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Meteorological forecasts and the pricing of

weather derivatives*

Matthias Ritterab** Oliver Muÿho�a Martin Odeningb

September 1, 2010

In usual pricing approaches for weather derivatives, forward-looking information
such as meteorological weather forecasts is not considered. Thus, important knowl-
edge used by market participants is ignored in theory. By extending a standard
model for the daily temperature, this paper allows the incorporation of meteorologi-
cal forecasts in the framework of weather derivative pricing and is able to estimate the
information gain compared to a benchmark model without meteorological forecasts.
This approach is applied for temperature futures referring to New York, Minneapolis
and Cincinnati with forecast data 13 days in advance. Despite this relatively short
forecast horizon, the models using meteorological forecasts outperform the classical
approach and more accurately forecast the market prices of the temperature futures
traded at the Chicago Mercantile Exchange (CME). Moreover, a concentration on
the last two months or on days with actual trading improves the results.

Keywords: Weather forecasting, weather risk, price forecasting, �nancial markets, temperature
futures, CME

JEL classi�cation: C53, G13, G17, N23

1. Introduction

Weather derivatives are relatively new �nancial instruments to insure against economic con-

sequences of weather risk such us �uctuations of temperature or precipitation. Most weather

derivatives are traded at the Chicago Mercantile Exchange (CME), where futures and options

on temperature, hurricanes, snowfall and frost are o�ered.

Because the underlying, the weather, is not tradeable, the market is incomplete, making it

di�cult to determine prices theoretically. Most pricing approaches use statistical models based
*The �nancial support from the German Research Foundation via the CRC 649 �Economic Risk�, Humboldt-
Universität zu Berlin, is gratefully acknowledged. Moreover, the authors would like to thank the participants
of the CRC 649 Workshop �Weather Derivatives and Risk� and the CRC 649 Conference 2010 for their helpful
comments and discussions on this topic.
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on historical weather data to simulate prices. Meteorological weather forecasts, however, are

usually not included into the model. Thus, important knowledge about weather in the future

and the resulting payo� is ignored.

There are only a few papers dealing with the incorporation of meteorological forecasts into

pricing models for weather derivatives. Alaton et al. [1] mention that meteorological forecasts

should be used for short-term pricing. For long-term pricing, they suggest considering a general

trend which increases or lowers the parameters for the simulation without mentioning a speci�c

method. Jewson & Caballero [16] describe how meteorological forecasts can be used for the

pricing of weather derivatives. Via single and ensemble forecasts up to 12 days in advance, they

derive probabilistic weather forecasts to price derivatives which have already begun or will begin

in the forecast period only. Yoo [18] incorporates seasonal meteorological forecasts into a temper-

ature model. These forecasts predict one of three possible states for the temperature in a future

period (up to one year): above-normal, near-normal or below-normal. This forecasted scenario

determines the parameters of the temperature modelled by an Ornstein-Uhlenbeck process. For

pricing in spot markets, Benth & Meyer-Brandis [2] enlarge the �ltration by future information

to obtain a �ltration representing all available information. They introduce new parameters

called �information yield� and �information premium� and model these parameters for electricity

markets. Benth & Meyer-Brandis [2] argue that �signi�cant parts of the supposedly irregular

market price of risk in electricity markets is in reality due to information misspeci�cation in

the model� [2, pg. 1]. Through index modelling, Dor�eitner & Wimmer [11] calculate the index

outcome depending on the years of historical data used, with and without detrending. They add

meteorological forecasts and compare the results with the CME prices of monthly and seasonal

contracts for US cities between 2002 and 2006. Their approach, however, works only if the fore-

casts reach into the accumulation period. They conclude that meteorological weather forecasts

have to be included into the pricing process.

In this paper, we will introduce a daily modelling approach which also regards meteorological

temperature forecasts. Flexibility is the key advantage of daily modelling; any temperature

index can be easily derived, when a temperature model is determined. Our method also allows

the pricing to include meteorological forecasts, even if they do not reach into the accumulation

period. Therefore, our model is the �rst model that makes general pricing with meteorological

forecasts possible for every temperature contract and every trading time. Furthermore, we apply
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this method to price temperature futures for New York City, Minneapolis and Cincinnati as well

as compare the prices simulated with and without meteorological forecasts with CME market

prices to determine the in�uence of meteorological forecasts on the pricing of weather derivatives.

The results show that prices which include meteorological forecasts re�ect market prices much

better than prices without the use of forecasts. As one would expect, the impact increases with

increasing proximity to the accumulation period.

The paper is structured as follows; in Section 2, we propose a time-discrete autoregressive

model with seasonal variance extended by meteorological forecast data to derive prices of weather

derivatives. The temperature data, the meteorological forecast data and the market price data

for weather derivatives in New York City, Minneapolis and Cincinnati are also presented in this

section. In Section 3, we compare market prices with theoretical prices with and without using

meteorological forecast data and quantify the di�erences. In Section 4, we conclude with some

further discussion.

2. Methods and data

2.1. Pricing of weather derivatives

Financial theory asserts that the arbitrage free price F(t;τ1,τ2) at time t ∈ N of a derivative with

contract period [τ1, τ2] and weather-dependent payo� YM (WM ) at time M > t is calculated as

the discounted, conditional expected payo� based on the �ltration Ft which includes all the

information available at time t [e.g. 12]:

F(t;τ1,τ2) =
1

(1 + r)M−t EQ [YM (WM )|Ft] , (1)

whereWM is the value of a certain weather index at timeM and r ≥ 0 is the interest rate. While

the risk neutral measure Q can be uniquely derived for derivatives written on tradeable assets,

this is not the case for weather derivatives because weather is not tradeable. Thus, the market for

weather derivatives is incomplete. Consequently, the no-arbitrage condition not longer implies a

clear-cut risk neutral measure.

Two directions have been proposed in the literature to overcome the pricing problem for

incomplete marktes. First, one could arbitrarily assume a particular risk utility function for the

market participants. This idea is pursued in the context of marginal pricing [10], indi�erence
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pricing [17] or equilibrium pricing [8, 9]. Second, some researchers have attempted to determine

the unknown risk preference and thus the market price of weather risk implicitly from observed

market price quotations. For example, Alaton et al. [1] compare two contracts for Stockholm

and infer that the market price of risk is not constant. To derive their pricing formulas, Benth &

�altyt
e-Benth [4] use a time-varying function θt which is not speci�ed. Härdle & López Cabrera

[14] analyse data of futures for Berlin to test di�erent shapes of the market price of risk. They

conclude that it is a deterministic, time dependent function with a seasonal structure.

Benth & Meyer-Brandis [2], however, conjecture that the �ltration Ft causes the irregular

pattern of the market price of risk. For the pricing of temperature derivatives, the �ltration

Ft usually contains only the historical temperature values (up to day t−1), yet there is more

information available on the market. In particular, meteorological temperature forecast models

exploit additional information such as air pressure or wind speed, and process this information

within complex physical models. Because forecasts from these models are available to market

participants, they should be used and included in temperature models, which form the basis of

theoretical pricing approaches.

From a statistical perspective, several alternatives exist for modelling the stochastic process

W in Equation (1) [15]. One approach is to estimate the distribution of the underlying weather

index (e.g. accumulated temperatures or rainfall) at maturity M directly, either parametrically

or non-parametrically. The estimated distribution is then used for simulating the derivative's

payo� YM (WM ). This procedure is called �index value simulation�.

Alternatively, one can estimate a stochastic process for the generic weather variable (e.g. tem-

perature) and derive any index of interest. The latter approach, which is called �daily simulation�,

is more �exible and statistically more reliable compared to the index value simulation. In the

next subsection, a daily temperature model is presented.

2.2. Temperature model

The underlying weather indices of the derivatives traded at the CME for US cities are directly

derived from the daily average temperature Tt, which is de�ned as the mean of the minimum

and the maximum temperature at a weather station on a day t, t ∈ N. Our model is based on a

time-discrete model for the daily average temperature and is similar to the model which Benth

et al. [5] use for Stockholm temperature data and which Härdle & López Cabrera [14] use for
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Berlin temperature data. The daily average temperature Tt on day t, t ∈ N, is given by:

Tt = a+ bt︸ ︷︷ ︸
trend

+
P∑
p=1

[
ap cos

(
2πpt

365

)
+ bp sin

(
2πpt

365

)]
︸ ︷︷ ︸

seasonality

(2)

+
L∑
l=1

ρt−lTt−l︸ ︷︷ ︸
autoregression

+ σtεt︸︷︷︸
stochastic

,

σ2t =

Q∑
q=1

[
cq cos

(
2πqt

365

)
+ dq sin

(
2πqt

365

)]
, εt ∼ N (0, 1),

with L,P,Q ∈ N and a, a1, . . . , aP , b, b1, . . . , bP , ρt−L, . . . , ρt−1, c1, . . . , cQ, d1, . . . , dQ ∈ R.

It consists of the following components:

• A linear trend captures the long-term development of the temperature.

• On average, the temperature in the summer is higher than in the winter. Thus, the

temperature contains a seasonal component which is described by a truncated Fourier

series of order P .

• The temperature of one day depends on the temperature on the days before. This autore-

gression is captured by an AR-process of lag L.

• Moreover, the temperature is random, so a stochastic component is needed. Empirical data

shows that the variance has a seasonal component and is, on average, higher in the winter

than in the summer. We model the stochastic part by a seasonal variance and a standard

normally distributed random variable.

The choice of the temperature model is a crucial decision, which is intensively discussed in the

literature. As a new approach, Dupuis [13] proposes to model the minimum and maximum tem-

peratures separately with extreme value theory. For modelling the daily average temperature,

Campbell & Diebold [7] suggest a GARCH-process as an alternative for the variance to approx-

imate the cyclical volatility. Jewson & Brix [15] suggest time series models such as ARMA,

ARFIMA and (S)AROMA models. For continuous time, models such as an Ornstein-Uhlenbeck

process [4] are widely used and are sometimes driven by a fractional Brownian motion [6] or a

Lévy process [3]. A widely accepted model is the CAR (continuous autoregressive) model [5].
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This model is the continuous-time counterpart to the model we use. Because of the continuity,

this model is helpful for the theoretical analysis of pricing and hedging decisions. We chose

the AR model because it captures the main properties of the temperature (trend, seasonality,

autoregression and seasonal variance) and is not too di�cult to estimate; however, depending on

the observed city, other models might outperform the AR model. Nevertheless, the AR model is

widely accepted as a su�cient compromise between manageability and accuracy.

The two indices used in this study and traded at the CME for US cities, heating degree

days and cooling degree days, are derived from the daily average temperature Tt as follows: the

(cumulative) heating degree days (HDD) over a period [τ1, τ2], τ1, τ2 ∈ N, τ1 ≤ τ2, with threshold

K (usually 18 ◦C/65 ◦F) are de�ned as the sum of the daily heating degree days in the period,

i. e.

HDD(τ1, τ2) =
τ2∑
t=τ1

HDDt =
τ2∑
t=τ1

max(0,K − Tt). (3)

The (cumulative) cooling degree days (CDD) over a period [τ1, τ2], τ1, τ2 ∈ N, τ1 ≤ τ2, with

threshold K (usually 18 ◦C/65 ◦F) are de�ned as the sum of the daily cooling degree days in the

period, i. e.

CDD(τ1, τ2) =
τ2∑
t=τ1

CDDt =
τ2∑
t=τ1

max(0, Tt −K). (4)

For most of the contracts, the contract period [τ1, τ2] is one calendar month. After this

accumulation period, the index outcome WM is known and the �tick size� (20 $ for US cities)

converts the outcome into a monetary amount, which is the payo� of the contract YM (WM ).

2.3. Extended model

In this subsection, we explain how we include the forecast data into the temperature simulation

and how we simulate the prices of weather derivatives.

In usual pricing approaches for weather derivatives, the �ltration Ft consists only of the his-

torical temperatures. We will later refer to the model based on this �ltration by �NMF� for �no

meteorological forecast�. Benth & Meyer-Brandis [2] propose to enlarge this �ltration and to use

the �ltration Gt, Ft ⊂ Gt, which contains all available information that is relevant for the future
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development of the underlying. This �ltration Gt, however, is rather theoretical as it is di�cult

in practise to incorporate all of the available information into the model in practice.

For our extended model, we enlarge the �ltration Ft by adding a limited number of meteoro-

logical forecast data. Instead of using only the historical temperatures T0, . . . , Tt−1 available at

time t, we additionally use meteorological temperature forecasts k days in advance, calculated

on day t. We call this enlarged �ltration GMFk
t with k ∈ N0 describing the number of days

in advance that meteorological forecasts are considered. For example, GMF0
t means that we add

meteorological forecast data for the same day (t+0) and GMF13
t means that we use meteorological

forecast data up to 13 days in advance (t+0, t+1, . . . , t+13). As a result of limited data, the

maximum for k is 13 in this study, yet this number could in general be greater than 13. In the

following, we use the notation:

Ft ⊂ GMF0
t ⊂ GMF1

t ⊂ GMF2
t ⊂ . . . ⊂ GMF13

t ⊂ Gt. (5)

Apart from the historical temperature data, the weather service uses additional information such

as atmospheric processes to forecast temperatures. We assume that the meteorological forecast

data up to 13 days in advance is the best information we have about the future temperature

evolution � even better than forecasts made by our statistical temperature model. Thus, the

meteorological forecasts are added to the historical temperature data as if they were actually

observed values.

If we want to simulate the price of a temperature futures with accumulation period [τ1, τ2] on

a day t (see Fig. 1), we know the historical daily average temperatures from a starting day (t0)

to one day before (t−1). Moreover, we have meteorological temperature forecast data which are

calculated on day t for the same day (t), the next day (t+1) and up to k days in advance. Based

on this new, extended time series with data from t0 to t+k, we adjust the time-discrete AR-model

(Subsection 2.2) to the data for day t. The orders of the two truncated Fourier series (P,Q)

and the lag of the autoregression (L) are set beforehand, as they do not change every day. The

other parameters, however, are estimated newly for every day t depending on the temperature

and forecast data available on that day.

With this model, we can simulate the temperatures for every day after t+k, especially for

[τ1, τ2] which is the accumulation period of the contract, and calculate the resulting payo� of the
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HDD (Eq. (3)) or CDD contract (Eq. (4)). By using Monte-Carlo simulation, this procedure is

repeated 10 000 times for every day t. The mean of these 10 000 simulated prices represents the

expected payo� YM (WM ). The theoretical prices of the contract are set equal to the expected

payo� under the real-world probability measure P, depending on the �ltration:

F̂NMF
(t;τ1,τ2)

= EP [YM (WM )|Ft] , (6)

F̂MFk
(t;τ1,τ2)

= EP

[
YM (WM )|GMFk

t

]
. (7)

Compared to Equation (1), we use the simplifying assumptions that the market price of risk θ and

the interest rate r are 0, so Q = P. One reason is that the interest level is quite low and we deal

with short-term pricing. Moreover, we aim to compare the di�erences between market prices and

theoretical prices with and without meteorological forecasts and not to describe market prices

perfectly. Thus, further assumptions about the market price of risk or the interest rate are not

required, as they would change the absolute values of the theoretical prices only and not the

di�erences.

Based on the number of meteorological forecasts we use, we obtain prices simulated at time

t for the models NMF (no meteorological forecasts, Eq. (6)), MF0 (meteorological forecast for

the same day), . . . , and MF13 (meteorological forecasts 13 days in advance, Eq. (7)). We repeat

this procedure for every day t in the trading period and obtain theoretical prices for the futures

based on the di�erent models.

Thus far, this procedure considered the general case only in which neither the historical data

nor the meteorological forecast data overlap with the accumulation period of the contract, so that

all the temperatures in this period have to be simulated. If these data last into the accumulation

period, however, we use these values directly and simulate temperatures only for the rest of the

period. As a result, no simulation is required, if we are close to the end of the accumulation

period where historical data and meteorological forecast data cover the whole period.

There are alternative approaches for incorporating the forecast data. Jewson & Caballero [16]

suggest evaluating past meteorological forecast data to obtain additional information. Based on

past meteorological forecast data, one could derive a conditional mean forecast and, furthermore,

compare it with reality to �nd systematic errors.
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Temperature model fitting
(AR-model)

Historical temperature data
[t0, ... , t-1]

Meteorological forecast data
[t, ... , t+k], k[0,13]

Temperature simulation
[t+k+1, ... , 1, ... ,2]

Payoff simulation
[1,2]

if t+k
≥


1

if t-1
≥


1

Figure 1: Model for payo� simulation on day t

There are two reasons why we do not pursue this approach here. On the one hand, we concen-

trate on the simulation with information accessible on one day; usually, historical temperatures

and meteorological forecasts calculated on the same day for a few days in advance are available.

It is unlikely that market participants have an archive of historical meteorological weather fore-

casts, which they can evaluate. On the other hand, we presume that the weather service itself

evaluates its meteorological forecasts. If the forecasts were biased, the weather service would

probably adjust them.

Jewson & Caballero [16] also suggest the pruning method to increase weight of the meteorologi-

cal forecasts. There, two probability densities are calculated. The �rst is based on meteorological

forecasts and the second is based on historical temperatures. By weighting these densities, paths

for future temperatures can be simulated. The problem with this method is that calculating a

density based on 14 meteorological forecast values is not useful. Thus, this method would again

lead to an evaluation of the historical meteorological forecast data.

After having simulated theoretical prices with di�erent models depending on the number of

meteorological forecasts used, we compare them with the daily observed market prices at the

CME. Thereby, we will examine if theoretical prices with meteorological forecasts predict market

prices better than theoretical prices which do not use meteorological forecasts. The goodness of
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the prediction is calculated through the root mean squared prediction error (RMSPE) de�ned as

RMSPE(F̂ , F ) =

√√√√ 1

N
·
N∑
i=1

(
F̂ti − Fti

)2
. (8)

This RMSPE measures the di�erence between the actual observed market price F and the the-

oretical price F̂ which is calculated by di�erent models without meteorological forecasts (NMF)

and with meteorological forecasts (MF0�MF13) as it accumulates the quadratic di�erence be-

tween the prices for every day in the considered period [t1, tN ].

In addition to the RMSPE, we display the correlation coe�cient. If meteorological weather

forecasts in�uence the pricing of the derivatives, this correlation should increase when the mete-

orological forecasts are included in the pricing. Later, we will calculate the correlation for every

model and contract as well as have a closer look at the means of the correlations for di�erent

cities which is obtained via Fisher transformation.

We will apply these methods in Section 3 to compare the results based on di�erent models.

2.4. Data

In this subsection, we present the data of the historical temperatures, the meteorological forecasts

and the market prices used in this study to examine the di�erences between the prices with and

without the use of meteorological forecasts.

For historical temperature data, we use temperature data from New York City � La Guardia

Airport, Minneapolis � St. Paul International Airport and Cincinnati � Northern Kentucky

Airport from 01/01/1997 to 28/02/2010 provided by the CME. To obtain years of equal length,

leap days were removed from the data.

Furthermore, we have point forecast data fromWeatherOnline1 from 29/12/2008 to 12/02/2010

with a few days missing2. The dataset consists of forecasted minimum and maximum tempera-

tures from 0 to 13 days in advance, i. e. 14 days, for New York City, Minneapolis and Cincinnati.

1The authors cordially thank H.Werner and U.Römer from WeatherOnline for providing meteorological forecast
data.

2No forecast data are available for 12/01/2009, 21/01/2009, 14/08/2009, 29/08/2009,19/09/2009, 08/10/2009,
18/10/2009, 23/11/2009, 30/11/2009. Incomplete forecast data are available for 07/01/2009, 08/01/2009,
25/01/2009 (forecast 13 days in advance are missing), 26/01/2009 (forecasts 12 and 13 days in advance are
missing).
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We compare our theoretical prices with the market prices reported at the CME as �last price�

for every weekday3. We consider monthly futures contracts for New York, Minneapolis and

Cincinnati from February, 2009 to January, 2010 as they overlap with the period of the me-

teorological forecast data. We chose these cities due to their high total trading volume in the

period, New York (42.253) and Minneapolis (11.190), compared to other cities in our dataset.

The volume in Cincinnati is lower (6.782), but this volume is distributed over a higher number

of trading days. A detailed description of the contracts, the number of trading days, the traded

volume, the days with a volume larger than zero4 and the payo�s are listed in Table A.1 (New

York), Table A.2 (Minneapolis) and Table A.3 (Cincinnati).

3. Results

In this section, we frist present the results for the temperature model (Subsection 3.1). Subsection

3.2 contains a short analysis of the forecast data. The main part of this section consists of

the presentation of the HDD and CDD futures prices and the comparison with market prices

in Subsection 3.3. Finally, we will check our results for hypothetically perfect meteorological

forecasts (Subsection 3.4).

3.1. Historical temperatures

At �rst, we study the historical temperature data until 31/12/2008 (12 complete years) and test

the temperature properties mentioned in Subsection 2.2 for our temperature data. Moreover, we

determine the orders of the two truncated Fourier series (P,Q) and the lag of the autoregression

(L). Later, as mentioned above, these numbers are �xed, opposite to the other parameters of

the model, which are estimated every day.

According to the AIC and BIC, the order of the Fourier series of the seasonality term P is set

to equal three for all three cities. After removing trend and seasonality, we check the residuals for

autoregression. The autocorrelation function and the partial correlation function of the residuals

show an autoregressive pattern and indicate that the lag of the autoregression is L=3 for all

3We obtained the data and daily trading volume from Bloomberg via the Research Data Center (RDC) of the
Collaborative Research Center (CRC) 649 �Economic Risk�.

4The question arises how a market price for a day is reported if the traded volume on that day is zero. Ac-
cording to the guidelines of the CME, bid/ask information, trade information and market information from
third party sources are considered when obtaining prices for every trading day. (CME Group: Weather
Futures and Options Settlement Guidelines, www.cmegroup.com/trading/weather/files/Weather_Futures_
and_Options_Settlement_Guidelines.pdf)
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Figure 2: Quadratic di�erence of the meteorological forecasts and the temperature model com-
pared to the observed temperature in New York in 2009

three cities. The squared residuals without trend, seasonality and autoregression still show a

seasonality in the autocorrelation function, indicating seasonality in the variance. In fact, a

higher variance in the winter than in the summer is observed in most studies about temperature

models [e.g. 1, 5, 14]. According to the AIC and BIC, the order of the Fourier series of the

seasonality in the variance is set to Q=1 for all cities. The histograms of the residuals without

trend, seasonality, autoregression and seasonal variance indicate a standard normal distribution

of these residuals. The Kolmogorov-Smirno� test does not reject the normality hypothesis at the

5% signi�cance level.

3.2. Meteorological forecasts

Using meteorological forecast data in our model is appropriate and reasonable as these data are

better than data simulated by the statistical temperature model. A comparison of the quadratic

deviation of meteorological forecasts from observed temperatures and the quadratic deviation of

temperatures simulated by the statistical model in New York in 2009 shows that meteorological

forecasts outperform the statistical model (Figure 2). This �nding con�rms our motivation for

using meteorological forecast data; however, the quadratic deviation declines with increasing

forecast periods. For more than 10 days, the statistical model even appears to be more accurate

than meteorological forecasts, at least in 2009.
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Figure 3: Observed and simulated prices of an HDD contract for January, 2010 in New York

3.3. Futures prices and information premium

Applying the methods described in the previous section, we obtain theoretical prices for the

di�erent models and contracts. As an example, the results for the HDD contract in January,

2010 with a reference station in New York are depicted in Figure 3, measured in index points.

The CME price as well as the theoretical prices with and without meteorological forecasts are

constant for a rather long trading period. No signi�cant di�erence between the NMF and the

MF13 model can be observed in the �rst months. Looking at the last two months, however,

reveals stronger �uctuations of the prices and di�erences between the models. For this HDD

contract, the MF13 simulated price is closer to the CME price than the one simulated without

meteorological forecasts.

Benth & Meyer-Brandis [2] introduce the term �information premium� and de�ne it as the

di�erence between the theoretical prices calculated with and without using additional information

such as weather forecasts. This premium describes how theoretical prices change over time

if meteorological forecasts are considered. Figure 4 shows the information premium for the

same HDD contract as in Figure 3, as well as the mean of the information premium for all

of the twelve contracts for New York, plotted against the time to maturity. Obviously, the

information premium is close to zero until about 60 days before the contract expires. Thereafter,

the information premium has a considerable size, either positive or negative. For an HDD

contract, it is negative (positive) if the meteorological forecasts are higher (lower) than the

forecasts from the statistical model. The opposite is true for a CDD contract.
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Figure 4: Information premium for the HDD contract for January, 2010 in New York and its
mean for all the twelve New York contracts

For each city, the RMSPE is calculated for every contract and model separately. The means

of the RMSPE for the di�erent models for New York, Minneapolis and Cincinnati are depicted

in Table 1. The means show that the RMSPE decreases from 24.1 to about 20 (up to 18%)

for New York, from 32.4 to about 30 (up to 9%) for Minneapolis, and from 34.7 to about 30

(around 13%) for Cincinnati if meteorological forecast data are used. The RMSPE for the twelve

observed contracts with a reference station New York is reported in Table A.4. It decreases for

every contract for some models which include meteorological forecasts.

The absolute value of the RMSPE does not have an important role because we compare the

improvements caused by the use of the meteorological forecast values only. The error for the New

York CDD contract in April, for example, is lower than the error for other months. However,

this does not imply that the prediction for April is better. The theoretical prices for the April

CDD contract (<50) and its outcome (32.5) are much lower than the ones for the other contracts

in New York (see Table A.1 for the outcomes), which causes the lower error. Note that we do

not perfectly predict prices and that in most cases an extra premium such as the market price of

risk should be taken into account, which would further reduce the absolute value of the RMSPE.

The constant gap between the simulated and the actual prices in the �rst months observable in

the left panel of Figure 3 likely re�ects this aspect.
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RMSPE Model
NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

New York 24.1 23.8 23.4 23.1 22.3 22.1 21.6 21.6 20.9 20.7 20.3 20.0 19.8 19.9 20.0
Minneapolis 32.4 31.5 30.9 30.3 30.0 29.7 29.6 29.5 29.6 29.6 29.6 29.5 29.6 29.8 30.3
Cincinnati 34.7 34.3 33.5 32.8 32.2 32.1 31.8 31.6 31.2 30.8 30.6 30.3 30.2 30.0 30.5

Table 1: Mean of RMSPE for di�erent contracts and models (whole trading period)

RMSPE Model
2 months NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

New York 30.8 30.0 28.9 27.7 26.1 25.2 24.2 23.7 22.5 22.0 21.6 21.1 20.9 21.3 21.4
Minneapolis 42.8 40.5 38.9 37.5 36.4 35.3 33.6 32.9 32.6 32.3 32.6 32.7 33.0 33.3 34.1
Cincinnati 44.9 43.9 42.0 40.3 38.7 37.9 36.5 35.3 34.0 32.6 31.8 31.2 31.0 30.3 30.6

Table 2: Mean of the RMSPE for di�erent contracts and models (last 2 months only)

Figure 4 reveals that the information premium is signi�cantly di�erent from zero in the last 60

days until maturity, resulting in larger di�erences between the models in this period. Thus, we

calculate the RMSPE for the last two months of the trading period (the accumulation period and

the month before) only. Compared to the RMSPE for the whole period, the means for the three

cities (see Table 2) show a higher decrease (between 25% and 33%) if meteorological forecast

data is used. The results for all the contracts and all the models for New York for the last two

months are reported in detail in Table A.5.

As mentioned above, the CME calculates market prices even if there is no trading on that day.

One could conjecture that only prices which are the result of active trading capture all relevant

information. To check this hypothesis, we con�ne the calculation of the RMSPE to those days

on which the trading volume is larger than zero. For the means, we obtain an improvement of

up to 35% for New York, up to 40% for Minneapolis and up to 54% for Cincinnati (see Table

3). Nevertheless, these results should be interpreted with care because the calculation of the

RMSPE is for some contracts based on only one or two days (see Tables A.1-A.3). The detailed

results for New York for every model and contract are reported in Table A.6.

All the results for the RMSPE based on the whole period, the last two months and the

days with a volume larger than zero, as well as for the correlation are shown in Figure 5 (New

RMSPE Model
Vol>0 NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

New York 36.6 35.8 35.4 33.2 30.6 29.1 27.6 27.2 25.3 24.8 24.1 23.2 22.9 23.8 23.8
Minneapolis 54.3 48.8 45.0 43.8 40.4 36.3 32.5 31.9 32.8 32.3 34.1 32.8 32.8 34.2 35.1
Cincinnati 58.0 55.1 49.1 45.7 47.8 45.5 44.2 40.9 35.8 31.1 29.5 28.6 28.7 27.2 26.8

Table 3: Mean of the RMSPE for di�erent contracts and models (for days with trading volume>0)
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Figure 5: Average nRMSPE (whole period, last 2 months, days with volume>0) and the corre-
lation coe�cient for New York

York), Figure 6 (Minneapolis) and Figure 7 (Cincinnati) where we compare the means for the

normalized5 RMSPE (nRMSPE) and the correlation coe�cients for the di�erent pricing models.

All RMSPE graphs decrease and the correlations increase if meteorological data is included. It is

noticeable that many graphs seem to turn at the end, indicating that there is an optimal number

of meteorological forecasts that should be used. This �nding is in line with the aforementioned

result that the meteorological forecasts many days in advance in 2009 were worse than the

forecasts from the statistical model.

The fact that meteorological weather forecasts in�uence the pricing of weather derivatives

is also con�rmed by calculations of the correlation coe�cient. The mean of the correlation

coe�cients of the three cities is presented in Table 4. Compared to the model without forecasts,

the correlation increases for most of the contracts when all of the forecast data is used. The mean

of the correlations rises from 0.62 to 0.78 (New York), from 0.65 to up to 0.75 (Minneapolis),

and from 0.64 to 0.80 (Cincinnati). More detailed results for every contract and model for New

York are reported in Table A.7.

5�Normalized� here means that we set the RMSPE of the model without meteorological forecasts equal to 1 for
every calculation method. This helps to compare the improvements caused by meteorological forecasts for the
RMSPE which are calculated by di�erent methods.
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Figure 6: Average nRMSPE (whole period, last 2 months, days with volume>0) and the corre-
lation coe�cient for Minneapolis
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Figure 7: Average nRMSPE (whole period, last 2 months, days with volume>0) and the corre-
lation coe�cient for Cincinnati

Correlation Model
NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

New York 0.62 0.63 0.64 0.65 0.68 0.68 0.69 0.67 0.71 0.73 0.74 0.76 0.77 0.77 0.78
Minneapolis 0.65 0.67 0.68 0.69 0.70 0.72 0.74 0.75 0.75 0.74 0.73 0.73 0.72 0.72 0.70
Cincinnati 0.64 0.65 0.69 0.71 0.73 0.73 0.75 0.76 0.77 0.79 0.80 0.81 0.80 0.81 0.80

Table 4: Mean of the correlation coe�cients for di�erent contracts and models
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RMSPE Model
NMF MF13 MF13perfect

New York 24.1 20.0 21.7
Minneapolis 32.4 30.3 34.9
Cincinnati 34.7 30.5 31.6

Table 5: Mean RMSPE for di�erent contracts and models

3.4. Perfect forecasts

Clearly, a variety of meteorological forecast models exist and one might object that the results

presented in this study are biased because market participants at the CME did not use the same

forecast as we did. Perhaps the price is more in�uenced by other meteorological forecast data

and better results were obtained with di�erent forecast data.

Unfortunately, we do not have access to other meteorological forecast data to check this hypoth-

esis. Nevertheless, from an ex-post perspective one can generate better and even perfect forecasts

by using actual temperatures. Instead of adding meteorological forecast data to the �ltration,

we add the actual temperatures 13 days in advance as this is what the best weather service could

forecast for the next days. We call this �ltration GMF13perfect
t . Note that GMF13perfect

t = Ft+14.

The means of the RMSPE for the model including perfect forecasts 13 days in advance for

New York, Minneapolis and Cincinnati are presented in Table 5. More detailed results for New

York can be found in Table A.8. It turns out that the model with actual (imperfect) temperature

forecasts is superior to the model using perfect temperature forecasts for all three cities. This

result is not surprising because market participants have access to imperfect meteorological

forecasts only and no other information can be incorporated in the observed futures prices.

Moreover, we conclude that the results would not signi�cantly change if market participants

used meteorological weather forecast di�erent from ours.

4. Discussion and conclusion

In this article we compared the outcome of di�erent pricing models for temperature futures at

the CME. The pricing models di�er in the information set that is used to predict the expected

weather index at maturity. Standard pricing models use a time series approach, i.e. predictions of

the underlying weather variable are simply based on its own history. Thereby, other information

which is available at the present time is ignored. Nevertheless, such information is incorporated
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into meteorological forecasts and it is likely that market participants utilize this information

when trading weather derivatives. Our results demonstrate that the inclusion of meteorological

forecasts has a clear impact on the price predicted by theoretical models. Theoretical prices

which incorporate meteorological forecast are much closer to actual futures prices observed at

the CME compared with a benchmark model without such forecasts. Admittedly, this e�ect

is signi�cant for the last two months before expiration only because reliable forecasts are only

available in the short term. We also found that the value of meteorological forecasts declines

with a longer forecast horizon.

The purpose of our modelling e�ort was not to outperform the market, but to explain observed

market prices. Nevertheless, our �ndings are also relevant from an ex-ante perspective. As

mentioned above, many researchers have attempted to estimate the market price of weather risk

implicitly from observed price quotations and have applied this parameter to obtain arbitrage-

free prices for other locations or for any other type of index. When measuring the market price

of risk as a residual component which relates theoretical prices to observed prices, it is important

that theoretical prices capture all available information. Otherwise, the estimation of the market

price of risk will be biased and this error will translate into errors in the price of the weather

derivative. Against this background, many empirical results on the size and the structure of the

market price of risk appear questionable. Thus, we recommend an inclusion of meteorological

forecasts when analyzing the market price of weather risk empirically.

Our results provide the �rst evidence for the value of meteorological forecasts when pricing

weather derivatives. However, a generalization of our results requires a broader empirical study

which includes more cities and contracts as well as other weather indices. Moreover, the incorpo-

ration of probabilistic instead of deterministic forecasts would be interesting, where probabilities

for future temperatures instead of single values are reported by the weather service.
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A. Appendix

New York Trading days Traded volume Days with vol>0 Payo�
Feb09 HDD 38/247 4225/4809 22/26 787.0
Mar09 HDD 61/217 5496/6216 26/30 718.5
Apr09 CDD 82/143 0 0 32.5
May09 CDD 102/249 4550 12 48.5
Jun09 CDD 124/185 3635 23 126.5
Jul09 CDD 145/206 2100 20 293.5
Aug09 CDD 166/228 5878 20 394.5
Sep09 CDD 187/249 4575 15 114.5
Oct09 HDD 66/68 1895 14 262.0
Nov09 HDD 172/177 2555 14 392.5
Dec09 HDD 185/189 2646/3211 21/23 872.5
Jan10 HDD 205/209 2829 14 992.5

Table A.1: Futures contracts for New York used in this study overlapping with the period of
the meteorological forecast data; the number of trading days, the traded volume,
the number of days with volume>0 and the payo�s are shown. If two numbers are
depicted, this indicates that less data than available were used because of missing
meteorological forecast data.
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Minneapolis Trading days Traded volume Days with vol>0 Payo�
Feb09 HDD 38/247 668/752 8/12 1238.5
Mar09 HDD 61/217 547/651 7/10 1017.0
Apr09 CDD 82/143 0 0 1.5
May09 CDD 102/249 100 1 38.0
Jun09 CDD 124/185 1400 5 153.5
Jul09 CDD 145/206 950 2 164.5
Aug09 CDD 166/228 2400 12 158.0
Sep09 CDD 187/249 1500 2 104.0
Oct09 HDD 64/66 150 2 676.5
Nov09 HDD 163/167 825 7 669.0
Dec09 HDD 184/188 1958/2262 15/17 1479.5
Jan10 HDD 201/206 200 4 1610.5

Table A.2: Futures contracts for Minneapolis used in this study overlapping with the period of
the meteorological forecast data; the number of trading days, the traded volume,
the number of days with volume>0 and the payo�s are shown. If two numbers are
depicted, this indicates that less data than available were used because of missing
meteorological forecast data.

Cincinnati Trading days Traded volume Days with vol>0 Payo�
Feb09 HDD 38/247 272/440 7/10 819.0
Mar09 HDD 61/217 931/1139 9/12 543.0
Apr09 CDD 82/143 0 0 36.5
May09 CDD 102/249 1450 6 38.0
Jun09 CDD 124/185 425 6 240.5
Jul09 CDD 145/206 515 7 164.5
Aug09 CDD 166/228 225/325 2/3 225.0
Sep09 CDD 187/249 470 4 117.0
Oct09 HDD 64/66 350 6 408.0
Nov09 HDD 163/167 375 5 526.0
Dec09 HDD 184/188 725/875 7/8 983.5
Jan10 HDD 204/208 250 3 1183.0

Table A.3: Futures contracts for Cincinnati used in this study overlapping with the period of
the meteorological forecast data; the number of trading days, the traded volume,
the number of days with volume>0 and the payo�s are shown. If two numbers are
depicted, this indicates that less data than available were used because of missing
meteorological forecast data.
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RMSPE Model
NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

Feb09 28.8 28.2 29.4 30.5 28.1 27.3 26.1 28.9 28.0 27.1 26.1 24.0 20.3 17.9 18.8
Mar09 22.9 22.6 22.3 21.8 19.8 20.5 20.1 21.0 20.2 19.7 20.9 20.6 22.3 25.0 25.2
Apr09 6.8 6.8 6.7 6.4 6.2 6.4 6.7 6.7 6.8 7.0 7.2 7.3 7.5 7.8 7.7
May09 21.2 21.3 21.2 21.0 21.0 20.7 20.5 20.5 20.6 20.3 20.4 20.5 20.5 20.7 20.8
Jun09 17.2 16.8 15.9 15.4 15.0 14.4 14.2 14.6 14.8 15.5 16.4 17.3 18.4 19.2 19.9
Jul09 27.0 26.0 25.1 24.0 23.1 22.4 21.4 21.1 20.2 20.2 19.7 19.5 18.8 18.8 18.7
Aug09 20.2 20.6 20.5 20.6 20.3 20.0 19.9 19.6 18.2 17.5 16.7 16.1 16.0 16.2 15.5
Sep09 18.5 17.8 17.5 17.3 16.9 16.7 16.6 16.6 16.6 16.6 16.2 16.3 16.2 16.3 16.4
Oct09 24.1 23.3 22.4 21.9 21.3 21.6 19.5 17.4 14.9 13.5 9.9 9.6 8.3 7.6 8.0
Nov09 26.8 26.8 26.7 26.4 25.9 25.5 25.3 24.9 24.8 25.0 25.6 25.7 26.2 26.7 27.1
Dec09 38.3 37.6 36.4 35.3 34.4 34.3 34.1 33.1 32.5 32.3 32.1 31.7 31.7 31.8 31.7
Jan10 38.0 37.7 37.4 36.8 35.9 35.2 34.8 34.4 33.6 33.1 32.2 31.7 31.3 30.8 30.5

Mean 24.1 23.8 23.4 23.1 22.3 22.1 21.6 21.6 20.9 20.7 20.3 20.0 19.8 19.9 20.0

Table A.4: RMSPE for di�erent contracts and models, New York

RMSPE Model
2 months NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

Feb09 29.2 28.6 30.0 31.0 28.6 27.6 26.4 29.5 28.5 27.6 26.5 24.3 20.4 17.9 18.7
Mar09 21.3 21.2 20.6 19.9 16.4 17.9 17.0 18.9 17.7 16.9 19.0 18.5 21.5 25.2 26.6
Apr09 9.3 9.3 9.1 8.6 8.4 8.7 9.2 9.2 9.3 9.5 9.8 10.0 10.3 10.5 10.3
May09 22.1 21.9 21.6 20.8 20.6 19.7 18.9 18.4 18.2 17.8 17.7 17.5 17.6 17.7 17.8
Jun09 17.2 16.3 13.4 12.0 11.0 9.1 8.1 10.3 11.4 13.8 16.8 19.4 22.1 24.1 25.7
Jul09 44.5 42.1 40.2 37.8 36.1 34.5 32.3 31.6 30.1 29.9 28.8 28.2 26.8 26.7 26.2
Aug09 36.5 37.4 37.4 37.6 37.0 36.3 36.2 35.5 32.7 31.1 29.4 28.2 28.0 28.5 26.8
Sep09 25.0 22.1 20.7 19.6 17.7 16.9 15.9 16.1 15.1 15.0 13.6 13.1 12.5 12.4 12.7
Oct09 29.2 28.2 27.1 26.5 25.8 26.2 23.5 21.0 18.0 16.2 11.9 11.5 9.9 9.1 9.5
Nov09 29.3 29.3 28.5 27.0 25.2 23.3 22.1 19.8 19.2 19.6 22.4 23.1 24.7 26.7 27.6
Dec09 47.7 45.6 41.0 37.0 33.7 32.7 32.0 26.8 24.4 23.4 22.8 20.8 20.5 21.6 21.4
Jan10 58.5 57.7 56.8 55.0 52.2 50.0 48.8 47.3 45.1 43.2 40.0 38.1 36.8 35.1 33.6

Mean 30.8 30.0 28.9 27.7 26.1 25.2 24.2 23.7 22.5 22.0 21.6 21.1 20.9 21.3 21.4

Table A.5: RMSPE for di�erent contracts and models, calculated for the last two months, New
York

RMSPE Model
Vol>0 NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

Feb09 31.7 32.1 34.4 34.7 30.3 28.4 28.9 32.8 32.3 31.0 29.3 25.7 22.4 20.4 22.4
Mar09 25.4 24.8 25.3 24.2 20.7 22.2 22.4 24.5 22.6 21.7 23.6 23.7 26.7 31.7 32.9
Apr09 � � � � � � � � � � � � � � �
May09 16.2 16.5 16.6 16.1 16.3 13.8 11.9 10.7 10.8 11.5 13.1 14.2 15.2 16.1 16.6
Jun09 22.6 21.2 17.4 14.9 13.5 10.0 8.5 10.7 12.8 15.2 18.7 21.8 25.1 27.6 30.1
Jul09 53.7 50.8 47.4 44.9 42.7 39.2 34.3 33.8 31.2 31.3 29.6 28.4 24.8 24.6 25.1
Aug09 29.1 30.5 31.7 30.3 28.1 28.8 27.0 27.0 23.1 22.1 21.4 20.6 19.8 21.2 20.3
Sep09 32.4 26.9 24.5 22.5 18.9 17.9 15.3 15.1 14.5 15.3 12.7 11.6 11.5 11.9 12.7
Oct09 30.7 29.5 32.8 35.2 36.1 37.5 36.2 33.8 27.7 23.3 18.0 17.1 14.2 13.5 8.0
Nov09 40.1 40.9 39.7 35.6 30.3 26.7 23.6 24.5 23.4 24.3 28.6 27.2 29.0 31.3 32.8
Dec09 45.4 46.4 45.9 38.0 34.4 31.5 34.4 28.4 26.3 26.3 25.6 23.2 23.3 25.4 25.7
Jan10 75.4 74.1 73.8 68.4 65.5 64.5 60.5 58.0 53.6 50.5 44.2 41.8 39.4 37.8 35.8

Mean 36.6 35.8 35.4 33.2 30.6 29.1 27.6 27.2 25.3 24.8 24.1 23.2 22.9 23.8 23.8

Table A.6: RMSPE for di�erent contracts and models, calculated for days with volume>0, New
York
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Corr. Model
coe�. NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

Feb09 0.41 0.39 0.31 0.25 0.31 0.31 0.32 0.05 0.13 0.24 0.32 0.41 0.56 0.62 0.60
Mar09 0.53 0.58 0.60 0.62 0.68 0.56 0.52 0.48 0.54 0.62 0.56 0.58 0.57 0.55 0.62
Apr09 0.56 0.56 0.58 0.61 0.64 0.63 0.62 0.61 0.59 0.58 0.56 0.54 0.52 0.51 0.53
May09 0.65 0.63 0.63 0.67 0.65 0.65 0.68 0.69 0.67 0.69 0.68 0.68 0.68 0.67 0.67
Jun09 0.94 0.95 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.96 0.96 0.96
Jul09 0.88 0.90 0.91 0.92 0.93 0.94 0.95 0.95 0.95 0.95 0.96 0.96 0.97 0.97 0.97
Aug09 0.26 0.20 0.22 0.20 0.20 0.24 0.25 0.29 0.47 0.52 0.55 0.58 0.57 0.56 0.61
Sep09 0.71 0.75 0.77 0.78 0.79 0.80 0.81 0.80 0.80 0.80 0.82 0.83 0.83 0.84 0.84
Oct09 0.62 0.64 0.67 0.69 0.72 0.72 0.77 0.81 0.86 0.88 0.94 0.94 0.96 0.96 0.96
Nov09 0.85 0.84 0.85 0.87 0.88 0.89 0.90 0.92 0.92 0.92 0.90 0.91 0.90 0.89 0.89
Dec09 0.63 0.68 0.74 0.79 0.82 0.81 0.82 0.85 0.85 0.86 0.84 0.84 0.83 0.81 0.81
Jan10 0.40 0.41 0.42 0.47 0.54 0.59 0.63 0.67 0.70 0.74 0.80 0.84 0.87 0.89 0.90

Mean 0.62 0.63 0.64 0.65 0.68 0.68 0.69 0.67 0.71 0.73 0.74 0.76 0.77 0.77 0.78

Table A.7: Correlation coe�cient for di�erent contracts and models, New York

RMSPE Model
NMF MF13 MF13perfect

Feb09 28.8 18.8 33.3
Mar09 22.9 25.2 24.8
Apr09 6.8 7.7 5.8
May09 21.2 20.8 21.0
Jun09 17.2 19.9 21.5
Jul09 27.0 18.7 17.0
Aug09 20.2 15.5 19.4
Sep09 18.5 16.4 17.3
Oct09 24.1 8.0 11.3
Nov09 26.8 27.1 25.3
Dec09 38.3 31.7 32.4
Jan10 38.0 30.5 31.4

Mean 24.1 20.0 21.7

Table A.8: RMSPE for di�erent contracts and models, New York
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