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Abstract

The paper deals with joint probabilistic constraints defined by a Gaussian
coefficient matrix. It is shown how to explicitly reduce the computation of
values and gradients of the underlying probability function to that of Gaussian
distribution functions. This allows to employ existing efficient algorithms for
calculating this latter class of function in order to solve probabilistically con-
strained optimization problems of the indicated type. Results are illustrated
by an example from energy production.

An important class of probabilistic programming problems is given by

min{f(x) | P(Ξx ≤ a) ≥ p}, (1)

where f is an objective, x is a decision variable and Ξ is a random coefficient matrix.
The probabilistic constraint in this problem expresses the wish to find a decision
x which guarantees that the random inequality system Ξx ≤ a is satisfied at least
with a probability p ∈ [0, 1]. Problems of this type have abundant applications
in engineering (e.g. blending problems) and finance (e.g. portfolio problems). In
this paper we want to show how to deal with such probabilistic constraint under
the assumption that the elements of Ξ have a joint Gaussian (multivariate normal)
distribution. Observe first that the constraint Ξx ≤ a can be equivalently written
as T (x)ξ ≤ a, where ξ refers to the row-wise vectorization of Ξ and T (x) is a matrix
having row i

Ti(x) = (0T , . . . , 0T , xT︸︷︷︸
i

, 0T , . . . , 0T ).

The use of this equivalent form of the constraint has some notational convenience
and also allows us slightly to generalize the model (as needed, for instance in the
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example presented below). Therefore, we are led to consider probabilistic constraints
of the form ϕ(x) ≥ p, where

ϕ (x) := P (T (x)ξ ≤ α(x)) (2)

for some s-dimensional Gaussian random vector ξ with expectation µ and (positive
definite) covariance matrix Σ (notation: ξ ∼ N (µ, Σ)) and for some continuously
differentiable mappings T : Rn → Rm×s and α : Rn → Rm. Clearly, (2) provides a
framework including the probabilistic constraint in (1) as a special case.

When dealing with inequality constraints like ϕ(x) ≥ p in algorithms of nonlinear
optimization, it is necessary to have access to at least to values and gradients of ϕ.
For simpler probabilistic constraints of the separated form P(ξ ≤ T (x)) ≥ p with
Gaussian random vector ξ, successful numerical results are reported (e.g., [1]) which
are based on an efficient computation of multivariate Gaussian distribution functions
using a code by Genz [2]. A key issue here was the well-known possibility to reduce
the computation of gradients for Gaussian distribution functions to such distribution
functions again (see (9)), so that Genz’s could be employed to calculating values
and gradients of Gaussian distribution functions at a time. We shall see that, on a
more involved level, it is also possible to completely break down the computation
of ϕ and ∇ϕ in (2) to that of Gaussian distribution functions so that the same
algorithmic approach for nonlinear optimization can be applied as in the case of
the simpler probabilistic constraint. Our aim is to derive formulae for ϕ and ∇ϕ
which are completely in terms of Gaussian distribution functions and of the problem
data. Under the problem data of (2) we understand the mappings T, α and their
gradients (to be provided) ∇T,∇α as well as the distribution parameters µ, Σ of the
random vector ξ. Since a closed form expression for ϕ and ∇ϕ in the desired explicit
form is almost impossible to represent, we shall recursively break down parts of the
corresponding formulae.

First observe that, by a well-known formula for parameter transformation of Gaus-
sian distributions, our initial assumption ξ ∼ N (µ, Σ) leads to

T (x)ξ ∼ N (µ(x), Σ(x)) ,

where
µ(x) := T (x)µ, Σ(x) := T (x)Σ[T (x)]T . (3)

Putting

D(x) := diag
(
Σ
−1/2
ii (x)

)
i=1,...,m

; R(x) := D(x)Σ(x)D(x). (4)

one gets that the normalized vector η (x) := D(x) [T (x)ξ − µ(x)] is distributed ac-
cording to η (x) ∼ N (0, R(x)). In particular, R(x) is a correlation matrix by (4).
Consequently, ϕ (x) = ΦR(x) (β(x)), where

β(x) := D(x) (α(x)− µ(x)) (5)
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and ΦR denotes the distribution function of a standard Gaussian distribution with
zero mean, unit variances and correlation matrix R. In this way, the first task is
achieved, namely the evaluation of ϕ is reduced to that of a Gaussian distribution
function applied to a mapping β which via (4) and (3) can be explicitly led back
to the problem data. In order do so for the gradient of ϕ as well, we define the
mapping γ (R, z) := ΦR (z). Note that γ will be differentiable provided that R is
positive definite which can be ensured by requiring surjectivity of T (x) (see (3) and
(4)). Clearly, ϕ (x) = γ (R(x), β(x)) and deriving this expression at some arbitrarily
fixed x yields

∇ϕ (x) =
m∑

i=1

∂γ

∂zi

(R(x), β(x))∇βi(x) +
m∑

i,j=1

∂γ

∂Rij

(R(x), β(x))∇Rij(x) (6)

Let us focus first on the first term in this sum. By (5) and (4), we have

∇βi(x) = (αi(x)− µi(x))∇Σ
−1/2
ii (x) + Σ

−1/2
ii (x) (∇αi(x)−∇µi(x)) . (7)

The values for µi(x) and Σ
−1/2
ii (x) are obtained from the model data via (3). Deriving

these expressions, one gets

∇µi(x) =
s∑

j=1

µj∇Tij(x); ∇Σ
−1/2
ii (x) = −1

2
Σ
−3/2
ii (x)∇Σii(x).

As far as the evaluation of ∇Σ
−1/2
ii (x) is concerned, the expression Σ

−3/2
ii (x) follows

immediately from (3), whereas for the gradient ∇Σii(x) we make a forward reference
to (11) in order to develop (7) explicitly in terms of α,∇α, T,∇T, µ, Σ. Next, we
observe that

∂γ

∂zi

(R(x), β(x)) =
∂ΦR(x)

∂zi

(β(x)) (i = 1, . . . ,m) . (8)

Consequently, one is left with the task of calculating the gradient of a Gaussian
distribution function (with correlation matrix fixed as R(x)). Here, one may rely on
the well-known formula (see [4], p. 204)

∂ΦR

∂zi

(z) = h (zi) Φ̃R̃i (z̃i) . (9)

for an arbitrary correlation matrix R. In the context of (8), we put R := R(x)
and z := β(x) in (9). In this formula, h denotes the density of the one-dimensional
standard Gaussian distribution. The argument z̃i ∈ Rs is obtained from z and from
R by

z̃i =

z1 − r1,izi√
1− r2

1,i

, · · · , zi−1 − ri−1,izi√
1− r2

i−1,i

,
zi+1 − ri+1,izi√

1− r2
i+1,i

, · · · , zs − rs,izi√
1− r2

s,i

 , (10)
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where the ri,j refer to the entries of R. Moreover, Φ̃R̃i is the distribution function of
the (s − 1)-dimensional standard Gaussian distribution with correlation matrix R̃i

which itself is obtained from R by deleting the ith row and column of the matrix R̂
whose entries are defined as

r̂j,k :=
rj,k − rj,irk,i√

1− r2
j,i

√
1− r2

k,i

(j, k = 1, . . . , s) .

Summarizing, we have made the first term in the sum (6) fully explicit in terms of
the model data. Turning to the second term, observe that by (4)

Rij(x) =
Σij(x)√

Σii(x)Σjj(x)
(i, j = 1, . . . , s).

Therefore, for i, j = 1, . . . , s,

∇Rij(x) =
Σii(x)Σjj(x)∇Σij(x)− 1

2
Σij(x) [Σjj(x)∇Σii(x) + Σii(x)∇Σjj(x)]

(Σii(x)Σjj(x))3/2
.

We can develop ∇Rij(x) in terms of the model data upon noting that by (3)

∇Σij(x) =
s∑

k,l=1

Σkl [Tjl(x)∇Tik(x) + Tik(x)∇Tjl(x)] (i, j = 1, . . . ,m). (11)

It remains to analyze the expression ∂γ
∂Rij

(R(x), β(x)) in (6). By definition,

∂γ

∂Rij

(R(x), β(x)) =
∂ΦR(x)

∂Rij

(β(x)) . (12)

Hence, we have to know, how to calculate sensitivities of Gaussian distribution
functions with respect to correlation coefficients. Here, we rely on Gupta’s formula
([3], eq. (53)):

∂ΦR

∂Rij

(z) =

∫ z1

−∞
· · ·
∫ zs

−∞

∂2g

∂zi∂zj

(ζ1, . . . , ζs) dζs · · · dζ1

=
∂2

∂zi∂zj

(∫ z1

−∞
· · ·
∫ zs

−∞
g (ζ1, . . . , ζs) dζs · · · dζ1

)
=

∂2ΦR

∂zi∂zj

(z) (i, j = 1, . . . , s) .

To apply this formula in the context of (12), we have to set R := R(x) and z := β(x).
In this formula, g is the density associated with ΦR. The formula tells us, that
the sensitivities with respect to correlation coefficients can be obtained as second
partial derivatives of the Gaussian distribution function ΦR. As we already know
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how to calculate first order partial derivatives of ΦR via (9) and this leads back to
the calculus of (different) Gaussian distribution functions again, we may apply the
same formula a second time in order to derive the desired second partial derivatives:

∂2ΦR

∂zi∂zj

(z) =


h′ (zi) Φ̃R̃i (z̃i)− h (zi)

s∑
k=1,k 6=i

∂Φ̃R̃i

∂zk
(z̃i)

rk,i√
1−r2

k,i

if i = j

h (zi)
∂Φ̃R̃i

∂zj
(z̃i)

1√
1−r2

j,i

if i 6= j

Here, we used corresponding inner derivatives of (10) with respect to zj. Now, the

partial derivatives ∂Φ̃R̃i

∂zk
(z̃i) occuring in the formula above can be calculated exactly

in the same way as described in (9) for the partial derivatives ∂ΦR

∂zi
(z) but this time

applied to the new correlation matrix R̃i and the new argument z̃i. Hence, we have
provided a fully explicit way to calculate the gradient (6).

As an application we consider the following simple unit commitment problem: Given
a time horizon of 12 months and stochastic electricity demands in each of the 12
time periods, we are looking for a cost minimal portfolio of 4 power generation
units (nuclear, coal, fuel, gas) such that the demands are met at a probability of
at least p = 0.9. Apart from the demands, also the availability of power plants is
assumed to be random. This will be described by random availability coefficients
(between zero and one) which have to be multiplied with the committed production
in order to determine the actual production of a plant. Let us denote by xi :=
(xi1, xi2, xi3, xi4) the production committed to units 1 to 4 in month i. Similarly,
denote by ξ̂i := (ξ̂i1, ξ̂i2, ξ̂i3, ξ̂i4) the availability coefficients for units 1 to 4 in month
i. Let the demand vector be given by ξ̃ := (ξ̃1, . . . , ξ̃12). Then, demand satisfaction
as a probabilistic constraint at level p can be modeled by the inequality

P(xT
i ξ̂i ≥ ξ̃i (i = 1, . . . 12)) ≥ p.

This constraint fits to the model ϕ(x) ≥ p and ϕ defined as in (2) with the model
data

T (x) :=

 −xT
1 · · · 0 1 · · · 0

0
. . .

...
...

. . .
...

0 · · · −xT
12 0 · · · 1

 ; ξ :=

(
ξ̂

ξ̃

)
; α(x) := 0. (13)

Observe that T (x) is surjective for all x as required above for differentiability reasons.
Apart from the probabilistic constraint, deterministic time-dependent upper levels
are given for the production of each unit. We collect these upper levels in a vector
x̄ obeying the same partition of components as x. Finally, production costs are
assumed to depend just on the considered unit but not on time, hence we collect
them in a 4-dimensional cost vector c. Summarizing, our optimization problem
writes as

min cT

(
12∑
i=1

xT
i

)
subject to x ≤ x̄, P (T (x)ξ ≤ 0) ≥ p.

5



0 2 4 6 8 10 12

600

700

800

900

1000

0 2 4 6 8 10 12

300

400

500

600

700

2 4 6 8 10

0

100

200

300

400

0 2 4 6 8 10 12
0

50
100
150
200
250

0 2 4 6 8 10 12
0

20
40
60
80

100

2 4 6 8 10

-200

-100

0

100

200

Figure 1: Illustration of results for an example (details see text)

The random vector is supposed to have a joint Gaussian distribution with param-
eters which we do not specify here. Components of ξ̂ (availability coefficients for
diefferent units at different times) are assumed to be uncorrelated, whereas some cor-
relation pattern is considered for the components of ξ̃ (demands at different times).
The probability level is specified as p = 0.9. The dimensions of the problem are
48 for the decision and 60 for the random vector. The formulae for calculating φ
and ∇φ presented above are used to employ Genz’s code inside numerical optimiza-
tion. Results are presented in Figure . The first diagrams show the solutions for
production profiles of the 4 units (left top: nuclear, middle top: coal, left bottom:
fuel, middle bottom: gas). Black lines refer to the solutions of our probabilistic con-
strained problem, whereas dashed lines illustrate the corresponding solutions one
would obtain upon replacing the random vector by its expectation (which allows a
simple linear programming solution approach). Upper production limits are plotted
as gray lines. While nuclear energy is fully employed in both solutions, the other
units run on their maximum limits only for certain periods of time, where a certain
complementarity between coal and gas becomes evident. Since the expected value
solution does not take into account the random nature of availability coefficients
and demands, it can efford lower production profiles leading to slightly smaller costs
than the probabilistic solution (637.634 versus 738.915). On the other hand, there
is a tremendous difference in the robustness of the solutions obtained. To illustrate
this, 100 profiles for the overall random vector ξ were simulated according to the
chosen distribution parameters and subjected to the optimal decisions obtained for
the expected value and the probabilistic solution. The right diagrams illustrate
the resulting differences between production and demand of energy (which should
be non-negative). While, in good accordance with the chosen probability level of
p = 0.9, there are only 12 out of 100 trajectories ever falling below zero during
the whole time horizon in case of the probabilistic solution, all trajectories resulting
from the expected value solution violate the required offer-demand relation at least
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once in the considered period.
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