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Abstract.

We deal with linear multi-step methods for SDEs and study when the numerical appro-

ximation shares asymptotic properties in the mean-square sense of the exact solution.

As in deterministic numerical analysis we use a linear time-invariant test equation

and perform a linear stability analysis. Standard approaches used either to analyse

deterministic multi-step methods or stochastic one-step methods do not carry over to

stochastic multi-step schemes. In order to obtain sufficient conditions for asymptotic

mean-square stability of stochastic linear two-step-Maruyama methods we construct

and apply Lyapunov-type functionals. In particular we study the asymptotic mean-

square stability of stochastic counterparts of two-step Adams-Bashforth- and Adams-

Moulton-methods, the Milne-Simpson method and the BDF method.
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1 Introduction

Our aim is to study when a numerical approximation generated by a stochastic
linear two step scheme shares asymptotic properties of the exact solution of an
SDE of the form

(1.1) dX(t) = f(t,X(t)) dt+G(t,X(t)) dW (t) , t ∈ J , X(t0) = X0 ,

where J = [t0,∞) , f : J × Rn → Rn , G : J × Rn → Rn×m. Later
we consider also complex-valued functions f,G,X . The driving process W is
an m-dimensional Wiener process on the given probability space (Ω,F ,P) with
a filtration (Ft)t∈J . The initial value X0 is a given Ft0-measurable random
variable (it can be deterministic data, of course), independent of the Wiener
process and with finite second moments. We assume that there exists a path-wise
unique strong solution X = {X(t), t ∈ J } of Equation (1.1) and we indicate the
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dependence of this solution upon the initial data by writing X(t) ≡ X(t; t0, X0).
The numerical methods to be considered are generally drift-implicit linear two-
step Maruyama methods with constant step-size h which for (1.1) take the form

(1.2) α2Xi+1 + α1Xi + α0Xi−1

= h[β2 f(ti+1,Xi+1) + β1 f(ti,Xi) + β0 f(ti−1,Xi−1)]

+ γ1G(ti,Xi) ∆Wi + γ0G(ti−1,Xi−1) ∆Wi−1,

for i = 1, 2, . . ., where ti = i · h, i = 0, 1, . . ., and ∆Wi = W (ti+1) −W (ti). For
normalization we set α2 = 1. We require given initial valuesX0, X1 ∈ L2(Ω,R

n)
that are Ft0 - and Ft1-measurable, respectively. We emphasize that an ex-
plicit discretization is used for the diffusion term. For β2 = 0, the stochas-
tic multi-step scheme (1.2) is explicit, otherwise it is drift-implicit. See also
[3, 4, 7, 8, 9, 13, 14, 17, 18].

Given a reference solution X(t; t0, X0) of (1.1), the concept of asymptotic mean-
square stability in the sense of Lyapunov concerns the question whether or not
solutions XD0(t) = X(t; t0, X0 + D0) of (1.1) exist and approach the reference
solution when t tends to infinity. The distance between X(t) and XD0(t) is
measured in the mean-square sense, i.e. in L2(Ω), and the terms D0 ∈ L2(Ω)
are small perturbations of the initial value X0 .
Already in the deterministic case it is a difficult problem to answer the question
when numerical approximations share asymptotic stability properties of the ex-
act solution in general. Including stochastic components into the problem does
not simplify the analysis. In deterministic numerical analysis, the first step in
this direction is a linear stability analysis, where one applies the method of in-
terest to a linear test equation and discusses the asymptotic behaviour of the
resulting recurrence equation (see e.g. [10]). Well-known notions like A-stability
of numerical methods refer to the stability analysis of linear test equations. In
this article we would like to contribute to the linear stability analysis of stochas-
tic numerical methods and thus we choose as a test equation the linear scalar
complex stochastic differential equation

(1.3) dX(t) = λX(t) dt + µX(t) dW (t), t ≥ 0, X(0) = X0, λ, µ,X0 ∈ C,

with the complex geometric Brownian motion as exact solution. In complex
arithmetic we denote by η̄ the complex conjugate of a complex scalar η ∈ C.
The method (1.2) applied to (1.3) takes the following form:

(1.4) Xi+1 + α1Xi + α0Xi−1 = h[β2 λXi+1 + β1 λXi + β0 λXi−1]

+ γ1 µXi ∆Wi + γ0 µXi−1 ∆Wi−1, i ≥ 1,

where α2 = 1. Subsequently we will assume that the parameters in (1.4) are cho-
sen such that the resulting scheme is mean-square convergent (see [8]). Then the
coefficients of the stochastic terms have to satisfy γ1 = α2 = 1 and γ0 = α1 +α2.
We will in particular discuss stochastic versions of the explicit and implicit
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Adams methods, i.e., the Adams-Bashforth and the Adams-Moulton method,
respectively, the Milne-Simpson method and the BDF method.

Section 2 contains definitions of the notions of stability discussed in this article.
In Section 3 we will discuss the difficulties that arise when applying standard
approaches for performing a linear stability analysis either for stochastic one-
step methods or for deterministic multi-step schemes to the case of stochastic
multi-step methods. In Section 4 we give a Lyapunov-type theorem ensuring
asymptotic mean-square stability of the zero solution of a class of stochastic dif-
ference equations under sufficient conditions on the parameters. The method of
construction of Lyapunov functionals [15] is briefly sketched. Then we construct
appropriate Lyapunov functionals in four different ways and thus obtain four
sets of sufficient conditions on the parameters. In Section 5 results for stochastic
linear two-step methods, in particular the explicit and implicit Adams meth-
ods, the Milne-Simpson method and the BDF method are presented. Section 6
summarizes our findings and points out open problems.

2 Basic notions

We will be concerned with mean-square stability of the solution of Equation
(1.1), with respect to perturbations D0 in the initial data X0. We here recall
various definitions, which are based on those given in [11].
Definition 2.1. The reference solution X of the SDE (1.1) is termed

1. mean-square stable, if for each ε > 0, there exists a δ ≥ 0 such that the
solution XD0(t) exists for all t ≥ t0 and

E|XD0(t) −X(t)|2 < ε

whenever t ≥ t0 and E|D0|2 < δ;

2. asymptotically mean-square stable, if it is mean-square stable and if there
exists a δ ≥ 0 such that whenever E|D0|2 < δ

E|XD0(t) −X(t)|2 → 0 for t→ ∞.

It is well known for which parameters λ, µ ∈ C the solutions

(2.1) X(t) = X0e
(λ− 1

2
|µ|2)t+µW (t)

of the linear test equation (1.3) approach zero in the mean-square sense. The
following result can be found e.g. in [1, pp. 189–190], [11, 12, 20, 21]. Its proof

uses the fact, that EeµW (t)− 1

2
|µ|2t = 1.

Theorem 2.1. The zero solution of (1.3) is asymptotically mean-square stable
if

(2.2) Re(λ) < −1

2
|µ|2 .
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Now we formulate analogous definitions for the discrete recurrence equation (1.2)
with solution {Xi}∞i=0. We denote by {Xi}∞i=0 = {Xi(X0, X1)}∞i=0 the reference

solution and by {XD0,D1

i }∞i=0 = {Xi(X0 +D0, X1 +D1)
∞
i=0} a solution of (1.2)

where the initial values have been perturbed.
Definition 2.2. The reference solution {Xi}∞i=0 of (1.2) is said to be

1. mean-square stable if, for each ε > 0, there exists a value δ > 0 such that,
whenever E(|D0|2 + |D1|2) < δ,

E|XD0,D1

i −Xi|2 < ε , i = 1, 2, . . . ;

2. asymptotically mean-square stable if it is mean-square stable and if there
exists a value δ > 0 such that, whenever E(|D0|2 + |D1|2) < δ,

E|XD0,D1

i −Xi|2 → 0 as i→ ∞ .

Recall that applying a convergent stochastic two-step method (1.2) to our test
equation (1.3) results in the stochastic difference equation (1.4) with γ1 = 1,
γ0 = 1 + α1. For simplification in our subsequent analysis we rewrite (1.4) as

Xi+1 = a Xi + c Xi−1 + b Xi ξi + d Xi−1 ξi−1 ,(2.3)

a =
−α1 + λh β1

1 − λh β2
, c =

−α0 + λh β0

1 − λh β2
,(2.4)

b =
µh

1

2

1 − λh β2
, d =

µh
1

2 (1+α1)

1− λh β2
,(2.5)

where ξi−1 = h−
1

2 ∆Wi−1, and ξi = h−
1

2 ∆Wi are N (0, 1) Gaussian random vari-
ables, independent of each other. Obviously this recurrence equation admits
the zero solution {Xi}∞i=0 = {0}∞i=0, which will be the reference solution in the
subsequent stability analysis.

We would like to add a remark concerning the choice of the linear test equation
(1.3). The scalar linear test equation (1.3) is less significant for SDEs than
the corresponding scalar linear test equation is for ODEs. Generally, it is not
possible to decouple systems of linear equations of the form

dX(t) = AX(t) dt+

m∑

r=1

BrX(t) dWr(t),

where X is a vector-valued stochastic process, to scalar equations, since the
eigenspaces of the matrices A,B1, . . . , Bm may differ. The results for the scalar
test equation are thus only significant for linear systems where the matrices
A,B1, . . . , Bm are simultaneously diagonalizable with constant transformations.
We refer to [19] for a linear stability analysis of one-step methods applied to
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systems of linear equations. As a first step in the area of linear stability analysis
for stochastic multi-step schemes we restrict our attention to scalar linear test
equations (see Section 6).

3 Review of standard approaches for a linear stability analysis

Several approaches for an investigation in linear stability analysis exist, either
for stochastic one-step methods or for stochastic multi-step methods. However,
it turns out that standard methods can not easily be extended to the case of
stochastic multi-step methods. We here describe the difficulties arising with
standard approaches.

3.1 The approach for stochastic linear one-step schemes

In [12] the author considers the stochastic θ-method and investigates its asymp-
totic mean-square stability properties. The method, applied to the test equation
(1.3) has the form

Xi+1 = Xi + θ hλXi+1 + (1−θ) hλ Xi +
√
hµXi ξi,

where θ ∈ [0, 1] is a fixed parameter. Rewritten as a one-step recurrence it reads

(3.1) Xi+1 = (ã+ b̃ ξi) Xi,

where ã =
1 + (1−θ)λh

1 − θλh
, b̃ =

µh
1

2

1 − θλh
.

Squaring both sides of Equation (3.1) and taking the expectation, one obtains
an exact one-step recurrence for E|Xi|2, i.e.,

(3.2) E|Xi+1|2 = (|ã|2 + |̃b|2) E|Xi|2,

which allows a direct derivation of conditions for asymptotic mean-square sta-
bility of the zero solution. For comparison we now apply this approach to the
stochastic multi-step method. Squaring both sides of (2.3) yields

|Xi+1|2 = |a+bξi|2 |Xi|2 + |c+dξi−1|2 |Xi−1|2 +2<{(a+bξi)Xi (c+d ξi−1)Xi−1},

and the last term is not so easily resolved. Either one resorts to inequalities,
such as 2AB ≤ A2 +B2, or one follows the recurrence further down. The latter
approach provides for λ, µ ∈ R an exact recurrence of the form

E|Xi+1|2 = (|a|2 + |b|2) E|Xi|2 + (|c|2 + |d|2)E|Xi−1|2

+2a(ac+ bd)

i−2∑

j=0

cjE|Xi−j |2 + 2aE(c+ dξ0)X0X1.

In any case one does not immediately obtain conditions for asymptotic mean-
square stability of the zero solution as in the case of the one-step recurrence
(3.2).
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3.2 The approach for deterministic two-step schemes

When the schemes (1.2) are applied to deterministic ordinary differential equa-
tions they are reduced to well-known deterministic linear two-step schemes.
With µ=0 one recovers the deterministic linear test equation x′(t)=λx(t), t > 0,
and obtains the recurrence (2.3) with b = d = 0, i.e.

(3.3) Xi+1 = a Xi + c Xi−1, i = 1, 2, . . . ,

with coefficients a, c from (2.4). The recurrence (3.3) may be considered as a
scalar, linear, homogeneous difference equation with constant coefficients. Its
(complex) solutions form a two-dimensional linear space spanned by

Xi = c1ζ
i
1 + c2ζ

i
2 or Xi = c1ζ

i
3 + c2iζ

i
3, i = 0, 1, . . . ,

if either ζ1, ζ2 are the two distinct roots or if ζ3 is the double root of the char-
acteristic polynomial

(3.4) ψ(ζ) = ζ2 − aζ − c

of the difference equation. Therefore, all solutions of the difference equation (3.3)
approach zero for i→ ∞ if and only if the roots of the characteristic polynomial
(3.4) lie inside the unit circle of the complex plane. Equivalently, this result is
obtained by reformulating the two-step recurrence (3.4) as a one-step recurrence
in a two-dimensional space by setting

(3.5)

(
Xi+1

Xi

)
= A

(
Xi

Xi−1

)
, i = 1, 2, . . . , where A :=

(
a c
1 0

)
,

and looking at the eigenvalues of the companion matrix A. These are exactly
the roots of the characteristic polynomial (3.4).

Again as a comparison we apply the above techniques to the stochastic recurrence
(2.3). Writing (2.3) in an analogous form to (3.3) as

Xi+1 = (a+ b ξi)Xi + (c+ d ξi−1)Xi−1, i = 1, 2, . . . ,

it is obvious that the coefficients of this difference equation, or equivalently of the
companion matrix when choosing a reformulation of (2.3) analogously to (3.5),
depend on the random values ξi, ξi−1 and vary from step to step. One then
faces the difficulty that a stability investigation necessarily depends on products
of random step-dependent companion matrices

n∏

i=1

(
ai ci
1 0

)
, n = 1, 2, . . . .

These products have to be bounded for all n to ensure stability. Of course,
coefficients or companion matrices which vary from step to step also appear
in stability investigations of deterministic variable step-size variable coefficient
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multi-step schemes. The stability analysis of these schemes is sophisticated. It
makes use of the fact that the coefficients of the difference equation depend
continuously on the step-sizes and the ratios of the stepsizes, which are assumed
to be bounded. Due to the random terms in the coefficients of the stochastic
difference equation, one can not depend on similar assumptions in the stochastic
case.

4 Lyapunov functionals for stochastic difference equations

In this section we present an approach for performing a linear stability analysis
of stochastic multi-step methods. With the aid of a Lyapunov-type theorem
we obtain sufficient conditions on the parameters in (2.3) to ensure asymptotic
mean-square stability of the zero solution of the recurrence equation. Related
methods have been used in the case of stochastic delay differential equations in
[2]. In [15] a general method is described to construct appropriate Lyapunov
functionals and in fact, it is possible to construct different Lyapunov functionals
giving different sets of sufficient conditions. We will present several constructions
of appropriate Lyapunov functionals and the resulting conditions.
We will subsequently discuss stability of the zero solution of (2.3) and thus of
(1.4). Slightly abusing notation, the initial values X0, X1 of (1.4) will take the
role of the perturbations D0, D1 in Definition 2.2. For ease of reading we also
omit the superscript on the perturbed solution of the recurrence equation. The
following theorem is taken from [15, Theorem 1], where it was stated and proved
for the general case of asymptotic stability in the p-th mean, p > 0. As the proof
is short, we repeat it in our notation for the convenience of the reader.
Theorem 4.1. Suppose Xi ≡ Xi(X0, X1) is a solution of (2.3) (and thus of
(1.4)). Assume that there exist a positive real-valued functional V (i,Xi−1, Xi)
and positive constants c1 and c2, such that

EV (1, X0, X1) ≤ c1 max(E |X0|2,E |X1|2) ,(4.1)

E [V (i+ 1, Xi, Xi+1) − V (i,Xi−1, Xi)] ≤ −c2 E |Xi|2,(4.2)

for all i ∈ N, i ≥ 1. Then the zero solution of (2.3) (and thus of (1.4)) is
asymptotically mean-square stable, that is

(4.3) lim
i→∞

E |Xi|2 = 0.

Proof. From condition (4.2) we obtain

EV (i+ 1, Xi, Xi+1) − EV (1, X0, X1) =
i∑

j=1

E [V (j + 1, Xj , Xj+1) − V (j,Xj−1, Xj)] ≤ −c2
i∑

j=1

E |Xj |2 .

Thus
i∑

j=1

E |Xj |2 ≤ 1

c2
(EV (1, X0, X1) − EV (i+ 1, Xi, Xi+1)) .
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An application of (4.1) yields

i∑

j=1

E |Xj |2 ≤ 1

c2
EV (1, X0, X1) ≤

c1
c2

max(E |X0|2,E |X1|2),

and therefore

(4.4) E |Xi|2 ≤ c1
c2

max(E |X0|2,E |X1|2).

Now, for every δ1 > 0 there exists δ = δ1·c2/c1, such that E |Xi|2 ≤ δ1 if we have
max(E |X0|2,E |X1|2) < δ. In addition, from (4.4) it follows that

∞∑

j=1

E |Xj |2 ≤ ∞ .

Hence limj→∞ E |Xj |2 = 0. Thus, the zero solution of (2.3) (and thus of (1.4))
is asymptotically mean-square stable and the theorem is proved.
Remark 4.1. Theorem 4.1 can also be formulated for a Lyapunov functional
V which additionally depends on random variables V (i,Xi−1, Xi, ξi−1, ξi). The
proof is identical.

Lyapunov-type theorems like Theorem 4.1 are strong results. The remaining
problem is to find an appropriate Lyapunov function or functional to apply on
specific problems and obtain conditions on problem parameters which can be
easily checked. In [15] the authors develop a general method to construct Lya-
punov functionals for stochastic difference equations and illustrate their method
with examples. This method consists of constructing a Lyapunov-functional V
as the sum of functionals Ṽ +V̂ , where one starts with a first “good guess” Ṽ and
finds the second functional V̂ as a correction term. Sometimes several iterations
of this process may be necessary. The main point is to obtain the first “good
guess” Ṽ , for which the authors in [15] have also provided a formal procedure by
using an auxiliary simplified difference equation and a Lyapunov functional v for
that equation. We follow this procedure in our subsequent analysis. There are
several possibilities for the choice of an auxiliary difference equation. One can
distinguish between the auxiliary equation being a deterministic or stochastic
one-step method (see Subsection 4.1, where we discuss three variants of a first

functional Ṽ ), or a deterministic two-step scheme (see Subsection 4.2).

4.1 The auxiliary difference equation as a one-step method

4.1.1 First guess as Ṽ (i,Xi−1, Xi) := |Xi|2

We start with the first guess

(4.5) Ṽ (i,Xi−1, Xi) := |Xi|2, i = 1, 2, . . . .

which is a Lyapunov functional for the simplified recursion

(4.6) X̃i+1 := aX̃i, X̃0 = X0 ,
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as well as for

(4.7) X̃i+1 := (a+ bξi)X̃i, X̃0 = X0 .

This first guess Ṽ satisfies the conditions of Theorem 4.1 for (4.6) or (4.7) if

|a| < 1 or |a|2 + |b|2 < 1, respectively. Now, we apply the functional Ṽ to the
original recursion (2.3) and check condition (4.2). We compute for i = 1, 2, . . .

E∆Ṽi := E
(
Ṽ (i+ 1, Xi, Xi+1) − Ṽ (i,Xi−1, Xi)

)

= E(|Xi+1|2 − |Xi|2)
= E

(
|aXi + cXi−1 + bXiξi + dXi−1ξi−1|2 − |Xi|2

)

= E|aXi + cXi−1 + bXiξi + dXi−1ξi−1|2 − E|Xi|2
= E|aXi + cXi−1|2︸ ︷︷ ︸

=:Q1

+ E|bXiξi + dXi−1ξi−1|2︸ ︷︷ ︸
=:Q2

+ 2<{E[(aXi + cXi−1)(bXiξi + dXi−1ξi−1)]}︸ ︷︷ ︸
=:Q3

−E|Xi|2

= Q1 +Q2 +Q3 − E|Xi|2 .
Estimating the individual terms we obtain

Q1 = E|aXi + cXi−1|2 = E
[
|a|2|Xi|2 + |c|2|Xi−1|2 + 2<{aXi−1cXi}

]

≤ E
[
|a|2|Xi|2 + |c|2|Xi−1|2 + 2|aXi−1cXi|

]

≤ E
[
|a|2|Xi|2 + |c|2|Xi−1|2 + |a||c|(|Xi|2 + |Xi−1|2)

]

= (|a| + |c|)(|a|E|Xi|2 + |c|E|Xi−1|2) ,

Q2 = E|bXiξi + dXi−1ξi−1|2 = E
[
|b|2|Xi|2ξ2i + |d|2|Xi−1|2ξ2i

]

= |b|2E|Xi|2 + |d|2E|Xi−1|2 ,

Q3 = 2 <{EaXidXi−1ξi−1}
≤ 2E|aXidXi−1ξi−1| ≤ |ad̄|(E|Xi|2 + E[|Xi−1|2ξ2i−1])

= |a||d|(E|Xi|2 + E|Xi−1|2) .
Summarizing the terms we have

E∆Ṽi = Q1 +Q2 +Q3 − E|Xi|2
≤ (|a|+|c|)(|a|E|Xi|2 + |c|E|Xi−1|2) + |b|2E|Xi|2 + |d|2E|Xi−1|2

+|a||d|(E|Xi|2 + E|Xi−1|2) − E|Xi|2
=

(
(|a|+|c|)|a| + |b|2 + |a||d|−1

)
E|Xi|2 +

(
(|a|+|c|)|c| + |d|2 + |a||d|

)
E|Xi−1|2

=: K · E|Xi|2 + M· E|Xi−1|2 .

In the next step we add a correction V̂ to Ṽ to deal with the term M·E|Xi−1|2
on the right-hand side of the above inequality. This is done by setting

(4.8) V̂ (i,Xi−1, Xi) := M· |Xi−1|2 ,
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since then we have

E∆V̂i := EV̂ (i+ 1, Xi, Xi+1) − EV̂ (i,Xi−1, Xi) = M· E|Xi|2 −M · E|Xi−1|2 .

Altogether for V := Ṽ + V̂ one obtains

(4.9) E∆Vi = E∆Ṽi + E∆V̂i ≤ (K + M) · E|Xi|2 .

Further, we check the initial condition (4.1) for V = Ṽ + V̂ . This condition is
always satisfied due to

EV (1, X0, X1) = E |X1|2 + ME |X0|2
≤ (1 + M) · max(E |X0|2 ,E |X1|2) .

Hence, V is a discrete Lyapunov functional for (2.3), satisfying conditions (4.1,4.2)
if K + M < 0, i.e.

(4.10) (|a| + |c|)2 + |b|2 + |d|2 + 2|a| |d| < 1. (Cond.1)

This condition is sufficient, but in general not necessary to guarantee the asymp-
totic mean-square stability of (2.3).

4.1.2 First guess as Ṽ (i,Xi−1, Xi) := |Xi + c Xi−1|2

We write

Xi+1 = a Xi + c Xi−1 + b Xi ξi + d Xi−1 ξi−1

= (a + c)Xi − c Xi + c Xi−1 + b Xi ξi + d Xi−1 ξi−1,(4.11)

and distinguish

(4.12) X̃i+1 := (a + c) X̃i, X̃0 = X0,

as the auxiliary difference equation, with the Lyapunov function v(y) = y2 (if

a + c < 1 ). According to [15] the first functional Ṽ must be chosen in the

form Ṽ (i,Xi−1, Xi) = |Xi +c Xi−1|2. We apply this functional Ṽ to the original
recursion (2.3) and check condition (4.2). Using the representation (4.11) we
compute, for i = 1, 2, . . .

E∆Ṽ = E [Ṽ (i+ 1, Xi, Xi+1) − Ṽ (i,Xi−1, Xi)]

= E [|Xi+1 + cXi|2 − |Xi + cXi−1|2]
= E [|(a+ c)Xi + cXi−1 + bXiξi + dXi−1ξi−1|2 − |Xi + cXi−1|2]
= E [|(a+ c)Xi + cXi−1|2 − |Xi + cXi−1|2]︸ ︷︷ ︸

=:Q4

+ E| bXiξi + dXi−1ξi−1|2︸ ︷︷ ︸
=:Q2

+ 2< {E[(a+ c)Xi + cXi−1][ bXiξi + dXi−1ξi−1]}︸ ︷︷ ︸
=:Q5

.



MEAN-SQUARE STABILITY OF TWO-STEP METHODS FOR SODEs 11

The term Q2 is estimated exactly as before. Similarly, we estimate

Q4 = (|a+ c|2 − 1)E|Xi|2 + 2<E[(a+ c− 1)XicXi−1]

≤ (|a+ c|2 − 1)E|Xi|2 + |a+ c− 1||c|(E|Xi|2 + E|Xi−1|2),

Q5 = 2|<{E(a+ c)Xidξi−1Xi−1}| ≤ |a+ c||d|(E|Xi|2 + E|Xi−1|2).

Summarizing we arrive at

E∆Ṽ = Q4 +Q2 +Q5

≤ (|a+ c|2 − 1)E|Xi|2 + |a+ c− 1||c|(E|Xi|2 + E|Xi−1|2)
+ |b|2E|Xi|2 + |d|2E|Xi−1|2 + |a+ c||d|(E|Xi|2 + E|Xi−1|2)

≤ (|a+ c|2 − 1 + |a+ c− 1||c| + |b|2 + |a+ c||d|)︸ ︷︷ ︸
=:K

E |Xi|2

+ (|a+ c||d| + |d|2 + |a+ c− 1||c|)︸ ︷︷ ︸
=:M

E |Xi−1|2.

The correction V̂ has to be taken again in the form (4.8) and then the same

estimate (4.9) holds for V = Ṽ + V̂ , where now

K + M = |a+ c|2 − 1 + 2|a+ c− 1||c| + |b|2 + |d|2 + 2|a+ c||d|.

Further, the initial condition (4.1) is satisfied for V = Ṽ + V̂ , since

EV (1, X0, X1) = E [|X1 + c X0|2 + M|X0|2]
≤ (2 max(1, |c|2) + M) · max(E |X1|2,E |X0|2) .

Thus V = Ṽ +V̂ is a discrete Lyapunov functional for (2.3), satisfying conditions
(4.1,4.2) if K + M < 0, i.e., if

(4.13) |a+ c|2 + |b|2 + |d|2 + 2 |a+ c||d| + 2 |a+ c− 1||c| < 1. (Cond.2)

This condition is sufficient but not necessary to guarantee that the zero-solution
of (2.3) is asymptotically mean-square stable.

4.1.3 First guess as Ṽ (i,Xi−1, Xi, ξi−1, ξi) = |Xi + cXi−1 + d ξi−1Xi−1|2

Now we write

Xi+1 = a Xi + c Xi−1 + b Xi ξi + d Xi−1 ξi−1

= (a+ c)Xi − cXi + cXi−1 + (b+ d)Xiξi − dXiξi + dXi−1ξi−1,(4.14)

and distinguish

(4.15) X̃i+1 := (a+ c+ (b+ d) ξi) X̃i, X̃0 = X0 ,
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as the auxiliary difference equation, with the Lyapunov function v(y) = y2 (if

(a+c)2 + (b+d)2 < 1 ). According to [15] the first functional Ṽ must be chosen

in the form Ṽ (i,Xi−1, Xi, ξi−1, ξi) = |Xi+c Xi−1+d ξi−1 Xi−1|2. In this case the

chosen Lyapunov functional Ṽ also depends on a random value (cf. Remark 4.1).

We apply this functional Ṽ to the original recursion (2.3) and check condition
(4.2). Using the representation (4.14) we compute, for i = 1, 2, . . .

E∆Ṽ = E [Ṽ (i+ 1, Xi, Xi+1, ξi, ξi+1) − Ṽ (i,Xi−1, Xi, ξi−1, ξi)]

= E [|Xi+1 + (c+ d ξi)Xi|2 − |Xi + (c+ d ξ−1)Xi−1|2]
= E

[
|(a+c)Xi + cXi−1 + (b+d)Xiξi + dXi−1ξi−1|2 − |Xi + (c+dξi−1)Xi−1|2

]

= E [|(a+ c)Xi + cXi−1|2 − |Xi + cXi−1|2]︸ ︷︷ ︸
=:Q4

+ E| (b+ d)Xiξi + dXi−1ξi−1|2 − |dXi−1ξi−1|2︸ ︷︷ ︸
=:Q6

+ 2<E[((a+ c)Xi + cXi−1)( (b+ d)Xiξi + dXi−1ξi−1)]︸ ︷︷ ︸
=:Q7

− 2<E[(Xi + cXi−1)( dXi−1ξi−1)]︸ ︷︷ ︸
=:Q8

.

The term Q4 is estimated exactly as before. Similarly, we estimate

Q6 = |b+ d|2E|Xi|2 + |d|2E|Xi|2 − |d|2E|Xi|2 = |b+ d|2E|Xi|2
Q7 −Q8 = 2<{E[(a+ c)Xidξi−1Xi−1

]} − 2<{E[Xidξi−1Xi−1]}
= 2<{E[(a+ c− 1)Xidξi−1Xi−1

]} ≤ |a+ c− 1||d|(E|Xi|2 + E|Xi−1|2).

Together this yields

E∆Ṽ = Q4 +Q6 +Q7 −Q8

≤ (|a+ c|2 − 1)E|Xi|2 + |a+ c− 1||c|(E|Xi|2 + E|Xi−1|2)
+|b+ d|2E|Xi|2 + |a+ c− 1||d|(E|Xi|2 + E|Xi−1|2)

=
(
|a+c|2 − 1 + |b+d|2 + (|c|+|d|)|a+c− 1|

)
︸ ︷︷ ︸

=:K

E|Xi|2

+ (|c|+|d|)|a+c− 1|︸ ︷︷ ︸
=:M

E|Xi−1|2 .

Again we take the correction V̂ in the form (4.8), although with a different

constant M, such that (4.9) holds for V = Ṽ + V̂ . Finally, we check the initial
condition (4.1):

EV (1, X0, X1, ξ0, ξ1) = E [|X1 + (c + d ξ0)X0|2 + M|X0|2]
≤ 2E|X1|2 + 2E|(c + d ξ0)X0|2 + ME|X0|2
≤ (2 max(1, |c|2 + |d|2) + M) · max(E |X1|2,E |X0|2) .
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We conclude that V = Ṽ + V̂ is a discrete Lyapunov functional for (2.3), satis-
fying conditions (4.1,4.2) if K + M < 0 , i.e., if

(4.16) |a+ c|2 + |b+ d|2 + 2 (|c| + |d|)|a+ c− 1| < 1. (Cond.3)

This condition is sufficient but not necessary to guarantee that the zero-solution
of (2.3) is asymptotically mean-square stable.

4.2 The auxiliary difference equation as a deterministic two-step method

In this section we will consider the auxiliary difference equation in the form of a
deterministic two-step scheme written as (3.5). To avoid the subsequent calcula-
tions becoming overly technical we assume here that the parameters λ, µ of the
considered test equation (1.3) are real-valued. We start with the deterministic
part of the equation (2.3)

(4.17) yi+1 = ayi + cyi−1,

and, upon setting Yi = (yi, yi−1)
T , rewrite equation (4.17) as a one-step recur-

sion in R2:

(4.18) Yi+1 = AYi, where A =

(
a c
1 0

)
.

The next step is to determine a Lyapunov-function v for the auxiliary problem
(4.18). A function v : R2 → R+ is a Lyapunov-function for (4.18) if its incre-
mental values ∆vi := v(Yi+1) − v(Yi) satisfy ∆vi ≤ −c0 ‖Yi‖2 where ‖ · ‖ is a
norm on R2 and c0 is a positive constant . The ansatz v(Y) = YT QY with a
positive definite matrix Q yields positive values of v and

∆vi = Y T
i+1QYi+1 − YT

i QYi = YT
i [ATQA−Q]Yi ,

such that v is a Lyapunov-function if the matrix ATQA−Q is negative definite.
To find a matrix Q with these properties we start from an arbitrary positive
definite matrix P and solve the Lyapunov matrix equation ATQA − Q = −P .
For simplicity we choose a diagonal matrix P = diag(p11, p22) where the positive
parameters p11, p22 can be arbitrarily chosen. Then the elements of the matrix
Q = (qij)i,j=1,2 can be calculated as (supposing that c 6= −1, |a| 6= |1 − c|)

(
q11
q12

)
= pac

(
1−c
ac

)
, where pac =

p11+ p22

(1 + c)((1 − c)2 − a2)
,

q22 = p22 + c2q11 .

If the conditions

(4.19) |c| < 1 and |a| < 1 − c

hold, the matrix Q is positive definite with q11, q22, pac > 0. Then we have a
Lyapunov function v for the auxiliary problem (4.18) given as v(Y) = YT QY .

Following [15] the first functional Ṽ must be chosen in the form

Ṽ (i,Xi−1, Xi) = X T
i QXi, where Xi = (Xi, Xi−1)

T .
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After calculating E∆Ṽi = E[X T
i+1QXi+1 − X T

i QXi], we can determine the cor-

rection functional V̂ and thus V = Ṽ + V̂ . We obtain

E∆Ṽi = −p11EX2
i − p22EX2

i−1 +Q9 +Q10,

where Q9 = q11E(bXiξi + dXi−1ξi−1)
2 ,

Q10 = 2(q12 + q11a)EXi(dXi−1ξi−1) .

Estimating these terms as

Q9 = pac(1 − c) (b2EX2
i + d2

EX2
i−1) ,

Q10 ≤ pac |ad|
(
EX2

i + EX2
i−1

)
,

we obtain
E∆Ṽi ≤ KEX2

i + MEX2
i−1 ,

with

K = (γ1 − p11), γ1 = pac

(
b2(1 − c) + |ad|

)
,(4.20)

M = (γ2 − p22), γ2 = pac

(
d 2(1 − c) + |ad|

)
.(4.21)

The correction V̂ can be taken again in the form (4.8) with the above value of

M, such that (4.9) holds for V = Ṽ + V̂ if K + M < 0. Finally, we check the
initial condition (4.1). We obtain with X1 = (X1, X0)

T

V (1, X0, X1) = X T
1 QX1 + MX2

0

= q11X
2
0 + 2q12X0X1 + q22X

2
1 + MX2

0

≤ q11X
2
0 + |q12|(X2

0 +X2
1 ) + q22X

2
1 + MX2

0

≤ (q11 + 2|q12| + q22 + γ2 − p22) max(X2
0 , X

2
1 )

=
(
(1 + c2) q11 + 2|q12| + γ2

)
max(X2

0 , X
2
1 ).

Thus condition (4.1) from Theorem 4.1 is satisfied with the positive constant

(1 + c2) q11 + 2|q12| + γ2. We conclude that V = Ṽ + V̂ is a discrete Lyapunov
functional for (2.3), satisfying conditions (4.1,4.2) if (4.19) and K + M < 0
hold. The last inequality means

γ1 + γ2 < p11 + p22

⇐⇒ (p11 + p22)
(1 + c)

(
(1 − c)2 − a2

) (
2|ad| + (b2 + d2)(1 − c)

)
< p11 + p22

⇐⇒ 2|ad| + (b2 + d2)(1 − c)
(1 + c)

(
(1 − c)2 − a2

) < 1 .

Summarizing, we get the following set of conditions

(4.22)

|c| < 1 and |a| < 1 − c,

2|ad| + (b2 + d2)(1 − c)
(1 + c)

(
(1 − c)2 − a2

) < 1 .





(Cond.4)

This condition is sufficient but not necessary to guarantee that the zero-solution
of (2.3) is asymptotically mean-square stable.
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5 Regions of guaranteed mean-square absolute stability

The analysis in Section 4 yields the sufficient conditions (4.10), (4.13), (4.16) and
(4.22) for asymptotic mean-square stability of the zero solution of the recurrence
(2.3) in terms of the parameters a, b, c, d . Using the relations (2.4) and (2.5)
these conditions can be expressed in terms of the coefficients α2, α1, α0, β0, β1, β0

(and γ1, γ0) of the two-step schemes (1.2) and the parameters z = hλ, y =
h1/2µ, z, y ∈ C, h > 0 representing the parameters of the test equation and the
applied stepsize. To illustrate these results we discuss the explicit and implicit
Adams methods, the Milne-Simpson method and the BDF method. In Table
5.1 we give the values of their coefficients, in Table 5.2 we give the resulting
coefficients a, b, c, d for the recurrence (2.3) in terms of z = hλ, y = h1/2µ.

Method α2 α1 α0 β2 β1 β0 γ1 γ0

Adams-Bashforth 1 −1 0 0 3
2 −1

2 1 0

Adams-Moulton 1 −1 0 5
12

8
12 − 1

12 1 0

Milne-Simpson 1 0 −1 1
3

4
3

1
3 1 1

BDF2 1 −4
3

1
3

2
3 0 0 1 −1

3

Table 5.1: Table of coefficients of two-step schemes

Method a c b d

Adams-Bashforth 1 + 3
2z − 1

2z y 0

Adams-Moulton
1 + 2

3z

1 − 5
12z

− 1
12z

1 − 5
12z

y
1 − 5

12z
0

Milne-Simpson
4
3z

1 − 1
3z

1 + 1
3z

1 − 1
3z

y
1 − 1

3z
y

1 − 1
3z

BDF2
4
3

1 − 2
3z

− 1
3

1 − 2
3z

y
1 − 2

3z

− 1
3y

1 − 2
3z

Table 5.2: Table of the parameters a,b,c,d of two-step schemes

We restrict the subsequent discussion to the case of real-valued parameters λ, µ ∈
R, resp. z, y ∈ R2 to be able to visualize stability regions. We will draw these
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regions in the (z, y2)-plane. For given parameters λ , µ in equation (1.3), varying
the step-size h in the numerical schemes corresponds to moving along a ray
that passes through the origin and (λ, µ2). We compare the regions where the
exact solution is asymptotically mean-square stable to those where the sufficient
conditions for asymptotic mean-square stability of the schemes are fulfilled.
From (2.2) we have that the exact solution (2.1) is asymptotically mean-square
stable if λ < − 1

2µ
2, or upon multiplying by h and rearranging if y2 < −2z.

The boundary of the region of asymptotic stability of the exact solution is thus
given by the line y2 = −2z. Any of the inequalities in the examples below are
considered as conditions for y2 in relation to z and the borders of the resulting
regions are given in Figures 1 to 4. For the parameters (z, y2) = h(λ, µ2) below
these lines the zero solutions of the test equation and the numerical schemes,
respectively, are asymptotically mean-square stable. For the test equation, con-
dition (2.2) is sufficient and necessary, thus above the corresponding line the
zero solution of the test equation is unstable. For the numerical schemes we
have only sufficient conditions and therefore we can not make statements for the
regions above the corresponding lines.

Example 5.1. Sufficient conditions for the two-step Adams-Bashforth-Maruyama
scheme:
Inserting the expressions for the Adams-Bashforth-Maruyama scheme

a = 1 +
3

2
z, c = −1

2
z, b = y, d = 0

from Table 5.2 into the sufficient condition (4.10) yields

Cond.1 ⇐⇒ (|a| + |c|)2 + |b|2 + |d|2 + 2|a| |d| < 1

⇐⇒ (|1 + 3
2z| + | 12z|)2 + y2 < 1

⇐⇒ y2 < 1 − (|1 + 3
2z| + | 12z|)2 .

Because of d = 0 for the explicit Adams scheme the sufficient condition (4.16)
coincides with (4.13). We compute

Cond.2,3 ⇐⇒ |a+ c|2 + |b|2 + |d|2 + 2 |a+ c||d| + 2 |a+ c− 1||c| < 1

⇐⇒ (1 + z)2 + y2 + 2|1 + z − 1| | − 1
2z| < 1

⇐⇒ y2 < 1 − (1 + z)2 − z2 .

Finally we compute for the sufficient condition (4.22)

Cond.4 ⇐⇒ |c| < 1 , |a| < 1 − c ,
2|ad| + (b2 + d2)(1 − c)
(1 + c)

(
(1 − c)2 − a2

) < 1

⇐⇒ z ∈ (−1, 0) , y2(1 + z
2 ) < (1 − z

2 )
(
(1 + z

2 )2 − (1 + 3
2z)

2
)

⇐⇒ z ∈ (−1, 0), y2 < z3 − z2 − 2z
1 + z

2
.
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y2

z
0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.8 −0.6 −0.4 −0.2 0

exact sol
AB cond1

AB cond2,3
AB cond4

Figure 1: Borders of the range of guaranteed mean-square asymptotic stability for the

two-step Adams-Bashforth-Maruyama scheme

We proceed with the results for the other schemes given in Tables 5.1 and 5.2,
the calculations are similar.
Example 5.2. Sufficient conditions for the two-step Adams-Moulton-Maruyama
scheme:
One obtains the following inequalities, Figure 2 illustrates the borders of the
corresponding regions.

Cond.1 ⇐⇒ y2 < |1 − 5
12z|2 −

(
|1 + 2

3z| + | 1
12z|

)2
,

Cond.2,3 ⇐⇒ y2 < |1 − 5
12z|2 − |1 + 7

12z|2 − 1
6z

2 ,

Cond.4 ⇐⇒ y2 <
1 − 1

2z

1 − 1
3z

(−2z − 1
3z

2) and z ∈ (−6, 0) .
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y2

z
0

0.5

1

1.5

2

2.5

3

3.5

4

−6 −5 −4 −3 −2 −1 0

exact sol
AM cond1

AM cond2,3
AM cond4

Figure 2: Borders of the range of guaranteed mean-square asymptotic stability for the

two-step Adams-Moulton-Maruyama scheme

Example 5.3. Sufficient conditions for the two-step BDF-Maruyama scheme:
Figure 3 illustrates the regions obtained for the following inequalities.

Cond.1 ⇐⇒ y2 + 4
5 |y| < 2

5z
2 − 6

5z − 8
5 ,

Cond.2 ⇐⇒ y2 + 3
5 |y| < 2

5z
2 − 6

5z − 2
5 |z| ,

Cond.3 ⇐⇒ y2 + |z| |y| < z2 − 3z − |z| ,

Cond.4 ⇐⇒ y2 + 4
5

3
2 − z
2 − z |y| <

1 − z
2 − z (− 8

5z + 2
5z

2) and z /∈ [0, 4] .

y2

z
0

2

4

6

8

10

−6 −4 −2 0 2 4

BDF cond1

BDF cond3
BDF cond2

BDF cond4

exact  sol

Figure 3: Borders of the range of gauranteed mean-square asymptotic stability for the

two-step BDF-Maruyama scheme



MEAN-SQUARE STABILITY OF TWO-STEP METHODS FOR SODEs 19

Example 5.4. Sufficient conditions for the Milne-Simpson-Maruyama scheme:
As already in the deterministic case, the range of parameters for which the
conditions are satisfied is empty. At the border of the parameter region, i.e. when
one takes the inequalities as equations, these are fulfilled for y = z = 0.

6 Conclusions and open problems

We have investigated the problem of when a numerical approximation given by
a stochastic linear two-step-Maruyama method shares asymptotic properties in
the mean-square sense of the exact solution of an SDE. A linear stability analysis
has been performed for a linear time-invariant test equation, using Lyapunov-
type functionals. We have obtained sufficient conditions for asymptotic mean-
square stability of stochastic linear two-step-Maruyama methods, in particular
of stochastic counterparts of two-step Adams-Bashforth- and Adams-Moulton-
methods, the Milne-Simpson method and the BDF method.
In Figure 4 we give a comparison of the regions where the different schemes are
guaranteed to be mean-square asymptotically stable. We also give the stability
regions for the stochastic θ-Maruyama methods, based on the results in [12]. In
particular, we consider θ = 0, 1

2 , 1, i. e. the explicit Euler method, the trapezoidal
rule and the implicit Euler method, respectively.

y2

z

& trap. rule

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0

AM cond1

impl. Euler
expl. Euler

BDF cond3

exact sol

AB cond4

Figure 4: Comparison of the borders of the range of guaranteed mean-square

asymptotic stability for several explicit and implicit one- and two-step schemes

It can be seen that the only one of the considered two-step schemes that is
asymptotically stable for arbitrarily large negative values of z = λ · h is the
BDF scheme. However, as in the deterministic setting, this scheme shows a
strong damping behaviour in regions where the exact solution is not mean-square
asymptotically stable. The regions of mean-square asymptotic stability for the
Adams schemes are bounded, such that the test equation with a large negative
value of the parameter λ is simulated qualitatively correctly only if the applied
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step-size h is sufficiently small. The Milne-Simpson scheme can not be recom-
mended. We exemplify this qualitative behaviour with numerical simulations
for the test equation (1.3) with parameters λ = −100, µ = 0.01 in Figure 5. We
have plotted the accuracy achieved for the different schemes versus the step-sizes
in logarithmic scale. The accuracy is measured as the maximum over N(h) = 1

h
discrete time-points in the time-interval [0, 1] of the mean-square of the differ-
ence between exact solution X(t`) and numerical solution X` for 100 computed
paths:

err = max
`=1,...,N(h)

( 1

100

100∑

j=1

|X(t`, ωj) −X`(ωj)|2
)1/2

.

AM

expl. Euler

−20

−10

0

10

20

30

40

50

−8 −7 −6 −5 −4 −3 −2 −1
ln(h)

ln
(e

rr
)

trap. rule

impl. Euler

AB

MS
BDF

Figure 5: numerical results

Summarizing our findings we observe:
The approach using Lyapunov functionals and the method of construction of
Lyapunov functionals has proved to be useful for performing a linear stability
analysis of stochastic linear two-step Maruyama methods.
Unfortunately none of the four obtained sufficient conditions (4.10), (4.13),
(4.16) and (4.22) has turned out to be “the best” condition for all considered
numerical schemes or can be ruled out completely.
In the case of SDEs with small noise (for λ 6= 0), essentially the experience
gained in the area of linear stability analysis of the corresponding deterministic
multi-step schemes carries over to the stochastic case.
Further, note that the parameter regions where the solutions of the test equa-
tion are asymptotically stable in the p-th mean (for arbitrary p > 1) depend on
p. The same would be true for the numerical approximations. We conjecture
that considering asymptotic stability of the numerical schemes in the p-th mean
in comparison to that of the analytic problem would not give a qualitatively
different picture, although the conditions are probably harder to deal with com-
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putationally.

It would be desirable to obtain necessary conditions for mean-square asymptotic
stability of the zero solution of the stochastic recurrence (2.3) and thus of the
numerical methods (1.2), even when these are not identical to the sufficient
conditions.
We are aware that in the area of asymptotic stability analysis of stochastic
numerical methods there remain many open problems. We mention here in
particular the stability analysis of systems of equations with a single driving
Wiener process without commutativity of the coefficient functions, systems of
equations with several driving processes, nonlinear systems, and more complex
methods, such as Milstein-type schemes.
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11. R. Z. Has’minskĭı. Stochastic Stability of Differential Equations. Sijthoff &
Noordhoff, Alphen aan den Rijn, 1980.

12. D. J. Higham. Mean-square and asymptotic stability of the stochastic theta
method. SIAM J. Numer. Anal., 38(3):753–769, 2000.

13. P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential
Equations, Springer-Verlag, Berlin, 1992.

14. P. E. Kloeden and E. Platen. Higher-order implicit strong numerical schemes
for stochastic differential equations. J. Statist. Phys., 66(1-2):283–314, 1992.

15. V. B. Kolmanovskii and L. Shaikhet. General method of Lyapunov function-
als construction for stability investigation of stochastic difference equations.
In Dynamical systems and applications, pp. 397–439. World Sci. Publishing,
River Edge, NJ, 1995.

16. X. Mao. Stochastic Differential Equations and their Applications. Horwood
Publishing Limited, Chichester, 1997.

17. G. N. Milstein. Numerical Integration of Stochastic Differential Equations.
Kluwer Academic Publishers Group, Dordrecht, 1995.

18. G. N. Milstein and M. Tretyakov. Stochastic Numerics for Mathematical
Physics. Springer-Verlag, Berlin, 2004.

19. Y. Saito and T. Mitsui. Mean-square stability of numerical schemes for
stochastic differential systems. Vietnam J. Math., 30:551–560, 2002.

20. Y. Saito and T. Mitsui. Stability analysis of numerical schemes for stochastic
differential equations. SIAM J. Numer. Anal., 33(6):2254–2267, 1996.

21. Y. Saito and T. Mitsui. T -stability of numerical scheme for stochastic differ-
ential equations. In Contributions in Numerical Mathematics, pp. 333–344.
World Sci. Publishing, River Edge, NJ, 1993.

22. R. Winkler. Stochastic differential algebraic equations of index 1 and appli-
cations in circuit simulation. J. Comput. Appl. Math., 157(2):477–505, 2003.


