as sample size increases, the performances of the nonparametric and

10



Table 3: Simulated bootstrap confidence interval coverages and mean lengths, n = 168.

NP SP CM OLS
Coverage 960 976 942 .182
Mean length 470 .663 .051 .020

semiparametric estimators approach that of the conditional mean estimator. Much of the poor
performance of the nonparametric and semiparametric methods at moderate values of n appears

to be due to highly skewed sampling distributions for the estimators at those sample sizes.

5 GENERALIZATIONS

The methods and results of this paper are easily extended to general estimating functions. In the
additive error case, a series of works by Stefanski (1989), Nakamura (1990), Carroll, et al. (1995),
and Buzas & Stefanski (1996) have established the method of corrected estimating equations. Under
various guises, the basic idea is that in some cases, an estimating function ¥(Y, X, Z, B) can be

expanded as a polynomial

o0

(Y, X,Z,B) = Z (Y, Z,B)X

For the special structure of the additive model, expansions can be done either in powers of X as
above, powers of exp(X), or combinations of the two. For the multiplicative model, expanding in
powers of X is most convenient. Note that this is equivalent to first replacing X by its logarithm
X, thus obtaining an additive model, and then expanding the estimating function in terms of
powers of exponentials of X,. For the multiplicative model, if the moments of U are known then
under appropriate regularity conditions relating to convergence of the sum, an unbiased estimating

function for B is
o0 s
VYB(Y,W,Z,B) =Y U;(Y,Z,B)W /c;,
§j=0
where ¢; is the jth moment of U. For instance, it is easily seen that for the polynomial regression
model, the estimating equations for the nonparametric and semiparametric estimators are of this

form up to the nuisance parameters (my,...,ma,)" and o2 respectively, where my, = E(U¥).

The general equivalent of the parametric approach is described briefly as follows. Suppose that

11



we can expand both the mean and variance of Y in powers of X, so that

E(Y|X,2,B)=)_d;(Z,B)X’;  var(Y|X,Z,B) =3 ¢;(Z B)X’; (1)
j=0 Jj=0
Then provided that the following sums converge, we have
o
E(Y|W,Z,B) = d;(Z, Bjvj;
j=0
V&I‘(Y|W, Z, B) = Z ej(Za B)U] + Z Z dz(Za B)d](Za B)(vi+j - ’UZ"U]'); (2)
§=0 i=0 j=0

where v; = E(X7|W, Z). If we assume a parametric distribution for X and U, the v; are known up
to parameters and we can estimate B via ordinary quasilikelihood (generalized least squares).

In our formulation of the conditional mean estimator for polynomial regression, we did not
specify a model for var(Y|X, Z, B), but rather worked only with E(Y|X, Z,B). Since we are not
directly specifying a variance model, for the purposes of estimation we have computed the ordinary
least squares estimate of B, given estimates of the v;. This is in effect a solution to a general-
ized estimating equation with a homoscedastic “working” variance function (Zeger, et al., 1988).
Modeling the variance of Y given (X, Z) as in (1) and using (2) as the observed variance function
may lead to a more efficient estimator, but as seen in Figure 4, our working parametric solution
is already reasonably efficient relative to the nonparametric and semiparametric estimators. We
do wish to reemphasize, however, that the gains in efficiency come from correctly modeling the

distribution of X.

CONCLUDING REMARKS

In this paper we have considered two general approaches to fitting polynomial regression models in
the presence of multiplicative measurement error in the predictor. The approaches differed in that
for one we did not make any distributional assumptions for the predictor beyond the usual i.i.d.
assumption, and for the other we assumed a distributional form. In our analysis we found that the
latter approach, though less robust, can in some cases lead to a substantial increase in efficiency,
particularly for small to moderate sample sizes. We also found that these gains in efficiency increase
with the degree of the measurement error. Much of the gain in efficiency appears due to the slow

convergence to normality of the less parametric approach.
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6 APPENDIX

6.1 Justifications for the Measurement Error Diagnostics

For the additive model, Cov(|Wy — Wa|, W1 +Ws) = E{|U; — Us|(U;y + Us)}, whichis (%0 [70 |s—
t|(s+1) fu, (s) fu,(t) ds dt. By a change of variable, thisis [*7 [ |s+7|(s—r)fu,(s) fu,(r) ds dr,
which is 0. Similarly, for the multiplicative model, Cov {|log(W1) — log(W2)|, log(W7) + log(W3)}
is 0.

6.2 Estimating Functions

A function (Y, X, B) is an unbiased estimating function for B if E{V(Y, X,B)} = 0. Given such
a function, ¥(-), one possible estimator for B is the solution, B, of n~t YT U(Y;, X;,B) =0. Under
a set of mild regularity conditions on W, one can show that B is a consistent estimator of B.
The limiting distribution of B can be found by taking a first-order Taylor series approximation
of n=1 37 \II(YZ-,Xi,g) about B, and then applying Slutsky’s Theorem and the CLT. One finds
that asymptotically n'/2(B — B) has mean 0 and covariance A~'BA~!, where A = E {(0/0B")V},
B =E{U(Y,X,B)T4Y,X,B)}, and A=t = (A1),

6.3 Asymptotic Variance of the Nonparametric Estimator

An unbiased estimating equation for the nonparametric estimator in the quadratic regression case
with two replicates and without covariates is

13



UNE(Y, W, By p) =

Y = Bo—BiW /cx
(Y - ﬁO)W/Q

o o Je)
— W [ea — oW [c3

(Y — ﬁo)W2/02 - 51W3/03 - 52W4/C4

—mi + 5 {(W1/W>)

+ (Wa/W1)}
—md+ 3 { (W1 /Ws)” +

Wa/Wi)*}

( )
—m3+ L { (W1 /Wa)® + (Wa/Wr)* |
—m + L{(Wh/Wa)* + (W /W)
where Byp = (8o, 81,82, m%,m3, m%,m?)t, with the ¢, treated as functions of the mz In deter-

mining Ayp and Byp, it can be shown that

p—
NF Os4x3 1o )’
where Cj; = W 2/ci+j 9, and F has (i,5)-element (Y — Bo)W 7lci_1,j/cl2_1 - ﬁlwicm'/cZ -

B iy 4/C1, with ¢; j defined to be d¢;/Om3 = 27 (j) (mi—j/m;) for j <, and 0 otherwise.

Taking expectations, we have that F(C) has (i,j)-element p;1; », and E(F) has (i, j)-element
(Bipi + Boptiv1)ci—1,j/ci—1 — Bipicij/ci — Boptit1Cit1,j/cit1, where we define py, = E(X*).

To evaluate Byp, first note that the upper-left 3 x 3 matrix of Ugp¥%, is given by (DY —
CB)(DY — CB)t = DD'Y? — DB!CY — CBD'Y + CBBC, where D is (1, W /c1, W /).
expected values, we get that for 1 <i <3, 1< j <3, the (i,j)—element of Bgp is

Taking

o2 Citj—2 Cit+j—2
O o Hiti- 2+7ZZ,819 1811 i k-4
Ci—1Cj—1 Ci-1G-1 . =15

Citj+k—3 Citj+k—3
—Zﬂ B Zﬁz Vit j+k+1— 4—25 e Zﬂz Vit j+k+1—4

Cirk—2ej1 =1 k=1 CRC =1

Citj+k+1—4
+ZZﬁk 1811 1= Mitj+k+i—4-
k=11=1 Citk—26j+1-2

Next note that for 1 <7 < 3,1 < j < 4,the (4,3 + j)-element of UypWh 5 can be shown to
be (1/2) {(Y - ﬂo)Wzil/Cifl - ,BlWl/Ci - ,BQWZJFI/CiJrl} {(Wl/WQ)J + (WQ/Wl)]}, which has ex-
pectation (Bip; + Boptiv1/ci—1) Gi1,j—(Brpi/ i) 9ij—(Bapbiv1/civ1/) git1,5, where g; j = E {UZ(UI/U2)‘7} =

i [ 1
27" 3% (k) M+ kM~ (4 k)-

Finally, we have that for 1 <7 <4, 1 < j <4, the (3 + 14,3 + j)-element of ¥xpW¥h , is given

by m?m? — 2m2m? + (1/4)E { (W1 /W)™ + (W /W1)"™ - (W /W)l I 4 (W /W) 71}, which

2

is (mg; +m‘2i_j‘)/2 — mim?.

6.4 Asymptotic Variance of the Semiparametric Estimator

An unbiased estimating equation for the semiparametric estimator in the quadratic regression case
with two replicates and without covariates is
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(Y = fio = W [ = BTV c2)
VPV, W, Bep) = | VT IW e =W fer = WV fes
(Y = Bo)W" Jea — BiW " [c3 — ﬁng /ca
—oy + 5 {log(W1) — log(W2)}
where Bsp = (8o, B1,82,02)!, and the ¢ are treated as functions of 02. We note that Agp =
E{aBt U5P(Bsp)} and Bsp = E {5 (Bsp) U5 (Bsp)'}, and

)

=1 —p —pe BV fer + Bapacth Jeg
—p1 —p2 —p3 —ﬁ1lﬁ2(051)/01 - Cgl)/cz) - ﬁ2/ﬁ3(0§1)/01 —cy

—pp —py —pa —Buia(s Jea — &8 Jes) = Bopua(S) fer — D fen) |
0 0 0 —1

Agp =

where ji, is the kth moment of X, ¢, = 27F Y% <l;>exp {o2(k? — 2ik + 2i%)/2}, and cg) is the

derivative of ¢, with respect to o2, namely 2% Y% (?) (k?—2ik+2i%/2)exp {02 (k* — 2ik + 2i%)/2}.

To evaluate Bgp, first note that the upper-left 3 x 3 matrix of \Ifgp\IftSP is the same as for Byp
given previously.
For 1 <4 < 3, the (i,4)-element of UgpPL, can be shown to be

{0 = B0)W' ™ Jei1 = B Jei = B feiin } [{log(U1) — log(Un)}? /2 — 02] .

Taking expectations, we get (81pu; + Bopiv1)hi—1/ci—1 — Bipihi/ci — Bepit1hivi/civ1, where hy is
the expected value of T {log(U1) — log(Us)}?. Noting that E(U*) = exp(k202/2), E {log(U)} =0,
E {logQ(U)} = 02, and that E {Uklog (U)} is exp(k%02/2) times the rth moment of N(ko2,02),
we have that hy is

E l2 k zk: < ) {108; (U1) — 2log(Uy)log(Uz) + log (UZ)}]

1=

2’“%(

0
’Z){ — 4ik + 4i2)0 +2ag}exp{(k2 —2¢k+2¢2)0—5/2},
=0

Finally, we have that the (4,4)-element of Bgp is o — ot + (1/4)E [{log(Ul) - log(Uz)}ﬂ,
which is (1/4)E {{\/20 Z} } = 30}, where Z ~ N(0,1).

6.5 Asymptotic Variance of the Conditional Mean Estimator

For X distributed as lognormal(u,,02), X|T was shown to be lognormal with parameters (o2, +
202T) /(02 + 202) and 0202 /(02 + 202). As a consequence,

2 2 2T 2 2 2 2 4 2T 2 2 2
1*7(X|T)=e1<p{0““er Tol %%\ px2p) = exp | STube Y A0LL 2050w

o2 + 202 2(02 4+ 202) o2 + 202 o2 + 202
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For notational convenience we define v; = E(X*T), i = 0,1,2. Notice that we can express v;
as ki(W1W2)i/\ = kiXZi)‘(UlUQ)D‘, where kg = 1, ky = exp{(2a12“ux+a o, )/(20 -|-4U } ko =
exp { (20211, + 20202) /(02 +202)}, and X\ = 02/(02 + 202). An unbiased estimating equation for
the conditional mean estimator in the quadratic regression case with two replicates and without
covariates is

(Y — By — Brv1 — Pavr)
(Y — Bo)vr — Brvi — 521)1@%
(Y — Bo)ve — Brvive — Bov
WO (Y, W, Bonr) = 0%+ 4 {log(I¥4) ~ log(¥,)) ’
— iz + 5 {log(W1) + log(Wa)}

—02 = 0% + § [{log(W1) — pa}” + {log(Wa) — pa}’]

where Boar = (Bo, b1, B2, 02, iz, 02)t. Note that the first three elements of WM can be expressed
as vY — vv!B, where v = (v, v1,v2)!. To determine Acys and By, note that

vvt D
03 0O 1 O
1 0 1

where 03 is a 3 x 3 matrix of zeros, and D is the derivative of vY —vvtB with respect to (02, iz, 02),
which can be evaluated directly. The elements of the expectation of D can be expressed as sums
in terms of the form f(a,b,m,n) =FE {X“(Ul U2)blogm(W1)log”(W2)}. Expanding this expression,
we get

f(a,b.m,n) %z% (") () B {xeog™ 00} B{vh0g =0} B {Utlog™ (1)}

Defining g, (k,l1) = E {Xklogl(X)} and g, (k,l) = E {Uklogl(U)}, one can show that g, (k,l) =
exp(kpg + k202/2) 3L 0L €4 (pg + ko2)', where £ is the ith moment of standard normal.

To evaluate B¢y, first note that the upper-left 3 x 3 matrix of ¥ can be written as v(xtB—i-e)—
t—v!)B+ve, and so Uy UL, = v(x!—v!) BB (x! —v)vi+e2vv!, ignoring the terms that
have expectation zero. This matrix has (7,j)-element v;_jv;_; {62 + 3252 BB XE — o) (X — vl)}.
Finding the expectations of these terms requires that we take expectations of the form E{X ivjvkvlvm}.
Remembering that v; = k; (W, Wy)™ = k; XM (U,Us)*™, we can write this expression in the form
¢« X 1= (U1 U) 2+, which has expectation c.exp(Aj.piz + A2,02/2 4+ A3,02). The remaining elements
of Beys can be expressed as sums in f(a, b, m, n) terms.

vviB = v(x
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