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Abstract 

We describe a stochastic program for planning the wartime, sealift deployment of military cargo subject to 
attack.  The cargo moves on ships from US or allied seaports of embarkation through seaports of 
debarkation (SPODs) near the theater of war where it is unloaded and sent on to final, in-theater 
destinations.  The question we ask is: Can a deployment-planning model, with probabilistic knowledge of 
the time and location of potential enemy attacks on SPODs, successfully hedge against those attacks?  That 
is, can this knowledge be used to reduce the expected disruption caused by such attacks?  A specialized, 
multi-stage stochastic mixed-integer program is developed and answers that question in the affirmative.  
Furthermore, little penalty is incurred with the stochastic solution when no attack occurs, and worst-case 
scenarios are better.   In the short term, insight gained from the stochastic-programming approach also 
enables better scheduling using current rule-based methods.  

 
1 Introduction 

The United States Transportation Command (USTRANSCOM) is responsible for 

planning the wartime deployment of US cargo ships, and their cargo, from US or allied seaports 

of embarkation (SPOEs) to overseas seaports of debarkation (SPODs)  (USTRANSCOM 2000).  

This command uses little optimization to guide its planning for a deployment and, to our 

knowledge, no stochastic optimization to accommodate uncertainty.  The purpose of this paper is 

(a) to develop a stochastic-optimization model that proactively plans for potential disruptions 

caused by enemy attacks on SPODs, and (b) to illustrate the potential benefit of using such a 
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model with realistic deployment data.  Our model is designed to provide insight into tactical and 

strategic issues associated with military sealift.  A real-time operational tool would need to 

capture more detail than the model we develop here. 

1.1 The Problem 

Military sealift deployments are driven by a flexible schedule of movement requirements 

contained in the Time-Phased Force-Deployment Data (TPFDD).  The TPFDD describes the 

cargo needed in the deployment and the military units to which that cargo belongs, e.g., a Marine 

Expeditionary Force or a Naval Mobile Construction Battalion.  A typical timeframe for a 

TPFDD is 100 days.  The schedule includes time windows for when cargo will be available for 

loading at the SPOEs, when it should pass through an SPOD, and when it should arrive at its in-

theater destination. 

Currently, a TPFDD is planned using software tools like the Joint Flow and Analysis 

System for Transportation (JFAST)  (USTRANSCOM 2000).  However, the emphasis in the last 

few years has been on embedding such systems within a global command-and-control system so 

that all cargoes and lift assets are visible to planners who must deal with contingencies “on the 

fly.”  Quick responses to contingencies are important, but JFAST is largely a rule-based system 

that cannot optimize (or re-optimize) a schedule with respect to an objective such as “minimize 

delay.”  Furthermore, JFAST ignores the possibility of disruptions to the deployment caused by 

enemy attacks. 

The deterministic mixed-integer programs of Aviles (1995), Brown (1999) and others, 

along with the deterministic version of the model described in this paper, address the lack of 

optimization in existing sealift deployment-planning systems.  Within the limits of modeling 

approximations, these models provide an exact assignment and routing of ships to deliver the 

TPFDD cargoes as best possible.  The models typically minimize the ton-days of late cargo, 

which are weighted in some fashion with respect to the amount of lateness. 
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While a deterministic optimization model is potentially useful, it ignores the fact that an 

enemy may disrupt the deployment by attacking the cargo-movement “network,” probably in 

some forward area, i.e., near the SPODs.  The potential for such disruptions is of increasing 

concern within the US military (Joint Publication 3-11 2000, p. II-3).  Attacks might be carried 

out by mining harbors and/or shipping channels, or by attacking SPODs with missiles carrying 

conventional, nuclear, chemical or biological warheads, or by terrorist attack.  Therefore, our 

main question is:  Can we plan a sealift deployment while effectively hedging against the 

potential disruption caused by attacks on our cargo-movement network in forward areas?  Our 

purpose is to convince planners that current planning tools can be improved:  Not only should 

these tools optimize, but they should also plan proactively for potential disruptions. 

We build a multi-stage stochastic-programming model, called the “Stochastic Sealift 

Deployment Model” (SSDM), to address these issues.  SSDM can be modified to model many 

types and locations of attacks, but we focus on biological attacks on SPODs, because SPODs 

have been characterized as being particularly attractive targets for such attacks (Joint Publication 

3-11 2000, p. III-30). 

Biological weapons are not new, but their potential for serious military use has increased 

in recent years (Cohen 1997, Defense Intelligence Agency 1998), and a biological attack on an 

SPOD could certainly disrupt a deployment.  Furthermore, biological weapons are inexpensive to 

produce, and over a dozen of the United States’ potential adversaries may possess or may be 

engaged in research on such weapons (Barnaby 1999, pp. 10-11).  Thus, the threat must be taken 

seriously.  We assume that any biological attack is immediately detected, as would be the case 

with biological warheads delivered by ballistic missile.  This may not be a limiting assumption 

because new detection systems are capable of quickly detecting biological warfare agents that 

might be surreptitiously spread by terrorists or an enemy’s special operations forces.  (For 

example, see the papers in Leonelli and Althouse 1998.)  An attacked SPOD will shut down 
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entirely during a decontamination period, after which the port’s cargo-handling capacity will 

come back to normal over a period of time, following some recovery schedule.  The severity of 

the attack, which may be uncertain, dictates the length of the decontamination period and the 

recovery schedule.  The state of the art in determining the potential damage caused by a 

biological attack is not far advanced (Alexander 1999), but SSDM can be easily adjusted to 

account for the latest information as it becomes available. 

For simplicity, we assume at most one attack will occur during the deployment period, 

although that attack may strike more than one SPOD.  The timing, location(s) and severity of the 

attack are uncertain and follow a probability distribution developed by intelligence reports and 

planners.  The single-attack assumption has one significant advantage:  It enables us to model the 

deployment using a special type of multi-stage stochastic program (e.g., Birge and Louveaux 

1997, pp. 128-135), which is easier to solve than a model in which attacks could occur repeatedly.  

This assumption is reasonable at this stage of study, because no current deployment-planning 

models account for even a single attack, and because significant insight can be gained by studying 

this case.   

Other assumptions limit the scope of the work here:  (a) Only a single generic cargo ship 

is modeled, specifically, an American Eagle Roll-On/Roll-Off vessel carrying 15 ktons of cargo 

(1 kton = 1,000 short tons = 907 metric tons), because this ship is typical of those used in 

planning exercises (Military Traffic Management Command Transportation Engineering Agency 

1994, Alexander 1999), and (b) airlift assets and airlift delivery requirements are ignored.  

Conceptually, SSDM is easily extended beyond assumption (a) to incorporate a fleet of ships with 

different cargo-handling characteristics (see Brown 1999), although the model would grow in size 

and solution times would increase.  Assumption (b) simply reflects the focus of the model.  To a 

large extent, airlift and sealift optimization may be considered separately because the mode of 

transport for each cargo “package” is specified by the TPFDD and the two transportation 
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networks share few resources.  In the Persian Gulf War of 1991, sealift delivered about 85% of all 

dry cargo, but airlift delivered most of the cargo in the early part of the deployment (Lund et al. 

1993).   

1.2 Stochastic Programming and Military Deployments 

Stochastic programming has seen limited application in military deployment problems, 

yet the study of related transportation problems under uncertainty reaches back to Ferguson and 

Dantzig (1956).  A notable early exception is an application of two-stage stochastic programming 

for scheduling monthly and daily airlift with uncertain cargo demands (Midler and Wollmer 

1969).  Modest computational power has, presumably, impeded the application of similar 

techniques to modern large-scale military mobility systems. 

Currently, simulation is the preferred method of dealing with uncertainty in deployments.  

The Warfighting and Logistics Technology Assessment Environment (WLTAE) links 

warfighting and logistics simulation models into a single large simulation (Sinex et al. 1998).  

The logistics modules of such simulations typically use rule-based methods like JFAST and have 

limited, if any, capability for optimal re-scheduling after an attack.  However, we note that Brown 

(1999) does provide re-optimization techniques suitable for embedding in the WLTAE simulation 

model.  In particular, whenever a modeled disruption in the deployment takes place, his mixed-

integer program, or a faster heuristic, can re-schedule the next set of ships and cargoes to be 

deployed. 

A series of optimization models for planning sealift deployment has been developed at 

the Naval Postgraduate School (Aviles 1995, Theres 1998, Alexander 1999, Brown 1999, Loh 

2000).  All of these contribute to our understanding of the problem, but all have significant 

limitations.  For instance, Theres (1998) ignores uncertainty; Aviles (1995) and Brown (1999) 

plan using deterministic models that assume no disruptions will occur and then re-optimize after a 

simulated disruption (an attack) does occur; Alexander (1999) and Loh (2000) have explicit 
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stochastic models, but can handle only small problems and have unrealistic limitations on, or 

relaxations of, post-attack recourse. 

Deterministic airlift optimization models, analogous in concept to the above sealift 

models, have been developed by Killingsworth and Melody (1995), Rosenthal et al. (1997) and 

Baker et al. (2001).  These linear programs model aircraft movements by continuous variables 

rather than the integer variables with which we model ship movements.  A continuous 

approximation of many, relatively small, cargo aircraft is probably appropriate, but such an 

approximation is inappropriate for fewer and much larger ships.  Goggins (1995) and Niemi 

(2000) have developed stochastic-programming variants of the deterministic optimization models 

of Rosenthal et al. (1997) and Baker et al. (2001), respectively, to incorporate aircraft reliability. 

Both models are stochastic programs with simple recourse (e.g., Ziemba 1974); in particular, 

recourse amounts to paying a penalty for exceeding airbase capacity.  So, unlike the model we 

develop here, those models do not encompass dynamic re-routing.  Mulvey and Vanderbei (1995) 

and Mulvey and Ruszczynski (1995) describe a two-stage stochastic program, called “STORM,” 

that assigns aircraft to routes in the first stage and, after realizing random point-to-point cargo 

demands, assigns cargo to aircraft.  In contrast to STORM, our scheduling paradigm does not 

require an a priori commitment to the vehicle routing schedule over the entire planning period.  

Powell et al. (2001) are currently developing techniques based on simulation and dynamic 

programming to handle uncertainty in airlift deployments.  

Sensitivity analysis, parametric programming, scenario analysis and other related ideas 

are frequently (mis-)used in an attempt to determine the effect of uncertain parameters in an 

optimization model.  It is well known by stochastic programmers, but apparently less well known 

in the general OR and military OR communities, that it is usually inappropriate to apply these 

techniques to decision-making problems under uncertainty.  Frequently, activities that provide 

needed flexibility in a stochastic system are not utilized at all in the solution to the optimization 
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problem under any single realization of the uncertain parameters, but these are exactly the kinds 

of problems that sensitivity analysis, parametric programming and scenario analysis attempt to 

exploit.  Below, we discuss these issues in the context of two military stochastic-optimization 

problems from the literature, and refer the reader to Wallace (2000) for a more general 

discussion. 

Whiteman (1999) investigates a network-interdiction problem with uncertain interdiction 

effects using the following general approach: (a) He first solves the deterministic model, an 

integer program, using mean values for uncertain parameters, (b) he then investigates the solution 

for acceptability (sufficient reduction in expected network capacity) using Monte Carlo 

simulation and (c) if it is unacceptable, he finds some near-optimal solutions to the deterministic 

problem and performs the same objective-function estimation procedure until an acceptable 

solution is found.  The near-optimal solutions typically interdict more network components than 

does the original solution and are therefore, intuitively, more robust to failed or partially 

successful interdictions.  While the technique may lead to a good solution that satisfies a specified 

probabilistic criterion (e.g., expected capacity is reduced by at least 80%), there is no guarantee 

that the solution is near-optimal.  When the underlying problem is convex (e.g., a linear program), 

convex combinations of candidate solutions are feasible and hence sometimes advocated.  But 

again, there is no guarantee that such an approach will yield an optimal, or even acceptable 

solution. 

Brooks et al. (1999) propose a technique they call “exploratory analysis” for solving what 

are, essentially, stochastic-programming problems.  A weapons-mix problem is provided as an 

example.  For motivation, they first solve a linear program to assign a given weapons mix (say, 

1,000 weapons of type A, 2,000 of type B and 1,500 of type C) most effectively to a set of 

targets.  The potential target set is known, but the reliability of the weapons against those targets 

is not.  The linear program’s solution is correct only if those reliabilities are known.  
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(“Reliability” is essentially the probability that the weapon will be successfully delivered to kill 

the target.)  The authors then show, using Monte Carlo estimation, that assuming expected 

reliabilities for the weapons produces poor results and that applying standard sensitivity analysis 

(e.g., Dantzig 1963, pp. 265-275) is futile.   As an alternative technique, they propose exploratory 

analysis, which (a) defines an exhaustive set of weapons mixes, (b) culls that set using “expert 

knowledge” to eliminate obviously inferior solutions (c) simulates multiple scenarios of the 

weapons’ reliabilities, (d) uses these scenarios to estimate the effectiveness of each candidate 

weapons mix, and (e) selects the mix having the best sample average.  (Initially, the authors 

consider the results for a single theater or war, but later add scenarios with multiple theaters.)  So, 

using a brute-force enumerative technique, the authors find an arguably good solution to the 

stochastic-programming problem:  “Find the mix of weapons that is best, on average, across a 

large set of reliability values for the weapons.”  Standard stochastic-programming techniques 

would probably lead to that solution, or a better one, more efficiently. 

Stochastic programs, and particularly multi-stage stochastic programs, can be 

computationally expensive to solve.  That fact has probably played a role in leading analysts to 

resort to the kind of approaches outlined above.  Because the type of multi-stage stochastic 

program we develop here has at most one uncertain event, it exhibits quadratic growth in the 

number of time periods instead of the exponential growth characteristic of general multi-stage 

problems.  Infanger (1994, pp. 43-47) describes a different class of multi-period problems in 

which capacity-expansion decisions with long lead-times result in what is effectively a two-stage 

stochastic program. These problems grow linearly in size with the number of time periods.  

Restricting, in some manner, the solution space is another commonly used technique to reduce 

dimensionality of a multi-stage stochastic optimization problem.  For example, in stochastic 

dynamic programming, optimizing over the class of time-stationary policies can help yield 

computationally tractable models (e.g., Bertsekas, 1987, Chap. 5).  In a similar spirit, Mulvey et 
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al. (2000) use nonlinear programming to search the class of “fixed-mix” investment policies in a 

multi-period asset-liability management model; see also Fleten et al. (2000) and Gaivoronski and 

de Lange (2000). 

1.3 Outline of the Paper 

In the remainder of this paper, we first describe SSDM in general terms, and then 

mathematically.  We then describe our simulation of current, rule-based planning methods, which 

we compare to SSDM.  We present computational results using data that represent a deployment 

similar in scope to that of the Desert Shield/Desert Storm deployment of 1991.  The last section 

of the paper provides conclusions and points out areas for further development of SSDM. 

 

2 The Stochastic Sealift Deployment Model (SSDM) 

2.1 Introduction 

This section provides a general and mathematical description of SSDM, which builds 

upon similar models formulated by Alexander (1999) and Loh (2000).  The model consists of 

four main entities, a ship-movement sub-model, a cargo-movement sub-model, linking 

constraints, and non-anticipativity constraints (Wets 1980).   

The ship-movement sub-model routes a ship from an SPOE where it is loaded, to an 

SPOD to be unloaded, and then back to an SPOE, not necessarily its originating port.  But, it also 

allows a ship to be re-routed from one SPOD to another in response to an attack, provided the 

ship has not entered a berth, but is actually waiting just outside the SPOD.  Ships nominally 

require a fixed amount of time to unload their cargo, and they return to some SPOE immediately 

after unloading is complete where they can be directly reloaded for another delivery, or wait until 

needed.  If an attack occurs during unloading, the unloading period is extended by the 

decontamination period.  For simplicity, ships become available for initial use according to a pre-

specified schedule, once the deployment commences.  (Most of these ships are civilian, converted 
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to military use for military contingencies, according to established agreements.)  A more detailed 

model might also incorporate uncertain availability of ships, and even breakdowns and weather-

related delays. 

The cargo movement sub-model is similar to that for ship movement but incorporates 

separate constraints for each commodity called a “cargo package.”  It also adds an echelon of 

variables to move cargo from the SPODs to the final destinations.  This movement of cargo 

would typically be accomplished by trucks or railcars, which are modeled through a single, 

generic transportation mode.  Side constraints control the movement of cargo out of the SPODs 

and reflect cargo-handling capacity of the port in various situations:  There is a nominal cargo-

handling capacity, but capacity goes to zero immediately after an attack and during 

decontamination, and returns to its pre-attack level over a period of time after decontamination is 

complete.  Because of permanent losses to personnel, post-attack cargo-handling capacity might 

never reach its pre-attack level, but this possibility is ignored for the sake of simplicity.  (If the 

post-attack capacity is assumed known, the model can be trivially modified to handle this.  If this 

capacity is uncertain, it simply adds scenarios to be considered.) 

Linking constraints ensure that sufficient ship capacity is scheduled to carry the cargo 

being moved from SPOE to SPOD, being re-routed between SPODs and being moved from 

outside an SPOD into that port to be unloaded.  Because cargo is not assigned to a specific ship, 

the combination of linking constraints and flow-based sub-models does imply a relaxation of real-

world constraints.  In particular, cargo can, in effect, move between ships that are waiting outside 

an SPOD, but this does not occur in our computational examples. 

The model’s variables and constraints are indexed by scenario, which encompasses the 

time and location(s) of the attack, or indicates that no attack occurs.  A solution to SSDM is said 

to be implementable (Rockafellar and Wets 1991) if under any pair of scenarios a and a′, with 
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attack times ta ≤ ta′, all decision variables associated with them are identical through time ta−1.  

Non-anticipativity constraints ensure that this is the case.   

The data set we analyze in this paper has two SPODs located in the Middle East, but our 

assumption of a “single” attack allows a simultaneous attack on both SPODs or on either SPOD 

and not the other.  Scenarios could also encompass varying attack severity because of the 

weapons used or environmental factors, which would translate into longer or shorter 

decontamination periods and recovery schedules.  For simplicity, this severity is fixed in our 

computations. 

The fact that we consider only a single attack substantially reduces the size of our multi-

stage stochastic program.  Figure 1a shows a typical multi-stage scenario tree in which, after the 

first period, an attack may occur in any time period (at a given SPOD, say) during a four-period 

horizon and may occur any number of times.  For instance, the left-most leaf of the tree 

represents the “no-attack scenario” and the right-most leaf represents the “attack-in-every-time-

period scenario.”  Figure 1b illustrates the scenario tree that represents the simplifying 

assumption of SSDM in which at most one attack will occur.  (The actual scenario trees for 

SSDM are somewhat more complicated because of multiple attack types.)  The number of nodes 

and scenarios in the tree of Figure 1a grows exponentially with the number of stages while, in 

Figure 1b, the number of nodes grows quadratically and the number of scenarios grows linearly. 

2.2 Mathematical Description of SSDM 

The mathematical description of SSDM follows a standard format for mathematical 

programs except that indices, sets and data are divided into deterministic and stochastic groups.  

All model elements that depend on  the scenario index a are deemed “stochastic.”  

Deterministic Indices and Index Sets 

 
e E∈    Seaports of embarkation (SPOEs)  
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d D∈  Seaports of debarkation (SPODs) 
 
f F∈  Final destinations (geographic locations where cargo is delivered) 

 
c C∈  Cargo packages, i.e., cargo moving from the same SPOE to the same final destination 

with identical available-to-load dates, and required delivery dates 
 

( )e c  Fixed, originating SPOE for cargo package c 
 

( )f c  Fixed, final destination for cargo c 
 
t T∈   Time periods, T = {1,…,tmax+1 } (nominally days); tmax is the end of the time horizon 

and tmax+1 is a dummy time period 
 

( )e cT T⊆  Allowable shipping periods for cargo c from SPOE e(c) (depends on cargo 
availability dates, shipping delays and latest acceptable delivery date) 

 

Stochastic Indices and Index Sets 

a A∈  Attack scenarios.  In addition to timing, the scenario contains the information on the 
SPOD or SPODs attacked, and could contain the post-attack decontamination time 
and recovery schedule. This set also includes the “no-attack scenario” denoted a0 

 
at  Attack time of scenario a ( max1 at t< ≤ ) for 0a a≠ ; 

0 max 1at t= +   
 

TTa ⊆  Time periods that run from the first period up to but not including the attack time for 
scenario a, i.e., {1, , 1}a aT t= −…  

 
dtaT T⊆  Set of periods t ′  such that if a ship enters SPOD d at time t ′  then it will still occupy 

a berth there at time t (depends on unloading time and any necessary  
decontamination) 

 
*

daT T⊆  Time periods, if any, during which SPOD d remains contaminated under scenario a 

(computed using ta defined above, and δU
dta  defined below) 

  

Deterministic Data  

 
1
edδ  One-way travel time from SPOE e to just outside SPOD d  (time periods) 

 
2
deδ  One-way travel time from SPOD d  to SPOE e  (time periods) 

 
3

dd ′δ  One-way travel time from just outside SPOD d  to just outside SPOD d ′  (time 
periods)  
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F
dfδ  Travel time from SPOD d to destination f  (time periods) 

 
ALD
cτ  Available-to-load date for cargo c.  This is the earliest date (time period) the cargo is 

available at its SPOE for loading 
 

CRD
cτ  Required delivery date (CRD) for cargo c at its final destination f(c) (time period) 

  
MAXδ  Cargo delivered later than MAXCRD

cτ δ+  is considered unmet demand for any type of 
cargo (time periods) 

 
( , )c dτ −  Earliest-possible-arrival date (time period) for cargo c at its destination f(c) given that 

it travels through SPOD d; computed using ALD
cτ , 1

( ),e c dδ and F
, ( )d f cδ   

 
( )cτ +  Latest-possible-arrival date (time period) for cargo c at its destination f(c); defined as 

MAXCRD
cτ δ+  

 

cdtLPEN  Late-delivery penalty (penalty units/ton) for cargo c leaving SPOD d in period t.  The 
penalty is based on the difference between actual and required delivery dates: 

{ }F
, ( )max 0, ( )CRD

cdt d f c cLPEN t
α

δ τ = + −  .  The exponent satisfies 0α > , with 

1α >  used in practice 
 

cUPEN   Penalty for not delivering a required ton of cargo c within its required time window 

(penalty units/ton); { },maxc d t cdtUPEN LPEN>   
 

1ε  Small penalty to discourage unnecessary ship voyages (penalty units/ships) 
 

2ε  Small penalty to discourage unnecessary re-routing of ships (penalty units/ships) 
 
XTOTc Total amount of cargo c required (tons) 
 
VCAP Capacity of a ship (tons) 
 
VBERTHd Berthing capacity at SPOD d (ships) 
 
VINVet Number of ships entering inventory at SPOE e at time t (ships) 
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Stochastic Data 

 
δU

dta  Unloading time for a ship that enters SPOD d in period t under scenario a (time 
periods); includes decontamination time if an attack occurs during unloading. Since 
ships are not allowed to enter an SPOD during decontamination, this parameter is 
defined only for *

daTTt −∈  
 
XCAPdta Capacity of SPOD d to handle cargo at time t under scenario a (tons/time period); the 

nominal capacity drops to zero after an attack and during decontamination, and 
slowly returns to its nominal or near-nominal level after decontamination 

 
aφ  Probability that scenario a occurs 

 
 

Variables 

 
Under scenario a: 
 

etavi  Number of ships in inventory at SPOE e at time t 
 

edtavs  Number of ships starting voyages from SPOE e  to SPOD d at time t  
 

dtavb  Number of ships at waiting area outside SPOD d at time t  
 

dd tavrr ′  Number of ships re-routed from SPOD d to SPOD dd ≠′  at time t  
 

dtavh  Number of ships entering berth at SPOD d at time t  
 

detavr  Number of ships returning from SPOD d to SPOE e at time t  
 

cdtaxs  Tons of cargo c shipped at time t  from SPOE ( )e c  to SPOD d 
 

cdtaxb  Tons of cargo c at waiting area outside SPOD d at time t  
 

cdd taxrr ′  Tons of cargo c re-routed from SPOD d to SPOD dd ≠′  at time t  
 

cdtaxh  Tons of cargo c entering berth at SPOD d at time t  
 

cdtaxi  Tons of cargo c in inventory at SPOD d at time t  awaiting shipment to its final 
destination f(c) 
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cdtaxw  Tons of cargo c transported to its destination f(c) from SPOD d at time t  
 

caxu  Tons of unmet demand for cargo c 
  
 

Formulation 

minimize a cdt cdta a c ca
a c d t a c

LPEN xw UPEN xuφ φ+∑∑∑∑ ∑∑  

 1 2a edta a dd ta
a e d t a d d d t

vs vrrε φ ε φ ′
′≠

+ +∑∑∑∑ ∑∑∑∑  (1) 

subject to:  
21 , ,

, ,
de

et a edta eta etde t a
d d

vi vr vs vi VINV e t aδ− −
− − + + = ∀∑ ∑  (2) 

 1 31, , , ,
 0  , ,

ed d d
dta dta dt a dd taed t a d d t a

e d d d d
vh vs vb vb vrr vrr d t aδ δ ′

′− ′− −
′ ′≠ ≠

− + − + − = ∀∑ ∑ ∑  (3) 

*
, ,

0   , ,U
dta

dta dade t a
e

vh vr d a t T Tδ+
− + = ∀ ∈ −∑   (4) 

, ,
dta

dt a d
t T

vh VBERTH d t a′
′∈

≤ ∀∑   (5) 

*0 , ,dta davh d a t T≡ ∀ ∈     (6) 

*0 , ,deta davr d a t T≡ ∀ ∈     (7) 

( )

,
e c

cdta c
d t T

xs XTOT c a
∈

≤ ∀∑ ∑   (8) 

1 3
( )

1, , , ,
0 , , ,

e c d d d
cdta cdta cdt a cdd tacd t a cd d t a

d d d d
xh xs xb xb xrr xrr c d t aδ δ ′

′− ′− −
′ ′≠ ≠

− + − + − = ∀∑ ∑  (9) 

, , , 1, , ,
0 , , ,U U U

dta dta dta
cdta cd t a cd t a cd t a

xh xi xi xw c d t aδ δ δ+ + − +
− + − + ≤ ∀   (10) 

 , ,cdta dta
c

xw XCAP d t a≤ ∀∑   (11) 

, ( )

, ( )

( )

( , )

,
F
d f c

F
d f c

c

cdta ca c
d t c d

xw xu XTOT c a
τ δ

τ δ

+

−

−

= −

− − = − ∀∑ ∑  (12) 

| ( )

0 , , ,cdta edta
c e c e

xs VCAP vs e d t a
=

− ≤ ∀∑   (13)   
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0   , , ,cdd ta dd ta
c

xrr VCAP vrr d d d t a′ ′ ′− ≤ ∀ ≠∑    (14) 

0   , ,cdta dta
c

xh VCAP vh d t a− ≤ ∀∑   (15) 

All variables are non-anticipative, e.g., 

        , , ,eta eta a avi vi e a a t T T′ ′′= ∀ ∈ ∩   (16) 

All variables are non-negative  (17) 

Ship variables are integer:  , , , , ,eta edta dta dd ta dta detavi vs vb vrr vh vr′  (18) 

Any variable with a time index not in T is fixed to 0, e.g., 

        aTtdddvrr tadd ,,,0 ∉≠′∀≡′   (19) 

2.3 Description of the Formulation 

The basic premise of the model is to meet demands for cargo of various types during 

specified delivery time windows, although this will probably not be possible given limited system 

capacities, especially after attacks.  This component of the objective function  (1), 

 cdt cdta c ca
c d t c

LPEN xw UPEN xu+∑∑∑ ∑ , (20) 

measures the disruption associated with scenario a. The first term corresponds to late deliveries 

with the per-ton penalty cdtLPEN , which will increase as the function τα, where α is a strictly 

positive parameter and τ is the number of periods the cargo is late.  We typically use α > 1 to 

express, roughly, “One ton of cargo late for t periods is worse than t tons of cargo late for one 

period.”  The second term in (20) strongly penalizes cargo not arriving during an acceptable 

delivery window:  Such cargoes are absorbed as unmet demand with a penalty that is higher than 

for the latest acceptable delivery.    Therefore, ignoring the last two terms of (1), this objective 

function measures the total expected disruption for a deployment plan.  We note that large 

inventories of early-arriving cargo could be vulnerable to attack, but within the scope of our 
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model, explicit penalties are unnecessary to handle this.  If early-arriving cargo is vulnerable, it 

ends up being delayed in one or more attack scenarios and is therefore penalized appropriately.  

The last two terms of the objective function are small factors to eliminate unnecessary ship 

movements. 

The ship-movement sub-model is represented by constraints (2)-(7) and associated 

variables.  The cargo-movement sub-model is represented by constraints (8)-(12) and associated 

variables.  Constraints  (13)-(15) link the two sub-models and constraints (16) account for non-

anticipativity, which ensure implementability of the decision variables with respect to the various 

scenarios.  Note that, although these constraints are written for every pair ),( aa ′ , it suffices to 

enforce them for appropriately defined pairs of “consecutive scenarios.” 

Of course, all variables are non-negative and the ship variables are required to be integer; 

see constraints (17) and (18), respectively.  Additionally, variables with time indices outside of T 

do not represent true model entities and must be fixed to 0; see constraints (19). 

Constraints (2) are ship-supply constraints for each SPOE.  The supply of ships at time t 

includes those ships that become available via etVINV  according to a pre-designated plan which 

does not depend on the scenario a (but could if desired); it includes those ships that have returned 

from earlier deliveries ( 2, ,dede t a
vr δ−

); and it includes those ships that have previously been put into 

“inventory” at the SPOE awaiting assignment ( 1et avi − ).  The supply of ships is used to deliver 

cargo ( edtavs ) or is held in inventory ( etavi ). 

Constraints (3) are flow-balance constraints for the ships just outside the SPODs.  A ship 

can arrive from an SPOE ( 1, ,eded t a
vs δ−

) or by being re-routed from another SPOD ( 3, ,d dd d t a
vrr δ ′′ −

).  A 

ship that arrives can “park” outside the SPOD waiting for an available berth ( dtavb ), it can enter 

the SPOD and berth ( dtavh ), or it can be re-routed to an alternate SPOD ( dd tavrr ′ ). 
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Constraints (4) ensure that a ship entering an SPOD ( dtavh ) does not leave and return to 

an SPOE (
, ,U

dtade t a
vr δ+

) until it has time U
dtaδ  to unload, and decontaminate if necessary.  

Constraints (5) ensure that berthing capacity is not exceeded by the ships that have entered the 

SPOD.  Constraints (6) and (7) ensure that no ships enter or leave a contaminated SPOD. 

Constraints (8) are supply constraints for cargo; they are inequality constraints because, 

under certain scenarios, it can be determined that certain cargo cannot reach its destination within 

the allotted time window, so it will not be shipped.  Constraints (9) balance flow of cargo just 

outside the SPODs, analogous to constraints (3) for ships. 

Constraints (10) are inequality versions of flow-balance constraints for cargo inside the 

SPOD.  Cargo that enters the SPOD, at time t ( cdtaxh ) becomes available to enter inventory 

(
, ,U

dtacd t a
xi δ+

) or be shipped out to its final destination (
, ,U

dtacd t a
xw δ+

) after it has been unloaded, and 

possibly decontaminated, at time U
dtat δ+ .  Cargo in inventory from an earlier unloading is also 

available for shipment (
, 1,U

dtacd t a
xi δ+ −

).  These constraints are inequalities because it is possible for 

cargo to arrive so late, or be trapped for decontamination inside the SPOD so long, that it cannot 

reach its final destination in time to be of any value.  Such cargo is unloaded at the SPOD and is 

subsequently ignored by the model. 

Constraints (11) limit shipments of unloaded cargo out of the SPOD depending on that 

SPOD’s cargo-handling capacity.  There is a nominal capacity for each SPOD, which becomes 

zero immediately after an attack, i.e., during decontamination.  The capacity then increases 

toward the nominal capacity during a post-decontamination period following some recovery 

schedule.  Constraints (12) are simply the demand constraints for each cargo, with variables caxu  

absorbing unmet demand. 
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Constraints  (13)-(15) ensure that cargo is transported only if there is sufficient 

capacity on the ships that must move that cargo.  These constraints cover cargo moving from 

SPOE to SPOD, from one SPOD to another, and from just outside an SPOD into its docks.  

 
3 Simulating Rule-Based Planning 

Ideally, we would like compare deployment plans developed through optimizing SSDM 

to plans developed through current rule-based planning methods.  SSDM explicitly incorporates 

and evaluates the total expected disruption across all scenarios, but to evaluate rule-based 

planning we would have to perform the following steps for a given “test case,” i.e., combination 

of data and probability distributions for when and where potential attacks might occur: 

1. Use rules to create a baseline deployment plan, “Plan0,” under the no-attack 

scenario a0. 

2. For each scenario a ≠ a0:  Evaluate the cargo movements using Plan0 up to the 

time of the attack, simulate the disruption caused by the attack, and then plan the 

(re-) deployment of ships and cargo from the attack time onward using a rule-

based procedure.  

3. Compute the total expected disruption using the disruption values computed 

above and the given probability distribution. 

We cannot perform the above procedure exactly because no actual deployment-planning 

software is available to us.  However, we can simulate that procedure by replacing rule-based 

plans with optimization-based plans.  In particular, Plan0 is determined by solving a single-

scenario variant of SSDM under the no-attack scenario—call this model DSDM(a0).  The 

redeployment is determined through another single-scenario model running from ta through the 

end of the horizon given the simulated effects of an attack at time ta—call this model  

DSDM(a|a0).  The entire procedure, or  “deterministic heuristic,” is denoted DSDH. 
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In some of our test cases, attacks can only occur late in the time horizon and it seems that 

planners could probably take this information into account to make the rule-based deployment 

plan more robust against attack.  In such cases, common sense dictates that we push the cargo 

through the system as quickly as possible so as to minimize the amount that is susceptible to 

attack in later time periods.  We modify DSDM(a0) to reflect this by adding a negative penalty 

(i.e., a benefit) into the objective function for early cargo arrivals.  In particular, if one ton of 

cargo package c whose required delivery date is CRD
cτ  actually arrives in period t < CRD

cτ , it incurs 

a “penalty” of ( )CRD
c t αβ τ− − , for some 0β > , but if it arrives after CRD

cτ , it incurs the usual 

penalty of ( )CRD
ct ατ− .  Model DSDM(a0) with this modification is denoted DSDM′(a0), and the 

overall deterministic heuristic that uses this initial model is denoted DSDH′. 

We have found that a single small value of β  will yield solutions to DSDM′(a0) that are 

optimal with respect to the original objective of DSDM(a0), but do push cargo through more 

quickly.  Thus, there are multiple optimal solutions to DSDM(a0) and we are taking advantage of 

that fact.   In effect, we are solving the goal program that (a) optimizes one objective, i.e., it 

minimizes disruption, (b) adds a constraint that requires all solutions be optimal with respect to 

that objective value, and (c) then optimizes a secondary objective of pushing cargo through 

quickly. 

By using DSDH′, we are trying to find an acceptable solution to our stochastic program 

from among multiple-optimal deterministic ones, yet in the introduction we warned that this 

might be impossible.  However, if it is possible at times, we will be satisfied that we have (a) 

provided a stochastic-programming baseline for validating current methods, and (b) improved 

those methods in the short term.  We can still argue that those methods should be replaced in the 

long term, and we will do this with computational results at hand in the next section. 
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Complementing our rule-based planning methods, we devise a procedure to compute a 

lower bound z+ on the optimal objective value of SSDM.  We call this procedure D+. The value z+ 

is computed by solving, for each a A∈ , DSDM(a), which is the deterministic version of SSDM 

with the effect of the scenario a attack incorporated.  The expected disruption computed over all 

scenarios is z+.  This is a lower bound—it is an example of the well-known “wait-and-see bound,” 

e.g., Birge and Louveaux (1997, p. 138)—because in each scenario the optimizing planner is 

assumed to know if and when an attack will occur. 

4 Computational Results 

This section describes the computational results for SSDM, DSDH, DSDH′, and D+.  All 

computation is performed on a 1.7 GHz dual-processor Pentium IV computer with 2 Gb of RAM, 

running under Microsoft Windows 2000.  Models are generated using GAMS (Brooke et al. 

1996) and solved using CPLEX Version 7.0 (ILOG 1999), with a 1% relative optimality 

tolerance. 

4.1    Data 

The data describe a hypothetical deployment to the Middle East requiring the movement 

of about 3,000 ktons of cargo, in 11 different packages, over the course of 100 days aggregated 

into 50 two-day time periods.  The cargo is required between periods 7 and 45 of the deployment 

and the maximum-lateness parameter MAX( )δ  is 7 periods.  There are four SPOEs in the United 

States and Europe and there are two SPODs, denoted d1 and d2, in close proximity to each other 

in the Middle East.  The travel time between SPOEs and SPODs ranges from 6 to 12 periods.  

158 ships become available to load cargo according to a pre-specified schedule over the course of 

the first 15 periods.  Each ship can transport up to 15 ktons of cargo per trip.  This hypothetical 

deployment is similar in scope to the one executed under Operation Desert Shield/Desert Storm in 

1990 and 1991 (Alexander 1999). 
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Each SPOD has berth capacity for at most nine ships at a time.  Under normal conditions, 

a ship is unloaded in two periods and the port has 150 ktons/period of cargo-handling capacity to 

forward that cargo on to its final destination.  Any attack on an SPOD, however, will close the 

port for a number of periods for decontamination, during which the cargo-handling capacity is 

lost entirely and the unloading process is halted.  Decontamination commences immediately after 

the attack and, upon completion, ships continue to unload at their standard rate.  However, other 

cargo-handling capacity at the port only returns to normal gradually, according to a given 

recovery schedule.  We consider a fixed decontamination period of 7 periods with capacity 

recovering at a rate of 25% per period after decontamination.  These values could be part of 

scenario definitions in a more detailed model. 

The objective function of SSDM, equation (1), measures total expected disruption (see 

Section  2.3) to the deployment.  Disruption resulting from late deliveries is measured in terms of 

“weighted kton-periods.” Specifically, k ktons of cargo that are τ  periods late incur a penalty of 

k×τ 1.5.  Disruption resulting from an unmet delivery of k ktons of cargo from package c is 

1.5
ck τ× , where cτ  is a strict upper bound on the number of periods late that package c is still 

considered worth delivering. 

4.2   Test Cases and Results 

In the following, we analyze the benefits of the stochastic solution using combinations of 

attack types and probability distributions we call test cases.  In practice, analysts would develop 

these from intelligence reports.  The attack types are: 

S={ }}{}{ 21 d,d : An attack occurs at SPOD d1 or at SPOD d2, but not both, or no attack 

occurs; 

S={ }}{}{ 211 d,d,d : Mutually exclusively, an attack occurs at 1d , both SPODs are 

attacked simultaneously, or no attack occurs; or 
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S={ }1 2 1 2{ },{ },{ , }d d d d : Mutually exclusively, 1d  is attacked, 2d  is attacked, both 1d  

and 2d  are attacked simultaneously, or no attack occurs. 

The probability distributions for the test cases are defined by (a) the probability of no 

attack, 
0

0.5aφ = , (b) by the assumption that in any given period, an attack of any element of S is 

equally likely, and (c) the following conditional distributions for the timing of an attack:  

U1: Uniform distribution over periods 4 through 40,  

T1: Triangular distribution over periods 4 through 40 with mode 22, 

U2: Uniform distribution over periods 4 through 18, 

T2: Triangular distribution over periods 4 through 18 with mode 11, 

U3: Uniform distribution over periods 26 through 40, and 

T3: Triangular distribution over periods 26 through 40 with mode 33. 

The first distribution, U1, is the “baseline distribution” accounting for almost no 

information.  T1 employs the same range of periods but gives more likelihood to attacks 

occurring in the middle of the deployment.  U2 and T2 represent a situation in which planners 

believe the enemy will strike early in the deployment:  Perhaps the enemy believes, and our 

intelligence suggests, that early strikes will have a strong psychological effect against us and 

compound our scheduling problems in a way that a later strike would not.  U3 and T3 represent 

the anticipation of late strikes:  Perhaps intelligence reports indicate that the enemy will 

experience some delay in deploying his biological weapons. 

Table 1 describes the set of test cases and associated model statistics.  Table 2 displays 

the computational results for the test cases under the various models and solution procedures: 

SSDM, DSDH and DSDH′, as well as the lower-bound procedure D+. 
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The SSDM column of Table 2 reports the total expected disruption, i.e., objective 

function value, for the stochastic model applied to each test case.  All solutions are within 1% of 

optimal and solution times are displayed in parentheses, in elapsed seconds. 

In summary, the results show that 

1. SSDM reduces total expected disruption over the simulated rule-based planning 

of DSDH by an average of 22% with a range of 1% to 47%.  With respect to the 

improved heuristic DSDH′, SSDM reduces expected disruption by an average of 

8%, with a range of 1% to 14%. 

2. Even though DSDH′ was intended to improve results with late attacks (U3 and 

T3), it also performs well relative to DSDH when the attack can occur over the 

widest range of periods (U1 and T1).  Under early attacks (U2 and T2), DSDH 

outperforms DSDH′, but all such differences are small, i.e., at most 0.3%; thus, 

we only discuss DSDH′ in what follows. 

3. The lower bound provided by D+ is below the near-optimal solution value of 

SSDM by an average of 20%.  This indicates that even if DSDH′ does provide a 

good solution, we still must solve SSDM to verify its quality. 

4. Early-attack cases leave the least flexibility for the stochastic program to improve 

upon rule-based planning.  The average reduction in disruption of SSDM over 

DSDH′ is 3%, with a range of 1-6% for the six U2 and T2 cases. 

5. Conversely, the stochastic program has the greatest leverage when attacks can 

only occur late in the deployment.  The analogous average and range for the six 

U3 and T3 cases are 11% and 7-13%.  Finally, the range and average for the U1 

and T1 cases are 8% and 5-11%. 

We explain the general dominance of DSDH′ over DSDH (result 2 above) as follows:  

Even if attacks can occur at any time, it makes sense to push cargo through the system as quickly 
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as possible because, if an attack occurs, delayed cargo has as much slack time as possible to reach 

its destination.  However, pushing cargo quickly is a “double-edged sword”:  The higher 

disruption for DSDH′ compared to SSDM is largely explained by the fact that DSDH′ moves 

cargo too fast to the SPODs in a few scenarios, and a large quantity becomes trapped in the 

attacked SPOD in those scenarios and cannot reach its destination in time.  SSDM better balances 

the speedy arrival of cargo against the flexibility to reroute cargo waiting outside an SPOD that 

may be attacked. 

Table 3 helps investigate the behavior of the various procedures under likely and 

especially disruptive scenarios.  Since the no-attack scenario is likely to occur, we want to know 

if the solutions from the stochastic model are robust in this scenario.  The table shows that they 

are.  The table also shows that the worst-case scenarios for the stochastic model are usually less 

disruptive than the worst-case scenarios for rule-based planning.   

The results above seem to indicate that the stochastic-programming approach can yield 

substantial improvements over rule-based planning, which is represented by a tuned deterministic 

optimization model (arguably an optimistic representation of rule-based planning).  It is important 

to understand when the need for using a model such as SSDM is most acute.  As described above, 

when SSDM has the most time prior to the attack to hedge (i.e., the U3 and T3 distributions), the 

value of the stochastic solution is the largest.  We test this sensitivity with respect to the 

distribution governing the time of attack by considering a triangular distribution, denoted T3′, in 

which we change the mode of the triangular distribution from 33 to 40.  The associated 

computational results for each of the three attack types are shown in Table 4.  The expected 

disruption of SSDM’s solution is better than that of simulated rule-based planning by 25%, 14%, 

and 13% for the three types of attack; these values have increased from 8%, 13%, and 10%, 

respectively, for the original T3 distribution.  These results are consistent with the trend in Table 
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3 of SSDM solutions becoming more valuable as we move from early attack times, to the widest 

range of attack times, to late attack times.  

 
 
 
5 Conclusions 

This paper has devised a specialized, multi-stage stochastic mixed-integer 

programming model for planning the delivery of sealift cargo in a wartime deployment, 

subject to possible enemy attacks on one or more seaports of debarkation (SPODs).  The 

attacks are simulated by halting berthing, unloading and other cargo handling until 

decontamination is complete; the timing and location of the attack are uncertain. Once 

decontamination is complete, post-attack cargo-handling capacity of the SPOD gradually 

returns to normal.  We focus on the effects of biological attacks, but the model could be 

modified for conventional, nuclear or chemical attacks. 

The stochastic program SSDM and two (simulated) rule-based planning schemes 

have been tested with data from a realistic wartime deployment with 158 ships becoming 

available at different times during the deployment, 11 cargo types, four seaports of 

embarkation where cargo is loaded and two SPODs where cargo is unloaded before 

reaching its final destination.  Our test cases assume there is a substantial probability of no 

attack, but if an attack does occur, it occurs with known probability distribution for timing 

and location. 

Expected cargo lateness, measured in weighted ton-periods, improves by up to 

25%, depending on data and probabilistic assumptions, when compared to expected results 

obtained using a simulation of current, rule-based planning techniques.  (In fact, we 

compare against a “tuned” rule-based technique that is rooted in a deterministic 

optimization model and may overestimate how good rule-based techniques can be; hence, 
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our comparisons are conservative.)  However, there is little price to pay in terms of cargo 

lateness for the stochastic solution if no attack occurs.  In conclusion, hedging against a 

possible attack can provide substantial benefits if an attack occurs, and incurs only minor 

penalties if not. 

Our simulations of current rule-based plans have shown that it may be possible to 

establish rules that are more robust against potential attacks early in the deployment 

horizon, without using a special stochastic-programming model.  In these cases, SSDM 

improves over rule-based planning, designed to push cargo through the system as quickly 

as possible, by only an average of 3%.  However, this contrasts with larger averages of 8% 

when an attack may occur at almost any time (uniform distribution for attack time), and 

11% and 17% for two sets of late-attack distributions.  Except in the case of early attack, it 

may be impossible to adjust a rule-based system to behave nearly as well as a stochastic 

one.  Furthermore, it is probably impossible to know how well rule-based planning is 

performing without an optimal, stochastic solution to serve as a baseline lower bound.  

(One standard lower bound is very weak.)  So, rule-based systems can be improved, but 

the stochastic-programming approach will ultimately be superior. 

The current emphasis in the US military’s deployment planning is for providing 

up-to-the-minute tracking of all cargo and transportation assets, with the ability to quickly 

respond to contingencies.  This is no doubt important, but planners can expect more timely 

arrival of cargo into a theater of war if they proactively plan for those contingencies.  

Further testing and development of SSDM is warranted.  The model should be 

tested against wartime deployment situations in other parts of the world.  Conceptually, 

the model is easy to expand for other sources of uncertainty such as the location of the 

cargo-carrying ships when deployment planning is commenced.  Also, SSDM currently 

assumes that if an attack occurs during the deployment, there will only be one, although it 
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may affect more than one SPOD:  The model should, of course, be expanded to consider 

more than one attack, but this will be require more general, multi-stage stochastic-

programming models and solution techniques. 
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Figure 1b. A single-attack 
scenario tree

Figure 1a.  A multiple-attack
scenario tree  

Figure 1.  A standard scenario tree represents multiple attacks on a single SPOD (Figure 1a) and a  
specialized tree represents SSDM’s assumption of at most one attack (Figure 1b). 
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Problem Sizes 
SSDM DSDM(a0) 

Attack 
types 

Distri-
butions |A| 

m n1 n2 m n1 n2 

U1, T1 75 605,346 672,399 44,260 

U2, T2 31 165,170 229,013 
 
{d1},{d2} 

U3, T3 31 321,410 320,965 
18,300 

U1, T1 75 605,346 672,399 43,890 
U2, T2 31 165,170 229,013 

 
{d1},{d1,d2} 

U3, T3 31 321,410 320,965 
18,150 

U1, T1 112 906,674  1,003,004 65,720 
U2, T2 46 264,410 339,270 {d1},{d1},   

{d1,d2} 
U3, T3 46 480,770 475,908 

27,000 

2,691 5,254 596 

 

Table 1. Problem definitions and sizes for the stochastic sealift deployment model SSDM and its 
deterministic counterpart DSDM(a0), which assumes no attack occurs.  Each test case is described by: (a) 
The subsets of SPODs where the attacks may occur (e.g., {{d1},{ d1 d2 }} represents a case where either d1, 
or d1 and d2, may be attacked, but not d2 alone), and (b) the conditional probability distribution for the time 
of attack, given that an attack occurs.  The number of scenarios |A| is also shown.  Problem sizes are given 
in terms of numbers of structural constraints m, continuous variables n1 and binary variables n2.  The sizes 
for SSDM are “raw,” i.e., before substituting out non-anticipativity constraints and making other 
reductions.  The CPLEX preprocessor can reduce n1 and n2 for SSDM by up to 50% and m by up to 80%. 



  7/23/2002 

 34 

 

Attack types Distribu-
tion |A| D+ SSDM DSDH DSDH′ 

U1 75 3,056 
(113) 

4,648 
(368) 

5,686 
(64) 

4,899 
(58) 

T1 75   3,398 
(115) 

4,896 
(409) 

5,519 
(68) 

5,163 
(60) 

U2 31 2,650 
(56) 

4,426 
(63) 

4,474 
(41) 

4,475 
(38) 

T2 31 2,647 
(55) 

4,755 
(62) 

4,785 
(42) 

4,786 
(37) 

U3 31 3,014 
(32) 

4,491 
(106) 

6,620 
(12) 

5,098 
(11) 

{d1}, { d2} 

T3 31 2,943 
(32) 

4,386 
(108) 

6,175 
(12) 

4,715 
(11) 

U1 75 10,951 
(139) 

12,118 
(312) 

14,958 
(72) 

13,310 
(67) 

T1 75 12,182 
(144) 

13,022 
(286) 

15,396 
(71) 

14,456 
(68) 

U2 31 7,959 
(67) 

9,877 
(53) 

10,463 
(47) 

10,480 
(46) 

T2 31 9,148 
(66) 

11,189 
(56) 

11,669 
(47) 

11,707 
(47) 

U3 31 12,320 
(39) 

12,768 
(84) 

18,422 
(12) 

14,438 
(11) 

{d1},{d1,d2} 

T3 31 12,377 
(39) 

12,507 
(84) 

17,847 
(12) 

14,105 
(10) 

U1 112 8,259 
(199) 

9,750 
(1,377) 

11,961 
(101) 

10,466 
(94) 

T1 112 9,418 
(196) 

10,483 
(1,089) 

12,391 
(101) 

11,499 
(94) 

U2 46 6,244 
(99) 

8,301 
(107) 

8,627 
(68) 

8,639 
(66) 

T2 46 6,837 
(104) 

8,979 
(103) 

9,171 
(67) 

9,193 
(68) 

U3 46 9,218 
(55) 

10,084 
(184) 

14,359 
(17) 

11,277 
(15) 

{d1}, {d2},  
{d1, d2} 

T3 46 9,232 
(54) 

9,894 
(190) 

13,874 
(17) 

10,899 
(15) 

       
Table 2. Results for SSDM and related models in ktons×days1.5 of total expected disruption.  Paired values 
are objective value and, in parentheses, solution time in seconds.  All models are solved with a 1% 
optimality gap.  Overall, stochastic planning with SSDM reduces disruption significantly over basic rule-
based planning with DSDH and the improved deterministic heuristic DSDH′.  DSDH′ leads to smaller 
disruption than DSDH except in the “early attack” cases of U2 and T2. 
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No-attack 
scenario 

Worst-case 
scenarios Attack types 

 
Distribution 
 

 |A| 
DSDH′ SSDM DSDH′ SSDM 

U1   75 2,154 14,468 

T1   75 2,004 
17,425 

14,468 

U2   31 1,974 14,060 

T2   31 2,017 
14,092 

14,102 

U3   31 2,004 15,767 

{d1},{d2} 

T3   31 2,034 
17,425 

15,767 

U1   75 2,034 60,253 

T1   75 2,089 
68,584 

60,253 

U2   31 2,017 46,212 

T2   31 2,185 
47,646 

46,212 

U3   31 2,077 54,803 

{d1}, 
{d1, d2} 

T3   31 2,004 
67,867 

58,701 

U1 112 2,049 60,253 

T1 112 2,049 
68,584 

60,253 

U2   46 2,017 46,212 

T2   46 2,017 
47,646 

46,212 

U3   46 2,064 54,803 

{d1},{d2}, 
{d1,d2} 

T3   46 

1,974 

2,004 
67,867 

58,701 

 
Legend: 
 No-attack scenario: Disruption (objective function value) for the deterministic and stochastic 

planning methods when no attack occurs. 
 Worst-case scenarios: Worst disruption, across all scenarios, for the given method.   

  

Table 3. Results for special scenarios for SSDM solutions and solutions of DSDH′, all in 1.5ktons days×  
of disruption.  Columns under “No-attack scenario” show that only a small penalty is paid for hedging 
against potential attacks when none occurs:  DSDH′ gives the disruption for the optimal plan when no 
attack occurs, and the values for SSDM-generated plans, computed against this scenario, are only slightly 
higher. “Worst-case scenarios” show that the worst disruption observed with the stochastic model is usually 
better than the worst disruption observed under rule-based planning (DSDH′). 
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Test Case |A| D+ SSDM DSDH′ 

{{d1},{d2}}-T3′ 31 2,579 
(32) 

3,628 
(102) 

4,551 
(11) 

{{d1},{d1,d2}}- T3′ 31 10,222 
(38) 

10,865 
(81) 

12,410 
(11) 

{{d1},{d2},{d1,d2}}- T3′ 46 7,674 
(53) 

8,680 
(184) 

9,767 
(15) 

    
Table 4. Results for the three types of attacks under a modified triangular distribution for the time of 
attack.  Objective values appear outside of parentheses and run times in elapsed seconds appear within.  
The new distribution for the time of attack, T3′, results from changing the mode of the original triangular 
attack-time distribution T3 from period 33 to period 40. As before, the probability of no attack is 1/2. 

 

 
 

 

 


