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Abstract. This article elaborates a bounding approximation scheme for convex

multistage stochastic programs (MSP) that constrain the conditional expectation of

some decision-dependent random variables. Expected value constraints of this type

are useful for modelling a decision maker’s risk preferences, but they may also arise

as artefacts of stage-aggregation. It is shown that the gap between certain upper and

lower bounds on the optimal objective value can be made smaller than any prescribed

tolerance. Moreover, the solutions of some tractable approximate MSP give rise to a

policy which is feasible in the (untractable) original MSP, and this policy’s cost differs

from the optimal cost at most by the difference between the bounds. The considered

problem class comprises models with integrated chance constraints and conditional

value-at-risk constraints. No relatively complete recourse is assumed.
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1 Introduction

A multistage stochastic program (MSP) constitutes a mathematical model of a

real-life decision problem under uncertainty in which several decisions must be

made based on different levels of information [1,26,36]. The correct representation

of the underlying uncertainty and the corresponding information structure is cru-

cial. Usually, a suitable set of decision-relevant random parameters is modelled

as a vector-valued stochastic process in discrete time. Whenever a decision is due

to be taken, complete and accurate information about the past and present real-

izations of this process is assumed to be available, whereas future realizations are

known only in terms of their joint (conditional) probability distribution. Typi-

cally, one attempts to find decisions that are subject to a set of explicit constraints

and optimal with respect to an appropriate objective criterion. Without much

loss of generality, we will assume in this article that the objective criterion is to

minimize expected cost.

Stochastic programming techniques have been successfully used in a vast num-

ber of very different applications, see e.g. [49] for a recent survey. Although it

is relatively easy to formulate a given decision problem as an MSP, its solu-

tion is rarely possible without significant approximations. The reason for this

is that the original MSP formulation usually involves continuously distributed

random parameters and too many decision stages. Traditional approximation

schemes replace the underlying stochastic process (with an infinite number of

sample paths) by a finitely supported approximate process, which can be rep-

resented as a scenario tree. This amounts to approximating the original MSP

over an infinite-dimensional function space by a numerically tractable MSP over

a finite-dimensional Euclidean space.

Different approaches to scenario tree construction or scenario generation apply

to problems with different structural properties, and they provide different error

estimates and convergence characteristics, see also the survey in [27]. Among the
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most wide-spread techniques range the moment-matching method [23], the Monte

Carlo and Quasi-Monte Carlo schemes [29, 34, 47, 48], a class of methods based

on probability metrics [8, 19, 22, 35, 38], as well as the internal sampling meth-

ods [5,6,12,21,24], which generate the scenarios dynamically within the solution

procedure of the MSP. The present article further elaborates on yet another class

of scenario generation methods, which received continuing attention for several

decades: the so-called bounding approximation schemes [2,9–11,13–17,25,30,32].

They provide deterministic upper and/or lower bounds on the optimal value of

the original MSP, and their applicability relies on certain convexity properties

of the recourse (cost-to-go) functions of the underlying problem. Traditionally,

these methods were analyzed in a one- or two-stage setting. The fewer multistage

extensions were cast in a dynamic programming framework, see e.g. [15, 16, 30].

By using more abstract measure-theoretic methods due to Wright [51], the au-

thor reconsidered these bounding approximation schemes in a mathematical pro-

gramming context [31]. Although addressing multistage problems, the use of

dynamic programming recursions was completely avoided. In this setting, the

bounding approximations could be combined with another approximation based

on stage-aggregation, which resulted in a substantial complexity reduction. The

present article discusses further benefits of the bounding approximations intro-

duced in [31], proves their asymptotic consistency, and demonstrates that they

apply even if the underlying MSP contains certain expected value constraints.

Expected value constraints have first been studied by Prékopa [36,37]. They

arise in different contexts and prove particularly useful for modelling a decision

maker’s risk attitude. An inequality constraint involving present decisions and

future random outcomes, for instance, can be assumed to hold with probability

1, with probability p < 1, or in expectation. In the first case, it might entail a

cumbersome feasible set depending largely on certain worst-case scenarios, which

are difficult or even impossible to predict. If the cost of violating the constraint

in a few unlikely scenarios is not too high, this pessimistic (robust) approach
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will lead to overly conservative decisions. A simple remedy to overcome this pes-

simism is by requiring the constraint to hold with probability p . 1, in which

case it becomes a so-called chance constraint [4]. Although we may now obtain

more reasonable decisions, chance constraints have serious mathematical draw-

backs, i.e., they can lead to nonconvex or even disconnected feasible sets. They

are also qualitative in nature: extreme violations of the constraint are penalized

no more than slight violations. Let us assume for a moment that the constraint

function under consideration is nonnegative and can be interpreted as a form of

loss or shortfall. Depending on the particular application, a more satisfactory

approach could be to constrain the expectation of the shortfall. As follows from

Markov’s inequality, requiring the expected shortfall to be smaller than some

(strictly positive) target value implies infinitely many chance constraints to hold

for a continuum of significance levels. Conversely, a well-known formula for ex-

pected shortfall functions [28, § 5] can be used to prove that an expected value

constraint of the above kind corresponds to an integral of chance constraints over

a continuum of threshold levels. For this reason, constraints on expected short-

fall were termed integrated chance constraints (ICC) by Klein Haneveld [18, 28].

They allow the shortfall to become negative in certain scenarios, thereby avoid-

ing overly conservative decisions. Moreover, they are quantitative in nature as

they prefer small losses to large losses. Under reasonably general assumptions,

they even preserve convexity of the feasible set. ICCs thus share many of the

convenient properties of conventional chance constraints without exhibiting their

unpleasant side effects.

As discussed above, expected value constraints are useful for controlling the

risk associated with certain decision strategies, e.g. by means of ICCs. Another

popular way to mitigate any kind of shortfall risk is by imposing constraints on the

conditional value-at-risk (CVaR) of the losses [40]. If the losses depend linearly

on the decision variables, the CVaR constraints can conveniently be represented

as linear expected value constraints [41, § 4]. The relation between ICCs and
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CVaR constraints is analyzed in [18, § 4.2].

Expected value constraints can also originate from approximations. Stochas-

tic inventory problems with an indefinite horizon, for instance, are frequently

approximated by simpler problems with a finite horizon. The errors due to this

simplification are termed end effects. Suitable constraints in the last stage of the

approximate problem usually help to mitigate such end effects, e.g. by prohibit-

ing depletion of the inventory over the (truncated) planning horizon. Almost

sure constraints requiring the terminal inventory level to be higher than some

experiential target value tend to be overly restrictive. It is often better to require

the expected terminal inventory level to exceed a fraction of its historical average.

Another reason for our interest in expected value constraints is their appearance

in stage-aggregated MSPs, see [31, § 5]. In fact, stochastic programs with many

decision stages can occasionally be approximated by two simpler stochastic pro-

grams with only few (effective) stages, which provide upper and lower bounds on

the true optimal value. The lower aggregated problem contains expected value

constraints which originate from specific relaxations.

The above examples highlight the importance of expected value constraints

for both modelling and approximation purposes. Even if they arise from pre-

liminary approximations, MSPs with expected value constraints generically con-

stitute infinite-dimensional optimization problems which fail to be numerically

tractable. The main goal of this article consists in designing a bounding approx-

imation scheme for a class of convex MSPs with conditional expectations in the

constraints. Using the methodology of [31], we construct two finite-dimensional

approximate stochastic programs which provide upper and lower bounds on the

true optimal value. The main focus of our exposition is on proving convergence

of the bounds due to suitable refinements of the underlying discretizations. The

use of dynamic programming techniques is completely avoided, which allows us

to omit the relatively complete recourse assumptions underlying previous work

on bounding approximations [15,16].
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The rest of this article is organized as follows. A rigorous description of convex

MSPs with expected value constraints is provided in Section 2. Reconsidering any

such decision problem in a conjugate duality framework, as is done in Section 3,

facilitates the development and assessment of a flexible approximation scheme in

Section 4. We then derive computationally accessible upper and lower bounds

on the optimal objective value. Section 5 goes one step further and characterizes

a computationally accessible decision strategy which is practically feasible and

whose objective value lies between the bounds determined beforehand. A system-

atic approach to reducing the gap between the bounds is presented in Section 6.

In particular, we show that this gap can principally be made smaller than any

prescribed tolerance. After an illustrative example in Section 7, conclusions are

drawn in Section 8.

2 Problem Formulation

Consider a cost minimization problem under uncertainty with expected value

constraints. Assume that decisions may be selected at different time points (or

stages) t = 1, . . . , T when new information about the underlying random para-

meters becomes available. To formalize the treatment of uncertainty, we let all

random objects be defined on a complete probability space (Ω, Σ, P ), which is

referred to as the sample space in probability theory. As in [31], we further use

the following definition of a stochastic process.

Definition 2.1 (Stochastic Process). We say that ζ is a stochastic process with

state space Z if ζ = (ζ1, . . . , ζT ) and Z = ×T
t=1Zt such that each random vector ζt

maps (Ω, Σ) to the Borel space (Zt,B(Zt)) and each Zt is a convex closed subset of

some finite-dimensional Euclidean space. Moreover, we define combined random

vectors ζt := (ζ1, . . . , ζt) valued in Zt := ×t
τ=1Zτ for all t = 1, . . . , T .

All stochastic processes considered in this article are assumed to be of the
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above kind. By convention, random objects (i.e., random variables, random

vectors, or stochastic processes) appear in boldface, while their realizations are

denoted by the same symbols in normal face. Note that we will mostly deal with

stochastic processes taking values in compact state spaces. By boundedness,

these processes have finite moments of all orders.

A general nonlinear multistage stochastic program (MSP) with expected value

constraints can now be formulated as

minimize
x∈X(F)

E (c(x,η))

s.t. E(ft(x, ξ) | F t) ≤ 0 P -a.s. ∀t = 1, . . . , T .
(P)

Here, η and ξ are two given stochastic processes with state spaces Θ and Ξ,

respectively. Note that η impacts only the objective function of P , whereas ξ

appears exclusively in the constraints. To keep notation simple, we also intro-

duce the combined data process ζ := (η, ξ) with state space Z := Θ × Ξ. The

information F t available at time t by observing the data process is formally rep-

resented as the σ-algebra induced by the random data revealed from time 1 up

to time t, that is, F t := σ(ζt). Furthermore, we use the convention F := FT and

let F := {F t}T
t=1 be the filtration induced by the data process.1

Minimization in P is over a convex set of stochastic processes x with common

state space X ⊂ ×T
t=1R

nt . These processes are referred to as strategies, policies,

decision rules, or decision processes. The set of admissible strategies is defined as

X(F) := {x ∈ ×T
t=1L

∞(Ω,F t, P ; Rnt) |x is valued in X P -a.s.} .

By definition, X(F) merely contains F-adapted strategies. This implies that de-

cisions are chosen non-anticipatively with respect to the underlying data process,

see e.g. [46]. For later use, let X0(F) be the linear hull of X(F).

The real-valued cost function c : X×Θ → R and the vector-valued constraint

functions ft : X × Ξ → R
mt for t = 1, . . . , T are assumed to be Borel measur-

1In many applications, ζ
1

constitutes a deterministic random vector. Our exposition, how-

ever, will not rely on this assumption.
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able and bounded. This minimal requirement will be further tightened, below,

to ensure applicability of the approximation scheme presented in Section 4 and

beyond. The objective criterion in P is to minimize expected cost. Decisions

are subject to a set of almost sure constraints, which are assumed to hold in

expectation (conditional on the stagewise information sets, respectively).

By our assumptions on the cost and constraint functions, the minimization

problem P is in fact well-defined.2 For the further analysis, we impose the fol-

lowing regularity conditions:

(C1) c is convex in x, concave in η, and continuous on X × Θ;

(C2) ft is convex and continuous on X × Ξ for each t = 1, . . . , T ;

(C3) Xt is a convex compact subset of R
nt for each t = 1, . . . , T ;

(C4) problem P is strictly feasible.

Strict feasibility means that there is an ε > 0 and a policy xs ∈ X(F) such that

E
(

ft(xs, ξ)|F t
)

≤ −ε1t P -a.s. ∀t = 1, . . . , T,

where 1t is the element of L∞(Ω, Σ, P ; Rmt) with all components equal to 1.

Notice that strict feasibility fails to hold in the presence of equality constraints

(which can be represented as two opposing inequality constraints in P). This,

however, is no serious deficiency since any model involving equality constraints

can be recast as a model without equality constraints by redefining X.

3 Lagrangian Reformulation

In order to derive a flexible approximation scheme for problem P , we rewrite it

in terms of a suitable Lagrangian function, using the elegant language of conju-

gate duality theory due to Rockafellar [39]. Various duality schemes for convex

2A priori, P neither needs to be solvable nor feasible.
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stochastic programs are reported in literature, see e.g. [42–46]. Our approach is

strongly inspired by [43] and starts with embedding P into a parametric fam-

ily of convex stochastic programs. The underlying perturbation parameter u

constitutes a stochastic process which ranges over the linear space

U0(F) := ×T
t=1L

∞(Ω, Σ, P ; Rmt) .

Concretely speaking, we consider the family of minimization problems

minimize
x∈X0(F)

F (x,u) , (P(u))

where the parametric objective function F : X0(F) × U0(F) → [−∞, +∞] is

defined through

F (x,u) =















E(c(x,η)) if x ∈ X(F) and for all t = 1, . . . , T

E(ft(x, ξ)|F t) ≤ ut P -a.s.,

+∞ else.

(3.1)

From the regularity conditions (C1) and (C2) it is immediately clear that F is

convex. Note also that P(0) is in fact equivalent to the original problem P . In

analogy to the well-known set X(F) of admissible primal decision processes, we

can now define a set Y (F) of admissible dual decision processes,

Y (F) := {y ∈ ×T
t=1L

1(Ω,F t, P ; Rmt) |y is valued in Y P -a.s.} ,

where Y denotes the closed nonnegative orthant of ×T
t=1R

mt . By construction,

every dual strategy y ∈ Y (F) constitutes an integrable F-adapted stochastic

process with state space Y . Next, we let Y0(F) be the linear hull of Y (F) and

introduce a real-valued bilinear form 〈·, ·〉 on U0(F) × Y0(F) which is defined via

〈y,u〉 := E( y · u) .

We assume that U0(F) is endowed with the Y0(F)-topology; see [7, § V.3]. Thus,

the linear functionals u 7→ 〈y,u〉 are continuous, and every continuous linear
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functional on U0(F) is representable in this way for some y ∈ Y0(F). Similarly,

we assume Y (F) to be endowed with the U0(F)-topology, implying that the linear

functionals y 7→ 〈y,u〉 are continuous, and every continuous linear functional on

Y0(F) is representable in this way for some u ∈ U0(F). With these conventions,

the Lagrangian function L : X0(F) × Y0(F) → [−∞, +∞] corresponding to our

embedding can be defined as in [39, § 4].

L(x,y) := inf
u∈U0(F)

F (x,u) + 〈y,u〉

It is easy to calculate that

L(x,y) =



















E(L(x,y; η, ξ)) for x ∈ X(F), y ∈ Y (F),

−∞ for x ∈ X(F), y /∈ Y (F),

+∞ for x /∈ X(F),

where the Lagrangian density L : X×Y ×Θ×Ξ → R associated with the problem

data is defined as

L(x, y; η, ξ) := c(x, η) +
T

∑

t=1

yt · ft(x, ξ) .

By the basic regularity conditions, L is convex in (x, ξ), concave in (y, η), and

continuous on its domain. An elementary calculation yields

F (x, 0) = sup
y∈Y (F)

L(x,y) ,

which implies that the original stochastic program P can be rewritten in terms

of the Lagrangian function, i.e.,

minimize sup
y∈Y (F)

L(x,y) over all x ∈ X(F) . (P)

By interchanging the operations of minimization and maximization in the above

primal problem, we can introduce a corresponding dual problem.

maximize inf
x∈X(F)

L(x,y) over all y ∈ Y (F) (D)
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When constructing computationally tractable approximations for problem P , we

will heavily exploit the structural properties of the underlying Lagrangian func-

tion. In the course of a subsequent convergence analysis, moreover, we will study

the solution sets of P , D, and of the corresponding approximate problems. The

properties of the dual solution set, arg maxD, are intimately tied to certain prop-

erties of the optimal value function ϕ : U0(F) → [−∞, +∞], which is defined

through ϕ(u) := inf P(u). Note that ϕ is monotonically decreasing and convex

as follows from a simple projection argument [39, Theorem 1]. Our convergence

analysis will further be based on the following elementary result.

Theorem 3.1 ([39, Theorem 2]). A pair (x̄, ȳ) ∈ X0(F) × Y0(F) satisfies the

so-called saddle-point condition

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄,y) for all x ∈ X0(F), y ∈ Y0(F)

if and only if x̄ solves P, ȳ solves D, and one has inf P = supD.

4 Discretization

In the remainder of this article we will assume that ζ constitutes an admissible

process in the following sense.

Definition 4.1. The stochastic process ζ = (η, ξ) with state space Z = Θ×Ξ is

called admissible if Z is compact and

ζ = (η, ξ) = (Ho η̂, Hc ξ̂) , (4.1)

where ζ̂ := (η̂, ξ̂) is a serially independent process with state space Ẑ := Θ̂ × Ξ̂.

The transformations Ho : Θ̂ → Θ and Hc : Ξ̂ → Ξ are linear and lower block-

triangular with respect to the temporal structure, i.e., the matrix elements of Ho

coupling ηt and η̂s (and those of Hc coupling ξt and ξ̂s) are zero for all s > t.3

3In this sense, the transformations H
o and H

c are ‘non-anticipative’.
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It is worthwhile to remark that the admissible processes cover all ARMA

processes and are suitable for modelling many real-life stochastic phenomena.

Under the assumption that the data process belongs to the class of admissible

processes, we now address the approximation of multistage stochastic programs

subject to the regularity conditions (C1)–(C4). To this end, we first construct

discrete stochastic processes ηu and ξu with state spaces Θ and Ξ, respectively.

Thus, ηu has the same range as the data process η of Section 2, and ξu has the

same range as ξ. As for the original data processes, we simplify notation by intro-

ducing a combined process ζu = (ηu, ξu) with state space Z. One should think

of ζu as an approximation for ζ. Next, we denote by F
u the filtration induced

by ζu, i.e., F
u := {Fu,t}T

t=1 where Fu,t := σ(ζu,t), and we use the convention

Fu := Fu,T . Having introduced the necessary notation, we can now state the

basic properties of ζu. Concretely speaking, we require the following relations to

hold for suitable versions of the conditional expectations, respectively.

E(x|F) ∈ X(F) for all x ∈ X(Fu) (4.2a)

E(y|Fu) ∈ Y (Fu) for all y ∈ Y (F) (4.2b)

E(ξu|F) = ξ (4.2c)

E(η|Fu) = ηu (4.2d)

It is shown in [31, § 4] that for every given tolerance ǫ > 0 there exists a dis-

crete processes ζu subject to (4.2a)–(4.2d) with ‖ζ − ζu‖∞ ≤ ǫ. Such ζu can

systematically be constructed. The construction in [31] further implies that

E(y|F) ∈ Y (F) for all y ∈ Y (Fu) (4.2e)

E(x|Fu) ∈ X(Fu) for all x ∈ X(F) (4.2f)

for suitable versions of the conditional expectations, respectively.4

4These additional conditions are not needed in [31] but will be necessary for our convergence

proof in Section 6. For the processes ζu constructed in [31, § 4] verification of (4.2e) and (4.2f)

is straightforward and completely analogous to verification of (4.2a) and (4.2b), respectively.
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Next, introduce another discrete process ζl = (ηl, ξl) such that ηl and ξl

are valued in Θ and Ξ, respectively. Again, ζl is supposed to approximate the

original data process ζ. The induced filtration F
l is constructed as usual, i.e.,

F
l := {F l,t}T

t=1 where F l,t := σ(ζl,t), and we use the convention F l := F l,T . Using

these notational conventions, we require ζu to satisfy the following conditions for

suitable versions of the conditional expectations, respectively.

E(x|F l) ∈ X(Fl) for all x ∈ X(F) (4.3a)

E(y|F) ∈ Y (F) for all y ∈ Y (Fl) (4.3b)

E(ξ|F l) = ξl (4.3c)

E(ηl|F) = η (4.3d)

From the argumentation in [31] it follows that for every given tolerance ǫ > 0 we

can construct a discrete processes ζl subject to (4.3a)–(4.3d) with ‖ζ−ζl‖∞ ≤ ǫ.

In addition, this ζl may be assumed to satisfy the conditions

E(y|F l) ∈ Y (Fl) for all y ∈ Y (F) (4.3e)

E(x|F) ∈ X(F) for all x ∈ X(Fl) (4.3f)

for suitable versions of the conditional expectations, respectively. It should be

pointed out that the construction of ζl depends in no way on the construction

of ζu and vice versa. In mathematical terms, we may thus assume ζu and ζl to

be conditionally independent given ζ. This assumption will be needed for our

convergence proof in Section 6.

If we replace the true data process ζ by ζu and the true filtration F by F
u

in P , then we obtain an approximate optimization problem denoted Pu. An-

other approximate problem P l is obtained by substituting ζl for ζ and F
l for F.

Note that replacing the filtrations has a primal and a dual effect, that is, after

substitution the primal decisions as well as the constraints are adapted to the

approximate filtration. With these conventions, we are now ready to generalize

a main result of [31].
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Theorem 4.2. Assume the conditions (C1), (C2), and (C3) hold. If the data

process ζ and its approximations ζu and ζl satisfy (4.2) and (4.3), respectively,

then inf P l ≤ inf P ≤ inf Pu.

Proof. Although here we work in a more general setting with expected value

constraints, the proofs of the corresponding Theorems 1 and 2 in [31] remain

valid without any change.

As ζu represents a finitely supported stochastic process, any F
u-adapted pri-

mal or dual strategy is finitely supported, as well. Thus, Pu essentially consti-

tutes a convex program over some finite-dimensional Euclidean space with a finite

number of constraints, and it principally allows for numerical solution. For sim-

ilar reasons, P l is computationally tractable, too. These observations together

with Theorem 4.2 show that, given enough memory and CPU power, we can

numerically calculate upper and lower bounds on inf P .

5 A Posteriori Error Estimate

In this section we will assume that suitable approximate processes ζu and ζl

subject to the conditions (4.2) and (4.3), respectively, have been chosen. We will

also assume that these processes are finitely supported, such that the upper and

lower approximate problems Pu and P l are indeed equivalent to finite-dimensional

convex mathematical programs.

Theorem 5.1. Assume the conditions (C1), (C2), and (C3) hold. If the approx-

imate problem Pu has a finite infimum and is solved by some strategy xu, then

x̂ := E(xu|F) is feasible in P and

inf P l ≤ inf P ≤ E(c(x̂,η)) ≤ inf Pu.

Proof. The first inequality follows immediately from Theorem 4.2. By using the

Lagrangian reformulation of P , the saddle structure of the Lagrangian density L,
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and the basic properties of the approximate process ζu, we further obtain

inf P ≤ sup
y∈Y (F)

E (L(E(xu|F),y; η, E(ξu|F)))

≤ sup
y∈Y (F)

E (L(xu,y; η, ξu))

≤ sup
y∈Y (F)

E (L(xu, E(y|Fu); E(η|Fu), ξu)) (5.4)

≤ sup
y∈Y (Fu)

E (L(xu,y; ηu, ξu))

= inf
x∈X(Fu)

sup
y∈Y (Fu)

E (L(x,y; ηu, ξu)) .

The first inequality in (5.4) follows from (4.2a) and (4.2c). Next, we use the

conditional version of Jensen’s inequality for moving the conditional expectations

out of the Lagrangian density. This is allowed by convexity of the Lagrangian

density in the first and the fourth arguments, and since y and η are F -measurable.

Repeated application of the conditional Jensen inequality justifies the third line.

Here, we exploit concavity of the Lagrangian density in the second and the third

arguments together with the Fu-measurability of xu and ξu. Finally, the fourth

inequality holds by the assumptions (4.2b) and (4.2d). It entails relaxation of the

dual feasible set from those decisions which are representable as the conditional

expectation (given Fu) of some y ∈ Y (F) to all decisions in Y (Fu).

The last line of (5.4) corresponds to the optimal value of the upper approxi-

mate problem and is finite by assumption. This implies that the supremum over

Y (F) in the first line of (5.4) is attained by y = 0, and

sup
y∈Y (F)

E (L(E(xu|F),y; η, E(ξu|F))) = E(c(x̂,η)).

We can therefore conclude that x̂ is feasible in P , and the corresponding objective

value E(c(x̂,η)) satisfies the postulated inequalities.

Whereas Theorem 4.2 provides an a priori estimate of the minimal cost achiev-

able in theory under the (unknown) true optimal policy, Theorem 5.1 suggests a

computationally accessible near-optimal policy and provides an a posteriori esti-

mate of the minimal cost achievable in practice. In fact, if x⋆ denotes an optimal
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solution to problem P , we may conclude from Theorem 5.1 that

E(c(x̂,η)) − E(c(x⋆,η)) ≤ inf Pu − inf P l.

Thus, the error of implementing the suboptimal policy x̂ instead of some true op-

timal policy x⋆ is bounded by inf Pu − inf P l. This difference is computationally

accessible and estimates the approximation error as defined by Pflug [35, Sec-

tion 2].

Evaluation of x̂ for some given realization of ζ reduces to the evaluation of

a weighted sum over some subset of the (finite) support of xu.5 Of particular

interest is the recommended first stage decision x̂1. If ζ1 constitutes a degenerate

deterministic random vector, as is usually assumed in practice, it is reasonable

to set ζu
1 = ζ1. This choice is consistent with the conditions (4.2) and the

construction of ζu suggested in [31, Section 4]. Then, it immediately follows that

the recommended first stage decision x̂1 coincides with the optimal first stage

decision xu
1 of the approximate problem Pu, that is, no conditional expectation

needs to be evaluated.

A major drawback of most solution schemes for stochastic programs based

on discretization is that only the first stage decisions can be implemented. The

recourse decisions associated with later stages are given only for few discrete sce-

narios and are therefore not implementable (almost surely). The discretization

method presented here does not suffer from this shortcoming since an imple-

mentable strategy x̂ can be derived from any solution xu of the upper approxi-

mate problem. As shown above, x̂ is implementable for every possible realization

of ζ.

Finally, it is worthwhile to remark that ŷ = E(yl|F) is feasible in D if yl

solves the dual Dl corresponding to the lower approximate problem P l. The dual

5As only the marginal distribution of ζu is relevant for the solution of problem Pu, the

optimal policy xu can be chosen conditionally independent of ζ given ζu. Under this premise,

calculation of the expectation E(xu|F) is straightforward.
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policy ŷ is computationally accessible, and its objective value lies between inf P l

and inf Pu. This result can be proved in a similar same manner as Theorem 5.1.

Details are omitted for brevity of exposition.

6 Convergence

The asymptotic consistency of MSP approximations has been the subject of sev-

eral investigations. Pennanen [33] establishes very general conditions which guar-

antee that a sequence of finite-dimensional problems epi-converges to the original

infinite-dimensional MSP. More quantitative results are reported, among others,

by Heitsch et al. [20] for probability metric based approximations and by Frauen-

dorfer [16] and Casey and Sen [3] for bounding approximations. Neither of these

recent approaches is directly applicable in the present situation since we consider

problems with induced constraints and with expected value constraints. A few

nonrestrictive assumptions, however, enable us to show asymptotic consistency of

the approximation scheme under consideration. Our proof is self-contained and

provides additional insights.

For each J ∈ N introduce a pair of discrete stochastic processes ζu
J and ζl

J with

induced filtrations F
u
J = {Fu,t

J }T
t=1 and F

l
J = {F l,t

J }T
t=1, respectively. As usual,

use the convention Fu
J := Fu,T

J and F l
J := F l,T

J in order to simplify notation.

Assume that ζ and ζu
J satisfy the conditions (4.2), ζ and ζl

J satisfy (4.3), and ζu
J

is conditionally independent of ζl
J given ζ for all J ∈ N. Moreover, assume that

lim
J→∞

‖ζu
J − ζ‖∞ = 0 and lim

J→∞

∥

∥ζl
J − ζ

∥

∥

∞
= 0 . (6.5)

By the argumentation in Section 4 and in [31, § 4], such sequences of discrete

stochastic processes exist and can systematically be constructed whenever ζ con-

stitutes an admissible process in the sense of Definition 4.1. Unless otherwise

noted, the above assumptions are supposed to hold throughout the rest of this

article.
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If we replace the true data process ζ by ζu
J and the true filtration F by F

u
J in

the derivations of Section 3, then, for each J ∈ N, we obtain a parametric family of

approximate optimization problems denoted by Pu
J (u), where the perturbation

parameter u ranges over U0(F
u
J). Another parametric family of approximate

optimization problems P l
J(u), u ∈ U0(F

l
J), is obtained by substituting ζl

J for ζ

and F
l
J for F. Note that replacing the filtration in (3.1) affects the measurability

properties of the admissible x as well as the conditional expectations in the

explicit constraints. For each J ∈ N, we introduce the shorthand notation Pu
J

and P l
J for the problems Pu

J (0) and P l
J(0), respectively. Moreover, we denote by

Du
J the maximization problem dual to Pu

J , while Dl
J refers to the maximization

problem dual to P l
J ; see Section 3 for the definition of the dual problems.

We are now prepared to show that the bounds of Theorem 4.2 (associated

with the discretizations ζu
J and ζl

J , J ∈ N) converge to the optimal value of the

original problem as J tends to infinity. The proof is based on five preliminary

lemmas. The first lemma establishes a relation between strategies that are feasible

for the upper and lower approximate problems, respectively, while the second

lemma provides a general result about conditional expectations. This result is

used in the third lemma to prove that the approximate problems Pu
J and P l

J are

strictly feasible for J large enough. Primal and dual solvability of these finite-

dimensional problems is established in the fourth lemma. Finally, dual solvability

and strict primal feasibility are used to prove that the dual solutions of the

approximate problems are uniformly bounded for large J . Uniform boundedness

of the (primal and dual) approximate solutions, in turn, are crucial ingredients

for our convergence proof presented in Theorem 6.6.

Lemma 6.1. The following relations hold for suitable versions of the conditional

expectations.

(i) E(x|Fu
J ) ∈ X(Fu

J) for all x ∈ X(Fl
J)

(ii) E(y|F l
J) ∈ X(Fl

J) for all y ∈ Y (Fu
J)
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Proof. First, we select an arbitrary primal policy x ∈ X(Fl
J). By conditional

independence of ζu
J and ζl

J given ζ and by (4.3f), we have

E(x|ζ, ζu
J) = E(x|ζ) =: x′ ∈ X(F)

for suitable versions of the conditional expectations. The law of iterated condi-

tional expectations and (4.3f) then imply that

E(x|ζu
J) = E(E(x|ζ, ζu

J)|ζu
J) = E(x′|ζu

J) ∈ X(Fu
J)

for suitable versions of the conditional expectations. This observation establishes

assertion (i). The proof of assertion (ii) is analogous.

Lemma 6.2. If ζ and ζ ′ are random vectors in Lp(Ω, Σ, P ; Z), then

‖E(ζ|ζ ′) − ζ ′‖p ≤ ‖ζ − ζ ′‖p for all 1 ≤ p ≤ ∞ .

Proof. Assume first that p < ∞. By using the conditional Jensen inequality and

the law of iterated conditional expectations, we find

‖E(ζ|ζ ′) − ζ ′‖p
p = ‖E(ζ − ζ ′|ζ ′)‖p

p

= E(|E(ζ − ζ ′|ζ ′)|p)

≤ E(E(|ζ − ζ ′|p|ζ ′)) = ‖ζ − ζ ′‖p
p .

Thus, the claim is established for p < ∞. For p = ∞ the statement follows from

the above argument and the well-known relation limp→∞ ‖ζ̂‖p = ‖ζ̂‖∞, where ζ̂

is any random vector in L∞(Ω, Σ, P ; Z).

In the next lemma we use this elementary result to prove strict feasibility of

the approximate problems. For the sake of simple notation, let 1 := (11, . . . ,1T )

be the element of ×T
t=1L

∞(Ω, Σ, P ; Rmt) whose components are all 1’s.

Lemma 6.3. Assume the conditions (C1)–(C4) hold, and let xs be strictly feasible

in P. Then there exists ε > 0 such that E(xs|F
u
J ) is feasible in Pu

J (−ε1) for all

J large enough, and E(xs|F
l
J) is feasible in P l

J(−ε1) for all J ∈ N.
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Proof. By strict feasibility, there exists ε > 0 with

E
(

ft(xs, ξ)|F t
)

≤ −2ε1t P -a.s. (6.6)

for all t = 1, . . . , T . For the further argumentation we fix some t and define

Ŷt(G) := {yt ∈ Yt(G) |E(1t · yt) = 1} ,

where G can be either of the filtrations F or F
u
J for J ∈ N, and Yt(G) is the

projection of Y (G) to the space of dual stage t decisions. Then, the (vectorial)

inequality (6.6) involving a conditional expectation is equivalent to a family of

(scalar) inequalities involving only unconditional expectations, i.e.,

E (yt · ft(xs, ξ)) ≤ −2ε ∀yt ∈ Ŷt(F) . (6.7)

From the relation (4.2e) it is easily seen that E(yt|F) is an element of Ŷt(F)

whenever yt is an element of Ŷt(F
u
J). Thus, (6.7) implies

E (E(yt|F) · ft(xs, ξ)) ≤ −2ε ∀yt ∈ Ŷt(F
u
J) . (6.8)

The law of iterated conditional expectations and the F -measurability of xs and ξ

enable us to eliminate the conditional expectation with respect to F . The system

of inequalities (6.8) is therefore equivalent to

E (yt · ft(xs, ξ)) ≤ −2ε ∀yt ∈ Ŷt(F
u
J) .

Next, the conditional Jensen inequality, convexity of ft, and nonnegativity of yt

can be used to conclude that

E (yt · ft(E(xs|F
u
J ), E(ξ|Fu

J ))) ≤ −2ε ∀yt ∈ Ŷt(F
u
J) . (6.9)

Notice that ‖E(ξ|Fu
J ) − ξu

J‖∞ converges to zero as J tends to infinity. This

follows from Lemma 6.2 and convergence of ‖ξu
J −ξ‖∞ to zero. Thus, by uniform

continuity of ft on its compact domain, there is some J0 ∈ N with

ft(E(xs|F
u
J ), E(ξ|Fu

J )) ≤ ft(E(xs|F
u
J ), ξu

J) + ε P -a.s. for J ≥ J0.
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Plugging this estimate into (6.9) leads to the conclusion that

E
(

ft(E(xs|F
u
J ), ξu

J)|Fu,t
J

)

≤ −ε1t P -a.s. for J ≥ J0.

As t was arbitrary, we find that E(xs|F
u
J ) is feasible in Pu

J (−ε1) for J ≥ J0. To

prove that E(xs|F
l
J) is feasible in P l

J(−ε1) for all J ∈ N, we use an analogous

argument. However, the proof is simplified by the fact that E(ξ|F l
J) exactly

equals ξl
J for each J ∈ N; it not only comes close to ξl

J for J large.

The discrete approximate problems are not only feasible, but also solvable for

J large enough. This is a consequence of their finite dimensionality.

Lemma 6.4. If the conditions (C1)–(C4) hold, then Pu
J , Du

J , P l
J , and Dl

J are

solvable, while minPu
J = maxDu

J and minP l
J = maxDl

J for all J large enough.

Proof. Solvability of Pu
J and Du

J relies on the fact that the approximate process

ζu
J is finitely supported. Consequently, any F

u
J -adapted primal or dual strategy is

finitely supported, too. The conditions (C1)–(C4) thus imply via Lemma 6.3 that,

for J large enough, Pu
J essentially constitutes a strictly feasible convex program of

the type [39, Example 1]. It has finitely many decision variables and constraints,

a continuous objective function, and a compact feasible set. Primal solvability

follows now from the Weierstrass maximum theorem, while dual solvability follows

from Theorem 17 and Example 1” in [39]. Furthermore, [39, Theorem 17] implies

strong duality, that is, minPu
J = maxDu

J . Solvability of P l
J and Dl

J and the

relation minP l
J = maxDl

J are proved in exactly the same way.

It is worthwhile to remark that dual solvability could be lost in an infinite-

dimensional setting.6 This might happen if the stochastic program at hand fails

to have relatively complete recourse; see e.g. [43, § 5]. In the remainder of this

section, we fix any solutions of Pu
J and P l

J , which will be denoted by xu
J and

xl
J , respectively. Furthermore, we fix any solutions of Du

J and Dl
J , which will

6Imagine ζu

J or ζl

J to be continuously distributed for some J .
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be denoted by yu
J and yl

J , respectively. For notational convenience, we also

introduce the optimal value functions ϕu
J(u) := inf Pu

J (u) defined on U0(F
u
J) and

ϕl
J(u) := inf P l

J(u) defined on U0(F
l
J). Remember that ϕ stands for the optimal

value function associated with the original problem and is defined on U0(F).

Exploiting the specific properties of the original and approximate value functions,

we can now prove uniform boundedness of the approximate dual solutions.

Lemma 6.5. If the conditions (C1)–(C4) hold, then ‖yu
J‖1 is uniformly bounded

for J large enough.

Proof. Let xs be a strictly feasible policy for P . By Lemma 6.3 there exist ε > 0

and J1 ∈ N such that E(xs|F
u
J ) is feasible in Pu

J (−ε1) for all J ≥ J1. Notice

that ‖E(ηu
J |F) − η‖∞ converges to zero as J tends to infinity. This follows from

Lemma 6.2 and convergence of ‖ηu
J − η‖∞ to zero. Thus, by uniform continuity

of c on its compact domain, there is some J2 ∈ N with

c(xs, E(η|Fu
J )) ≤ c(xs,η) + 1 P -a.s. for J ≥ J2. (6.10)

The solution set of problem Du
J coincides with −∂ϕu

J(0), that is, the negative of

the subdifferential of ϕu
J evaluated at the origin. Thus, we have

ϕu
J(u) − ϕu

J(0) ≥ −〈yu
J ,u〉 for all u ∈ U0(F

u
J) .

Taking the supremum over all u ∈ U0(F
u
J) with ‖u‖∞ = ε on both sides and

exploiting monotonicity of ϕu
J , we obtain

ϕu
J(−ε1) − ϕu

J(0) ≥ ε ‖yu
J‖1 .

With this estimate in mind, we may conclude that for all J ≥ max{J1, J2}

ε ‖yu
J‖1 ≤ ϕu

J(−ε1) − ϕu
J(0)

≤ ϕu
J(−ε1) − ϕ(0)

≤ E (c(E(xs|F
u
J ),ηu

J)) − ϕ(0) (6.11)

≤ E (c(xs, E(ηu
J |F))) − ϕ(0)

≤ E (c(xs,η)) − ϕ(0) + 1 .
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The second inequality is a direct consequence of Theorem 4.2, and the third

inequality uses feasibility of E(xs|F
u
J ) in problem Pu

J (−ε1) for J ≥ J1. In the

fourth line, we use Fu
J -measurability of ηu

J and the conditional version of Jensen’s

inequality for moving the conditional expectation with respect to Fu
J out of the

cost function.7 Subsequently, the conditional Jensen inequality is applied once

again. This time, F -measurability of xs ensures that the conditional expectation

with respect to F can be brought inside the cost function. The fifth inequality

in (6.11) follows directly from the estimate (6.10).

The last line of (6.11) is manifestly independent of J . Moreover, it is finite.

Divided by ε > 0 it thus provides a uniform upper bound on ‖yu
J‖1 over all J

large enough. This observation completes the proof.

After having proved the above preliminary lemmas, we are ready to establish

the main result of this article.

Theorem 6.6. If the conditions (C1)–(C4) hold, then for J → ∞ we have

inf Pu
J → inf P and inf P l

J → inf P .

Proof. The claim can be established by using our previous results. In particu-

lar, uniform boundedness of the dual solutions corresponding to the discretized

problems is crucial. We start with the following chain of inequalities.

0 ≤ inf Pu
J − inf P l

J

= E
(

L(xu
J ,yu

J ; ηu
J , ξu

J) − L(xl
J ,yl

J ; ηl
J , ξl

J)
)

≤ E
(

L(E(xl
J |F

u
J ),yu

J ; ηu
J , ξu

J) − L(xl
J , E(yu

J |F
l
J); ηl

J , ξl
J)

)

(6.12)

≤ E
(

L(xl
J ,yu

J ; ηu
J , ξu

J) − L(xl
J ,yu

J ; ηl
J , ξl

J)
)

≤
∥

∥c(xl
J ,ηu

J) − c(xl
J ,ηl

J)
∥

∥

∞
+

T
∑

t=1

‖yu
J‖1

∥

∥ft(x
l
J , ξu

J) − ft(x
l
J , ξl

J)
∥

∥

∞

The first inequality is a direct consequence of Theorem 4.2, while the equality

in the second line uses Theorem 3.1 and Lemma 6.4. The second inequality (in

7Recall that c is convex in its first and concave in its second argument.
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the third line) follows, again, from Theorem 3.1 and the fact that E(xl
J |F

u
J ) is

contained in X(Fu
J), while E(yu

J |F
l
J) is contained in Y (Fl

J), see Lemma 6.1. The

third inequality is due to the conditional Jensen inequality, which applies since

the Lagrangian density is convex in the primal and concave in the dual decisions,

and the last inequality in (6.12) is based on the triangle and Hölder inequalities.

Since c is uniformly continuous on its (compact) domain, and since ‖ηu
J − ηl

J‖∞

converges to zero as J tends to infinity, we may conclude that

lim
J→∞

∥

∥c(xl
J ,ηu

J) − c(xl
J ,ηl

J)
∥

∥

∞
= 0 .

A similar reasoning shows that

lim
J→∞

∥

∥ft(x
l
J , ξu

J) − ft(x
l
J , ξl

J)
∥

∥

∞
= 0 for all t = 1, . . . , T .

By (6.12) and uniform boundedness of ‖yu
J‖1 for J large enough, see Lemma 6.5,

we thus have

max{inf Pu
J − inf P , inf P − inf P l

J} ≤ inf Pu
J − inf P l

J → 0 for J → ∞ .

This observation completes the proof.

7 Example

We formulate a simple stochastic program to determine the cost-minimal pro-

duction schedule of a hydropower plant over a two-period planning horizon. The

plant comprises a single reservoir. At any time, water can be released through a

turbine to produce electric energy. For simplicity, we assume that reservoir con-

tent is measured in energy units. The initial content is set to 1. In period t, the

plant produces xt units of energy, which are sold at price ηt per unit. Meanwhile,

the reservoir content increases by ξt units due to natural water inflows. The reser-

voir thus contains 1−x1 + ξ1 units after the first and 1−x1 −x2 + ξ1 + ξ2 units

after the second period. We require that the reservoir volume never exceeds 2.
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Moreover, it must not drop below 0 (0.8) at the end of the first (second) period.

The production decision xt may depend only on information about ηt and ξt.

Capacity constraints confine xt to the interval [0, 1], and the expected reservoir

volume at the end of the second stage (conditional on first stage information)

must not be smaller than 1. This is rather a regulatory than a physical restric-

tion which takes account of the fact that the model has a finite horizon, whereas

real operation of the plant has an indefinite horizon.

Let us assume that η1 = 1.9 and ξ1 = 0 are deterministic, while η2 and ξ2 are

independent and follow uniform distributions over Θ := [1
2
, 2] and Ξ := [0, 1

2
], re-

spectively. Using the notation of Section 2, the above decision problem translates

to a two-stage stochastic program as follows.

minimize
x∈X(F)

E
(

− η1x1 − η2x2

)

s.t. − x1 ≤ 1 − ξ1

x1 ≤ 1 + ξ1

− x1 − x2 ≤ 1 − ξ1 − ξ2

x1 + x2 ≤ 1
5

+ ξ1 + ξ2

E(x1 + x2|F
1) ≤ ξ1 + E(ξ2|F

1)











































P -a.s.

(P)

Here, the state space X of the primal decision process is set to the two-dimensional

unit square [0, 1]2. The almost sure lower bound on terminal reservoir volume

(the fourth constraint in P) generates an induced constraint on x1, see [44, 50].

Thus, P fails to have relatively complete recourse. However, it satisfies the basic

regularity conditions (C1)–(C4), which ensure applicability of the approximation

scheme advocated in this article.

As the random parameters of the first stage are deterministic, we have to

discretize only ζ2 = (η2, ξ2). In order to keep notation simple, we suppress

the fixed stage index in the subsequent discussion. We construct a sequence

of discrete random vectors {ζu
J}J∈N in the following way (detailed background

information is provided in [31, § 4]). For each J ∈ N, let λJ be a discrete random

25



variable uniformly distributed over ΛJ := {1, . . . , J}2, i.e., the event {λJ = (i, k)}

has probability J−2 for (i, k) ∈ ΛJ . Furthermore, for each J ∈ N and (i, k) ∈ ΛJ ,

we introduce a two-dimensional random vector ζJ,i,k := (ηJ,i,k, ξJ,i,k) which is

uniformly distributed over the rectangle ZJ,i,k := ΘJ,i × ΞJ,k,

ΘJ,i := [1
2

+ 3(i−1)
2J

, 1
2

+ 3i
2J

] and ΞJ,k := [k−1
2J

, k
2J

] , (i, k) ∈ ΛJ .

Assuming mutual independence of λJ and {ζJ,i,k}(i,k)∈ΛJ
, it is easily seen that

ζ ∼
∑

(i,k)∈ΛJ

1{λJ=(i,k)} ζJ,i,k . (7.13)

Here, the symbol ‘∼’ stands for equivalence in distribution. Since only the dis-

tribution of ζ has practical relevance for the stochastic program P , there is no

loss of generality to assume that (7.13) holds with equality. Next, each ζJ,i,k is

approximated by a discrete random vector ζu
J,i,k as exemplified in [31, § 4.1]. By

construction, the (regular) conditional distribution of ζu
J,i,k given ζJ,i,k reads

Pζu
J,i,k|ζJ,i,k

(B|ζ) =
eJ,k − ξ

eJ,k − eJ,k−1

δζJ
Ξ,i,k−1

(B) +
ξ − eJ,k−1

eJ,k − eJ,k−1

δζJ
Ξ,i,k

(B)

for all B ∈ B(ZJ,i,k) and ζ ∈ ZJ,i,k, where eJ,k := k
2J

, ζJ
Ξ,i,k := (E(ηJ,i,k), eJ,k),

and δζJ
Ξ,i,k

denotes the Dirac measure concentrated at ζJ
Ξ,i,k. The discrete random

vector ζu
J is now defined through

ζu
J :=

∑

(i,k)∈ΛJ

1{λJ=(i,k)} ζu
J,i,k .

If we assume λJ and {ζu
J,i,k}(i,k)∈ΛJ

to be mutually independent, then the uncon-

ditional distribution of ζu
J is given by8

Pζu
J
(B) =

J
∑

i=1

J
∑

k=0

2 − δk,0 − δk,J

2J2
δζJ

Ξ,i,k
(B) for B ∈ B(Z) .

8Notice that only the unconditional distribution of ζu

J has practical relevance for the ap-

proximate stochastic program Pu

J
.
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As demonstrated in [31], ζu
J and ζ satisfy the conditions (4.2), and ‖ζu

J − ζ‖∞

approaches zero as J tends to infinity. The dual approximation ζl
J is obtained in

a similar way. We set

ζl
J :=

∑

(i,k)∈ΛJ

1{λJ=(i,k)} ζl
J,i,k

with λJ and {ζl
J,i,k}(i,k)∈ΛJ

mutually independent. Each random vector ζl
J,i,k is

defined through its conditional distribution given ζJ,i,k, that is,

Pζl
J,i,k|ζJ,i,k

(B|ζ) =
eJ,i − η

eJ,i − eJ,i−1

δζJ
Θ,i−1,k

(B) +
η − eJ,i−1

eJ,i − eJ,i−1

δζJ
Θ,i,k

(B)

for B ∈ B(ZJ,i,k) and ζ ∈ ZJ,i,k, where eJ,i := 1
2

+ 3i
2J

and ζJ
Θ,i,k := (eJ,i, E(ξJ,i,k)).

Then, the unconditional distribution of ζl
J amounts to

Pζl
J
(B) =

J
∑

i=0

J
∑

k=1

2 − δi,0 − δi,J

2J2
δζJ

Θ,i,k
(B) for B ∈ B(Z) .

By construction, ζl
J is conditionally independent of ζu

J given ζ. Moreover, ζl
J

and ζ satisfy the conditions (4.3), while ‖ηl
J − ζ‖∞ converges to zero as J tends

to infinity; see [31] for details. Replacing the original data process in P by its

discrete approximations ζu
J and ζl

J , we obtain finite-dimensional problems Pu
J

and P l
J , whose minima provide upper and lower bounds on inf P , respectively.

Convergence of the bounds upon increase of J is visualized in Figure 1. Notice

that both problems Pu
J and P l

J involve J(J + 1) different scenarios.

8 Conclusions

Bounding approximation schemes for MSPs have very appealing properties. They

provide bounds on the optimal objective value which are explicitly available after

solving two finite-dimensional approximate problems. These bounds are deter-

ministic (they represent no confidence interval), and they are not dependent on

unknown constants, which typically arise in other quantitative approaches. As ar-

gued in Section 5, the presented method even enables us to obtain a near-optimal
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Figure 1: Convergence of bounds

policy for the original MSP. This policy is implementable for every scenario in

the (potentially uncountable) support of the original data process, and not just

for scenarios in the support of the approximate processes. Moreover, the cost

associated with this policy differs from the minimal cost at most by the differ-

ence between the bounds. Convergence of the bounds thus implies that there is

a sequence of feasible policies whose objective values approach the true minimal

cost. No epi-convergence arguments are employed to derive this result. In addi-

tion, the presented approximation scheme applies to MSPs with expected value

constraints and without relatively complete recourse. Certain problems with in-

tegrated chance constraints and conditional value-at-risk constraints fall into this

category.

These strong results are not for free. We require the state spaces of the data

and (primal) decision processes to be compact, which is a standard assumption.

However, we also require the constraint functions to be jointly convex in the
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decisions and the random parameters, which rules out stochastic recourse and

technology matrices in linear stochastic programs. In addition, the proposed

discretization scheme seems to apply only to admissible data processes in the

sense of Definition 4.1.

Extensions to problems with stochastic technology matrices might be possible

under certain circumstances and are subject of ongoing research. Other exten-

sions to more general stochastic processes with complex interstage dependencies

have been discussed by the author in a dynamic programming framework [30].
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[37] Prékopa, A. Contributions to the theory of stochastic programming. Math.

Program. 4 (1973), 202–221.

32



[38] Rachev, S., and Römisch, W. Quantitative stability in stochastic pro-

gramming: the method of probability metrics. Math. Oper. Res. 27 (2002),

792–818.

[39] Rockafellar, R. Conjugate Duality and Optimization. SIAM, Philadel-

phia, 1974.

[40] Rockafellar, R., and Uryasev, S. Optimization of conditional value-

at-risk. Journal of Risk 2, 3 (2000), 21–41.

[41] Rockafellar, R., and Uryasev, S. Conditional value-at-risk for general

loss distributions. Journal of Banking & Finance, 26 (2002), 1443–1471.

[42] Rockafellar, R., and Wets, R.-B. Nonanticipativity and L1-

martingales in stochastic optimization problems. In Stoch. Syst.: Model.,

Identif., Optim. II; Math. Program. Study 6 (1976), pp. 170–187.

[43] Rockafellar, R., and Wets, R.-B. Stochastic convex programming:

Basic duality. Pac. J. Math. 62 (1976), 173–195.

[44] Rockafellar, R., and Wets, R.-B. Stochastic convex programming:

Relatively complete recourse and induced feasibility. SIAM J. Control Op-

timization 14 (1976), 574–589.

[45] Rockafellar, R., and Wets, R.-B. Stochastic convex programming:

Singular multipliers and extended duality. Pac. J. Math. 62 (1976), 507–522.

[46] Rockafellar, R., and Wets, R.-B. The optimal recourse problem in

discrete time: L1-multipliers for inequality constraints. SIAM J. Control

Optimization 16 (1978), 16–36.

[47] Shapiro, A. Inference of statistical bounds for multistage stochastic pro-

gramming problems. Math. Methods Oper. Res. 58, 1 (2003), 57–68.

33



[48] Shapiro, A. On complexity of multistage stochastic programs. Oper. Res.

Lett. 34 (2006), 1–8.

[49] Wallace, S. W., and Ziemba, W. T., Eds. Applications of stochas-

tic programming, vol. 5 of MPS/SIAM Series on Optimization. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.

[50] Wets, R.-B. Induced constraints for stochastic optimization problems. In

Techniques of Optimization (1972), A. Balakrishnan, Ed., Academic Press,

pp. 433–443.

[51] Wright, S. Primal-dual aggregation and disaggregation for stochastic lin-

ear programs. Math. Oper. Res. 19, 4 (1994), 893–908.

34


