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Abstract

Besides being important for industrial applications, colloidal suspensions have long

served as model systems, both in experiments and theory, for investigating the

structure and dynamics of condensed matter. The simplest colloidal system, a

suspension of hard spheres, already exhibits an elaborate phase diagram. Additional

intriguing phenomena, such as the plastic crystal (PC) phase, are introduced if

particles are anisotropic. PCs are characterised by crystalline centre of mass (COM)

ordering while they lack long-range order in the particles’ orientations. Recently, it

has been demonstrated experimentally that, in contrast to hard spheres, apparently

a small anisotropy is sufficient to dramatically change the viscoelastic response

under external shearing fields, of which the microscopic mechanisms are not yet

sufficiently understood.

In the present work, non-equilibrium Brownian dynamics (NEBD) simulations of

colloidal hard dumbbells in oscillatory shear fields are developed and employed

to elucidate the novel findings in close connection with comprehensive rheology

and small-angle neutron scattering (SANS) experiments. Furthermore, by utilising

Brownian dynamics (BD) simulations and linear response theory, the impact of

anisotropy on structure and dynamics of such suspensions in equilibrium is analysed.

In the linear response limit, the shear viscosity exhibits a dramatic increase at high

packing fractions beyond a critical anisotropy of the particles. This indicates that,

even for the small investigated anisotropies, newly occurring, collective rotational-

translational couplings must be made responsible for slow time scales appearing in

the PC.

Moreover, a non-equilibrium transition emerging at moderate aspect ratios is revealed

by NEBD of plastic crystalline suspensions under oscillatory shear. The transition

behaviour is systematically studied with respect to the particles’ aspect ratio at

various frequencies and strains. It is demonstrated that the continuous nature of the

transition is retained for very low aspect ratios only. Above a certain aspect ratio,

the transition is mediated by an intermediate disordered state. Furthermore, a

partially oriented sliding layer state featuring a finite collective order in the particles’

orientations is observed at high strains.

Hence, this thesis demonstrates that the NEBD simulations explain novel phenom-

ena in rheology and scattering experiments. In the light of these experiments, it

is shown that the orientational degree of freedom has a vigorous impact on the

structural transition under increasing oscillatory shear.

Key words: Dumbbells, Colloids, Soft Matter, Brownian dynamics, Non-equilibrium

steady states





Zusammenfassung

Neben ihrer Bedeutung in industriellen Anwendungen dienen Kolloide seit langem

als Modellsysteme in Experimenten und in der Theorie, um die Struktur und

Dynamik von kondensierter Materie zu untersuchen. Das einfachste kolloidale

System, harte Kugeln in Suspension, zeigt bereits ein komplexes Phasendiagramm.

Weitere faszinierende Phänomene, wie die „Plastic-Crystal“-Phase (PC), können

bei anisotropen Teilchen beobachtet werden. PCs sind durch kristalline Ordnung

der Massenzentren gekennzeichnet, während die Ausrichtung der Teilchen keine

langreichweitige Ordnung aufweist. Kürzlich wurde experimentell gezeigt, dass

offenbar eine kleine Anisotropie ausreicht, um die viskoelastische Antwort unter

externen Scherfeldern im Vergleich zu harten Kugeln drastisch zu ändern. Die

mikroskopischen Ursachen hierfür sind bisher noch nicht hinreichend verstanden.

In dieser Arbeit werden daher „non-equilibrium Brownian dynamics (NEBD)“-Simu-

lationen von harten kolloidalen Dumbbells in oszillatorischen Scherfeldern entwickelt

und eingesetzt, um diese neuen Resultate mit enger Verbindung zu umfangreichen

Rheologie- und Neutronenstreuexperimenten zu erklären. Weiterhin wird die Be-

deutung der Anisotropie für Struktur und Dynamik von solchen Suspensionen im

Gleichgewicht mit Hilfe von „Linear-Response“-Theorie und Brownian dynamics

(BD)-Simulationen analysiert.

Im linearen Limit zeigt die Scherviskosität bei hohen Packungsdichten einen dramati-

schen Anstieg jenseits eines kritischen Anisotropieparameters. Dies weist darauf hin,

dass schon bei den kleinen Anisotropien, neuartige kollektive Rotations-Translations-

Kopplungen für langsame Zeitskalen im PC verantwortlich sein müssen.

Weiterhin wird ein Nichtgleichgewichtsübergang bei moderaten Aspektverhältnis-

sen mittels NEBD-Simulationen von dichten Suspensionen harter Dumbbells im

PC unter oszillatorischer Scherung ersichtlich. Dieser Übergang wird systematisch

in Hinsicht auf das Aspektverhältnis der Teilchen bei verschiedenen Frequenzen

und Amplituden untersucht. Es wird gezeigt, dass der kontinuierliche Übergang

nur für sehr kleine Aspektverhältnisse erhalten bleibt. Oberhalb eines bestimmten

Aspektverhältnisses wird der Übergang durch einen ungeordneten Zustand vermit-

telt. Außerdem wird ein teilweise orientierter Sliding-Layer Zustand mit endlicher

kollektiver Ordnung der Teilchenausrichtung bei hohen Scheramplituden beobachtet.

Somit zeigt diese Arbeit, dass die NEBD-Simulationen neuartige Phänomene in

Rheologie- und Streuexperimenten erklären. Angesichts dieser Experimente wird

gezeigt, dass der Orientierungsfreiheitsgrad einen starken Einfluss auf den struktu-

rellen Übergang bei steigenden Amplituden hat.

Schlagwörter: Dumbbells, Kolloide, Weiche Materie, Brownsche Dynamik, Statio-

näre Nichtgleichgewichtszustände
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Chapter 1

Introduction

Colloidal suspensions are systems of particles immersed in a solvent, also commonly
referred to as complex fluids, in which the solute particles move significantly slower
than the solvent particles. The sizes of the colloidal particles roughly range from
a few nanometers up to the micrometer scale, whereas typical solvent molecules,
such as water, are in the Ångström range. The observation of the undirected
and seemingly erratic motion of colloidal particles has led to a strong backing of
the atom hypothesis [1, 2]. It has allowed calculation of the size and number of
molecules driving the Brownian motion [3]. Despite the undirected and irregular
nature of the movements, Einstein’s and Smoluchowski’s predictions of a linearly
growing mean square displacement has been verified by Perrin [1–3], who was, at
the same time, able to calculate Avogadro’s number. The huge difference in the
typical time scales of motion of a solvent molecule and a colloidal particle leads to
a separation of the dynamics. This fact allows one to regard the influence of the
suspending medium as a very short-time correlated random process. Moreover, one
typically defines the Brownian time, τB, describing the time that is needed for a
particle to cover a distance of its own size. Beyond this time, the motion can be
considered overdamped, which means that the motion is no longer systematically
ballistic in its character.

Applications of colloidal systems While there are plenty of colloidal products
in our daily lives, such as dairy products [4], cosmetics and paint, recent advances in
chemical synthesis allow production of functional colloids as well as self-propelled or
complexly shaped particles [5–8]. On one hand, there are practical considerations for
the use of colloids in a variety of fields, such as drug delivery [9]. On the other hand,
fascinating systems can be designed to address fundamental questions. Mutually
attached spheres, for example, are sometimes referred to as colloidal molecules as

3



4 1. Introduction

they resemble atomic molecules in their shapes and it is possible to control the
bond-angles [10, 11]. A nice overview has been presented by Glotzer and Solomon,
for a small excerpt see fig. 1.1. Thus, colloids may be regarded as models for
atomic or molecular systems, which simplify the investigation of analogue systems
due to slower time scales and larger sizes of the particles [12]. Moreover, on this
fundamental level colloids enable the understanding of the mechanisms of phase
transitions and arrested states [13].

The colloidal complexity is not solely defined by the particles’ shapes but
also by their interactions, which can be tailored to allow for interpenetration and
clustering of colloidal particles [14–16]. Furthermore, functional particles can adsorb
and release macromolecules or nanoparticles, change dimensions upon thermal or
chemical stimuli, or catalyse reactions [17, 18]. Assemblies of colloidal particles
can be used as coatings or provide porous structures after evaporation of the
suspending medium or removing the colloidal particles [19]. In this respect, colloidal
suspensions may be used as building blocks for material structures, and colloidal
self assembly can be applied to manufacture materials such as membranes with
novel functionality [20].

Also, colloidal crystals can be considered as photonic band gap materials [21–25],
which may allow for selective inhibition of light from travelling in a medium.

Figure 1.1: Examples of colloidal molecules made from identically or differently
sized spheres. Reprinted with permission from S. C. Glotzer, and M. J. Solomon,
Nat. Mater. 6, 557–562 (2007) [8]. Copyright c© 2007, Nature Publishing Group.

The hard sphere model system There are a vast number of regular and
irregular shapes of colloidal particles in fundamental research, industry, nature and
our everyday lives [4]. Nevertheless, extensive research has allowed for for exploration
of suspensions of spherical particles with only excluded volume interaction as a model
system extensively and revealed a great variety of phenomena, such as vitrification
and crystallisation and complex non-equilibrium behaviour [26–29]. There is a
plethora of literature on hard sphere colloids in equilibrium and non-equilibrium
conditions. Due to the many intriguing open questions, there is an active community

http://dx.doi.org/10.1038/nmat1949
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dealing with perfectly spherical colloids [28, 30–32]. Beyond the concept of point
particles, potentials with spherical symmetry lacking all structure except for infinite
repulsion upon contact is the simplest model considered, see fig. 1.2 for a sketch of
the phase diagram. Due to the excluded volume of such spheres with finite extent
the hard sphere system exhibits an entropy-driven freezing transition [31, 33, 34].
In between, the fluid and crystal phases coexist. Above a packing fraction φ of ca.
58 % of the volume a kinetically arrested glassy state can be observed up to the
random close packing limit at 64 % [35, 36]. At about 74 % spheres are close-packed,
which relates to the densest packing problem that has captivated scientists for
centuries [37]. This simple interaction potential allows analytic calculation of many
important physical properties of a hard sphere system. Nevertheless, this knowledge
can be applied to more sophisticated systems as well, which can have repulsive or
partly attractive interactions [26, 38]. Thus, the colloidal hard sphere system has

φfreezing
coexistence

melting

glass

Figure 1.2: Sketch of the hard sphere phase diagram showing an entropy driven
freezing transition and a kinetically arrested glass state.

been of interest in a great number of disciplines and topics. This interest is, at
least in part, due to the system’s simplicity and the rich physical insight the system
provides [33].

Anisotropic colloids In general, colloidal particles are anisotropic in shape and
interaction, which was considered in the light of mineral sheets, rod-like viruses
and flexible polymer chains by Perrin Onsager in the 1930s and 1940s [39–41].
Suspensions of anisotropic particles have been studied by many researchers, e.g.
spherocylinders as models for micro-organisms [42, 43].

In equilibrium the anisotropy gives rise to novel phases, such as the PC or rotator
phase, nematic or liquid crystalline states [44–49]. Furthermore, the anisotropy
of the suspended particles may be of great importance for dynamical quantities
as well as structural formation under external fields [50, 51]. To address such
fundamental questions, well-defined experimental and theoretical model systems
are needed. One of the simplest realisations of mildly anisotropic colloids are
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(a) (b) (c)

Figure 1.3: From isotropic to anisotropic model systems: spherical particles (a),
mildly anisotropic dumbbells (limited aspect ratio at touching spheres) (b) and
rods with arbitrary aspect ratios (c).

dumbbell-shaped particles (that is, a dimer of two fused identical colloidal spheres,
cf. fig. 1.3) which can be synthesised by using different routes in well-controlled
and monodisperse ways [22, 52–62]. In the search for a well-behaved experimental
hard dumbbell system, a number of groups have proposed synthetic specimen [52,
53, 62–64], that differ in their interactions, their size distributions and dimensions.
With respect to particle interactions, residual attractive potentials play a role
when aiming at a stable hard model system, as attractive forces can also lead to
irreversible aggregation [65] and introduce additional complications in the phase
behaviour [66, 67]. The literature on hard spheres and related systems shows that
polydisperse systems are inhibited from crystallisation [31, 68–70]. This fact is
exploited when preparing samples in a disordered high density state to investigate
glass formation or prevent glassy systems from crystallising [71, 72]. For comparison
with computational models, monodispersity is also a desirable feature when studying
crystallisation, as it is hindered in polydisperse suspensions.

Phase behaviour of hard dumbbells The phase diagram of hard-core dumb-
bells is theoretically known [45, 73–79]. Early Monte Carlo (MC) investigations of
Vega et al. have been intensified by Marechal and Dijkstra [76, 77]. At high packing
fractions, the colloids can form the so-called PC or rotator phase [45, 74–79] in
which the translational degrees of freedom are essentially frozen at high packings
as in the hard sphere system but the particles are free to rotate. Adjacent to this
region, the phase diagram features re-entrant freezing and melting transitions with
changing aspect ratio, i.e. the ratio of the length to the width given by the diameter
of a sphere. Figure 1.4 depicts the phase diagram of the hard dumbbell system in
the volume fraction φ and aspect ratio plane. In the context of dumbbell systems,
the aspect ratio is usually expressed as the elongation L∗ = L/D defined by the
ratio of the distance of the centres of the spheres to their diameter. At elongations
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L∗ ≥ 0.4 the PC phase ceases to exist and a direct transition from the fluid to
the close packed (CP) phase divided by a coexistence region is possible, while at
elongations close to unity a dense aperiodic phase exists [77, 80, 81]. The φ-axis of

0 0.2 0.4 0.6 0.8 1

0.45

φHS
freeze

φHS
melt

0.6

0.7

φHS
CP

Fluid

PC
CP

L∗

φ

Figure 1.4: Phase diagram of the hard dumbbell system, data is taken from
ref. [77]. The fluid (F), plastic crystal (PC), close packed (CP) and aperiodic
phases and the respective coexistence regions are shown in the elongation (L∗) -
volume fraction (φ) plane. The insets show snapshots of the fluid (F) phase and
the 111-plane of the PC, respectively.

the dumbbell phase diagram coincides with the hard sphere phase diagram, where
the system is fully crystalline above the melting density due to the lack of an
orientational degree of freedom.

Colloids in external fields Fascinating phenomena are observed in colloids
under the influence of external fields [82]. In processing suspensions, various kinds
of external fields are applied to colloids, which may be electrical [83], magnetic,
thermal, flow fields or gravity, to name some [84]. In fact, even walls or confining
boundaries can be seen as a method of external control. The application of external
fields can change the equilibrium of the system [85], lead to non-equilibrium steady
states or drive the system into full transient non-equilibrium [86]. Under gravity,
for example, the coexistence of different phases may be observed due to density
gradients [87]. Very recently, Liu et al. have been able to align rods in a PC phase
by switching electrical fields [50]. Forster et al. have suggested dumbbell colloids
as field-switchable photonic crystals [22]. Besides the choice of external potentials,
the design of the particles may be used to target self-assembly, e.g. by introducing
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metal cores in otherwise dielectric particles [60]. Moreover, in an electrical field,
percolation transitions of patchy particles can be induced [88]. External control of
colloidal assembly can also be achieved by using patterned substrates or optical
fields acting as potentials [89].

A very important class of external fields are flow fields, which can be arbitrarily
complicated. This spatial or temporal complexity is strongly dependent on the
boundary conditions and the driving forces causing media to flow. One of the most
elementary flows is the simple shear flow, where the velocity is unidirectional and
depends linearly on the distance from the walls. This Couette flow is the laminar
solution for two plates of which one is moving and the other is fixed at a certain
distance with no-slip boundary conditions [90]. Shear flows are very common in
processing and transport of material as they are inevitably present due to typical
boundary conditions on the flowing medium. In order to analyse the response of a
medium to shear, one typically chooses simple shear with an oscillatory or steady
time dependence. In the context of colloidal flow, shear can lead to a multitude
of phenomena: Shear fields may be used to induce crystallisation in colloidal hard
sphere glasses [91, 92] or drive gelation in dilute suspensions of charge-stabilised
particles [93]. It may be desirable to prevent crystallisation or glass formation in a
process, as solidification can hamper the transport of material.

Non-equilibrium structure and shear response Intriguingly, shear flows can
be employed to induce order in otherwise disordered colloids [94, 95]. They can form
string-like structures, free slipping layers, registered moving layers or crystal-like
order [96, 97], while strong shearing also can be used to melt ordered equilibrium
structures [98]. Under shear conditions, various non-equilibrium states have been
identified in spherical colloids, which have been well characterised using a combina-
tion of scattering methods [99, 100], optical techniques [101, 102], simulations [102]
and theoretical models [103]. The structure of driven suspensions of hard spheres
has been extensively investigated by means of light scattering [100, 104] and direct
observation by microscopes [101, 102], where various shear protocols have been
employed, such as steady shear, sinusoidal oscillatory shear and fixed rate oscillatory
shear. Similar order-disorder transitions of colloids under shear have been repor-
ted for clusters of soft spheres [16] and highly charged spheres [105, 106]. Dense
suspensions of spherical charge-stabilised particles with long-range order at rest
show a polycrystalline state at low shear rates and long-range sliding layer order
at higher shear rates, where the transition is accompanied by a drop in the shear
viscosity [107, 108]. Additionally, particle tracking methods have shed light on the
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modes of motion in these stationary structures [109, 110].

In the early work by Ackerson and Pusey, light scattering and shear conditions
have been combined, without measuring the rheological response [100]. Further
insight has been gained from direct optical observation of induced order in sheared
suspensions [101]. Most recently, Besseling et al. have combined confocal microscopy
and BD simulations to explore the non-equilibrium behaviour of colloidal hard
spheres under oscillatory shear [102]. In their study, a greater range of frequencies
and strain amplitudes has been explored, yielding a complex non-equilibrium state
diagram for sheared suspensions of hard spheres [102]. Here, for small strains a
fcc twin sketched in fig. 1.5 is found to be stable corroborating with the classical
results [100].

(a) (b) (c)

Figure 1.5: Sketch of the shear twinned fcc crystal of hard spheres. Hexagonal
close packed (hcp) layers are (a),(c) registered at the oscillatory shear extrema and
(b) bridge-stacked in between.

(a) (b)

Figure 1.6: Sketch of the sliding layer state at high strains. (a) Registered motion
with zig-zag trajectories, and (b) freely sliding layers.

At high strains the predominant structure is found to be registered sliding of hcp
layers, for a sketch see fig. 1.6. Moreover, the dense direction of the hcp layer prefers
to be parallel to the velocity at high strain amplitudes, whereas at low strains a dense
direction is parallel to the flow direction. This behaviour results in a 30◦ turn in
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the scattering pattern [101]. The corresponding diffraction patterns [100, 111] show
three-fold symmetries. Besseling et al. have calculated an extensive nonequilibrium
state diagram for hard spheres under oscillatory strain, which categorises further
high-strain structures.

These structural transitions are connected to the rheological yielding process.
The underlying mechanisms gain complexity with additional degrees of freedom
of the colloids, which leads to novel phenomena. In recent years, there has been
a focus on the yielding of colloidal glasses. A double yielding behaviour has been
reported for hard sphere glasses [112] and attractive particles [113], which has been
attributed to Brownian and shear induced cage escape processes leading to two
maxima in the viscous modulus. Koumakis et al. have also been able to explain
stress overshoots in the start-up shear experiment on hard sphere glasses [114].
A comprehensive rheological investigation on systems of spherical particles has
demonstrated clearly that there is no such phenomenon [115] in hard sphere crystals.
Turning to anisotropic particles, this feature has spurred interest in the role of
translational-rotational coupling in the yielding process [116–118]. In fact, double
yielding in the oscillatory strain sweep is observed in suspensions of dumbbell-shaped
particles, characterised by two maxima at nearly the same stress value [115].

Goals and outline of this thesis In this thesis, the hard dumbbell system
is investigated by means of BD simulations in and out of equilibrium. Strongly
connected to recent experiments, the fundamental effects of anisotropic particles in
colloidal suspension on material properties are elucidated.

First, the near-equilibrium response of hard dumbbell suspensions at small to
intermediate aspect ratios is investigated to systematically understand the influence
of the anisotropy on the microstructure and material properties. Of particular
interest is the question at which elongation dynamic and structural properties start
to deviate from the limiting hard sphere reference case. To clarify this question, we
study the structure and fluctuations of suspensions of steeply repulsive dumbbell
particles in equilibrium by means of BD computer simulations. We focus on the
dense regime of the fluid to PC transition region of the phase diagram which is well
accessible for experimental dumbbell suspensions and promises interesting insight
into the influence of elongation on steric correlations and structural properties in
both fluid and crystal. Apart from spatial correlations, we systematically explore
the dynamic properties in the linear response regime at high volume fractions
measured by equilibrium fluctuations. All results for the elongated dumbbells are
discussed with respect to the well-explored hard sphere reference system.
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Figure 1.7: Cryogenic transmission electron micrograph of core-shell hard dumb-
bell colloids reprinted with permission from F. Chu, M. Siebenbürger, F. Polzer,
C. Stolze, J. Kaiser, M. Hoffmann, N. Heptner, J. Dzubiella, M. Drechsler, Y. Lu,
and M. Ballauff, Macromol. Rapid Commun. 33, 1042–1048 (2012) [62]. Copy-
right c© 2012, John Wiley & Sons. The particles’ longest extent is about 600 nm,
depending on the temperature, which can be used to tune the size of the shell.

The non-equilibrium behaviour is a challenge considering the huge parameter
space and the complicated underlying phase diagram. In the non-equilibrium
domain, our focus is on the region of small to moderate elongations (aspect ratios
L∗ < 0.4) and high volume fractions where the PC phase predominates [75]. The
available data from experiments also falls into the interesting regions of the phase
diagram where PCs are formed. Furthermore, kinetic properties of the suspensions
are investigated in these simulations.

The recent, very clean experimental investigation [62, 119] of monodisperse hard
dumbbells well matches the PC phase boundaries in the estimated phase diagram.
Thanks to these advances, viable purely repulsive monodisperse model systems are
experimentally available which crystallise in equilibrium conditions without the use
of external fields or long-range interactions. Figure 1.7 shows micrograph of the
core-shell dumbbells, which have been thoroughly studied at the aspect ratios 0.24

and 0.3. New scattering and rheology data on this system allow one to compare the
simulation results with comprehensive experiments on the aspect ratios 0.24 and
0.3. The latter represents an anisotropy very close to that of a nitrogen molecule,
which also features a PC phase [120, 121], referred to as the β-phase. Because of
this, one could consider our system as colloidal nitrogen. Colloidal dumbbells are

http://dx.doi.org/10.1002/marc.201200062
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thus among the most promising experimental model systems for a fundamental
understanding of the structural and dynamic effects arising from increasing the
elongation with respect to the hard sphere reference case. In particular, in the PC
phase where new phenomena are expected [73].
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Figure 1.8: Dependence of storage moduli G′ (filled circles) and loss moduli G′′

(open circles) of hard spheres at φeff = 0.57 (a) and hard dumbbells at φeff = 0.60

(b) on increasing shear strains at a fixed frequency f = 1 Hz. The strain positions
(I), (II), (III) along the G curves indicate the strains connected to the respective
structures discovered with SANS [115, 119]. Adapted with permission from F. Chu,
N. Heptner, Y. Lu, M. Siebenbürger, P. Lindner, J. Dzubiella, and M. Ballauff,
Langmuir 31, 5992–6000 (2015) [115]. Copyright c© 2015, American Chemical
Society.

This allows us to compare the simulation results directly to a well-characterised
experimental realisation. Oscillatory shear simulations of dense suspensions of

http://dx.doi.org/10.1021/la504932p
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hard dumbbells reveal a partially oriented sliding layer state. This is a novel
non-equilibrium state, which is similar to the well-known sliding layers of sheared
hard spheres, showing an additional collective preference of orientation along the
direction of flow. Our simulation data compares reasonably well to a rheo-SANS
study of an experimental hard dumbbell system [115, 122]. This comparison shows
that this novel transition is the cause for a vigorous rheological yielding behaviour
depicted in fig. 1.8a, which features two distinct maxima of the viscous modulus
G′′ in an oscillatory strain sweep.

In this work, it is demonstrated that the origin of the double yielding is due
to a structural transition as opposed to the cage-escape dynamics of the hard
sphere glasses. Moreover, it is shown that the observed yielding process is due
to structural rearrangement, sufficiently influenced by the mild anisotropy of the
particles, whereas the hard sphere behaviour is retained for very small aspect ratios.

This thesis is organised as follows: first the theoretical framework, the numerical
methods and a few strongly related experimental methods are introduced. In the
main part the results regarding structure and dynamics from equilibrium and non-
equilibrium simulations are presented. In the same section, experimental results [62,
115, 119, 122] are compared to the oscillatory shear BD simulations. In the last
chapter, the results are summarised and discussed in the light of recommendable
further research.





Chapter 2

Methods and theoretical framework

2.1 Fundamentals and numerical methods

In this chapter, we introduce the governing equations of motion for colloidal systems
and important results from the literature, which are important for conduction
and evaluation of computer simulations. These theories are equally important to
understand related experimental measurements, which are briefly introduced in this
chapter as well.

2.1.1 Equations of motion for colloidal particles

First, the equations of motion formulated in two different theoretical frames are
briefly introduced. On this basis, the simulation methods and the particle interaction
model are detailed.

Smoluchowski equation

The Smoluchowski equation describes the evolution of a N -particle density distri-
bution ρ(N)(XN , t). In a compact form it reads

∂

∂t
ρ(N)(XN , t) = −ıSρ(N)(XN , t), (2.1)

where S denotes the Smoluchowski operator and XN and t refer to a set of phase-
space coordinates and the time respectively [123]. The Smoluchowski operator can
depend on interactions and external forces. In their absence, for the free diffusion
of a particle with constant diffusivity D it reads S = ıD∇2.

15
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Langevin equation

The Langevin equation is the equation of motion for a particle of mass m immersed
in volume filled with much smaller particles, we may write it as

mr̈(t) = −mξṙ(t) + Z(t), (2.2)

where r(t) corresponds to a particle position. The inertia on the right-hand side
(RHS) is balanced by a friction force counteracting the motion and a randomly
fluctuating force Z(t). The magnitude of the friction is given by the friction
coefficient ξ. For suspended Brownian particles it is determined by the solution of
Stokes’ equation [124, 125], which depends on the shape and the surface properties
of the particle as well as the properties of the medium. In particular, the friction
additionally depends on the full configuration of the system, which is the case for
non-dilute suspensions of many particles. A hierarchy of clearly separated time
scales is valid for Brownian particles. The first separation is already incorporated
in eq. (2.4), which is reasonable if the Brownian particle is much larger than the
surrounding solvent particles. In this case, the collisions of solvent particles with
the Brownian solute are δ-correlated in time. If the friction force dominates the
dynamics of the particle, the ballistic motion decays virtually instantaneously, such
that the motion is determined by the fluctuating force and the friction force only.
This regime is the so-called overdamped or Brownian dynamics, in which the inertia
term (left-hand side (LHS) of eq. (2.2)) is negligible. A common approximation
to the many-body hydrodynamic problem is to neglect hydrodynamic interactions,
reducing the friction tensor to a constant as in the single particle problem. The
random force is assumed to be undirected, thus its mean vanishes

〈Z(t)〉 = 0, (2.3)

where the angle brackets 〈. . . 〉 denote the time average. In the Langevin case the
random process is δ-correlated, i.e. it is memoryless in the sense that only the
current state of the system is relevant for its future evolution. The autocorrelation
function of the random process can be written as

〈Z(t+ t′) · Z(t′)〉 = 2πZ0δ(t), (2.4)

where Z0 is a constant.
As opposed to the Smoluchowski theory, which predicts the density distribution

of a system, the Langevin dynamics describes the evolution of single particle’s
positions and velocities. For Brownian particles with position-independent diffusion
coefficients the Langevin and Smoluchowski dynamics are equivalent [126].
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Fluctuation-dissipation relation

The relation of the dissipative and stochastic forces in eq. (2.2) is expressed in a
fluctuation-dissipation relation

kBTξ =
πZ0

3m
, (2.5)

where T is the temperature. Asymptotically, the mean-square displacement of
eq. (2.2) at very large times grows linearly as

〈
|r(t)|2

〉
' 6

kBT

ξm
t, (2.6)

where the diffusion coefficient is defined as

D =
kBT

ξm
(2.7)

and kB and T denote the Boltzmann constant and the temperature respectively. A
well-known representative is the Stokes-Einstein relation for spherical particles of
diameter d with no-slip boundary conditions is

DS
0 =

kBT

3πηd
, (2.8)

in a medium with viscosity η. Which relates the dissipation due to Stokes friction
to its Brownian mobility due to thermal fluctuations. For particles with different
geometries or boundary conditions this relation has to be generalised [125, 127–129].
The calculation of the Stokes friction and the associated diffusivities for the particles
considered in this work is detailed in section 2.1.5.

2.1.2 Dumbbell model and pairwise interaction

A hard dumbbell particle is comprised of two fused spheres (fig. 2.1), which are
considered as centres of interaction in our model. The beads of diameter d are
rigidly constrained at a centre-to-centre distance L, see Fig. 2.1. With that we
define a dimensionless elongation L∗, or, aspect ratio, defined as L∗ = L/d. For
L∗ = 0, we recover the reference case of one spherical colloid.

The purely excluded volume interaction is step function, which is infinitely
repellent at overlap of two distinct particles and zero elsewhere. For numerical and
practical reasons, one typically chooses a smooth potential. The site-site (bead-
bead) pair interaction is modelled by a Yukawa potential, which is the electrostatic
part of the well-known Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [130].
In the present simulations the Yukawa potential is used because of it can be used
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L
d

Figure 2.1: Sketch of the dumbbell geometry with dimensionless aspect ratio
L∗ = L/d.

to interpolate between long-range electrostatic repulsion and steep hard-core like
repulsion by tuning the screening parameter κ. There are other potential forms
considered for modelling the hard-core interaction in the literature as well, inverse
power potentials are also quite common [131].

The potential between two beads at distance r is given by

V (r) = ε
σ

r
exp {−κ (r − σ)} . (2.9)

The parameter κ is a screening constant, which may be used to tune the softness
of the pair interaction. In the limit of κ → ∞ one obtains the purely hard-core
interaction. We choose κ = 20/σ as a compromise between a steep hard-core like
repulsion at the same time being smooth enough to not cause numerical problems
in the integration. The parameters σ and ε = kBT define the length and energy
scale of the interaction in our model, respectively. In order to fit the important
colloidal volume fraction parameter to the hard system, one may define an effective
volume fraction taking into account the excluded volume caused by the repulsive
interaction. Since we compare our results to the hard-dumbbell and hard-sphere
reference system, we define the effective bead diameter d via the Barker-Henderson
relation [132]

d =

∫ ∞
0

(1− exp{−V (r)

kBT
})dr. (2.10)

The effective volume fraction φ = ρ(π/6)α(L∗)d3 at dumbbell number density ρ is
defined accordingly. The function α(L∗) = 1 + 3L∗/2− L∗3/2 is a geometric factor
accounting for the bead overlap volume [75].

2.1.3 Brownian dynamics

Based on the Langevin dynamics in the overdamped case, Brownian dynamics (BD)
simulations for pair-wise interacting particles are carried out in this work. First,
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the method for the equilibrium simulations is described. This is followed by the
method employed for a shear set-up along with the properties of the induced flow.
The implementation of this method can be found in the appendix section A.3.

Equilibrium

The total instantaneous force Fij(t) exerted by particle j on particle i is the sum of
the forces F(i,k)(j,l)(t) acting between the k-th site of the i-th particle and the l-th
site of the j-th particle, via

Fij(t) =
2∑

k,l=1

F(i,k)(j,l)(t). (2.11)

The centre of mass (COM) vector of the i-th particle is decomposed with respect
to the axial symmetry as

Ri(t) = Ri,⊥(t) + Ri,‖(t), (2.12)

Ri,‖(t) = [ui(t) ·Ri(t)]ui(t), (2.13)

where ui(t) is the unit vector pointing in the direction of the connection between
the centres of the beads belonging to the i-th particle. The total force Fi(t) is
decomposed analogously: The parallel and perpendicular parts are given by

Fi(t) = Fi,⊥(t) + Fi,‖(t), (2.14)

Fi,‖(t) = [ui(t) · Fi(t)]ui(t). (2.15)

Given this framework, we implement the BD algorithm for the above defined
coordinates as follows: The particle positions are updated using an explicit forward
Euler method with the finite time step ∆t� τ . Starting from the configuration
{Rn

i ,u
n
i } at time t = n∆t, we find new coordinates

{
Rn+1
i ,un+1

i

}
at t+∆t following

the scheme

Rn+1
i,‖ = Rn

i,‖ + ∆t
D‖
kBT

Fn
i,‖ + δri,‖u

n
i , (2.16)

Rn+1
i,⊥ = Rn

i,⊥ + ∆t
D⊥
kBT

Fn
i,⊥ + δri,1e

n
i,1 + δri,2e

n
i,2, (2.17)

where ei,1 and ei,2 are unit vectors oriented perpendicular to the director ui. The
random variates δri,α, α ∈ {‖, 1, 2} have zero mean and the variances

〈
δr2
i,‖
〉

=

2D‖∆t and
〈
δr2
i,{1,2}

〉
= 2D⊥∆t, respectively.

The torque acting on symmetric dumbbells is given by Ti(t) = σ
2
L∗ui(t) ×(

F(i,2),⊥(t)− F(i,1),⊥(t)
)
, where F(i,k),⊥(t) is the total instantaneous force on the
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k-th bead of the i-th particle. The internal unit director ui of the i-th particle is
updated according to

un+1
i = uni + ∆t

Dr

kBT
Tn
i × uni + δx1e

n
i,1 + δx2e

n
i,2, (2.18)

where δx1 and δx2 are zero mean Gaussian distributed random variates with variance〈
δx2

j

〉
= 2Dr∆t. The single particle mobility is given by parallel D‖, perpendicular

D⊥ and rotational Dr diffusion coefficients. The time scale is set to the Brownian
time τ = σ2/DS

0 of a single bead of diameter σ and diffusivity DS
0 = kBT (3πηsσ)−1

with a solvent viscosity ηs. We neglect hydrodynamic interactions between the
colloids which is justified for the high packing fractions where steric correlations
dominate the equilibrium structure and linear response behaviour [133, 134].

Shear conditions

x

y

z

vx(y, t)

Lz

Ly

Lx

Figure 2.2: Sketch of the simulated box under shear flow. The flow velocity
vx(y, t) has a linear gradient γ̇(t) in y-direction. In out specific case, the flow
varies sinusoidal in time. The dimensions of the box are Lx, Ly, Lz. Reprinted
with permission from N. Heptner, F. Chu, Y. Lu, P. Lindner, M. Ballauff, and
J. Dzubiella, Phys. Rev. E 92, 052311 (2015) [122]. Copyright c© 2015, American
Physical Society.

As for the equilibrium simulations, we employ a forward Euler scheme in order
to integrate the equations of motion [42, 135]. In fig. 2.2 the basic set-up for
sheared simulations is sketched. The parallel and perpendicular COM coordinates
are also updated according to eqs. (2.16) and (2.17). Here, the shear flow with
the time-dependent shear rate γ̇(t) only affects the COM transport in x-direction
through the last term in

Rn+1
i = Rn+1

i,‖ + Rn+1
i,⊥ + ∆tγ̇(t)Rn

yex. (2.19)

http://dx.doi.org/10.1103/PhysRevE.92.052311
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The directors are updated following

un+1
i = uni + ∆t

Dr

kBT
Tn
i × uni + δx1e

n
i,1 + δx2e

n
i,2, (2.20)

where Tn
i is the total torque exerted on particle i at time t = n∆t. The torque is

comprised of the inter-particle and background-flow contributions.

Ti(t) = Tp
i (t)−

kBT

Dr

{ui(t)× E(t) · ui(t)} (2.21)

We impose simple shear flow given by the rate-of-strain tensor

E(t) = γ̇(t)


0 1 0

0 0 0

0 0 0

 , (2.22)

which may be written as a sum of symmetric and anti-symmetric tensors, i.e. the
shear and vorticity tensors

E(t) = Γ(t) + Ω(t) (2.23)

=
1

2
γ̇(t)


0 1 0

1 0 0

0 0 0

+
1

2
γ̇(t)


0 1 0

−1 0 0

0 0 0

 . (2.24)

The symmetric part Γ describes the pure elongational flow, while the anti-symmetric
part Ω describes the vorticity of the flow. The vorticity is spatially uniform and
quantifies the solvent contribution to the rotation of the particles.

Above, the form of the time evolution of the shear field is not specified. In the
oscillatory shear set-up, the time-dependent dimensionless strain imposed by the
flow field on the suspension is given by

γ(t) = γmax sin(2πft). (2.25)

Thus, the linear solvent velocity profile is

vx(y, t) = γ̇(t)y, (2.26)

where the shear rate γ̇ (t) is the time-derivative of the strain γ(t) with the amplitude
γmax and the frequency f . The maximum shear rate γ̇max sets the time scale of the
driving force exerted by the shear flow. In order to compare the driving force to
the intrinsic viscous forces, we define the Péclet numbers

Pe =
1

12
fγmaxσ

2/DS
0 =

1

12
fγmaxτ, and (2.27)

Per = 2πfγmax/Dr, (2.28)

where the latter is a definition respecting the time scale set by the rotational
Brownian motion.



22 2. Methods and theoretical framework

2.1.4 Shear boundary conditions

The usual periodic boundary conditions (PBC) have to be modified in order to
be compatible with the imposed shear field. A solution to this requirement is
Lees-Edwards boundaries [136]. There are two different representations of these
boundary conditions, which may be fulfilled by an inclined simulation box or sliding
images, here we introduce the latter shown in fig. 2.3. When a particle leaves
the central image’s boundary in the shear gradient direction, it is inserted at the
opposite boundary with a separation in flow direction according to the current
shear state. If these boundary conditions are implemented for time-independent

P

P’

gradient (y)

velocity (x)

Figure 2.3: Sketch of Lees-Edwards periodic shear boundaries. The particle at
point P leaving the central image is inserted at point P’ with a displacement due to
the flow.

flow, the simulated system reaches a steady shear state after sufficient time [137].
In this work, the Lees-Edwards boundary conditions are used in combination with
an imposed background velocity field according to eq. (2.25), which may depend on
time as described above.

2.1.5 Calculation of the single-particle diffusivities

The infinite-dilution (single-particle) self-diffusion coefficients of a dumbbell particle
are calculated using the shell-bead model (SHM) [127, 138–141], the relevant values
are summarised in table 2.1. This hydrodynamic model is based on a Rotne-Prager-
Yamakawa (RPY) tensor level solution of Stokes’ equation for the flow past a
dumbbell [124]. The RPY-Tensor is a generalisation of the Oseen-Tensor, which is
the Greens function of the Stokes equation for a singular force acting on the medium.
In this method, the particle surface is represented by a number of mini-beads which
act as sources of hydrodynamic friction For each of these small spheres, the Stokes
flow is known. We assume no-slip boundaries, which means that the velocity of the
medium is equal to the respective surface’s velocity at the boundaries. Using these
known solutions, the values are extrapolated to zero mini-bead size, e.g., infinite



2.1. Fundamentals and numerical methods 23

L∗ D‖/D
S
0 D⊥/D

S
0 Dr/D

S
r

0.02 (S) 0.99 0.99 0.97
0.10 (C) 0.97 0.95 0.85
0.24 (A) 0.93 0.89 0.69
0.30 (B) 0.91 0.87 0.63

Table 2.1: Single particle diffusive properties used in the simulations, obtained by
SHM calculations.

number of friction sources on the particle surface. We are using the parallel D‖/DS
0 ,

perpendicular D⊥/DS
0 and rotational Dr/D

S
r diffusion coefficients obtained by the

above method as input for the presented BD simulations. The free single-sphere
(L∗ = 0) translational DS

0 and rotational DS
r diffusivities are be obtained from

the respective Stokes-Einstein relations [125]. The translational COM diffusion
coefficient of a free dumbbell is given by D0 = 1

3
D‖ + 2

3
D⊥. Here, the Brownian

time is accordingly given by τ = σ2/DS
0 [42, 142].

More values are presented in section A.2 in the appendix.

2.1.6 Numerical details

Equilibrium simulations

In our simulations, the systems have PBC in all three Cartesian dimensions in a
cubic box with Lx = Ly = Lz. The presented results have been obtained from
BD simulation runs with N = 864 particles in a constant volume V , so that the
number density ρ = N/V . The total simulation time is 130τ with the time step of
∆t = 10−4τ . The face-centered cubic (fcc) ordered COMs with directors pointing in
the (1, 1, 1) directions have been set as initial configuration. To ensure equilibrium
conditions results have only been obtained for t ≥ 50τ . All statistical correlations
have been calculated for 50τ < t < 100τ using every 100-th time step.

Non-equilibrium simulations

We simulate (N = 864) dumbbell particles subjected to Lees-Edwards [136] periodic
boundary conditions. The systems are initialised in a crystalline state and run for
100τ , at the frequencies f = 1τ−1, f = 3τ−1 and f = 5τ−1. The time step is set to
10−4τ , 5 · 10−5τ or 2.5 · 10−5τ depending on the strain amplitude which also sets
the maximum shear rate and, thus, the time scale of the shearing motion. The
box is shaped such that it supports the hexagonal layer structure. The simulations
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are run for 100τ and the trajectories are analysed after reaching the steady state,
earliest after 50τ of running time. The averages are calculated over 50 and 250

strain cycles in the steady state respectively. Figure 4.5 shows the parameters we
have investigated in oscillatory shear conditions and the states we have identified.
For a summary of the equilibrium state points under consideration the reader is
referred to fig. 4.1.

2.2 Simulation analysis

2.2.1 Spatial structure

Here, the measures to probe the spatial structure of the suspensions are summarised.
This includes spatial correlation functions as well as order parameters to quantify
orientational and translational order. In particular, the scattering intensities can
be compared directly to experimental results.

Pair correlation functions

Site-site radial distribution function The radial distribution function (RDF)
of the individual sites is defined as

gs(r) =
1

Nρ

〈∑
k

∑
l

δ (r− (rk − rl))

〉
, (2.29)

where the indices k and l run over all beads. This correlation function is connected
to collision rates in the Enskog theory, which is introduced in 2.2.2.

Expansion of the RDF The RDF, which describes spatial correlations of pairs
of particles, is connected to the structure factor S(q) via a Fourier transform, where
q is the magnitude of the wave vector. For a system of anisotropic particles the
pair correlation function may be expanded into spherical harmonics separating the
COM and orientational correlations. The expansion of the full RDF [143] yields
two partial correlation functions of particular interest: We calculate the radial
distribution function of the COMs

g(r) =
1

ρN

〈
N∑
i 6=j

δ (r−Rij)

〉
, (2.30)

and the orientational radial distribution function

gP2(r) =
1

ρNg(r)

〈
N∑
i 6=j

P2 (cos θij) δ (r−Rij)

〉
, (2.31)
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where Rij denotes the COM separation vector of the i-th and j-th particles, and
θij is the angle between the respective directors. The orientational distribution
function gP2(r) describes the spatial correlation of the particle directors with P2

denoting the second Legendre polynomial, it is therefore not able to distinguish
parallel and antiparallel configurations. The function gP2(r) equals 1 for parallel
aligned particles, −1

2
for perpendicular alignment and vanishes for uncorrelated

orientations.

Structure factors

The structure factor S(qx, qz) is evaluated in the plane qy = 0. This reciprocal plane
corresponds to a neutron experiment where the incident beam is parallel to the
gradient direction of the shear flow. We calculate the structure factor directly from
the COM coordinates as

S(qx, qz, 0) =

〈
N∑
i=1

e−ıq·Ri

〉
. (2.32)

Scattering intensity

In order to compare to experimental scattering results, we calculate the intensity
distribution for the simulated systems. The scattering intensity of the suspension
I(q) is the convolution of the COM structure and the distribution of scattering
centres within each particle. The scattering function depends on the exact shape,
composition and density of the colloidal particles in addition to the colloidal
structure and orientation. For simplicity reasons, our analysis is restricted to a
constant internal density of the dumbbell particles. If one additionally assumes a
flat distribution of orientations it is possible to separate the so called form factor
P (q) from the structure factor S(q). The scattering amplitude A(q;u) describes
the scattering of a single particle with orientation u and constant internal density
at the scattering vector q. Averaging the scattering amplitudes over all possible
orientations yields the form factor P (q). The total scattering intensity is calculated
as

I(q) =

〈∑
j,l

A(q;ul)A(q;uj)e
−ıq·(Rl−Rj)

〉
, (2.33)
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where the scattering amplitude of a homogeneous dumbbell tilted by the angle θ
with respect to the scattering vector q is given by [144]

A(q;u) = 4πR3

1∫
−L∗

dt cos (q cos θR [t+ L∗]) . (2.34)

The code used to calculate eq. (2.33) is listed in the appendix section A.4.

Orientation

In order to analyse the orientational behaviour of the particles, a measure of the
orientation respecting the geometry of the system given is used. The measure we
choose is closely related to the well-known nematic order parameter employed in
the literature. We plot the mean orientation with respect to the Cartesian axes,
which coincide with the velocity (x), shear gradient (y) and vorticity axes (z), as

〈Pα
2 〉cycle (t) = 〈P2(cos θα)〉cycle (t), (2.35)

where α are the coordinates x, y, z and θα(t) the corresponding instantaneous angles.
The average 〈. . . 〉cycle denotes sampling all time steps with the imposed strain state
γ(t).

COM order parameters

In this work, local bond order measures are used to probe the state of the system.
The ensemble average of the locally calculated structural values yields a viable
method to investigate the type and quality of the overall structure of the system.
The method may as well be used to investigate the distribution of nuclei or the
propagation of nucleation phenomena [78]. In order to distinguish crystalline
structures we use the local bond order analysis proposed by [145]. For each particle
i a vector ql(i) is defined by the components

qlm =
1

Nb(i)

Nb(i)∑
j=1

Ylm(R̂ij), (2.36)

where Ylm(R̂ij) are the spherical harmonics for the normalised separation vectors
R̂ij, and Nb(i) is the number of the i-th particle’s neighbours.

ql(i) =
4π

2l + 1

l∑
m=−l

|qlm(i)|2 , (2.37)
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wl(i) =

(
l∑

m=−l

|qlm(i)|2
)−3/2

(2.38)

×
∑(

l l l

m1 m2 m3

)
qlm1(i)qlm2(i)qlm3(i),

where the second sum runs over all −l ≤ mj ≤ l fulfilling m1 +m2 +m3 = 0.

We define the ensemble averaged order parameters as

〈Ql〉 =

〈
1

N

N∑
i=1

ql(i)

〉
, and (2.39)

〈Wl〉 =

〈
1

N

N∑
i=1

wl(i)

〉
, (2.40)

where the angle brackets 〈. . . 〉 denote the time average in the steady state. In this
work the COM order is monitored in terms of averaged local order parameters
Q4 and W4. These order parameters are sensitive to the configurations of the
neighbourhoods of solid-like particles. In particular, fcc and hexagonal close packed
(hcp) structures are separated by a change of the sign of W4.

2.2.2 Dynamical properties

In the following, the methods to investigate the dynamics of the systems are
described in a compact form.

Linear response theory

Dynamical properties of a system may be obtained from fluctuations in equilibrium,
i.e. the response to an external field can be determined in an unperturbed system.
These Green-Kubo type relations [146, 147], which result from a linearisation
of the Smoluchowski equation for a perturbed system, are valid for very small
perturbations of the equilibrium state on short time scales [123, 148]. In the
following, linear response theory is used to calculate dynamical properties of hard
dumbbell suspensions from BD simulation trajectories.

Translational diffusion

We calculate the translational diffusion in the linear response regime from Green-
Kubo-type of relations. In the limit of linear response, we thus obtain the long-time
COM self-diffusion coefficient DL

s from the time correlation functions in equilibrium
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from the integral of the velocity autocorrelation function (VACF) as

D(t) =

t∫
0

〈V(0) ·V(t′)〉 dt′, (2.41)

where V(t) is the instantaneous COM velocity. The long-time limit of this function
is the long-time self-diffusion coefficient

DL
s = lim

t→∞
D(t). (2.42)

We define the mean square displacements (MSDs) of the COM Wc(t), parallel
W‖(t) and perpendicular W⊥(t) with respect to the initial orientation u(0) as

Wc(t) =
1

N

〈
N∑
i=1

∆R2
i (t)

〉
, (2.43)

W‖(t) =
1

N

〈
N∑
i=1

∆R2
i,‖(t)

〉
, (2.44)

W⊥(t) =
1

N

〈
N∑
i=1

∆R2
i,⊥(t)

〉
. (2.45)

The displacements of the COM, the parallel and the perpendicular coordinates are
defined as

∆Ri(t) = Ri(t)−Ri(0), (2.46)

∆Ri,‖(t) = [ui(0) ·∆Ri(t)]ui(0) and (2.47)

∆Ri,⊥(t) = ∆Ri(t)−∆Ri,‖(t), (2.48)

respectively. With that, the time-dependent diffusion coefficients in the particle
reference frame are then given by

Dc(t) =
1

6t
W (t), (2.49)

D‖(t) =
1

2t
W‖(t), (2.50)

D⊥(t) =
1

4t
W⊥(t). (2.51)

The long-time limit of the self-diffusion coefficients for α ∈ {c, ‖,⊥} is obtained
from the MSD data as

DL
α = lim

t→∞
Dα(t). (2.52)
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Orientational relaxation

The linear response orientational relaxation is quantified in terms of the directional
autocorrelation function (DACF) defined as

Cu(t) = 〈u(0) · u(t)〉 = e−2Dr(t)t. (2.53)

We assume that the particle orientations become diffusive for long times with the
constant DL

r , therefore asymptotically the following relation holds [142]:

Cu(t) = e−2DLr t. (2.54)

Similarly [149], we define an effective decay time τr for the non-equilibrium
steady-state case

C1(t) = 〈u(0) · u(t)〉 = e−2 t
τr . (2.55)

Shear viscosity

In the limit of zero strain, we may obtain the dynamic viscosity of the suspension
from equilibrium fluctuations. In particular, we calculate the relative dynamic
viscosity difference from the off-diagonal stress autocorrelation function (SACF)

zαβ(t) =
1

V kBT
〈σαβ(0)σαβ(t)〉 , (2.56)

where the symmetric stress tensor is defined as

σαβ =
1

V

N∑
i=1

N∑
j>i

rijαFijβ, (2.57)

and α 6= β denote Cartesian components. From our BD simulations, the potential
part of the stress tensor is available, therefore (2.57) does not contain a momentum
part.

The steady shear viscosity difference is obtained from the integral of the SACF
as

η0 =

∞∫
0

zαβ(t)dt. (2.58)

Radial distribution function and Enskog collision rate

In a homogeneous and isotropic system the site-site RDF depends only on the
distance r = |r|. The Enskog collision rate for hard spheres with diameter σHS is
given by

ΓE = g(σ)Γ0, (2.59)
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where g(σ) is the contact value of the RDF and Γ0 is the collision frequency in the
dilute gas which is the ratio of the mean velocity and the free path in a suspension
of hard spheres. In the Enskog approximation, which neglects correlated collisions,
the self-diffusion coefficient is inversely proportional to the contact value of the
radial distribution function

DE =
3kBT

2mΓE
. (2.60)

2.3 Related experimental techniques

In this section a number of experimental methods are discussed, which are relevant to
the systems under consideration in this work and have been employed by co-workers.

2.3.1 Light scattering and particle mobility

In a dilute system of colloidal particles, light scattering methods may be used to
determine the single-particle mobility, and, with the use of a hydrodynamic model,
the shape of the particle [150, 151]. The intensity autocorrelation function (ACF) of
light scattered by a volume containing a dilute suspension of Brownian particles can
be related to the mean square displacement of the centres of masses and appropriate
axes of rotation. As the intensity ACF is proportional to the density ACF and
the Smoluchowski theory is applicable to the dilute system, we can connect the
observable to the microscopic density. This is expressed in the Siegert relation

gI(q, t) = 1 + |gE(q, t)|2 , (2.61)

where q represents the scattering vector, t the time lag, gI and gE are the normalised
intensity and electric field ACFs, respectively. The electric field ACF is proportional
to an exponential with a polynomial of the characteristic times of the translational
and orientational motion as argument. In dynamic light scattering experiments
the information that is available from the intensity correlation function depends on
the specific scattering geometry, which can be dynamic light scattering (DLS) or
depolarised dynamic light scattering (DDLS).

For linear molecules the intensity ACF of parallel-polarised light in the vertical
(vv) geometry is proportional to

gvvI (q, t) ∝
{
α2 +

4

45
β2e−6Drt

}
e−q

2D0t, (2.62)
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and the correlation function for the perpendicularly polarised scattering in the
vertical-horizontal (vh) geometry reads

gvhI (q, t) ∝ β2e−6Drte−q
2D0t, (2.63)

where α and β are the mean polarisability and the polarisability difference regarding
the parallel and arbitrary perpendicular axes of the linear particle.

If a hydrodynamic model of the particle is available as well, the decay times
of the intensity correlation functions can be related to the mobility matrix of this
model. In section 2.1.5 the employed model for the calculation of the mobility
matrix is described. The exact morphology of the colloidal particles is important
with respect to our modelling in BD simulations and the determination of the
equilibrium states of the experimental samples. The latter are the effective volume
fraction φeff and elongation of the particles depicted in fig. 2.4. Figure 2.4a shows
the fraction of crystallised sample upon crossing the coexistence region or L∗ = 0.3.
The boundaries of this region are plotted in fig. 2.4b for the elongations L∗ = 0.24

and 0.3 along with the prediction [77] of the phase diagram. This comparison to the
prediction of the phase diagram by Monte Carlo (MC) simulations [77] shows that
the coexistence region (fluid/plastic crystal (PC)) shrinks on increasing elongation
and the phase boundaries of the experimental systems at L∗ = 0.24 and 0.3 fit very
well to the prediction (see fig. 2.4).

2.3.2 Small-angle neutron scattering

Small-angle neutron scattering (SANS) may be used as a tool to investigate the
structure of a sample under a great number of conditions. Since neutrons, which
have very short wavelengths, are scattered at the atomic nuclei, colloidal suspensions
are basically transparent, such that multiple scattering occurs rarely and dense
systems can be investigated. In particular rheo-SANS set-ups allow to observe
systems under shear conditions [53]. In these experiments the neutron beam goes
through the shear cell in certain directions to learn about the structure of the sample.
The shear flow breaks the isotropy of the system, such that three directions are
important. These are the velocity (x), the velocity gradient (y) and the vorticity (z)
directions in the case of simple shear (cf. section 2.1.3). There are certain geometries
in rheo-SANS experiments, which coincide with the observation of prominent planes
of the shear flow. For the radial geometry depicted in fig. 2.5, the neutron beam
is aligned with the velocity gradient of the flow, such that scattering from the
velocity-vorticity plane may be observed. In the tangential geometry, the incident
beam is parallel to the velocity.
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Figure 2.4: Phase equilibrium (a) of hard dumbbells at L∗ ≈ 0.3 from crystallisa-
tion experiments. The experimental coexistence points (b) (denoted by blue squares
(�)) is compared with the prediction of MC simulations (solid black line (•) [77])
for L∗ = 0.24 and L∗ = 0.30 [119]. Adapted with permission from N. Heptner,
F. Chu, Y. Lu, P. Lindner, M. Ballauff, and J. Dzubiella, Phys. Rev. E 92, 052311
(2015) [122]. Copyright c© 2015, American Physical Society.

The scattering data gathered by experimentalists may be compared to our
analysis of the simulation trajectories, which allow to compute the scattering
intensity S(q) distributions according to eq. (2.33). The intensity distribution
yields information on the translational and orientational structure of the probed
system. This depends on the scattering geometry and the state of the probe. In
crystalline samples it is strongly dependent on the orientation of the crystal with
respect to the incident beam.

http://dx.doi.org/10.1103/PhysRevE.92.052311
http://dx.doi.org/10.1103/PhysRevE.92.052311
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Figure 2.5: Set-up of the rheo-SANS experiment: (a) The beam is aligned with
the gradient (y) direction of the flow cell, where the suspension is sheared at a fixed
frequency f and strain amplitude γmax. The detector records scattering for a fixed
time per strain amplitude in the velocity-vorticity (x− z) plane. (b) The velocity
gradient is along the radial and the velocity is parallel to the tangential direction of
the shear geometry.

2.3.3 Rheology

The response of a system to mechanical perturbations is subject of the field of
rheology [152]. It deals with phenomena related to fluid and solid systems and
states that are not fully captured in these terms. A major part is the construction of
constitutive equations, which can be used in continuum mechanics to model media.
The archetypical models are the viscous fluid and the linear elastic body. While in
viscous case the energy of the flow dissipates into internal degrees of freedom, the
ideal elastic body stores the energy analogue to Hooke’s spring. In both ideal cases,
the respective relevant material constants, viscosity and elasticity, are independent
of the flow velocity or the magnitude of the imposed strain. Viscoelasticity is a
more realistic model for many systems, which includes a combination of viscous and
elastic properties. There are, though, many systems which cannot be fully described
by any constitutive model, which are typically restricted to certain parameter ranges
and have preconditions on the properties of the medium. In particular, this is true
for systems with a complex microstructure, which certainly includes colloids.

The typical measures are the complex elastic and viscous, or equivalently, the
storage and loss moduli G′ and G′′. Simply speaking, the modulus G′ characterises
the elastic response, and the G′′ quantifies the viscous response. This physical
analogy does not hold in the non-linear regime, so one should be careful using these
terms beyond the linear viscoelastic regime. In the oscillatory shear experiment at
fixed frequency f and variable strain amplitude γmax, these quantities can depend
on the strain amplitude. In an experimental set-up the inner or outer cup of a
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shear cell (cf. fig. 2.5a) are rotated and the stress response to the flow imposed on
the system is measured. The restoring force on one of the surfaces is measured to
determine the stress. In the oscillatory strain experiment at a fixed frequency f
the relation [152, 153] of the stress σxy(t) to the imposed strain amplitude can be
written as

σxy(t) = γmax {G′(γmax) sin(2πft) +G′′(γmax) cos(2πft)} (2.64)

The viscoelastic response measured on plastic crystalline dumbbells with L∗ = 0.3

at the volume fraction φ = 0.6 is depicted in fig. 2.6. At rest, the elastic modulus
G′ exceeds the viscous modulus of the crystalline suspension by far, so one could
characterise the system as solid-like. At high strain amplitudes the viscous modulus
G′′ dominates the system.

As displayed in Figure 2.6a, data from oscillatory rheology indicate kinetic
differences as the rheology of the L∗ = 0.24-system (cf. fig. 1.8) is retained by either
the frequency or the number of shear cycles per point. The yielding behaviour
displayed in Figure 2.6a shows that hard dumbbells with L∗ ≈ 0.30 in the plastic
crystalline phase have one yielding event at f = 1 Hz but two yielding events at
f = 5 Hz. Compared with the oscillatory shear with f = 1 Hz, the number of
applied shear cycles is increased by five times within the same measurement time
for the oscillatory shear with f = 5 Hz.

Based on these three sets of experiments, it can be concluded that hard dumbbells
with L∗ ≈ 0.30 in the plastic crystalline phase show the same double yielding
behaviour as the hard dumbbells with L∗ ≈ 0.24, but the former needs more or
faster oscillations. As discussed in fig. 2.4a, the hard dumbbells with L∗ ≈ 0.30 is
closer to the glassy state than that with L∗ ≈ 0.24 at the same volume fraction of 0.6.
Due to the slowdown of the dynamics in the vicinity of the glass transition, stronger
and longer oscillations are required to induce the same structural evolution as that
with L∗ ≈ 0.24. It is interesting to mention that the double yielding events are
observed as well in the oscillatory shear field with f = 1 Hz when the measurement
time is extended by five times as shown in Figure 2.6b.



2.3. Related experimental techniques 35

10−2

10−1

100

101

G
′ ,
G
′′

[P
a]

G′, f = 5 Hz
G′′

G′, f = 1 Hz
G′′

10−3 10−2 10−1 100 101
10−2

10−1

100

101

γmax

G
′ ,
G
′′

[P
a]

G′, f = 1 Hz, 500 s
G′′

(a)

(b)

Figure 2.6: (a) Experimental dependence of G′ and G′′ on increasing γmax for hard
dumbbells with L∗ ≈ 0.30 in the plastic crystal phase under oscillatory shear at
f = 1 Hz (◦•) and f = 5 Hz (��). This measurement is performed with the default
setting (100 s/point). (b) Shear moduli versus strain amplitude γmax for the same
system phase that is measured under oscillatory shear of f = 1 Hz with 500 s/point

(◦•). The filled symbols denote G′, while open symbols represent G′′ [119]. Adapted
with permission from N. Heptner, F. Chu, Y. Lu, P. Lindner, M. Ballauff, and
J. Dzubiella, Phys. Rev. E 92, 052311 (2015) [122]. Copyright c© 2015, American
Physical Society.

http://dx.doi.org/10.1103/PhysRevE.92.052311




Chapter 3

Equilibrium structure and transport

properties

In this section we investigate the relation of the equilibrium structure to dynamical
properties. The transport properties are calculated in the equilibrium limit in order
to understand the influence of the moderate anisotropy of the dumbbell particles on
these dynamic properties and their relation to the structure of the system. We first
consider spatial correlations, then turn to translational and rotational relaxation
properties and finally explore the zero shear limit of the viscosity.

3.1 Spatial structure

The centre of mass (COM) radial distribution functions (RDFs) of dumbbell suspen-
sions at the volume fraction φ = 0.60 are displayed for various elongations in fig. 3.1.
The signature of the phase transition from plastic crystal (PC) to fluid (F) may be
readily observed here. At state points with L∗ . 0.3 the system is in the PC phase,
cf. fig. 1.4, where the COM positions are frozen in a crystal lattice and the directors
do not show any long-distance correlations. Hence, the corresponding RDFs show
strong correlations and long-ranged oscillations. They vanish at L∗ = 0.39, where
the system is in the isotropic fluid phase.

Figure 3.1b shows the COM RDFs g(r) at the fixed colloidal packing fraction
φ = 0.44, where all shown curves are in the F phase. With increasing elongation,
the extrema get less pronounced and are shifted to greater distances due to the
larger effective particle sizes.

The orientational pair correlation functions (PCFs) gP2 at the volume fractions
φ = 0.60 and φ = 0.44 are depicted in fig. 3.2 and its inset, respectively, for

37
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Figure 3.1: (a) The radial distribution function g(r) for the dumbbell centre-of-
mass at a volume fraction φ = 0.60: black, blue, grey and yellow, are in the PC,
and red in the F phases, respectively. (b) The same for a packing fraction φ = 0.44,
where all systems are in the F phase. Adapted with permission from N. Heptner,
and J. Dzubiella, Mol. Phys. 113, 2523–2530 (2015) [154]. Copyright c© 2015,
Taylor & Francis.

various representative elongations. As expected, the orientational correlation in
space is essentially flat for suspensions of nearly spherical particles (L∗ = 0.02) at
all volume fractions. At roughly r/σ ' 1, the gP2 for non-zero elongations show
maxima indicating a strong correlation of nearest neighbours at contact. This first
correlation peak moves slightly away from r = σ as the elongation increases.

At the first maxima, the functions are positive, representing a preferably parallel
orientation of dumbbell particles at close contact. For a bit larger distances,
r/σ ' 1.1−1.3, negative dips indicating orientational anti-correlations are observed
which tend to higher distances as the elongation is increased. These preferential

http://dx.doi.org/10.1080/00268976.2015.1022609
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orientations are depicted in exemplary snapshots in fig. 3.3. Hence, in the F phase
at φ = 0.60, there are non-vanishing next-neighbour correlations which grow with
elongation.

-0.1

0

0.1

0.2

1 2 3
r/σ

g P
2
(r

)

(a)

-0.1

0

0.1

0.2

1 2 3

(b)L∗
0.02
0.10
0.19
0.29
0.39

Figure 3.2: Orientational pair correlation function gP2(r) at a volume fraction
φ = 0.60: the black, blue, and purple curves present data for the systems in the PC
phase and red in the F phase, respectively. Inset: The same for a packing fraction
φ = 0.44 where all systems are in the F phase. Adapted with permission from
N. Heptner, and J. Dzubiella, Mol. Phys. 113, 2523–2530 (2015) [154]. Copyright
c© 2015, Taylor & Francis.

With further increasing aspect ratio, the orientational correlation becomes
non-zero over a higher distance as the system crosses to the dense fluid phase at
φ = 0.44. Here, we observe a new correlation peak at in the dense fluid state for
L∗ = 0.39 close to r/σ ' 1.8 and 2.8, indicating growing second and third neighbour
correlations. Thus, in the fluid phase the correlations are longer ranged due to the
higher disorder and collisions when compared to the PC phase.

(a) (b)

Figure 3.3: Snapshots of L∗ = 0.39 dumbbells at φ = 0.6 in close contact in nearly
parallel configuration (a) and perpendicular configuration (b).

http://dx.doi.org/10.1080/00268976.2015.1022609
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3.2 Translational diffusion

3.2.1 Time-dependent diffusion coefficient
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Figure 3.4: Time-dependent diffusion coefficient D(t)/D0 from the velocity auto-
correlation function (VACF) at (a) L∗ = 0.19 and (b) L∗ = 0.39 for different packing
fractions. The dashed line in (b) is at state point φ = 0.44, L∗ = 0.02 for a direct
comparison. Adapted with permission from N. Heptner, and J. Dzubiella, Mol.
Phys. 113, 2523–2530 (2015) [154]. Copyright c© 2015, Taylor & Francis.

Figure 3.4a and b show the time-dependent COM diffusion coefficients D(t) at
constant elongation L∗ = 0.19 and L∗ = 0.39 for different colloidal volume fractions,
respectively. At early times (t . 10−4), before the particles feel the interacting
neighbours in a non-dilute suspension, the diffusion coefficients are close to the
short-time limits of a single, free particle. Within times t . 10−2τ , a continuous
transition to long-time diffusion starts which is reached at about the Brownian
time scale τ . With increasing volume fraction φ, the cross-over from short-time

http://dx.doi.org/10.1080/00268976.2015.1022609
http://dx.doi.org/10.1080/00268976.2015.1022609
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to long-time behaviour sets in earlier and is steeper. At the elongation L∗ = 0.19

the systems with packing fractions φ = 0.54 and φ = 0.60 are in the PC phase.
Due to the translational constraints in the crystal, the diffusion vanishes at about
a tenth of a Brownian time. The comparison of the diffusion between L∗ = 0.19

and L∗ = 0.39 at φ = 0.44 in the dense fluid in panel (a) demonstrates that the
influence of the aspect ratio is very small in the range of focus of this study. Since
all the shown curves for the elongation L∗ = 0.39 are in the F phase (panel (b)),
the diffusion coefficients are not vanishing for all volume fractions.
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Figure 3.5: Long-time self-diffusion coefficients DL
s obtained from the VACFs via

relation (eq. (2.41)). Adapted with permission from N. Heptner, and J. Dzubiella,
Mol. Phys. 113, 2523–2530 (2015) [154]. Copyright c© 2015, Taylor & Francis.

In fig. 3.5 the values of the long-time COM self-diffusion coefficients DL
s are

presented for various elongations and packing fractions. As expected, the diffusion
is significantly decreased for larger packer fractions, as known for the spherical
reference case. Surprisingly, the dependence of the diffusion on elongation is weak
and we find that this is the case for both parallel and perpendicular long-time
diffusion as well (cf. fig. 3.6). Apparently, the anisotropy is not large enough
to substantially change the long-time (single colloid) friction in these systems.
Furthermore, the data shows a discontinuous transition to vanishing diffusion at
elongations where the transition to the PC phase takes place, see the curves for the
large packing fractions φ ≥ 0.54.

http://dx.doi.org/10.1080/00268976.2015.1022609
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Figure 3.6: Parallel DL
‖ (a) and perpendicular DL

⊥ (b) long-time diffusion coeffi-
cients obtained according to eq. (2.52) at exemplary volume fractions in the fluid
(φ = 0.22), very dense fluid (φ = 0.44) and PC (φ = 0.60).

3.3 Rotational relaxation and diffusion

Figure 3.7 shows the rotational diffusion coefficients obtained from exponential fits
to the directional autocorrelation functions (DACFs). At small elongations L∗ . 0.2

the rotational diffusion is almost constant with respect to volume fraction, albeit
the system crosses from the F to the PC phase at high fractions. Hence, for these
small elongations the particles indeed rotate almost freely in the PC phase. The
obvious statistical outliers in the rotational diffusion data for small packing fractions
φ . 0.3 are within the statistical error of ±5%, estimated from block averages over
independent trajectories of length of 10τ . However, suspensions of dumbbells with
L∗ = 0.29 show a notable drop of the rotational diffusion coefficients for densities
higher than φ = 0.5 and packing effects clearly influence the rotation correlations
in the PC phase. On increasing the elongation further, now a clear non-linear
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density-dependence of the rotational relaxation emerges which becomes obvious for
L∗ = 0.39 for packings larger than φ & 0.3. Here, the system is in the fluid phase
only and the closer contacts in the disordered systems alter the rotational dynamics
substantially. At the highest investigated packing fraction (φ = 0.60) the rotational
diffusion drops down by more than 30 %.
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Figure 3.7: Dependence of rotational diffusion coefficients DL
r at various elonga-

tions from exponential fits to DACF on volume fraction φ. The statistical error of
the data is estimated from the variation of the variation of exemplary identical sys-
tems to be about 5 %. Adapted with permission from N. Heptner, and J. Dzubiella,
Mol. Phys. 113, 2523–2530 (2015) [154]. Copyright c© 2015, Taylor & Francis.

3.4 Shear viscosity

Figure 3.8 shows the stress autocorrelation functions (SACFs) at various aspect
ratios L∗. For the smaller packing fractions φ < 0.5, the correlation functions decay
slower for higher densities while the elongation dependence is rather weak. However,
at the volume fraction φ = 0.60 the system is in the PC phase for the shown
elongations, except for L∗ = 0.39. Here an interesting behaviour can be observed:
at L∗ = 0.02 the SACF decays more rapidly in the PC state point than in the fluid
states. However, for the next two larger elongations L∗ = 0.19 and L∗ = 0.29, the
SACF decays slower and develops a new slow time scale for times about 10−1τ in
the PC phase. This must be assigned to slow stress relaxations in the dense crystal
phase likely stemming from more pronounced translational-rotational couplings [73],
since they are absent for the small elongations at the same density. This long-time
tail occurring in the PC phase seems to diminish when crossing into the F phase by

http://dx.doi.org/10.1080/00268976.2015.1022609
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increasing the aspect ratio to L∗ = 0.39.
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Figure 3.8: SACFs at different elongations (increasing from top left to bottom
right panels) and volume fractions each. Notably, the nearly spherical system shows
a rapid decay in the PC phase. Adapted with permission from N. Heptner, and
J. Dzubiella, Mol. Phys. 113, 2523–2530 (2015) [154]. Copyright c© 2015, Taylor
& Francis.

Figure 3.9a shows the packing fraction dependence of the relative steady shear
viscosity ηr0 = η0/ηs for different elongations L∗, with ηs being the viscosity of the
suspending medium. These data are obtained from integration of the SACFs in
fig. 3.8. As an important comparison, also the hard sphere (HS) reference data
following the empirical Krieger-Dougherty relation [130, 133] for the purely fluid
phase is shown. As we readily see, there is a difference of the viscosity for a fluid of
HSs when compared to our minimal elongation data (at L∗ = 0.02). This can be
understood as a result of the sensitivity of viscosities to the softness of the chosen
pair potential for repulsive spheres [131]. In the present case, the L∗ = 0.02 system
with minute anisotropy can be considered equal to the purely spherical system. At
higher packing the HS system is in the crystal phase and the linear shear response
drops to zero (and not accounted for in the fluid-state Krieger-Dougherty approach).
The shear viscosity of dumbbells is similar to the HS system in the fluid phase below
packings of φ . 0.45 but deviates strongly for larger packings for all elongations

http://dx.doi.org/10.1080/00268976.2015.1022609
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where the dumbbell shear response substantially increases with L∗. We explain the
increase by the long time tails in the SACFs in fig. 3.8 due to the relaxation of the
rotational degrees of freedom missing in the HS case. The large increase of the
shear response is somewhat unexpected since the translational degrees of freedom
are still frozen, except for the largest elongation L∗ = 0.39 for which all shown data
are in the fluid phase. We note that the error bars of this data are hard to estimate
due to the long-time tails in the SACFs. While we believe from the systematic
behaviour of the data that the trends are reliable, small fluctuations of the data as
for φ = 0.44 are very probable within the statistical uncertainty.
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Figure 3.9: Steady shear relative viscosity difference ηr0 (a) as a function of the
volume fraction φ and (b) versus elongation L∗ at high densities. The HS line (−)
refers to the phenomenological Krieger-Dougherty theory [130, 133]. Adapted with
permission from N. Heptner, and J. Dzubiella, Mol. Phys. 113, 2523–2530 (2015)
[154]. Copyright c© 2015, Taylor & Francis.

Figure 3.9b shows the dependence of the relative steady shear viscosity on the
elongation at the high packing fractions φ ≥ 0.39. This view reveals a transition

http://dx.doi.org/10.1080/00268976.2015.1022609
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from the hard spherical case of almost vanishing viscosity to a finite level at about a
critical elongation of about L∗ = 0.15. This is most evident at the highest packing
fraction where the transition is relatively steep. (The fluctuations of the data
between L∗ = 0.2 and 0.3 is most certainly due to the statistical uncertainty.)
Hence, it may be inferred from the equilibrium linear response data that a small
deviation from the spherical shape already to an aspect ratio of L∗ & 0.15 induces
a dramatic collective response that manifests itself in a large increase of the linear
response shear viscosity.

3.5 Summary

In summary, we have investigated the equilibrium structure and fluctuations of
colloidal dumbbells by means of Brownian Dynamics computer simulations. We
focused on high packing fractions and on the weak elongation regime (L∗ < 0.4)
where the dumbbells are predominantly in the plastic crystal phase. Our system-
atic investigation revealed the expected structural changes with larger elongation
with respect to the hard sphere reference case and very localised orientational
correlations, typically just involving next-neighbour correlations. These relatively
weak correlations are also reflected in only minor changes in the translational and
rotational diffusion coefficients for most of the investigated elongations, except
for the highest elongation in the fluid phase where the rotational diffusion drops
by ca. 30 % when compared to the free rotation. However, the linear response
shear viscosity exhibits a dramatic increase even in the plastic crystal phase at
high packing fractions (φ & 0.5) beyond a critical elongation of about L∗ = 0.15.
This result is surprising in view of the relatively weak effects of elongation found
before. Here one should rationalise that the linear response shear viscosity expresses
collective relaxation time scales and not (more local) single molecule dynamic prop-
erties. Apparently beyond a critical, surprisingly small anisotropy, newly occurring
rotational-translational couplings must be made responsible for the slow time scales
appearing at higher elongations in the crystal [73]. Hence, more detailed calculations
and modelling of these rotational-translational correlations in weakly anisotropic
model systems shall be interesting for future studies, in particular beyond linear
response where probably more substantial dynamical effects of increased anisotropy
may occur [115].



Chapter 4

Hard dumbbells under oscillatory

shear

In this section we turn to the structure of hard dumbbells under shear conditions.
While the work on linear response dynamical properties is restricted to vanishing
external fields, the following research is explicitly focused on the effect of oscillatory
shear on the structure of dumbbell suspensions. The external driving is beyond
the linear limit, where the systems exhibit steady non-equilibrium states. Here we
restrict our interest to dumbbell suspensions in the plastic crystal (PC) equilibrium
phase at high densities and elongations below L∗ ≤ 0.4. For the readers’ orientation,
the investigated state points in the volume fraction φ and elongation L∗ are indicated
in fig. 4.1.

Let us start with some striking experimental observations for dumbbells with
L∗ = 0.24. First, from the rheo-small-angle neutron scattering (SANS) we learn
about the structure of the samples at the specific imposed strain amplitudes. This
is compared to the scattering intensities I(q) calculated according to eq. (2.33)
from the non-equilibrium Brownian dynamics (NEBD) trajectories in fig. 4.2. Here,
the row (a) depicts intensity patterns in the velocity-vorticity (x − z) plane and
the column (b) shows the corresponding patterns obtained in the rheo-SANS
experiment in the states I, II and III [115, 119]. These states are defined by
their respective structural properties and the transitions between these states
have a vigorous impact on the non-linear rheology (cf. figs. 1.8 and 2.6). The
rheological experiments have been conducted under sinusoidal oscillatory shear with
increasing amplitudes [115, 119] and scattering data has been recorded at each
imposed amplitude (cf. section 2.3.2). This structural transition is accompanied by
a two-step yielding event upon increasing strain amplitudes in the large amplitude
oscillatory shear experiment (cf. figs. 1.8 and 2.6), which motivates this investigation
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Figure 4.1: Hard dumbbell phase diagram in the volume fraction φ to aspect
ratio L∗ plane [77]. The state points for dumbbells A (φ = 0.60, L∗ = 0.24), B
(φ = 0.60, L∗ = 0.29), and C (φ = 0.60, L∗ = 0.1), considered in this work are
marked by symbols (red squares). The blue symbol (state point S) depicts an almost
hard-sphere-like reference system (φ = 0.60, L∗ = 0.02). For better orientation,
the freezing, melting and close packed packing densities of the hard sphere (HS)
system are indicated at the vertical axis. Adapted with permission from N. Heptner,
F. Chu, Y. Lu, P. Lindner, M. Ballauff, and J. Dzubiella, Phys. Rev. E 92, 052311
(2015) [122]. Copyright c© 2015, American Physical Society.

of the structural origins. The colloidal nitrogen system (L∗ ≈ 0.3, state point B)
shows the same states on increasing strain amplitude as system A, both in the
present simulations and the rheo-SANS experiments (fig. 2.6). The main difference
is that the longer dumbbells needs larger Péclet numbers Per to induce the same
non-equilibrium phase as compared with hard dumbbells with L∗ ≈ 0.24. Thus, the
data from oscillatory rheology indicate kinetic differences, because the rheology of
the system A is retained by either the frequency or the number of shear cycles per
point.

Our NEBD simulations are conducted using the same protocol, with concessions
for feasibility in the computational time. On the one hand, we neglect hydrodynamic
interactions, which is justified in the range of our external driving. On the other
hand, we accept differences in the time scales due to this neglect. It should be noted
that the simulations are carried out at a higher shear frequency. In the steady state,
though, these differences should not be dominant, such that our simulations may
reasonably be compared to these experiments.

http://dx.doi.org/10.1103/PhysRevE.92.052311
http://dx.doi.org/10.1103/PhysRevE.92.052311
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Figure 4.2: Scattering intensity patterns of states I, II and III from a) NEBD
simulations at f = 5/τ and b) rheo-SANS experiments at f = 1 Hz for system A.
Experimental data replotted from references [115, 119]. The exemplary intensity
distributions have been chosen at the strain amplitudes γmax = 0.15, γmax = 0.5

(I); γmax = 0.2, γmax = 0.6 (II) and γmax = 0.3, γmax = 1.16 (III) in simulations
and experiments respectively. Adapted with permission from F. Chu, N. Heptner,
Y. Lu, M. Siebenbürger, P. Lindner, J. Dzubiella, and M. Ballauff, Langmuir 31,
5992–6000 (2015) [115]. Copyright c© 2015, American Physical Society.
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4.1 Structure upon increasing shear strains

We start with the discussion of simulated scattering intensities for selected state
points. In fig. 4.3 the scattering intensities I(q) including the scattering amplitude
calculated as defined in equations eq. (2.33) and eq. (2.34) are shown in the velocity-
vorticity plane. The data corresponds to state point B, cf. fig. 4.1, at a frequency
of 5τ−1 for selected strains. A common feature of the intensity plots is the fact that
the maxima are located on rings of constant magnitude of the scattering vector.
The intensity plots illustrate the transition from the low strain twinned crystal
state (I) to the high strain sliding layer state (III), corroborating with above results
on a smaller aspect ratio [115]. In the fully ordered states, the systems tend to
form two-dimensional hexagonal close packed (hcp) layers in the velocity-vorticity
(x− z) plane, which is indicated by the hexagonal symmetry of the peaks in the
intensity patterns. These planes are the most densely packed crystallographic
planes for face-centered cubic (fcc) and hcp crystal structures and their stacking
sequence determines the crystallographic type. In the experiments, the systems
are polycrystalline at rest and the crystallites are oriented due to the shear at an
amplitude of about γmax ≈ 0.2 [115, 119].

At low strain amplitudes (fig. 4.3a,b) a shear-twinned fcc crystal is stable, which
has a densely packed direction perpendicular to the velocity direction, while at high
strains (fig. 4.3d-f) a dense direction parallel to the velocity is favourable. Similar
transitions had been observed in spherical systems [100, 102, 103]. However, slightly
anisotropic dumbbells introduce an additional orientational degree of freedom, and,
although weak, it leads to a more abrupt transition compared to the spherical
case [115]. In equilibrium terms it could be said that the mild anisotropy qualitatively
change the transition from being continuous to discontinuous. This phenomenon is
already present in the series of scattering intensities, as we observe a fully molten
intermediate state, cf. fig. 4.3c. In contrast, for the hard spherical reference case,
we always detect order in form of crystalline hybrids exemplary depicted in fig. 4.8c.
At a strain amplitude about γmax ≈ 0.2 the system does not show long-range
correlation and is nearly isotropic (fig. 4.3c). Close to this transition an anisotropy
at very small scattering vectors can be observed in the reciprocal velocity-vorticity
plane. Above this isotropic state II, hexagonal layers are formed (state III), which
are oriented with their densest direction along the velocity direction. This is clearly
indicated by a 30 ◦ tilt of the scattering pattern compared to the state I. From
comparison to the idealised picture given by Loose and Ackerson [103] and from
the reasoning concerning the volume fractions given by Ackerson [111] one learns
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Figure 4.3: Scattering intensities I(q) (250 cycles averaged) in the qy = 0 plane
of sheared dumbbell suspensions (L∗ = 0.29, φ = 0.60, state point B) at frequency
f = 5τ−1. From top left to bottom right: increasing strain amplitude γmax. Adapted
with permission from N. Heptner, F. Chu, Y. Lu, P. Lindner, M. Ballauff, and
J. Dzubiella, Phys. Rev. E 92, 052311 (2015) [122]. Copyright c© 2015, American
Physical Society.

that the centre of mass (COM) motion of the dumbbells follow strongly registered
zig-zag trajectories while maintaining two-dimensional hexagonal in-plane order.
In the literature, two different modes of motion allowing to sustain ordered layers
at high strain amplitudes have been identified [102, 103]. The straight sliding of
neighbouring layers past each other has been linked to vanishing inner peaks [103]
on the vorticity axis (qxσ = 0), which clearly is not the case for systems A and B
(cf. fig. 4.2III and fig. 4.3d-f).

In the following, we quantify the particles’ orientational and translational
structure under the action of shear quantified by order parameters. Figure 4.4
summarises the structural information in terms of averaged order parameters for
state points A and B, cf. fig. 4.1, at a frequency of 5τ−1. Figure 4.4a shows that
the average 〈P x

2 〉, quantifying the average dumbbell orientation along the flow

http://dx.doi.org/10.1103/PhysRevE.92.052311
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Figure 4.4: Order parameters for state points at f = 5τ−1. (a) Averaged ori-
entational order parameter in flow direction 〈P x

2 〉, and (b) translational order
characterised by 〈Q4〉 (filled symbols) and 〈W4〉 (open squares). Adapted with per-
mission from N. Heptner, F. Chu, Y. Lu, P. Lindner, M. Ballauff, and J. Dzubiella,
Phys. Rev. E 92, 052311 (2015) [122]. Copyright c© 2015, American Physical
Society.

direction, is slightly increasing with strain for both aspect ratios in the fcc state
until it drops to zero in the disordered state and is non-zero again in the high-strain
regime. In fig. 4.4b the translational order, described by 〈Q4〉, is shown for the
dumbbells compared to the nearly hard sphere reference case (S). The behaviour at
the transition shows clearly that the orientational and translational order changes
abruptly in a discontinuous fashion for dumbbells, while, in contrast, the transition

http://dx.doi.org/10.1103/PhysRevE.92.052311


4.1. Structure upon increasing shear strains 53

in suspension of hard spheres has a continuous character. This behaviour is retained
for dumbbells with a slender elongation of L∗ = 0.10 (system C), which show an
ordered state at all investigated strain amplitudes. The average 〈P x

2 〉 for state
point C shows a slight increase at low strain amplitudes as well approaching a
plateau value of about 0.02 in a continuous fashion beyond γmax & 0.3. This
corresponds well to our previous finding (cf. section 3.4) that long-time stress
correlations become important for dumbbells above approximately L∗ = 0.15 [154].
Additionally, the negative 〈W4〉 in state I indicates fcc dominated structure, in
state III this parameter vanishes on average indicating loss of fcc order.
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Figure 4.5: Out-of-equilibrium states [I: twinned fcc (blue triangles), II: disordered
(red circles), III: sliding layers (green squares)] observed in the frequency-strain
(fτ -γmax) plane of the parameter space in our NEBD simulations at state point A, cf.
fig. 4.1. The dashed lines are tentative boundaries of the respective non-equilibrium
states. Adapted with permission from N. Heptner, F. Chu, Y. Lu, P. Lindner,
M. Ballauff, and J. Dzubiella, Phys. Rev. E 92, 052311 (2015) [122]. Copyright
c© 2015, American Physical Society.

Moreover, the steady states depend on the shear frequency, which is summarised
in fig. 4.5. Here, we show the strain amplitude γmax and frequency f state diagram
for state point A. In our simulations, state III does not appear at f = 1/τ whereas
state I is stable up to γmax ≈ 0.30. For higher frequencies f = 3/τ and f = 5/τ

we observe the ordered state III above an amplitude of approximately 0.3, moving
slightly to lower strains on increasing frequencies, which is sketched by the dashed
lines in fig. 4.5. In the NEBD simulations at constant frequency (f = 5τ−1) (fig. 4.4)

http://dx.doi.org/10.1103/PhysRevE.92.052311
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we observe the transition for systems A and B at nearly the same strain amplitude,
while for both cases this transition clearly occurs at lower amplitudes.

4.1.1 Twinned-fcc regime (I)

Let us characterise the respective non-equilibrium states in more detail. At low
strain amplitudes a shear-twinned fcc dominated structure is observed in the steady
state. Figure 4.6 shows a series of snapshots taken at distinctive points in the strain
cycle at which the instantaneous strain is minimal (γ(t) = −γmax), zero (γ(t) = 0)
or maximal respectively.

x

y

(a) maximum (b) zero (c) minimum

Figure 4.6: Simulation snapshots at prominent points in the shear cycle for
γmax = 0.3, f = 1τ−1 for state point A in the twinned fcc state I at (a) maximum,
(b) zero, and (c) minimum instantaneous strain in the shear cycle. The particle
radii are scaled by 1/2. The insets show the models for the x−z-plane developed by
[100, 102]. Adapted with permission from N. Heptner, F. Chu, Y. Lu, P. Lindner,
M. Ballauff, and J. Dzubiella, Phys. Rev. E 92, 052311 (2015) [122]. Copyright
c© 2015, American Physical Society.

In this state, particles may follow the oscillatory flow and transfer between the
triangular voids offered by neighbouring layers. These void spaces are accessible in
the vicinity of the extrema of the strain cycle (cf.fig. 4.6a and c), in between the
particles are forced to pass particles of adjacent layers closely, which is referred to
as bridge-stacking (cf. fig. 4.6b). This behaviour finds expression in the transient
orientation which is subtly coupled to the strain cycle through particle interaction.
At these low strain amplitudes, γmax < 0.1, the orientation shows a interplay between
the velocity and the vorticity axes while the amplitude in both is very small. This
is exemplified in fig. 4.7a, where we show the time-resolved orientation in one shear
cycle. In approaching the transition to the high strain state, 0.1 ≤ γmax ≤ 0.2,

http://dx.doi.org/10.1103/PhysRevE.92.052311
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the amplitudes of the 〈P x
2 〉cycle and 〈P z

2 〉cycle are still in the order of the average.
The shear twinned fcc has a signature in the structure factor, see fig. 4.3a,b: the
inner peaks are forbidden for equilibrium fcc crystals, in the present case we clearly
observe non-vanishing peaks on the first ring and we see that their magnitude grows
on increasing strain. Additionally, let it be noted, that the peaks on the velocity
axis (qz = 0) are the first to rise at very low strain amplitudes.
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Figure 4.7: Time-resolved orientation within one cycle (averaged over 250 cycles)
at frequency f = 5τ−1, elongation L∗ = 0.29 (state point B), volume fraction
φ = 0.60, and for different strain amplitudes: (a) γmax = 0.05, (b) γmax = 0.10,
and (c) γmax = 0.15. Adapted with permission from N. Heptner, F. Chu, Y. Lu,
P. Lindner, M. Ballauff, and J. Dzubiella, Phys. Rev. E 92, 052311 (2015) [122].
Copyright c© 2015, American Physical Society.

4.1.2 Intermediate disordered state (II)

While for suspensions of hard spheres a disordered state in between the low-strain
twinned-fcc (I) and high-strain sliding layer (III) regimes is not observed, in fact,
we find stable hybrid structures on reduction of the anisotropy (cf. fig. 4.9), for
sufficiently elongated dumbbells the low-strain structure always melts fully at
intermediate strain amplitudes.

We neither find long-ranged translational order nor any orientational correlations
whatsoever, which is confirmed considering the scattering intensities in fig. 4.3c.
A representative snapshot and cycle-averaged orientations are shown in fig. 4.8,
clearly demonstrating disorder. Evidently, this is a distinctive behaviour introduced
by the orientational degree of freedom of the particles with a sufficient elongation.
This finding is corroborating with rheo-SANS experiments, where a coexistence of
states I, II and III is observed (cf. fig. 4.2IIb), the NEBD results show a fully molten

http://dx.doi.org/10.1103/PhysRevE.92.052311


56 4. Hard dumbbells under oscillatory shear

x

y

(a)

0 0.1 0.2
-0.1

0

0.1

tc/τ

〈P
α 2
〉 c

y
cl

e

α = x y z

(b)

Figure 4.8: System B in the fully disordered state II at γmax = 0.2, snapshot
(a), cycle averaged orientational order parameters 〈Pα

2 〉cycle (tc) (b). Adapted with
permission from N. Heptner, F. Chu, Y. Lu, P. Lindner, M. Ballauff, and J. Dzubiella,
Phys. Rev. E 92, 052311 (2015) [122]. Copyright c© 2015, American Physical
Society.

state. The limited extent of the simulated system is most probably impeding a
coexistence of different crystallites and fluid.

x

y

(c)

Figure 4.9: Nearly spherical reference system (S) at intermediate strain amplitude
(γmax = 0.50) showing a stable hybrid crystal-like structure where a twinned fcc is
in coexistence with the sliding layer phase (c).

In contrast to the melt of elongated particles, we observe stable hybrids of
velocity- and vorticity-oriented spherical particles as depicted in fig. 4.9. Here, the
inner layers in the simulation box sustain the twinned fcc state, while some outer
layers are sliding in a velocity-oriented manner.
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4.1.3 Sliding layer regime (III)

As stated above, one can conclude from the scattering patterns that the centres
of masses perform a zig-zag motion while frozen in ordered hcp layers. From the
order parameter study in fig. 4.4 a tendency of the particles’ orientation towards the
velocity axis (x) is observed, directly after reaching the critical strain to assemble
into velocity oriented layers.

(a)

x

y

0 0.1 0.2
-0.1

0

0.1

tc/τ

〈P
α 2
〉 c

y
cl

e

α = x y z

(b)

Figure 4.10: Snapshot in the flow-gradient (x− y) plane with model as inset (a)
and oriental order parameters (b) in velocity (x), gradient (y) and vorticity (z)
directions versus strain cycle at γmax = 1.00 for state point B. The inset shows the
model by [100, 102]. Adapted with permission from N. Heptner, F. Chu, Y. Lu,
P. Lindner, M. Ballauff, and J. Dzubiella, Phys. Rev. E 92, 052311 (2015) [122].
Copyright c© 2015, American Physical Society.

Figure 4.10 shows the cycle averaged orientation in the high strain regime,

http://dx.doi.org/10.1103/PhysRevE.92.052311
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where a dense direction of each layer is aligned with the velocity direction. Here,
the velocity (x) and gradient (y) directions of the directors are on average clearly
modulated by the shear cycle, while the vorticity (z) direction is essentially flat.
In this case, the modulus of the P x

2 cycle average is maximal at times, when the
instantaneous strain vanishes (γ(t) = 0), and its amplitude is about 0.01 and
its average 0.06. On average the directors slightly tend to be parallel to the
velocity and perpendicular to the gradient. This coincides with a decoupling of
the orientation from the imposed strain γ(t), where the amplitudes of the 〈Pα

2 〉cycle

are significantly smaller than their respective averages. The non-vanishing finite
preferential orientation is leading to the conclusion that the high strain state is a new
partially oriented sliding layer state only observed in systems of finite anisotropy.

4.2 Kinetic properties

Let us now turn our focus to rotational relaxation properties and particle collision
rates. Figure 4.11a shows the inverse relaxation constant τ−1

r obtained from the
exponential decays of the orientational autocorrelation functions according to
eq. (2.55) normalised by their values at infinite dilution in absence of any external
field. The effective rotational decay is enhanced in the disordered state while it is
similar to the equilibrium case in the low strain regime and a significant slowing
down is observed in the high strain state. At small strain amplitudes the values
are slightly smaller than unity as we expect from the analysis of the equilibrium
behaviour with respect to volume fraction and elongation (cf. section 3.3) [154]. In
the regularly structured twinned fcc regime (I) the diffusion is basically constant
with increasing strain amplitude.

In the transition region 0.2 < γmax < 0.3 we observe an elevated orientational
diffusion where it is steeply curved with respect to the strain amplitude. On entering
the high strain regime it jumps back to a value close to its initial value at rest.
With increasing strain amplitude the orientational diffusion then slightly decreases.
In the high strain regime we observe a state showing enhanced coupling of the
dumbbells’ orientations in space and time. For the higher aspect ratio (system B)
we observe similar behaviour, while the peak in the disordered state (II) at about
γmax ≈ 0.25 is much less pronounced. Also, the normalised inverse time scales are
slightly smaller than in the former system (A), which is an expected packing effect
(cf. section 3.3) [154]. At the low aspect ratio of state point C, which does not show
a fully disordered state, we observe essentially unhindered rotational relaxation and
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Figure 4.11: (a) Orientational relaxation constants from the decays of the C1

correlation functions for state points A, B and C, and (b) contact values of the
radial distribution function gs(r) on increasing strain amplitude for state point A.
Adapted with permission from N. Heptner, F. Chu, Y. Lu, P. Lindner, M. Ballauff,
and J. Dzubiella, Phys. Rev. E 92, 052311 (2015) [122]. Copyright c© 2015,
American Physical Society.

virtually no influence of the shear amplitude.

The transition behaviour of the rotational diffusion corresponds well to the
contact value analysis, allowing us to connect structure and kinetics. Figure 4.11b
shows the values of the radial distribution function (RDF) gs(r) at contact (r = rmax)

of system A with L∗ = 0.24, φ = 0.60. On approaching the melting strain at about
γmax = 0.2 the contact value gs(σ) = ΓE/Γ0 rises slightly. At the transition from
the ordered shear twinned system (I) to the disordered state (II) the contact value
shows a distinct jump of about 10 %. A smaller jump is observed at the transition

http://dx.doi.org/10.1103/PhysRevE.92.052311
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to the ordered high strain regime where the contact value is less than in in the
disordered state and reaches a plateau at about gs(rmax) ≈ 2.1. Following the
inverse relationship of diffusion and contact value in the Enskog approximation
eq. (2.60), thus the diffusivity increases drastically in the transition region (II).

4.3 Summary and conclusions

The structures and the corresponding rheological response defines three distinct
states in our investigation. In combination of the experimental data and our NEBD
simulation results we show at the aspect ratios of L∗ = 0.24 and L∗ = 0.3, that
the sequence of steady-state structures is qualitatively different from the hard
sphere case. Furthermore, the NEBD study indicates that a novel partially oriented
sliding-layer state is stable at high strain amplitudes. We have here provided
evidence that the mild anisotropy of dumbbell-shaped particles leads to qualitative
changes in the nature of the non-equilibrium phase transitions of plastic crystals
of spherical colloids under oscillatory shear, in particular that the continuous
transition observed in spherical systems transforms into a discontinuous one. The
latter phenomenon must be attributed to rotational-translational couplings [73],
absent in nearly spherical systems that apparently lead to dramatic changes in the
structural and stress relaxation behaviour. In fact, we have shown in the prior
chapter simulations that plastic crystals of dumbbells exhibit a dramatic increase
of the linear shear response for high packing fractions above a critical aspect ratio
of about 0.15 [154]. With respect to the sequence of shear-induced states, the
type and the dynamics of the equilibrium to twinned crystal transition remains
an interesting issue, which may stimulate a future study. These strong transitions
have substantial implications for the rheological yielding behaviour of colloidal
PCs. The experimental results also show a frequency and time dependency of the
rheology, which we attribute to a dynamical slowing down. The present results
also demonstrate that the thermosensitive dumbbell particles introduced before [62]
serve as an excellent and versatile model system for mildly anisotropic colloids to
study their equilibrium and non-equilibrium structural and phase behaviour.
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Summary and Outlook

In this work, we have been able to connect simulations in equilibrium and shear
conditions to novel experiments on an anisotropic colloidal model system. We
have systematically shown the effect of mildly anisotropic particles compared to
the guinea pig of colloidal physics. The results on the equilibrium structure show
expected correlations in the spatial dimension and we have observed packing effects
gaining importance from an elongation about L∗ = 0.2 in the diffusion coefficients.
In fact, we have in our analysis of equilibrium Brownian dynamics (BD) simulations
that plastic crystals (PCs) of dumbbells exhibit a dramatic increase of the linear
shear response for high packing fractions above a critical aspect ratio of about 0.15.

In the non-equilibrium study, we have provided evidence that the weak anisotropy
of dumbbell-shaped particles leads to qualitative changes in the nature of the
non-equilibrium transitions compared to spherical colloids under oscillatory shear
Strikingly, one finds that the continuous transition observed in spherical systems
transforms into a discontinuous one when increasing the aspect ratio. Also we have
systematically shown that the behaviour of the hard sphere system is retained for
dumbbells at very small aspect ratios. When increasing the aspect ratio further,
the transition turns out to be rather vigorous and mediated by a disordered state.
The onset of the deviation from the hard-sphere behaviour in the sheared system is
in accord with the findings from the equilibrium study. The experimental results
additionally show a frequency and time dependency of the rheology, which we
attribute to a dynamical slowing down. The present results also demonstrate that
the thermosensitive dumbbell particles introduced before [62] serve as an excellent
and versatile model system for mildly anisotropic colloids to study their equilibrium
and nonequilibrium structural and phase behaviour. Remarkably, the particles
exhibit a non-vanishing orientational correlation in the novel partially ordered sliding
layer state at high strain amplitudes. The latter phenomenon must be attributed
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to rotational-translational couplings [73], absent in nearly spherical systems that
apparently lead to dramatic changes in the structural and stress relaxation behaviour.
In combination with rheology and scattering data [62, 115, 119] this study indicates
clearly that even relatively small anisotropies of the particles have a vigorous impact
on the mechanical properties of colloids. Furthermore, this thesis clarifies, that the
double yielding behaviour of hard dumbbells are of structural origin. In contrast,
the known double yielding events in colloidal glasses have been linked to local
dynamic phenomena such as Brownian and shear-induced cage-escape [112].

This study may trigger further investigation on the type and nature of the
equilibrium to twinned face-centered cubic (fcc) transition. Here, the polycrystalline
nature of typical crystals and the nucleation of layers under shear is out of scope in
the present work but may be accessible to larger-scale simulations.

Revisiting the time scales that are introduced in the experiments by increasing
the elongation remains an interesting issue, as they are not captured in the present
simulations neglecting many-body hydrodynamics. Understanding this phenomenon
may also be of great interest for the (colloidal) glass community.

Furthermore, switching crystals of low aspect ratio colloids by shear is still an
intriguing idea. As a well-controlled experimental model system is now available,
which we have proven to correspond very well to the known predictions of the
phase diagram as well as our non-equilibrium investigation, other protocols may be
employed. Also the Péclet numbers could be increased, though the latter option
is most probably limited by the boundaries of the existence of the translationally
ordered states.

From the theoretical point of view, it is worthwhile to develop a minimal model
for a detailed insight into the coupling of rotation and translation of low aspect ratio
colloids. This would help to further elucidate the underlying statistical mechanics
of the problem.

With a more application-oriented focus, it could also be possible to investigate
the photonic band structure of a sheared colloidal crystal. Further investigation in
this direction could help clarify if mechanical perturbation can be used to manipulate
the bands of reflected and travelling light in plastic crystals.
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A.1 Transient melting and nucleation of steady ordered

non-equilibrium states

Depending on the initial configuration, we find transient melting of the initially
crystalline structure before the high-strain layered structure nucleates. We observe
this transient to last for a time window which depends on the frequency (number
of oscillations). After tens of Brownian times the steady sliding layer state emerges
from this melt.
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Figure A1: Time spent in a molten state characterised by a Q4 < 0.04 threshold.

In fig. A1 the time spans tmelt spent in a transient melt are depicted. A value
of tmelt = 100τ relates to the system being molten for the entire simulation time.
In the high shear regime, the time between melting of the initial structure and
nucleation of the depends on the strain amplitude at a fixed frequency.
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A.2 Single-particle diffusion coefficients

The single-particle diffusion coefficients calculated using the shell-bead model (SHM)
model are presented in fig. A2.
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Figure A2: Normalised single-particle diffusion coefficients of dumbbells versus
the elongation L∗.

A.3 Implementation of the Brownian dynamics method

In listing A1, the reader finds the key parts of the implementation of the BD method
following eqs. (2.16), (2.17), (2.19) and (2.20). If shear is used, the coefficients
associated with shear-affected terms have to be updated in every time step before
updating the coordinates. It may be necessary to adjust the time step respecting
the maximum shear rate.

Listing A1: Updating the BD coefficients and coordinates.

/*

* set the method ’s coefficients

*/

template <typename T> inline void

EulerExpl_RotShearFullTorque <T>:: update_coeff(

MyBox_LEy <T>& box , std::vector <T>& inp) {

/*

* constants

*/
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/* parallel */

this ->c(0)[0] = this ->dt() * inp [0];

this ->c(0)[1] = std::sqrt (2. * this ->c(0) [0]);

this ->c(0)[2] = this ->dt() * box.peclet_gamma_.val(0);

std::clog << "#␣c_par␣=␣" << this ->c(0)[0] << "␣" <<

this ->c(0)[1] << "␣" << this ->c(0) [2] << endl;

/* perpendicular */

this ->c(1)[0] = this ->dt() * inp [1];

this ->c(1)[1] = std::sqrt (2. * this ->c(1) [0]);

this ->c(1)[2] = this ->dt() * box.peclet_gamma_.val(0);

std::clog << "#␣c_perp␣=␣" << this ->c(1)[0] << "␣" <<

this ->c(1)[1] << "␣" << this ->c(1) [2] << endl;

/* rotational */

this ->c(2)[0] = this ->dt() * inp [2];

this ->c(2)[1] = std::sqrt (2. * this ->c(2) [0]);

this ->c(2)[2] = this ->dt() * box.peclet_gamma_.val(0);

std::clog << "#␣c_rot␣=␣" << this ->c(2)[0] << "␣" <<

this ->c(2)[1] << "␣" << this ->c(2) [2] << endl;

}

/*

* update the method ’s coefficients if shear is used

*/

template <typename T> inline void

EulerExpl_RotShearFullTorque <T>:: update_coeff(

MyBox_LEy <T>& box) {

if (box.peclet_omega_.val(0) != .0)

/*

* $\dot{\gamma }(t) = \gamma_ {\text{max}} * \omega

* \cos(\ omega t)

*/

box.peclet_gamma_.val(0) = box.strain_amplitude_.

val (0) * box.peclet_omega_.val (0) * std::cos(box

.peclet_omega_.val(0) * this ->time() );
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\lstset{

language=csh ,

breaklines=true ,

tabsize=2,

basicstyle =\ ttfamily

}

/*

* $v_x(t) = \Pe_\gamma(t) L_y$

*/

box.v(0) = box.peclet_gamma_.val(0) * box.len(1);

/*

* periodic displacement $\delta x(t) = \sum_i v_x(

t_i) dt

*/

box.disp (0) += box.v(0) * this ->dt();

/*

* update integrator coefficients

*/

this ->c(0)[2] = this ->dt() * box.peclet_gamma_.val

(0);

this ->c(1)[2] = this ->dt() * box.peclet_gamma_.val

(0);

this ->c(2)[2] = this ->dt() * box.peclet_gamma_.val

(0);

}

template <typename T> inline void

EulerExpl_RotShearFullTorque <T>:: update(Dumbbells_set <

T>& set , Dumbbells_set <T>& set_new , Pair_Force <T, std

::vector <T> >& force , MyBox <T>& bbox , MyListVerlet

const& vlist) {

if (set.size() != this ->rnd_.size() ) {

this ->rnd_.resize(set.size(), std::vector <T>(5, .0)

);
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}

/* generate random variates */

for (size_t i = 0; i < this ->rnd_.size(); i ++) {

for (size_t j = 0; j < this ->rnd_[i].size(); j ++) {

this ->rnd_[i][j] = static_cast <T>(

gsl_ran_ugaussian(this ->rng_) );

} /* j */

} /* i */

MyBox_LEy <T>& box = *static_cast <MyBox_LEy <T>* >(&bbox

);

std::vector <T>& c_par = this ->c_[0];

std::vector <T>& c_perp = this ->c_[1];

std::vector <T>& c_rot = this ->c_[2];

if (box.peclet_omega_.val(0) != .0 || box.

peclet_gamma_.val(0) != 0.0) {

this ->update_coeff(box);

}

/* update separation vectors and squared distances */

set.update_rsep(vlist);

/* update inter -bead forces */

set.update_fbead0(force , vlist);

/* compute total forces on particles from total forces

on beads */

set.update_ftot ();

/* update parallel and perpendicular force components

*/

set.update_fpar ();

set.update_fperp ();
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/* update torques */

set.update_torque ();

/* update parallel parts of the COM coordinates */

#pragma omp parallel for shared(set , set_new)

for (size_t i = 0; i < set.size(); i ++) {

for (size_t p = 0; p < 3; p ++) {

T frnd = this ->rnd_[i][0];

T displ_f = c_par [0] * set.fpar(i)[p];

T displ_r = c_par [1] * frnd * set.dir(i)[p];

set_new.com_par ()[i][p] = set.com_par ()[i][p] +

displ_f + displ_r;

} /* p */

} /* i */

/* update perpendicular coordinates */

#pragma omp parallel for shared(set , set_new)

for (size_t i = 0; i < set.size(); i ++) {

for (size_t p = 0; p < 3; p ++) {

T frnd1 = this ->rnd_[i][1];

T frnd2 = this ->rnd_[i][2];

T displ_f = c_perp [0] * set.fperp(i)[p];

T displ_r = c_perp [1] * frnd1 * set.e1(i)[p] +

c_perp [1] * frnd2 * set.e2(i)[p];

set_new.com_perp ()[i][p] = set.com_perp ()[i][p] +

displ_f + displ_r;

} /* p */

} /* i */

/*

* update COM as r = r_\par + r_\perp

*/

#pragma omp parallel for shared(set , set_new)
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for (size_t i = 0; i < set.size(); i ++) {

for (size_t p = 0; p < 3; p ++) {

set_new.com()[i][p] = set_new.com_perp ()[i][p] +

set_new.com_par ()[i][p];

} /* p */

/*

* add flow contribution

* $\Delta t \dot\gamma(t) y$

*/

set_new.com()[i][0] += c_par [2] * (box.wrap(set.com

()[i][1], 1) - .5 * box.len(1) );

} /* i */

/* update directors */

#pragma omp parallel for shared(set , set_new)

for (size_t i = 0; i < set.size(); i ++) {

T norm = .0;

/*

* angular displacement by particle interactions

*/

std::vector <T> disp_ang = std::vector <T>(3, .0);

/*

* $\Delta \vec{u}^p = \vec{T}^p \times \vec{u}$

*/

vecprod <T>(disp_ang , set.torque(i), set.dir(i) );

for (size_t p = 0; p < 3; p ++) {

T frnd1 = this ->rnd_[i][3];

T frnd2 = this ->rnd_[i][4];
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T displ_f = c_rot [0] * disp_ang[p];

T displ_r = c_rot [1] * frnd1 * set.e1(i)[p] +

c_rot [1] * frnd2 * set.e2(i)[p];

set_new.dir(i)[p] = set.dir(i)[p] + displ_f +

displ_r;

} /* p */

/* add flow contribution */

set_new.dir(i)[0] += c_rot [2] * (std::pow(set.dir(i)

[1], 3) + std::pow(set.dir(i)[2], 2) * set.dir(i)

[1]);

set_new.dir(i)[1] -= c_rot [2] * (set.dir(i)[0] * std

::pow(set.dir(i)[1], 2) );

set_new.dir(i)[2] -= c_rot [2] * (set.dir(i)[0] * set

.dir(i)[1] * set.dir(i)[2]);

/* normalize director */

norm = norm_2 <T, std::vector <T> >(set_new.dir(i) );

for (size_t p = 0; p < 3; p ++) {

set_new.dir(i)[p] /= norm;

} /* p */

} /* i */

}

A.4 Implementation of the scattering function I(q)

The code for calculating the scattering function as defined in eqs. (2.33) and (2.34)
is presented in listing A2. The function for calculating I(q) expects before-selected
scattering vectors. The numerical integration which is needed for A(q;u) is the
bottleneck of this calculation.

Listing A2: Calculating the scattering function with explicit Scattering amplitudes.

/*

* \brief calculate scattering intensity I(q) including

scattering amplitudes A_DB(q, u_i)

*/
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template <typename T> inline void Dumbbells_set <T>:: ioq(

MyFunction <T>& s, MyFunction <T>& poq , size_t const&

maxintervals) {

this ->update_com ();

this ->update_dir ();

#pragma omp parallel for shared(s)

for (size_t i = 0; i < s.size(); i ++) {

std::vector <T>& q_ijk = s.x(i);

T sum_cos = .0;

T sum_sin = .0;

T poq_sum_cos = .0;

ScatterAmp adb_l = ScatterAmp(maxintervals);

Dumbbell db_l = Dumbbell(this ->lstar (0) );

for (size_t p = 0; p < 3; p ++)

db_l.q_[p] = q_ijk[p];

for (size_t l = 0; l < this ->N_; l ++){

std::vector <T>& r = this ->com()[l];

for (size_t p = 0; p < 3; p ++)

db_l.u_[p] = this ->dir(l)[p];

T a_l = adb_l.eval(db_l , integrand_dumbbell);

/* $\vec{q} \cdot \vec{r}$ */

T qdotr = sprod <T>(q_ijk , r);

sum_cos += a_l * std::cos(qdotr);

sum_sin += a_l * std::sin(qdotr);

poq_sum_cos += a_l;

} /* l */
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sum_cos = std::pow(sum_cos , 2);

sum_sin = std::pow(sum_sin , 2);

s[i] = (sum_cos + sum_sin) / this ->N_;

poq_sum_cos = std::pow(poq_sum_cos , 2);

poq[i] = poq_sum_cos / this ->N_;

} /* i */

}

/*

* \brief calculate integrand for given particle at

specific $t$

* \return value of the integrand $A(t; \vec{q}, \vec{u

})$

*/

double Dumbbell :: integrand(double const& t) const {

std::vector <double > const& q = this ->q_;

std::vector <double > const& u = this ->u_;

double const qdotu = sprod <double >(q, u);

double const qn = norm_2 <double , std::vector <double >

>(q);

double const costheta = qdotu / qn;

double const sintheta = std::sqrt (1. - std::pow(

costheta , 2) );

/* $w(t)$ */

double const w = std::cos (0.5 * qdotu * (t + this ->

lstar_) );

/* $s(t)$ */

double const s = 0.5 * qn * sintheta * std::sqrt (1. -

std::pow(t, 2) );
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return 0.25 * M_PI * std::pow(this ->sigma_ , 3) * (1. -

std::pow(t, 2) ) * w * (gsl_sf_bessel_J0(s) +

gsl_sf_bessel_Jn (2, s) );

}

double ScatterAmp ::eval(Dumbbell& particle , double

integrand(double , void* ) ){

gsl_function f;

f.function = integrand;

f.params = static_cast <void*>(& particle);

/* gsl integration options */

int scheme = 1;

double error;

double const epsrel = 1e-5;

double const epsabs = 1e-6;

/* integral limits */

double const a = particle.lower_bound ();

double const b = particle.upper_bound ();

/* prevent terminating the program on errors in gsl

functions */

gsl_set_error_handler_off ();

/* adaptive integration */

int status = gsl_integration_qag (&f, a, b, epsabs ,

epsrel , this ->maxintervals_ , scheme , this ->

workspace_ , &this ->result_ , &error);

if (status) {

std::cerr << particle.u_[0] << "␣" << particle.u_[1]

<< "␣" << particle.u_[2] << "␣" << particle.q_[0]

<< "␣" << particle.q_[1] << "␣" << particle.q_[2]

<< "␣" << this ->eval() << std::endl;

}
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return this ->eval();

}

The scattering function can be projected to the interesting planes with the
following scripts in listings A3 and A4:

Listing A3: Shell script for projection of I(q)

#! /usr/bin/env csh

set fname=$1

set dname="‘basename␣$fname␣.dat ‘"

set oname=${dname}"_qy0.dat"

set fname0=${oname}

echo ${oname}

awk ’($2 == .0){print}’ $1 > ${oname}

set oname=${dname}"_xz.dat"

echo ${oname}

soq_prj_xz.awk ${fname} | sort -gs -k2 ,2 | sort -gs -k1

,1 | awk ’BEGIN{ko=0}{kn = $1; if (ko != kn && NR > 1)

{print ""}; ko = kn; print}’ > ${oname}

set oname=${dname}"_xz_qy0.dat"

echo ${fname0}

echo ${oname}

soq_prj_xz.awk ${fname0} | sort -gs -k2 ,2 | sort -gs -k1

,1 | awk ’BEGIN{ko=0}{kn = $1; if (ko != kn && NR > 1)

{print ""}; ko = kn; print}’ > ${oname}

Here the projection at qy = 0 is implemented in Awk.

Listing A4: soq_prj_xz.awk

#! /usr/bin/awk -f
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BEGIN {

}

{

if (NF == 4 && !($1 + 0. != $1) ) {

soq[$1, $3] += $4

kx[$1, $3] = $1

kz[$1, $3] = $3

count[$1 ,$3] += 1.

}

}

END{

for (kk in soq) {

print kx[kk], kz[kk], soq[kk]

}

}
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