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Abstract

This work is devoted to nonautonomous slow-fast systems of ordinary
differential equation without dichotomy. We are interested in the existence
of a slow integral manifold in order to eliminate the fast variables.

The peculiarity of the problem under consideration is that the right
hand side of the system depends on some parameter vector which can be
considered as a control to be determined in order to guarantee the existence
of an integral manifold consisting of canard trajectories. We call the vector
function as gluing function. We prove that under some conditions on the
right hand side of the system there exists a unique gluing function such
that the system has a slow integral manifold. We investigate the problems
of asymptotic expansions of the integral manifold and the gluing function,
and study their smoothness.

Keywords: integral manifolds, slow-fast systems, canard-trajectories,
missing dichotomy



Zusammenfassung

In der vorliegenden Arbeit betrachten wir ein System nichtautonomer
gewhnlicher Differentialgleichungen, das aus zwei gekoppelten Teilsystemen
besteht. Die Teilsysteme bestehen aus langsamen bzw. schnellen Variablen,
wobei die Zeitskalierung durch Multiplikation der rechten Seite eines Teil-
systems mit einem kleinen Faktor erzeugt wird.
Das Ziel unserer Untersuchungen besteht im Nachweis der Existenz einer
Integralmannigfaltigkeit, mit deren Hilfe die schnellen Variablen eliminiert
werden können. Dabei verzichten wir auf die übliche Annahme einer Di-
chotomiebedingung und ersetzen diese durch die Hinzunahme eines zusätz-
lichen Steuervektors. Wir beweisen, dass unter gewissen Voraussetzun-
gen über die rechten Seiten der Teilsysteme ein eindeutiger Steuervektor
existiert, der die Existenz der gewünschten Integralmannigfaltigkeit im-
pliziert. Das Prinzip des Nachweises einer solchen beschränkten Integral-
mannigfaltigkeit basiert auf dem Zusammenkleben von anziehenden und ab-
stossenden invarianten Mannigfaltigkeiten. In der Arbeit wird die Glattheit
dieser Mannigfaltigkeit sowie deren asymptotische Entwicklung nach dem
kleinen Parameter untersucht.

Schlagwörter: Integralmannigfaltigkeiten, langsamen und schnellen Vari-
ablen, Canard-Trajektorien, fehlende Dichotomie
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Chapter 1

Introduction

Systems of differential equations with several time scales play an important
role in modelling of processes of different nature studied in mechanics [28],
reaction kinetics [6, 9], biophysics [26], modern technologies (e.g. dynam-
ics of semiconductor lasers [31, 32, 35]). There are many well developed
methods to study such systems including methods of the theory of singular
perturbations, geometric methods, asymptotic methods. They allow one
to study the problem of existence of solutions, longtime behavior of the
system [7, 11, 33, 38], the phenomenon of delayed loss of stability [18, 19],
existence of canard-type solutions [16], manifolds consisting of such solu-
tions and other problems.

In this work we restrict ourself to systems of the type

dy

dt
= εf(t, y, z, ε),

dz

dt
= g(t, y, z, ε),

(1.1)

where y ∈ Rn, z ∈ R2, ε is a small positive parameter, f , g are sufficiently
smooth functions. The variable y is called a slow variable, the variable z is
a fast variable.

One of the effective tools to study such type of systems is the method
of integral manifolds. The method has been extensively developed by many
authors, see for example [3, 2, 5, 8, 10, 17, 20, 22, 34, 39].

Definition 1.1 A surface Sε ∈ R × Rn × R2 is called an integral mani-
fold of the system (1.1) if any trajectory (t, y(t, ε; y0, z0), z(t, ε; y0, z0)) with
(t0, y0, z0) ∈ Sε belongs to Sε for all t ∈ R.

We are interested in the integral manifolds of the form z = h(t, y, ε).
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Thus, we can reduce the dimension of the system. Then, the dynamics of
the system on this manifold is described by the equation

dy

dt
= εf(t, y, h(t, y, ε), ε).

Setting ε = 0 we get the degenerate problem

dy

dt
= 0,

dz

dt
= g(t, y, z, 0).

(1.2)

the manifold of equilibria of (1.2) is a solution of the equation

g(t, y, z, 0) = 0, (1.3)

of the form z = ϕ(t, y). Here y is considered as a parameter.
Assume that (1.3) has a root z = ϕ(t, y). Then by linearizing (1.1) in

the small neighbourhood of z = ϕ(t, y) we obtain the system

dy

dt
= εf(t, y, z, ε),

dz

dt
= Bz + g̃(t, y, z, ε),

(1.4)

where

B =
∂

∂z
g(t, y, ϕ(t, y), 0),

In the case (1.3) has multiple root the problem of existence of integral
manifolds is not well developed. We would like to mention [25], where some
cases of branching of integral manifolds have been studied.

Suppose that B in (1.4) is a constant matrix. Under the condition that
B is hyperbolic the problem of existence of the integral manifold for (1.4)
has been studied by many authors (see for example [5, 17, 23, 39]).

In the case that B = B(t, y), the uniformly exponential dichotomy as-
sumption implies the existence if the integral manifold we have to assume
that the linear problem ż = B(t)z possesses an exponential dichotomy
[10, 17, 34].

In the present work we consider the nonautonomous slow-fast system
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dy

dt
= εf(t, y, z, ε),

dz

dt
= B(t)z + g̃(t, y, z, a, ε),

(1.5)

in the case that the dichotomy assumption fails. More precisely, the matrix
B(t) has a pair of simple complex conjugate eigenvalues crossing the imag-
inary axis for increasing t at some moment t = t0 from left to right, that
is the dichotomy conditions fails. We study the problem of existence of an
integral manifold, its asymptotics and smoothness.

The problem considered has an important feature compared to the case
when the dichotomy condition is valid: The system contains a parameter a,
in the simple case it is a vector, in more general case it is a function depend-
ing on the slow variables. This parameter we call gluing vector or gluing
function, respectively. We prove that the system has an integral manifold
z = h(t, y, ε) for a unique a. The idea to use an additional parameter is
similar to the method of functionalization of parameter [13]. The use of
an additional parameter a to ensure the existence of integral manifolds and
canard solutions in the cases of the absence of dichotomy has been known
for some classes of singularly perturbed systems [6, 24, 27, 29].

The work is organized as follows. In chapter 2 we consider the system

dz

dt
= B(t)z + Z(t, z) + a, (1.6)

where B is defined as

B(t) =

(
αt β
−β αt

)
, α, β > 0, (1.7)

and a is a gluing vector.
We prove the existence of the uniformly bounded solution of (1.6) for

a unique value of a. The proof is based on the gluing method: mainly,
with the help of the parameter a we glue together solutions bounded on
semiaxes. The results and methods of this chapter play an important role
in the further study of slow-fast systems.

In the rest of the work we consider the system

dy

dt
= εY (t, y, z, ε),

dz

dt
= B(t)z + Z(t, y, z, a(y, ε), ε) + a(y, ε),

(1.8)
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where ε is a small positive parameter, a(y, ε) is the gluing function, B(t)
is the matrix (1.7). We prove that under some conditions there exists a
unique function a(y, ε) such that system (1.8) has the integral manifold
z = h(t, y, ε), where h is a uniformly bounded function. This manifold is
attractive for t < 0 and repulsive for t > 0.

Chapter 4 is devoted to the study of asymptotic approximations of the
integral manifold and the gluing function. We derive an algorithm of find-
ing the coefficients of the approximations and estimate the error of approx-
imations. In the last chapter we give some differential properties of the
manifold.
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Chapter 2

Bounded solutions for
nonlinear systems

2.1 Problem statement

This chapter is devoted to the problem of existence of bounded solutions
for systems of the form

dz

dt
= B(t)z + Z(t, z), (2.1)

where z ∈ Ωz, Ωz := {z ∈ R2 : ‖z‖ ≤ ∆}.
In the case B(t) possesses an exponential dichotomy the problem of

existence of bounded solutions for (2.1) was extensively studied (see e.g.
[15, 21]).

In what follows we suppose that B(t) is the matrix

B(t) =

(
αt β
−β αt

)
. (2.2)

We note that the eigenvalues of B have negative real parts for t < 0 and
positive ones for t > 0.

Concerning the function Z(t, z) we suppose

(A1). Z(t, y) is continuous on R× Ωz and satisfies the following conditions

‖Z(t, z)‖ ≤ M,

‖Z(t, z)− Z(t, z̄)‖ ≤ µ‖z − z̄‖.
(2.3)
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Here and elsewhere, ‖ · ‖ denotes the Euclidean norm and the corre-
sponding norm of matrices.

Let W (t) be the matrix

W (t) =

(
cos βt sin βt
− sin βt cos βt

)
. (2.4)

Then

V (t, t0) := e
α(t2−t20)

2 W (t− t0) (2.5)

is a fundamental matrix of the linear system

dz

dt
= B(t)z. (2.6)

Here, z ≡ 0 is the only bounded solution of (2.6). Other solutions satisfy

‖z(t)‖ = ‖z(t0)‖e
α(t2−t20)

2 .

Since the matrix B(t) is stable for t < 0 and unstable for t > 0, this relation
shows that the behaviour of the trajectories of the system is similar to that,
typical for problems on delayed loss of stability.

From the assumption (A1) it follows that for any pair (t0, z0) the Cauchy
problem for equation (2.1) with the initial condition z(t0) = z0 has a unique
solution. This problem is equivalent to the integral equation

z(t) = V (t, t0)

z0 +

t∫
t0

V −1(s, t0)Z(s, z(s))ds

 , (2.7)

that can be rewritten as

V −1(t, t0)z(t) = z0 +

t∫
t0

V −1(s, t0)Z(s, z(s))ds. (2.8)

If there exists a bounded solution z(t) of (2.1), then from (2.8) it follows
that

‖V −1(t, t0)z(t)‖ ≤ ce
α(t20−t2)

2 (2.9)

and we get
lim

t→±∞
‖V −1(t, t0)z(t)‖ = 0. (2.10)
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Since W (t− s) = W (t)W−1(s), from (2.8) and (2.10) it follows that the
initial value z0 has to fulfil the conditions

z0 =

t0∫
−∞

e
α(t20−s2)

2 W (t0 − s)Z(s, z(s))ds,

z0 = −
+∞∫
t0

e
α(t20−s2)

2 W (t0 − s)Z(s, z(s))ds,

(2.11)

Substituting these formulas into (2.7) we get for a bounded solution of (2.1)

z(t) =



t∫
−∞

e
α(t2−s2)

2 W (t− s)Z(s, z(s))ds, t < 0

−
+∞∫
t

e
α(t2−s2)

2 W (t− s)Z(s, z(s))ds, t ≥ 0.

(2.12)

From the condition of continuity of the bounded solution we get the
condition

+∞∫
−∞

e
−αs2

2 W−1(s)Z(s, z(s))ds = 0 (2.13)

on the function Z. It is clear that (2.13) is not fulfilled for arbitrary function
Z(t, z).

Let us consider some examples.

Example 2.1 Consider the system

dz

dt
= B(t)z + a, (2.14)

where a = (a1, a2)
T is a parameter vector.

For system (2.14)

z+(t) = −
+∞∫
t

e
α(t2−s2)

2 W (t− s)a ds,
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represents the solution bounded for t > 0 and

z−(t) =

t∫
−∞

e
α(t2−s2)

2 W (t− s)a ds, ,

is the solution bounded for t < 0.
Between these solutions there is a “step”

z−(0)− z+(0) =

+∞∫
−∞

e
−αs2

2 W (t− s)a ds =

√
2π√
α
e
−β2

2α a.

Taking the vector a = 0 we can remove this step and “glue” these solutions.
Then under the condition that a = 0 system (2.14) has the solution z ≡ 0
bounded for all t.

In this example the vector a plays a role of a control or “gluing” param-
eter: by changing the value of a we are able to “glue” together solutions
bounded on negative and positive semi-axes.

Example 2.2 Consider the system

dz

dt
= B(t)z + f(t) + a, (2.15)

where f(t) is continuous and bounded for all t ∈ R.
In order to have the uniformly bounded solution, we use (2.13) to get

the equation for determining the vector a and arrive at

+∞∫
−∞

e
−αs2

2 W−1(s) (f(s) + a) ds = 0. (2.16)

Let us introduce the following notation

J :=

+∞∫
−∞

e
−αs2

2 W−1(s) ds =

√
2π√
α
e
−β2

2α I, (2.17)

where I is the identity matrix. From (2.16), we get

a0 := −J−1

+∞∫
−∞

e
−αs2

2 W−1(s)f(s) ds.
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Therefore system (2.15) with a = a0 has a unique solution bounded for all
t. This solution is defined by

z(t) =



t∫
−∞

e
α(t2−s2)

2 W (t− s) (f(s) + a0) ds, t < 0,

−
+∞∫
t

e
α(t2−s2)

2 W (t− s) (f(s) + a0) ds, t ≥ 0.

For example, let us take in (2.15)

α = β = 0,

f(t) = (cos t, 0)T . (2.18)

Then

a0 = − e1/2

√
2π

+∞∫
−∞

e
−s2

2 W−1(s)Z(s, y)ds = −
(
e1/2

2
(1 + e−2), 0

)T

,

and the bounded solution is defined by

z(t) =



t∫
−∞

e
t2−s2

2 (f(s) + a0)ds t < 0,

−
+∞∫
t

e
t2−s2

2 (f(s) + a0)ds t ≥ 0.

Its graph is shown on Figure 1.

The idea of gluing attracting and repelling parts is applied in [6, 27] for
obtaining integral manifolds with variable attractivity and canard solutions.

Let us apply this approach to system (2.1). For this purpose we intro-
duce a gluing parameter into the system. Thus, we consider a system of the
form

dz

dt
= B(t)z + Z(t, z) + a. (2.19)

In the next section we establish conditions under which (2.19) has a
global uniformly bounded solution.
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Figure 2.1: The two components of the bounded solution.
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2.2 Existence of bounded solutions

We consider the system

dz

dt
= B(t)z + Z(t, z) + a, (2.20)

where B(t) is defined by (2.2) and a is a vector of parameters.

Theorem 2.3 Let the function Z(t, z) in the r.h.s. of (2.20) satisfy the
assumption (A1). Let √

2π√
α
µ(1 + eβ2/2α) < 1. (2.21)

Then there exists a unique vector a such that (2.20) has a global uniformly
bounded solution.

Generally, solutions of (2.20) exhibit the same type of behaviour as that
of (2.6). More precisely, the trajectory of system (2.20) starting for t =
t0 < 0 at any initial point z0 enters after a short time interval a small
neighbourhood of the uniformly bounded solution and stays in it until some
time t = t∗(t0, z0) > 0, where t∗ increases with respect to |t0|. For t > |t0|
the trajectory jumps away. This phenomenon is similar to the effect of
delayed loss of stability for singularly perturbed systems [18, 19, 30].

2.3 Proof of Theorem 2.3

Let H be the complete metric space of functions h(t) mapping continuously
R into Ωz, satisfying the inequality

‖h(t)‖ ≤ N, (2.22)

with N ≤ ∆, and the uniform metric

ρ(h, h̄) = sup
t∈R

‖h(t)− h̄(t)‖.

On the space H we define the operator T of the form

Th(t) =


−

+∞∫
t

e
α(t2−s2)

2 W (t− s) [Z (s, h(s)) + a] ds, t ≥ 0,

t∫
−∞

e
α(t2−s2)

2 W (t− s) [Z (s, h(s)) + a] ds, t < 0,
(2.23)
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with a = a(h). The formula for a will be given below explicitly.
In the upper line of (2.23) there is an operator for the existence of the

bounded solution for t ≥ 0, and in the lower line there is an operator for
the existence of the bounded solution for t < 0. The vector a = a(h) is for
gluing these solutions. Following [6] we call a the gluing vector.

We shall prove that the operator T maps the space H into itself and is
a contraction. The proof includes several steps. First, we show that the
function Th is continuous, then we derive conditions under which Th ∈ H
for any h ∈ H. At the end we show that T is a contraction operator in
H. Therefore, there exists a unique fixed point of T in H. The fixed point
represents the solution of (2.20) bounded for all t ∈ R.

2.3.1 Continuity of the function Th

It is easy to check that Th is continuous for t < 0 and t > 0 for arbitrary
h ∈ H. The continuity of Th at t = 0 is considered in the following lemma.

Lemma 2.4 For any function h ∈ H there exist a unique vector a such
that the function Tah is continuous.

Proof.
The condition of continuity of the function Tah at the point t = 0 is

equivalent to the following condition

+∞∫
−∞

e
−αs2

2 W−1(s)[Z (s, h(s)) + a] ds = 0. (2.24)

Let us rewrite (2.24) in the form

J1 + J a = 0,

where J is defined by (2.17) and

J1 :=

+∞∫
−∞

e
−αs2

2 W−1(s)Z (s, h(s)) ds.

The integral J1 converges due to the assumption (A1) on the function Z.
Therefore, a := −J−1J1, that is

a = −
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)Z (s, h(s)) ds. (2.25)
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It completes the proof.

For the following we need the next lemma.

Lemma 2.5 The following estimates are valid

‖a‖ ≤ eβ2/2αM,

‖a− ā‖ ≤ eβ2/2αµρ(h, h̄),

where a = P (h) and ā = P (h̄) for any h, h̄ ∈ H.

Proof. From (2.25) and the assumption (A1) it follows

‖a‖ ≤ ‖J−1‖
+∞∫
−∞

e
−αs2

2 ‖Z (s, h(s))‖ ds ≤ eβ2/2αM.

For the difference between a and ā we have

‖a− ā‖ ≤ ‖J−1‖
+∞∫
−∞

e
−αs2

2 ‖Z (s, h(s))− Z
(
s, h̄(s)

)
‖ ds ≤

≤
√
αeβ2/2α

√
2π

µ

+∞∫
−∞

e
−αs2

2 ‖h(s)− h̄(s)‖ ds ≤ eβ2/2αµρ(h, h̄).

Thus,
‖a− ā‖ ≤ eβ2/2αµρ(h, h̄). (2.26)

This completes the proof of Lemma 2.5.

2.3.2 Existence of the bounded solution

Now we derive the conditions guaranteeing that Th(t) maps H into itself.
Let t ≥ 0. By the assumption (A1) and Lemma 2.5 we have

‖Th(t)‖ ≤
+∞∫
t

e
α(t2−s2)

2 [‖Z (s, h(s)) ‖+ ‖a‖] ds ≤
√

2π√
α
M(1 + eβ2/2α).

Analogously, one sees that the same estimate holds for t ≤ 0. It means that
Th is uniformly bounded. Thus, under the condition

√
2π√
α
M(1 + eβ2/2α) ≤ N

15



the function Th belongs to the space H.
Under the assumption (A1) and Lemma 2.5 we obtain for t ≥ 0

‖Th(t)− T h̄(t)‖ ≤
+∞∫
t

e
α(t2−s2)

2

(
‖Z(s, h(s))− Z(s, h̄(s))‖+ ‖a− ā‖

)
ds ≤

≤
+∞∫
t

e
α(t2−s2)

2 [µρ(h, h̄) + eβ2/2αµρ(h, h̄)] ds =

√
2π√
α
µ(1 + eβ2/2α)ρ(h, h̄).

The same estimate is valid for t ≤ 0. Therefore,

ρ(Th, T h̄) ≤
√

2π√
α
µ(1 + eβ2/2α)ρ(h, h̄),

and the condition (2.21) implies that T is a contraction inH. This completes
the proof of Theorem 2.3.
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Chapter 3

Integral manifolds for slow-fast
systems

3.1 Problem statement

In this chapter we consider the system

dy

dt
= εY (t, y, z, ε),

dz

dt
= B(t)z + Z(t, y, z, ε),

(3.1)

where y ∈ Rn, ε ∈ Iε0 := {ε ∈ R : 0 ≤ ε ≤ ε0 � 1}, B(t) is the matrix

B(t) =

(
αt β
−β αt

)
, α, β > 0.

For ε = 0 we get the system

y = y0,
dz

dt
= B(t)z + Z(t, y0, z, 0).

(3.2)

System (3.2) is a system of the same type as considered in chapter 2. Apply-
ing results of chapter 2 we can conclude that by adding a gluing parameter
into the system

y = y0,
dz

dt
= B(t)z + Z(t, y0, z, a, 0) + a,

(3.3)
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we can obtain a solution of the form z = h(t; y0) where h is bounded for all
t ∈ R. It is obvious that the value of a depends on y0. Moreover, taking
instead of y0 any function y = y(t, ε) we get that for the system

dz

dt
= B(t)z + Z(t, y(t, ε), z, a, ε) + a, (3.4)

there exists a unique value of a such that (3.4) has a global uniformly
bounded solution z = h(t; y, ε). It is obvious that the value of a is related
to the choice of y(t, ε). Then, by taking different values of a we can “glue”
together the solutions bounded on semi-axes for different functions y.

Therefore, in order to obtain an integral manifold we must take a as a
function depending on y and ε. This means we consider the system

dy

dt
= εY (t, y, z, ε),

dz

dt
= B(t)z + Z(t, y, z, a(y, ε), ε) + a(y, ε).

(3.5)

In the next section we establish the conditions under which systems of
the type (3.5) have an integral manifold z = h(t, y, ε).

3.2 Assumptions. Notations

We consider a system of the type

dy

dt
= εY (t, y, z, ε),

dz

dt
= B(t)z + Z(t, y, z, a(y, ε), ε) + a(y, ε),

(3.6)

where y ∈ Rn, z ∈ Ωz, a ∈ Ωa, Ωa := {a ∈ R2 : ‖a‖ ≤ δ}, ε ∈ Iε0 , and B(t)
is the matrix

B(t) =

(
αt β
−β αt

)
, α, β > 0. (3.7)

Concerning the functions Y, Z we suppose

(H1). The function Y is continuous on R × Rn × Ωz × Iε0 , and satisfies for
t ∈ R, y, ȳ ∈ Rn, z, z̄ ∈ Ωz, ε ∈ Iε0 the inequalities:

‖Y (t, y, z, ε)‖ ≤ K, (3.8)

‖Y (t, y, z, ε)− Y (t, ȳ, z̄, ε)‖ ≤ µ (‖y − ȳ‖+ ‖z − z̄‖) . (3.9)
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(H2). The function Z is continuous on R× Rn × Ωz × Ωa × Iε0 , and satisfy
for t ∈ R, y, ȳ ∈ Rn, z, z̄ ∈ Ωz, a, ā ∈ Ωa, ε ∈ Iε0 the inequalities:

‖Z(t, y, z, a, ε)‖ ≤M
(
ε+ ε‖z‖+ ‖z‖2

)
, (3.10)

‖Z(t, y, z, a, ε)− Z(t, ȳ, z̄, ā, ε)‖ ≤
D
(
(ε+ ε‖z̃‖+ ‖z̃‖2)‖y − ȳ‖+ (ε+ ‖z̃‖)‖z − z̄‖+ ε‖a− ā‖

)
,

(3.11)
where ‖z̃‖ := max{‖z‖, ‖z̄‖}.

Here K,M,D, µ, some positive numbers which will be specified below.
From (3.10) it follow that

Z(t, y, 0, a, 0) ≡ 0.

Hence, for ε = 0, a = 0 system (3.6) coincides with the linear system
(2.6) and has the integral manifold z ≡ 0, which attracts all trajectories for
t < 0 and repels them for t > 0. Moreover, the trajectories of system (3.6)
starting for t = t0 < 0 at any initial point after a short time interval enter
a small neighbourhood of the integral manifold z ≡ 0 and stays in it until
some time t = t∗ > 0, where t∗ increases with respect to |t0|. For t > |t0| the
trajectory jumps away. This effect is similar to the phenomenon of delayed
loss of stability in the theory of singularly perturbed systems [4, 18, 30].
We call the manifolds with this property as the manifolds loosing their
attractivity in time.

Let F be the complete metric space of continuous functions a mapping
Rn × Iε0 → Ωa, satisfying the inequalities

‖a(y, ε)‖ ≤ εL,

‖a(y, ε)− a(ȳ, ε)‖ ≤ εν‖y − ȳ‖,
(3.12)

where εL ≤ δ, with the metric defined by

ρ (a, ā) = sup
y∈Rn, ε∈Iε0

‖a(y, ε)− ā(y, ε)‖.

Let H be the complete metric space of continuous functions h mapping
R× Rn × Iε0 into Ωz satisfying the inequalities

‖h(t, y, ε)‖ ≤ εN,

‖h(t, y, ε)− h(t, ȳ, ε)‖ ≤ εξ‖y − ȳ‖,
(3.13)

for t ∈ R, y, ȳ ∈ Rn, ε ∈ Iε0 , where N, ξ are some positive numbers such
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that εN ≤ ∆, with the metric

ρ(h, h̄) = sup
t∈R, y∈Rn,ε∈Iε0

‖h(t, y, ε)− h̄(t, y, ε)‖.

The functions y(t, ε), z = h(t, y(t, ε), ε) are the solution of (3.6) if they
satisfy system (3.6).

Consider the equation

dy

ds
= εY (s, y, h(s, y, ε), ε). (3.14)

From the conditions (3.9), (3.13) it follows

‖Y (s, y, h(s, y, ε), ε)− Y (s, ȳ, h(s, ȳ, ε), ε)‖ ≤ µ(1 + εξ)‖y − ȳ‖.

The function Y is uniformly bounded and Lipschitzian for all s ∈ R,
y, ȳ ∈ Rn, therefore the Cauchy problem for (3.14) with the initial con-
dition y(t) = y0 has a global solution for all y0 ∈ Rn. We denote the
solution by Φs,t(y0, h, ε).

The function z = h(t,Φs,t(y0, h, ε), ε) is a uniformly bounded solution of
the equation

dz

dt
= B(t)z+Z(t,Φs,t(y0, h, ε), z, a(Φs,t(y0, h, ε), ε), ε)+a(Φs,t(y0, h, ε), ε), ε).

(3.15)
Therefore, applying results of chapter 2, the function z satisfies the integral
relation

z(t; y0, ε) =


−

+∞∫
t

e
α(t2−s2)

2 W (t− s) [Z (·) + a( Φs,t(y0, h, ε), ε )] ds, t ≥ 0,

t∫
−∞

e
α(t2−s2)

2 W (t− s) [Z (·) + a (Φs,t(y0, h, ε), ε)] ds, t < 0,

(3.16)
where

Z (·) = Z(s,Φs,t(y0, h, ε), z, a(Φs,t(y0, h, ε), ε), ε).

Taking instead of y0 an arbitrary function y, from (3.16) we get that
the function h(t, y, ε) describing the integral manifold satisfies the integral
equation

h(t, y, ε) =


−

+∞∫
t

e
α(t2−s2)

2 W (t− s) [Z (·) + a( Φs,t(y, h, ε), ε )] ds, t ≥ 0,

t∫
−∞

e
α(t2−s2)

2 W (t− s) [Z (·) + a (Φs,t(y, h, ε), ε)] ds, t < 0,

(3.17)
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here

Z (·) = Z(s,Φs,t(y, h, ε), h(t,Φs,t(y, h, ε), ε), a(Φs,t(y, h, ε), ε), ε).

On the other hand, if (3.17) has a solution satisfying (3.13) then it
represents an integral manifold of (3.6). Indeed, for any fixed ε ∈ Iε0 and
any point (t0, y0, z0) belonging to the integral manifold (z0 = h(t0, y0, ε))
equation (3.14) has a solution y(t, ε) = Φt,t0(y0, h, ε). From (3.17) it follows
that z = h(t,Φt,t0(y0, h, ε), ε) is a solution of (3.15).

Thus, on the space H we define the operator T of the form

(Th)(t, y, ε) =


−

+∞∫
t

e
α(t2−s2)

2 W (t− s) [Z (·) + a( Φs,t(y, h, ε), ε )] ds, t ≥ 0,

t∫
−∞

e
α(t2−s2)

2 W (t− s) [Z (·) + a (Φs,t(y, h, ε), ε)] ds, t < 0,

(3.18)
with a depending on h (this dependence will be described implicitly below),
and

Z(·) = Z (s,Φs,t(y, h, ε), h(s,Φs,t(y, h, ε), ε), a(Φs,t(y, h, ε), ε), ε) .

In the upper line in the definition of T there is an operator for the
existence of the bounded integral manifold for t > 0, and in the lower line
there is an operator for the existence of the bounded integral manifold for
t < 0. The function a(y, ε) is for gluing these manifolds.

The following statement is true.

Theorem 3.1 Let the functions Y, Z in the r.h.s. of (3.6) satisfy the as-
sumptions (H1), (H2). Then, there is an ε∗ ∈ Iε0 such that for 0 < ε ≤ ε∗

there exists a function a ∈ F such that system (3.6) has an integral manifold
z = h(t, y, ε), h ∈ H.

If for sufficiently small ε system (3.6) has an integral manifold z =
h(t, y, ε) with h ∈ H, then we know that for ε = 0 the integral manifold
z ≡ 0 is attractive for t < 0 and repulsive for t > 0. Therefore, it follows
from the continuous dependence of the trajectories of (3.6) on the parameter
ε that also the integral manifold z = h(t, y, ε) loses its attractivity for
increasing t.
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3.3 Proof of Theorem 3.1

The proof of Theorem 3.1 consists of several steps. First, we derive some
auxiliary results. Then, we prove that the operator T defined by (3.18)
maps the space H into itself and has a unique fixed point. We do it in the
following way. In the beginning we show that the element Th is continuous
for all t ∈ R, and then that Th ∈ H and the operator T is a contraction in
H.

3.3.1 Auxiliary estimates

At first, we derive a lemma describing the dependence of the solution
Φs,t(y, h, ε) of (3.14) on the initial value y and the function h ∈ H.

Lemma 3.2 Let the function Y satisfy the assumption (H1). Then the
following inequalities are valid

‖Φs,t(y, h, ε)− Φs,t(ȳ, h, ε)‖ ≤ ‖y − ȳ‖eεµ(1+εξ)|s−t|,

‖Φs,t(y, h, ε)− Φs,t(y, h̄, ε)‖ ≤
1

1 + εξ
ρ(h, h̄)

(
eεµ(1+εξ)|s−t| − 1

)
,

where h, h̄ ∈ H.

Proof. By (3.14) it holds

Φs,t(y, h, ε) = y + ε

s∫
t

Y (η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε)dη,

Φs,t(ȳ, h, ε) = ȳ + ε

s∫
t

Y (η,Φη,t(ȳ, h, ε), h(η,Φη,t(ȳ, h, ε), ε), ε)dη,

Φs,t(y, h̄, ε) = y + ε

s∫
t

Y (η,Φη,t(y, h̄, ε), h̄(η,Φη,t(y, h̄, ε), ε), ε)dη.

(3.19)

Using (3.19) and inequalities (3.8), (3.9) and (3.13) we obtain for s ≥ t

‖Φs,t(y, h, ε)−Φs,t(ȳ, h, ε)‖ ≤ ‖y−ȳ‖+
s∫

t

ε‖Y (η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε)

−Y (η,Φη,t(ȳ, h, ε), h(η,Φη,t(ȳ, h, ε), ε), ε)‖dη
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≤ ‖y − ȳ‖+

s∫
t

εµ (‖Φη,t(y, h, ε)− Φη,t(ȳ, h, ε)‖

+‖h(η,Φη,t(y, h, ε), ε)− h(η,Φη,t(ȳ, h, ε), ε)‖) dη

≤ ‖y − ȳ‖+

s∫
t

εµ(1 + εξ)‖Φη,t(y, h, ε)− Φη,t(ȳ, h, ε)‖dη.

Using the Gronwall-Bellman inequality we have

‖Φs,t(y, h, ε)− Φs,t(ȳ, h, ε)‖ ≤ ‖y − ȳ‖eεµ(1+εξ)(s−t), s ≥ t. (3.20)

For the difference ‖Φs,t(y, h, ε)− Φs,t(y, h̄, ε)‖ we get

‖Φs,t(y, h, ε)− Φs,t(y, h̄, ε)‖ ≤
s∫

t

ε‖Y (η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε)

−Y (η,Φη,t(y, h̄, ε), h̄(η,Φη,t(y, h̄, ε), ε), ε)‖dη

≤
s∫

t

εµ
(
(1 + εξ)‖Φη,t(y, h, ε)− Φη,t(y, h̄, ε)‖+ ρ(h, h̄)

)
dη.

Using the Gronwall-Bellman inequality we obtain

‖Φs,t(y, h, ε)− Φs,t(y, h̄, ε)‖ ≤
1

1 + εξ
ρ(h, h̄)

(
eεµ(1+εξ)(s−t) − 1

)
, s ≥ t.

(3.21)
In the same way we get for s ≤ t

‖Φs,t(y, h, ε)− Φs,t(ȳ, h, ε)‖ ≤ ‖y − ȳ‖eεµ(1+εξ)(t−s),

‖Φs,t(y, h, ε)− Φs,t(y, h̄, ε)‖ ≤
1

1 + εξ
ρ(h, h̄)

(
eεµ(1+εξ)(t−s) − 1

)
.

This completes the proof.

In the sequel, the error integral

erf(x) =

√
2√
π

x∫
0

e−x2

dx

will be used. In the next lemma we give some estimate for it.
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Lemma 3.3 For 0 ≤ x ≤ 1
2

the following estimate is valid

ex2

erf(x) ≤ 1.

Proof. For x < 1 the error integral can be approximated as [1]

erf(x) =

√
2√
π
ex2

x

(
1 +

2x2

1 · 3
+

(2x2)2

1 · 3 · 5
+ · · ·

)
=

√
2√
π
ex2

x

∞∑
n=0

(2x2)n

(2n+ 1)!!
.

(3.22)
Since 0 ≤ x ≤ 1

2
, we get

(2x2)n

(2n+ 1)!!
≤ 1

2n(2n+ 1)!!
≤ 1

2n3n
.

Thus, the series in (3.22) can be estimated by the geometric series
∑∞

n=0
1
6n .

For the geometric series we have

∞∑
n=0

1

6n
=

6

5
.

Therefore,

ex2

erf(x) =

√
2√
π
x

∞∑
n=0

(2x2)n

(2n+ 1)!!
≤ 1√

π

∞∑
n=0

1

6n
=

6

5
√
π
< 1.

This completes the proof.

3.3.2 Continuity of the function Th at t = 0

It is easy to check that the function Th is continuous for t < 0 and t > 0
for any h ∈ H. From the definition of the operator T (3.18) it follows that
the continuity of Th at t = 0 is equivalent to the following equation

+∞∫
−∞

e
−αs2

2 W−1(s) [Z (s,Φs,0(y, h, ε), h(s,Φs,0(y, h, ε), ε), a(Φs,0(y, h, ε), ε), ε)

+a(Φs,0(y, h, ε), ε)] ds = 0. (3.23)

This equation will be used to determine the function a(y, ε).

24



We rewrite equation (3.23) in the form

Aa(y, ε) = Qa(y, ε),

where the operators A and Q are defined by

Aa(y, ε) :=

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)a(Φs,0(y, h, ε), ε) ds,

Qa(y, ε) := −
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)Z(·) ds,

here

Z(·) = Z(s,Φs,0(y, h, ε), h(s,Φs,0(y, h, ε), ε), a(Φs,0(y, h, ε), ε), ε).

It is convenient to represent the operator A in the form A = I + R, where
I is the identity and R is defined by

Ra(y, ε) :=

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)[a(Φs,0(y, h, ε), ε)− a(y, ε)]ds.

The inequalities (3.8), (3.12) imply

‖Ra(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 ‖ a(Φs,0(y, h, ε), ε)− a(y, ε)‖ds ≤

≤ ε
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 ν‖Φs,0(y, h, ε)− y‖ds ≤

≤ 2ε2ν
√
αeβ2/2α

√
2π

+∞∫
0

e
−αs2

2

s∫
0

‖Y (η,Φη,0(y, h, ε), h(η,Φη,0(y, h, ε), ε), ε)‖dη ds ≤

≤ 2ε2
√
αeβ2/2ανK√

2π

+∞∫
0

e
−αs2

2 sds =
ε2
√

2eβ2/2ανK√
απ

.
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For ε2
√

2eβ2/2ανK√
απ

< 1 there exists the linear operator (I + R)−1 and the

following inequality is true [14]

‖(I +R)−1‖ ≤ 1

1− ε2
√

2eβ2/2ανK/
√
απ

. (3.24)

Let us introduce the operator P on the space F by

Pa := (I +R)−1Qa. (3.25)

In the sequel we prove that the operator P maps F into itself and is a
contraction. By (3.10), we get for Q

‖Qa(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 ‖Z(·)‖ds ≤

≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 M(ε+ ε‖h‖+ ‖h‖2)ds ≤ eβ2/2αM(ε+ ε2N + ε2N2).

Using the last inequality and the inequality (3.24), we obtain

‖Pa(y, ε)‖ ≤ εMeβ2/2α(1 + εN + εN2)

1− ε2
√

2eβ2/2ανK/
√
απ

.

Under the condition
ε2
√

2νKeβ2/2α

√
απ

≤ 1

2
(3.26)

the inequality

‖Pa(y, ε)‖ ≤ 2εMeβ2/2α(1 + εN + εN2)

is true.
By Lemma 3.2 and the inequality (3.11), it is easy to verify the estimate

‖Qa(y, ε)−Qa(ȳ, ε)‖ ≤

≤
√
αeβ2/2α

√
2π

+∞∫
−∞

De
−αs2

2

[
(ε+ ε‖h‖+ ‖h‖2)‖Φs,0(y, h, ε)− Φs,0(ȳ, h, ε)‖+

+(ε+ ‖h‖) ‖h(s,Φs,0(y, h, ε), ε)− h(s,Φs,0(ȳ, h, ε), ε)‖+
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+ε‖a(Φs,0(y, h, ε), ε)− a(Φs,0(ȳ, h, ε), ε)‖] ds ≤

≤ ε
√
αeβ2/2αDS√

2π

+∞∫
∞

e
−αs2

2 ‖Φs,0(y, h, ε)− Φs,0(ȳ, h, ε)‖ds ≤

≤ ε
√
αeβ2/2αDS√

2π
‖y − ȳ‖

+∞∫
−∞

e
−αs2

2 eεµ(1+εξ)|s|ds =

=
2ε
√
αeβ2/2αDS√

2π
‖y − ȳ‖

+∞∫
0

e
−αs2

2 eεµ(1+εξ)sds,

where S = 1 + εN + εN2 + εξ(1 +N) + εν.
Using the error integral erf(λ) it is possible to estimate the last integral:

√
2α√
π

+∞∫
0

e
−αs2

2 eεµ(1+εξ)sds =

√
2α√
π

+∞∫
0

e
λ2−(

√
α√
2

s−λ)2
ds =

=
2√
π

+∞∫
−λ

eλ2−s2
1ds1 =

2√
π

2

|λ|∫
0

eλ2−s2
1ds1 +

+∞∫
|λ|

eλ2−s2
1ds1

 ≤
≤ 1 + 2eλ2

erf(λ),

where λ = 1√
2α
εµ(1 + εξ). From Lemma 3.3 for λ ≤ 1/2 or

√
2√
α
εµ(1 + εξ) ≤ 1, (3.27)

we get
eλ2

erf(|λ|) ≤ 1.

Consequently,
√

2α√
π

+∞∫
0

e
−αs2

2 eεµ(1+εξ)sds ≤ 3. (3.28)

Therefore, we obtain the estimate

‖Qa(y, ε)−Qa(ȳ, ε)‖ ≤ 3εeβ2/2αDS‖y − ȳ‖.
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According to the definition of the operator P (3.25) and the inequalities
(3.24), (3.26) the following estimate is true

‖Pa(y, ε)−Pa(ȳ, ε)‖ ≤ 3εeβ2/2αDS

1− ε2
√

2eβ2/2ανK/
√
απ
‖y−ȳ‖ ≤ 6εeβ2/2αDS‖y−ȳ‖.

Therefore, if the inequality (3.26) and the inequalities

2Meβ2/2α(1 + εN + εN2) ≤ L, (3.29)

√
2√
α
εµ(1 + εξ) ≤ 1, (3.30)

6eβ2/2αDS ≤ ν (3.31)

hold, then P maps F into itself.
Now we derive conditions assuring P to be a contraction operator. At

first let us estimate the difference ‖Qa−Qā‖. Under the assumption (3.12)
we have

‖Qa(y, ε)−Qā(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 εDρ(a, ā)ds = εDeβ2/2αρ(a, ā).

Consequently, by (3.24) and (3.25) we get

‖Pa(y, ε)−P ā(y, ε)‖ ≤ εDeβ2/2α

1− ε2
√

2eβ2/2ανK/
√
απ

ρ(a, ā) ≤ 2εDeβ2/2αρ(a, ā).

If ε is sufficiently small, then the condition

2εDeβ2/2α < 1 (3.32)

holds. It means that P is contraction operator in F . Therefore, the equation
a = Pa, which is equivalent to (3.23), possesses a unique solution in F . Thus
we have proved

Lemma 3.4 Suppose the functions Y, Z in the r.h.s. of (3.6) satisfy (H1),
(H2). Then there is ε∗ ∈ Iε0 such that for all ε ∈ (0, ε∗] and for any
function h ∈ H there exists a function a ∈ F guaranteeing that the function
Th defined by (3.18) is continuous.
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Now we study the dependence of the fixed point a of P on h. Let a(y, ε)
and ā(y, ε) be the solutions of (3.23) corresponding to the functions h and
h̄ respectively. Then we have

Aa = Qa or (I +R)a = Qa,

Āā = Q̄ā or (I + R̄)ā = Q̄ā,

where

R̄ā(y, ε) :=

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)[ā(Φs,0(y, h̄, ε), ε)− ā(y, ε)]ds,

Q̄ā(y, ε) := −
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)Z(·)ds,

with

Z(·) = Z(s,Φs,0(y, h̄, ε), h̄(s,Φs,0(y, h̄, ε), ε), ā(Φs,0(y, h̄, ε), ε), ε).

After some elementary transformations we obtain

(I +R)(a− ā) = Qa− Q̄ā+ (R̄−R)ā

or
a− ā = (I +R)−1[Qa− Q̄ā+ (R̄−R)ā]. (3.33)

The expression in the square brackets will be estimated at first. By
inequalities (3.12), (3.13) and Lemma 3.2 we have

‖Qa(y, ε)− Q̄ā(y, ε)‖ ≤

≤
√
αeβ2/2αD√

2π

+∞∫
−∞

e
−αs2

2

[
(ε+ ε‖h̃‖+ ‖h̃‖2)‖Φs,0(y, h, ε)− Φs,0(y, h̄, ε)‖+

+(ε+ ‖h̃‖)‖h(s,Φs,0(y, h, ε), ε)− h̄(s,Φs,0(y, h̄, ε), ε)‖+

+ε‖a(Φs,0(y, h, ε), ε)− ā(Φs,0(y, h̄, ε), ε)‖
]
ds ≤

≤ ε
√
αeβ2/2αD√

2π

+∞∫
−∞

e
−αs2

2

[(
1+εN+εN2+εξ(1+N)+εν

)
‖Φs,0(y, h, ε)−Φs,0(y, h̄, ε)‖+
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+(1 +N)ρ(h, h̄) + ρ(a, ā)

]
ds ≤

≤ εeβ2/2αD

[
ρ(a, ā) + (1 +N)ρ(h, h̄)+

+
2
√
αS√
2π

+∞∫
0

e
−αs2

2
1

1 + εξ
(eεµ(1+εξ)s − 1)ρ(h, h̄)ds

 ≤
≤ εeβ2/2αD

(
ρ(a, ā) +

(
1 +N +

3S

1 + εξ

)
ρ(h, h̄)

)
,

and

‖(R̄−R)ā‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 ‖ā(Φs,0(y, h̄, ε), ε)− ā(Φs,0(y, h, ε), ε)‖ds ≤

≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 εν‖Φs,0(y, h, ε)− Φs,0(y, h̄, ε)‖ds ≤

≤ 2ε
√
αeβ2/2αν√

2π(1 + εξ)

+∞∫
0

e
−αs2

2 (eεµ(1+εξ)s − 1)ρ(h, h̄)ds ≤

≤ 3εeβ2/2αν

1 + εξ
ρ(h, h̄).

Then we get from (3.24), (3.33)

‖a(y, ε)− ā(y, ε)‖ ≤ εeβ2/2α

1− ε2
√

2eβ2/2ανK/
√
απ

[
Dρ(a, ā)+

+

(
D(1 +N) +

3(DS + ν)

1 + εξ

)
ρ(h, h̄)

]
.

From this inequality and the assumption (3.26) we obtain the following
result

Lemma 3.5 Suppose the conditions in Lemma 3.4 hold and the inequality
(3.26) is valid. Then the following estimate is true

ρ(a, ā) ≤ 2εeβ2/2α

1− 2εeβ2/2αD

(
D(1 +N) +

3(DS + ν)

1 + εξ

)
ρ(h, h̄). (3.34)
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3.3.3 Existence of the integral manifold

In this part we derive the conditions guaranteeing that Th(t, y, ε) satisfies
the inequalities (3.13). For t ≥ 0 we have

‖Th(t, y, ε)‖ ≤
+∞∫
t

e
α(t2−s2)

2

[
‖Z (·) ‖+ ‖a(Φs,t(y, h, ε), ε)‖

]
ds ≤

≤ ε
√
π√

2α

(
M(1 + εN + εN2) + L

)
.

The same estimate is valid for t ≤ 0. Therefore, Th is bounded for all t ∈ R.
In order to show the Lipschitz continuity of Th we consider the difference
‖Th(t, y, ε)− Th(t, ȳ, ε)‖.

‖Th(t, y, ε)− Th(t, ȳ, ε)‖ ≤

≤
+∞∫
t

e
α(t2−s2)

2

[
‖Z
(
s,Φs,t(y, h, ε), h(s,Φs,t(y, h, ε), ε), a(Φ

ε
s,t(y;h), ε), ε

)
−

−Z (s,Φs,t(ȳ, h, ε), h(s,Φs,t(ȳ, h, ε), ε), a(Φs,t(ȳ, h, ε), ε), ε) ‖+

+‖a(Φs,t(y, h, ε), ε)− a(Φs,t(ȳ, h, ε), ε)‖
]
ds ≤

≤
+∞∫
t

e
α(t2−s2)

2

[
εD(1 + εN + εN2)‖Φs,t(y, h, ε)− Φs,t(ȳ, h, ε)‖+

+εD(1 +N)‖h(s,Φs,t(y, h, ε), ε)− h(s,Φs,t(ȳ, h, ε), ε)‖+

+(εD + 1)‖a(Φs,t(y, h, ε), ε)− a(Φs,t(ȳ, h, ε), ε)‖
]
ds ≤

≤ ε(DS + ν)

+∞∫
t

e
α(t2−s2)

2 ‖Φs,t(y, h, ε)− Φs,t(ȳ, h, ε)‖ds ≤

≤ ε(DS + ν)

+∞∫
t

e
α(t2−s2)

2 eεµ(1+εξ)(s−t)‖y − ȳ‖ds.
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Using the error integral erf(λ) and Lemma 3.3 it is possible to estimate
the last integral

+∞∫
t

e
α(t2−s2)

2 eεµ(1+εξ)(s−t)ds =

√
2√
α

+∞∫
t1−λ

e(t1−λ)2−(s1−λ)2d(s1 − λ) ≤

≤
√

2√
α

2

|t1−λ|∫
0

e(t1−λ)2−(s1−λ)2d(s1 − λ) +

+∞∫
|t1−λ|

e(t1−λ)2−(s1−λ)2d(s1 − λ)

 =

=

√
2√
α

(√
π

2
+
√
πe(t1−λ)2erf(|t1 − λ|)

)
<

3
√
π√

2α
,

where λ = 1√
2α
εµ(1 + εξ). The last inequality is valid since we can choose

ε small enough such that λ ≤ 1
2
.

Consequently, for t ≥ 0 we get

‖Th(t, y, ε)− Th(t, ȳ, ε)‖ < 3ε
√
π√

2α
(DS + ν)‖y − ȳ‖.

The same is true for t ≤ 0.
Thus, under the assumptions of Lemma 3.4 and the following inequalities

√
π√
2α

(
M(1 + εN + εN2) + L

)
≤ N, (3.35)

3
√
π√

2α
(DS + ν) ≤ ξ (3.36)

T maps H into itself.
Now we prove that T is a strictly contractive operator in H

‖Th(t, y, ε)− T h̄(t, y, ε)‖ ≤

≤
+∞∫
t

e
α(t2−s2)

2

[
‖Z (s,Φs,t(y, h, ε), h(s,Φs,t(y, h, ε), ε), a(Φs,t(y, h, ε), ε), ε)−

−Z
(
s,Φs,t(y, h̄, ε), h̄(s,Φs,t(y, h̄, ε), ε), ā(Φs,t(y, h̄, ε), ε), ε

)
‖+

+‖a(Φs,t(y, h, ε), ε)− ā(Φs,t(y, h̄, ε), ε)‖
]
ds ≤
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≤
+∞∫
t

e
α(t2−s2)

2

(
εD(1 + εN + εN2)(‖Φs,t(y, h, ε)− Φs,t(y, h̄, ε)‖+

+εD(1 +N)‖h(s,Φs,t(y, h, ε), ε)− h̄(s,Φs,t(y, h̄, ε), ε)‖)+

+ (1 + εD)‖a(Φs,t(y, h, ε), ε)− ā(Φs,t(y, h̄, ε), ε)‖
)
ds ≤

≤
+∞∫
t

e
α(t2−s2)

2

(
ε(DS + ν)‖Φs,t(y, h, ε)− Φs,t(y, h̄, ε)‖+

+εD(1 +N)ρ(h, h̄) + (1 + εD)ρ(a, ā)
)
ds ≤

≤
√
π√
2α

(
εD(1 +N)ρ(h, h̄) + (1 + εD)ρ(a, ā)

)
+

+
ε(DS + ν)

1 + εξ
ρ(h, h̄)

+∞∫
t

e
α(t2−s2)

2

(
eεµ(1+εξ)(s−t) − 1

)
ds ≤

≤ ε
√
π√

2α

[
D(1 +N) +

2eβ2/2α(1 + εD)

1− 2εeβ2/2αD

(
D(1 +N) +

3(DS + ν)

1 + εξ

)
+

+
3(DS + ν)

1 + εξ

]
ρ(h, h̄).

Under the conditions (3.32), (3.36) and the inequality

ε
√
π√

2α

[
D(1 +N) +

2eβ2/2α(1 + εD)

1− 2εeβ2/2αD

(
D(1 +N) +

3(DS + ν)

1 + εξ

)
+

+
3(DS + ν)

1 + εξ

]
< 1 (3.37)

T is a contraction operator in H.
Thus, we have proved that the operator T has a unique fixed point in

the space H. This fixed point represents an integral manifold of the system
(3.6). It completes the proof of Theorem 3.1.
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3.3.4 Examples

Example 3.6 Consider the system

dy

dt
= εY (t, y, z, ε),

dz

dt
= B(t)z + Z(t, y, z, a(y, ε), ε) + a(y, ε),

(3.38)

where y ∈ Rn, α = β = 1 and Z has the form

Z(t, y, z, a(y, ε), ε) = Z(t, ε) = (ε cos t, 0)T . (3.39)

The function Z satisfies the assumption (H2). Therefore, we can apply
the results of Theorem 3.1.

Using (3.23) we have the following equation for the function a(y, ε)∫ +∞

−∞
e
−s2

2 W−1(s)a(y, ε)ds = −
∫ +∞

−∞
e
−s2

2 W−1(s)Z(s, ε)ds.

Calculating the integral in the l.h.s we get

a∗ := − e1/2

√
2π

+∞∫
−∞

e
−s2

2 W−1(s)Z(s, y)ds = −
(
εe1/2

2
(1 + e−2), 0

)T

.

Then, substituting a∗(y, ε) into (3.38) we obtain the system which has the
integral manifold z = h(t, y, ε) given by

h(t, ε) =



t∫
−∞

e
t2−s2

2 (Z(s, ε) + a∗)ds, t < 0,

−
+∞∫
t

e
t2−s2

2 (Z(s, ε) + a∗)ds, t ≥ 0.

In this example the function Z does not depend on y. Therefore we get
that a does not depend on y, too.

Example 3.7 Consider system (3.38) under the assumption that y ∈ R
and the function Z has the form

Z(t, y, z, a(y, ε), ε) =

(
ε cos t cos y

0

)
. (3.40)
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The function Z satisfies the conditions of the Theorem 3.1. Therefore, there
exist a unique function a(y, ε), a ∈ F , such that this system has an integral
manifold z = h(t, y, ε), h ∈ H.

From equation (3.23) for a we have

a∗(y, ε) = − e1/2

√
2π

+∞∫
−∞

e
−s2

2 Z(s, y)ds = −
(
εe1/2

2
(1 + e−2) cos y, 0

)T

.

Substituting a∗(y, ε) into the system we get the integral manifold z =
h(t, y, ε) given by

h(t, y, ε) =



t∫
−∞

e
t2−s2

2 (Z(s, y, ε) + a∗(y, ε))ds t < 0,

−
+∞∫
t

e
t2−s2

2 (Z(s, y, ε) + a∗(y, ε))ds t ≥ 0.
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Chapter 4

Asymptotic approximations

The method of integral manifolds is a very effective tool for studying the
qualitative problems of differential equations. Therefore, the problem of
finding the function describing the integral manifold is important. Usually,
this function can not be found in explicit form. There are many papers
devoted to the problem of approximation of solutions and integral manifolds
(see e.g. [15, 34, 37, 36]).

In this chapter we will show that under the assumption that Y and
Z in the r. h. s. of (3.6) are sufficiently smooth, the integral manifold
z = h(t, y, ε) and the gluing function a(y, ε) can be represented in the form

h(t, y, ε) =
∑
i≥0

εihi(t, y),

a(y, ε) =
∑
i≥0

εiai(y),
(4.1)

where hi, ai are continuous and uniformly bounded functions. In what fol-
lows we will establish an algorithm of finding the coefficients hi, ai, and then
we shall estimate the error of the approximations.

In order to find the functions hi and ai we substitute (4.1) into equations
(3.6).
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dy

dt
= εY (t, y,

∑
i≥0

εihi(t, y), ε),

∂

∂t

∑
i≥0

εihi(t, y) +

(
∂

∂y

∑
i≥0

εihi(t, y)

)
εY (t, y,

∑
i≥0

εihi(t, y), ε) =

B(t)
∑
i≥0

εihi(t, y) + Z(t, y,
∑
i≥0

εihi(t, y),
∑
i≥0

εiai(y), ε) +
∑
i≥0

εiai(y).

(4.2)

In addition to (H1), (H2) we suppose that the functions Y and Z in the r.
h. s. of (3.6) have continuous, uniformly bounded and globally Lipschitzian
partial derivatives with respect to y, z, a, ε of order k. Then, the function
Y can be represented as

Y (t, y,
∑
i≥0

εihi, ε) = Y (t, y, h0, 0)+

+ε

(
∂Y (t, y, h0, 0)

∂ε
+
∂Y (t, y, h0, 0)

∂z
h1

)
+

+
1

2
ε2

(
∂2Y (t, y, h0, 0)

∂ε2
+ 2

∂Y (t, y, h0, 0)

∂z
h2+

+
∂2Y (t, y, h0, 0)

∂z2
h2

1 + 2
∂2Y (t, y, h0, 0)

∂ε∂z
h1

)
+ · · · =

= Y (t, y, h0, 0) +
∑
i≥1

εi∂Y (t, y, h0, 0)

∂z
hi +

∑
i≥1

εiYi(t, y, h0, . . . , hi−1). (4.3)

In the same way for the function Z we obtain

Z(t, y,
∑
i≥0

εihi(t, y),
∑
i≥0

εiai(y), ε) = Z(t, y, h0, a0, 0)+

+
∑
i≥1

εi

[
∂Z(t, y, h0, a0, 0)

∂z
hi +

∂Z(t, y, h0, a0, 0)

∂a
ai

]
+ (4.4)

+
∑
i≥1

εiZi(t, y, h0, . . . , hi−1, a0, . . . , ai−1).

Substituting (4.3)–(4.4) into equation (4.2) we get the following equation∑
i≥0

∂hi

∂t
+
∑
i≥0

∂hi

∂y
· ε
[
Y (t, y, h0, 0)+
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+
∑
i≥1

εi∂Y (t, y, h0, 0)

∂z
hi +

∑
i≥1

εiYi(t, y, h0, . . . , hi−1)

]
=

= B(t)
∑
i≥0

εihi + Z(t, y, h0, a0, 0)+

+
∑
i≥1

εi

[
∂Z(t, y, h0, a0, 0)

∂z
hi +

∂Z(t, y, h0, a0, 0)

∂a
ai

]
+

+
∑
i≥1

εiZi(t, y, h0, . . . , hi−1, a0, . . . , ai−1).

Letting ε = 0 we have

∂h0

∂t
= B(t)h0 + Z(t, y, h0, a0, 0) + a0(y).

Under the inequalities (3.10) and (3.11)–(3.13) and from the definitions of
the spaces H,F we have

h0(t, y) ≡ 0, a0(y) ≡ 0,

∂Z(t, y, 0, 0, 0)

∂z
= 0,

∂Z(t, y, 0, 0, 0)

∂a
= 0.

(4.5)

Equating the coefficients corresponding to the same powers of ε we get

∂h1

∂t
+
∂h0

∂y
Y (t, y, 0, 0) = B(t)h1 +

∂Z(t, y, h0, a0, 0)

∂ε
+ a1(y),

or by (4.5) we obtain

∂h1

∂t
= B(t)h1 +

∂Z(t, y, 0, 0, 0)

∂ε
+ a1(y).

From this equation we can find the function h1(t, y) as the solution bounded
for all t ∈ R

h1(t, y) =


−

+∞∫
t

e
α(t2−s2)

2 W (t− s)

(
∂Z(t, y, 0, 0, 0)

∂ε
+ a1(y)

)
ds, t ≥ 0,

t∫
−∞

e
α(t2−s2)

2 W (t− s)

(
∂Z(t, y, 0, 0, 0)

∂ε
+ a1(y)

)
ds, t < 0,

(4.6)
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where the function a1(y) can be found from the condition that h1(t, y) is
continuous at t = 0

+∞∫
−∞

e
−αs2

2 W−1(s)

(
∂Z(t, y, 0, 0, 0)

∂ε
+ a1(y)

)
ds = 0. (4.7)

For a1 we have the following equation

+∞∫
−∞

e
−αs2

2 W−1(s)a1(y)ds = −
+∞∫
−∞

e
−αs2

2 W−1(s)
∂Z(t, y, 0, 0, 0)

∂ε
ds,

or

Ja1(y) = −
+∞∫
−∞

e
−αs2

2 W−1(s)
∂Z(t, y, 0, 0, 0)

∂ε
ds,

where

J =

+∞∫
−∞

e
−αs2

2 W−1(s) ds =

√
2πe−β2/2α

√
α

I,

where I is the identity matrix. Then

a1(y) = −J−1

+∞∫
−∞

e
−αs2

2 W−1(s)
∂Z(t, y, 0, 0, 0)

∂ε
ds. (4.8)

Comparing the functions multiplied by ε2 we get

∂h2

∂t
+
∂h1

∂y
Y (t, y, h0, 0) +

∂h0

∂y

∂Y (t, y, h0, 0)

∂z
h1 +

∂h0

∂y
Y1(t, y, h0) =

= B(t)h2 + Z2(t, y, h0, h1, a0, a1) + a2(y).

Under the equalities (4.5) we can write

∂h2

∂t
+
∂h1

∂y
Y (t, y, 0, 0) = B(t)h2 + Z2(t, y, 0, h1, 0, a1) + a2(y). (4.9)

The function h2(t, y) can be found as the uniformly bounded solution of
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(4.9)

h2(t, y) =



−
+∞∫
t

e
α(t2−s2)

2 W (t− s) (Z2(t, y, 0, h1, 0, a1) −
∂h1

∂y
Y (t, y, 0, 0)

+a2(y)) ds, t ≥ 0,
t∫

−∞

e
α(t2−s2)

2 W (t− s) (Z2(t, y, 0, h1, 0, a1) −
∂h1

∂y
Y (t, y, 0, 0)

+a2(y)) ds, t < 0,

where the function a2(y) is defined from the condition of continuity h2(t, y)
at t = 0

+∞∫
−∞

e
−αs2

2 W−1(s)

(
Z2(t, y, 0, h1, 0, a1)−

∂h1

∂y
Y (t, y, 0, 0) + a2(y)

)
ds = 0.

Thus, we obtain the equation for determining a2

a2(y) = −J−1

+∞∫
−∞

e
−αs2

2 W−1(s)

(
Z2(t, y, 0, h1, 0, a1)−

∂h1

∂y
Y (t, y, 0, 0)

)
ds.

For ε in the k-th power we have

∂hk

∂t
+
∂hk−1

∂y
Y (t, y, 0, 0) +

∂hk−2

∂y

(
∂Y (t, y, 0, 0)

∂z
h1 + Y1(t, y, 0)

)
+ · · · =

= B(t)hk + Zk(t, y, 0, h1, . . . , hk−1, 0, a1, . . . , ak−1) + ak(y).
(4.10)

The function hk(t, y) can be found as a solution of equation (4.10) bounded
for all t ∈ R

hk(t, y) =



−
+∞∫
t

e
α(t2−s2)

2 W (t− s) (Zk(t, y, 0, h1, . . . , hk−1, 0, a1, . . . , ak−1)

−∂hk−1

∂y
Y (t, y, 0, 0)− . . .+ ak(y)

)
ds, t ≥ 0,

t∫
−∞

e
α(t2−s2)

2 W (t− s) (Zk(t, y, 0, h1, . . . , hk−1, 0, a1, . . . , ak−1)+

−∂hk−1

∂y
Y (t, y, 0, 0)− . . .+ ak(y)

)
ds, t < 0,
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where ak(y) is defined from the condition of continuity of hk(t, y) at t = 0

+∞∫
−∞

e
−αs2

2 W−1(s)

(
Zk(t, y, 0, h1, . . . , hk−1, 0, a1, . . . , ak−1)−

− ∂hk−1

∂y
Y (t, y, 0, 0)− . . .+ ak(y)

)
ds = 0,

or

ak(y) = −J−1

+∞∫
−∞

e
−αs2

2 W−1(s)

(
Zk(t, y, 0, h1, . . . , hk−1, 0, a1, . . . , ak−1)

− ∂hk−1

∂y
Y (t, y, 0, 0)− . . .

)
ds.

Thus, we obtained the recurrent formulas for the coefficients hi, ai. Let
us introduce the following notations

Hk(t, y, ε) =
k∑

i=1

εihi(t, y), Ak(y, ε) =
k∑

i=1

εiai(y). (4.11)

Then the question arises: What is the error of approximations (4.11)? In
what follows we shall prove the following statement

Theorem 4.1 Let the conditions of Theorem 3.1 hold and let the functions
Y, Z in r. h. s. of system (3.6) have continuous and uniformly bounded
partial derivatives with respect to y, z, a, ε up to the order k + 1. Then
the integral manifold z = h(t, y, ε) of system (3.6) and the gluing function
a(y, ε) can be represented in the form

z(t, y, ε) =
k∑

i=0

εihi(t, y) +O(εk+1),

a(y, ε) =
k∑

i=0

εiai(y) +O(εk+1),

where hi and ai are bounded and Lipschitz continuous functions.
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4.1 Proof of Theorem 4.1

The boundedness and Lipschitz continuity of hi, ai follow from the defini-
tions of these functions. We put

z = Hk + u,

a = Ak + v,
(4.12)

u and v are the remainder terms. Substituting (4.12) into (3.6) we get

dy

dt
= εY (t, y,Hk + u, ε),

dHk

dt
+
du

dt
= B(t)Hk +B(t)u+ Z(t, y,Hk + u,Ak + v, ε) + Ak + v.

From the properties of the functions Hk, Ak we obtain the system

dy

dt
= εỸ (t, y, u, ε),

du

dt
= B(t)u+ Z̃(t, y, u, v(y, ε), ε) + v(y, ε),

(4.13)

where
Ỹ (t, y, u, ε) = Y (t, y,Hk + u, ε),

Z̃(t, y, u, v, ε) = Z(t, y,Hk + u,Ak + v, ε)− Z(t, y,Hk, Ak, ε)

+εk+1ϕ(t, y, h0, . . . , hk, a0, . . . , ak),

with ϕ uniformly bounded

‖ϕ(t, y, h0, . . . , hk, a0, . . . , ak)‖ ≤ C.

From the definition it follows that the functions Ỹ , Z̃ are continuous on
R × Rn × Ωz × Iε0 , R × Rn × Ωz × Ωa × Iε0 , respectively, and satisfy for
t ∈ R, y, ȳ ∈ Rn, u, ū ∈ Ωz, v, v̄ ∈ Ωa, ε ∈ Iε0 the inequalities

‖Ỹ (t, y, u, ε)‖ ≤ K, (4.14)

‖Ỹ (t, y, u, ε)− Ỹ (t, ȳ, ū, ε)‖ ≤ µ1‖y − ȳ‖+ µ‖u− ū‖, (4.15)

‖Z̃(t, y, u, v, ε)‖ ≤ ‖Z(t, y,Hk+u,Ak+v, ε)−Z(t, y,Hk, Ak, ε)‖+εk+1‖ϕ‖ ≤

≤ D1

(
ε‖u‖+ ε‖v‖+ ‖u‖2 + εk+1

)
, (4.16)

‖Z̃(t, y, u, v, ε)− Z̃(t, ȳ, ū, v̄, ε)‖ ≤
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D1

(
(ε+ ε‖ũ‖+ ‖ũ‖2)‖y − ȳ‖+ (ε+ ‖ũ‖)‖u− ū‖+ ε‖v − v̄‖

)
, (4.17)

where ‖ũ‖ := max{‖u‖, ‖ū‖}. These inequalities, except (4.16), are analo-
gous to (3.8)-(3.11). Thus, system (4.13) is a system of the same type as
(3.6).

In order to prove Theorem 4.1 we shall show that there is a function
v(y, ε), ‖v(y, ε)‖ ≤ εk+1q such that system (4.13) possesses an integral
manifold u = g(t, y, ε), ‖g(t, y, ε)‖ ≤ εk+1p, where q, p are some positive
number.

We shall use the same approach as in the previous sections.
Let us consider the complete metric space V of functions v, continuous

on Rn × Iε0 , satisfying the inequalities

‖v(y, ε)‖ ≤ εk+1q, ‖v(y, ε)− v(ȳ, ε)‖ ≤ εκ‖y − ȳ‖. (4.18)

with the metric defined by

ρ (v, v̄) = sup
y∈Rn,ε∈Iε0

‖v(y, ε)− v̄(y, ε)‖

and the complete metric space G of functions g, continuous on R×Rn×Iε0 ,
satisfying the inequalities

‖g(t, y, ε)‖ ≤ εk+1p,

‖g(t, y, ε)− g(t, ȳ, ε)‖ ≤ εγ‖y − ȳ‖,
(4.19)

for t ∈ R, y, ȳ ∈ Rn, ε ∈ Iε0 with the metric

ρ(g, ḡ) = sup
t∈R,y∈Rn,ε∈Iε0

‖g(t, y, ε)− ḡ(t, y, ε)‖.

The aim is to prove that there exists a function v ∈ V guaranteeing that
the modified system (4.13) has an integral manifold u = g(t, y, ε), where
g ∈ G.

We define on G the operator T̃ of the form

(T̃ g)(t, y, ε) =


−

+∞∫
t

e
α(t2−s2)

2 W (t− s)
[
Z̃ (·) + v

(
Ψs,t(y, g, ε), ε )] ds, t ≥ 0,

t∫
−∞

e
α(t2−s2)

2 W (t− s)
[
Z̃ (·) + v (Ψs,t(y, g, ε), ε)

]
ds, t < 0,

with v depending on g ∈ G, and

Z̃(·) = Z̃ (s,Ψs,t(y, g, ε), g(s,Ψs,t(y, g, ε), ε), v(Ψs,t(y, g, ε), ε), ε) .
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Here Ψs,t(y, g, ε) is the solution of the initial value problem for any given
function g ∈ G

dψ

ds
= Ỹ (s, y, g, ε),

ψ(t) = y.
(4.20)

As it was done in the Section 3.3 we shall show that for every g ∈ G we
can define a unique function v(y, ε) such that T̃ g is continuous, and then

we shall show that the operator T̃ maps the space G into itself and has a
fixed point. The fixed point represents an integral manifold of (4.13).

4.1.1 Continuity of T̃ g at t = 0

It is obvious that T̃ g is continuous for t < 0 and t > 0 for any g ∈ G.
Consider the following equation

+∞∫
−∞

e
−αs2

2 W (−s)
[
Z̃(·) + v(Ψs,0(y, g, ε), ε)

]
ds = 0 (4.21)

with respect to a function v(y, ε). This equation is obtained from the con-

dition of continuity of T̃ g(t, y, ε) at t = 0. In the same way as in Section
3.3.2, we shall prove that there exists a unique function v ∈ V such that
the element T̃ g is continuous.

In the sequel we shall use the following Lemma which describes the
depends of the solution Ψs,t(y, g, ε) of (4.20) on the initial value y and the
function g ∈ G.

Lemma 4.2 The following inequalities are valid

‖Ψs,t(y, g, ε)−Ψs,t(ȳ, g, ε)‖ ≤ ‖y − ȳ‖eε(µ1+εγµ)|s−t|,

‖Ψs,t(y, g, ε)−Ψs,t(y, ḡ, ε)‖ ≤
µ

µ1 + εγµ
ρ(g, ḡ)

(
eε(µ1+εγµ)|s−t| − 1

)
.

The proof is the same as it was for Lemma 3.2.

As it was done in Section 3.3.2 equation (4.21) can be represented in the
form

(I + R̃)v(y, ε) = Q̃v(y, ε),
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where I is the identity operator, and R̃ and Q̃ are given by the relations

R̃v(y, ε) :=

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)[v(Ψs,0(y, g, ε), ε)− v(y, ε)]ds,

(4.22)

Q̃v(y, ε) := −
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)Z̃(·)ds, (4.23)

here

Z̃(·) = Z̃(s,Ψs,0(y, g, ε), g(s,Ψs,0(y, g, ε), ε), v(Ψs,0(y, g, ε), ε), ε).

The inequalities (4.14), (4.15) imply

‖R̃v(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 εκ‖Ψs,0(y, g, ε)− y‖ds ≤

≤ 2ε2
√
αeβ2/2ακ√

2π

+∞∫
0

e
−αs2

2

s∫
0

‖Ỹ (η,Ψs,0(y, g, ε), g(η,Ψs,0(y, g, ε), ε))‖dη ds ≤

≤ ε2
√

2eβ2/2ακK√
απ

.

For ε2
√

2eβ2/2ακK√
απ

< 1 there exists the linear operator (I + R̃)−1 and the
following inequality is true

‖(I + R̃)−1‖ ≤ 1

1− ε2
√

2eβ2/2ακK/
√
απ

. (4.24)

We introduce the operator P̃ on V by

P̃ v = (I + R̃)−1Q̃v. (4.25)

In the sequel we prove that the operator P̃ maps V into itself and is a
contraction.

For Q̃ we get from (4.16), (4.23)

‖Q̃v(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 ‖Z̃(·)‖ds ≤
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≤ eβ2/2αεk+1D1(1 + εq + εp+ εk+1p2).

Using the last inequality and (4.24), we obtain

‖P̃ v(y, ε)‖ ≤ εk+1eβ2/2αD1(1 + εq + εp+ εk+1p2)

1− ε2
√

2eβ2/2ακK/
√
απ

.

Under the condition

ε2
√

2eβ2/2ακK√
απ

≤ 1

2
, (4.26)

the estimate

‖P̃ v(y, ε)‖ ≤ 2εk+1D1(1 + εq + εp+ εk+1p2)

is true.
From the inequalities (4.17)-(4.19) and Lemma 4.2 it follows

‖Q̃v(y, ε)− Q̃v(ȳ, ε)‖ ≤

≤ αe1/4

√
2π

+∞∫
−∞

e
−αs2

2 ‖Z̃(s,Ψs,0(y, g, ε), g(s,Ψs,0(y, g, ε), ε), v(Ψs,0(y, g, ε), ε), ε)−

−Z̃(s,Ψs,0(ȳ, g, ε), g(s,Ψs,0(ȳ, g, ε), ε), v(Ψs,0(ȳ, g, ε), ε), ε)‖ds ≤

≤ ε
√
αeβ2/2αD1√

2π

+∞∫
∞

e
−αs2

2 (1 + εk+1p+ ε2k+1p2 + εγ(1 + εkp) + εκ)×

‖Ψs,0(y, g, ε)−Ψs,0(ȳ, g, ε)‖ds ≤

≤ 2ε
√
αeβ2/2αD1S1√

2π

+∞∫
0

e
−αs2

2 eε(µ1+εγµ)sds‖y − ȳ‖, (4.27)

where S1 = 1 + ε(1 + εkp)(γ + εkp) + εκ.
Under the condition

√
2√
α
ε(µ1 + εγµ) ≤ 1, (4.28)

the integral in (4.27) can be estimated due to Lemma 3.3

√
2α√
π

+∞∫
0

e
−αs2

2 eε(µ1+εγµ)sds ≤ 3.
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Consequently, we obtain

‖Q̃v(y, ε)− Q̃v(ȳ, ε)‖ ≤ 3εeβ2/2αD1S1‖y − ȳ‖. (4.29)

Thus, by (4.24), (4.25), (4.29) we have

‖P̃ v(y, ε)−P̃ v(ȳ, ε)‖ ≤ 3εeβ2/2αD1S1

1− ε2
√

2eβ/2ακK/
√

2π
‖y−ȳ‖ ≤ 6εeβ2/2αD1S1‖y−ȳ‖.

For sufficiently small ε the inequality (4.26) and the inequalities

2eβ2/2αD1(1 + εp+ εq + εk+1p2) ≤ q, (4.30)

√
2ε(µ1 + εγµ)√

α
≤ 1, (4.31)

6eβ2/2αD1S1 ≤ κ (4.32)

hold, therefore P̃ maps V into itself.
Now we derive conditions assuring P̃ to be a contraction operator in V .

For the difference ‖Q̃v − Q̃v̄‖ by (4.17), (4.23) we have

‖Q̃v(y, ε)− Q̃v̄(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 εD1ρ(v, v̄)ds = εeβ2/2αD1ρ(v, v̄).

Consequently, for P̃ v − P̃ v̄ we get

‖P̃ v(y, ε)−P̃ v̄(y, ε)‖ ≤ εeβ2/2αD1

1− ε2
√

2eβ2/2ακK/
√
απ

ρ(v, v̄) ≤ 2εeβ2/2αD1ρ(v, v̄).

If 2εD1e
β2/2α < 1 holds then P̃ is a contraction operator in V . Therefore,

the equation v = P̃ v, which is equivalent to (4.21), has a unique solution in
V . Thus, we have proved

Lemma 4.3 Suppose the functions Ỹ , Z̃ are continuous on R×Rn×Ωz ×
Iε0, R× Rn × Ωz × Ωa × Iε0,respectively, and satisfy the conditions (4.14)-
(4.17). Then for sufficiently small ε ∈ Iε0 there exists a unique function

v ∈ V guaranteeing that the function T̃ g is continuous.

Now we derive some auxiliary estimates which we shall use in estimating
the Lipschitz constant for the function T̃ h. Let v(y, ε) and v̄(y, ε) be the
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solutions of (4.21) corresponding to the functions g and ḡ respectively. Then
we have

(I + R̃)v = Q̃v,

(I + R̃)v̄ = Q̃v̄,

where

R̃v̄(y, ε) :=

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)[v̄(Ψs,0(y, ḡ, ε), ε)− v̄(y, ε)]ds,

Q̃v̄(y, ε) := −
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)Z̃(·)ds,

here

Z̃(·) = Z̃(s,Ψs,0(y, ḡ, ε), ḡ(s,Ψs,0(y, ḡ, ε), ε), v̄(Ψs,0(y, ḡ, ε), ε), ε).

After some elementary transformations we obtain

v − v̄ = (I + R̃)−1[Q̃v − Q̃v̄ + (R̃− R̃)v̄]. (4.33)

The expression in the square brackets will be estimated at first. By
(4.16)-(4.18) we have

‖Q̃v(y, ε)− Q̃v̄(y, ε)‖ ≤
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≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

[
D1(ε+ ε‖g̃‖+ ‖g̃‖2)‖Ψs,0(y, g, ε)−Ψs,0(y, ḡ, ε)‖

+D1(ε+ ‖g̃‖)‖g(s,Ψs,0(y, g, ε), ε)− ḡ(s,Ψs,0(y, ḡ, ε), ε)‖

+εD1‖v(Ψs,0(y, g, ε), ε)− v̄(Ψs,0(y, ḡ, ε), ε)‖
]
ds

≤ εD1

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

[
(1 + εk+1p+ ε2k+1p2 + εγ(1 + εkp) + εκ)×

‖Ψs,0(y, g, ε)−Ψs,0(y, ḡ, ε)‖+ (1 + εkp)ρ(g, ḡ) + ρ(v, v̄)

]
ds

≤ εD1e
β2/2α

[
ρ(v, v̄) + (1 + εkp)ρ(g, ḡ)

]
+
εD1S1

√
αeβ2/2α

√
2π

+∞∫
0

e
−αs2

2
µ

µ1 + εγµ
(eε(µ1+εγµ)s − 1)ρ(g, ḡ)ds

≤ εeβ2/2αD1

(
ρ(v, v̄) +

(
1 + εkp+

3S1µ

µ1 + εγµ

)
ρ(g, ḡ)

)
,

and

‖(R̃− R̃)v̄‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 ‖v̄(Ψs,0(y, ḡ, ε), ε)− v̄(Ψs,0(y, g, ε), ε)‖ds

≤ ε
√
αeβ2/2ακ√

2π

+∞∫
−∞

e
−αs2

2 ‖Ψs,0(y, g, ε)−Ψs,0(y, ḡ, ε)‖ds

≤ 2ε
√
αeβ2/2αµκ√

2π(µ1 + εγµ)

+∞∫
0

e
−αs2

2 eε(µ1+εγµ)sρ(g, ḡ)ds

≤ 3εeβ2/2ακµ
µ1 + εγµ

ρ(g, ḡ).

Thus, we get by (4.33)

‖v(y, ε)− v̄(y, ε)‖ ≤ εeβ2/2α

1− ε2
√

2eβ2/2ακK/
√
απ

[
D1ρ(v, v̄)+
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+

(
D1(1 + εkp) +

3µ(D1S1 + κ)

µ1 + εγµ

)
ρ(g, ḡ)

]
.

From this inequality it follows

Lemma 4.4 Suppose the conditions of Lemma 4.3 and the inequality (4.26)
are valid. Then the following estimate is true

ρ(v, v̄) ≤ 2εeβ2/2α

1− 2εeβ2/2αD1

(
D1(1 + εkp) +

3µ(D1S1 + κ)

µ1 + εγµ

)
ρ(g, ḡ). (4.34)

4.1.2 Order of the approximation

In this section we estimate the order of approximation (4.12). To do this we

derive conditions under which the operator T̃ maps the space G into itself
and is a contraction. By (4.16) for t ≥ 0 we have

‖T̃ g(t, y, ε)‖ ≤
+∞∫
t

e
α(t2−s2)

2

[
‖Z̃(·)‖+ ‖v(Ψs,t(y, g, ε), ε)‖

]
ds ≤

≤
√
π√
2α
εk+1(D1(1 + εp+ εq + εk+1p2) + q).

The same estimate is true for t ≤ 0. Therefore, we have that T̃ h is bounded.
To prove the Lipschitz continuity of T̃ h consider the difference ‖T̃ g(t, y, ε)−
T̃ g(t, ȳ, ε)‖. Then by (4.17) and Lemma 4.2 for t ≥ 0 we get

‖T̃ g(t, y, ε)− T̃ g(t, ȳ, ε)‖ ≤

≤
+∞∫
t

e
α(t2−s2)

2

[
‖Z̃ (s,Ψs,t(y, g, ε), g(s,Ψs,t(y, g, ε), ε), v(Ψs,t(y, g, ε), ε), ε)

−Z̃ (s,Ψs,t(ȳ, g, ε), g(s,Ψs,t(ȳ, g, ε), ε), v(Ψs,t(ȳ, g, ε), ε), ε) ‖

+‖v(Ψs,t(y, g, ε), ε)− v(Ψs,t(ȳ, g, ε), ε)‖] ds

≤
+∞∫
t

e
α(t2−s2)

2

(
εD1(1 + εk+1p+ ε2k+1p2 + εν(1 + εkp))

+ εκ(εD1 + 1)) ‖Ψs,t(y, g, ε)−Ψs,t(ȳ, g, ε)‖ds
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≤ ε(D1S1 + κ)

+∞∫
t

e
α(t2−s2)

2 ‖Ψs,t(y, g, ε)−Ψs,t(ȳ, g, ε)‖ds

≤ ε(D1S1 + κ)

+∞∫
t

e
α(t2−s2)

2 eε(µ1+εγµ)(s−t)‖y − ȳ‖ds.

Under the condition (4.28), using the error integral erf(λ) and Lemma
3.3 the last integral can be estimated

+∞∫
t

e
α(t2−s2)

2 eε(µ1+εγµ)(s−t)ds =

√
2√
α

+∞∫
t1−λ

e(t1−λ)2−(s1−λ)2d(s1 − λ) ≤

≤
√

2√
α

2

|t1−λ|∫
0

e(t1−λ)2−(s1−λ)2d(s1 − λ) +

+∞∫
|t1−λ|

e(t1−λ)2−(s1−λ)2d(s1 − λ)

 =

=

√
2√
α

(√
π

2
+
√
πe(t1−λ)2erf(|t1 − λ|)

)
< 3

√
π√
2α
.

Consequently, for t ≥ 0 we get

‖T̃ g(t, y, ε)− T̃ g(t, ȳ, ε)‖ < 3ε
√
π√

2α
(D1S1 + κ)‖y − ȳ‖.

Analogously, one sees that the same estimate is valid for t ≤ 0.
Thus, if the inequalities

√
π√
2α

(q +D1(1 + εp+ εq + εk+1p2)) ≤ p, (4.35)

3

√
π√
2α

(D1S1 + κ) ≤ γ (4.36)

hold then T̃ maps G into itself.
Now we prove that T̃ is a contraction operator in the spaceG. According

to the inequalities (4.17)-(4.19) and Lemmas 4.2, 4.4 we get

‖T̃ g(t, y, ε)− T̃ ḡ(t, y, ε)‖ ≤

+∞∫
t

e
α(t2−s2)

2

[∥∥∥Z̃ (s,Ψs,t(y, g, ε), g(s,Ψs,t(y, g, ε), ε), v(Ψs,t(y, g, ε), ε), ε)−
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−Z̃ (s,Ψs,t(y, ḡ, ε), ḡ(s,Ψs,t(y, ḡ, ε), ε), v̄(Ψs,t(y, ḡ, ε), ε), ε)
∥∥∥+

+ ‖v(Ψs,t(y, g, ε), ε)− v̄(Ψs,t(y, ḡ, ε), ε)‖
]
ds ≤

≤
+∞∫
t

e
α(t2−s2)

2

(
εD1(1 + εk+1p+ ε2k+1p2 + εγ(1 + εk+1p) + εκ) + εκ

)
×

‖Ψs,t(y, g, ε)−Ψs,t(y, ḡ, ε)‖ds+

+

√
π√
2α

(
(1 + εD1)ρ(v, v̄) + εD1(1 + εkp)ρ(g, ḡ)

)
≤

≤ ε
√
π

2α

[
D1(1 + εkp) + (1 + εD1)

2eβ2/2α

1− 2εeβ2/2αD1

×

(
D1(1 + εkp) +

3µ(D1S1 + κ)

µ1 + εγµ

)]
ρ(g, ḡ)+

+
εµ(D1S1 + κ)

µ1 + εγµ

+∞∫
t

e
α(t2−s2)

2

(
eε(µ1+εγµ)(s−t) − 1

)
ρ(g, ḡ)ds ≤

≤ ε
√
π√

2α

[
D1(1 + εkp) + (1 + εD1)

2eβ2/2α

1− 2εD1eβ2/2α

(
D1(1 + εkp) +

3µ(D1S1 + κ)

µ1 + εγµ

)

+
3εµ(D1S1 + κ)

(µ1 + εγµ)

]
ρ(g, ḡ).

Taking into account the relations (4.35), (4.36) and the inequality

ε
√
π√

2α

[
D1(1 + εkp) + (1 + εD1)

2eβ2/2α

1− 2εD1eβ2/2α

(
D1(1 + εkp) +

3µ(D1S1 + κ)

µ1 + εγµ

)

+
3εµ(D1S1 + κ)

(µ1 + εγµ)

]
< 1 (4.37)

we can conclude that T̃ is a contraction operator in G. Therefore the
operator T̃ has a fixed point in the space G. This fixed point represents an
integral manifold of system (4.13). This completes the proof of the Theorem
4.1.
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Example 4.5 Consider the system

dy

dt
= εY (t, y, z, ε),

dz1

dt
= tz1 + z2 + (z1)

2 + ε cos t cos y + a1(y, ε),

dz

dt
= −z1 + tz2 + a2(y, ε),

(4.38)

where y ∈ R, z = (z1, z2)
T , a = (a1, a2)

T .
We shall look for the integral manifold z = h(t, y, ε), h = (h1, h2)T and

the function a(y, ε) in the form

hi(t, y, ε) = hi
0(t, y) + εhi

1(t, y) + ε2hi
2(t, y) + · · · ,

ai(y, ε) = ai
0(y) + εai

1(y) + ε2ai
2(y) + · · · , i = 1, 2.

(4.39)

Substituting the expansions (4.39) into (4.38) and equating the coeffi-
cients we get the equations for the determinig the functions hi

j, a
i
j.

From the definition of the spaces H, F we get

h0 ≡ 0, a0 ≡ 0.

Then, equating the coefficients with ε we get

dh1
1

dt
= th1

1 + h2
1 + cos t cos y + a1

1,

dh2
1

dt
= −h1

1 + th2
1 + a2

1.
(4.40)

The function h1 = (h1
1, h

2
1)

T is the uniformly bounded solution of this equa-
tion (see (4.6)) and a1(y) is defined from the condition of continuity of
h1(t, y) at t = 0 (4.7)

+∞∫
−∞

e
−s2

2 W−1(s) (Z1(s, y) + a1(y)) ds = 0. (4.41)

From equation (4.41) we get

a∗1(y) := − e1/2

√
2π

+∞∫
−∞

e
−s2

2 Z1(s, y)ds = −
(
e1/2

2
(1 + e−2) cos y, 0

)T

. (4.42)
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Thus the function a = εa∗1(y) is the first order approximation of the
gluing function.

Substituting a∗1(y) into (4.40) we get the system

dh1

dt
= B(t)h1 + Z1(t, y) + a∗1(y). (4.43)

The function h1 is a uniformly bounded solution of this system, and is
given by

h∗1(t, y) =



t∫
−∞

e
t2−s2

2 W (t− s) (Z1(s, y, h1(t, y), ε) + a∗1(y)) ds t < 0,

−
+∞∫
t

e
t2−s2

2 W (t− s) (Z1(s, y, h1(t, y), ε) + a∗1(y)) ds t ≥ 0.

(4.44)
Thus, the function z = εh∗1(t, y) is the first-order approximation of the

integral manifold of (4.38).
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Chapter 5

Smoothness of the integral
manifold

This chapter is devoted to the problem of smoothness of the integral mani-
fold of system (3.6) and the gluing function. We shall study the dependence
of the existence of the partial derivatives of the function h(t, y, ε) represent-
ing the integral manifold and the function a(y, ε) on the smoothness of the
functions in the r. h. s. of (3.6). To this end, we consider the subspaces
of the spaces H,F of smooth functions and show that the restrictions of
the operators T, P defined in Sections 3.2, 3.3.2, map these subspaces into
themselves and are contractions.

We shall use the induction principle. First, we prove the existence of the
first derivatives. Then we show that under some assumptions it is possible
to prove the existence of further derivatives.

5.1 Existence of the first derivative

5.1.1 Assumptions

Here and elsewhere fx denotes the function

fx =
∂f

∂x
.

We suppose that the functions Y, Z in the r.h.s. of (3.6) satisfy the
assumptions (H1), (H2), and have first derivatives with respect to y, z, a
that are continuous on R × Rn × Ωz × Iε0 , R × Rn × Ωz × Ωa × Iε0 , and
satisfy for t ∈ R, y, ȳ ∈ Rn, z, z̄ ∈ Ωz, a, ā ∈ Ωa, ε ∈ Iε0 the inequalities:
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‖Yx(t, y, z, ε)‖ ≤ µ,

‖Yx(t, y, z, ε)− Yx(t, ȳ, z̄, ε)‖ ≤ µ1 (‖y − ȳ‖+ ‖z − z̄‖) ,
(5.1)

‖Zy(t, y, z, a, ε)‖ ≤ D
(
ε+ ε‖z‖+ ‖z‖2

)
‖Zz(t, y, z, a, ε)‖ ≤ D (ε+ ‖z‖) ,
‖Za(t, y, z, a, ε)‖ ≤ εD

(5.2)

‖Zx(t, y, z, a, ε)− Zx(t, ȳ, z̄, ā, ε)‖ ≤ D1 (‖y − ȳ‖+ ‖z − z̄‖+ ‖a− ā‖) ,
(5.3)

where ‖z̃‖ := max{‖z‖, ‖z̄‖}, and fx = ∂f
∂x

, x is a placeholder.
In what what follows we use the following inequality

n∑
i=1

u ≤

(
n

n∑
i=1

u2
i

)1/2

.

This inequality is obtained from the Hölder inequality

n∑
i=1

uivi ≤

(
n∑

i=1

up
i

n∑
i=1

vp
i

)1/p

,

by taking p = 2, vi = 1.
We consider the subspace F (1) ∈ F of functions a(y, ε) differentiable

with respect to y, satisfying the inequalities

‖ayi
(y, ε)‖ ≤ εl1,

‖ayi
(y, ε)− ayi

(ȳ, ε)‖ ≤ l2‖y − ȳ‖, i = 1, . . . , n.

Setting ν =
√
nl1, ν1 =

√
nll, we get

‖ay(y, ε)‖ ≤ εν,

‖ay(y, ε)− ay(ȳ, ε)‖ ≤ ν1‖y − ȳ‖.
(5.4)

We equip the space F (1) with the generalized metric d(a, ā) = col (ρ(a, ā), ρ(ay, āy)),
where ρ(ay, āy) is defined by

ρ(ay, āy) = max
1≤i≤n

sup
y∈Rn,ε∈Iε0

‖ayi
(y, ε)− āyi

(y, ε)‖.

Then F (1) is a complete metric space [12].
Let H(1) be the subspace of H consisting of functions h(t, y, ε) that have

continuous partial derivatives with respect to y satisfying for t ∈ R, y, ȳ ∈
Rn, ε ∈ Iε0 the inequalities
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‖hyi
(t, y, ε)‖ ≤ εn1,

‖hyi
(t, y, ε)− hyi

(t, ȳ, ε)‖ ≤ n2‖y − ȳ‖, i = 1, . . . , n,
(5.5)

with the generalized metric d(h, h̄) = col
(
ρ(h, h̄), ρ(hy, h̄y)

)
, where ρ(hy, h̄y)

is defined by

ρ(hy, h̄y) = max
1≤i≤n

sup
t∈R,y∈Rn,ε∈Iε0

‖hyi
(t, y, ε)− h̄yi

(t, y, ε)‖.

From the inequalities (5.5) it follows

‖hy(t, y, ε)‖ ≤ εξ,

‖hy(t, y, ε)− hy(t, ȳ, ε)‖ ≤ ξ1‖y − ȳ‖.
(5.6)

In what follows we use the notation Φ
(1)
s,t (y, h, ε) = ∂Φs,t(y,h,ε)

∂yi
.

Let us find the partial derivative with respect to yi of the element Th.
The functions Z(t, y, z, a(y, ε), ε) and a(y, ε) depend continuously on y and
under our assumptions there exist continuous derivatives of Z and a with
respect to y. Moreover, the integrals

I1 =

+∞∫
t

e
α(t2−s2)

2 W (t− s) [Zy (·) + Zz (·)hy(s,Φs,t(y, h, ε), ε)

+Za (·) ay(Φs,t(y, h, ε), ε) + ay( Φs,t(y, h, ε), ε )] Φ
(1)
s,t (y, h, ε) ds,

I2 =

t∫
−∞

e
α(t2−s2)

2 W (t− s) [Zy (·) + Zz (·)hy(s,Φs,t(y, h, ε), ε)

+Za (·) ay(Φs,t(y, h, ε), ε) + ay( Φs,t(y, h, ε), ε )] Φ
(1)
s,t (y, h, ε) ds,

converge uniformly with respect to y. Therefore, we can write

∂

∂yi

Th(t, y, ε) =



−
+∞∫
t

e
α(t2−s2)

2 W (t− s) [Zy (·) + Zz (·)hy(s,Φs,t(y, h, ε), ε)

+Za (·) ay(Φs,t(y, h, ε), ε) + ay( Φs,t(y, h, ε), ε )]×
Φ

(1)
s,t (y, h, ε) ds, t ≥ 0,

t∫
−∞

e
α(t2−s2)

2 W (t− s) [Zy (·) + Zz (·)hy(s,Φs,t(y, h, ε), ε)

+Za (·) ay(Φs,t(y, h, ε), ε) + ay( Φs,t(y, h, ε), ε )]×
Φ

(1)
s,t (y, h, ε) ds, t < 0,
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where

f(·) = f (s,Φs,t(y, h, ε), h(s,Φs,t(y, h, ε), ε), a(Φs,t(y, h, ε), ε), ε) .

In the sequel we show that the element Th together with ∂
∂yi
Th(t, y, ε)

belong to the space H(1) and the operator T is a contraction in H(1). There-
fore, ∂

∂yi
Th(t, y, ε) represents the partial derivative of the integral manifold

z = h(t, y, ε) with respect to y.

5.1.2 Auxiliary estimates

From the definition of the functions Φs,t(y, h, ε), it follows Φ
(1)
s,t (y, h, ε) can

be represented in the form

Φ
(1)
s,t (y, h, ε) = ei + ε

s∫
t

[Yy(·) + Yz(·) hy(η,Φη,t(y, h, ε), ε)] Φ
(1)
η,t (y, h, ε) dη,

where f(·) = f(η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε) and ei is a vector which
has ith component equals to 1 and all other components are 0. Then, the
following results are valid.

Lemma 5.1 Let the inequalities (5.1) be valid. Then for the norm of

Φ
(1)
s,t (y, h, ε) we have the following estimate

‖Φ(1)
s,t (y, h, ε)‖ ≤ eεµ(1+εξ)|s−t|.

Proof. For s ≥ t we have

‖Φ(1)
s,t (y, h, ε)‖ ≤ 1 + ε

s∫
t

[‖Yy(·)‖+ ‖Yz(·)‖‖hy(∗)‖] ‖Φ(1)
η,t (y, h, ε)‖dη

≤ 1 + εµ (1 + εξ)

s∫
t

‖Φ(1)
η,t (y, h, ε)‖dη.

In the same way we can estimate the norm for s ≤ t. Then, using the
Gronwall-Bellman inequality we obtain the result.
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Lemma 5.2 Under the conditions (5.1), the following estimates are valid

‖Φ(1)
s,t (y, h, ε)− Φ

(1)
s,t (ȳ, h, ε)‖ ≤

≤ ‖y − ȳ‖
µ(1 + εξ)

(
µ1(1 + εξ)2 + ξ1µ

) (
eεµ(1+εξ)|s−t| − 1

)
e2εµ(1+εξ)|s−t|,

‖Φ(1)
s,t (y, h, ε)− Φ

(1)
s,t (y, h̄, ε)‖ ≤

≤ 1

µ(1 + εξ)

[(
1

1 + εξ

(
µ1(1 + εξ)2 + µξ1

) (
eεµ(1+εξ)|s−t| − 1

)
+ µ1(1 + εξ)) ρ(h, h̄) +µρ(hy, h̄y)

] (
eεµ(1+εξ)|s−t| − 1

)
eεµ(1+εξ)|s−t|.

Proof. The proof is similar to the proof of Lemma 3.2. Using the
inequalities (5.1) and Lemma 5.1, we obtain for the difference ‖Φ(1)

s,t (y, h, ε)−
Φ

(1)
s,t (ȳ, h, ε)‖ for s ≥ t

‖Φ(1)
s,t (y, h, ε)− Φ

(1)
s,t (ȳ, h, ε)‖ ≤

≤ ε

s∫
t

[‖Yy(η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε)

−Yy(η,Φη,t(ȳ, h, ε), h(η,Φη,t(ȳ, h, ε), ε), ε)‖‖Φ(1)
η,t (ȳ, h, ε)‖

+‖Yy(η,Φη,t(ȳ, h, ε), h(η,Φη,t(ȳ, h, ε), ε), ε)‖‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (ȳ, h, ε)‖

+‖Yz(η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε)

−Yz(η,Φη,t(ȳ, h, ε), h(η,Φη,t(ȳ, h, ε), ε), ε)‖×

‖hy(η,Φη,t(y, h, ε), ε)‖‖Φ(1)
η,t (y, h, ε)‖

+‖Yz(η,Φη,t(ȳ, h, ε), h(η,Φη,t(ȳ, h, ε), ε), ε)‖×

‖hy(η,Φη,t(y, h, ε), ε)− hy(η,Φη,t(ȳ, h, ε), ε)‖‖Φ(1)
η,t (y, h, ε)‖

+‖Yz(η,Φη,t(ȳ, h, ε), h(η,Φη,t(ȳ, h, ε), ε), ε)‖×

‖hy(η,Φη,t(ȳ, h, ε), ε)‖‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (ȳ, h, ε)‖

]
dη

≤ ε

s∫
t

[(
µ1(1 + εξ)2 + µξ1

)
e2εµ(1+εξ)(η−t)‖y − ȳ‖

+ µ(1 + εξ)‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (ȳ, h, ε)‖

]
dη.
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Using the Gronwall-Bellman inequality we have

‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (ȳ, h, ε)‖ ≤

≤ ‖y − ȳ‖
µ(1 + εξ)

(
µ1(1 + εξ)2 + µξ1

) (
eεµ(1+εξ)(s−t) − 1

)
e2εµ(1+εξ)(s−t). (5.7)

For the difference ‖Φ(1)
s,t (y, h, ε) − Φ

(1)
s,t (y, h̄, ε)‖ we get from (5.1) and

Lemma 5.1

‖Φ(1)
s,t (y, h, ε)−Φ

(1)
s,t (y, h̄, ε)‖ ≤

s∫
t

ε [‖Yy(η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε)

−Yy(η,Φη,t(y, h̄, ε), h̄(η,Φη,t(y, h̄, ε), ε), ε)‖‖Φ(1)
η,t (y, h, ε)‖

+‖Yy(η,Φη,t(y, h̄, ε), h̄(η,Φη,t(y, h̄, ε), ε), ε)‖‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (y, h̄, ε)‖

+‖Yz(η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε)

−Yz(η,Φη,t(ȳ, h, ε), h̄(η,Φη,t(y, h̄, ε), ε), ε)‖×

‖hy(η,Φη,t(y, h, ε), ε)‖‖Φ(1)
η,t (y, h, ε)‖

+‖Yz(η,Φ
ε
η,t(y; h̄), h̄(η,Φη,t(y, h̄, ε), ε), ε)‖×

‖hy(η,Φη,t(y, h, ε), ε)− h̄y(η,Φη,t(y, h̄, ε), ε)‖‖Φ(1)
η,t (y, h, ε)‖

+‖Yz(η,Φη,t(y, h̄, ε), h̄(η,Φη,t(y, h̄, ε), ε), ε)‖×

‖h̄y(η,Φη,t(y, h̄, ε), ε)‖‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (y, h̄, ε)‖

]
dη ≤

≤ ε

s∫
t

[((
µ1(1 + εξ)2 + µξ1

)
‖Φη,t(y, h, ε)− Φη,t(y, h̄, ε)‖

+ µ1(1 + εξ)ρ(h, h̄) + µρ(hy, h̄y)
)
eεµ(1+εξ)(s−η)

+ µ(1 + εξ)‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (y, h̄, ε)‖

]
dη ≤

≤ ε

s∫
t

[(( 1

1 + εξ

(
eεµ(1+εξ)(η−t) − 1

) (
µ1(1 + εξ)2 + µξ1

)
+µ1(1 + εξ)

)
ρ(h, h̄) + µρ(hy, h̄y)

)
eεµ(1+εξ)(η−t)
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+µ(1 + εξ)‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (y, h̄, ε)‖

]
dη.

Applying the Gronwall-Bellman inequality we obtain

‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (y, h̄, ε)‖ ≤

1

µ(1 + εξ)

[(
1

1 + εξ

(
µ1(1 + εξ)2 + µξ1

)
×

(
eεµ(1+εξ)(s−t) − 1

)
+ µ1(1 + εξ)

)
ρ(h, h̄) + µρ(hy, h̄y)

]
×(

eεµ(1+εξ)(s−t) − 1
)
eεµ(1+εξ)(s−t). (5.8)

In the same way we get for s ≤ t

‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (ȳ, h, ε)‖ ≤

≤ ‖y − ȳ‖
µ(1 + εξ)

(
µ1(1 + εξ)2 + µξ1

) (
eεµ(1+εξ)(t−s) − 1

)
e2εµ(1+εξ)(t−s), (5.9)

‖Φ(1)
η,t (y, h, ε)− Φ

(1)
η,t (y, h̄, ε)‖ ≤

1

µ(1 + εξ)

[(
1

1 + εξ

(
µ1(1 + εξ)2 + µξ1

)
×(

eεµ(1+εξ)(t−s) − 1
)

+ µ1(1 + εξ)
)
ρ(h, h̄) + µρ(hy, h̄y)

]
×(

eεµ(1+εξ)(t−s) − 1
)
eεµ(1+εξ)(t−s). (5.10)

This completes the proof of the lemma.

5.1.3 Continuity of the function ∂
∂yi
Th at t = 0

In what follows we show that under the condition (5.1)-(5.2) the operator P
defined in Section 3.3.2 maps F (1) into itself and is a contraction. Namely,
the function ay(y, ε) satisfies conditions (5.4), and the function a(y, ε) to-
gether with its derivative ay(y, ε) belong to the space F (1).

From the condition of continuity of ∂
∂yi
Th at t = 0 we obtain the follow-

ing equation to determine the function ay(y, ε)

+∞∫
−∞

e
−αs2

2 W−1(s) [Zy(·) + Zz(·)hy(s,Φs,0(y, h, ε), ε)

+ Za(·)ay(Φs,0(y, h, ε), ε) + ay(Φs,0(y, h, ε), ε)] Φ
(1)
s,0(y, h, ε) = 0. (5.11)

Here f(·) = f(s,Φs,0(y, h, ε), h(s,Φs,0(y, h, ε), ε), a(Φs,0(y, h, ε), ε), ε).
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Let us introduce the following operators

R(1)ay(y, ε) :=
∂

∂yi

Ra(y, ε)

=

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)
[
ay(Φs,0(y, h, ε), ε)Φ

(1)
s,0(y, h, ε)− ay(y, ε)ei

]
ds,

Q(1)ay(y, ε) :=
∂

∂yi

Qa(y, ε) = −
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s) [Zy(·)+

+ Zz(·)hy(s,Φs,0(y, h, ε), ε) + Za(·)ay(Φs,0(y, h, ε), ε)] Φ
(1)
s,0(y, h, ε)ds.

Then equation (5.11) can be rewritten in the form

(I +R(1))ay(y, ε) = Q(1)ay(y, ε),

where I is the identity.
The inequalities (5.1)-(5.3), (5.4) imply

‖R(1)ay(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

(
‖ ay(Φs,0(y, h, ε), ε)‖‖Φ(1)

s,0(y, h, ε)‖

+‖ay(y, ε)‖
)
ds

≤ ε
√
αeβ2/2αν√

2π

+∞∫
−∞

e
−αs2

2

(
eεµ(1+εξ)|s| + 1

)
ds

≤ ενeβ2/2α +
2εν

√
αeβ2/2α

√
2π

+∞∫
0

e
−αs2

2 eεµ(1+εξ)sds.

The last integral can be estimated using the error integral (Lemma 3.3).
Hence, we have

‖R(1)ay(y, ε)‖ ≤ 4ενeβ2/2α.

If 4ενeβ2/2α < 1, then there exists the operator (I +R(1))−1 and we have

‖(I +R(1))−1‖ ≤ 1

1− 4ενeβ2/2α
. (5.12)
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We introduce the operator P (1) by

P (1)ay = (I +R(1))−1Q(1)ay (5.13)

In the sequel we shall show that P (1)ay satisfies the condition (5.4) and P (1)

is a contraction on the space F (1). To do this let us estimate Q(1)ay. By
(5.3) and Lemmas 5.1, 5.2 we have

‖Q(1)ay(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 [‖Zy(·)‖+ ‖Zz(·)‖‖hy(s,Φs,0(y, h, ε), ε)‖+

+‖Za(·)‖‖ay(Φs,0(y, h, ε), ε)] ‖Φ(1)
s,0(y, h, ε)‖ds

≤ ε
√
αeβ2/2αD√

2π

[
(1 +N + εN2) + εξ(1 +N) + εν

] +∞∫
−∞

e
−αs2

2 eεµ(1+εξ)|s|ds

≤ 3εeβ2/2αDS,

where S = 1 + εN + εN2 + εξ(1 +N) + εν.
Using the estimates on (I +R(1))−1 and Q(1) we obtain

‖P (1)ay(y, ε)‖ ≤
3εDSeβ2/2α

1− 4ενeβ2/2α
.

Under the condition

4ενeβ2/2α ≤ 1

2
, (5.14)

the inequality
‖P (1)ay(y, ε)‖ ≤ 6εeβ2/2αDS

holds.
By the inequalities (5.2) and Lemmas 3.2, 5.1, 5.2, it is easy to verify

the estimate
‖Q(1)ay(y, ε)−Q(1)ay(ȳ, ε)‖ ≤

≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

[(
D1(1 + εξ + εν)2 + εD(ξ1(1 +N) + ν1)

)
×

‖Φs,0(y, h, ε)− Φs,0(ȳ, h, ε)‖‖Φ(1)
s,0(y, h, ε)‖

+ εD(1 + εN + εN2 + εξ(1 +N) + εν)‖Φ(1)
s,0(y, h, ε)− Φ

(1)
s,0(ȳ, h, ε)‖

]
ds
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≤
(

3D1(1 + εξ + εν)2eβ2/2α + ε
C1

2

)
‖y − ȳ‖, (5.15)

where C1 is some constant depending on D,D1, N, ξ, ξ1, ν, ν1. Thus, by
(5.12), (5.14), (5.15) it holds

‖P (1)ay(y, ε)− P (1)ay(ȳ, ε)‖ ≤
(
6D1(1 + εξ + εν)2eβ2/2α + εC1

)
‖y − ȳ‖.

(5.16)
If we choose ε sufficiently small then we have

6εeβ2/2αDS ≤ ν,

6D1(1 + εξ + εν)2eβ2/2α + εC1 ≤ ν1

and the function ay(y, ε) satisfies the conditions (5.4). Therefore, the oper-
ator P maps F (1) into itself.

Let us estimate the difference ‖Q(1)ay(y, ε) − Q(1)āy(y, ε)‖. By the in-
equalities (5.2), (5.3), and Lemmas 5.1, 5.2 we have

‖Q(1)ay(y, ε)−Q(1)āy(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e−s2

[D1 (1 + εξ + εν) ρ(a, ā)

+ εDρ(ay, āy)] e
εµ(1+εξ)|s|ds

≤ 3eβ2/2α [D1 (1 + εξ + εν) ρ(a, ā) + εDρ(ay, āy)] .

Then by (5.12)-(5.14) it holds

‖P (1)ay(y, ε)−P (1)āy(y, ε)‖ ≤ 6eβ2/2α [D1 (1 + εξ + εν) ρ(a, ā) + εDρ(ay, āy)] .

Under the estimate (3.32) in Section 3.3.2 we have

d (Pa, P ā) ≤ Ud(a, ā),

where U is the matrix

U =

(
2εDeβ2/2α 0

6eβ2/2αD1 (1 + εν + εξ) 6εDeβ2/2α

)
.

For sufficiently small ε the spectral radius of U is less than 1, therefore P
is a contraction operator in F (1) [12].

Thus we have proved
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Lemma 5.3 Suppose the conditions of Lemma 3.2 are valid and the func-
tions Y , Z in the r. h. s. of (3.6) have continuous and bounded partial
derivatives with respect to y that satisfy the conditions (5.1)-(5.3). Then
for sufficiently small ε the gluing function a(y, ε) belongs to the space F (1).

Now we study the dependence of the fixed point a of the operator P
defined in (3.25) on h. This relation we shall need later in the proof of the
fact that T is strictly contractive in H(1). Let a(y, ε) and ā(y, ε) be the
solutions of (3.23) corresponding to the functions h and h̄ respectively. The
difference ‖a(y, ε)− ā(y, ε)‖ has been estimated (Lemma 3.5). In the sequel
we estimate the difference between first derivatives ay(y, ε), āy(y, ε). We
have (I +R(1))ay = Q(1)ay, and (I + R̄(1))āy = Q̄(1)āy, where

R̄(1)āy(y, ε) :=

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)[āy(Φs,0(y, h̄, ε), ε)Φ
(1)
s,0(y, h̄, ε)

−āy(y, ε)ei]ds,

Q̄(1)āy(y, ε) := −
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)
[
Z̄y(·)+

+ Z̄z(·)hy(s,Φs,0(y, h̄, ε), ε) + Z̄a(·)ay(Φs,0(y, h̄, ε), ε)
]
Φ

(1)
s,0(y, h̄, ε)ds.

Here

Z̄(·) = Z(s,Φs,0(y, h̄, ε), h̄(s,Φs,0(y, h̄, ε), ε), ā(Φs,0(y, h̄, ε), ε), ε).

After some elementary transformations we obtain

(I +R(1))(ay − āy) = Q(1)ay − Q̄(1)āy + (R̄(1) −R(1))āy

or
ay − āy = (I +R(1))−1[Q(1)ay − Q̄(1)āy + (R̄(1) −R(1))āy].

The expression in the square brackets will be estimated at first. By
applying (5.1)-(5.6) and Lemmas 3.2, 3.5, 5.2 we have

‖Q(1)a(y, ε)− Q̄(1)āy(y, ε)‖ ≤

≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

[((
D1(1 + εξ + εν)(ρ(h, h̄) + ρ(a, ā))
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+εD((1 +N)ρ(hy, h̄y) + ρ(ay, āy))

+
(
D1(1 + εξ + εν)2 + εD(ξ1(1 +N) + ν1)

))
×

‖Φs,0(y, h, ε)− Φs,0(y, h̄, ε)‖
)
‖Φ(1)

s,0(y, h, ε)‖

+ εD
(
1 + εN + εN2 + εξ(1 +N) + εν

)
‖Φ(1)

s,0(y, h, ε)− Φ
(1)
s,0(y, h̄, ε)‖

]
ds

≤ 3eβ2/2α
(
(D1 +

D1

1 + εξ
+ εC2)ρ(h, h̄) + εD(1 +N +

S

1 + εξ
)ρ(hy, h̄y)+

+εDρ(ay, āy)
)
;

‖(R̄(1) −R(1))āy‖ ≤

≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

(
ν1‖Φs,0(y, h, ε)− Φs,0(y, h̄, ε)‖‖Φ(1)

s,0(y, h, ε)‖

+εν‖Φ(1)
s,0(y, h, ε)− Φ

(1)
s,0(y, h̄, ε)‖

)
ds

≤ 3eβ2/2α

((
ν1

1 + εξ
+ εC3

)
ρ(h, h̄) +

ε

1 + εξ
ρ(hy, h̄y)

)
.

Combining the last estimates and (5.12), (5.14), we get

‖ay(y, ε)− āy(y, ε)‖ ≤ 6eβ2/2α

(
(D1 +

D1 + ν1

1 + εξ
+ εC4)ρ(h, h̄)+

+ ε(D(1 +N) +
DS + 1

1 + εξ
)ρ(hy, h̄y) + εDρ(ay, āy)

)
.

From the last inequality we get

Lemma 5.4 Under the conditions of Lemma 5.3 the following estimate is
true

ρ(ay, āy) ≤
6Deβ2/2α

1− 6εDeβ2/2α

(
(D1 +

D1 + ν1

1 + εξ
+ εC4)ρ(h, h̄)+

+ ε(D(1 +N) +
DS + 1

1 + εξ
)ρ(hy, h̄y)

)
,

where ay(y, ε) and āy(y, ε) are the partial derivatives with respect to y of the
solutions of (3.23) corresponding to the functions h and h̄ respectively.
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5.1.4 Existence of the first derivative

Now we derive conditions guaranteeing that the operator T maps H(1) into
itself. For this purpose we show that the element ∂

∂yi
Th(t, y, ε) satisfies the

conditions (5.6). By applying (5.2), (5.4), (5.6) and Lemma 5.1 we have for
t ≥ 0

‖ ∂

∂yi

Th(t, y, ε)‖ ≤

≤
+∞∫
t

e
α(t2−s2)

2

[
‖Zy(·)‖+‖Zz(·)‖‖hy(s,Φs,t(y, h, ε), ε)‖+‖Za(·)‖‖ay(Φs,t(y, h, ε), ε)‖

+‖ay(Φs,t(y, h, ε), ε)‖
]
‖Φ(1)

s,t (y, h, ε)‖ ds

≤ ε

+∞∫
t

e
α(t2−s2)

2 D
(
1 + εN + εN2 + εξ(1 +N) + εν + ν

)
eεµ(1+εξ)(s−t)ds

≤ εD(S + ν)

+∞∫
t

e
α(t2−s2)

2 eεµ(1+εξ)(s−t)ds.

Using the error integral we finally have

‖ ∂

∂yi

Th(t, y, ε)‖ ≤ 3

√
π√
2α
εD(S + ν).

This means that the derivative ∂
∂yi
Th(t, y, ε) is uniformly bounded.

For the difference ‖ ∂
∂yi
Th(t, y, ε) − ∂

∂yi
Th(t, ȳ, ε)‖ it follows from (5.2),

(5.3), (5.4), (5.6)

‖ ∂

∂yi

Th(t, y, ε)− ∂

∂yi

Th(t, ȳ, ε)‖ ≤

≤
+∞∫
t

e
α(t2−s2)

2

[(
D1(1 + εξ + εν)2 + εD(ξ1(1 +N) + ν1) + ν1

)
×

‖Φs,t(y, h, ε)− Φs,t(ȳ, h, ε)‖‖Φ(1)
s,t (y, h, ε)‖

+ εD(S + ν)‖Φ(1)
s,t (y, h, ε)− Φ

(1)
s,t (ȳ, h, ε)‖

]
ds.
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Applying Lemmas 3.2, 5.1, 5.2 and the error integral we have

‖ ∂

∂yi

Th(t, y, ε)− ∂

∂yi

Th(t, ȳ, ε)‖ ≤ (
3D1

√
π√

2α
+ εC5)‖y − ȳ‖,

where C5 is a constant depending on D,D1, ξ, ξ1, µ, µ1, N . This inequality
gives us that ∂

∂yi
Th(t, y, ε) is Lipschitz continuous with respect to y.

For sufficiently small ε the inequalities

3

√
π√
2α

(DS + ν) ≤ ξ, (5.17)

3D1

√
π√

2α
+ εC5 ≤ ξ1 (5.18)

hold. Then the element ∂
∂yi
Th(t, y, ε) satisfies conditions (5.6). Therefore,

T maps H(1) into itself.
Now we prove that T is a contraction operator in H(1). By apply-

ing (5.2)-(5.6) and Lemmas 3.2, 5.1, 5.2 we can estimate the difference
‖ ∂

∂yi
Th(t, y, ε)− ∂

∂yi
T h̄(t, y, ε)‖ as follows∥∥∥∥ ∂

∂yi

Th(t, y, ε)− ∂

∂yi

T h̄(t, y, ε)

∥∥∥∥ ≤
+∞∫
t

e
α(t2−s2)

2

[(
D1(1 + εξ + εν)(ρ(h, h̄)

+ρ(a, ā)) + εD(1 +N)ρ(hy, h̄y) + (εD + 1)ρ(ay, āy)

+
(
D1(1 + εξ + εν)2 + εDξ1(1 +N) + ν1(εD + 1)

)
×

‖Φs,t(y, h, ε)− Φs,t(y, h̄, ε)‖
)
‖Φ(0)

s,t (y, h, ε)‖
]
ds

≤ (C6 + εC7)ρ(h, h̄) + εC8ρ(hy, h̄y).

Using the results of Section 3.3.3 for ρ(Th, T h̄), from the definition of
the generalized metric d

(
Th, T h̄

)
we have

d
(
Th, T h̄

)
≤ U1d(h, h̄),

where U1 is a matrix

U1 =

(
εC 0

C6 + εC7 εC8

)
,

and C is the constant defined in (3.37). For sufficiently small ε spectral
radius of this matrix is less than 1. Thus, T is a contraction operator in
H(1). This means that the fixed point of the operator T , that represents an
integral manifold of system (3.6), has first derivatives with respect to the
components of y. Therefore, we can formulate the following result
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Theorem 5.5 Suppose that conditions of Theorem 3.1 are valid and the
functions Y, Z have first derivatives with respect to y, z, a, continuous on
R×Rn×Ωz × Iε0 and R×Rn×Ωz ×Ωa× Iε0, respectively, and that satisfy
the inequalities (5.1)-(5.3). Then for sufficiently small ε the gluing function
a(y, ε) ∈ F (1) and the integral manifold z = h(t, y, ε) ∈ H(1)

5.2 Higher derivatives

In this section we shall study the dependence of the existence of the higher
derivatives of the integral manifold z = h(t, y, ε) and the gluing function
a(y, ε) on the number of derivatives of the functions in the right hand side.

We use the induction principle. The base of induction is established in
the previous section.

5.2.1 Assumptions

Let us introduce the following notation

Y (α,β)(t, y, z, ε) =
∂|α|+|β|Y (t, y, z, ε)

∂yα1
1 . . . ∂yαn

n ∂zβ1

1 ∂z
β2

2

,

Z(α,β,γ)(t, y, z, a, ε) =
∂|α|+|β|+|γ|Z(t, y, z, a, ε)

∂yα1
1 . . . ∂yαn

n ∂zβ1

1 ∂z
β2

2 ∂a
γ1

1 ∂a
γ2

2

,

|α| = α1 + . . .+ αn, |β| = β1 + β2, |γ| = γ1 + γ2,

h(σ)(t, y, ε) =
∂|σ|h(t, y, ε)

∂yσ1
1 . . . ∂yσn

n

, |σ| = σ1 + . . .+ σn,

Φ
(σ)
s,t (y, h, ε) =

∂|σ|Φs,t(y, h, ε)

∂yσ1
1 . . . ∂yσn

n

, |σ| = σ1 + . . .+ σn,

where α, β, γ, σ are multi-indices.
We assume that the functions Y, Z in the right hand side of (3.6) have

continuous partial derivatives with respect to y, z, a up to the order r, and
in addition to (5.1)-(5.3) the following inequalities are valid for all y, ȳ ∈ Rn,
z, z̄ ∈ Ωz, a, ā ∈ Ωa

‖Y (α,β)(t, y, z, ε)‖ ≤ K(α,β), (5.19)

‖Y (α,β)(t, y, z, ε)−Y (α,β)(t, ȳ, z̄, ε)‖ ≤ µ(α,β) (‖y − ȳ‖+ ‖z − z̄‖) , |α|+|β| ≤ r,
(5.20)

‖Z(α,β,γ)(t, y, z, a, ε)‖ ≤M(α,β,γ), (5.21)
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‖Z(α,β,γ)(t, y, z, a, ε)− Z(α,β,γ)(t, ȳ, z̄, ā, ε)‖ ≤
≤ D(α,β,γ) (‖y − ȳ‖+ ‖z − z̄‖+ ‖a− ā‖) , |α|+ |β|+ |γ| ≤ r,

(5.22)

with K(α,β), µ(α,β),M(α,β,γ), D(α,β,γ) some positive numbers.
Consider the subspace F (r) of the space F . The subspace F (r) consists

of functions having r continuous and bounded derivatives with respect to
the components of y with the following properties

‖a(k)(y, ε)‖ ≤ Lk,

‖a(k)(y, ε)− a(k)(ȳ, ε)‖ ≤ νk‖y − ȳ‖, 1 ≤ |k| ≤ r.
(5.23)

We define on F (r) the generalized metric

d(a, ā) = col(ρ(a, ā), ρ(ay, āy), . . . , ρ(a
(r), ā(r))),

where

ρ(a(k), ā(k)) = max sup
y∈Rn,ε∈Iε0

‖a(k)(y, ε)− ā(k)(y, ε)‖, |k| = 1, . . . , r,

and max being taken with respect to all partial derivatives of order k. Then
F (r) is a complete metric space.

Let us consider the space H(r). This space is a subspace of the space H
consisting of the functions h(t, y, ε) having continuous and bounded deriva-
tives with respect to y of order r with the following properties

‖h(k)(t, y, ε)‖ ≤ Nk,

‖h(k)(t, y, ε)− h(k)(t, ȳ, ε)‖ ≤ ξk‖y − ȳ‖, 1 ≤ |k| ≤ r.
(5.24)

We equip the space H(r) with the generalized metric

d(h, h̄) = col(ρ(h, h̄), ρ(hy, h̄y), . . . , ρ(h
(r), h̄(r))),

where

ρ(h(k), h̄(k)) = max sup
t∈R,y∈Rn,ε∈Iε0

‖h(k)(t, y, ε)− h̄(k)(t, y, ε)‖, |k| = 1, . . . , r.

Then H(r) is a complete metric space.
Suppose that under our assumptions the integral manifold h(t, y, ε) and

the gluing function a(y, ε) have partial derivatives up to the order r−1 that
are continuous on R×Rn× Iε0 , Rn× Iε0 , respectively, satisfying conditions
(5.23)-(5.24) for all |k| ≤ r− 1. The aim is to show that under assumptions
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(5.19)-(5.22) there exist the derivatives of order r continuous on the same
domains, satisfying (5.23)-(5.24), too. It means that the operators P , T
map the spaces F (r), H(r) into themselves.

It is easy to show that the following equality is valid

∂r

∂yr1
1 . . . ∂yrn

n

Th(t, y, ε) =

=


−

+∞∫
t

t∫
−∞

e
α(t2−s2)

2 W (t−s)
[
(Zy(·) + Zz(·)hy(∗) + Za(·)ay(�) + ay(�)) Φ(r)(y, h, ε)

+
(
Zz(·)h(r)

y (∗) + Za(·)a(r)
y (�) + a(r)

y (�)
)∏

Φ(1) +
∑

G(α+β+γ)(·)
]
ds

where

Z(·) = Z (s,Φs,t(y, h, ε), h(s,Φs,t(y, h, ε), ε), a(Φs,t(y, h, ε), ε), ε) ,

h(∗) = h(s,Φs,t(y, h, ε), ε), a(�) = a(Φs,t(y, h, ε), ε),

and the sum of the functions Gα+β+γ contains derivatives of Z, h, a, Φ only
up to the order r − 1. Indeed, all the functions under the integral de-
pend continuously on y and under our assumptions there exist continuous
derivatives of Z and a with respect to y. Moreover, the integrals converge
uniformly with respect to y.

We have to show that the element

∂r

∂yr1
1 . . . ∂yrn

n

Th(t, y, ε)

is continuous for all t ∈ R and satisfies conditions (5.24). Then we show
that the operator T is a contraction in the space H(r).

5.2.2 Auxiliary estimates

In this section we prove the existence of the derivatives Φ
(r)
s,t and show that

the following estimates are valid

‖Φ(k)
s,t (y, h, ε)‖ ≤ Cke

ε(k+1)µ(1+εξ|s−t|, (5.25)

‖Φ(k)
s,t (y, h, ε)− Φ

(k)
s,t (ȳ, h̄, ε)‖ ≤ eεµ(1+εξ)|s−t|×
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(
2k∑

j=1

(
Ci

k‖y − ȳ‖+
k∑

i=0

Cj,i
k ρ(h

(i), h̄(i))

)
eεjµ(1+εξ)|s−t|

)
, |k| ≤ r, (5.26)

where h(0) = h.
The proof is due to mathematical induction. The existence of the first

derivative and the corresponding estimates have been established in the
Section 5.1.2. Suppose that the function Φs,t(y, h, ε) has partial derivatives
with respect to the components of the vector y up to the order r − 1, and
the conditions (5.25)-(5.26) are valid. Then from (3.19) it follows that the

vector Φ
(r)
s,t (y, h, ε) can be represented in the form

Φ
(r)
s,t (y, h, ε) = ε

s∫
t

[
[Yy(·) + Yz(·)hy(∗)] Φ(r)

η,t(y, h, ε)

+ Yz(·)Rr(η) + Pr(η)] dη, (5.27)

where
f(·) = f(η,Φη,t(y, h, ε), h(η,Φη,t(y, h, ε), ε), ε),

h(∗) = h(η,Φη,t(y, h, ε), ε).

The function Rr consists of the sum of the products

h(r)
∏

Φ(1),

where ∏
Φ(1) =

∏ ∂

∂yi

Φη,t(y, h, ε),

is the product of the first derivatives of the function Φη,t(y, h, ε) with the
number of components equals to r, and the function Pr consists of the deriva-
tives with respect to y of the functions Y (t, y, z, ε), h(t, y, ε) and Φη,t(y, h, ε)
up to the order r − 1.

From the definitions of the functions Rr and Pr and from the assump-
tions (5.19), (5.20) it follows that

‖Rr(η)‖ ≤ Ψre
εrµ(1+εξ)|η−t|, (5.28)

‖Pr(η)‖ ≤ Υre
εrµ(1+εξ)|η−t|, (5.29)

where Ψr, Υr are some positive numbers depending on the constantsK(α,β), µ(α,β),
|α|+ |β| ≤ r − 1. Then we have

‖Φ(r)
s,t (y, h, ε)‖ ≤ ε

s∫
t

[
(‖Yy‖+ ‖Yz‖‖hy‖) ‖Φ(r)‖+ ‖Yz‖‖Rr‖+ ‖Pr‖

]
dη
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≤ ε

s∫
t

(
µ(1 + εξ)‖Φ(r)

η,t(y, h, ε)‖+ (µΨr + Υ)eεrµ(1+εξ)|η−t|
)
dη.

Applying the Gronwall-Bellman inequality we get

‖Φ(r)
s,t (y, h, ε)‖ ≤

ε(µΨr + Υr)

µ(1 + εξ)
eεµ(r+1)(1+εξ)|s−t| ≤ Cre

εµ(r+1)(1+εξ)|s−t|.

(5.30)
Let us estimate the difference Rr − R̄r. In what follows the bar above

the function denotes that we consider the function depending on ȳ and h̄.
Let us denote by ζi the ith component in the product

∏
Φ(1). Then we get

‖h(r)

r∏
i=1

ζi − h̄(r)

r∏
i=1

ζ̄i‖ ≤

≤ ‖h(r) − h̄(r)‖
r∏

i=1

‖ζi‖+ ‖h̄(r)‖
r∑

i=1

‖ζi − ζ̄i‖
i∏

j=1

‖ζj‖
r∏

j=i+1

‖ζ̄j‖

≤
(
ξr‖y − ȳ‖+ ρ(h(r), h̄(r)) + rNr‖Φ(1) − Φ̄(1)‖

)
eεrµ(1+εξ)|η−t|.

Therefore

‖Rr(η)−R̄r(η)‖ ≤ C
(
ξr‖y − ȳ‖+ ρ(h(r), h̄(r)) +Nr‖Φ(1) − Φ̄(1)‖

)
eεrµ(1+εξ)|η−t|.

(5.31)
In order to have the estimate for the difference Pr(η)−P r(η) we rewrite

the functions under the integral in the r. h. s. of (5.27) in the form
Y (α,β)

∏p1

p=1 θp

∏q1
q=1 υq. Here θp is the pth component of the product h(β)

and υq is the qth component of the product of Φ(σ).

‖Y (α,β)

p1∏
p=1

θp

q1∏
q=1

υq − Y
(α,β)

p1∏
p=1

θ̄p

q1∏
q=1

ῡq‖ ≤

≤ ‖Y (α,β) − Y
(α,β)‖

p1∏
p=1

‖θp‖
q1∏

q=1

‖υq‖

+‖Y (α,β)‖

[(
p1∑

p=1

‖θp − θ̄p‖
k∏

p=1

‖θp‖
p1∏

p=k

‖θ̄p‖

)
q1∏

q=1

‖υq‖

+

p1∏
p=1

‖θp‖

(
q1∑

q=1

‖υq − ῡq‖
k∏

q=1

‖υq‖
p1∏

p=k

‖ῡq‖

)]
.
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From the last relation and from (5.25), (5.26) we obtain

‖Pr(η)− P r(η)‖ ≤
2r∑

j=1

[
Cj

P‖y − ȳ‖+
r∑

i=0

Cj,i
P ρ(h

(i), h̄(i))

]
eεjµ(1+εξ)|η−t|.

(5.32)

Under the inequalities (5.31),(5.32) for the difference ‖Φ(r) − Φ
(r)‖ we

have

‖Φ(r)−Φ
(r)‖ ≤ ε

s∫
t

[(
‖Yy − Y y‖+ ‖Yz − Ȳz‖‖hy‖+ ‖Y z‖‖hy − h̄y‖

)
‖Φ(r)‖

+ (‖Yy‖+ ‖Yz‖‖hy‖) ‖Φ(r) − Φ̄(r)‖

+ ‖Yz − Y z‖‖Rr‖+ ‖Y z‖‖Rr − R̄r‖+ ‖Pr − P̄r‖
]
dη

≤
s∫

t

[(
(µ2(1 + εξ) + µξ2)‖Φ− Φ̄‖+ (µ(1 + εξ) + µ2)ρ(h, h̄)

)
‖Φ(r)‖

+µ(1 + εξ)‖Φ(r) − Φ̄(r)‖

+µ2(ρ(h, h̄) + εξ)‖Φ− Φ̄‖)Ψre
εrµ(1+εξ)|η−t|

+
2r∑

j=1

(
Cj

P‖y − ȳ‖+
r∑

i=0

Cj,i
P ρ(h

(i), h̄(i))

)
eεjµ(1+εξ)|η−t|

]
dη.

Under Lemma 3.2 and the inequality (5.30) we get

‖Φ(r) − Φ(r)‖ ≤ eεµ(1+εξ)|s−t|×[
2r∑

j=1

(
Cj

r‖y − ȳ‖+
r∑

i=0

Cj,i
k ρ(h

(i), h̄(i))

)]
eεjµ(1+εξ)|s−t|,

(5.33)

where Cj
r , C

j,i
k are some constants depending on K(α,β), µ(α,β). This com-

pletes the proof.

5.2.3 Smoothness of the function a(y, ε)

For any fixed h ∈ H(r) we consider the following equation

+∞∫
−∞

e
−αs2

2 W−1(s)
[
(Zy(·) + Zz(·)hy(∗) + Za(·)ay(�) + ay(�)) Φ(r)(y, h, ε)
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+
(
Zz(·)h(r)

y (∗) + Za(·)a(r)
y (�) + a(r)

y (�)
)∏

Φ(1) +
∑

Gα+β+γ

]
ds = 0.

This equation represents the condition of continuity of the element

∂k

∂yk1
1 . . . ∂ykn

n

Th(t, y, ε)

at the point t = 0. We can rewrite this equation in the form

(I +R(r))a(r) = Q(r)a(r),

where I is the identity, and R(r) and Q(r) defined by

R(r)a(r)(y, ε) :=
∂r

∂yr1
1 . . . ∂yrn

n

Ra(y, ε) =

=

√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s)
(
a(r)(Φs,t(y, h, ε), ε)

∏
Φ(1) − a(r)(y, ε)

∏
ei

)
ds,

Q(r)a(r)(y, ε) :=
∂r

∂yr1
1 . . . ∂yrn

n

Qa(y, ε) =

= −
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2 W−1(s) [(Zy(·) + Zz(·)hy(∗) + Za(·)ay(�)

+ay(�)) Φ(r)(y, h, ε)+
(
Zz(·)h(r)

y (∗) + Za(·)a(r)
y (�)

)∏
Φ(1)+

∑
G(α+β+γ)

]
ds.

From the assumptions (5.19)-(5.22), and using the error integral we can
write the following estimate

‖R(r)a(r)(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

(
‖a(r)‖

(∏
‖Φ(1)‖+ 1

))
ds

≤ eβ2/αLr√
2π

+∞∫
−∞

e
−αs2

2

(
eεrµ(1+εξ)|s−t| + 1

)
ds ≤ 4eβ2/2αLr.

If 4eβ2/2αLr <
1
2

the operator (I+R(r))−1 exists and the following inequality
is true

‖(I +R(r))−1‖ ≤ 1

1− 4eβ2/2αLr

≤ 2. (5.34)
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By (5.2), (5.4), (5.6), (5.19)-(5.22) for Q(r) we have

‖Q(r)a(r)(y, ε)‖ ≤
√
αeβ2/2αLr√

2π

+∞∫
−∞

e
−αs2

2

[
‖Za‖‖a(r)‖

∏
‖Φ(1)‖

+ (‖Zy‖+ ‖Zz‖‖hy‖+ ‖Za‖‖ay‖+ ‖ay‖) ‖Φ(r)‖

+ ‖Zz‖‖h(r)‖
∏

‖Φ(1)‖+
∑

‖Gα+β+γ‖
]
ds

≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

(
D2(Lr +Nr)e

εrµ(1+εξ)|s−t|

+ (D2(1 + εξ + εν) + εν + CG)eε(r+1)µ(1+εξ)|s−t|) ds
≤ (εCaLk + CQ

r,1 + εCQ
r,2), (5.35)

where CQ
r,1, C

Q
r,2 do not depend on Lk.

On the space F (r) we can introduce the operator P (r)

P (r)a(r)(y, ε) = (I +R(r))−1Q(r)a(r)(y, ε).

From (5.34), (5.35) it follows

‖P (r)a(r)(y, ε)‖ ≤ 2(CQ
r,1 + εCQ

r,2).

This implies that P (r)a(r)(y, ε) is uniformly bounded.
For the difference ‖Q(r)a(r) − Q̄(r)ā(r)‖

‖Q(r)a(r)(y, ε)− Q̄(r)ā(r)(y, ε)‖ ≤
√
αeβ2/2α

√
2π

+∞∫
−∞

e
−αs2

2

[(
‖Zy − Z̄y‖+

+‖Zz − Z̄z‖‖hy‖+ ‖Z̄z‖‖hy − h̄y‖+ ‖Za − Z̄a‖‖ay‖+ ‖Z̄a‖‖ay − āy‖+

‖ay − āy‖) ‖Φ(r)‖+ (‖Zy‖+ ‖Zz‖‖hy‖+ ‖Za‖‖ay‖+ ‖ay‖) ‖Φ(r) − Φ̄(r)‖

+
(
‖Zz − Z̄z‖‖h(r)‖+ ‖Zz‖‖h(r) − h̄(r)‖+ ‖Za − Z̄a‖‖a(r)‖

+ ‖Za‖‖a(r) − ā(r)‖
)∏

‖Φ(1)‖

+
(
‖Zz‖‖h(r)‖+ ‖Za‖‖a(r)‖

) (∑
‖Φ(1) − Φ̄(1)‖

∏
‖Φ(1)‖

∏
‖Φ̄(1)‖

)
+ ‖Gα+β+γ − Ḡα+β+γ‖

]
ds
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≤
(
(εCaνk + Cr,Q)‖y − ȳ‖+ C0

r,Qρ(h, h̄) + · · ·+ εCr
r,Qρ(h

(r), h̄(r))

+ C0
r,aρ(a, ā) + · · ·+ εCr

r,aρ(a
(r), ā(r))

)
, (5.36)

where h(0) = h, a(0) = a, and Cr,Q does not depend on νk. So, if we put
h̄ = h and ā = a then we have

‖P (r)a(r)(y, ε)− P (r)a(r)(ȳ, ε))‖ ≤ Cr,Q‖y − ȳ‖.

This inequality implies that P (r)a(r)(y, ε) is Lipschitzian with respect to y.
Thus, for sufficiently small ε the inequalities

2(εCaLk + CQ
r,1 + εCQ

r,2) ≤ Lk,

εCaνk + Cr,Q ≤ νk

are valid, then the element a(r)(y, ε) satisfies the conditions (5.23).
Then, if in (5.36) we put ȳ = y and h̄ = h, we get

‖P (r)a(r)(y, ε)− P (r)ā(r)(y, ε)‖ ≤ C0
r,aρ(a, ā) + . . .+ εCr

r,aρ(a
(r), ā(r)).

Then on the space F (r) for the operator P we have the following estimate

d(Pa(y, ε), P ā(y, ε)) ≤ Ud(a, ā), (5.37)

where U is the matrix

U =


6εeβ2/2αDS 0 0 . . . 0

C1,a0 εC2
1,a 0 . . . 0

C0
2,a C1

2,a εC2
2,a . . . 0

. . . . . . 0
C0

r,a C1
r,a C2

r,a . . . εCr
r,a


For sufficiently small ε the spectral radius of U is less then 1. Therefore, the
operator P is a contraction operator on the space F (r). It means that for
any h ∈ H(r) there exists a unique function a ∈ F (r) such that the function
Th is continuous.

If in (5.36) we put ȳ = y, ā = a we obtain the inequality which will be
useful in the sequel

ρ(a(r), ā(r)) ≤
(
kr‖y − ȳ‖+ k0

r,hρ(h, h̄) + . . .+ εkr
r,hρ(h

(r), h̄(r))

+ k0
r,aρ(a, ā) + · · ·+ kr−1

r,a ρ(a
(r−1), ā(r−1))

)
.

(5.38)
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5.2.4 Smoothness of the integral manifold

In this section we show that the operator T maps H(r) into itself and is
a contraction. Consider the case t > 0. Under the conditions (5.1)-(5.4),
(5.19)-(5.24), Lemmas 3.2, 5.1, 5.2 and the estimates (5.25), (5.26), (5.38),
we get

‖ ∂r

∂yr1
1 . . . ∂yrn

n

Th(t, y, ε)‖ ≤

≤
+∞∫
t

e
α(t2−s2)

2 [(‖Zy(·)‖+ ‖Zz(·)‖‖hy(∗)‖+ ‖Za(·)‖‖ay(�)‖+ ‖ay(�)‖) ×

‖Φ(r)(y, h, ε)‖+
(
‖Zz(·)‖‖h(r)

y (∗)‖+ ‖Za(·)‖‖a(r)
y (�)‖+ ‖a(r)

y (�)‖
)∏

‖Φ(1)‖

+
∑

Gα+β+γ‖
]
ds ≤ (εC̃hNr + C̃)

+∞∫
t

e
α(t2−s2)

2 eεrµ(1+εξ)ds ≤ εChNr + C̄r,T ,

where C̄r,T does not depend on Nr. The last inequality gives us the bound-
edness of the derivative ∂r

∂y
r1
1 ...∂yrn

n
Th(t, y, ε).

‖ ∂r

∂yr1
1 . . . ∂yrn

n

Th(t, y, ε)− ∂r

∂yr1
1 . . . ∂yrn

n

T h̄(t, ȳ, ε)‖ ≤

≤
+∞∫
−∞

e−s2 [(‖Zy − Z̄y‖+ ‖Zz − Z̄z‖‖hy‖+ ‖Z̄z‖‖hy − h̄y‖+ ‖Za − Z̄a‖‖ay‖

+‖Z̄a‖‖ay − āy‖+ ‖ay − āy‖) ‖Φ(r)‖

+ (‖Zy‖+ ‖Zz‖‖hy‖+ ‖Za‖‖ay‖+ ‖ay‖) ‖Φ(r) − Φ̄(r)‖

+
(
‖Zz − Z̄z‖‖h(r)

y ‖+ ‖Zz‖‖h(r)
y − h̄(r)

y ‖+ ‖Za − Z̄a‖‖a(r)
y ‖

+ ‖Za‖‖a(r)
y − ā(r)

y ‖
)∏

‖Φ(1)‖

+
(
‖Zz‖‖h(r)

y ‖+ ‖Za‖‖a(r)
y ‖
) (∑

‖Φ(1) − Φ̄(1)‖
∏

‖Φ(1)‖
∏

‖Φ̄(1)‖
)

+‖
(∑

G(α+β+γ) −
∑

Ḡ(α+β+γ)
)
‖ds

≤ (εChξr + Cr,T )‖y − ȳ‖+ C0
r,Tρ(h, h̄) + · · ·+ εCr

r,Tρ(h
(r), h̄(r)), (5.39)

with Cr,T not depending on ε.
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If we put h = h̄ then we get

‖ ∂r

∂yr1
1 . . . ∂yrn

n

Th(t, y, ε)− ∂r

∂yr1
1 . . . ∂yrn

n

Th(t, ȳ, ε)‖ ≤ (εChξr +Cr,T )‖y− ȳ‖,

that is ∂r

∂y
r1
1 ...∂yrn

n
Th(t, y, ε) is Lipschitzian with respect to y.

Thus, under the inequalities

εChNr + C̄r,T ≤ Nr,

(εChξr + Cr,T ) ≤ ξr,

the function ∂r

∂y
r1
1 ...∂yrn

n
Th(t, y, ε) satisfies conditions (5.24). It means that

the operator T maps the space H(r) into itself.
If in (5.39) we put y = ȳ we get

‖ ∂r

∂yr1
1 . . . ∂yrn

n

Th(t, y, ε)− ∂r

∂yr1
1 . . . ∂yrn

n

T h̄(t, y, ε)‖ ≤ C0
r,Tρ(h, h̄)+

+ · · ·+ Cr
r,Tρ(h

(r), h̄(r)).

Therefore, for the operator T on the space H(r) we obtain

d(Th, T h̄) ≤ Ũd(h, h̄),

where Ũ is the matrix

Ũ =


εC0 0 0 . . . 0
C0

1,T εC1
1,T 0 . . . 0

C0
2,T C1

2,T εC2
2,T . . . 0

. . . . . . 0
C0

r,T C1
r,T C2

r,T . . . εCr
r,T

 .

For sufficiently small ε the spectral radius of Ũ is less then 1. It means that
T is a contraction operator in H(r). Therefore, the fixed point of it has r
continuous and bounded partial derivatives with respect to y.

Thus, we have showed that the following theorem is true.

Theorem 5.6 Let the conditions of the Theorems 3.1, 5.5 are satisfied and
the functions Y, Z in the r. h. s. of (3.6) have partial derivatives with
respect to y up to the order r that are continuous on R × Rn × Ωz × Iε0,
R×Rn×Ωz×Ωa×Iε0, respectively, and satisfy the conditions (5.19)-(5.22).
Then the integral manifold h(t, y, ε) of system (3.6) belongs to H(r) and the
gluing function a(y, ε) belongs to F (r).
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Appendix A

Contraction operator in metric
spaces

In this Appendix we present some results from the theory of generalized
metric spaces. We state some theorems on contraction operators in metric
spaces which can be found in [12, 14].

Definition A.1 A metric space is a pair (X, ρ) which consists of the space
X and the function ρ(x1, x2), ρ : X2 → [0; +∞) and satisfies the following
conditions for all x1, x2, x3 ∈ X

• ρ(x1, x2) = 0 iff x1 = x2;

• ρ(x1, x2) = ρ(x2, x1);

• ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2).

Usually, the metric space is designates by X without mentioning the
distance function ρ. An example of a metric space is the space H defined
on p. 20 with ρ(h, h̄) = supt∈R,y∈Rn,ε∈Iε0

‖h(t, y, ε)− h̄(t, y, ε)‖.
In a metric space we can do analysis since the fundamental operation of

analysis, that of finding limits of a sequence, becomes meaningful. If {xn}
is a sequence in the metric space X, we say that xn converges to x0 and
x0 = lim xn if

lim
n→∞

ρ(xn, x0) = 0.

We say that {xn} is a Cauchy sequence if, given any ε, there exists an N
such that

ρ(xm, xn) < ε for m,n > N. (1.1)

80



If (1.1) holds, it follows that {xn} is a Cauchy sequence, but the converse is
not necessarily true, for there may be gaps in the space. A metric space X
is called a complete metric space if any fundamental sequence {xn}, xn ∈ X
is convergent in X.

It is a classical result that the space H is a complete metric space (see
e.g. [14]).

An operator A mapping a metric space X into itself is said to be con-
tinuous at a point x0 in X if for any ε > 0 there exists a δ > 0 such that
ρ(x, x0) < δ implies ρ(Ax,Ax0) < ε.

A continuous operator A defined on a complete metric space X is called
a contraction operator if the following inequality valid

ρ(Ax1, Ax2) ≤ q ρ(x1, x2),

with
q < 1.

Theorem A.2 (Fixed point theorem) Let the operator A maps the space
X into itself and be a contraction operator. Then the equation

x = Ax

has a unique solution in the space X.

Consider the Banach space E. The notion of partial ordering is one of
the form of algebraic structure of the space. We say that E is partially
ordered if for some pairs e1, e2 ∈ E there is an ordering relation e1 ≤ e2
which is reflexive, proper and transitive, that is

• e1 ≤ e1 for all e1 ∈ E,

• e1 ≤ e2 and e2 ≤ e1 imply e1 = e2,

• e1 ≤ e2 and e2 ≤ e3 imply e1 ≤ e3.

In the case E is linear as well as partially ordered, we should say

e1 ≤ e2 implies e1 + a ≤ e2 + a for all a ∈ E,

e1 ≤ e2 implies αe1 ≤ αe2 for all α > 0.

In this case E has a positive cone E+, defined as the set of all elements
e ∈ E such that 0 ≤ e. This positive cone is invariant under addition and
multiplication by positive scalars. It contains 0, the neutral element, usually
referred as the zero element.
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Definition A.3 The pair (X, ρ) is called a generalized metric space if for
any pair x1, x2 ∈ X there exists a map ρ : X2 → E+ that satisfies the
following properties for all x1, x2, x3 ∈ X

• ρ(x1, x2) ≥ 0, ρ(x1, x2) = 0 iff x1 = x2;

• ρ(x1, x2) = ρ(x2, x1);

• ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2).

Consider an operator A mapping the space X into itself. The operator A
satisfies the generalized Lipschitz condition if the following inequality holds

ρ(Ax1, Ax2) ≤ Bρ(x1, x2), (1.2)

where B is a positive defined operator on the space E.

Theorem A.4 Let the space X be complete with respect to the metric
ρ(x1, x2). Let the operator A maps the space X into itself and satisfies con-
dition (1.2) where B is a positive defined operator with the spectral radius
less then 1. Then the equation

x = Ax

has a unique solution in the space X.

The proof of this theorem can be found in [12].
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