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The Role of Confinement Loss in Highly Nonlinear
Silica Holey Fibers

Vittoria Finazzi, Tanya M. Monro, and David J. Richardson

Abstract—Small-core holey fibers (HFs) can offer tight mode
confinement, and are, therefore, attractive for highly nonlinear
fiber applications. However, we show here that confinement loss
can significantly degrade the performance of devices based on
such small core fibers.We also identify a range of fiber designs
that result in high fiber nonlinearity and low confinement loss.
In particular, we show that pure silica HFs can exhibit effective
nonlinearities more than 50 times higher than conventional fibers,
and that the confinement loss can be lowered below the loss of
standard fiber types.

Index Terms—Fiber design and fabrication, fiber properties, mi-
crostructured optical fibers, nonlinear optical fibers.

H OLEY FIBERS (HFs) are a class of microstructured op-
tical fibers which guide light because the air holes that

are present in the cladding region effectively reduce the refrac-
tive index relative to the solid core. HFs can have a significantly
larger numerical aperture than conventional fiber types because
the cladding region can be mostly comprised of air. When this is
combined with a wavelength-scale core, HFs can provide tight
mode confinement (i.e., small values of the effective mode area

). In such fibers, high light intensities are guided within the
core. Thus, even though silica is not intrinsically a highly non-
linear material [1], silica HFs can offer high effective fiber non-
linearities ( , where is the optical wave-
length and is the nonlinear coefficient of the material [1]).

In the following, we will show that in pure silica HFs, the ef-
fective mode area can be as small as 1.7m at 1550 nm. Hence,
assuming the of pure silica m W [1], non-
linearities as high as W km are practical in these
fibers, more than 50 times higher than in standard telecommu-
nications fiber ( W km ). Note that nonlinearities as
high as W km have been measured in silica
HFs at 1550 nm [2]. This value is consistent with our theoret-
ical prediction because of the uncertainty in the measurement of
the value of for silica ( – m W [1]).
Using modified design conventional silica-based fibers, values
of have been limited to 20 W km thus far [3]. Hence, HFs
offer enhanced nonlinearities relative to conventional fibers, and
so are attractive for nonlinear fiber devices [4].

The loss in HFs occurs for a variety of reasons: intrinsic ma-
terial absorption, additional losses arising during the fabrica-
tion process (water contamination, absorption due to impurities,
scattering, etc.), and confinement loss [5]. In single-material
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HFs, the core has the same refractive index as the material be-
yond the finite holey cladding region, and so every propagating
mode is intrinsically leaky, and so experiencesconfinement loss
[5]. Fabrication-related losses can be reduced by careful opti-
mization, as shown recently in [6], which reports a loss as low
as 0.58 dB/km at 1550 nm for an HF with a hole-to-hole spacing
( ) of 4.2 m. The losses so far measured in real HFs with
smaller cores are significantly larger than this, and are typically
of the order 50 dB/km [7]. We have recently shown that confine-
ment loss can contribute significantly to this increase in loss for
small-core HFs [8].

In order to understand and reduce the impact of confinement
loss, we have used the multipole method developed in [5] and
[9] to analyze a variety of structures. The multipole method is a
scattering technique that can be applied to any microstructured
optical fiber with a cladding region defined by a finite number
of circular inclusions of arbitrary refractive index. The approach
is based on electric and magnetic field expansions valid in the
vicinity of each hole. Here we consider air holes embedded in a
uniform silica material. The cladding region is enclosed within
a circular silica jacket with a complex refractive index, which
allows the jacket to absorb the portion of the mode that leaks
and, thus, the confinement loss to be estimated.

The multipole approach results in a homogeneous system of
algebraic equations that contains just one unknown, the com-
plex effective index of the propagating mode. The problem
can be formulated as a singular value problem, and the corre-
sponding matrix scales in size with the number of air holes.
Thus, the method is efficient and only becomes computation-
ally intensive when many holes are considered [5]. By solving
the matrix, the complex effective index of the mode prop-
agating in the HF can be found. Subsequently, the electric and
magnetic vectorial fields of the propagating mode can be calcu-
lated, and the associated confinement loss can be predicted via
the imaginary part of [5].

We applied the multipole method to the study of small-core
(highly nonlinear) HFs. The structures in the study contain be-
tween one and five rings of hexagonally packed holes. We con-
sider fibers with hole-to-hole spacings in the range m

m and hole diameters in the range
, and thus, the air-filling fraction (FF) lies between 33% and

74% ( ). Fig. 1 shows two typical exam-
ples with different air-filling fractions but the same hole-to-hole
spacing (named in the following Fibers I and II). The Poynting
vector of the fundamental guided mode has been superim-
posed on each structure. The guided mode of Fiber I has an ef-
fective mode area of 3.2 m , and is somewhat filamented in
shape along the silica bridges. Increasing the air-filling fraction,
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Fig. 1. Two typical structures considered in this study (� = 1:2 �m), labeled
Fibers I and II. Contours represent the Poynting vector (i.e., transverse energy
distribution) in decibels of the fundamental mode.

Fig. 2. Confinement loss for different air-filling fractions (left) and different
number of rings of holes (right) as a function of�. The dotted line represents
the loss of conventional fibers (0.2 dB/km).

as in Fiber II, confines the mode more tightly to the core and,
thus, reduces the effective mode area to1.76 m .

The graphs in Fig. 2 show the confinement loss as a func-
tion of the hole-to-hole spacing () for a range of different HF
structures. Each curve represents results for a given fiber pro-
file scaled to a range of different dimensions. Observe that con-
finement loss always increases when the structure is reduced in
scale. Consider now fibers with four rings of air holes, as in
Fig. 2 (left). Using a bigger (i.e., larger air holes) reduces
the loss for all values of . This is unsurprising since the mode
is always more tightly confined for larger air-filling fractions.
Consider next fibers with a fixed air-filling fraction as in Fig. 2
(right). For all values of , increasing the number of rings de-
creases the loss because the holey cladding extends over a larger
region.

In previous works [5], HF structures with were con-
sidered, and so the boundary of the cladding region was located
relatively far from the core. However, we observe that when the
HF is scaled to small dimensions, the degree of improvement
that can be obtained by increasing the air-filling fraction [Fig. 2
(left)] or adding an extra ring of holes [Fig. 2 (right)] is limited.
This occurs because the physical extent of the cladding region
is reduced in the small scale structures considered in this study
and, hence, the mode can leak out into the silica beyond the finite
cladding structure. In addition, we have observed that reducing
the dimension of the silica bridges does not reduce the confine-
ment loss. Hence, in this regime, where the cladding features are
subwavelength, the main loss contribution is due to the finite ex-

Fig. 3. Confinement loss versus effective mode area for a range of� andd=�
with four rings. The solid vertical line represents the minimum mode area for
the limit of a silica ASR. Inset: mode area for a range of HFs as a function of
the core size (2� � d).

tent of the cladding structure, rather than leakage between the
holes. Note that with careful design, the confinement loss can
be reduced to values comparable with, or less than, the loss of
conventional fibers (0.2 dB/km), represented by the dotted line
in Figs. 2 and 3.

The mode propagating in an HF interacts both with glass and
the air in the holes, and this mode–air overlap can become sig-
nificant when the core diameter is less than the wavelength of
light. The nonlinear effects in HFs are induced by the portion
of the field located in the glass since the nonlinearity of air is
three order of magnitude smaller than that of silica. Hence, for
all values quoted in this letter, the effective mode area ()
definition given in [1] is here modified as

(1)

where is the transverse electric field (denotes the con-
jugate) and is the nonlinear-index coefficient of the ma-
terial at position .

The inset of Fig. 3 shows the effective mode area as a
function of the core size (defined as ) for a range
of HFs with different air-filling fractions. As the diameter
of the core is reduced, the mode becomes more confined.
Once the core becomes significantly smaller than the optical
wavelength, it is too small to confine the light well and the
mode rapidly broadens again. Hence, for each curve there is
a choice of that results in a minimum effective mode area.
Observe that for smaller air-filling fractions, the minimum
point is shifted to larger core dimensions (as shown by the
dotted line), which reflects the fact that the index contrast
between core and cladding is reduced. Unsurprisingly, the
smallest effective mode area is achieved using the largest index
contrast (i.e., when ). For this case, the minimum
effective mode area value is 1.7 m , only slightly larger
than for extreme limit of an air-suspended rod (ASR), which
is 1.48 m . Note that, we find that the effective mode area
remains remarkably constant regardless of the number of rings
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used. Essentially, although the tails of the mode significantly
influence the mode’s confinement loss, their impact on the
effective mode area is minimal. Indeed, when just one ring of
holes is considered, the effective mode area is only slightly
larger than when two or more rings are present reflecting the
fact that the mode is not so well confined.

Next, we explore whether it is possible to design fibers with
small effective mode areas and reasonably low values of con-
finement loss, considering structures with four rings of holes
only. The curves in Fig. 3 show the loss as a function of the
effective mode area for four different values of the hole-to-hole
spacing. The vertical line represents the theoretical minimum ef-
fective mode area that can be achieved in an air-suspended struc-
ture. For all hole-to-hole spacings, larger air-filling fractions not
only reduce the loss but also decrease the effective mode area.

Observe from Fig. 3 that, regardless of the air-filling frac-
tion, moving toward smaller core dimensions, there is a clear
tradeoff between achieving small effective mode area and low
confinement loss. Even though the hole-to-hole spacing () can
be chosen to minimize the value of the effective area of the fun-
damental mode ( ), our loss calculations indicate that it is not
always desirable to use the structures with the smallest effective
mode area, because they typically exhibit higher confinement
losses. A relatively modest increase in the structure scale in this
small core regime can lead to dramatic improvements in the con-
finement of the mode without compromising the achievable ef-
fective nonlinearity significantly. Such graphs (Fig. 3) can be
produced for a range of different cladding geometries, and they
provide a useful practical design tool. Given an effective mode
area required for a certain device and the magnitude of loss that
can be tolerated (for a given device length), we can use this rep-
resentation to identify the structures that minimize the fabrica-
tion difficulties (i.e., limit the number of rings).

We now concentrate on HF structures characterized by
the air-filling fraction that produces the smallest effective
area ( ), and analyze some device applications at
1550 nm. Even in these idealized symmetric HFs, which are
not birefringent, the polarization properties of these small-core
fibers can significantly degrade device performance when
the scale structure is subwavelength, but this is not discussed
further here. We predict that Fiber II (introduced earlier) has
an anomalous dispersion of14 ps nm km and is, therefore,
suitable for soliton-based devices. The confinement loss of
Fiber II is calculated to be of order 1 dB km, and the
addition of another ring of holes reduces it below the loss
level of conventional fibers. The high effective nonlinearity
( W km ) associated to this design allows a rela-
tively short fiber length to be required for the nonlinear device,
thus, the loss level of the practical four-ring design is perfectly
tolerable.

Slightly reducing the hole-to-hole spacing of Fiber II
to 1.17 m, results in an HF with normal dispersion of

14 ps nm km. This small normal dispersion is advantageous
for optical thresholding and wavelength conversion devices be-
cause it reduces the impact of coherence degradation [10]. Note
that the loss of this structure is still of the order of1 dB km,
and its effective mode area is again approximately 1.75m .
This example shows that it is, therefore, possible to tailor the
dispersive properties of the fiber around the zero-dispersion
wavelength without impacting other practical properties such
as confinement loss and nonlinearity.

In conclusion, index-guiding pure-silica HFs can exhibit ef-
fective nonlinearities 50 times higher than conventional fibers.
However, our simulations reveal that these small-core single-
material fiber designs can suffer from significant confinement
loss, a penalty that becomes more and more severe as the scale
structure is reduced. Designs with large air-filling fractions and
hole-to-hole spacings larger than 1m are advantageous both in
terms of achieving high nonlinearity and low confinement loss.
In addition, near zero-dispersion at 1550 nm can be achieved.
We have shown that it is possible to envisage HFs withas
high as 45 W km and reasonable confinement loss levels
( 0.2 dB km) using just four rings of holes.

REFERENCES

[1] G. P. Agrawal,Nonlinear Fiber Optics. New York: Academic, 1989.
[2] W. Belardi, J. H. Lee, K. Furusawa, Z. Yusoff, P. Petropoulos, M. Ibsen,

T. M. Monro, and D. J. Richardson, “A 10 Gbit/s tuneable wavelength
converter based on four-wave mixing in highly nonlinear holey fiber,”
in Proc. ECOC, Copenaghen, Denmark, Sept. 2002, Paper PD1.2.

[3] T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura,
“Silica-based functional fibers with enhanced nonlinearity and their ap-
plications,” IEEE J. Select. Topics Quantum., vol. 5, pp. 1385–1391,
Sept./Oct. 1999.

[4] N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson,
“Nonlinearity in holey optical fibers: Measurement and future opportu-
nities,” Opt. Lett., vol. 24, no. 20, pp. 1395–1397, Oct. 1999.

[5] T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J.
Steel, “Confinement losses in microstructured optical fibers,”Opt. Lett.,
vol. 26, no. 21, pp. 1660–1662, Nov. 2001.

[6] L. Farr, J. C. Knight, B. J. Mangan, and P. J. Roberts, “Low loss photonic
crystal fiber,” inProc. ECOC, Copenaghen, Denmark, Sept. 2002, Paper
PD1.3.

[7] Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J.
Richardson, “Raman effects in a highly nonlinear holey fiber: Ampli-
fication and modulation,”Opt. Lett., vol. 27, no. 6, pp. 424–426, Mar.
2002.

[8] V. Finazzi, T. M. Monro, and D. J. Richardson, “Confinement loss in
highly nonlinear holey optical fibers,” inProc. OFC, OSA Tech. Dig.,
Anaheim, CA, Mar. 2002, pp. 524–525.

[9] T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M.
de Sterke, “Calculations of air-guided modes in photonic crystal fibers
using the multipole method,”Opt. Express, vol. 9, no. 13, pp. 721–732,
Dec. 2001.

[10] N. Nakazawa, H. Kubota, and K. Tamura, “Random evolution and co-
herence degradation of a high-order optical soliton train in the presence
of noise,”Opt. Lett., vol. 24, no. 5, pp. 318–320, Mar. 1999.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


