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1. Abstract

Little is known about how medial entorhinal cortical microcircuits contribute to spatial 

navigation. Layer 2 principal neurons of medial entorhinal cortex divide into calbindin-positive 

pyramidal cells and dentate-gyrus-projecting calbindin-negative stellate cells. Calbindin-positive 

pyramidal cells bundled dendrites together and formed patches arranged in a hexagonal grid aligned to 

layer 1 axons, parasubiculum and cholinergic inputs. Calbindin-positive pyramidal cells were strongly 

theta modulated. Calbindin-negative stellate cells were distributed across layer 2 but avoided centers 

of calbindin-positive pyramidal patches, and were weakly theta modulated. We developed techniques 

for anatomical identifi cation of single neurons recorded in trained rats engaged in exploratory 

behavior. Furthermore, we assigned unidentifi ed juxtacellular and extracellular recordings based on 

spike phase locking to fi eld potential theta. In layer 2 of medial entorhinal cortex, weakly hexagonal 

spatial discharges and head direction selectivity were observed in both cell types. Clear grid discharges 

were predominantly pyramidal cells. Border cells were mainly stellate neurons. Th us, weakly theta-

locked border responses occurred in stellate cells, whose dendrites sample large input territories, 

whereas strongly theta-locked grid discharges occurred in pyramidal cells, which sample small input 

territories in patches organized in a hexagonal ‘grid-cell-grid’. In addition, we investigated anatomical 

structures and neuronal discharge patterns of the parasubiculum. Th e parasubiculum is a primary 

target of medial septal inputs and parasubicular output preferentially targeted patches of calbindin-

positive pyramidal cells in layer 2 of medial entorhinal cortex. Parasubicular cells were strongly theta 

modulated and carried mostly head-direction and border information, and might contribute to shape 

theta-rhythmicity and the (dorsoventral) integration of information across entorhinal grid scales. 
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2. Zusammenfassung

In dieser Arbeit werden Struktur-Funktionsbeziehungen in der medialen entorhinalen Hirnrinde 

untersucht. Schicht 2 Neurone im medialen entorhinalen Cortex unterteilen sich in calbindin-positive 

Pyramidenzellen und calbindin-negative Sternzellen. Calbindin-positive Pyramidenzellen bündeln 

ihre apikalen Dendriten zusammen und formen Zellhaufen, die in einem hexagolen arrangiert 

sind. Das Gitter von calbindin-positiven Pyramidenzellhaufen ist an Schicht 1 Axonen und dem 

Parasubiculum ausgerichtet und wird durch cholinerge Eingänge innerviert. Calbindin-positive 

Pyramidenzellen zeigen stark theta-modulierte Aktivität. Sternzellen sind vertreut in der Schicht 2 

angeordnet und zeigen nur schwach theta-modulierte Aktivität, ein Befund, der gegen eine Rolle 

von zell-intrinsischen Oszillationen in der Entstehung von Th eta-Modulation spricht. In der Arbeit 

wurden Methoden entwickelt, um durch die juxtazelluläre Färbung und Identifi kation von Zellen, die 

räumlichen Feuermuster von Schicht 2 Sternzellen und Pyramidenzellen zu bestimmen. Insbesondere 

wird gezeigt, dass die zeitlichen Feuermuster von Sternzellen und Pyramidenzellen so unterschiedlich 

sind, dass auch Daten von nichtidentifi zierten extrazellulär abgeleiteten Zellen Sternzellen und 

Pyramidenzellen zugeordnet werden können. Die Ergebnisse zeigen, dass Gitterzell (engl. grid cell) 

Feuermuster relativ selten sind und in der Regel in Pyramidenzellen beobachtet werden. Grenzzell 

(engl. border cell) Feuermuster sind dagegen meistens in Sternzellen zu beobachten. Weiterhin wurde 

die Anatomie und Physiologie des Parasubiculums untersucht. Die Ergebnisse deuten auf die Existenz 

eines hexagonalen ‘Gitterzell-gitters’ in der entorhinalen Hirnrinde hin und sprechen für starke 

Struktur-Funktionsbeziehungen in diesem Teil der Hirnrinde.
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3. Introduction

3.1 Encoding of Spatial Memory in Medial Entorhinal Cortex

Our brain is capable of generating representations of the external world and performing 

computations supporting navigation. Revealing the cellular mechanisms of cognitive brain operations 

(like mapping of space) is a major challenge of contemporary neuroscience. One of the most exciting 

discoveries in system neuroscience in the past decades concerns the spatial discharge patterns of medial 

entorhinal cortex (MEC). Th e grid cells recorded in medial entorhinal cortex, fi rst described by the 

work from Mosers and their colleagues (Hafting et al., 2005), are spatially modulated neurons which 

show periodic, hexagonally arranged spatial fi ring fi elds when the animal is exploring the environment, 

similar to the holes of a Chinese checkerboard (Figure 1 top). As there is no such grid pattern present 

in the environment nor in the sensory inputs, it can be assumed that the spatial discharge patterns of 

grid cells are internally generated. More recently, researchers have identifi ed other spatial modulated 

cell types, including conjunctive cells and border cells. Conjuctive cells are cells which show both 

spatial tuning and directional tuning (Sargolini et al., 2006); and border cells are another unique 

population of cells which will respond specifi cally to the boundary of the environment (Figure 1 

middle; Solstad et al., 2008). Medial entorhinal cortex also contains head-direction cells, which are 

thought to be inherited from other parahippocampal areas such as presubiculum and parasubiculum 

(Figure 1 bottom; Boccara et al., 2010).

Figure 1:  Spatial and directional modulated 
cells in the hippocampal formation. From 
top to bottom: grid cell, border cell, head-
direction cell. From left to right: raw trajectory 
(grey) and spikes (red), rate map, spatial 
autocorrelation map, and head-direction 
tuning polar plot for head-direction cell.

Given the striking regularity and invariance of the grid representation, grid cells are thought 

to be part of the brain’s coordinate system which supports spatial navigation (see Moser and Moser, 

2013 for review). Although the fi ring pattern of grid cells is not derived from sensory inputs, medial 

entorhinal cortex receives convergent direct and indirect inputs from many sensory associated cortices. 

Grid cell activity could arise from local circuit computations that integrate all sensory and directional 

information of the environment. In the past years, a massive experimental, computational and modeling 
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eff ort has been undertaken to understand how grid cells can emerge from brain circuits, but the 

underlying neuronal mechanisms have remained mysterious with competing experimental evidence 

and theoretical implications. Understanding the cellular mechanisms of spatial representations is 

therefore central to the fi eld and should be addressed before we can make biophysical realisitic models 

and theoretical assumptions.  

3.2 Spatial Tuning in Layer 2 of Medial Entorhinal Cortex

Th e microcircuitry of layer 2 of medial entorhinal cortex is poorly understood. Th ere is an 

impetus for focusing on layer 2, considering that it is the major output structure to the hippocampus 

and it contains the largest density of pure grid cells (Hafting et al., 2005; Boccara et al., 2010) and 

border cells (Solstad et al., 2008). Th eta oscillations, which are generated by medial septal GABAergic 

and cholinergic inputs, are the most prominent local fi eld potential oscillatory pattern (4-12 Hz) 

observed in the hippocampal formation. Strong temporal (Mizuseki et al., 2009; Boccara et al., 2010; 

Quilichini et al., 2010) fi ring patterns in layer 2 of medial entorhinal cortex have been described: 1. 

Many grid cells show phase precession, a phenomenon where the fi ring phase of each action potential 

will precess in relation to the local fi eld theta oscillations, when the animal enters the grid fi ring fi eld 

(Hafting et al., 2008). 2. It has been suggested that most grid cells are strongly theta modulated, 

oscillating in theta frequencies (Boccara et al., 2010). Disruption of theta oscillations by blocking 

medial septum causes a profound disruption of grid pattern in medial entorhinal cortex (Brandon et al., 

2011; Koenig et al., 2011). It has been suggested that stellate cells in layer 2 of medial entorhinal cortex 

would generate entorhinal theta oscillations (Alonso and Llinás, 1989; Alonso and Klink, 1993) and 

grid activity (Hasselmo et al., 2007) by their intrinsic subthreshold membrane potential oscillations 

at theta frequency. Our understanding of medial entorhinal microcircuits is limited, however, because 

most of the experimental work stem from extracellular recordings of unidentifi ed cells. Recent work 

has addressed this issue with intracellular recordings (Burgalossi et al., 2011; Domnisoru et al., 2013; 

Schmidt-Hieber and Häusser, 2013). Such recordings have characterized many spatial modulated cell 

types (Sargolini et al., 2006; Solstad et al., 2008; Krupic et al., 2012) in layer 2. Th e clustering and 

modularity of grid cells (Stensola et al., 2012) suggest there might be a strong anatomical topography 

of grid cells, but so far none of the studies have identifi ed molecular markers of grid modules. It is not 

clear either, how functionally defi ned cell types correspond to stellate and pyramidal cells (Germroth 

et al., 1989; Alonso and Klink, 1993). 
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3.3 Principal Cell Types in Layer 2 of Medial Entorhinal Cortex

Pure grid cells are primarily found in layer 2 (Boccara et al., 2010), which diff ers from other 

cortical layers. Here the two types of principal cells, stellate and pyramidal neurons have been described 

in details before (Alonso and Klink, 1993; Germroth et al., 1989). Specifi cally, stellate and pyramidal 

neurons diff er in conductances, immunoreactivity projection patterns and inhibitory inputs (Alonso 

and Llinás, 1989; Lingenhöhl and Finch, 1991; Klink and Alonso, 1997; Varga et al., 2010; Canto et 

al., 2012). 

Very recent work indicates that stellate and pyramidal neurons can be reliably diff erentiated by 

calbindin immunoreactivity (Figure 2) and that these cells also diff er in their inhibitory inputs (Varga 

et al., 2010). Calbindin-positive (calbindin+) cells have been recently shown to receive specifi c CCK+ 

inhibitory inputs, not project to dentate gyrus (Varga et al., 2010), while calbindin-negative (calbindin-)/

Reelin-positive (Reelin+) neurons are homogeneously distributed, receive local GABAergic inputs, and 

project primarily to the dentate-gyrus (Varga et al., 2010). Few studies have so far explored structure-

function relationships in entorhinal circuits (Schmidt-Hieber and Häusser, 2013; Domnisoru et al., 

2013; Zhang et al., 2013; see Rowland and Moser, 2014 and Burgalossi and Brecht, 2014 for reviews). 

Th e functional implications of such remarkable cellular diversity of layer 2, the cellular identity and 

microcircuit structure of layer 2 cells in the MEC, thus, remains largely unresolved.

Resolving how diff erential spatial fi ring relates to principal cell types will clarify the cellular 

Figure 2:  Microcircuitry in layer 2 of medial entorhinal cortex, adapted 
from Burgalossi and Brecht, 2014. Reelin-positive stellate cells project 
to the ipsilateral hippocampus and are interconnected via fast-spiking 
interneurons (FS); Calbindin-positive pyramidal cells are specifi cally targeted 
by CCK-positive interneurons and don’t project to the ipsilateral hippocampus.
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mechanisms of grid discharges and spatial input patterns to distinct subfi elds of the hippocampus. 

Th is could only be done, by taking advantage of improved methodologies for identifying individual 

neurons recorded in freely moving animals, give the reality that previous available techniques have 

limits (Burgalossi et al., 2011; Herfst et al., 2012; Domnisoru et al., 2013; Schmidt-Hieber and 

Häusser, 2013). Th is approach could ultimately provide direct and indirect evidence, if pyramidal and 

stellate cells have diff erential spatial responses, respectively.

3.4 Parasubiculum as Major Input to Medial Entorhinal Cortex

Th e analysis of spatial discharge patterns in hippocampal and parahippocampal brain regions 

is a remarkable success story (Moser et al., 2008; Moser and Moser, 2013). Extracellular recordings 

revealed an astonishing degree of complexity, abstractness, but also understandability of discharge 

patterns such as place, head-direction, border- and grid cells. Along with the exploration of discharge 

properties, anatomists delineated in great detail the basic circuitry of the hippocampal formation 

(Amaral and Witter, 1989; van Strien et al., 2009).

Th e immense amount of data available about certain parts of the hippocampal formation – 

such as dorsal CA1 in the rodent – should not blind us for gaps in our knowledge about less ‘classic’ 

hippocampal processing nodes. Th e parasubiculum is one such structure that lies beyond the classic 

tri-synaptic hippocampal loop (Andersen et al., 1971) and has been relatively little investigated. Th is 

parahippocampal region provides massive input to layer 2 of medial entorhinal cortex (van Groen and 

Wyss, 1990; Caballero-Bleda and Witter, 1993, 1994) and shows prominent expression of markers 

for cholinergic activity (Slomianka and Geneser, 1991). Early physiological analysis described a 

small fraction of place-responsive cells in the parasubiculum (Taube, 1995). Subsequent extracellular 

recordings have also identifi ed head-direction-, border- and grid-responses among parasubicular 

neurons (Cacucci et al., 2004; Boccara et al., 2010).

From a physiological and an anatomical perspective, the parasubiculum is somewhat diffi  cult 

to study, due to its small size and complications with recordings and tracer injections. Furthermore, 

the position of the parasubiculum, on the caudal edge of the parahippocampal lobe, with a strong 

bending of the cortical sheet- greatly complicates the delineation of the parasubiculum. Providing a 

comprehensive description of parasubicular circuits by combining anatomical and functional approach 

is necessary (Burgalossi et al., 2011; Tang et al., 2014a). Specifi cally, it would be interesting to know 

how parasubicular circuits relate to pyramidal and stellate neuron microcircuits in layer 2 of medial 

entorhinal cortex (Ray et al., 2014; Tang et al., 2014b) . In our analysis we investigate four issues: 

First, we delineate the location, shape, laminar organization and internal structure of parasubiculum. 
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Second, we investigate the sources of parasubicular inputs as well as the targets of parasubicular 

outputs. Th ird, we assess spatial discharge patterns of identifi ed parasubicular neurons by juxtacellular 

recording/labeling in freely moving rats. Fourth, we assess the temporal discharge patterns of identifi ed 

and unidentifi ed parasubicular neurons.

3.5 Methodology for Revealing Structure-Function Relationships in the brain

Deciphering the coding algorithms of neural circuits that give rise to certain behaviors is a 

most exciting topic in contemporary neuroscience. Neuronal circuits consist of a huge variety of 

neuronal cell types, which diff er in morphology, intrinsic properties, molecular identity, microcircuit 

connectivity and projection patterns (Klausberger and Somogyi, 2008; Krook-Magnuson et al., 2012). 

Th us, resolving the contribution of individual neurons must be done before one can understand the 

cellular basis of behavior. A high degree of structure to function specialization and identifi cation of 

distinct subclasses of interneurons has been described (Ascoli et al., 2008; Klausberger et al., 2003). 

For principal cells, which make up the large majority of cortical neurons, we still lack a mechanistic 

understanding. Although currently available evidence suggests a complex heterogeneity of principle 

cell types (Kamme et al., 2003; Kerr et al., 2007; Th ompson et al., 2008; Dong et al., 2009; de Kock 

and Sakmann, 2009; Varga et al., 2010; Lee and Reid, 2011; Oberlaender et al., 2011; Harris and 

Mrsic-Flogel, 2013; Ray et al., 2014), cortical structure-function relationships at the single cell level 

remain to be established. 

Optogenetic approaches have revolutionized the way for manipulating, probing, and 

investigating causal structure-function relationships in neuronal activity (Zhang et al., 2010; Fenno 

et al., 2011). In combination with electrophysiological (Anikeeva et al., 2011; Wang et al., 2012; 

Deisseroth and Schnitzer, 2013) and optical methods (Prakash et al., 2012; Deisseroth and Schnitzer, 

2013), optogenetic manipulations make it possible to characterize cell-type-specifi c functions in neural 

circuitry (Aravanis et al., 2007; Zhang et al., 2007). Th ough with immense powerfulness, current 

optogenetic tools have two main limitations. Firstly, it is poorly limited to broadly defi ned cell groups, 

identifi ed by the expression of individual molecular markers or on projection targets (Cardin et al., 

2010; Lee et al., 2010; Chung et al., 2013). Cell types can however rarely be assigned unequivocally by 

single features (Ascoli et al., 2008; Klausberger and Somogyi, 2008; Battaglia et al., 2013; Kepecs and 

Fishell, 2014). Secondly, optogenetic approaches are not ideal for microcircuitry analysis, where single 

cell resolution is required for this. Moreover, by artifi cially increasing or decreasing neuronal activity 

by light activation, the network activity is thus not maintained functional according to its confi gured 

level; and the upstream/downstream cortical targets can be infl uenced unexpectedly as well. A precise, 
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non-manipulative relationship between neuronal activity, morphological diversity and microcircuit 

wiring diagrams is therefore critical for understanding cortical computation and creating biologically 

realistic models of neural circuit function (Brown and Hestrin, 2009; Lang et al., 2011; Denk et al., 

2012; Potjans and Diesmann, 2014).

We know little about how the cellular mechanisms of neurons in the hippocampal formation 

give rise to specifi c spatial and directional fi ring. Most common electrophysiological techniques 

(extracellular tetrode recordings) do not allow the identifi cation of the recorded neurons in freely 

moving animals. Since its establishment (Deschênes et al., 1994; Pinault, 1994, 1996), the juxtacellular 

recording and labeling technique has become the method of choice for investigating structure-

function relationships in the many superfi cial brain areas (Pinault, 2011). Th roughout its emergence 

and further development, however, most studies have been conducted on simplifi ed (i.e. anesthetized) 

(Deschênes et al., 1994; Pinault et al., 1995; Pinault, 1994, 1996) or awake head-fi xed (Houweling 

and Brecht, 2008; de Kock and Sakmann, 2009; Mileykovskiy and Morales, 2011; Boucetta et al., 

2014;) preparations, and lately in freely-moving preparations limited with anesthetic-wakeup format 

(Lee et al., 2006; Lee et al., 2009; Herfst et al., 2012).

To overcome this problem, and allow for visualization of single neurons recorded in vivo under 

natural behaving conditions, it is necessary to improve upon previous existing methodologies (Burgalossi 

et al., 2011; Herfst et al., 2012). Such improvements should allow us to (1) record single neurons in 

drug-free rodents, pre-trained to explore large open fi eld environments; (2) identify multiple neurons 

per animal. Th e combination of miniaturized pipette-positioning device (“micromanipulator”) and 

novel stabilization & anchoring procedures may improve the stability and success rate of juxtacellular 

recordings to large extent. Th e feasibility and applicability of this approach will be very valuable for 

establishing structure-function relationships in freely behaving animals in the fi eld.
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4. Material and Methods

All experimental procedures were performed according to German guidelines on animal welfare.

4.1 Materials

4.1.1 Surgery and Electrophysiology Reagents 

• Experimental animals: Wistar rats (~130-250 g body weight; ~5-9 weeks old). As a rule, we do 

not recommend starting the procedure with rats larger than 300 g of body weight, as the mechanical 

stress they can exert upon fi xation (step 16) can potentially destabilize the head-implant.

• Isofl ourane (Isofl uran CP, CP-Pharma, cat. no. 31303, store at 4°C)

• Ketamine (10% wt/vol, CP-Pharma, cat. no. 400203.00.00, store at 4°C)

• Xylazine (2% wt/vol, Bayer, cat. no. 6293841.00.00, store at 4°C)

• Pentobarbital (Narcoren, Merial GmbH, cat. no. 6088986.00.00, store at 4°C)

• Lidocaine (bela-pharm, cat. no. 6357796.00.00, store at 4°C)

• Bupivacaine (Marcaine, Sanofi , store at 4°C)

• Analgesic (Rimadyl, Pfi zer, cat. no. 400684.00.00, store at 4°C)

• UV-curable adhesive (3M ESPE Filtek Silorane, cat. no. 4772TK, store at 4°C)

• HEPES (Sigma-Aldrich, cat. no. 54459, store at room temperature, i.e. 20-25°C)

• KCl (Sigma-Aldrich, cat. no. 60129, store at room temperature)

• NaCl (Sigma-Aldrich, cat. no. 71376, store at room temperature)

• CaCl2 (Sigma-Aldrich, cat. no. 21108, store at room temperature)

• MgCl2 (Sigma-Aldrich, cat. no. 63064, store at room temperature)

• NaOH solution (Merck KGaA, cat. no. 109137, store at 4°C)

• Neurobiotin (VectorLabs, cat. no. SP-1120) 

Store at -20°C, protect from light and moisture. Biocytin can be used as alternative (Pinault, 

1996). Biotinylated Dextran Amines (i.e. BDA-3000) are more resistant to intracellular degradation 

and can be used for revealing long-range axonal projections (see Introduction)

• Agarose (Sigma-Aldrich, cat. no. A9539, store at room temperature)

• Dental acrylic (Paladur powder and liquid, Heraeus-Kulzer; store at room temperature; mix 

the two components for preparing dental acrylic, according to manufacturer instructions)

Unpolimerized dental acrylic components can be irritating to the skin and respiratory pathways. 

Handle under a fume extractor and follow the producer’s guidelines.

• Instant glue (cyanoacrylate, Henkel, cat. no. 1436519, store at room temperature)

• Mitomycin (Sigma-Aldrich, cat. no. M4287, store at 4°C)

• Silicone sealant (Kwik-Cast, World Precision Instruments, store at room temperature)
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• Streptavidin conjugated to Alexa 546 (Life-Technologies, cat.no. S-11225, store at -20°C)

• Mouse monoclonal anti-Calbindin antibody (Sigma-Aldrich, cat.no. C9848; aliquote and 

store at -20°C)

• Anti-mouse secondary antibodies (i.e. conjugated with Alexa Fluor 488, Life-Technologies, 

cat.no. A-11001; aliquote and store at -20°C)

4.1.2 Equipment

• Faraday cage

• Stereomicroscope (e.g., Olympus, Zeiss) 

• Cold light source (e.g., Olympus, Zeiss) 

• Stereotaxic apparatus (e.g., Narishige) 

• Animal body temperature control system (e.g., FHC)

• Drill system (e.g., Foredom)

• Surgical tools (e.g., Fine Science Tools)

• Surgery absorbent swabs (e.g. SUGI, Kettenbach, cat. no. 31602)

• Blue and red LEDs (e.g. Conrad; Red Top-View-LED, cat. no. 175272; Blue Top-View-LED, 

cat. no. 175265)

• Bridge amplifi er with miniature head-stage (ELC-03XS, NPI electronic) 

• Miniaturized micromanipulator (4 mm diameter, 16 mm length, 9 mm travel distance; 

Kleindiek Nanotechnik) (Figure 3)

• Audio monitor (e.g., AM10, Grass Technologies)

• Acquisition board (analog-to-digital converter, e.g., Heka LIH 8+8)

• Software for acquiring electrophysiology data (e.g., Patchmaster, Heka; Spike2, CED)

• Animal position tracking system (e.g., Neuralynx)

• Borosilicate glass capillaries (1.5 mm o.d., 0.87 mm i.d.; e.g., Hilgenberg)

• Glass-cutting fi le (e.g., VWR, cat.no. 470005-474)

• Pipette puller (e.g., P-97, Sutter Instrument)

• 100x air objective (e.g., MPLFLN, working distance 1.0 mm, Olympus)

• Hot plate (e.g., VWR, cat.no. 97042-650) 

• 0.5 ml microcentrifuge tubes (e.g., neoLAB, cat. no. 780500)

• Vibratome (e.g., Microm)

• Cryostat (e.g., Leica)

• UV lamp (e.g., Heraeus) 
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Always wear UV-protection glasses upon use.

• UV-light protection glasses (e.g., Heraeus)

• Software/hardware for 3D morphological reconstruction (e.g., Neurolucida, MBF Bioscience)

4.1.3 Reagent Preparation

Extracellular (Ringer) solution (in mM): NaCl 135, KCl 5.4, HEPES 5, CaCl2 1.8 and MgCl2 

1 (pH adjusted to 7.2 by adding NaOH, target osmolality 290 mmol kg-1). Make in advance, fi lter 

sterile through a 0.2 μm fi lter and store at 4°C for up to several months.

Pipette solution: Add 1.5-2% Neurobiotin (wt/vol) to Ringer solution (above). As an alternative, 

biocytin can also be used. Filter through a 0.2 μm fi lter, make small aliquots (~5-10 μl) and store 

at temperatures ≤ -20°C. In our experience, aliquots are stable at -20°C for least several months. 

Osmolarity and pH are critical and should be checked for each batch.

Agar solution: Add 3% (wt/vol) agarose powder to Ringer solution, and boil it in a microwave. 

Th e solution becomes clear. Keep the solution on a hot plate and stir throughout the experiment, so 

that it can be used as liquid when necessary. Th e agarose solution can be used after it has cooled down 

to near physiological temperature. Make in advance before each experiment.

Ketamine/Xylazine: mix Ketamine (10% wt/vol) with Xylazine (2% wt/vol), resulting in a 

fi nal concentration of 80 mg/kg Ketamine and 6 mg/kg Xylazine and injection dose of 0.11 ml/100 

g. Supplemental doses should be administered by alternating injections of ketamine and ketamine/

xylazine (1/2 of the initial doses) every 30-45 min, or as required. Store ketamine/xylazine mix at 4°C 

for up to 4-6 weeks.
Figure 3: Implant components for 
obtaining juxtacellular recordings in 
freely moving animals. (a) Th e indi-
vidual components of the implant 
that are either cemented (head-post, 
recording chamber, protection cap 
and micromanipulator base) or 
mounted on the rat’s head for the re-
cording (head-stage and microman-
ipulator). Th e bottom image shows a 
close-up view of the head-post, se-
cured into the head-post holder by 
means of a screw. Th e bottom surface 
of the head-post is cemented on the 
animal’s head (Step 14), whereas the 
top surface serves as support for the 

miniaturized head-stage (Step 26). (b) Th e assembled micromanipulator-base complex, which is 
attached to a manual stereotaxic manipulator via an adapter piece. Th is assembly is used for posi-
tioning and implanting the micromanipulator’s base (Step 22). (c) High-magnifi cation view of the 
pipette tip. Adapted from Tang et al., 2014a.  
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4.1.4 Equipment Setup

Recording chamber: Cut off  a circular piece (approx. 5 mm diameter and 2 mm height) from 

the cap of a 0.5 ml microcentrifuge tube (Figure 3A).

LED assembly: Mount red and blue LEDs on a linear support (spacing 4.5 cm) and glue on 

the miniature head-stage (Figure 3A). Record the two lights using the video-tracking system (i.e. 

Neuralynx) and use them post-hoc for extracting the animal’s positional coordinates and heading-

direction. Alternatively, head-mountable LEDs integrated within the head-stage can also be used (e.g. 

from NPI Electronic).

Glass electrodes: Pull pipettes with a long taper, by using a horizontal puller (e.g., P-97, Sutter 

Instrument). Electrodes should be pulled with a long taper (Figure 3C), to avoid/minimize brain 

tissue damage upon electrode penetration, a tip opening of ~1.5-2 μm and a resistance of 4–6 MΩ. 

Th e tip of each electrode should be examined at high magnifi cation (> 1000x total magnifi cation, 

through a 100x air objective; See equipment). Discard electrodes with irregular, asymmetric shapes. 

Protection cap (plastic, shielded with aluminum foil; Figure 3A): the protection cap should be 

light, and it is needed for protecting the implant (in particular the micromanipulator and the recording 

electrode) during the freely moving behavior. Th e aluminum foil provides additional electrical isolation 

from external noise.

Adaptor piece: for mounting the micromanipulator/base complex on a manual stereotaxic 

manipulator (see Figure 3B) (required for implanting the micromanipulator’s base on the rodent’s 

head; see step 22).

Rat restrainer box (PVC; length x width x height: 20 cm x 8 cm x 8 cm): the restrainer should be 

equipped with a top lid, as head-fi xation in open space is source of stress and discomfort to the animal 

(Schwarz et al., 2010).

Head-post: (aluminum or stainless steel; see Figure 3A): it is a small piece of metal which is 

implanted on the rat’s head, in tight adherence to the skull, which serves a dual function: to allow 

head-fi xation in the stereotaxic frame and to serve as a base for the miniaturized head-stage. 

Head-post holder (stainless steel): for holding the head-post and fi xing the head of the rat on 

the stereotaxic frame. Secure the head-post onto the head-post holder with a screw (see Figure 3A). 

Micromanipulator base (brass, Figure 3A; or aluminum, Figure 3B): for mounting the 

micromanipulator on the rat’s head.

Behavioral arena: a square arena is used in the present protocol (1 m x 1 m). However, diff erent 

geometrical designs are possible. In particular elevated platforms (without walls) can be used to 

diminish the occurrence of recording losses due to the implant accidentally touching the walls.
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4.2 Methods

4.2.1 Anatomy Methods

Brain Tissue Preparation

For anatomy experiments, male and female Wistar rats (150-400 g) were anesthetized by 

isofl urane, and then euthanized by an intraperitoneal injection of 20% urethane. Th ey were then perfused 

transcardially with 0.9% phosphate buff ered saline solution, followed by 4% paraformaldehyde (PFA) 

in 0.1 M phosphate buff er (PB). After perfusion, brains were removed from the skull and postfi xed 

in PFA overnight. Th ey were then transferred into a 10% sucrose solution in PB and left overnight, 

and subsequently immersed in 30% sucrose solution for at least 24 hours for cryoprotection. Th e 

brains were embedded in Jung Tissue Freezing Medium, and subsequently mounted on the freezing 

microtome to obtain 20-60 μm thick sagittal sections or tangential sections (parallel to the pial 

surface). Tangential sections of the medial entorhinal cortex were obtained by separating posterior 

cortices (including the entorhinal cortex) from the remaining hemisphere by a cut parallel to the 

surface of the medial entorhinal cortex. Th e tissue was then frozen and positioned with the pial side 

to the block face of the microtome. Tissue from PV-Cre mice, expressing Cre recombinase under the 

parvalbumin promoter (B6;129P2-Pvalbtm1(cre)Arbr/J mice, stock nr 008069, Jackson, Bar Harbor, 

ME, USA), was prepared using similar methods, except that the sections were cut on a standard 

microtome (nominal thickness 100 μm, horizontal) right after overnight fi xation in PFA. Th e mice 

were injected with AAV-Ef1a-dbf-hChR2(H134R)-EYFP-WPRE (serotype 1/2) roughly 6 weeks prior 

to perfusion, whereby we targeted the medial septum under stereotaxic guidance: starting from the pial 

surface at 1 mm anterior, 0.7 mm right lateral to Bregma, a 34-gauge NanoFil™ needle (WPI, Berlin, 

Germany) was advanced at an angle of 10° in the coronal plane for 4200 and 4600 μm, where we 

injected 1 μl each (100 nl/s), waiting 5 minutes after each injection before moving the needle.  

Histochemistry and Immunohistochemistry

Acetylcholinesterase (AChE) activity was visualized according to previously published procedures 

(Tsuji, 1998; Ichinohe et al., 2008). After washing brain sections in a solution containing 1 ml of 0.1 

M citrate buff er (pH 6.2) and 9 ml 0.9% NaCl saline solution (CS), sections were incubated with CS 

containing 3 mM CuSO4, 0.5 mMK3Fe(CN)6, and 1.8 mMacetylthiocholine iodide for 30 min. After 

rinsing in PB, reaction products were visualized by incubating the sections in PB containing 0.05% 

3,3’- Diaminobenzidine (DAB) and 0.03% nickel ammonium sulfate. 

Immunohistochemicalstainings were performed according to standard procedures. Briefl y, brain 

sections were pre-incubated in a blocking solution containing 0.1 M PBS, 2% Bovine Serum Albumin 

(BSA) and 0.5% Triton X-100 (PBS-X) for an hour at room temperature (RT). Following this, primary 
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antibodies were diluted in a solution containing PBS-X and 1% BSA. We used primary antibodies 

against the calcium binding protein Calbindin (1:5000), the extracellular matrix protein Reelin 

(1:1000), the extrinsic membrane protein Myelin Basic Protein (1:1000), the vesicular acetylcholine 

transporter (1:1000), and the DNA binding neuron specifi c protein NeuN (1:1000), and for the mice, 

against green fl uorescent protein (GFP). Incubations with primary antibodies were allowed to proceed 

for at least 24 hours under mild shaking at 4°C in free-fl oating sections. Incubations with primary 

antibodies were followed by detection with secondary antibodies coupled to diff erent fl uorophores 

(Alexa 488 and 546). Secondary antibodies were diluted (1:500) in PBS-X and the reaction was 

allowed to proceed for two hours in the dark at RT. For multiple antibody labeling, antibodies raised 

in diff erent host species were used. After the staining procedure, sections were mounted on gelatin 

coated glass slides with Mowiol or Vectashield mounting medium.

In a subset of experiments, primary antibodies were visualized by DAB staining. For this purpose, 

endogenous peroxidases were fi rst blocked by incubating brain tissue sections in methanol containing 

0.3% hydrogen peroxide in the dark at RT for 30 min. Th e subsequent immunohistochemical 

procedures were performed as described above, with the exception that detection of primary antibodies 

was performed by biotinylated secondary antibodies and the ABC detection kit. Immunoreactivity 

was visualized using DAB staining.

For whole-mount immunohistochemistry, we used a variant of the protocol in (Sillitoe and 

Hawkes, 2002; Jährling et al., 2008). Th ick tangential sections (~ 300 μm) containing layer 2 of MEC 

were fi rst post-fi xed in Dent’s fi xative overnight at 4°C and then incubated in Dent’s bleach overnight 

at 4°C. Th ey were then dehydrated twice in 100% methanol for 30 min each and then rehydrated for 

90 min each in 50% and 15% methanol in PBS at RT. Subsequently, sections were incubated with 10 

μg/ml proteinase K for 5 min at RT. Sections were then rinsed three times for ten minutes in PBS at RT 

and subsequently incubated in PBS-X containing 2% BSA overnight. Primary antibodies were diluted 

in PBS-X containing 5% DMSO, 1% BSA and incubated for 96 hours at 4°C. After this incubation, 

whole-mounts were washed in PBS-X three times for 2–3 h each and then incubated overnight in 

secondary antibodies diluted in PBS-X and 5% DMSO at 4°C. Sections were then washed three times 

in PBS-X for 2–3 h each and incubated in PBS-X overnight to ensure effi  cient removal of unbound 

antibodies. Th e sections were dehydrated in series of 50%, 80%, and 100% methanol in PBS at RT for 

90 min each. Finally, the sections were transferred for at least 2 days into a clearing solution consisting 

of two parts of benzyl benzoate and one part of benzyl alcohol at RT, until they became transparent.

For histological analysis of juxtacellularly-labeled neurons, neurobiotin was visualized with 

streptavidin conjugated to Alexa 546 (1:1000). Subsequently, immunohistochemistry for Calbindin 
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was performed as described above and visualized with Alexa Fluor 488. After fl uorescence images were 

acquired, the neurobiotin staining was converted into a dark DAB reaction product, performed as 

previously described (Klausberger et al., 2003). Th is has advantages of being more sensitive than most 

fl uorescent dyes, is permanent and not sensitive to photobleaching (Marx et al., 2012). In general we 

found similar results for calbindin immunohistochemistry as previous authors (Langston et al., 2010; 

Varga et al., 2010), who showed that the large majority (~90% in Peterson et al., 1996) of calbindin+ 

cells are glutamatergic neurons.

Anterograde and Retrograde Neuronal Labeling

Anterograde/retrograde tracer solutions containing either Biotinylated-Dextrane Amine (BDA) 

(10% w/v; 3.000 MW or 10.000 MW) or Cholera Toxin Subunit B, Alexa Fluor 488 Conjugate 

(CTB) (0.8 % in PB) were injected in juvenile rats (~150 gr) under ketamine/xylazine anesthesia. 

Briefl y, a small craniotomy was opened above the targeted areas at intermediate positions along the 

septo-temporal axis. Animals were placed in a stereotaxic apparatus, and prior to injection, the area 

was localized by electrophysiological recordings, based on characteristic signatures of the local fi eld 

potential and neuronal spiking activity. Glass electrodes with a tip diameter of 10-20 μm, fi lled with 

CTB or BDA solution, were then lowered unilaterally into the target region. Tracers were either 

pressure-injected (CTB; 10 injections using positive pressure of 20 p.s.i., 10-15 s injection duration) 

or iontophoretically-injected (BDA; 7s on/off  current pulses of 1-5 mA for 15 min). After the 

injections, the pipettes were left in place for several minutes and slowly retracted. Th e craniotomies 

were closed by application of silicone and dental cement. Th e animals survived for 3-7 days before 

being transcardially perfused. Th e results from back-labeling agreed with previous authors (Germroth 

et al., 1989; Tamamaki and Nojyo, 1993; Peterson et al., 1996), who also found that the large majority 

of retrogradely-labeled neurons from the dentate gyrus had stellate morphologies.

Image Acquisition

A microscope equipped with a motorized stage and a z-encoder, was used for bright fi eld 

microscopy. Images were captured using a MBF CX9000 camera using Neurolucida or StereoInvestigator. 

An epifl uorescence microscope with camera was used to image the immunofl uorescent sections. Alexa 

fl uorophores were excited using the appropriate fi lters (Alexa 488 – L5, Alexa 546 – N3). Fluorescent 

images were acquired in monochrome, and colour maps were applied to the images post acquisition. 

Whole-mount stainings were imaged using a microscope. Fluorescence images were acquired with a 

25x (1.05 NA) water-immersion objective. A femtosecond laser was used to excite fl uorophores at 850 

nm. Post hoc linear brightness and contrast adjustment were applied uniformly to the image under 

analysis.
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4.2.2 Anatomy Analysis

Cell Counts and Patch Sizes

In the analysis for determining cell numbers and patch sizes, patches in consecutive sections 

were matched by overlaying them in Adobe Photoshop, and only the ones which could be reliably 

followed in all the sections under consideration were taken up for further analysis. Image stacks were 

fi rst converted into .tiff  fi les for diff erent channels and focal planes using ImageJ. Th ese fi les were then 

merged back together into a single fi le using the Neurolucida image stack module. In these patches all 

cells positive for Calbindin and NeuN were counted manually.

Quantifi cation of patch sizes was done with the Neurolucida software by using the mean of 

maximum and minimum Feret diameter, defi ned as the maximum and minimum diameter of the 

patch, respectively. To correct for overestimation of neurons due to double counting in two adjacent 

sections, we estimated the number of cells in a section assuming uniform cell density and uniform 

spherical cell shape in the section and applied a correction factor of s/ (s+d) where, s is the section 

thickness and d is the diameter of a cell, to correct for the cells which would be counted again in an 

adjacent section.

Quantifi cation of Axonal Orientation and Cholinergic Boutons

To quantify the orientation of axonal fi bers in layer 1, axon segments from myelin-stained 

sections were traced using Neurolucida software. Th e polar histogram was constructed with angular 

bins of 3°, and the total length of axons in each angular direction was summed up.

Using Stereoinvestigator software we quantifi ed the density of VAChT-positive puncta in 

calbindin patch and non-patch areas at the layer 1/2 border in tangential sections from fi ve rats. In 

total, we selected 10 regions of interest (ROI) centered on calbindin patches and 10 ROIs positioned 

equidistant between calbindin patch centers. All VAChT positive puncta in the ROI were counted 

manually and divided by area size to obtain puncta density. 

Analysis of Spatial Periodicity

To determine the spatial periodicity of calbindin+ patches, we determined spatial autocorrelations 

and spatial Fourier spectrograms. Th e spatial autocorrelogram was based on Pearson’s product moment 

correlation coeffi  cient (as in Sargolini et al., 2006): 

r(τx,τy)=(n∑f(x,y)f(x-τx,y-τy)-∑f(x,y)∑f(x-τx,y-τy))/(√(n∑f(x,y)2-(∑f(x,y)2)√(n∑f(x-τx,y-τy)
2-

(∑f(x-τx  ,y-τy))
2))

where, r(τx,τy) is the autocorrelation between pixels or bins with spatial off set τx and τy. f is 

the image without smoothing or the fi ring rate map after smoothing, n is the number of overlapping 

pixels or bins. Autocorrelations were not estimated for lags of τx and τy, where n<20. Grid scores were 
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calculated as previously described by taking a circular sample of the autocorrelogram, centered on, but 

excluding the central peak. Th e Pearson correlation of this circle with its rotation for 60 degrees and 

120 degrees was obtained (on peak rotations) and also for rotations of 30 degrees, 90 degrees and 150 

degrees (off  peak rotations). Gridness was defi ned as in as the minimum diff erence between the on-

peak rotations and off -peak rotations. To determine the grid scores, gridness was evaluated for multiple 

circular samples surrounding the center of the autocorrelogram with circle radii increasing in unitary 

steps from a minimum of 10 pixels more than the width of the radius of the central peak to the shortest 

edge of the autocorrelogram. Th e radius of the central peak was defi ned as the distance from the central 

peak to its nearest local minima in the spatial autocorrelogram. Th e grid score was defi ned as the best 

score from these successive samples.  

Grid scores refl ect both the hexagonality in a spatial fi eld and also the regularity of the hexagon. 

To disentangle the eff ect of regularity from this index, and consider only hexagonality, we transformed 

the elliptically distorted hexagon into a regular hexagon and computed the grid scores. A linear affi  ne 

transformation was applied to the elliptically distorted hexagon, to stretch it along its minor axis, till it 

lay on a circle, with the diameter equal to the major axis of the elliptical hexagon. Th e grid scores were 

computed on this transformed regular hexagon.

Th e spatial Fourier spectrogram was calculated by implementing a two dimensional discrete 

Fourier transform and determining its power:

F(x,y)=1/√MN ∑(n=0)^(N-1)∑(m=0)^(M-1)f(m,n) e^(-2πi(((mx)/M)+(ny/N))) 

P(x,y)=√(Fr
2(x,y)+Fi

2(x,y))

where, F is the spatial Fourier transform of f, which is a binary image representing the sample with 

regions of interest (patches) marked as white blocks, with the remaining area as black and zero padded 

to 2048 x 2048. M and N are the width and height of the image before zero-padding. Normalization 

by √MN enables comparison of Fourier power in diff erently sized samples. P is the power of the 

Fourier transform with Fr and Fi being the real and imaginary parts of the Fourier transform.

To determine the probability that the patches present in the selected area would be arranged 

hexagonally, we employed a shuffl  ing procedure and compared the maximum Fourier power of the 

block pattern representing the original image, to the 99th percentile of the power of a shuffl  ed one 

with the same blocks (representing the patches) being randomly distributed in the same area without 

overlapping. Th is shuffl  ing was performed on all samples on a sample-by-sample basis until the 99th 

percentile of the maximum power Fourier component converged to a constant.
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4.2.3 Electrophysiology Methods

Anesthetized Juxtacellular Recordings

Juxtacellular recordings in anesthetized animals were performed under ketamine/urethane 

anesthesia, essentially as previously described (Klausberger et al., 2003). Th e ketamine/urethane mix is 

the anesthetic of choice for studying temporal dynamics of spiking activity, and it has long been used 

to study many aspects of hippocampal and entorhinal physiology (Klausberger et al., 2003; Quilichini 

et al., 2010). In a subset of recordings, scopolamine was injected systemically (0.4-1 mg/ml, i.p.; Tsuno 

et al., 2013). After a pre-injection baseline recording of ~5 min, scopolamine was injected and the 

eff ect on the recorded cell’s activity monitored for further 15-20 min.

Th e juxtacellular signals were amplifi ed by the ELC-03XS amplifi er (NPI Electronics) and 

sampled at 20 kHz by a data-acquisition interface under the control of PatchMaster 2.20 software 

(HEKA). Th e animal’s location was automatically tracked at 25 Hz by a videotracking system 

(Neuralynx). 

Detailed Experimental Procedures of Freely-moving Juxtacellular Recordings

Animal Behavioral Training (7-10 days) 

1| Progressively familiarize a male Wistar rat (~130-250 g body weight; see Materials) to the 

experimenter and the restrainer box for at least 3 days. To do this, handle the rat and let it explore the 

restrainer box in their home cages a few times per day. One/two days before starting the training (Step 

2), habituate the rat to chocolate by adding a few crumbs to their regular food pellets.

2| Train the rat to chase randomly scattered food pellets inside a behavioral arena (“pellet-chasing” 

foraging task; Muller et al., 1987) by placing the animal in the behavioral arena, and throwing small 

chocolate crumbs randomly to initiate/motivate pellet chasing and running. Perform short training 

sessions (5-10 min) multiple times per day.

During training, animals receive unlimited access to food in the experimental arena and a limited 

food allowance in their cage. Monitor daily the rat’s body weight. Under this food regime, animals 

should consistently maintain > 90% of their ad-libitum body weight; this provides the necessary 

motivation to the rat to actively engage in the behavioral training.

On initial training sessions, animals typically make only short excursions into the environment 

from their “home base” location (typically one corner of the arena) by moving along the walls. As 

training proceeds, this behavior will be slowly replaced by longer excursions eventually crossing the 

center of the arena. Keep low light conditions in the room and test animals in their dark phase for 

optimal behavioral performance. Provide a chocolate reward after each training session in their home 

cage. Reward with larger chocolate pellets when runs across the center of the arena are made.
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3| Continue to train the animal until behavioral performance is satisfactory. For the specifi cs 

of our experimental design this corresponds to continuous running periods of ~20-30 min. Th is is 

typically achieved within 3-7 days by multiple (typically up to 4) training sessions per day of progressive 

durations.

Progression to the following steps can be delayed by a few days by keeping the rat at steady-state 

behavioral performance.

Behavior is a critical parameter for the success of the experiment. Daily training sessions at 

regular times should be performed to maintain the rat at steady-state performance.

Implantation and Animal Recovery (3-6 days) 

4| Anesthetize the animal with an intraperitoneal injection of ketamine/xylazine (80-100 mg/kg 

ketamine; 10 mg/kg xylazine, see Reagent Setup) according to standard procedures.

5| Place the animal on a heating pad and fi x the head in the stereotaxic apparatus. Using hair 

trimmers, shave the scalp above the area of interest.

6| Inject a local anesthetic (e.g., lidocaine or bupivacaine) subcutaneously into the scalp, and 

gently cover both eyes with ophthalmic cream to prevent drying. 

7| Use forceps to lift the scalp and scissors to cut and remove a circle of skin. Both lambda 

and bregma points on the skull should be made visible. Scrape off  connective tissue with a delicate 

bone scraper by applying gentle pressure. Th is step and steps 8-14 should be performed under 

stereomicroscopic guidance.

Minimal bleeding may occur at this point on the skull surface. Clean thoroughly with Ringer 

solution, and use cotton/surgery absorbent swabs for drying/cleaning the surface. Proceed to the next 

step only when bleeding has stopped. 

8| Rinse the clean skull surface, and let it dry (typically 3-5 min; the bone will appear opaque). 

Mark your stereotaxic reference point (lambda or bregma) with a permanent marker. It will be used as 

a reference point for localizing the craniotomy site (step 19).

9| Apply a thin layer of adhesive (e.g., 3M ESPE; see Reagents) to the nearly dry skull. Cure the 

adhesive by ultraviolet (UV) light (follow guidelines from the producer). Protect your eyes from the 

UV light by means of UV-protection glasses. 

Th e glue layer provides a base for the dental acrylic to adhere to. Th e skull surface should be 

dry and clean from blood before applying the glue (see next step). Traces of blood will prevent glue 

polymerization and compromise the adherence of the implant to the skull.

10| After UV curing the adhesive, clean the polymerized surface thoroughly with the help of a 

cotton swab. Th e polymerized adhesive should appear as a compact, resistant layer.
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11| Use a stereotaxic atlas (Paxinos and Watson, 2006) to determine the coordinates of the brain 

region of interest. Th e marked bregma (or lambda) point is still visible through the thin transparent 

layer of polymerized adhesive. Mark the position for the center of the craniotomy. Use a permanent 

marker to mark the location for drilling.

12| Glue the recording chamber (see Reagent Setup) onto the exposed skull with adhesive (e.g., 

3M ESPE; see Reagents). Seal the recording chamber edges with solid glue from 3M ESPE, in order 

to avoid leakage of the dental cement into the chamber (see step 13 below). Fill the recording chamber 

with silicone sealant. 

13| Mix the dental cement and solvent in a weigh dish until it is slightly thickened and carefully 

pour the cement onto the skull and wound margins.

Dental cement powder and fumes are irritant and toxic. We recommend this step to be performed 

under a fume extractor (follow the producer’s guidelines for proper use). Avoid the dental cement to 

enter the recording chamber.

14| Allow the cement to harden. Repeat step 13 for cementing the head-post posteriorly and the 

shielded protection cap anteriorly.

15| Release the rat from the stereotaxic frame and allow the animal to recover on the heating 

pad. Th en return it to its cage for recovery under observation. Apply postoperative antibiotics and 

analgesics (i.e. Rimadyl) and follow standard surgical recovery procedures.

Animal behavior and recovery should be closely monitored. Allow the rat to fully recover from 

the surgery (typically 2-5 days) before proceeding to the next step. 

Habituation to Head-fi xation and Training (4-6 days) 

16| Start to habituate the animal to the head-fi xation by placing the animal in the restrainer box, 

and securing the head-post to the head-post holder (Figure 3A, bottom). Th is fi rst fi xation should not 

last more than 30 s-1 min. Th e animal is then placed back in its home cage, where a food reward (i.e. 

chocolate crumbs) is provided for positive reinforcement.

Perform the fi xation of the head-post to the holder rapidly. On the fi rst session, rats might 

exhibit overt signs of stress (i.e. vocalization, struggling, defecation). However, these signs will 

gradually disappear during habituation, and will typically be virtually absent after 2-3 days. Food 

reward is used as positive reinforcement for establishing an appetitive link and minimizing negative 

associations (Schwarz et al., 2010). Control body weight daily. Animals should not lose weight during 

the habituation procedure.

17| Slowly extend the fi xation time over a number of days (2-3 sessions per day; the number 

of sessions and the increment in time between sessions should be adapted to the animal behavioral 
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response to fi xation). Always provide food reward at the end of the session for positive reinforcement. 

From the second/third session onwards, upon release from fi xation, place rats in the behavioral arena, 

where the chocolate reward is provided. Slowly re-initiate training to pellet chasing and running until 

pre-surgery behavioral performance is reached (as outlined in steps 1-3).

18| When the animal can sit quietly under head-fi xation - i.e. without struggling and/or displaying 

overt behavioral signs of stress - for a minimal period of 15 min (this is typically achieved within 2-3 

days), gradually present other individual aspects of the fi nal recording situation; gradually habituate the 

animal to the lights/noise of the setup equipment (i.e. the stepping sound of the micromanipulator), 

the headstage, cables and LED lights while running (a dummy headstage with LEDs can be used for 

this purpose). Th e aim is to gradually habituate the rats to the fi nal recording confi guration by trying 

to mimic it as closely as possible during training (Schwarz et al., 2010). Th is typically requires an 

additional 2-3 days.

It is important that the steps and manipulations always follow the same order. Gradual habituation 

to the fi nal recording situation is essential to minimize stress and improve behavioral performance 

during the recording experiment (see below).

Juxtacellular Recording and Labeling (1-2 days) 

19| Anesthetize the rat with isofl ourane and fi x the animal’s head fi rmly by securing the head-post 

to the holder. Remove the silicone plug from the recording chamber, and perform a small craniotomy 

under stereomicroscopic guidance. Use a small drill bit (e.g., 0.45 mm diameter) to drill a circular 

groove (1.5–2.0 mm diameter) until the bone at the edges starts to break. Use fi ne forceps to lift 

away the circular piece of bone in one piece. Th is step and steps 20-22 should be performed under 

stereomicroscopic guidance.

Avoid drilling across the bone as this might cause excessive bleedings. After removing the bone, 

the dura should appear intact and no bleeding should occur.

20| If you need to remove the dura, apply two drops of bupivacaine to the dura surface, and 

wait 3-5 min before washing thoroughly with Ringer solution. Remove the dura with the help of fi ne 

forceps, after making an incision with a hypodermic needle (e.g., 25 Gauge). Gently clean the exposed 

cortex with Ringer solution to remove blood. Usually, craniotomy-induced bleeding stops within 2–3 

min.

Once the dura is removed, keep the brain surface from drying out. Removing the dura is not 

essential for obtaining juxtacellular recordings, as in young animals the dura can easily be penetrated by 

the electrode; removing the dura might however increase the chances of obtaining stable juxtacellular 

confi gurations, as the pipette enters the brain more cleanly. 
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21| If it is necessary to target the exact location and depth, map the location of the target region 

by recording local fi eld potential/multiunit activity with a low-resistance electrode (e.g., Tungsten 

or glass-electrode, 0.5-1 MΩ) and a conventional headstage. Depending on the target brain area - 

and especially for deep brain structures, which are typically more diffi  cult to target based solely on 

stereotaxic coordinates - this procedure might be necessary for fi ne tuning the exact target location 

and depth.

22| Screw the miniaturized micromanipulator on the base, and insert a sham pipette. By means 

of a manual stereotaxic manipulator (Figure 3B) place the pipette tip in the center of the craniotomy. 

Once the pipette is in the correct position, cement the micromanipulator’s base in place by adding a 

thick layer of dental cement.

Tightly secure the micromanipulator’s adaptor (see Equipment and Figure 3B) to avoid 

undesired movements of the pipette tip from its target position during hardening/shrinking of the 

dental cement. 

23| Once the dental cement has hardened, release the micromanipulator / base assembly by 

unscrewing the adaptor piece (Figure 3B). Th en release the micromanipulator by unscrewing the four 

screws on the base (Figure 3). Only the base remains cemented in place.

24| Seal the craniotomy with a layer of silicone sealant, and place the animal in the cage for 

recovery for > 4 hours.

Isofl uorane anesthesia is associated with rapid animal recovery. We typically let the animals 

recover in their home cage for 4-24 hours before proceeding to the next step. For times longer than 

24 hours, apply a drop of antibiotic agent (Mitomycin, see Reagent Setup) to the brain surface to 

minimize the occurrence of tissue regrowth and infections. 

25| After recovery from isofl ourane anesthesia (see step 24), head-fi x the animal following the 
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Figure 4:  Assembled implant for juxtacellular recordings in freely moving animals. 
Schematic diagram showing the position of the individual implant components 
relative to the rat’s head (left, top view; right, side view). Adapted from Tang et al., 
2014a. 
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same procedue used during training (step 16). Under stereomicroscopic guidance, remove the silicone 

plug from the craniotomy, evaluate the brain surface and, if necessary, clean the brain exposure.

Th e brain surface should appear clean. If tissue regrowth or signs of infections are observed 

(typically only for times longer than 24 hours after the craniotomy), carefully clean the exposure 

with ringer solution and surgery cellulose swabs. Avoid touching directly the brain surface, as this can 

potentially result in tissue damage.

26| Assemble the full recording implant (Figure 4) by fi rst fi xing the miniaturized head-stage 

on the head-post with a thin layer of instant glue (cyanoacrylate). Th en fi ll a pipette (Figure 3C) with 

pipette solution (see reagent setup), and shorten it to approx. 2-3 cm total length by cutting the glass 

with a glass-cutting fi le. Insert the pipette in the micromanipulator and secure the micromanipulator 

onto the head-mounted base (Figure 3B). 

27| Position the electrode wire inside the glass pipette, fi x it with a tiny drop of silicone sealant 

and place the reference wire into the recording chamber. By operating the micromanipulator, slowly 

advance the pipette under high-magnifi cation stereomicroscopic guidance until it touches the surface 

of the brain. Th is position can be taken as a reference for visually estimating the recording depth (see 

next step).

28| Advance the glass pipette into the brain by means of the micromanipulator, until the electrode 

tip reaches (or is close to) the target area.

Th e linear micromanipulator is not equipped with an absolute depth reader (Lee et al., 2006), 

as this would increase the mass and weight of the device. Th e desired recording depth, obtained from 

stereotactic atlas (Paxinos and Watson, 2006) and/or mapping experiments (step 21), is estimated by 

visually monitoring the distance travelled on the micromanipulator while the animal is head-fi xed. 

Additionally, if the target area has characteristic electrophysiological signatures (i.e. ripples/sharp-wave 

complexes and complex spiking activity in the pyramidal layer of the CA1 region of the hippocampus 

(Lee et al., 2009); nested theta-gamma activity in the medial entorhinal cortex (Mizuseki et al., 2009)), 

they can be monitored on-line in current-clamp confi guration while advancing the electrode, and can 

be used as an additional readout for localizing the target recording site. 

29| Fill the recording chamber with a 3% agarose solution (see Reagent Setup) by gently 

applying it with large syringe needle (e.g., 20 Gauge). Use agarose solution similar to the animal’s 

body temperature.

30| If you are going to perform a long recording session (> 2 hours) consider covering the agarose 

layer with a thin layer of bone wax or silicone, as this prevents drying of the agarose. Avoid thick layers 

of bone wax / silicone, as these might compromise the stepping performance of the micromanipulator.
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31| Release the rat from head-fi xation and place it in the behavioral arena. 

32| Randomly throw chocolate crumbs in the behavioral arena. While the rat is foraging and 

actively running, try to establish a juxtacellular recording in the target region by slowly stepping down 

the micromanipulator (approximately 1 step every 2-3 seconds; micromanipulator settings should be 

adjusted in order to obtain 2-4 μm step size). Continuously monitor the electrode tip resistance on 

the oscilloscope by applying small negative current pulses (i.e. -0.5 nA, 200 ms long every 2-3 s). Th e 

establishment of a juxtacellular confi guration is signaled by ~2-3 times increase in tip resistance and 

high signal-to-noise ratio of the spike signals (juxtacellular spike amplitude typically > 2 mV peak-to-

peak). 

Closely monitor the quality of the juxtacellular recording. Th is is done by monitoring the 

unfi ltered raw signal and look for signs of cellular damage (i.e. negative DC shifts, spikes becoming 

broader and/or displaying an “intracellular-like” shape). Quickly discard recordings where cellular 

damage occurs, in order to avoid accidental staining of neurons. Current pulses for monitoring electrode 

resistance should have negative polarity, to avoid spillover of the positively charged Neurobiotin. 

Head-shaking is a major mechanical disturbance which can lead to the loss of recording. While 

animals are actively engaged in foraging for food pellets, head-shaking rarely occurs. Th e occurrence 

of head-shaking can be minimized by injecting small volumes of lidocaine in the neck region, to 

minimize the discomfort of the head-implant.

33| If a stable juxtacellular recording is established and is maintained for a suffi  cient time for 

the animal to sample the surface of the 1 x 1 m arena, attempt juxtacellular labeling. Th is is done by 

modulating the cell’s fi ring rate (i.e. “entrainment”) by injecting typically 5-20 nA square current 

pulses (50% duty cycle: 200 ms ON, 200 ms OFF). Th e average duration of the labeling procedure 

in freely-moving animals is 1-3 min. Successful labeling during the entrainment procedure is signaled 

by broadening of the spikes and small negative DC shifts in the baseline potential. Further details of 

how to perform juxtacellular labeling can be found in (Deschênes et al., 1994; Pinault, 1994, 1996).

Juxtacellular labeling requires close proximity of the pipette tip to the recorded neuron. Attempt 

the labeling if large amplitude peak-to-peak spike signals (> 2 mV) and biphasic action potential 

shapes are observed, which are indicative for a close somatic/perisomatic location of the recording 

pipette tip (Herfst et al., 2012). 

According to our experience, juxtacellular labeling is typically more diffi  cult in an animal that 

is actively running compared to a resting animal, possibly because of higher mechanical instability of 

the juxtacellular confi guration during active running. To circumvent this problem and maximize the 

success rate of labeling, give a large food pellet to the animal, so to keep it stationary while labeling is 
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attempted. If the juxtacellular recording is accidentally lost during labeling, quickly perfuse the animal 

(Step 37), as this might improve the chances of recovering the soma and proximal dendrites of the 

labeled cell.

34| Upon successful juxtacellular labeling, slowly retract the electrode. 

Upon electrode retraction, monitor the spiking activity of the recorded cell. Spike shapes and 

fi ring rates should return to pre-labeling levels. Th is is to ensure that the transient membrane pores 

generated upon labeling have resealed and the cell is viable.

35| If desired, perform a second penetration for recording and labeling a second neuron in the 

target region by repeating steps 27-32. Head-fi x the animal and release the micromanipulator from its 

base and replace the electrode with a new one.

Ensure that the two penetrations can be unequivocally assigned by post-hoc histological analysis. 

Rotate the micromanipulator within its anchoring base, to ensure that the electrode penetrates in a 

diff erent location. Note the relative position of the electrode penetration compared to the previous 

one.

36| Head-fi x the animal and remove the head-stage and the micromanipulator from the implant. 

Seal the craniotomy with silicone and place the animal back in its home cage for a suffi  cient time to 

allow complete fi lling of the recorded cell (typically > 2 hours). For assessment of dendritic morphology, 

shorter times (20-30 min) are typically suffi  cient.

37| Euthanize the animals by overdose injection of anesthetics (e.g., pentobarbital; i.p.). Perfuse 

the brain transcardially with saline followed by a 4% (wt/vol) paraformaldehyde solution, using 

standard methods. 

38| Remove the brain and store it overnight at 4°C in a 4% paraformaldehyde solution. 

Afterwards, transfer the brain into a phosphate-buff ered (PB) solution. Th e brain can be stored in 

the paraformaldehyde solution for up to 2-3 days, and afterwards for up to 1-2 weeks in PB solution. 

Longer storage times may decrease the quality of the subsequent stainings.

39| Slice the brain with a vibratome (e.g., into 100-150 μm thick sections) or cryostat (e.g., 

into 40-60 μm thick sections) and then process the slices with standard methods, based on the 

avidin-biotin binding reaction, for visualizing the Neurobiotin-fi lled cell morphology. Either the 

diaminobenzidine (DAB) chromogen, which produces a dark brown reaction product or fl uorophores 

(i.e. streptavidin conjugated to Alexa 546) can be used for revealing the cell morphology. Further 

details on Neurobiotin detection methods can be found in (Horikawa and Armstrong, 1988; Huang 

et al., 1992; Marx et al., 2012). Reconstruct the 3D neuronal morphology with dedicated computer 

software (e.g. Neurolucida).
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Tetrode Recordings

Tetrode recordings were obtained as previously described in detail (von Heimendahl et al., 

2012). Tetrodes were turned from 12.5 μm diameter nichrome wire (California Fine Wire Company) 

and goldplated to ~250 kΩ impedance. Spiking activity and local fi eld potential were recorded at 32 

kHz (Neuralynx). Local fi eld potential for theta phase assignment was recorded from the same tetrode 

as single units, relative to one tetrode left in superfi cial cortex. All recordings were done in a 1x1m 

box with behavioral training tasks same as juxtacellular procedures. Th e animal’s location and head-

direction was automatically tracked at 25 Hz by video tracking and head-mounted LEDs, as described 

above. After recordings, tetrode tracks were lesioned and the animal was trancardially perfused. Th e 

brain was sectioned tangentially and recording sites assigned by histology. Spikes were pre-clustered 

using KlustaKwik (K.D. Harris, Rutgers University) and manually using MClust (A.D. Redish, 

University of Minnesota). Cluster quality was assessed by spike shape, ISI-histogram, L-ratio and 

isolation distance, as previously described (von Heimendahl et al., 2012). Putative interneurons were 

identifi ed based on fi ring rate, spike shape and ISI-histogram and were excluded from classifi cation. 

4.3 Data Analysis

Analysis of Th eta Rhythmicity

Th e position of the rat was defi ned as the midpoint between two head-mounted LEDs. A 

running speed threshold (1 cm/s) was applied for isolating periods of rest from active movement. 

Th eta-rhythmicity of spiking discharge was determined from the Fast Fourier Transform–based 

power spectrum of the spike-train autocorrelation functions of the cells, binned at 10ms. To measure 

modulation strength in the theta band (4-12 Hz), a theta-index was computed (Boccara et al., 2010), 

defi ned as the average power within 1 Hz of the maximum of the autocorrelation function in the 4-12 

Hz, and divided by the average power in the 3-125 Hz range, or a theta-power without dividing. Only 

cells with mean fi ring rate > 0.5 Hz were included in the theta analysis, since low fi ring rates impede 

detection of fi ring rhythmicity (Barry et al., 2012b). Statistical signifi cance was assessed by two-tailed 

Mann-Whitney nonparametric test with 95th confi dence intervals.

Analysis of Th eta Phase Locking

For all cells, we calculated the locking to theta phase based on spiking discharge in relation to 

theta rhythm in the local fi eld potential. Th e local fi eld potential was zero-phase band-pass fi ltered 

(4-12 Hz) and a Hilbert transform was used to determine the instantaneous phase of the theta wave. 

Th e strength of locking to theta phase, S, and the preferred phase angle, ϕ, was defi ned as the modulus 

and argument of the Rayleigh average vector of the theta phase at all spike times. Only spikes during 
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running (speed cutoff  = 1 cm/s for juxtacellular signals, 5 cm/s for tetrode recordings) were included 

in the analysis. Only cells with mean fi ring rate > 0.5 Hz were included in the analysis (Barry et al., 

2012b). Both the analysis procedures and the juxtacellular data set largely correspond to our recent 

publication (Ray et al., 2014), whereby a more stringent band-pass fi ltering was applied in a subset of 

cells.

Neurobiotin Labeling and Calbindin Immunohistochemistry

For histological analysis of juxtacellularly-labeled neurons, neurobiotin was visualized with 

streptavidin conjugated to Alexa 546 (1:1000). Subsequently, immunohistochemistry for Calbindin 

was performed as previously described (Ray et al., 2014) and visualized with Alexa Fluor 488. After 

fl uorescence images were acquired, the neurobiotin staining was converted into a dark DAB reaction 

product. Neuronal morphologies were reconstructed by computer-assisted manual reconstructions 

(Neurolucida).

Spine Density Measurement

To assess the spine density of calbindin+ and calbindin- dendrites, we labeled neurons in vivo 

juxtacellularly and identifi ed the cells based on their calbindin immunoreactivity. We counted spines 

of fl uorescent and DAB converted cells (10 calbindin+ and 10 calbindin- neurons) at 50 μm, 100 

μm and 150 μm from the soma. Th e spine counts were normalized by dendritic length to obtain the 

number of spines per μm. 

Analysis of Spatial Modulation

Th e position of the rat was defi ned as the midpoint between two head-mounted LEDs. A 

running speed threshold (see above) was applied for isolating periods of rest from active movement. 

Color-coded fi ring maps were plotted. For these, space was discretized into pixels of 2.5 cm x 2.5 cm, 

for which the occupancy z of a given pixel x was calculated as 

 z(x)=∑(t)(w|x-xt|)Δt

where xt is the position of the rat at time t, Δt the inter-frame interval, and w a Gaussian 

smoothing kernel with τ = 5 cm.

Th en, the fi ring rate r was calculated as

r(x)= (∑(i)(w|x-xi|))/z

where xi is the position of the rat when spike i was fi red. Th e fi ring rate of pixels, whose occupancy 

z was less than 20 ms, was considered unreliable and not shown.

To determine the spatial periodicity of juxtacellularly recorded neurons, we determined spatial 

autocorrelations. Th e spatial autocorrelogram was based on Pearson’s product moment correlation 

coeffi  cient: 
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r(τx,τy)=(n∑f(x,y)f(x-τx,y-τy)-∑f(x,y)∑f(x-τx,y-τy))/(√(n∑f(x,y)2-(∑f(x,y)2)√(n∑f(x-τx,y-τy)
2-

(∑f(x-τx  ,y-τy))
2))

where, r(τx,τy)the autocorrelation between pixels or bins with spatial off set τx and τy. f is the 

image without smoothing or the fi ring rate map after smoothing, n is the number of overlapping pixels 

or bins. Autocorrelations were not estimated for lags of τx and τy, where n < 20. For spatial and head-

directional analysis, both a spatial (> 50% spatial coverage) and a fi ring rate inclusion criterion (> 0.5 

Hz) were applied. Spatial coverage was defi ned as the fraction of visited pixels (bins) in the arena to 

the total pixels.

Analysis of Spatial Information

For all cells, we calculated the spatial information rate, I, from the spike train and rat trajectory:

I=1/(T ∫r(x)log2(r(x)/r)o(x)dx)

where r(x) and o(x) are the fi ring rate and occupancy as a function of a given pixel x in the 

rate map. r is the overall mean fi ring rate of the cell and T is the total duration of a recording session 

(Skaggs et al., 1993). A cell was determined to have a signifi cant amount of spatial information, if the 

observed spatial information rate exceeded the 95th percentile of a distribution of values of I obtained 

by circular shuffl  ing. Shuffl  ing was performed by a circular time-shift of the recorded spike train 

relative to the rat trajectory by a random time t’∈]0,T[ for 1000 permutations (von Heimendahl et 

al., 2012; Bjerknes et al., 2014).

Analysis of Gridness

Grid scores were calculated as previously described (Wills et al., 2010; Barry et al., 2012a) by 

taking a circular sample of the autocorrelogram, centered on, but excluding the central peak. Th e 

Pearson correlation of this circle with its rotation for 60 degrees and 120 degrees was obtained (on 

peak rotations) and also for rotations of 30 degrees, 90 degrees and 150 degrees (off  peak rotations). 

Gridness was defi ned as the minimum diff erence between the on-peak rotations and off -peak rotations. 

To determine the grid scores, gridness was evaluated for multiple circular samples surrounding the 

center of the autocorrelogram with circle radii increasing in unitary steps from a minimum of 10 pixels 

more than the width of the radius of the central peak to the shortest edge of the autocorrelogram. Th e 

radius of the central peak was defi ned as the distance from the central peak to its nearest local minima 

in the spatial autocorrelogram. Th e radius of the inner circle was increased in unitary steps from the 

radius of the central peak to 10 pixels less than the optimal outer radius. Th e grid score was defi ned 

as the best score from these successive samples. Grid scores refl ect both the hexagonality in a spatial 

fi eld and also the regularity of the hexagon. To disentangle the eff ect of regularity from this index, and 

consider only hexagonality, we transformed the elliptically distorted hexagon into a regular hexagon 
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and computed the grid scores (Barry et al., 2012a). A linear affi  ne transformation was applied to the 

elliptically distorted hexagon, to stretch it along its minor axis, until it lay on a circle, with the diameter 

equal to the major axis of the elliptical hexagon. Th e grid scores were computed on this transformed 

regular hexagon (Barry et al., 2012a).

Analysis of Border Cells

To determine the modulation of a cell fi ring along a border, we determined border scores (Solstad 

et al., 2008). Border fi elds were identifi ed from a collection of neighboring pixels having a fi ring rate 

higher than 0.3 times the maximum fi ring rate and covering an area of at least 100 cm (Sargolini et 

al., 2006). Th e coverage (Cm) along a wall was defi ned as the maximum length of a putative border 

fi eld parallel to a boundary, divided by the length of the boundary. Th e mean fi ring distance (Dm) of 

a fi eld was defi ned as the sum of the square of its distance from the boundary, weighted by the fi ring 

rate (Solstad et al., 2008). Th e distance from a boundary was defi ned as the exponential of the square 

of the distance in pixels from the closest boundary, normalized by half the length of the boundary. 

Border scores were defi ned as the maximum diff erence between Cm and Dm, divided by their sum, 

and ranged from -1 to +1.

Analysis of Head Direction

Head-direction tuning was measured as the excentricity of the circular distribution of fi ring 

rates. For this, fi ring rate was binned as a function of head-direction (n = 36 bins). A cell was said to 

have a signifi cant head-direction tuning, if the length of the average vector exceeded the 95th percentile 

of a distribution of average vector lengths calculated from shuffl  ed data and had a Rayleigh vector 

length > 0.3. Data was shuffl  ed by applying a random circular time-shift to the recorded spike train 

for 1000 permutations.

Classifi cation of Non-identifi ed Cells into Putative Cell Types

For classifi cation based on strength of locking to theta phase, S, and preferred theta phase angle, 

ϕ, we built a support vector machine using the built-in functions of the MATLAB Statistics Toolbox 

(Th e MathWorks Inc., Natick, MA, USA) using pairs of ϕ and S obtained from juxtacellular recording 

of identifi ed cells. Because the phase angle is a circular variable, we trained the classifi er on a space 

of the vectors (cos(ϕ)S, sin(ϕ)S), scaled to zero mean and unit variance using a gaussian radial basis 

kernel function with a scaling factor, sigma, of 1. To avoid cross-contamination of the two clusters, we 

employed a guard zone and excluded cells with a distance to the classifi cation hyperplane < 0.1 from 

classifi cation. Classifi er robustness was evaluated using a bootstrapping approach. To test if the putative 

calbindin+/calbindin- border suggested by the classifi er based on our limited set of identifi ed cells would 

also correctly classify a large number of non-identifi ed cells, we fi tted the appropriate probability 
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density functions to the theta strength and phase angle of identifi ed cells (beta distributions and 

circular Gaussian distributions, respectively) and generated 10.000 calbindin+ and 10.000 calbindin- 

testing cells drawn from these distributions. Testing cells were classifi ed and found to be classifi ed 

75.5% correctly for calbindin+ cells and 86.7 % correctly for calbindin- cells (Figure 19C), suggesting 

that our classifi er generally performes well and is not just overfi tting our small dataset of identifi ed 

cells from freely-moving rats. Assuming the prior distribution of ~53% calbindin+ neurons, ~34% 

reelin+ (calbindin-) neurons and ~13% interneurons in layer 2 of the medial entorhinal cortex of a rat 

(Figure 18A,B), we estimate the purity (positive predictive value) of putative calbindin+ and putative 

calbindin- cells assigned by our classifi er to be 83% and 89%, respectively (Figure 19D). Th is gives us 

the fi nal cell sample purity of our putative and identifi ed dataset of 84% and 90% for calbindin+ and 

calbindin- cells, respectively.   

Classifi cation of Cells into Functional Categories

Cells were classifi ed as head-direction cells, grid cells, conjunctive cells, border cells and non-

spatially modulated cells based on their grid score, border score, spatial information and signifi cance 

of head-directionality according to the following criteria:

Head direction cells: Rayleigh vector length > 0.3 & signifi cant head-direction tuning (Boccara 

et al., 2010).

Grid cells: Grid score > 0.3 & signifi cant spatial information.

Border cells: Border score > 0.5 & signifi cant spatial information (Solstad et al., 2008), or those 

who passed border test (Solstad et al., 2008; Lever et al., 2009).

Spatially irregular cells: signifi cant spatial information (Bjerknes et al., 2014).

Non-spatially modulated cell: no signifi cant spatial information.

In agreement with previous work (Solstad et al., 2008), few cells (n = 6) passed both the border 

cell and the grid cell threshold. Th ese six cells were assigned to be grid cells by visual inspection.
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5. Results

5.1 Grid-Layout and Th eta-Modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal 
Cortex

Results in this chapter have been published (Ray et al., 2014).

5.1.1 Grid-like Arrangement of Calbindin+ Pyramidal Cells in the Medial Entorhinal Cortex

Calbindin immunoreactivity (Varga et al., 2010) is a specifi c molecular marker that identifi es 

relatively homogeneous the pyramidal neuron population in MEC layer 2. Parasagittal sections stained 

for calbindin (Figure 5A,B) confi rmed early reports that calbindin-positive (calbindin+) pyramidal 

cells were arranged in patches (Fujimaru and Kosaka, 1996). Apical dendrites of calbindin+ pyramidal 

cells bundled together in layer 1 to form clusters and tent-like structures over the patches (Figure 5B). 

Th e patchy structure is most prominent at the layer 1/2 border, whereas in deep layer 2 this regularity 

of calbindin+ cell patches is less clear. Patch diameter increases from the upper layer 2 to middle layer 

2. At the lower level of layer 2 there is no apparent modular structure of calbindin+ cells (Figure 6). 

By counting cell numbers we showed that in each patch, threre are 187 ± 70 cells (111 ± 42, ~60 

% calbindin+, 76 ± 28, ~40 % calbindin- cells; counts of 19 patches from four brains). To visualize 

these pyramidal cell patches in the cortical plane, we double-stained tangential entorhinal sections for 

Figure 5: Grid-like arrangement of 
calbidin+ pyramidal cells in layer 
2 of MEC. (A) Posterior view of 
a rat cortical hemisphere. LEC, 
lateral entorhinal cortex; PaS, 
parasubiculum; Per, perirhinal 
cortex; Por, postrhinal cortex. 
(B) Calbindinimmunoreactivity 
(brown precipitate) in a parasaggital 
section reveals patches with apical 
dendrites of calbindin+ pyramidal 
cells forming tents (white arrows) 
in layer 1. (C) Tangential section 
showing all neurons (red,NeuN-
antibody) and patches of calbindin+ 

neurons (green). Bracket, dashed 
lines indicate the patch-free 
stripe of MEC. (D) Inset from 
(C). (E) Two-dimensional spatial 
autocorrelation of (D) revealing 
a hexagonal spatial organization 
of calbindin+ patches. Color scale, 

–0.5 (blue) through 0 (green) to 0.5 (red); grid score is 1.18. Scale bars, (A) 1 mm; (B) 100 mm; 
(C) to (E) 250 mm. D, dorsal; L, lateral; M, medial; V, ventral. Adapted from Ray et al., 2014.
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calbindin (green) and the neuronal marker NeuN (red). Calbindin+ (green/yellow) patches covered the 

MEC except for a 400-500 μm wide patch-free medial stripe adjacent to the parasubiculum (Figure 

5C). Clusters of cells were not observed in calbindin- neurons (red) (Figure 5C). However, a striking 

hexagonal organization of calbindin+ patches coud be ovserved (Figure 5C,D), which was further 

characterized by three techniques: (i) Two-dimensional spatial autocorrelation analysis (Hafting et al., 

2005), to capture the recurring features and reveal a hexagonal regularity (Figure 5E). (ii) A modifi ed 

grid score measurement (Sargolini et al., 2006) to quantify hexagonality also in elliptically distorted 

hexagons (Barry et al., 2012a), such distortions normally resulted from anatomical tissue curvature 

and anisotropic shrinkage. Grid scores range from -2 to +2, with values > 0 indicating hexagonality. 

Th e example in Figure 5D had a grid score of 1.18, suggesting a high degree of hexagonality. (iii) We 

assessed the probability of hexagonal patchy arrangements given preserved local structure (Krupic et 

al., 2012) by a shuffl  ing procedure. We found that the strongest Fourier component of the sample 

(Figure 5D) exceeded that of the 99th percentile of shuffl  ed data, suggesting such hexagonality is 

unlikely to arise by chance. 

5.1.2 Calbindin+ Pyramidal but not Dentate-projecting Stellate Neurons Form Patches

To clarify the projection pattern of calbindin+ pyramidal cells, we retrogradely labeled neurons 

from ipsilateral dentate gyrus (Figure 7A) using biotinylated dextran amine (Figure 7B) or cholera 

toxin B (Figure 7C). Consistent with previous results with identifi ed projection patterns and 

immunoreactivity (Varga et al., 2010), we also found that most retrogradely labeled neurons were 

stellate cells (Germroth et al., 1989; Tamamaki and Nojyo, 1993), with only a small fraction of cells 

with pyramidal morphologies, but these neurons appeared larger than typical calbindin+ pyramidal 

cells (Figure 7B). Calbindin+ neurons did not project to the dentate gyrus at all (only 1 double-labeled 

out of 313 neurons in Figure 7C-E; see also Varga et al., 2010). Th us, calbindin+ cells form hexagonally 

A B C

D E

F G

H I

70 μm

108 μm

130 μm

160 μm

Figure 6: Cellular architecture of an individual cal-
bindin patch. A, Side view of an optically-cleared 
patch of calbindin+ cells. Serial optical sections 
spaced 2 μm apart were taken along the x-z-axis 
and displayed as maximum intensity projection. 
B-I, Optical sections at the levels indicated in A, 
showing calbindin+ cells in green (B, D, F, H) and 
an overlay of calbindin+ cells in green and red auto-
fl uorescence showing all neurons (C, E, G, I). 
Dashed lines in A indicate the level of the optical 
sections displayed in (B-I): 70 μm below surface 
(B, C), 108 μm below surface D, E, 130 μm below 
surface (F, G) and 160 μm below surface (H, I). 
Scale bars: A = 50 μm; B = 50 μm, applies to B-I. 

Adapted from Ray et al., 2014.
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arranged patches (Figure 7C,D,F), while dentate-gyrus projecting calbindin- neurons (red) were 

uniformly distributed (Figure 7E,G). Reconstructions of calbindin+ and calbindin- cells juxtacellularly 

labeled in vivo confi rmed their pyramidal and stellate morphologies, respectively: Calbindin+ dendrites 

were largely confi ned to patches, whereas calbindin- stellates cells had three times larger dendritic 

trees (7.6 vs 2.6 mm average total length, p < 0.03), which extended unrelated to patches (Figure 

7H,I). Diff erentiating layer 2 neurons by calbindin and reelin immunoreactivity confi rmed patchy 

hexagonality of calbindin+ cells and scattered distribution of reelin+ cells, forming two nonoverlapping 

 Figure 7: Calbindin+ pyramidal but not dentate-
projecting stellate neurons form patches. (A) Sche-
matic of retrograde labeling from dentate gyrus. 
(B) Such retrograde labeling (BDA, brown) stains 
neurons (most with stellate morphologies) in a par-
asaggital MEC section. (C) Tangential MEC sec-
tion showing calbindin+ neurons (green) and retro-
gradely labeled neurons (red) after dentate gyrus 
choleratoxin B injection. (D and E) Insets from 
(C). (F) Two-dimensional spatial autocorrelation 
of (D) reveals regular organization of calbindin+ 
patches; grid score is 0.32. Th e strongest Fourier 
component of the sample exceeded that of the 99th 
percentile of shuffl  ed data confi rming hexagonali-
ty. (G) Two-dimensional spatial autocorrelation of 
(E) reveals no spatial organization; grid score is 
–0.03. (H and I) Superimposed reconstructions of 
dendritic morphologies of 5 calbindin+ pyramidal 
(green) and 5 calbindin– stellate neurons (black) in 
the tangential plane. Morphologies were “patch-
centered” aligned according to orientation and the 
center of the nearest calbindin+ patch (gray out-
lines). Scale bars, (B) 100 mm; (C) to (E) and (G) 
to (I) 250 mm. D, dorsal; L, lateral; M, medial; V, 
ventral. Adapted from Ray et al., 2014.

Figure 8: Calbindin+ pyramidal neurons but not 
reelin+ cells form patches. A, Tangential section of 
the rat MEC showing calbindin+ pyramidal neu-
rons and neuropil (green) and reelin+, putative stel-
late, neurons (red). B, Inset from A showing a high 
magnifi cation of calbindin+ patches. C, Two-di-
mensional spatial autocorrelation of calbindin+ 
patches showin in B. Th e grid score is 0.49. Th e 
strongest Fourier component of the sample exceed-
ed that of the 99th percentile of shuffl  ed data, con-
fi rming hexagonality. D, Corresponding image 
section from B showing reelin+ neurons. E, Spatial 

autocorrelation of reelin+ neurons shown in D. Th e grid score is -0.04. Scale bars: A-E = 250 μm. D = dorsal, L = 
lateral, M = medial, V = ventral. Adapted from Ray et al., 2014. 
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neuronal populations (2 double-labeled neurons in 168 calbindin+ and 405 reelin+ layer 2 neurons, 

Figure 8; Varga et al., 2010), and two-dimensional spatial autocorrelation illustrated regular spatial 

organization of calbindin+ patches (Figure 8B) and a lack of spatial organization of reelin+ neurons.

5.1.3 Alignment of the Calbindin Grid to Parasubiculum, Layer 1 axons, and Cholinergic 
Markers

To investigate the organization of calbindin+ patches across MEC, we prepared fl attened whole-

mount preparations. Patches had similar arrangements throughout the dorsoventral extent of MEC 

(Figure 9). At the layer 1/2 border we consistently observed hexagonal arrangements in well-stained 

specimen. We quantifi ed patch size and spacing in ten largely complete MEC whole-mounts. Patch 

density was similar throughout MEC, while patch diameter slightly increased towards ventral (Figure 

9A). Spatial autocorrelation also showed similar regular patterns in dorsal and ventral patch regions 

(Figure 9B-D). We estimated 69 ± 17 patches across the entire MEC (n = 10). Calbindin patches 

stained also positive for cytochrome-oxidase activity (Burgalossi et al., 2011). However, the two 

staining patterns were not the same as calbindin patches were more sharply delineated than spots 

revealed by cytochrome-oxidase-activity and cytochrome-oxidase staining revealed many more patches 

than calbindin staining in MEC (Burgalossi et al., 2011). Moreover, the staining patterns did not 

correspond at all in the parasubiculum.

Calbindin+ patches shared 60° symmetry of their axes (Figure 10A). One axis runs parallel to 

the dorsoventral axis of the parasubiculum (Figure 10A,B). Lines fi tted through the dorsoventral axis 

of the parasubiculum and the most medial column of calbindin+ patches had the same orientation 

(Figure 10B). A second consistent axis was tilted about 60° relative to the dorsoventral axis. Th is 

calbindin+ patch axis curved ventrally at more lateral positions and aligned with the orientation of 

Figure 9: Layout of calbindin patches across the 
extent of MEC. A, Measurements of mean patch 
diameter (red) and density (blue) across the dor-
soventral extent of the MEC. Measurements re-
fer to ten MEC whole-mounts and did not in-
clude the medial patch-free stripe of MEC (see 
Figure 5C). Error bars = SD. B, Tangential sec-
tion from a fl attened cortical preparation pro-
cessed for calbindin immunoreactivity (green) 
showing modularity throughout the MEC. Th e 
image was fl ipped around the vertical axis for 

comparability. C, Two-dimensional spatial autocorrelation of the dorsal inset in A. Th e grid score is 0.32. Th e 
strongest Fourier component of samples C, D exceeded that of the 99th percentile of shuffl  ed data confi rming hex-
agonality. D, Two-dimensional spatial autocorrelation of the ventral inset in A. Th e grid score is 0.79. Scale bars: 
B-D = 250 μm. D = dorsal, L = lateral, M = medial, V = ventral. Adapted from Ray et al., 2014.
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overlaying layer 1 myelinated axons (Figure 10C-F). Th us, the line connecting diagonally neighboring 

calbindin patches (revealed by spatial autocorrelation, Figure 10D,E) aligned with the orientation of 

layer 1 axons (Figure 10F). We quantifi ed the orientation of axonal segments by a polar plot shown 

in Figure 10G and confi rmed that layer 1 axons share one main orientation in MEC (Blackstad, 

1956; Witter et al., 1989; Burgalossi et al., 2011). Cholinergic transmission is of importance for MEC 

Figure 10: Alignment of the calbindin grid to parasubiculum, layer 1 axons, 
and cholinergic markers. (A) Section from Figure 5C. Dashed white lines 
indicate axes of the calbindin+ grid (angles are indicated). Axes aligned with 
parasubiculum (B) and layer 1 axons [(C) to (G)]. (B) (Left) Schematic of 
calbindin patches and parasubiculum from (A). Th e orange line fi ts the 
dorsoventral axis of the parasubiculum, and the green line fi ts the most medial 
column of patches (red); the angle between these lines is indicated. (Right) 
Fitted lines and their relative angles for four other brains. (C) Tangential 
section processed for calbindin (green) and myelin basic protein (red). (D) 
Inset from (C). (E) Two-dimensional spatial autocorrelation of (D). Dashed 
black lines indicate grid axes. (F) Inset from (C). (G) Axonal segments in (F) 
were manually traced from left to right, and we computed a polar plot (red) 
of the orientations of the axonal segments. Th e orientations of axonal 
segments aligned with one axis of the grid of calbindin patches [superimposed 
dashed lines from (E)]. (H) Tangential section stained for acetylcholinesterase 
activity. (I) Section from(H) costained for calbindin. (J) Overlay of (H) and 
(I) shows overlap between acetylcholinesterase and calbindin staining. Scale 
bars, (A), (C) to (F), (H), and (I) 250 mm; (J) 100 mm.D, dorsal; L, lateral; 
M, medial; V, ventral. Adapted from Ray et al., 2014. 



36

Tang (2014)  Results

function (Barry et al., 2012c; Heys et al., 2012) and grid cell activity (Brandon et al., 2011; Koenig et 

al., 2011; Newman et al., 2014). Staining of acetylcholinesterase also revealed a patch structure at the 

layer 1/2 border (Figure 10H), which colocalized with the cores of calbindin+ patches (Figure 10H-J).

Axonal terminals positive for the vesicular acetylcholine transporter (VAChT) were closely 

apposed to calbindin+ cells and their density was twofold larger in calbindin+ patches than between 

patches (Figure 11A-C). We also stained for M1 muscarinic receptors and observed a diff use labeling 

without colocalization of these receptors with VAChT-puncta (Figure 11E). Moreover, we analyzed 

the apposition and distribution of presynaptic VAChT-puncta on a large number of in-vivo fi lled 

calbindin+ and calbindin- layer 2 cells by confocal microscopy. We fi nd that VAChT-puncta are much 

more abundant around calbindin+ than calbindin- layer 2 cells, but ACh synapses do not seem to 

directly target calbindin+ cell dendrites, however (Figure 11D-F). Both the M1 receptor labeling and 

our dendrite-VAChT-puncta colocalization analysis are in line with a volumetric action of ACh in 

MEC.

5.1.4 Th eta-modulation of Calbindin+ and Calbindin– Cells

Finally, we assessed in freely moving animals how activity of identifi ed neurons related to the 

entorhinal theta-rhythm, with the method described above (see Methods; Tang et al., 2014a). We 

recorded 31 layer 2 neurons in rats trained to explore open fi elds, and classifi ed them by morphology 

and immunoreactivity. Most calbindin+ neurons (n = 12) were pyramidal cells, while most calbindin- 

neurons (n = 19) had stellate morphologies. Firing rates were not diff erent between two cell populations 

(calbindin+ = 2.1 ± 1.1 Hz; calbindin- = 2.3 ± 1.5 Hz; p > 0.5, Mann-Whitney test). Surprisingly, 
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Figure 11: VAChT, calbindin patches and proximity of cholinergic 
boutons to calbindin+ dendrites A, Fluorescence micrograph show-
ing one calbindin patch from a tangential section stained for cal-
bindin (green). B, Same section as in A stained for VAChT immuno-
reactivity (red). C, Overlay of A and B. D, Density of VAChT-positive 
puncta in calbindin patches (green dots) and non-patch areas (black 
dots) at the layer 1/2 border. In fi ve rats we selected 10 regions of 
interest (ROI) centered on calbindin patches and 10 ROIs positioned 
equidistant between calbindin patch centers. Horizontal bars indi-
cate mean values. All VAChT positive puncta in the ROI were count-
ed and divided by area size to obtain puncta density. E, Fluorescence 
micrograph showing an overlay of a calbindin+ dendrite (green) and 
nearby VAChT-positive puncta (red). F, Histogram of the closest dis-
tance of VAChT-positive puncta to dendrites of calbindin+ (top) and 
calbindin- (bottom) cells. We selected 35 dendritic segments of cal-
bindin+ and 25 segments of calbindin- dendrites and measured the 
distance of VAChT-positive puncta and dendrites. Th e histograms 
were normalized by dendritic length to obtain the number of VAChT-
positive puncta per μm. Data refer to 10 (5 each) juxtacellularly 
stained calbindin+ and calbindin- neurons. Scale bars: A, B, C = 50 

μm; E = 10 μm. Adapted from Ray et al., 2014.
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calbindin+ neurons (Figure 12A-C) showed much stronger theta-rhythmicity than calbindin- cells 

(Figure 12D-G; p < 0.01, unpaired t test). Th eta-rhythmicity was associated with locomotion of 

the animal (Figure 13). When the animal started to move, prominent theta oscillatory patterns in 

LFP and theta rhythmic fi ring of calbindin+ cells could be observed (Figure 13A-C). Both calbindin+ 

and calbindin- neurons showed movement dependency; however, calbindin+ neurons showed much 

stronger movement dependency of theta-rhythmicity (Figure 13D,E). A similar twofold diff erence 

in theta-rhythmicity between calbindin+ (n = 14) and calbindin- cells (n = 20) was observed under 

urethane-ketamine anesthesia (Figure 12H; p = 0.0003, Mann-Whitney test), which preserves cortico-

hippocampal theta-rhythmicity (Klausberger et al., 2003; Quilichini et al., 2010). 
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Figure 12: Th eta-modulation of calbindin+ and calbindin– cells. (A) (Left) Micrograph (tangential section) of a cal-
bindin+ neuron recorded in a freely moving animal. Green, calbindin; red, neurobiotin. (Right) Soma in red, green 
channel, and overlay. (B) Autocorrelogram of spike discharges for the calbindin+ neuron shown in (A). (C) Filtered 
(4 to 12 Hz) local fi eld potential (top) and spiking pattern (bottom) of the neuron shown in (A). (D to F) Same as 
(A) to (C) but for a calbindin– neuron. (G) Strength of theta rhythmicity in calbindin+ and calbindin– neurons in 
freely moving animals. Numbers are n of neurons. Error bars indicate SEM. (H) Same as (G) but for recordings un-
der urethane-ketamine anesthesia. (I) Th eta-rhythmicity in calbindin+ neurons (green, n = 8) and calbindin– neurons 
(black, n = 7) under anesthesia before and after systemic cholinergic blockade with scopolamine (Wilcoxon signed 
rank test, P = 0.0078 for calbindin+, P = 0.0156 for calbindin– cells). Dots indicate medians. ( J) Polar plot of pre-
ferred theta-phase (theta-peak = 0°) and modulation strength (Rayleigh vector, 0 to 1, proportional to eccentricity) 
for calbindin+ (green) and calbindin– (black); dots indicate single cells, and lines indicate averages. Scale bars, (A) 
and (D) 100 mm (left), 10 mm (right).calbindin- dendrites and measured the distance of VAChT-positive puncta and 
dendrites. Th e histograms were normalized by dendritic length to obtain the number of VAChT-positive puncta per 
μm. Data refer to 10 (5 each) juxtacellularly stained calbindin+ and calbindin- neurons. Scale bars: A, B, C = 50 μm; 
E = 10 μm. Adapted from Ray et al., 2014.
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To investigate the involvement of cholinergic inputs in theta-rhythmicity, we blocked cholinergic 

transmission by systemic injection of scopolamine under anesthesia, and found that theta rhythmicity 

was severely disrupted in calbindin+ neurons (Figure 12I). Specifi cally we observed that cholinergic 

blockade let loss of the distinct peak at theta frequency in the power spectra of spike discharges 

of calbindin+ neurons (Figure 14A,B); Th e fi ring pattern of calbindin-  neurons was not aff ected, 

as typically they were non-rhythmic (Figure 14C,D). Cells also diff ered in their phase-locking to 

entorhinal fi eld potential theta: calbindin+ cells were more strongly phase-locked (average Rayleigh 

vector length = 0.54 vs 0.22 in calbindin- cells; p < 0.0012, Mann-Whitney test) and fi red near the 

trough of the theta oscillation, whereas locking was weaker and more variable in calbindin- cells (Figure 

12J).
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Figure 14: Eff ects of blockade of cholinergic transmission by scopolamine in individual neurons. Spike autocorrelo-
grams (fi rst and third column) and power spectra of spike discharges (second and fourth column) before (baseline) 
and after systemic cholinergic blockade with scopolamine. A,B, Two representative calbindin+ neurons. C, D, Two 
representative calbindin- neurons. Adapted from Ray et al., 2014.
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5.2 Establishment of Juxtacellular Recordings in Freely Moving Rats

Results in this chapter have been published (Tang et al., 2014a).

Before attempting the experiment, we suggest greenhand experimenters to practice the 

juxtacellular recording/labeling procedure fi rst in anesthetized, then in awake head-fi xed animals, 

until a stable recording condition and a reliable cell recovery rate (> 80%) are achieved. Unequivocal 

assignment of the recorded neuron(s) is crucial to the method; to ensure the specifi city of cell labeling, 

control experiments s be considered, as originally described by Pinault (Deschênes et al., 1994; Pinault, 

1994, 1996). For example, experiments where neurons are (i) recorded in juxtacellular confi guration 

but not stimulated with positive current, (ii) stimulated with negative current or (iii) stimulated with 

sub-threshold positive current (i.e. insuffi  cient to modulate cell fi ring), should result in no cell labeling. 

Killing the recorded neuron by high current injection at the end of the labeling protocol can be used 

as a proof-of-principle test for the specifi city of the juxtacellular labeling procedure (see Deschênes et 

al., 1994; Pinault, 1994, 1996). 

By making it possible to monitor the spiking activity of single, morphologically-identifi ed neurons 

while animals are freely behaving, this approach has provided instrumental in elucidating structure-

function relationships in the spatial memory circuits (Brecht et al., 2014; Ray et al., 2014; Tang et al., 

2014a). As additional examples, here we show anatomical identifi cation of some spatial/directional 

modulated neurons: a grid cell (Hafting et al., 2005; Figure 15) and a head-direction cell (Taube et al., 

1990; Taube, 2007; Figure 16), which are thought to constitute an internal representation of external 

space (Moser et al., 2008; Moser and Moser, 2013). Th e grid cell was recorded in layer 3 of medial 

entorhinal cortex (Hafting et al., 2005), in which its cellular architechture and spatial tuning has been 
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Figure 15: Morphological identifi cation of a grid cell. (A) Top: micro-
graph of a diaminobenzidine-stained 60-μm-thick tangential section, 
showing the soma of a layer 3 neuron of MEC recorded in a freely mov-
ing rat. Scale bar, 50 μm. Bottom: tangential projection (top view) of 
the reconstruction of the basal dendritic fi eld. Gray arrowhead shows 
the truncated apical dendrite (not shown in this reconstruction). Scale 
bar, 100 μm. D, dorsal; V, ventral; M, medial; L, lateral. (B) Top: color-
coded rate map (red indicates maximal fi ring rate, indicated above) 
showing the spatial activity profi le of the recorded neuron (shown in a). 
Middle: spike-trajectory plot showing the animal’s trajectory (gray line) 
and the position at which spikes occurred (red dots). Bottom: 2D spa-
tial autocorrelation of the rate map shown in b (top), revealing the hex-
agonal grid cell periodicity. Scale bar, 50 cm. (C) Representative juxta-
cellular spike-trace recorded during freely moving behavior for the 
neuron shown in a. (D) Spike autocorrelogram for the neuron shown in 
A. Adapted from Tang et al., 2014a.
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reported (Canto and Witter, 2012; Burgalossi and Brecht, 2014). Th e recorded neuron was identifi ed 

and classifi ed as a large pyramidal neuron (Figure 15A), located in the upper layer 3 (L2/3 border). 

Figure 15A shows a reconstruction of the basal dendrites of the recorded neuron, where a large spread 

of the basal dendritic fi eld within L3, extending for up to 322 μm and 371 μm along the dorsoventral 

and medio-lateral axis could be observed respectively. Th is neuron fi red at multiple locations during 

exploration, showing a hexagonal symmetry (grid score = 0.53; Figure 15B), a defi ning feature of grid 

cell activity (Hafting et al., 2005), and was strongly modulated at theta frequency (4-12 Hz; Figure 

15C,D). To our knowledge, this technique has provided fi rst evidence of juxtacellularly recorded, 

anatomically identifi ed and reconstructed grid cells in 2D open fi eld. 

Sharply tuned head-direction cells were recorded in the parasubiculum (Boccara et al., 2010; 

Burgalossi et al., 2011). Figure 16A showed a fl uorescent micrograph containing the soma of the 

recorded neuron and a few proximal dendrites (Figure 16A). Th is cell did not show any clear spatial 

fi ring pattern (Figure 16B), but its spiking activity was sharply tuned to the animal’s heading direction 

(Figure 16C), consistent with the previous extracellular recordings (Sargolini et al., 2006; Taube et 

al., 1990). 

In these two cell examples, juxtacellular recordings were maintained for 16 min (Figure 15) 

and 14 min (Figure 16) before the labeling protocol was initiated. Within these times, the animals 

sampled 63 % (Figure 15B) and 77 % (Figure 16B) of the available surface of a large 1 x 1 m open 

fi eld arena, which provided suffi  cient spatial coverage for assessing the functional properties of the 

recorded neurons. 

In summary, the methodology described here represents a step forward towards fi lling the long-
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Figure 16: Morphological identifi cation of a head-direction cell. (A) 
Fluorescence micrograph of a 60-μm-thick tangential section stained 
for Neurobiotin (Nb, green) and calbindin (Cb, red), showing the soma 
and proximal dendrites of a parasubicular neuron recorded in a freely 
moving rat. Scale bar, 100 μm. (B) Top, color-coded rate map (red indi-
cates maximal fi ring rate, indicated above) showing the spatial activity 
profi le of the recorded neuron (shown in A). Bottom: spike-trajectory 
plot showing the animal’s trajectory (gray line) and the position at 
which spikes occurred (red dots). Scale bar, 50 cm. (C) Firing activity as 
a function of head direction for the cell shown in a. Peak fi ring rate is 
indicated. Adapted from Tang et al., 2014a.
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standing gap between extracellular recordings and single-cell identifi cation methods. It provides the 

means for exploring the functional implications of single cell heterogeneity, and is an addition to the 

portfolio of currently available methods aimed at resolving the cellular and circuit basis of animal 

behavior.

5.3 Pyramidal and Stellate Cell-specifi city of Grid and Border Representations in Layer 2 of 
Medial Entorhinal Cortex

Results in this chapter have been published (Tang et al., 2014b).

5.3.1 Grid-like Firing Properties in a Calbindin+ Pyramidal Neuron and Border-responses in a 
Calbindin- Stellate Neuron

Similar to previously described (Ray et al., 2014; Tang et al., 2014a), we juxtacellularly recorded 
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Figure 17: Grid fi ring in calbindin+ pyramidal neuron 
and border fi ring in calbindin-stellate neuron. (A) Top, 
micrograph (tangential section) of a calbindin+ neuron 
recorded in a rat exploring a 2D environment (1 x 1 
m). Green, calbindin; red, Neurobiotin. Bottom pan-
els, soma in red, green channel and overlay. Scale bars, 
100 μm (top), 10 μm (bottom). (B) Micrograph of a 
tangential layer 2 section with calbindin immunoreac-
tivity (green) and superimposed reconstruction of the 
pyramidal neuron (white). Th e cell was poorly stained, 
basal dendrites were minor and a prominent apical 
dendrite extended towards the center of a calbindin 
patch ventral from the neuron. Scale bar, 250 μm. (C) 
Th eta-phase histogram of spikes for the neuron shown 
in (A). For convenience, two repeated cycles are shown. 
Th e black sinusoid is a schematic local fi eld potential 
theta wave for reference. (D) Spike-trajectory plot, rate 
map and two-dimensional spatial autocorrelation of 
the rate-map revealing the hexagonal grid cell perio-
dicity. Spike-trajectory plot: red dots indicate spike 
locations, grey lines indicate the rat trajectory. Rate 
map: red indicates maximal fi ring rate, value noted 
above. Spatial autocorrelation: color scale -1 (blue) 
through 0 (green) to 1 (red). For this cell, the grid score 
is 1.07. (E) Left, micrograph (tangential section) of a 
calbindin- neuron recorded in a rat exploring a 2D en-
vironment (70 x 70 cm). Green, calbindin; red, Neuro-
biotin. Right panels, soma in red, green channel and 

overlay. Scale bars, 100 μm (left), 10 μm (right). (F) Micrograph of the tangential layer 2 section with calbindin 
immunoreactivity (green) and superimposed reconstruction of the stellate neuron (white). Th e cell was well stained 
and the huge dendritic fi eld encompassed several calbindin patches. Scale bar, 250 μm. (G) Th eta-phase histogram 
of spikes for the neuron shown in (A). For convenience, two repeated cycles are shown. Th e black sinusoid is a sche-
matic local fi eld potential theta wave for reference. (H) Spike-trajectory plot, rate map and two-dimensional spatial 
autocorrelation of the rate-map revealing the elongated fi ring fi eld. Spike-trajectory plot: red dots indicate spike 
locations, grey lines indicate the rat trajectory. Rate map: red indicates maximal fi ring rate, value noted above. Spa-
tial autocorrelation: color scale -0.5 (blue) through 0 (green) to 0.5 (red). For this cell, the border score is 0.90. D = 
dorsal, L = lateral, M = medial, V = ventral. Adapted from Tang et al., 2014b.
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and labeled neurons in layer 2 (which contains the largest percentage of pure grid cells; Boccara et 

al., 2010) in awake rats trained to explore 2D environments. Clear grid cell discharges were rare. Th e 

clearest grid-like fi ring pattern in our sample of 31 identifi ed cells (17 of which met the criteria for 

spatial analysis; see Methods) was observed in the calbindin+ cell shown in Figure 17A. Th is neuron 

had a typical pyramidal cell morphology, with simple dendritic arborization and a single large apical 

dendrite targeting a calbindin+ patch (Figure 17B; see also Ray et al., 2014). During exploratory 

behavior, calbindin+ neurons fi red in strong theta-rhythmicity and phase-locked near the trough of 

the local fi eld potential theta-rhythm (Figure 17C; Ray et al., 2014). Spatial autocorrelation analysis 

of the fi ring pattern in the 2D environment revealed a hexagonal periodicity of fi ring fi elds (grid score 

= 1.07; Figure 17D), indicative of grid cell activity (Hafting et al., 2005). Because of its relatively 

low fi ring rate (~0.5 Hz) this cell was not included in the grid cell sample (see Methods). Many other 

identifi ed calbindin+ neurons had no clear spatial fi ring patterns.

Th e calbindin- cell shown in Figure 17E showed the clearest border response in the identifi ed 

dataset. Th is cell was a stellate neuron, which did not have a single apical dendrite, but instead 

extended multiple and widely diverging ascending dendrites; this dendritic tree spanned a vast fi eld, 

which encompassed multiple calbindin+ patches (Figure 17F; see also Ray et al., 2014). On average, 

spikes from calbindin- neurons were weakly modulated by the local theta-rhythm without any obvious 

phase locking to the theta rhythm (Figure 17G). In 3 out of 11 calbindin- cells from recordings with 

suffi  cient spatial coverage, we observed clear border fi ring patterns as in Figure 17H. Non-spatial fi ring 

patterns also dominated in calbindin- neurons, but surprisingly no grid fi ring pattern was observed.

While the small dataset of identifi ed neurons prevented us from establishing fi rm structure-

function relationships, four preliminary observations can be drawn: (i) grid cells are less abundant in 

layer 2 than previously assumed (Sargolini et al., 2006; Boccara et al., 2010; but see Mizuseki et al., 

2009; Gupta et al., 2012; Bjerknes et al., 2014) and there is no one-to-one relationship between spatial 

discharge characteristics and cell type; (ii) calbindin+ neurons might include grid cells; (iii) the absence 

of grid cells in the 22 identifi ed calbindin- stellate neurons suggests that grid cells might be rare in this 

cell population; (iv) calbindin- neurons include border cells.

5.3.2 Anatomical Characterization of Calbindin+ Pyramidal and Calbindin- Stellate Cells in 
Layer 2 of Medial Entorhinal Cortex

It has been suggested to have a strong correspondence between cytochemical (calbindin+ vs 

calbindin-) and morphological (pyramidal vs stellate) classifi cation of principal neurons in layer 2 

(Varga et al., 2010; Kitamura et al., 2014; Ray et al., 2014). To further explore these relationships, 
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we determined the percentage of calbindin+ cells in layer 2 and compared these data with related 

measurements in the literature (Figure 18A). In line with previous studies (Peterson et al., 1996; 

Kumar and Buckmaster, 2006; Varga et al., 2010), we found that layer 2 neurons consist of about one 

third calbindin+ and ~50 % calbindin- (and reelin+) principal cells, and ~13 % interneurons (Figure 

18B). We note that while Ray et al., 2014 found about 30% of calbindin+ cells most of which were 

shown to have pyramidal morphology (see also Varga et al., 2010; Kitamura et al., 2014), Gatome 

et al., 2010 found a slightly lower fraction of putative pyramidal cells. Calbindin+ and calbindin- 

cells showed large quantitative diff erences in their morphology but without a clear bimodality in 

individual morphological parameters (Figure 18C,D). Calbindin+ cells had signifi cant (on average 

~2.5 fold) smaller dendritic trees (Figure 18E). Dendritic trees also diff ered in shape between cell 

types. Calbindin+ cells had a single long (always apical) dendrite, which accounted on average for 63% 

of the total dendritic length (Figure 18E) and which was polarized towards the center of pyramidal cell 

patches as shown previously (Ray et al., 2014). Calbindin expression matched well but not perfectly 

with pyramidal cell morphology (Figure 18C,D). Calbindin- cells featured similar length dendrites 

with the longest dendrite contributing on average for 33% of the total dendritic length (Figure 18E). 

Th ese results are in line with published data and indicate that calbindin+ and calbindin- cells largely 

correspond to pyramidal and stellate neurons, respectively. However, the lack of clear morphological 
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bimodality in layer 2 (see also Canto and Witter, 2012) implies that the correspondence of pyramidal/

calbindin+ and stellate/calbindin- might not be perfect. Interestingly, the spine density in calbindin+ 

cells decreased as a function of distance from the soma, whereas the reverse was the case calbindin- cells 

(Figure 18F). Th ese morphological diff erences, together with clustering of calbindin+ cells in patches 

and the polarization of their apical dendrites towards the center of calbindin+ patches (Ray et al., 2014) 

probably suggest a local and overlapping sampling of inputs in neighboring calbindin+ cells, whereas 

neighboring calbindin- stellate cells sample large and non-overlapping input territories.

Figure 19: Testing of the classifi er and error estimates. (A) Th eta strength and preferred theta phase of identifi ed 
calbindin+ cells (green dots) and calbindin- cells (black dots) is signifi cantly diff erent. Green and black lines indi-
cate medians of theta strength (p = 0.0033, Mann-Whitney U-test). Green and black lines indicate circular means 
of preferred theta phase (p = 0.000028, Parametric Watson-Williams multi-sample test). Calbindin+ cells show a 
signifi cant tendency to fi re near the trough (p = 0.013, Rayleigh’s test for nonuniformity) and calbindin- cells show 
a tendency to fi re near the peak of theta rhythm (p = 0.033, Rayleigh’s test for nonuniformity). (B) Distribution of 
testing data for estimation of classifi er performance. Testing data is generated by fi tting the appropriate probability 
density functions (beta distributions and circular Gaussian distributions, respectively) to the distributions of theta 
strength and preferred theta phase of identifi ed calbindin+ and calbindin- cells (N = 10.000 for both cell types). (C) 
Result of classifi cation of testing data shows that both calbindin+ cells and calbindin- cells are classifi ed with high 
accuracy and low false classifi cation rates (75.5% correct and 17.5% incorrect for calbindin+ cells, 86.7% correct and 
9.8% incorrect for calbindin- cells). Th is shows that the classifi cation boundary is robust and not just overfi tting the 
small training set of identifi ed cells. (D) Estimation of the purity (positive predictive value) of the classifi er based on 
the estimate of 34% calbindin+, 53% reelin+ (calbindin-) and 13% interneurons in rat L2 of MEC (Figure 18A,B). 
Th e sample of 93 putative calbindin+ cells is estimated to be 83% pure, and the sample of 83 putative calbindin- cells 
is estimated to be 89% pure. (E) After addition of identifi ed, full-coverage cells (11 calbindin- and 6 calbindin+), we 
estimate the purity of our fi nal cell sample to be 84% for calbindin+ cell and 90% for calbindin- cells. Adapted from 
Tang et al., 2014b.
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5.3.3 Testing of the Classifi er and Error Estimates

Calbindin+ pyramidal and calbindin- stellate cells have diverse temporal discharge properties 

(Figure 17C,G; Ray et al., 2014). Th erefore, temporal spike discharge properties could be useful 

parameters to classify layer 2 principal cells as putative pyramidal or stellate neurons. We designed a 

support vector machine to classify neurons based on both the preferred theta phase and phase locking 

strength to local fi eld potential theta oscillations, which indeed clearly segregated calbindin+ and 

calbindin- cells with a large distance to the separating hyperplane (see Methods). To further improve 

the purity and certainty of assigned cells, we added a more strict guard zone around the hyperplane 

separating the Gaussian kernels classifying calbindin+ (light green background) and calbindin- (grey 

background) cells (omitting the guard zone and classifying all cells did not qualitatively aff ect the results; 

data not shown). We tested our classifi er by a bootstrapping approach (Figure 19A,B) and found that 

a large fraction of calbindin+ and calbindin- cells could be correctly assigned (Figure 19C). More 

importantly, the specifi city of classifi cation procedure, which is refl ected in the purity of the resulting 

cell samples, was excellent, where ~89% putative calbindin- cells and ~83% putative calbindin+ cells 

could be assigned (Figure 19D), and even higher values for combination of identifi ed and putatively 

assigned cells (Figure 19E). We further evaluated the robustness of the classifi er by testing in identifi ed 

layer 2 neurons (Ray et al., 2014) under urethane/ketamine anesthesia (Klausberger et al., 2003). Even 

though theta-phase and strength of locking might diff er between the awake and anesthetized state, 

similarly to the awake situation however, the large majority of neurons recorded under anesthesia were 

also correctly classifi ed (92% of calbindin+, 65% of calbindin- cells, p < 0.001, bootstrap; Figure 20B 

bottom), suggesting that our classifi cation criteria work robustly and can eff ectively generalize across 

very diff erent recording conditions (Figure 20B). Encouraged by these results, we classifi ed the larger 

dataset of our hitherto unidentifi ed layer 2 juxtacellular and tetrode recordings (classifi ed + identifi ed 

n = 193 cells).

5.3.4 Cell Classifi cation and Grid and Border Responses in Pooled Identifi ed and Th eta-
assigned Cells

To assess the relationship between cell identity and spatial fi ring properties, we pooled the non-

identifi ed recordings assigned to putative calbindin+ and calbindin- cells, with identifi ed neurons. 

Th e pooled datasets included n = 99 calbindin+ and n = 94 calbindin- cells, respectively. We assessed 

spatial discharge patterns based on quantitiative scores (grid score > 0.3; border score > 0.5, Solstad 

et al., 2008) to the cells which carried signifi cant amount of spatial information (Skaggs et al., 1993; 

Bjerknes et al., 2014; see also Methods).
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Th is approach identifi ed convincing grid and border responses in line with visual inspection. 

Consistent with previous studies (Hafting et al., 2005; Sargolini et al., 2006; Boccara et al., 2010; 
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on the classifi cation boundary, together with unclassifi ed cells (white dots). Bottom, estimate of the purity of the 
theta-assigned cell categories. Th e sample of putative calbindin- cells are estimated to be 89% pure, and the sample 
of putative calbindin+ cells are estimated to be 83% pure (see Figure 19). (D) Comparison of grid scores between 
(identifi ed and putative) calbindin+ and calbindin- neurons; the dotted line indicates the threshold for grid cell; ver-
tical lines indicate medians (p = 0.000046, Mann-Whitney U-test). (E) Representative grid fi ring pattern observed 
in calbindin+ neurons (spike-trajectory plot, rate-map and spatial autocorrelation. Maximum fi ring rate and grid 
score indicated above plots.). (F) Border fi ring patterns in calbindin- neurons. Conventions as in (E). Arrows indi-
cate insertion of additional border. (G) Comparison of border scores between (identifi ed and putative) calbindin+ 

and calbindin- neurons; the dotted line indicates the threshold for border cells; vertical lines indicate medians (p = 
0.0012; Mann-Whitney U-test). (H) Distribution of spatial discharge types in calbindin+ (left) and calbindin- (right) 
neurons, was found to be signifi cantly diff erent in numbers of grid cells and border cells (p = 0.00046 and 0.0042, 
Pearson’s Chi-squared test). Adapted from Tang et al., 2014b.
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Burgalossi et al., 2011; Domnisoru et al., 2013), a large fraction of layer 2 neurons (33%; n = 63 

cells) were signifi cantly spatially-modulated. Weak hexagonal symmetry of spatial fi ring patterns 

was observed in both the calbindin+ and calbindin- cells, in agreement with previous observations 

(Burgalossi et al., 2011; Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013). However, grid 

scores in the calbindin+ population were signifi cantly higher than those in the calbindin- population 

(p = 0.000046, Mann-Whitney test; Figure 20D,E), consistent with observations from the identifi ed 

dataset (Figure 17). On the other hand, confi rming our observations from the identifi ed dataset 

(Figure 17), calbindin- cells had signifi cantly higher border scores than calbindin+ cells (Figure 20G; 

p = 0.0012, Mann-Whitney test). Representative border discharges in calbindin- cells are shown in 

Figure 20F, including an example with border test (Solstad et al., 2008; Lever et al., 2009).

Figure 20H overviewed the spatial response properties of our pooled calbindin+ and calbindin- 

datasets, respectively. Many of the calbindin+ and calbindin- neurons were not spatial modulated. Grid 

fi ring patterns were signifi cantly more common in the calbindin+ population, where 19% (19/99) 

of the cells passed grid cell criteria, compared to only 3% (3/94) in the calbindin- population (p = 

0.00046, Fisher’s exact test). A signifi cant higher fraction of calbindin- cells passed the border cell 

criterion (10% calbindin-, 10/94 cells; vs 1% calbindin+, 1/99 cells) than the calbindin+ cells (p = 

0.0042, Fisher’s exact test). Th ese large data samples confi rm and extend the conclusion from our 
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indicates the threshold for head-direction cell; ver-
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48

Tang (2014)  Results

recordings of identifi ed cells and indicate that grid cells are preferentially recruited from the calbindin+ 

population, while border responses preferentially occur in calbindin- cells. 

Unlike previous reports based on tetrode recordings (Sargolini et al., 2006; Boccara et al., 2010; 

but see Zhang et al., 2013) a substantial fraction of cells showed head-direction selectivity both in 

identifi ed and theta-assigned calbindin+ and calbindin- cells (Figure 21). Head-direction selectivity 

was present in both calbindin+ (19%, 19 out of 99 cells) and calbindin- cells (12%, 11 out 94 cells), 

without preference (p = 0.17, Fisher’s exact test); both classes contained pure as well as conjunctive 

responses (Sargolini et al., 2006).

5.3.5 Temporal Spiking Properties of Grid Cells and Border Cells

Th e grid and border cells showed systematic diff erences in spike phase locking to theta 

oscillations (Figure 22A). Spikes from most grid cells were strongly entrained by the theta-rhythm, 

with strong phase-locking (Figure 22B) and a phase-preference near the theta-trough (Figure 22C; 

p = 0.000000027, Rayleigh’s test for nonuniformity). Th e modulation of spiking activity of border 

cells by the theta-rhythm was signifi cantly weaker than in grid cells (Figure 22B; p = 0.0013, Mann-

Whitney test) and showed on average only a weak phase-preference for the theta-peak (Figure 22C; 

p = 0.21, Rayleigh’s test for nonuniformity), which diff ered signifi cantly from the phase-preference of 

grid cells (Figure 22B,C; p = 0.0000088, Parametric Watson-Williams multi-sample test). Th us, in 

layer 2 grid and border signals mirrored the temporal diff erences between calbindin+ pyramidal and 

calbindin- stellate cells reported earlier (Ray et al., 2014).
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Figure 22: Temporal spiking proper-
ties of grid cells and border cells. (A) 
Polar plot of theta strength as a func-
tion of preferred theta phase angle, ϕ, 
for grid cells (blue dots), border cells 
(red dots). (B) Th eta strength of re-
corded grid cells (blue dots) and bor-
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medians (p = 0.0013, Mann-Whitney 
U-test). (C) Preferred theta phase for 

grid cells (blue dots) and border cells (red dots). Blue and red lines indicate circular means (p = 0.0000088, Paramet-
ric Watson-Williams multi-sample test). Grid cells show a signifi cant tendency to fi re near the trough (p = 
0.000000027, Rayleigh’s test for nonuniformity). Border cells show a tendency to fi re near the peak of theta rhythm, 
but the phase-locking to theta peak did not reach signifi cance in our data set (p = 0.21, Rayleigh’s test for nonuni-
formity). Adapted from Tang et al., 2014b.
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5.4 Functional Architecture of the Parasubiculum

5.4.1 Geometry of the Parasubiculum

In our initial analysis we sought to determine the general organization of the parasubiculum. 

Tangential sections of the cortical sheet stained for acetylcholine esterase activity (Figure 23A) or 

calbindin immunoreactivity (Figure 23B) provide a particularly clear overview of the spatial extent 

of the parasubiculum. Consistent with fi ndings from previous studies (Geneser, 1986; Slomianka 

and Geneser, 1991), we fi nd that the parasubiculum shows prominent acetylcholine esterase activity 

(Figure 23A). Th e parasubiculum can also be identifi ed by an absence of calbindin immunoreactivity 

as it contains barely any calbindin-positive neurons (Figure 23B; Fujise et al., 1995; Boccara et al., 

2010). In Figure 23C, we show the parasubiculum schematically along with divisions of medial 

entorhinal cortex (see Ray et al., 2014). Here we also clarify that all our data refer to the ‘outer / 

distal to medial entorhinal cortex’ subdivision of the parasubiculum, i.e. the ‘parasubiculum b’ in the 

terminology of (Blackstad, 1956). Th e ‘inner’ parasubicular subdivision, the ‘parasubiculum a’ in the 

terminology of (Blackstad, 1956) is not considered here; according to our observations, the latter has 

a cellular organization similar to medial entorhinal cortex and contains numerous calbindin-positive 

neurons (Figure 23B). As shown in Figure 23A-C, the parasubiculum forms a continuous stripe 

which fl anks the medial entorhinal cortex from its medial to dorso-lateral side. Th e lateral part of the 

parasubiculum, dorsal to the medial entorhinal cortex, is narrower than the medial part. Th is may 

explain why this part of the parasubiculum has not been classifi ed as such in most previous studies 

Figure 23: Shape of the rat parasubiculum in a section tangen-
tial to the cortical plane. (A) Tangential section stained for ace-
tylcholinesterase activity (dark precipitate). Th e shape of the 
parasubiculum is outlined by high acetylcholinesterase activi-
ty. (B) Tangential section (adjacent to the one shown in A) pro-
cessed for calbindin immunoreactivity (green), the shape of the 
parasubiculum is negatively outlined by an absence of cal-
bindin immunoreactivity. (C) Schematic of the parasubiculum 
and adjacent medial entorhinal cortex subdivisions. We also 
show another parasubicular subdivision identifi ed by (Black-
stad, 1956), referred to as parasubiculum a. All our data refer 
to light blue region, the parasubiculum b in the terminology of 
(Blackstad, 1956). (A) and (B) were modifi ed from (Ray et al., 
2014).D = dorsal, L = lateral, M = medial, V = ventral.
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(Boccara et al., 2010; Ding, 2013). Other histological markers such as cytochrome-oxidase activity 

or soma morphologies as visualized from Nissl stains (Burgalossi et al., 2011) also delineated the 

parasubiculum in the same way. Similarly, parasagittal sectioning angles delineate the same outlines of 

the parasubiculum. We conclude that the parasubiculum has a linear structure with its narrow width 

(matching that of a dendritic tree). 

We also investigated the laminar structure of the parasubiculum. Consistent with our previous 

conclusions (Burgalossi et al., 2011), we found no evidence for a direct association of deep layers. 

Following tracer injections in the superfi cial parasubicular layers, we did not observe back-labeled cells 

in the adjacent deep layers, even when we observed back-labeled cells as distant as the subiculum (data 

not shown).

5.4.2 Internal Structure of the Parasubiculum
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Figure 24: Internal structure of the parasubiculum.
(A) Tangential sections stained for parvalbumin (PV) immunoreactivity (green, left) and NeuN immunoreactivity 
(red, right). Th e parasubiculum stand out by its intense staining. Th ree sections are shown, the left one is most super-
fi cial (closest to the pia), middle and right are progressively deeper. Note how the patchy structure of the superfi cial 
parasubiculum is replaced by continuous cell band in deeper sections.
(B) Injection of tracer BDA (red fl uorescence) reveals circumcurrent axons extending throughout the parasubicu-
lum. 
(C) Injection of larger amounts of tracer BDA completely fi ll the parasubiculum.
D = dorsal, L = lateral, M = medial, V = ventral, A = anterior, P = posterior.
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Consistent with our previous observations (Burgalossi et al., 2011), we found the superfi cial 

parts of the parasubiculum (corresponding to layers 1 and 2) can be divided into 2 large patches with 

a diameter around 500 μm each. Th ese patches can be revealed in superfi cial sections (Figure 24A left) 

by parvalbumin (PV)-immunoreactivity and by cell density visualized by NeuN immunoreactivity 

(Figure 24A right). However, the deeper parts of the parasubiculum (corresponding to layer 3) were 

not obviously divided into patches (right in Figure 24A).

Injections of the anterograde tracer Biotinyated Dextrane Amine (BDA, 3000 MW) showed 

that parasubicular neurons extend long axons throughout the full length of the parasubiculum (Figure 

24B), consistent with previous observations from single-cell level (Burgalossi et al., 2011). As a 

consequence, a single tracer injection can label the full extent of the parasubiculum (Figure 24C). Th e 

fact that tracer injections at a single site could label the entire extent of the structure is a remarkable 

feature of the parasubiculum, which is not seen in the medial entorhinal cortex. Th us, analysis of the 

internal structure of parasubiculum indicates both modularity and global connectivity.

5.4.3 Inputs to the Parasubiculum
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Figure 25: Parasubiculum receives GABAergic and cholinergic inputs. (A-B) Horizontal sections showing that the 
parasubiculum contains the densest projection in the hippocampal formation of GFP-positive, putative parvalbu-
minergic fi bers (A) deriving from injection of AAV into the medial septum (inset, asterisk) of mice expressing Cre 
recombinase under the parvalbumin promoter. Th is dense projection pattern was seen in 3/3 injected mice. Note in 
this brain also olfactory and accessory olfactory areas were labelled unilaterally. Calretinin immunostaining deline-
ates the border between presubiculum and parasubiculum (B). (C) Tangential section showing high levels of Acetyl-
cholinesterase (AChE) in the parasubiculum. 
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Of particular interest for hippocampal function are the inputs from the medial septum, which 

are of critical importance to grid cell activity (Brandon et al., 2011; Koenig et al., 2011). We fi rst sought 

to determine the patterns of GABAergic inputs from the medial septum, which are thought to play 

a critical role in theta-rhythm generation (Mitchell et al., 1982; Buzsáki, 2002; Hangya et al., 2009; 

Brandon et al., 2011; Koenig et al., 2011). To this end we performed viral injections in the medial 

septum in PV-Cre mice (see Methods), and expressed GFP selectively in GABAergic cells (Figure 25). 

As shown in Figure 25A,B, within the hippocampal formation the parasubiculum is the area receiving 

the densest innervation from GABAergic medial septal neurons. Th us, the parasubiculum appears to 

be the prime target of these fi bers within the parahippocampal formation. As we already noted earlier, 

there is also a prominent expression of cholinergic activity markers (Figure 23A and Figure 25C). 

Taken together, these data point towards a strong medial septal drive to parasubicular neurons.

By retrograde-tracer injections, we also identifi ed parasubicular-projecting neurons in the anterior 

thalamus, subiculum and presubiculum. Th e fi ndings are consistent with the earlier conclusions of 

previous authors (Köhler, 1985; van Groen and Wyss, 1992; Honda and Ishizuka, 2004) and are 

therefore not shown. 

5.4.4 Outputs from the Parasubiculum
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Figure 26: Parasubicular axons target layer 2 pyramidal cell patches in medial entorhinal cortex.
(A) Right, tangential section processed for calbindin immunoreactivity (green) revealing patches of calbindin-pos-
itive pyramidal cells. Middle, same section as left processed to reveal the tracer BDA (red). Th e location of the par-
asubicular injection site is marked with a white star. Right, overlay. (B) Same as (A) but higher magnifi cation. (C) 
High magnifi cation view of a single patch. D = dorsal, L = lateral, M = medial, V = ventral.
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Previous work showed that the parasubicular axons innervate layer 2 of the medial entorhinal 

cortex (van Groen and Wyss, 1990; Caballero-Bleda and Witter, 1993, 1994; but see Canto et al., 2012). 

Recent work showed that principal cells in layer 2 of medial entorhinal cortex segregate into stellate 

and pyramidal cell subnetworks, which can be diff erentiated by the calbindin-immunoreactivity of the 

pyramidal neurons (Varga et al., 2010). Layer 2 pyramidal cells are arranged in a hexagonal grid, show 

strong theta-rhythmic discharges (Ray et al., 2014) and might preferentially contribute to the grid cell 

population (Tang et al. 2014b). To determine if parasubicular inputs target a specifi c subpopulation 

of neurons in layer 2 of medial entorhinal cortex, we performed fi ne scale injections of anterograde 

tracers in the dorsal parasubiculum, combined with visualization of calbindin patterns (Figure 26). 

As shown in Figure 26, tangential sections through layer 2 with calbindin immuno-staining revealed 

a regular organization of patches of pyramidal cells (Ray et al., 2014). Surprisingly, these patches were 

highly selectively innervated by parasubicular aff erents (Figure 26A,B), which targeted the center of 

patches (Figure 26C). Th is indicates that parasubicular axons preferentially target layer 2 pyramidal 

neurons of medial entorhinal cortex.

5.4.5 Functional Cell Types in the Parasubiculum
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Figure 27: Border response in an identifi ed parasubicu-
lar neuron.
(A) Reconstruction of a neuron recorded and identifi ed 
in a rat exploring a 2D environment (70 x 70 cm). Scale 
bar, 100 μm.
(B) Schematic of the location the cell in the parasubicu-
lum (arrow). Th e cell is located in the dorsal band of 
parasubiculum (blue), close to MEC (grey). Scale bar, 
1000 μm.
(C) Representative raw traces of the recorded cell shown 
in (A). Note the prominent theta rhythms in LFP and 
theta modulated fi ring of the recorded cell.
(D) Spike-trajectory plot (left), rate map (middle) and 
two-dimensional spatial autocorrelation of the rate map 
(right) revealing the border fi ring. Spike-trajectory plot: 
red dots indicate spike locations; grey lines indicate the 
rat trajectory. Rate map: red indicates maximal fi ring 
rate, value noted above. Spatial autocorrelation: color 
scale -1 (blue) through 0 (green) to 1¬ (red). For this 
cell, the border score is 0.86. 
(E) Polar plot of the cell’s head-direction tuning. Value 
indicates maximum fi ring rate to the preferred direc-
tion.
(F) Autocorrelogram of spike discharges for the cell 
shown in (A).
(G) Th eta-phase histogram of spikes for the cell shown 
in (A). For convenience, two repeated cycles are shown. 
Th e black sinusoid is a schematic local fi eld potential 
theta wave for reference. 
D = dorsal, L = lateral, M = medial, V = ventral.
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In comparison to its major target structure - the entorhinal cortex - limited information is 

currently available about the spatial discharge properties in the parasubiculum (Taube, 1995; Cacucci 

et al., 2004; Boccara et al., 2010). To address this issue, we juxtacellularly recorded and labeled neurons 

(n = 16) or verifi ed recording sites of single cell recordings (n = 7) in the parasubiculum of freely 

moving rats trained to explore 2D environments (Tang et al., 2014a). In about a third of all neurons 

with suffi  cient spatial coverage (6/19), we observed clear border responses, as shown in the neuron 

in Figure 27. Th is cell had divergent sideward-directed dendrites (seen from the top), situated in the 

dorsal part of the parasubiculum (Figure 27B) and discharged in spike bursts strongly entrained by the 

theta-rhythm (Figure 27C). Th e neuron discharged along the border of the enclosure (Figure 27D), a 

defi ning feature of border activity (Solstad et al., 2008). Th is neuron also showed strong head-direction 

selectivity (Figure 27E). Th eta-rhythmicity of spiking was revealed by the spiking autocorrelogram 

(Figure 27F) and the spikes were also strongly locked to theta oscillations (Figure 27G). Th ese data 

indicate that border discharge is a prime discharge pattern in the parasubiculum.

In line with previous observations in linear mazes (Burgalossi et al., 2011), we also observed 

head-direction modulated responses (Figure 28); in fact, .a bout a third (35%; 8/23) of cells showed 

signifi cant directional selectivity. Th e cell shown in Figure 28A was situated in the medial part of the 
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Figure 28: A head direction cell identifi ed in the parasu-
biculum.
(A) Reconstruction of a neuron recorded and identifi ed 
in a rat exploring a 2D environment (70 x 70 cm). Re-
constructed dendrites and axon shown in red and blue, 
respectively. Scale bar, 100 μm.
(B) Schematic location of the cell in the parasubiculum. 
Th e cell is in the medial band of parasubiculum (blue), 
close to MEC (grey). Scale bar, 1000 μm.
(C) Representative raw traces of the recorded cell shown 
in (A). Note the prominent theta rhythms in LFP and 
theta modulated fi ring of the recorded cell.
(D) Spike-trajectory plot (left), rate map (middle) and 
two-dimensional spatial autocorrelation of the rate map 
(right) revealing the border fi ring. Spike-trajectory plot: 
red dots indicate spike locations; grey lines indicate the 
rat trajectory. Rate map: red indicates maximal fi ring rate, 
value noted above. Spatial autocorrelation: color scale -1 
(blue) through 0 (green) to 1 (red). 
(E) Polar plot of the cell’s head-direction tuning. Value 
indicates maximum fi ring rate to the preferred direction.
(F) Autocorrelogram of spike discharges for the cell shown 
in (A).
(G) Th eta-phase histogram of spikes for the cell shown in 
(A). For convenience, two repeated cycles are shown. Th e 
black sinusoid is a schematic local fi eld potential theta 
wave for reference. 
D = dorsal, L = lateral, M = medial, V = ventral.
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parasubiculum (Figure 28B) and also discharged in bursts with strong theta-rhythmicity (Figure 28C). 

Th e spikes were discharged throughout the enclosure without obvious spatial modulation (Figure 

28D), but showed a clear head direction preference (Figure 28E). Th e spiking autocorrelogram also 

revealed a strong theta-rhythmicity (Figure 28F), and the spikes were also strongly locked to local 

theta oscillations (Figure 28G). In summary, in parasubiculum we observed an abundance of border 

cell activity and head-directional selectivity.

5.4.6 Th eta-modulation of Parasubicular Neurons

As shown in representative cells (Figure 27 and Figure 28), the large majority of parasubicular 

neurons (91%; 21/23) showed strong theta-rhythmic fi ring. Notably, theta-rhythmicity of parasubicular 

neurons exceeded several fold those of identifi ed layer 2 neurons in medial entorhinal cortex (Figure 

Figure 29: Th eta modulation of parasubicular neurons comparing to layer 2 of MEC.
Data from layer 2 of medial entotorhinal cortex (MEC) come from the work of (Tang et al., 2014b) and are shown 
for comparison. (A) Representative autocorrelograms of spike discharges of identifi ed cells recorded from parasu-
biculum (blue), MEC L2 pyramidal (green) and MEC L2 stellate (black) neurons. (B) Th eta-phase histogram of 
spikes for the cells shown in (A). For convenience, two repeated cycles are shown. Th e black sinusoid is a schematic 
local fi eld potential theta wave for reference. (C) Comparison of the strength of theta-rhythmicity in parasubiculum 
(blue), MEC L2 pyramid (green) and MEC L2 stellate (black) neurons. PaS cells show signifi cantly higher theta 
modulation (Kruskal-Wallis test with Bonferroni correction). Lines indicate medians. (D) Polar plot of preferred 
theta-phase (theta-peak = 0°) and modulation strength (Rayleigh vector, 0-1, proportional to eccentricity) for par-
asubiculum neurons, dots = single cells, line = average. (E) Polar plot of preferred theta-phase (theta-peak = 0°) and 
modulation strength (Rayleigh vector, 0-1, proportional to eccentricity) for MEC L2 pyramid (green) and MEC L2 
stellate (black), dots = single cells, lines = averages.
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29A; see also Tang et al., 2014b). Parasubicular cells were also strongly locked to fi eld potential theta 

oscillations, which were in phase with MEC theta (Glasgow and Chapman, 2007; Figure 29B); 

interestingly, parasubicular neurons discharged on average at a slightly earlier theta-phase (~45° phase 

angle, i.e. ~15 ms) than layer 2 pyramidal cell in medial entorhinal cortex (Figure 29C; MEC cells 

from the work of Tang et al., 2014b). On average, same as for the rhythmicity (Figure 29C), the 

strength of theta-phase locking in parasubicular neurons was also much stronger than those in layer 

2 of medial entorhinal cortex (Figure 29D,E; MEC cells from Tang et al., 2014b). Th e strong theta-

phase locking and rhythmicity of parasubicular neurons - the strongest within the parahippocampal 

area - suggest a role of the parasubiculum for imposing theta onto medial entorhinal cortex. 
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6. Discussion

6.1 Functional Implications of a Pyramidal Cell Grid in Layer 2 of Medial Entorhinal Cortex

In the investigation of principal cells in layer 2 (Ray et al., 2014), we combined immunoreactivity, 

projection pattern, microcircuit analysis and in vivo electrophysiology. When we looked at layer 

2 neurons in the tangential sections rather than in the classically-used parasagittal brain sections, 

we observed a remarkable regular arrangement of pyramidal cells by calbindin staining. Pyramidal 

neurons appeared to be clustered into patches arranged in a hexagonal grid, implying an astonishing 

similarity to the grid cell spatial fi ring. Th is hexagonal arrangement of calbindin patches is tightly 

anchored to other anatomical landmarks, and receives selective cholinergic innervation, a rhythmic 

drive critical for sustaining grid cell activity. Similarly, such clusters of pyramidal cells were also revealed 

by staining with Wfs1 marker co-localized with Calbindin (Kitamura et al., 2014). Both calbindin and 

Wfs1 could thus be powerful molecular markers to further develop genetic and optogenetic tools to 

selectively label and manipulate pyramidal cell activity in vivo to explore the functional contribution 

of pyramidal cells in spatial memory.

Using the juxtacellular recording technique described (Tang et al., 2014a; see Methods), we 

made the surprising observation that theta rhythmicity was about twofold stronger in pyramidal 

neurons than stellate neurons. Moreover, we showed in pharmacological experiments that the theta 

rhythmicity of pyramidal neurons depends on cholinergic drive (Ray et al., 2014). Th ese results shed 

light on the cellular basis of theta rhythmicity in medial entorhinal cortex, and identifi ed pyramidal 

neurons as the major receiver of theta inputs in layer 2. What is the cellular basis of theta-rhythmicity 

in MEC layer 2? Stellate cells have been prime candidates for theta discharges in layer 2 (Alonso and 

Llinás, 1989; Alonso and Klink, 1993), because intrinsic conductances make them resonate at theta 

frequency (Garden et al., 2008; Giocomo and Hasselmo, 2008). We found, however, that calbindin+ 

pyramidal cells show a twofold stronger theta-rhythmicity and theta phase-locking than calbindin- 

stellate neurons. Th e stronger theta-rhythmicity of calbindin+ pyramidal neurons, which have weaker 

sag-currents (Alonso and Klink, 1993; Varga et al., 2010), is opposite from what had been predicted 

based on intrinsic properties (Hasselmo et al., 2007; Fernandez and White, 2008). Hence, layer 2 

theta-modulation is cell type specifi c irrelative to cell-intrinsic resonance properties. Th is fi nding 

agrees with other evidence that questions a causal relationship between intrinsic properties and theta-

rhythmicity in vivo (Fernandez and White, 2008; Giocomo et al., 2011; Schmidt-Hieber and Häusser, 

2013). It is unlikely that the membrane properties of calbindin+ neurons contribute to the generation 

of theta rhythmicity (Varga et al., 2010). 
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Th e structure-function relationships of the layer 2 microcircuits we uncovered here (Ray et 

al., 2014), their remarkably precise geometry, which constrains information processing, their striking 

resemblance to the grid cell fi ring, and their unique physiological properties, will provide novel 

information for understanding entorhinal computations and its contribution to spatial cognition. 

Th ese fi ndings challenged the stellate-centered view of medial entorhinal cortex function, which has 

dominated the studies on the subject, and call for future experimental and computational work. Th e 

strong theta modulation suggests that pyramidal neurons might be the grid cells, which are confi rmed 

to be strongly theta modulated. It remains unclear, where is the input source of these rhythmic inputs, 

which can be either from long-range medial septum projections or from upstream cortical structures, 

such as presubiculum or parasubiculum. Identifying the rhythmic source to these pyramidal cells will 

clarify the input topography and presumably help us understand the synaptic integration of grid cells. 

Previous available evidence suggests that grid cells are a heterogeneous neuronal population in 

layer 2 (Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013; Zhang et al., 2013) and indicates 

a weak structure-function relationship (Rowland and Moser, 2014). We however, observed strong 

similarities between calbindin+ neurons and grid cells (Ray et al., 2014): calbindin+ patches receive 

cholinergic inputs, which are required for grid cell activity (Newman et al., 2014); calbindin+ cells have 

strong theta-rhythmicity, a feature which correlates with grid cell discharge (Boccara et al., 2010); like 

grid cells, calbindin+ cells are clustered. Determining the spatial modulation patterns these identifi ed 

cells will help clarify if and how the calbindin+ grid is related to grid cell activity, and the spatial fi ring 

properties of calbindin- stellate cells. 

6.2 Structure-Function Relationship Revealed by Juxtacellular Recording Technique

Th is technique developed throughout the study has proven to be extremely powerful for 

exploring single-cell structure-function relationships in freely behaving rodents. As we have shown 

in our recent study (Ray et al., 2014), cell identity strongly predicted both neuronal connectivity and 

physiology in layer 2 of medial entorhinal cortex. Since our current experimental format meets the 

standards of tetrode recordings (Hafting et al., 2005; Solstad et al., 2008), we are now in the position 

to unequivocally identify spatially-modulated neurons (i.e. grid cells and head-direction cells) which 

form the basis of our internal representations of space. We provided (1) a mechanical description of 

our recording strategy, (2) a detailed procedure to obtain juxtacellular recordings in freely moving 

animals and (3) an overview of the method’s performance, including the custom-made tools, and 

troubleshooting and technical tips, which are essential for the method to be established in other 

laboratories. 
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In our current dataset from freely-moving animals, in ~50% of the cases where labeling was 

attempted, a neuron was recovered (n= 53 identifi ed cells out of 111 labeling attempts). Recording 

durations were up to 32 min, including all recordings (n = 417 from 209 rats; mean ± SD = 6.6 ± 4.1 

min). Th e recording duration limited the range of questions that can be addressed with this method. Th e 

experimental design and animal behavior need to be optimized for obtaining suffi  cient information. 

It must however be noted that the recording durations reported here might be underestimated, since 

recordings in posterior or deep brain structures are known to be more unstable compared to anterior 

and superfi cial brain regions (Herfst et al., 2012; Domnisoru et al., 2013). Most recording losses 

occurred upon mechanical disturbances (i.e. head-bumps on the walls or head-shakes). Minimizing 

the occurrence of such events by using soft foam materials as cushion, and reducing the stress of the 

animal by careful habituation to the experimental procedures, has a strong impact in our experience 

on the recording duration and/or stability.

Th e techniques and procedures described here are optimized for rats, but can be potentially 

adapted for recording in other animal species. For smaller animals (i.e. mice), further miniaturization 

of the implant components and/or use of lighter construction materials (i.e. aluminum) should be 

considered. Th e applicability of this protocol is in principle not restricted by brain area or recording 

depth, as a “clean” pipette tip is benefi cial but not a necessity for the establishment of juxtacellular 

recordings (unlike whole-cell recordings, electrodes can typically be used for multiple penetrations 

and without positive air pressure. Application of air pressure might however be essential for recording 

in very deep brain structures (i.e. > 4-5 mm from the pial surface) to avoid pipette clogging. Th e 

method described is focused on exploratory behavior, but can certainly be extended to many forms 

of unrestrained natural or trained behaviors. Success rates will depend on the experimenter, the target 

region, cell type and behavior.

Th e procedures illustrated in the present method (Tang et al., 2014a), consisting of a combination 

of animal training, electrophysiological recording and juxtacellular labeling procedures (Pinault, 1996; 

Pinault and Deschênes, 1998), enable anatomical visualization of single neurons recorded in freely-

moving animals, engaged in exploratory behavior (see Ray et al., 2014). Th e methods described here 

include two key methodological developments over our previous procedures in (Burgalossi et al., 2011; 

Herfst et al., 2012): recordings are obtained in awake, drug-free animals, trained to run in large open 

fi eld environments; “head-anchoring” stabilization procedures (Lee et al., 2009; Burgalossi et al., 2011; 

Herfst et al., 2012) are replaced by a removable stabilization seal, which enables multiple penetrations 

and recording/labeling attempts to be performed in the same animal. Fluorescent dyes for neuronal 

labeling (Judkewitz et al., 2009) could potentially be used for increasing the number of recovered 
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neurons. Other neuronal tracers, such as Biotinylated Dextran Amines (i.e. BDA-3000), which 

are more resistant to intracellular degradation (Veenman et al., 1992), could be used for improved 

visualization of long-range axonal projections, as they can be recovered up to a few days after labeling 

(Deschênes et al., 1994; Furuta et al., 2009; Pinault, 2011). Th e use of long taper, low-resistance 

electrodes, together with close proximity of cell, ensures high signal-to-noise ratio of juxtacellular 

spike signals (Burgalossi et al., 2011; Herfst et al., 2012) and unequivocal spike identifi cation. Future 

technical improvements would be to realize the juxtacellular electroporation of powerful genetic tools 

such as small molecule DNAs and virus (Daniel et al., 2013), making it possible to conduct single 

cell chronic, cell-type specifi c investigations of synaptic input / output relationships and neural circuit 

coordinations in behaving animals. 

6.3 Cell-type Specifi city in Layer 2 of Medial Entorhinal Cortex 

Triggered by the discovery that pyramidal neurons in layer 2 form a grid-like microcircuit (Ray 

et al, 2014), we further directly assessed the relationship between spatial fi ring pattern and diff erent 

cell types. By taking advantage of the improved methodologies for identifying individual neurons 

recorded in freely moving animals described above (Tang et al., 2014a), as well as by cell identifi cation 

and theta-locking based classifi cation of unidentifi ed recordings, we provided evidence that grid and 

border responses are preferentially contributed by pyramidal and stellate cells, respectively (Tang et al., 

2014b).

In layer 2 of medial entorhinal cortex, most studies suggested that spatially-modulated responses 

are common, and that grid fi ring patterns can emerge in both stellate and pyramidal neurons 

(Burgalossi et al., 2011; Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013; Zhang et al., 

2013). In line with such evidence, we observed a large fraction of spatially-modulated neurons in layer 

2; weakly hexagonal fi ring patterns in both stellate and pyramidal neurons. However, most grid cells 

(see Methods) were classifi ed as putative calbindin+ pyramidal cells. Border cells, on the other hand, 

were predominantly observed in the calbindin- stellate cells. We made our conclusion based on (1) the 

identifi cation of calbindin+ grid and calbindin- border cells (see Figure 17) and (2) spike-timing based 

classifi cation of unidentifi ed layer 2 recordings, according to the striking diff erences of calbindin+ and 

calbindin- cells in their temporal discharge properties (Ray et al., 2014), the assessment of classifi cation 

quality by our boot-strapping approach, and the robustness of classifi cation across diff erent datasets. 

Th e validity and accuracy of our classifi cation procedure are critical to the study (Tang et al., 2014b). 

A surprising fi nding is that layer 2 principal cells can be classifi ed with high accuracy by their 

distinct temporal discharge properties (Tang et al., 2014b). Potentially, such classifi cation can be 
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extended to a large number of unidentifi ed layer 2 recordings from other laboratories, provided that 

the required histology and LFP data have been collected. Such post-hoc assignment of cell types to 

recording data – i.e. supplying identity to blind extracellular recordings – could be instrumental for 

understanding principal cell diversity and cortical microcircuitry. 

Calbindin+ pyramidal cells might be predetermined for grid cell function as they receive 

cholinergic inputs, are strongly theta-modulated, and arranged in a hexagonal grid (Ray et al., 2014). 

We suggested an ‘isomorphic mapping hypothesis’ according to which an anatomical grid of pyramidal 

cells (Ray et al., 2014) generates grid cell activity (Brecht et al., 2014) and is an embodiment of 

the brain’s representation of space in hexagonal grids. Representing grid discharge by a ‘cortical grid’ 

might off er similar advantages as isomorphic representations of body parts as barrel fi elds (Woolsey 

and van der Loos, 1970) or nose stripes (Catania et al., 1993) in somatosensory cortices of tactile 

specialists. Notably, the local similarity of grid cell discharges is high, as neighboring grid cells share 

the same grid orientation, scaling and are phase-coupled even across distinct environments (Hafting 

et al., 2005; Fyhn et al., 2007). We speculate that calbindin+ pyramidal neuron clustering and apical 

dendrite bundling in patches (Ray et al., 2014) might impose this local similarity of grid discharges. 

Border responses on the other hand, arise in stellate neurons, with long and widely diverging dendritic 

trees, may result from a relatively global sampling of incoming inputs in medial entorhinal cortex and 

help generate place cell activity (Bjerknes et al., 2014; Bush et al., 2014). Recognizing the functional 

dichotomy of pyramidal and stellate cells in layer 2 will help elucidate how spatial discharge patterns 

arise in cortical microcircuits (Figure 30; Tang et al., 2014b).
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Figure 30: Schematic view of cell type specifi city of grid and border cells in layer 2 of Medial Entorhinal Cortex.  
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6.4 Functional Architecture of the Parasubiculum

Our analysis indicates that the parasubiculum is in many regards distinct from other 

parahippocampal structures. Th e elongated shape of the parasubiculum, an almost linear arrangement 

of neurons, diff ers from the map-like 2D layout of the granule cells in the dentate gyrus, CA3, CA2, 

CA1, subiculum, presubiculum and medial or lateral entorhinal cortex (Amaral and Witter, 1989; 

Cenquizca and Swanson, 2007). Further, the apparent absence of directly-associated deep layers 

distinguishes the parasubiculum from the surrounding entorhinal, retrosplenial and presubicular 

cortices. Th e circumcurrent axons (Burgalossi et al., 2011; see also Figure 24B) that traverse the 

parasubiculum and establish a ‘global’ connectivity is also a unique feature of parasubicular anatomy,  

which could suggest a strongly recurrent network organization, possibly underlying the strong 

rhythmicity we detected. Furthermore, the parasubiculum is a preferred target of medial septal inputs 

and provides the major output to pyramidal neuron patches in layer 2 of medial entorhinal cortex. We 

observed a substantially larger fraction of border responses in the parasubiculum than in the adjacent 

medial entorhinal cortex (Solstad et al., 2008; Tang et al., 2014b), where such responses are fairly 

rare. Th e theta-modulation of parasubicular neurons exceeds that observed in other parahippocampal 

structures. Altogether, these are uniquely defi ning features of the parasubiculum, which distinguish it 

from neighboring parahippocampal cortices.

Our anatomical analysis agrees well with earlier descriptions that large parts of the parasubiculum 

are situated between the medial entorhinal cortex and the presubiculum (Amaral and Witter, 1989; 

Cenquizca and Swanson, 2007), however we provide evidence that the parasubiculum extends further 

laterally than previously estimated (Boccara et al., 2010) and this structure is not directly associated 

with deep layers. Th e idea that the parasubiculum extends dorso-laterally from the medial entorhinal 

cortex is based on three observations: (i) staining of cholinergic markers, calbindin immunoreactivity 

or cytochrome oxidase activity all delineate a continuous band, which extends dorso-laterally to the 

medial entorhinal cortex (Figure 23); similarly, both (ii) the modular structure of the large patches 

(Figure 24A,B) and (iii) circumcurrent axons extend as a continuous dorso-lateral band. Our conclusion 

that the parasubiculum extends dorso-laterally is strongly supported by recent work that applied high 

resolution mapping of gene expression in the medial entorhinal cortex and surrounding structures 

(Ramsden et al., 2015). Th e authors not only observed that this dorsolateral part is diff erent from medial 

entorhinal cortex, but also showed that it shares patterns of gene expression with the parasubiculum 

(Ramsden et al., 2015). Th e extent to which deep layers were assigned to the parasubiculum diff ers in 

the literature. While some studies assigned deep layers to the parasubiculum (Funahashi and Stewart, 

1997; Glasgow and Chapman, 2007; Boccara et al., 2010), other work found it diffi  cult to assign 
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adjacent deep layers to either the presubiculum or the parasubiculum based solely on cytoarchitectonic 

criteria (Mulders et al., 1997). Our assessment that these deep layer cells should not be viewed as part of 

the parasubiculum is based on three observations: (i) the shape of dorsal part of the parasubiculum, as 

revealed by cholinergic markers, calbindin immunoreactivity or cytochrome oxidase activity, delineates 

only a “superfi cial-layer structure” encompassing layer 1-3, but not extending beyond the lamina 

disseccans (Burgalossi et al., 2011); (ii) we did not observe axons from the superfi cial parasubiculum 

into adjacent deep cortical layers; (iii) we did not observe axons from the adjacent deep cortical layers 

into the superfi cial parasubiculum. Th e idea that large parts of the parasubiculum lack deep layers is 

again supported by the gene expression analysis of Ramsden et al., 2015. Th is pattern of connectivity 

is very diff erent from the adjacent deep layers of the medial entorhinal cortex, which heavily innervate 

superfi cial layers (Beed et al., 2010; Burgalossi and Brecht, 2014).

Our results agree with previous extracellular recording data that also revealed the presence 

of spatially-modulated neurons in the parasubiculum (Taube, 1995; Cacucci et al., 2004; Boccara 

et al., 2010; Burgalossi et al., 2011). In particular, our fi ndings are in line with previous results, 

which described spatially-modulated, directional and theta-rhythmic responses in the parasubiculum 

(Cacucci et al., 2004). Th e present data are also consistent with the study of (Boccara et al., 2010), 

where the authors described border and head-direction responses in the parasubiculum. Notably, 

the strong head-direction tuning in the parasubiculum is also consistent with previous (Fyhn et al., 

2008; Wills et al., 2010) and more recent work (Giocomo et al., 2014), where the large majority 

of sharply-tuned head-direction cells were recorded “near” the dorsalmost border medial entorhinal 

cortex, compatible with a parasubicular origin (Figure 23; Burgalossi et al., 2011). We recognized that 

ascertaining the origin of extracellularly recorded units here is particularly diffi  cult - especially at more 

lateral sites, where the parasubiculum gets progressively thinner. While our identifi ed cell data provide 

great certainty about the parasubicular location of the recorded cells, the strength of our conclusions 

is however limited by the relatively small dataset. 

We argue that the parasubicular response properties observed match well with the inputs 

described by other authors and us. Parasubicular head-direction selectivity is in line with its inputs 

from anterior thalamus and presubiculum, two key structures in the head-direction system (Taube, 

2007). Th e border responses observed here are in line with subicular inputs, as numerous boundary-

vector cells have been observed there (Lever et al., 2009). Finally, one of the most prominent aspects 

of parasubicular activity is the strong theta-modulation and rhythmicity of spike discharges. Unusually 

large membrane-potential theta oscillations have also been recorded from parasubicular neurons in 

awake animals (termed “large-theta”; Domnisoru et al., 2013). We argue that such strong entrainment 
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may result from the massive GABAergic innervation from the medial septum, since GABAergic cells 

in the medial septum are known to be a key theta-pacemaker in the entorhinal-hippocampal network 

(Buzsáki, 2002; Hangya et al., 2009; Brandon et al., 2011; Koenig et al., 2011).

One of the most interesting aspects of the current data lies in the possible relationship between 

the parasubiculum and layer 2 of medial entorhinal cortex, where grid cells are commonly found 

(Sargolini et al., 2006; Boccara et al., 2010). Grid cells are distinct from other neurons in the medial 

entorhinal cortex in their strong theta-rhythmicity of spiking (Boccara et al., 2010). It is therefore most 

interesting that the strongly theta-rhythmic parasubicular cells project selectively into layer 2 pyramidal 

cell patches, where neurons show strong entrainment by the theta-rhythm (Ray et al., 2014) and where 

most grid cells might be located (Tang et al., 2014b). Th e discharge timing might be consistent with 

an activation/entrainment of layer 2 pyramidal cells by parasubicular inputs, as parasubicular neurons 

discharge on average at an earlier theta-phase (~45° phase angle, i.e. ~15 ms) than layer 2 pyramidal 

cells (Figure 29D,E). Th e parasubicular input to layer 2 pyramidal cells is also remarkable, in light 

of the little excitatory connectivity within layer 2 of medial entorhinal cortex (Couey et al., 2013; 

Pastoll et al., 2013). We speculate that parasubicular input could be important for two aspects: (i) for 

imposing theta-rhythmicity on grid responses, and possibly also contributing to their temporal spike 

dynamics, like phase-precession (Hafting et al., 2008) and (ii) parasubicular border responses could 

be instrumental in anchoring grids to environmental boundaries. Interestingly, direct projections from 

border to grid cells have been recently postulated, which might be responsible for determining grid 

orientation and ellipticity. In addition, grid cells have been shown to receive head-directional inputs 

(Bonnevie et al., 2013). Th e parasubiculum might be the source of this input, given the large-fraction 

of head-direction cells and the strong inputs to layer 2. We conclude that parasubicular input to the 

grid system should be an important subject of further functional analysis.

What does the parasubiculum do and how does it operate? As the studies of parasubicular 

circuits are in an early stage, we lack information to defi nitely answer this question. Tentatively, it seems 

likely that the parasubiculum plays a key role in determining spike-timing of downstream neurons 

relative to theta oscillations. Th e massive internal connectivity of the parasubiculum by circumcurrent 

axons is also a remarkably and unique feature. Th ese axons connect along the dorso-ventral axis of 

the parahippocampal cortex. As diff erent spatial scales are mapped onto the dorsoventral axis of the 

medial entorhinal cortex (Brun et al., 2008), we wonder, if these axons ensure that those parasubicular 

neurons along the dorsoventral axis signaling the same positions (at diff erent spatial scales) fi re at the 

same time relative to the theta cycle. 

Another peculiar aspect of parasubicular anatomy is the lack of direct output to the hippocampus. 
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Together with the absence of deep layers (the recipient of CA1/subicular back-projections in the medial 

entorhinal cortex) and a thinner layer 1, it seems that the parasubiculum is only poorly connected to the 

classic ‘memory circuits’. We envision it may function more for providing online spatial information 

like a pointer (where am I) than for long-term storage of information. Th is pointer hypothesis might 

be consistent with the defi cits in working memory observed after parasubicular lesions (Kesner and 

Giles, 1998). Again, we admit that these ideas are speculative at this early stage. 

6.5 Summary and Future Directions

By combining anatomy (Ray et al., 2014), methodological development (Tang et al., 2014a) 

and electrophysiological recordings (Tang et al., 2014b), we provided an in depth analysis of the 

microcircuitry structure and function in layer 2 of MEC and parasubiculum. Th e striking cell-type 

specifi city of spatial representations in layer 2 of MEC is contrary to long-standing assumptions: (i) 

pyramidal neurons (not stellate neurons as classically thought) are the cellular substrate of grid cells; 

(ii) layer 2 grid cells do not project to the dentate gyrus; (iii) stellate neurons, the major projection 

neurons to the dentate gyrus, encode the environmental boundaries. Th ese fi ndings will have strong 

implications for understanding the cellular basis of spatial cognition, and will certainly lay the ground 

for new models of spatial memory in hippocampal formation, which do not rely on the assumption 

that stellate-grid neurons output to the dentate gyrus. In the parasubiculum, strong theta rhythmicity 

and direct projection to layer 2 pyramidal neurons, together with a large fracion of head-direction 

and border cells, suggest grid cells in layer 2 of MEC might receive theta-rhythmic directional and 

boundary information from parasubiculum. Th is discovery is also of fundamental importance for 

our understanding of spatial memory in general, and might shed light on more general principles 

of memory formation in the mammalian cortex. Technologically, the powerfulness of juxtacellular 

recording in freely moving animals will open a new frontier of systems neuroscience research at single 

cell resolution in awake behaving animals. 

Th e results presented here also raised many intriguing and potentially very important questions. 

Th e primary projection pattern of layer 2 pyramidal cells remains mysterious. Several lines of evidence 

suggest diff erent cortical targets (Varga et al., 2010; Kitamura et al., 2014). Clarifying the projections of 

these pyramidal cells, will provide essential information on the downstream targets of grid cells. MEC 

layer 2 and layer 3 receive diff erential projections from parasubiculum and presubiculum. Elucidating 

whether directional and spatial information have distinct pathways into diff erent layers in MEC, and 

what is the functional contribution of theta oscillations within the entorhinal-hippocampal loop, will 

eventually provide a deeper understanding of the neuronal mechanisms of spatial representation.



66

Tang (2014)  Appendix

7. Abbreviations

MEC medial entorhinal cortex

PrS presubiculum

PaS parasubiculum

FS fast spiking

CCK cholecystokinin

GABA γ-aminobutyric acid

UV ultraviolet

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

BDA biotinylated dextran amines

LED light-emitting diode

approx. approximate

PFA paraformaldehyde 

PB phosphate buff er 

AChE acetylcholinesterase

CS saline solution

DAB diaminobenzidine

BSA bovine serum albumin 

RT room temperature

LFP local fi eld potential

CTB cholera toxin subunit B

p.s.i. pounds per sqaure inch

VAChT vesicular acetylcholine transporter

ROI regions of interest

i.p. intraperitoneal

mm millimeter

CA cornu ammonis

mV millivolt

ms millisecond

nA nanoampere

L layer

min minutes

S.E.M. standard error of the mean

S.D. standard deviation

μA microampere
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