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1

SUMMARY

Due to their limited potential of dispersal in combination with their habitat fidelity, limnic

gastropods tend to preserve distribution patterns over long periods of time. Thus they

are suitable organisms in biogeographical research and the study of the relations between

colonization events and speciation. In this thesis intensive investigations into the phylo-

geography and phylogeny of Australian freshwater snails are provided, presenting the first

molecular study of the Thiaridae (Caenogastropoda: Cerithioidea) based on four DNA

sequence markers (COI, 16S, H3, 28S) and amplified fragment length polymorphisms

(AFLPs). The aim of this study is to determine the historical events that may have influ-

enced the phylogeography of these taxa and their presence on the Australian continent.

In general, the origin of Australian freshwater faunal elements and the directionality and

timing of colonizations are still controversial. Conventionally, many biotic elements found

in Australia today are considered to be recent invaders from the Indo-Malay archipelago

but more and more cases have become known that deviate from this standard scenario.

In order to test whether the thiarids represent recent invaders from the north or if they

originated on the Australian continent, the evolutionary relationships within the family as

well as its phylogenetic position in the superfamily Cerithioidea is analysed. A molecular

clock approach is applied subsequently to date the origins of the Thiaridae and their

sister families so that the dispersal events can be related to historical tectonical changes.

A prerequisite for the reconstruction of past distribution patterns is the delimitation of

the Australian species and the analyses of their current distributions. For this purpose,

preceding investigations to characterize individual taxa by morphology are complemented

with molecular analyses and additional sampling with the objective to obtain confirmation

of the differentiated species and the detailed analysis of their present distribution patterns.

By comparison of the molecular phylogenies, as well as the distributional data, the fossil

record and divergence date estimates in conjunction with the excellent record of Earth

history the long-held view that the thiarid fauna is an appendage to the southeast Asian

biota can be rejected. Instead, an Australian continental, i.e. East-Gondwanian origin is

found to be the most parsimonious explanation of the present distribution. The age of the

thiarids dates back to about 50 Ma and coincides with (although not necessarily causally

linked to) the separation of Australia from Antarctica. With an ancestral thiarid lineage

that originated in Australia, Asia seems to have been colonized a number of times within

the period of the collision of the Australian plate with Southeast Asia during the past

20-30 Ma. With their now assumed long history on the continent, Australian thiarids

represent an important and realistic model system in speciation research which provides

details of the dynamics of the underlying mechanisms of speciation under the influence of

climate change.



Although there are still ambiguities to be resolved which concern the relationships among

the thiarid taxa, the comparison of the extensive molecular datasets and their resultant

phylogenies offer considerable insight into this enigmatic group. It is demonstrated that

extreme caution must be used when inferring phylogeny from mtDNA loci in the absence

of corresponding multi-locus nuclear data. Nevertheless, the mtDNA data corroborates

almost all morphologically described species. In regard to the delimitation of the Aus-

tralian species, a total of eleven distinct clades confirmed by morphology and molecular

data are identified. Furthermore with the compilation of recent distribution maps on

drainage based scales, extensive data on extant species is now available which gives new

insights into the current dispersion and the degree of endemism. Even a new species,

that is Thiara rudis, is for the first time recorded and verified as taxa with occurrences in

Australia. Moreover, the AFLP analysis reveals a recent diversification between the two

endemic species “Thiara” australis and Plotiopsis balonnensis with possible hybridisation

in the newly detected zone of overlap.

Within the scope of this thesis a procedure is developed that makes it possible to contex-

tualize old museum material from malacological collections within biosystematics research

in a reliable way. It is based on ancientDNA techniques and comprises the amplification

of short DNA fragments which are analysed in phylogenetic analyses. In this context the

procedure’s application to historic specimens collected over a century ago in Papua New

Guinea is relevant. The historical mini-barcodes cluster with Ripalania queenslandica

sequences from Australia indicating that this thiarid is actually not endemic to the conti-

nent. In the face of the increasing biodiversity crisis, the study of the biological diversity

on all levels is becoming even more urgent. The possibility of obtaining sequence data from

untapped genetic data within archived museum specimens opens up vast new reservoirs

of information for future research.



3

ZUSAMMENFASSUNG

Da limnische Gastropoden sehr eng an ihre oftmals isolierten aquatischen Habitate

gebunden sind, bewahren sie Verbreitungsmuster über lange Perioden. Sie stellen somit

geeignete Modelle zur Rekonstruktion geographisch und klimatisch bedingter Veränderun-

gen des Lebensraumes dar und können helfen, allgemeine Zusammenhänge zwischen

Kolonisierungsereignissen und Artbildungsprozessen aufzuklären. Das Ziel dieser Ar-

beit besteht in der Rekonstruktion der Besiedlungsgeschichte des australischen Konti-

nents durch eine Familie viviparer Süßwassergastropoden (Thiaridae) unter Verwendung

molekularer Marker (mitochondrialer und im Kerngenom basierter Genfragmente inklu-

sive der AFLP-Technik). Die geographische Herkunft vieler Faunenelemente und die

zeitliche Abfolge der Kolonisierung dieses seit dem Beginn des Tertiärs nordwärds wan-

dernden Teilkontinents von Gondwana, das durch Tektonik und globaler Veränderungen

u.a. Aridifizierung unterliegt, sind bisher nicht hinreichend geklärt. Viele der heute in

Australien vorkommenden biotischen Elemente wurden üblicherweise als junge Einwan-

derer aus dem indo-malayischen Archipel eingestuft. Es werden jedoch mehr und mehr

Fälle bekannt, die von diesem Standardszenario abweichen.

Um zu testen, ob es sich bei den Thiariden tatsächlich um junge Einwanderer aus dem

Norden handelt, oder ob diese Familie ihren Ursprung auf dem australischen Kontinent

hat, wurden die evolutionären Verwandtschaftsverhältnisse innerhalb der Familie, sowie

ihre Position im phylogenetischen Stammbaum der Superfamilie Cerithioidea analysiert.

Eine Voraussetzung für die Rekonstruktion vergangener Verbreitungsmuster ist, neben

der detailierten Analyse der aktuellen Vorkommnisse, die Abgrenzung der einzelnen

Thiariden-Arten. Zu diesem Zwecke wurden vorangegangene morphologische Artbestim-

mungen mit den molekularen Daten abgeglichen. Mit der Aufdeckung der stammes-

geschichtlichen Beziehungen zu nicht-australischen Verwandten, durch Altersbestimmung

der phylogenetischen Verzweigungen mittels “molekularer Uhr” sowie der Analyse der

rezenten und historischen Areale, konnte ein asiatischer Ursprung der Thiariden widerlegt

werden. Die zeitliche Abfolge der Besiedlungen im australisch-asiatischen Raum ist kom-

plexer als bisher angenommen. Ein Abriss hinsichtlich Dispersion und/oder Vikarianz ist

hier vor dem Hintergrund der unabhängig durch Geologen erfolgten Rekonstruktion plat-

tentektonischer Ereignisse dargestellt. Demnach hat die Besiedlung Asiens ihren Ausgang

ursprünglich im australischen Raum genommen und der Kontinent wurde nicht, wie bis-

lang angenommen, von Asien aus besiedelt. Mit der Aufdeckung des ost-gondwanischen

Ursprungs der Familie, repräsentieren australische Thiariden ein wichtiges und vielver-

sprechendes Modellsystem in der Speziationsforschung, welches detailierte Einblicke in

die Dynamik der grundlegenden Mechanismen der Artbildung unter dem Einfluss von

klimatischen Veränderungen ermöglicht.



Auch wenn die phylogenetischen Beziehungen zwischen den einzelnen Thiariden Arten

nicht völlig aufgelöst werden konnten, so haben die molekularen Daten und der Vergleich

der ermittelten Phylogenien doch bedeutende Einblicke in diese rätselhaft erscheinende

Gruppe ermöglicht. Es konnte dargelegt werden, dass mitochondriale DNA Daten mit

äußerster Vorsicht interpretiert werden müssen und es hierbei den Abgleich mit nukleären

Multi-Locus Phylogenien bedarf. Jedoch stimmten die mitochondrialen Daten mit den

morphologisch beschriebenen Gruppen überein und konnten somit erfolgreich bei der Ab-

grenzung und Identifizierung der Arten eingesetzt werden. Die molekularen Ergebnisse

stellen für australische Thiariden das Vorkommen von insgesamt elf differenzierbaren Lin-

ien fest. Es konnten im Rahmen dieser Arbeit neue Erkenntnisse bezüglich des Artenin-

ventars in Australien, der Verbreitungsmuster und des Grades an Endemismus gewonnen

werden. Es wurde sogar eine bis dato in Australien unbekannte Art - Thiara rudis - er-

stmalig dort nachgewiesen. Ausserdem deutet die AFLP-basierte Phylogenie darauf hin,

dass sich die beiden endemischen Arten “Thiara” australis und Plotiopsis balonnensis

erst kürzlich aufgespalten haben und es in einem neu entdeckten Überlappungsgebiet

möglicherweise zu Hybridisierung kommt.

Zusätzlich wurde innerhalb dieser Arbeit ein Verfahren entwickelt, welches ermöglicht his-

torisches Museumsmaterial in phylogenetische Analysen mit einzubinden. Es basiert auf

ancientDNA-Techniken und beinhaltet die Amplifikation kurzer DNA Fragmente, soge-

nannter Mini-Barcodes. In diesem Kontext relevant ist die erfolgreiche Anwendung an

Schalenmaterial, das vor über einem Jahrhundert in Papua-Neuguinea gesammelt wurde.

Die amplifizierten Fragmente clustern mit Ripalania queenslandica Sequenzen aus Aus-

tralien und belegen damit, dass diese Art nicht endemisch auf dem Kontinent ist. An-

gesichts der fortschreitenden globalen Biodiversitätskrise wird die Erfassung der Biodiver-

sität auf jeder Ebene immer wichtiger. Die Möglichkeit Sequenzdaten von archiviertem

Museumsmaterial zu generieren bietet hierbei eine Fülle an Informationen für zukünftige

Forschung.
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1 General Introduction

1.1 Biogeography

“Biogeography, as a topic for discourse or discussion, is in some ways like

religion: both topics lend themselves to ever more complicated treatment in

the abstract, which is apt to border even on the miraculous, but which is apt

to crumble in confrontation with concrete facts of life.”

Nelson and Platnick (1981: 375)

Biogeography is the study of the distribution and evolution of organisms through space

and time (Ball, 1975). The discipline developed as humans tried to understand how life

and earth have evolved together, accounting for current geographic distribution patterns

in terms of past events. Already Darwin and Wallace were both very interested in bio-

geography. For Darwin the distribution of organisms provided evidence that evolution

had occurred and Wallace described major patterns of zoogeography (a subdivision of

the discipline) that are still valid today (Futuyma, 2005). He famously identified the

biogeographic discontinuity between the Australian and Oriental faunas now known as

Wallace’s line, which will be subject also in this study.

The ideas and methods have changed dramatically over the years (Donoghue, 2013). Be-

sides contemporary factors, the current geographic distribution of a taxon is affected by

the three different processes of extinction, dispersal and vicariance. The influence of

extinction, that is the death of all individuals in a local population, has been accepted

without controversy. But this is not the case for the other two processes, which have been

considered to be competing explanations for many years (Crisci et al., 2009). Vicari-

ance refers to the separation of populations of a widespread species by a barrier arising

from changes in geology, climate, or habitat (Futuyma, 2005). Here the barrier directly

leads to the disjunction and, in the course of time, allows the isolated subpopulations

to differentiate into distinct taxa. In contrast, in a dispersal event the barrier is older

than the disjunction and the common ancestor occurred in one of the areas, dispersing

later into another one. According to Yoder and Nowak (2006), we have reached a state

of the art wherein the majority of biogeographers are equally receptive to hypotheses of

vicariance and dispersal. The two traditional approaches are both important processes,

whereby neither can be assumed to be the sole explanation of a taxon’s distribution. In

most cases, dispersal, vicariance, and extinction all have played a role in the histories of

distributions.

Molecular data offers a plethora of possibilities in biogeography research and with present-

day methods predictions about recent biota including distributional patterns, likelihoods

of dispersal, and the shapes and timing of phylogenies can potentially be tested (Crisp
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et al., 2011). DNA sequence data does not only help to determine the relationships among

taxa, furthermore molecular phylogenetics can be used for dating divergences between

lineages and for reconstructing distributional change through evolutionary time. These

properties of molecular phylogenetics allow the evolutionary histories of co-distributed

taxa to be compared spatially and temporally and they permit phylogenetic histories to

be mapped on geological reconstructions (Lohman et al., 2011).

This study involves possible links between geographical patterns and processes of specia-

tion with correlated morphological data in order to reconstruct the evolutionary history

of a family of freshwater Cerithioideans - the thiarids. Due to their limited potential of

dispersal in the face of wide distribution, ubiquity and high abundance, snails tend to

preserve distribution patterns over long periods of time and are thus suitable organisms

for studying historical biogeography.

1.2 Study species

The Cerithiodean Thiaridae, common name thiarids, is a family of snails distributed

throughout the tropics and sub-tropics around the world, ranging from Central and South

America, including a few Caribbean islands, to Africa and further into Southeast Asia and

Australia, extending onto the western Pacific islands (Glaubrecht et al., 2009; Glaubrecht,

2011). Thiarids inhabit inland freshwaters as well as brackish-water environments at

lower, tidally-influenced reaches of coastal rivers and streams. Members of the group play

a variety of roles in aquatic ecosystems as primary herbivores, vectors of disease, invasive

pests and sometimes substantial contributors to biomass (Kano et al., 2011). Thiarids

are recognized by their often large (up to 10 cm), high-spired shells that can be smooth

but may also bear grooves, nodules, ribs or spines. Their shells are simply coloured and

usually appear dark brown or black due to the presence of an organic periostracum on

the shells outer surface. Colour, as well as shell shape and ornamentation patterns often

vary considerably within species. Like other groups of freshwater snails, this extensive

intraspecific variation has produced widespread confusion concerning species recognition

(Kano et al., 2011). As a consequence, it is unknown how many species of freshwater

thiarids really exist currently, and there is little consensus in scientific literature regarding

the correct names of those that have been documented.

Many species of freshwater snails that are characterized by a turreted shell were orig-

inally placed within the genus Melania Lamarck, 1799. The genus name Melania was

demonstrated to be a junior synonym of the genus name Thiara Röding, 1798. Con-

sequently, the family had to be renamed Thiaridae. This former Thiaridae sensu lato

was found to be polyphyletic containing species from many different groups, which were

successively recognized as distinct families, such as the Pachychilidae, Semisulcospiridae,

Pleuroceridae, Melanopsidae, and Paludomidae (Glaubrecht, 1996). For a discussion of

a more up-to-date concept of the freshwater Cerithioidea see reviews e.g. by Glaubrecht
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(1996, 1999, 2006, 2011), supplemented by comparative morphological as well as molecu-

lar phylogenetic studies corroborating these earlier findings (Lydeard et al., 2002; Strong

et al., 2011). Accordingly, the Thiaridae sensu stricto represents one of the two (or three)

independent invasions and colonisations of freshwater habitats in the tropics worldwide.

The most characteristic feature of Thiaridae sensu stricto is that they are viviparous with

a special structure - a so-called subhaemocoelic brood pouch which is located in the neck

region of the head-foot. Instead of laying eggs they retain them in this special chamber.

In some species shelled juveniles hatch (eu-viviparity) and in other species eggs within

the pouch develop only into veliger stage before they are released into the water (ovo-

viviparity). In case of the first modus all growth stages are present at the same time

and a shell can comprise up to 5 or 7 whorls when hatching. The ‘marsupial’ family

comprises several dozens, possibly up to c. 30 - 50 biological species, but many more

named taxa with yet a largely unresolved taxonomy as already mentioned. An amazingly

high taxonomic redundancy is suspected due to the typological approach of naming every

phenotype, i.e. conchological disparity instead of true biological diversity (see Glaubrecht

1993, 1996).

The unresolved taxonomy situation confounds efforts to communicate effectively about

these species and hinders efforts to understand global patterns of distribution and di-

versity. There is also little consensus in scientific literature regarding the reproductive

biology. For example, for populations of Melanoides tuberculata in Israel Ben-Ami and

Heller (2005) reported sexually as well as asexually reproducing individuals, thus contra-

dicting the general assumption that indeed all thiarids reproduce via apomixis. It is said

where males are present they have ripe gonads and motile sperm. But according to Dillon

(2000) the thiarids have no external clue to their gender and this absence could indicate

potential hermaphroditism. Much additional research is needed regarding sex determina-

tion. It remains to be seen in how far thiarids are actually prone to parthenogenesis.

1.3 Species biogeography - Why is Australia of special interest?

The Australian continent is one of the world’s most ancient landmasses with a high number

of endemic species. Due to its long isolation from other large continental masses and the

well known geological history Australia provides perfect preconditions for biogeographical

studies.

The Australian thiarids are distributed over nearly all parts of the continent, except the

Tasmanian Island and the central arid part (Glaubrecht et al., 2009). The occurrences are

particularly high in the northern-central region of the Leichhardtian zoogeographic region

which is approximately represented by the Timor Sea and Gulf of Carpenteria drainage

systems. The rainfall pattern in this region is dominated by the wet monsoon occurring

within the period November to March (see fig.1). Most rivers here traverse a flat coastal

plain about 15 km wide before reaching the sea. These rivers commonly possess wide
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flood plains and low gradients, often contracting to a chain of waterholes during the dry

season. Some rivers (Gregory River; Fitzroy to Daly Rivers) have reaches of rapids or

very deep gorges (Kailola and Pierce, 1988).

Figure 1 Australia climate map - The Australian Bureau of Meteorology climate classification,
a modification of Köppen’s classification by Martyman. Data from www.bom.gov.au. Licensed
under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons.

Due to the size of the continent, Australia experiences a variety of climates. Beside these

tropical regions of the north the continent provides five other climatic zones including

even arid and semiarid desert regions of the interior as well as temperate regions in the

south. (see fig.1). Note the specific adaptations needed to cope with special Australian

environments and ecological circumstances, such as e.g. increasing aridity, unpredictable

precipitation and ephemerality of freshwater bodies correlated with marked hydrological

fluctuations of many rivers and streams and high salinities in temporarily standing wa-

ters. Glaubrecht et al. (2009) considered for Australian thiarids that parthenogenesis,

in combination with viviparity, might be directly correlated and/or even causally linked

with the survival of populations in or rapid (re-)colonizations of new habitats and areas

right after or in the course of flooding, possibly being an adaptation to the monsoonal

regime of northern Australia.
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1.4 Previous work

To reveal the species that are represented in Australia Glaubrecht and colleagues made

a systematic evaluation of the Australian thiarids in 2009. In snails the radula is often

used for the delimitation of species, but in thiarids, unfortunately, it is of limited use

in the distinction because it is relatively constant between thiarid species. No major

dentition feature that allows for specific distinction could be found for the Australian

taxa. Apparently, all taxa seem to use their radula in the same fashion, as all of them

are detritus and algae feeders, mostly occurring on soft substrate with high sandy to

muddy components (Glaubrecht et al., 2009). Nevertheless it was suggested at that time

to differentiate among the Australian Thiaridae 8 genera with a total of 11 species dis-

tinguishable essentially on the basis of their shell morphology. While five species are

widely distributed also outside the Australian continent, viz. Thiara amarula, Stenome-

lania cf. aspirans, Melanoides tuberculata, Pseudoplotia (=Plotia) scabra and Sermyla

riqueti, the other six species were considered to be endemic to Australia with either a wide

range over the continent, viz. “Thiara” australis, Plotiopsis balonnensis and “Stenomela-

nia” denisoniensis, or highly restricted ranges to a few drainage divisions, viz. Ripalania

queenslandica, Melasma onca and Sermyla venustula (Glaubrecht et al., 2009). In case of

“Thiara” australis and “Stenomelania” denisoniensis the generic allocations are used in

quotation marks in order to denote that the phylogenetic placement is doubtful.

Figure 2 Australia map with occurrences of “Thiara” australis (black dots) and Plotiopsis
balonnensis (grey dots). The two species seem to be distributed mutually exclusively (status of
2009).
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Another important finding of the study of 2009 which will be subject in this thesis,

is the striking occurrence of the two endemic species “Thiara” australis and Plotiopsis

balonnensis on the Australian continent (see fig.2). The two species seem to have mutu-

ally exclusive distributions and are morphologically hard to distinguish. If this observed

disjunct distribution represents a fragmentation of a widespread ancestral species it would

be expected that the two species turn out to have a sister group relationship.

1.5 Goals and structure of the present thesis

The previously described results of the systematic evaluation in 2009 by Glaubrecht and

colleagues are the starting point of this study. By combination of different genetic ap-

proaches and augmented sampling the goal is to illuminate the colonization history of the

Australian continent and to get a better insight into contemporary relationships between

Australian thiarids. This thesis is divided into seven chapters, whereby chapters 3 - 6

represent individual studies each containing a separate introduction, a description of ma-

terials and methods, a summary of gained results and a detailed discussion. The specific

goals of these chapters are as follows:

Chapter 3 The first aim of this individual study is to examine the molecular phylogeny

of the Thiaridae using a large sampling of thiarid taxa including representatives from

across the known range aiming for the highest coverage possible and a combination of

four genes (COI, 16S rRNA, 28S rRNA, H3). The second aim is to develop a historical

biogeographic hypothesis by integrating the fossil record and using it for calibration in

a molecular clock approach. It is hypothesized that the long-held view of the thiarid

fauna being an appendage to the southeast Asian biota is false. Instead, an Australian

continental, i.e. Gondwanian origin is propounded.

Chapter 4 This chapter focusses on the Australian Thiarids and their geographic dis-

tribution on the continent. The comprehensive investigations in the work of 2009 to

characterize individual taxa are complemented with molecular analyses and additional

sampling with the objective of confirmation of the differentiated species and analysis of

present distribution patterns.

Chapter 5 Here a technique is shown that allows extracting and analysing DNA from

historical material stored up to over a hundred years ago using museum specimens from

the Malacological Collection at the NHM Berlin. In five case studies, where identification

is needed to clarify specific biogeographical and systematical questions, the effectiveness

of this technique is shown. One of these case studies rejects the long-held view that the

Thiarid R. queenslandica is endemic in Australia.
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Chapter 6 In this study the Amplified fragment length polymorphism (AFLP) tech-

nique is used with the initial goal to assess genetic variation and population structuring

with regard to the different river drainage systems. As additional nuclear data to the

sequencing results, which were partly inconsistent, the AFLP data helps to clarify the re-

lationships among closely related species of thiarid taxa with a focus on the two endemic

species “Thiara” australis and P. balonnensis.

Subsequent to the introductory first chapter and before the individual studies the de-

scription of the ‘General material and methods’ is given in chapter 2. At the end,

in chapter 7, a summary of the results and a general discussion of the present thesis

including a short outlook is provided.
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2 General material and methods

2.1 Sampling

2.1.1 Sampling sites

This study is based on specimens preserved in ethanol, collected during several expeditions

in the last twelve years mainly by Matthias and Nora Glaubrecht (née Brinkmann), partly

with the help of Thomas von Rintelen, offering a great sample that covers a big part of

Australia by more than 1000 records. A list of all sampling localities sorted according to

sampling year is attached in the appendix (see p.135). Additional samples were collected

in particular during an Arnhem Land expedition by Winston Ponder and Vince Kessner

in 2007. Supplementary non-Australian material (mainly from SE Asia) was provided

within the framework of current cooperations.

Figure 3 Sampling locations of the collection trip in September and October 2011 in the
northern parts of Australia. A The continent of Australia. B Map extract of the northern
part of Australia (Northern Territory and Queensland). C Map section of the Roper River with
closely adjoining sampling locations (map of Australian Government MAP Katherine SD53-09;
Larrimah SD53-13).

In 2011 M. Glaubrecht, N. Glaubrecht, N. Maaß and the author went on an additional

field trip in order to collect fresh material for this study. The research group started the

tour in Darwin, Northern Territory, did 8176 km through the outback and collected at

46 locations (see fig.3). Google Earth R© was used to discover creeks near drivable streets



2.1 Sampling 13

as locations could mostly only be reached by four wheel drive car. On the Limmen Bight

and Towns River accessibility was obtained by boat. Subsequent to the trip covering the

North of Australia the author went alone to Western Australia in October 2011 to get

samples of P. balonnensis. The fresh material was used for molecular analyses especially

for the new comprehensive AFLP approach.

2.1.2 Sampling methods

The snails were sampled on mud, rocks or on submerged trees and branches. On each

location specimens were placed into plastic whorl bags with water from the sample site

to keep them alive for the rest of the day. Each of those bags was labelled with date,

location number and GPS data. Every evening the snails from the different locations

were sorted and labelled with a preliminary species name. Living snails were fixed in 96%

ethanol in the field, with most of the shells cracked the same day to allow the preservative

to penetrate the soft bodies. Ethanol was changed once or twice in the field. Samples

were finally transported to and shipped by the Museum & Art Gallery of the Northern

Territory in Darwin. All voucher material is deposited in the Malacological Department,

Museum of Natural History, Berlin (accession numbers with prefix ‘ZMB’). A general

procedure of sampling treatment is shown in fig. 4.

Field work Museum / Collection Lab

DNA extraction
lab number
(e.g. 8963)

depending on the questions you 
want to answer

species /   
phylogeny

population 
genetics

Data analyses II

Tissue extraction 
e.g. foot 

Inventory and Database
catalogue number

(e.g. ZMB 107.777)

Labelling 
use available information 

(species, location, GPS, date)

Data analyses I

Measure-
ments 

of the shell
Photos 

Anatomy 
- radula (SEM)
- soft body
  (histology)
- brood pouch

How to find 
the actual samples?

Literature reseach 
(range, type locality, description, plates 

with shell photos)

Sampling
maps, GPS data, name and 
description for the locality

Preliminary ID  

Figure 4 The general procedure of sampling treatment in the Malacological Department,
Museum of Natural History, Berlin (accession numbers with prefix ‘ZMB’).
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2.2 Genetic methods

2.2.1 DNA isolation, PCR and sequencing

DNA isolation Total DNA was extracted by application of a modified version of the

CTAB extraction protocol for molluscan tissues (Winnepenninckx et al., 1993). About

2mm3 of foot muscle (taken from samples preserved in 75-90% ethanol) was dried and

cut into small pieces. Tissue pieces were lysed in 300 μl CTAB buffer (2% CTAB, 1.4M

NaCl, 20mM EDTA, 100mM tris-HCl pH8.0), 0.6 μl b-mercaptoethanol and 10 μl serine

proteinase K and incubated at 55◦C and 550 rpm in an Eppendorf R© Thermomixer compact

overnight. On the next day 300μl chloroform:isoamyl alcohol (24:1) were added to the

lysate, mixed manually for two minutes and centrifuged for 10 min at 15000 rpm in an

Eppendorf R© centrifuge 5424. Afterwards the top layer was extracted into a new set of

tubes. This washing step was repeated (add 300 μl phenol-chloroform, mixing, 10 min

centrifuge at 15.000 rpm) and the top layer of the supernatant was placed into tubes

preliminarily filled with 600 μl of 95 % ethanol and 25 μl of 3M sodium acetate. The

mixture was stored overnight in a freezer at -20◦C. On the third day samples were first

centrifuged for 10 min at 15.000 rpm building a pellet visible at the bottom of the tube.

Ethanol (95 %) was rejected and afterwards 75 % ethanol was added and tubes were

shaken vigorously to release the pellet from the bottom. Tubes were then centrifuged 5

min at 15.000 rpm and ethanol was removed. Once the pellet was dried it was dissolved

in 30 μl of TE buffer 0.1. The isolated genomic DNA was stored at -20◦C.

DNA sequencing DNA sequencing was carried out using the dideoxy method (Sanger

et al., 1977). Polymerase chain reaction (PCR) (Saiki, 1985; Mullis, 1986) was used to

amplify two mitochondrial gene fragments, a ∼ 850 bp region of the 16S ribosomal RNA

gene (16S) and a 660 bp fragment of the Cytochrome Oxidase subunit I gene (COI).

The 16s rRNA gene was amplified by using the primers 16S F Thia2 [5’- CTT YCG CAC

TGA TGA TAG CTA G -3’ (von Rintelen, unpublished data)] and H3059var [5’- CCG

GTY TGA ACT CAG ATC ATG T -3’ (Wilson et al., 2004)]. The mitochondrial gene

fragment of COI was sequenced using LCO-1490 [5’- GGT CAA CAA ATC ATA AAG

ATA TTG G -3’ (Folmer et al., 1994)] and HCOvar [5’- TAW ACT TCT GGG TGK CCA

AAR AAT -3’ (von Rintelen et al., 2004)] as primers. After an initial denaturation step

of 3 min at 94 ◦C, thermal cycling conditions were as follows: 35 cycles (30 sec at 94◦C,

45◦C (COI) or 50 ◦C (16S) annealing for 1 min and 72◦C extension for 1:30 min) followed

by a final extension step at 72◦C for 5 min. In cases where this procedure did not lead

to sufficient DNA concentration PCR was repeated using the QIAGEN R© Multiplex PCR

Kit. The used mastermix and PCR profiles for the multiplex approach are attached in

the appendix (see tab.24 and tab.25).

For the molecular phylogeny two nuclear gene fragments, 328 bp of H3 and ∼ 1070 bp

of 28S were amplified using the following primers: 28S Fmod: [5’- ACC CGC TGA ATT
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TAA GCA TAT -3’ modified from (Van der Auwera et al., 1994)], 28S Rmod: [5’- GCT

ATC CTG ACG GAA ACT TC -3’ (von Rintelen, unpublished data)], H3 F: [5’- ATG

GCT CGT ACC AAG CAG ACV GC -3’] and H3 R: [5’- ATA TCC TTR GGC ATR

ATR GTG AC -3’ (Colgan et al., 2000)]. For 28S a touchdown PCR was performed with

conditions: 94 ◦C for 3 min, 7 cycles of touchdown PCR (94 ◦C for 0:30 min, 60-53 ◦C

annealing for 1 min and 72 ◦C extension for 2 min) followed by 33 cycles (94 ◦C for 0:30

min, 52 ◦C annealing for 1 min and 72 ◦C extension for 2 min) and a final extension step

at 72 ◦C for 8 min. Cycling conditions for the H3 gene were: 94 ◦C for 3 min, 35 cycles (30

sec at 94◦C, 50 ◦C (16S) annealing for 1 min and 72◦C extension for 1:00 min) followed

by a final extension step at 72◦C for 5 min.

Mastermix was the same for all four genes and is given in the appendix (see tab.23). In

each PCR a negative control reaction in which DNA was omitted was included in order

to verify the absence of contamination. Success of PCR amplification was controlled by

agarose gel electrophoresis.

PCR products were purified using NucleoSpin Extract II Kits (Macherey-Nagel) or

ExoSap-IT R© (US Biochemicals) following the manufacturers protocols. The same primers

were used in PCR and sequencing where gene products were sequenced in both direc-

tions. Cycle sequencing reactions were carried out on an ABI 3130xl Genetic Analyser

automated DNA sequencer (Applied Biosystems) and accomplished by the company SMB

GmbH (Services in Molecular Biology, Berlin).

2.3 Analyses of molecular data

2.3.1 Sequence assembly and alignment

The assemblies of forward and reverse strands were done using CodonCode Aligner (Ver-

sion 3.7.1; CodonCode Corperation, Dedham, MA, USA) and the correction was done by

eye. Fasta files were exported in BioEdit (Hall, 1999) which was used to edit the align-

ments. For multiple sequence alignments of 16S and 28S sequences the programs MAFFT

(Katoh and Toh, 2008) and MUSCLE (Edgar, 2004b,a) were used online by Web Services

of the European Bioinformatics Institute (Part of the European Molecular Biology Labo-

ratory, http://www.ebi.ac.uk) (Goujon et al., 2010; McWilliam et al., 2013). COI and H3

sequences were aligned with ClustalW (Thompson et al., 2002) using default parameter

settings as implemented in BioEdit.

2.3.2 Phylogenetic analyses

Preparation and tests All data sets were reduced to unique haplotypes using DAMBE

5.3.74 (Xia, 2013) and tested for homogeneity of base frequencies across taxa using PAUP

4.0b10n (Swofford, 2002). Potential saturation in the protein coding genes H3 and COI

was assessed by plotting transitions and transversions for each codon position against
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genetic distances (F84) and by the test of Xia et al. (2003). Both tests were conducted in

Dambe 5.3.74 (Xia, 2013) and both showed that the sequences did not experience severe

substitution saturation.

Modeltest The most appropriate model of DNA substitution for each gene fragment

was determined by evaluating the corresponding likelihood scores, under the Akaike Infor-

mation Criterion (AIC) and the Bayesian Information Criterion (BIC) using jModeltest0.1

(Posada, 2008). The chosen model was used in the subsequent phylogenetic searches.

Maximum likelihood (ML) NCLconverter (Lewis and Holder, 2008) was used to

convert nexus files into phylip format being appropriate for use with RAxML (randomized

accelerated maximum likelihood), a program for maximum likelihood-based inference of

large phylogenetic trees (Stamatakis, 2006). RAxML analyses were performed under the

appropriate model including calculations of bootstrap support values (Felsenstein, 1985).

NCLconverter and RAxML BlackBox (Stamatakis et al., 2008) were used on the CIPRES

Science Gateway (Miller et al., 2011).

Bayesian inference (BI) The Bayesian Markov chain Monte Carlo simulation was

run using MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003) on the CIPRES web portal

(Miller et al., 2011) for 10.000.000 generations based on the previously selected substitu-

tion model. In two parallel runs trees were sampled every 200th generation. Excluding

the first 35.001 trees of each run as burn-in, a 50% majority-rule consensus tree with

posterior probabilities was constructed from the remaining trees.

Maximum Parsimony (MP) Phylogenetic trees were reconstructed by maximum par-

simony (MP) using the heuristic search algorithm as implemented in PAUP 4.0b10n (Swof-

ford, 2002), with gaps treated as fifth base. Support for nodes was estimated by bootstrap

analysis (10000 replicates).

These three different tree-building methods were examined for each alignment to compare

and test the robustness of the results. The final trees were edited using FigTree version

1.3.1 (Rambaut, 2009). For a more concrete description please see the corresponding

‘Specific Material and Methods’ paragraph of the appropriate chapter.
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3 Phylogenetic relationships of Australian thiarids

and their biogeographical origin

3.1 Specific introduction

Australia has an outstanding peculiar fauna and flora, sharply distinct in a multitude of

ways from that in other parts of the world. The ‘fifth continent’ represents one of the

world’s most ancient landmasses and harbours one of the richest biota which stands out

due to a high number of endemisms. This high level of endemism is probably a result

of Australia’s long period of isolation from other continents, since its separation from

Gondwana about 45 million years ago (Lohman et al., 2011).

However, many biotic elements found today in Australia were conventionally considered

as being recent invaders from the north, as it was expressed by traditional pre-continental

drift views e.g. for birds (Mayr and Stein, 1944), amphibians (Darlington Jr, 1965) or

other faunal members in particular of inland waters (Williams and Allen, 1987). Ac-

cording to these views, the standard scenario was that this long isolated continent must

certainly have been colonized from abroad, in particular by invaders from the Indo-Malay

archipelago, once Australia had been within reach from the Oriental region (Glaubrecht

et al., 2009). The place of origin of its fauna and the route of entry into Australia has

been much discussed and more and more cases are known that deviate from this standard

scenario. According to Köhler and Criscione (2013), the biota of the Indo-Australian

archipelago is predominantly Southeast Asian in origin, with a comparatively small pro-

portion of taxa of Australian ancestry. In their study they provide the first evidence that

for the camaenid land snail lineage Rhagada Australia is the area of origin, harbouring

ancient Gondwanian lineages that dispersed into Asia. Another example is that of passer-

ine birds as already discussed by Glaubrecht et al. (2009) in the same context. Today, it is

well established that oscine passerine birds originated in East Gondwana in the Oligocene

and from there spread to Southeast Asia (Jønsson and Fjelds̊a, 2006; Jønsson et al., 2011;

Aggerbeck et al., 2014).

The origin of Australian freshwater faunal elements and the directionality and timing of

colonizations are still controversial. In case of the Thiaridae, it has never been tested

whether they are recent invaders from the north, or if they originated on the Australian

continent in ancient times. The thiarids are limnic members of the Cerithioidea, a large

gastropod group with a worldwide distribution which has been successfully employed

in testing biogeographical hypotheses (Glaubrecht, 2000; Glaubrecht and von Rintelen,

2008; Glaubrecht, 2009). However, the monophyly and biogeographical origin of the

Australian species has remained uncertain. McMichael and Weatherley (1967) commented

on the evolutionary relationships of the family, stating that “they must be regarded as

relatively recent arrivals in Australia from the north.” The same recent origin had been
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assumed earlier for unionid bivalves, confirming the traditional biogeographical view of

the freshwater fauna of Australia.

Looking at the current distribution, thiarids do occur on southern continents like Africa,

Asia and Australia, but are missing in America and Europe (see tab.1). The simplest

hypothesis for taxa that have members on different landmasses in the Southern hemisphere

is vicariance: the breakup of Gondwana isolated descendants of a common ancestor.

Table 1 The biogeography of freshwater Cerithioidea taxa, listed by family, on a global scale.
The six families, with their constituent taxa, as currently conceived, are given here as delimited
in Glaubrecht (2011).

region America/Caribbean Europe/Palaeartic Africa Asia Australia/NZ

family Pachychilidae Pachychilidae Pachychilidae Pachychilidae
Pleuroceridae
Semisulcospiridae Semisulcospiridae

Melanopsidae Melanopsidae
Paludomidae Paludomidae
Thiaridae Thiaridae Thiaridae

Hemisinidae* Hemisinidae

*only on Caribbean islands and mainland South America. The genus was attributed to Thiaridae before but elevated to an
own family, Hemisinidae Fischer & Crosse, 1891 (Bouchet and Rocroi, 2005).

The pattern of a “Gondwanian group” in case of the Thiaridae is also corroborated by

modern molecular studies that shed light on phylogenetic relationships wihin the super-

family Cerithioidea (Strong et al., 2011). Here the Thiaridae are monophyletic in almost

all analyses, with the genus Hemisinus from South America consistently emerging at the

base. This sister group relationship between neotropical Hemisinidae & oriental Thiari-

dae is supported in the morphological data set as well as in the molecular approach and

shows a branching pattern that would be expected in case it resulted from the Gondwanian

breakup.

The findings of Hamilton-Bruce et al. (2004) are another indication for this scenario. They

described a thiarid-like fossil from Early Cretaceous non-marine deposits in northern New

South Wales, Australia. The fossil was attributed to the extant genus Melanoides and

represents the oldest Australian record of the genus and the family. This gastropod fossil

which appears quite similar to recent thiarids, suggests the occurrence of Thiaridae in

Australia at a time when the continent was far away from what today is Asia, but still

closely connected to the Antarctic section of Gondwana (146 Ma to 100 Ma). In addi-

tion, Beu et al. (2014) found an uncommon thairid fossil from New Zealand, that lived

before the island began to separate from the rest of Gondwana (85 Ma). They positioned

the fossil in Melanoides (sensu lato), but considered that South American genera of the

Hemisininae are possibly related. Based on the age and composition of the probed fauna

Beu et al. (2014) suggest that the living freshwater molluscan fauna of the southern land-

masses are remnants and evolutionary descendants of a formerly Gondwanian fauna that

included Thiaridae.
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According to these indications, it is hypothesized here that the long hold view of the

thiarid fauna being an appendage to the southeast Asian biota is false. Instead, an Aus-

tralian continental, i.e. Gondwanian origin of these endemic Thiaridae is propounded as

has been discussed earlier by Glaubrecht (1996) and Glaubrecht et al. (2009).

The first aim of this chapter is to examine the molecular phylogeny of the Thiaridae

using a large sampling of thiarid taxa , a combination of four genes (COI, 16S rRNA,

28S rRNA, H3) and a range of appropriate Cerithioidean outgroups. The resulting trees

represent the most detailed phylogenetic analysis of the thiarids to date and facilitate

testing the monophyly of the family and the sister group relationship to the Hemisinidae

and the relationships to other cerithioidean freshwater families. The second aim is to

integrate the fossil record and geographical distributions, to develop a historical biogeo-

graphic hypothesis. The phylogenetic relationships from throughout the Indo-Australian

Archipelago are used for a more detailed understanding of the timing and directionality

of dipersal events between Asia and Australasia.

3.2 Specific material and methods

3.2.1 Phylogenetic analyses

The working hypotheses i.e. thiarids originated on the Australian continent was tested by

phylogenetic analysis of mitochondrial and nuclear genes: 16S rRNA and cytochrome oxi-

dase I as well as histone H3 subunit and 28S rRNA. DNA sequence data was collected for

all taxa across the known range aiming for the highest coverage possible. In total 523 16S

sequences were obtained, in which 255 are from Australian taxa, 241 from non-Australian

taxa and 27 from Cerithioidean outgroups. For the COI gene 430 sequences were analysed

(155 Australian, 247 non-Australian and 28 outgroups), for 28S 113 sequences (36 Aus-

tralian, 101 non-Australian and 12 outgroups) and for H3 210 sequences (57 Australian,

180 non-Australian and 20 outgroups). The alignments were subsequently reduced to 81

nuclear and 83 mitochondrial sequences (see tab. 2) through the elimination of identical

or very similar haplotypes of the same species to make it computationally feasible for the

phylogenetic analyses. The exploratory phylogenetic reconstructions for the mt-data sets

are presented in chapter 4 (see fig. 13) and in the appendix (see fig. 57). Phylogenies were

produced both from individual genes and from concatenated sequences (mt and nDNA

respectively). The data were analyzed with Bayesian inference (BI), maximum likelihood

(ML), maximum parsimony (MP). For details of the conducted analysis see the chapter

‘General Material and Methods’. Sequences of Cerithium eburneum (Cerithiidae) were

chosen as outgroup to root the phylogenies based on the results of Strong et al. (2011).
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Table 2 Taxa included in the phylogenetic analyses with sampling locality and sequence in-
formation. SEQ: sequenced (bold indicates that extraction/sequencing was conducted by the
author); x: no data. For other abbrevations see appendix.

Taxa Museum-Id Locality Lab-Id 28S H3 COI 16S

Cerithiidae

Cerithium eburneum ZMB106323 USA Florida 1946 SEQ SEQ SEQ SEQ

Pleuroceridae

Elimia catenaria ZMB106412 USA North Carolina 2630 SEQ SEQ SEQ SEQ

Paludomidae

Paludomus petrosus ZMB107881 THA SW of Phetchaburi 7336 SEQ SEQ SEQ SEQ

Paludomus siamensis ZMB107721 THA Sai Yok Yai NP 7334 SEQ SEQ SEQ SEQ

Paludomus siamensis ZMB107726 THA SE Thong Pha Phum 7196 SEQ SEQ SEQ SEQ

Paludomus siamensis ZMB107910 THA SE of Lampang 7338 SEQ SEQ SEQ SEQ

Hemisinidae

Cubaedomus brevis ZMB107174 CUB Pinar del Rio 3493 SEQ SEQ SEQ SEQ

Hemisinus spec. ZMB107126 JAM Middlesex 2849 SEQ SEQ SEQ SEQ

Hemisinus spec. ZMB113128 COL Chocó 2999 SEQ SEQ SEQ SEQ

Pachymelania fusca ZMB191443 NIG no detail 2507 SEQ SEQ SEQ SEQ

Thiaridae

Balanocochlis glans ZMB107366 IDN Sulawesi 6493 SEQ SEQ SEQ SEQ

Balanocochlis glans ZMB191147 IDN Sulawesi 1806 SEQ SEQ SEQ SEQ

Fijidoma maculata ZMB106379 FIJ Viti Levu 508 SEQ SEQ SEQ SEQ

Melanoides spec. ZMB107717 IDN Sumatra 7346 SEQ SEQ SEQ SEQ

Melanoides spec. ZMB113598 IDN Sumatra 7347 SEQ SEQ SEQ SEQ

Melanoides spec. ZMB190964 IDN Sulawesi 2937 SEQ SEQ SEQ SEQ

Melanoides tuberculata SUT0210030 THA Prachuabkirikhan 8051 SEQ SEQ SEQ SEQ

Melanoides tuberculata ZMB106726 AUS Northern Territory 4129 SEQ SEQ SEQ SEQ

Melanoides tuberculata ZMB107128 JAM Rio Negro 2857 SEQ SEQ x x

Melanoides tuberculata ZMB107125 JAM Trelawny 2860 SEQ SEQ SEQ SEQ

Melanoides tuberculata ZMB107129 JAM Westmorland 2855 SEQ SEQ SEQ SEQ

Melanoides tuberculata ZMB107193 MAL Lake Malawi 5134 SEQ SEQ SEQ SEQ

Melanoides tuberculata ZMB127019 MAD Ihosy 7867 x x SEQ SEQ

Melanoides tuberculata ZMB200313 IND Tamil Nadu 2820 SEQ SEQ SEQ SEQ

Melasma onca ZMB106636 AUS Northern Territory 1781 SEQ SEQ SEQ SEQ

Neoradina spec. ZMB107867 THA W of Ko Nang 7528 SEQ SEQ SEQ SEQ

Plotiopsis balonnensis ZMB106583 AUS West Australia 1512 SEQ SEQ SEQ SEQ

Plotiopsis balonnensis ZMB106686 AUS Northern Territory 1827 SEQ SEQ SEQ SEQ

Plotiopsis balonnensis ZMB106728 AUS West Australia 2815 SEQ SEQ SEQ SEQ

Pseudoplotia acanthica ZMB191487 IDN Sulawesi 2885 SEQ SEQ SEQ SEQ

Pseudoplotia scabra ZMB106425 IDN West Java 1096 SEQ SEQ SEQ SEQ

Pseudoplotia scabra ZMB106679 AUS Northern Territory 1832 SEQ SEQ SEQ SEQ

Pseudoplotia scabra ZMB107216 AUS Northern Territory 4781 SEQ SEQ SEQ SEQ

Pseudoplotia scabra ZMB107392 IDN Ambon 6511 SEQ SEQ SEQ SEQ

Pseudoplotia scabra ZMB114990 LAO Champasak Prov. 7535 SEQ SEQ SEQ SEQ

Pseudoplotia scabra ZMB191498 IDN Sulawesi 2891 SEQ SEQ SEQ SEQ

Ripalania queenslandica ZMB107214 AUS Queensland 7662 SEQ SEQ SEQ SEQ

Sermyla riquetii ZMB107883 THA Puek Tian Beach 7354 SEQ SEQ SEQ SEQ

Sermyla riquetii ZMB191388 IDN Sulawesi 3052 SEQ SEQ SEQ SEQ

Sermyla venustula WAM10048 AUS West Australia 7664 SEQ SEQ SEQ SEQ

Sermyla venustula ZMB106713 AUS Queensland 2859 SEQ SEQ SEQ SEQ

Sermyla venustula ZMB192019 AUS Northern Territory 3799 SEQ SEQ SEQ SEQ

Stenomelania aspirans ZMB106391 FIJ Viti Levu 1448 SEQ SEQ SEQ SEQ

Stenomelania aspirans ZMB107586 AUS Queensland 7555 SEQ SEQ SEQ SEQ
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Taxa Museum-Id Locality Lab-Id 28S H3 COI 16S

Stenomelania aspirans ZMB191208 IDN Sulawesi 2223 SEQ SEQ SEQ SEQ

Stenomelania aspirans ZMB191210 IDN Sulawesi 2175 SEQ SEQ SEQ SEQ

Stenomelania aspirans ZMB191212 IDN Bali 2176 SEQ SEQ SEQ SEQ

Stenomelania denisoniensis AMS461354 AUS Northern Territory 6096 SEQ SEQ SEQ SEQ

Stenomelania denisoniensis ZMB106586 AUS West Australia 1516 SEQ SEQ SEQ SEQ

Stenomelania denisoniensis ZMB107239 AUS Northern Territory 4897 SEQ SEQ SEQ SEQ

Stenomelania denisoniensis ZMB107449 IDN Ambon 6507 SEQ SEQ SEQ SEQ

Stenomelania denisoniensis ZMB127607 IDN Timor 8176 x x SEQ SEQ

Stenomelania spec. ZMB107457 IDN Seram 6539 SEQ SEQ SEQ SEQ

Stenomelania spec. ZMB107483 IDN Ambon 6508 SEQ SEQ SEQ SEQ

Tarebia granifera ZMB107396 IDN Ambon 6521 SEQ SEQ SEQ SEQ

Tarebia granifera ZMB107533 IDN Flores 6917 SEQ SEQ SEQ SEQ

Tarebia granifera ZMB114168 VIE Lao Cai 6534 x x SEQ SEQ

Tarebia granifera ZMB127609 IDN Timor 8180 SEQ SEQ SEQ SEQ

Tarebia granifera ZMB190883 IDN Sulawesi 3018 SEQ SEQ SEQ SEQ

Tarebia granifera ZMB191454 IDN Halmahera 6523 SEQ SEQ SEQ SEQ

Tarebia granifera ZMB191458 IDN Sulawesi 2866 SEQ SEQ SEQ SEQ

Tarebia lineata ZMB106518 IDN Bali 1470 SEQ SEQ SEQ SEQ

Tarebia lineata ZMB191465 IDN Java 2869 x x SEQ SEQ

Tarebia lineata ZMB200325 IND Karnataka 1469 SEQ SEQ SEQ SEQ

Thiara amarula ZMB106354 AUS Queensland 2870 SEQ SEQ SEQ SEQ

Thiara amarula ZMB107220 AUS Queensland 4785 SEQ SEQ SEQ SEQ

Thiara amarula ZMB191489 IDN Obi 2886 SEQ SEQ SEQ SEQ

Thiara australis AMS427964 AUS West Australia 3076 SEQ SEQ SEQ SEQ

Thiara australis ZMB106698 AUS Northern Territory 1836 SEQ SEQ SEQ SEQ

Thiara australis ZMB106706 AUS Queensland 1845 SEQ SEQ SEQ SEQ

Thiara australis ZMB106709 AUS Northern Territory 1866 SEQ SEQ SEQ SEQ

Thiara australis ZMB107286 AUS Northern Territory 4878 SEQ SEQ SEQ SEQ

Thiara australis ZMB107290 AUS Northern Territory 4916 SEQ SEQ SEQ SEQ

Thiara australis ZMB107579 AUS Queensland 7990 SEQ SEQ SEQ SEQ

Thiara cancellata ZMB107489 IDN Sulawesi 6498 SEQ SEQ SEQ SEQ

Thiara cancellata ZMB191431 IDN Obi 2817 SEQ SEQ SEQ SEQ

Thiara mirifica ZMB191270 IDN Sulawesi 2881 SEQ SEQ SEQ SEQ

Thiara mirifica ZMB191429 IDN Obi 2883 SEQ SEQ x x

Thiara rudis ZMB107280 AUS Queensland 4867 SEQ SEQ SEQ SEQ

Thiara rudis ZMB107377 IDN Sulawesi 6494 SEQ SEQ SEQ SEQ

Thiara rudis ZMB106472 IDN Bali 1001 SEQ SEQ SEQ SEQ

Thiara rudis ZMB106704 AUS Northern Territory 2811 SEQ SEQ SEQ SEQ

Thiara rudis ZMB191262 IDN Sulawesi 4561 SEQ SEQ SEQ SEQ

Thiara rudis ZMB191279 IDN Bali 4559 SEQ SEQ SEQ SEQ

Thiara winteri ZMB106554 IDN Bali 1043 SEQ SEQ SEQ SEQ

3.2.2 Divergence time estimates

Although the Thiaridae have documented fossil records, their interpretation is hampered

by the lack of consistent diagnoses of the family itself. Many species of freshwater snails

that are characterized by a turreted shell were originally placed within the Melanidae

which had to be renamed Thiaridae. This group was found to be polyphyletic, containing

many different families. In case of the thiarid fossils from Australia and New Zealand

mentioned in the introduction, it remains questionable if they can be attributed to the

genus Melanoides. In the absence of any comprehensive survey of thiarid fossils, it was

attempted to find fossils that can at least be confidently assigned to closely related fam-
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ilies. The most reliable study concerning members of the same superfamily is that of

Reid et al. (2008). Based on a comprehensive reinterpretation of the fossil record they

suggest that the living members of the Potamididae are a monophyletic radiation that has

always been closely associated with mangroves and whose earliest certain representatives

appeared in the Middle Eocene. In addition, the neotropical Hemisinidae are known to

have confidential fossils, known from the early Oligocene and the molecular data was cal-

ibrated using fossil records of the two families Potamididae and Hemisinidae (see tab.3).

For the molecular clock approach the same alignment was taken as for the phylogeny

reconstruction but increased by additional outgroups for the calibration (see tab. 4).

Table 3 Outline of the fossil record of the Potamididae and Hemisinidae. Abbreviations: Cret,
Cretaceous (65.5-145.5 Ma); Eoc, Eocene (34-56 Ma); L, Late; M, Middle; Mioc, Miocene (5-23
Ma); Olig, Oligocene (23-34 Ma); Plioc, Pliocene (1.8-5 Ma); Rec, Recent.

Age Geographical range References

Potamididae
Telescopium telescopium Middle Mioc W Pacific Reid et al. (2008)
Tympanotonos fuscatus Rec W Africa Reid et al. (2008)
Terebralia palustris Early Mioc IWP; Italy (L Mioc) Reid et al. (2008)
Genus Cerithideopsis Late - Middle Eoc Europe, Peru, Florida (Plioc) Reid et al. (2008)
Genus Cerithideopsilla Middle Mioc Indonesia, W Pacific, Mediterranean Reid et al. (2008)
Genus Cerithidea Mioc-Plic Saipan, W Pacific, Java Reid et al. (2008)

Hemisinidae
Hemisinus cf. venezuelensis Plioc Venezuela Jung (1989)
Hemisinus costatus n. sp., H.
bituminifer n. sp.

Mioc Cuba Cooke (1919)

Hemisinus kochi Middle Mioc Amazonia Wesselingh (2006)
Hemisinus cf. oeciscus Olig Panama Woodring (1957)
Hemisinus terebriformis n. sp. Early Olig Peru Olsson (1931)

Divergence times were estimated using the log-normal uncorrelated relaxed clock method

implemented in BEAST v.1.4.8 (Drummond and Rambaut, 2007; Drummond et al., 2012).

The BEAST input file including setting, evolutionary model and options for the MCMC

analysis was generated using the program BEAUti (Bayesian Evolutionary Analysis Util-

ity). Choice of nucleotide substitution model followed that for the phylogeny reconstruc-

tion (based on MrModeltest). A normally distributed calibration prior with mean 42.9

and standard deviation 2.5 (95% range: 38.8-47.8 ma) was set for the node age of the

Potamididae and a second calibration point with mean 31.0 and standard deviation 1.1

(95% range: 33.9-28.1 ma) was set for the node age of the neotropical Hemisinidae. The

posterior distribution of divergence times with 95% credibility intervals was obtained by

at least two independent MCMC sampling runs of 30.000.000 generations with an initial

burn-in of 30.000 during which every 1000th tree was sampled. Analyses were checked

for convergence using Tracer v1.4.1 (Rambaut and Drummond, 2008) and ESS values

exceeded the recommended threshold of 200 for each parameter. Finally, the logged pa-
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Table 4 List of additional sequences of Cerithioidean families for molecular clock approach.

Geographical range GenBank accession or museum numbers (ZMB)
Species used for RASP analyses COI 16S 28S

Potamididae
Cerithidea decollata Africa AM932764 HE680776 HE680680
Cerithideopsilla djadjariensis Asia AM932785 HE680834 HE680753
Cerithideopsis largillierti Asia, Australia HE680615 HE680842 HE680759
Telescopium telescopium Asia AM932799 AY010318 HE680763
Terebralia palustris Africa AM932802 AY010319 AM932742
Tympanotonus fuscatus Africa - - AM932735

Melanopsidae
Esperiana esperi Europe ZMB107119 ZMB107119 ZMB107119

MS30289
Melanopsis praemorsa Europe ZMB191928 ZMB191928 HM003674

ZMB200364 ZMB200364 -
Zemelanopsis trifasciata New Zealand ZMB107011

ZMB183350
ZMB107011
ZMB183350

-

Pleuroceridae
Elimia interrupta North America - - HM003677
Semisulcospira libertina Asia - - HM003676

Paludomidae
Cleopatra bulimoides Africa AY791934 ZMB103720 ZMB103720
Cleopatra johnstoni Africa AY456536 AY456590 -

Hemisinidae
Hemisinus cubanianus South America/Caribbean - - HM003669
Pachymelania byronensis Africa ZMB191154 ZMB191154 ZMB191154

rameter values and trees from replicate runs were combined using LogCombiner 1.4.9.

The final calibrated chronogram and node estimates were edited using FigTree version

1.3.1 (Rambaut, 2009) and Adobe Illustrator CS5 version 15.1.0.

3.3 Results

3.3.1 Phylogenetic analyses

The Bayesian analyses and RAxML searches converged on nearly identical topologies,

which in turn, differed only slightly from the parsimony consensus tree generated with

PAUP. Analyses of the combined data set yielded similar relationships to those supported

in each of the separate gene trees. Although these topologies differed slightly among

terminal taxa, the trees showed similar relationships among deeper nodes. The ML-

phylogenetic trees constructed from the combined mt - and nuclear gene data sets are

shown in fig. 5 and 6. The Bayesian analyses and parsimony consensus trees are shown

in the appendix (see page 149 - 153).



24 3 Australian thiarids - ancient relicts or recent invaders?

Ripalania 
queenslandicandica

Pseudoplotia
scabra

oplotia

Plotiopsis balonnensisnne sensis

Thiara amarularularula

“Thiara“ australisralis

“Stenomelania“ 
 denisoniensis

nia“ lan
sisens

Melanoides 
tuberculata

Sermyla 
venustula

yla
t lstulastula

Melasma 
onca

lasma
a

Thiara cf. rudissudis

HEMISINIDAE

PALUDOMIDAE

Stenomelania 
aspirans

Figure 5 RAxML topology based on combined COI and 16S sequences. Numbers on nodes
indicate bootstrap support values of the shown topology. The Australian thiarid taxa are high-
lighted and not monophyletic. For abbreviations of taxa and locality names see appendix.
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Monophyly of the Thiaridae is highly supported in the trees from individual genes and

from concatenated sequences (mt and nDNA respectively). Also the sister group rela-

tionship between Thiaridae and Hemisinidae is consistent between the different genes and

analyses. The Australian taxa are not monophyletic, species and populations from the

continent are nested among their congeners and relatives from outside of Australia. Con-

cerning the relationships within the thiarids the mt-data clearly separates different species

(see fig. 5) but the nuclear data does not support the majority of the mtDNA branching

orders. Here the relationships among the genera and taxa within the thiarids are mostly

poorly resolved providing little phylogenetic signal.

Another difference between mt- and nuclear data can be seen in the position of the Palu-

domidae. In the mt-RAxML and BI tree the pleurocerid sequence is the sister group to

the Hemisinidae/Thiaridae group although with unsupported nodes. By contrast, in the

analyses based on nuclear data the Paludomidae are consistently at the base of the clade

uniting the Hemisinidae and Thiaridae. This branching order is highly supported (100%

bootstrap/posterior probability).
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3.3.2 Molecular Dating

The results of molecular dating using the present data and a Bayesian approach with

a relaxed clock model are shown in fig.7 and fig.8. Although the nDNA data do not

support the majority of the mtDNA phylogenetic relationships, the ages of nodes are in

a similar range in both approaches. The divergence-time estimates for major lineages are

summarised in table 5. These estimates suggest that the initial evolutionary diversification

of thiarids probably occured around 50 Ma. Including the 95% density intervals this covers

an extended period between Early Oligocene (24,71 Ma) and Late Cretaceous (83,91 Ma).

The age of the Hemisinidae is calculated to be in the same Eocene epoche, with a 95%

density interval between 31,02 Ma and 72,87 Ma.

The mt-timetree shows that the divergence between Thiaridae and Hemisinidae probably

happened in the Late Cretaceous (83,65 Ma; 95% density interval: 52,3-120,26 Ma).

Among Paludomidae, the split between Paludomidae that originated in Asia and the

African ones is dated also in that time range (76,17 Ma; 95% density interval: 52,3-120,26

Ma). These two nodes are only represented in the chronogram based on the mt-data

set. They seem to be unstable in the 28S time-tree and dependent on the composition of

the data set. In a previous approach with only one calibration point and less outgroup

sequences the position of the Paludomidae is the same as in the mt based analyses (see

appendix fig.52).

A small time difference between the nuclear and the mitochondrial data can only be seen

at the split between the clade uniting Hemisinidae and Thiaridae and the Paludomidae.

The 28S chronogram gives an age about 69 Ma and the concatenated mt time-tree an age

about 100 Ma for this node. This gives an overall confidence interval between 38,7 Ma

and 143,09 Ma which corresponds to a range from Eocene to Early Cretaceous.

Table 5 Results of a Bayesion estimation of divergence times. Time estimates are given
in millions of years (Ma) for nodes representing the most recent common ancestor of relevant
clades. HPD: the 95% highest posterior probability density (equivalent to a confidence interval);
TMRCA: time to most recent common ancestor.

TMRCA 28S 16S & COI

mean [95% HPD Lower/Upper]

Hemisinidae (HEM) 47,78 [31,02/68,15] 49,92 [33,9/72,87]

Paludomidae (PAM) / 76,17 [41,1/116,06]

Asian Paludomidae 28,58 [5,68/54,54] 35,34 [16,93/59,43]

Thiaridae (THA) 52,13 [24,71/83,91] 50,42 [31,99/73,77]

THA & HEM / 83,65 [52,3/120,26]

[THA & HEM] & PAL 69,13 [38,7/105,68] 99,29 [63,18/143,09]
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THIARIDAE

PALUDOMIDAE

HEMISINIDAE

POTAMIDIDAE

MELANOPSIDAE

PLEUROCERIDAE
CERITHIIDAE

SEMISULCOSPIRIDAE

Figure 7 28S BEAST chronogram. Divergence dates (black numbers at nodes) are only
displayed if higher than 6 Ma. Blue bars represent 95% highest posterior density intervals and
posterior probabilities are highlighted in red. Scale is given in millions of years before present.
Note that the tree is unrooted because forced rooting resulted in falsified branch lenght and
node ages.
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3.4 Discussion

The combination of molecular phylogenies with distributional data, the fossil record and

divergence date estimates provides the basis for the discussion of the historical biogeog-

raphy of thiarids and their origin in Australia. Are we dealing with an ancient allopatric

divergence by means of tectonic plates, do we have a more recent separation achieved by

dispersal or are we faced with a combination of both scenarios?

Above all, the presented results show that the monophyly of the Australian thiarids can

be ruled out. Accordingly, the recent distribution cannot simply be explained by a single

dispersal event from Asia to Australia neither vice versa. If one of these areas is the center

of origin there were multiple dispersals in one or even both directions.

The here shown phylogenies confirm the results within the phylogeny of the superfamily

Cerithioidea (Strong et al., 2011): Thiaridae formed a monophyletic group in all analy-

ses, with Hemisinidae consistently emerging at its base. The revealed overall consistent

topology [Paludomidae[Hemisinidae,Thiaridae]] is possibly reflecting a Gondwanian vi-

cariant event. A reconstruction of the historical biogeography necessitates a thorough

understanding of the gradual breakup of Gondwana (see fig. 9). In the beginning Gond-

wana was a single contiguous supercontinent comprised of what would become Africa,

South America, Antarctica, Australia and India. It is well accepted that approximately

175 Ma ago, rifting between western Gondwana (South America and Africa) and east-

ern Gondwanan components (India, Antarctica and Australia) commenced (Yoder and

Nowak, 2006). The South Atlantic Ocean opened about 130 Ma ago as Africa separated

from South America (Macdonald et al., 2003). At about the same time (130 Ma), India,

which was still attached to Madagascar, separated from the Antarctica-Australia block,

opening the central Indian Ocean (Briggs, 2003). During the Late Cretaceous (80 Ma),

India broke away from Madagascar, and Australia slowly drifted away from Antarctica.

India collided with Eurasia some 50 million years ago, while the northward-moving Aus-

tralian plate had just begun its collision with Southeast Asia that is still under progress

today.

The phylogenetic history seems to be congruent with this known sequence of vicariant

events. The two deep nodes in the overall consistent topology lie in a similar range of time:

with the age of split between Thiaridae/Hemisinidae at around 84 Ma and between these

and Paludomidae at 100-70 Ma. Matthews et al.’s (2012) investigations of the tectonic and

volcanic events that occurred during the period 110-90 Ma reveals that all major plates

were affected by plate motion changes at this time and this reorganization event was global

in scale affecting oceans and continents. This major plate reorganization certainly led to

regional sea-level changes with land-emergence and submergence that could have caused

the first splits between the families. The ancestral thiarid/hemisinid lineage would have

originated in the block of Antarctica/Australia. Due to the changes the ancestral thiarid

lineages went to the eastern side and the ancestral hemisinid lineages to the western
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side of Antarctica which was still connected to South America. This distribution would

explain the similarity of the mentioned fossil of New Zealand with the South American

Hemisinids.

Figure 9 The breakup of Gondwana occurred in stages. Some 160 million years ago, in the
Late Jurassic Period, Australia was still within the southerly latitudes and part of eastern Gond-
wana (Madagascar, India, Australia, and Antarctica). By 120 Ma, the breakup had extended,
separating Australia from India and the west coast of Australia faced the Indian Ocean. In the
Late Cretaceous Period (80 Ma), a gulf developed between Australia and Antarctica. India had
left Gondwana and moved north towards Asia. From aproximately 45 Ma Australia started to
be a separate island continent moving north towards Asia. Modified from Mitchell et al. (2014).

The ancestral Paludomidae lineage lived on the continental block associating India and

Africa. This scenario could explain the present distribution of Paludomidae in Asia as

members of Paludomidae were possibly carried on the Indian plate, following the breakup

of eastern Gondwana and subsequent northward drift of India to Asia. As India collided

with Asia, there was undoubtedly significant biotic interchange between both landmasses

(Rust et al., 2010). Ali and Aitchison (2008) suggest that about 57 Ma was the earliest

time such migrations would have been possible for non-volant faunas. Although other

critical estimates of initial contact differ to as young as the Eocene-Oligocene boundary

35Ma (Rust et al., 2010). The estimated age of the Asian Paludomidae is about 28 Ma

(28S) and 35 Ma (mtDNA), which is consistent with this scenario. However, the age of

the Paludomidae is dated to 76 Ma, a time where India and Africa had already been

separated for a long period of time as the Indian plate separated from Africa in the Early

Cretaceous ca. 130 Ma.
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In addition, the estimated divergence between the South American and African Hemisinidae,

at about 50 Ma, is inconsistent with the separation of South America from Africa about

130 Ma ago. A possible explanation will be discussed later.

The origin of thiarids If the clock estimates prove correct, then the period of the

origin of thiarids coincides with Australia finally being an island continent starting its

movement northwards (see fig.9). Based on the results presented here it can be excluded

that the family already emerged as such before the breakup of Gondwana. But it is

still possible that the ancestral thiarid lineage originated in Australia and that Asia was

colonized subsequently.

The plot of Thiaridae lineages through time reveals a pulse of increased diversification

within the period of the collision of the Australian plate with Southeast Asia during the

past 20-30 Ma. Numerous sister taxa splits have occurred between the Late Oligocene

(about 28 Ma) and Early Miocene (about 14 Ma). The region around Wallace’s line

revealed complex movements of terranes over the past 20-30 Ma. In the Early Miocene

(about 23-20 Ma), the Sula Spur, a promontory which was the continuation of the Aus-

tralian continental margin, collided with the SE Asian margin. Once the Australian

terranes have approached Asian land masses the thiarid lineage maybe managed to colo-

nize islands in the Wallacea. This aspect will be discussed in more detail later on. The

Wallacean islands are oceanic and have never been connected to either the Indo-Malayan

(Sunda) or Australasian (Sahul) continental plates (Andersen et al., 2013). There is the

theoretical possibility of a vicariant origin of taxa from both sides across the Wallace Line,

that is, from the Indo-Malayan (Sunda) and from New Guinea/Australia (Sahul).

In principle, phylogenetic topologies and area cladograms can be used to distinguish

between dispersal and vicariance and to detect the direction of dispersal events or define

probable areas of origins (as inferred by dispersal-vicariance analysis). When phylogenies

reveal lineages from one geographic area deeply nested within clades from another area,

dispersal is typically inferred (Yoder and Nowak, 2006). Conversely, a vicariant origin

is expected to result in a spectrum of exclusive sister relationships within the separated

populations, reflecting the long-term duration of disconnectedness (Miura et al., 2013).

Due to the non-robustness of the trees and inconsistencies between the genes this approach

is only shortly discussed and, accordingly, computational analysis was omitted.

The phylogenetic results of the mitochondrial data set identified six pairs of sister groups

between Wallacea and Sahul thiarids (see fig.10). The estimated timing of these splits

range from 18 to 2 Ma. Of these six, four represent sister relationships within the separated

populations/species and two are nested within clades from other areas (that is S. aspirans

and P.scabra). Note that the only two sister groups between Wallacea and Sundaland

are built by the invasive species M. tuberculata and P. scabra, that are known to disperse

and colonize easily into new regions.
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These splittings could be interpreted as a result of vicariance with subsequent disper-

sal from Australia to Asia. But when looking at early branching clades of the mt-

chronogramm, it becomes clear that they are partly formed by species from the Sunda
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Shelf which would indicate the probable area of origin. Due to the lack of support and in-

consistencies between the genes, the relationships among closely related species of thiarid

taxa remain somewhat uncertain. The conflicting patterns between mtDNA and nDNA

and the within diversification of the thiarids are discussed in the ‘General discussion’

chapter on page 109. More robust phylogenies are needed to make a statement.

Dispersal without land connection? As mentioned before, the Wallacean islands

are oceanic and have never been connected to either the Indo-Malayan (Sunda) or Aus-

tralasian (Sahul) continental plates (Andersen et al., 2013). In addition, there is no

evidence for the existence of a subaerial link between the Sula Spur and Australia-New

Guinea during the Oligocene (33.9 - 23 Ma) to the Early Miocene (23 - 15.97 Ma) (Stel-

brink et al., 2012). Such land connections are essential preconditions for matching a

vicariance hypothesis in case of species that disperse via land or freshwater. For any

freshwater individuals exposure to sea water should inflict mortality owing to physio-

logical stress, but in case of some thiarid species a dispersal stage is present with a

free-swimming veliger larvae that may develop in the sea (Strong et al., 2008; Kano et al.,

2011). This might also be an explanation for the non-overlap with the separation of Africa

and South America. Over a long period of time the continents were only separated by a

sea corridor that should be easily bypassed by veligers. Although the release of veligers

has been observed, transoceanic dispersal has never been directly confirmed (Kano et al.,

2011). And whether the reproductive mode was ovipar or vivipar in the beginning still

remains unresolved. However, an alternative hypothesis for the dispersal without land

connection could be passive transport via floating debris carried down rivers and swept

away by ocean currents.

Sources of Error Several factors, including tree topology, taxon sampling, and fossil

assignments can significantly influence clade relationships, age estimates, and diversifi-

cation rates. As previously mentioned, the relationships within the family lack strong

support and the focus was primarly on relationships and estimated ages supported by a

combination of molecular (mt and nuclear), morphological, and fossil evidence.

Needless to say, all age estimates should be treated with caution not only because of their

large confidence intervals and possible underestimation due to saturational effects (Wilke

et al., 2009) but also because fossil data might be imprecise and only give minimum

estimates for the age of a group.

Summary All in all, the classical vicariance scenario of dispersal by rafting on a Gond-

wanian fragment provides the most parsimonious explanation for the present distribution

and, at the same time, the results demonstrate that vicariant speciation is seldom an ex-

clusive mechanism as dispersal is an important process at the species and/or population

level (Lohman et al., 2011). Crisp et al. (2011) cautioned against the use of simplified
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‘rafted Gondwanian fragment’ interpretations in the biogeographical explanation of for-

merly wide Southern Hemisphere distributions, pointing out that trans-oceanic dispersal

is more likely in most cases. However, in the case of the Thiaridae, the topology of the

molecular phylogeny, the timing of events as suggested from a molecular clock were found

to be largely congruent with a vicariance scenario within the framework of Gondwanian

fragmentation. Although the age of the family is much younger than assumed, it coincides

with the separation of Australia from Antarctica. If so, Asia seems to have been colonized

a number of times subsequently.

Nevertheless, this hypothesis remains to be fully tested by a more detailed study of the

fossil record as the conclusions are based on the absence of definitive fossils on the northern

continents. It is an interesting challenge for future research to explore the biogeography

of these groups in more detail and the possible role of changes in reproduction strategies

and the origin of viviparity.
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4 A biogeographical revision of Australian thiarids

4.1 Specific introduction

This chapter focusses on the Australian thiarids and their geographic distribution on

the continent. The Thiaridae are widely distributed in all major regions of Australia,

with the exception of the arid central and most southern parts. The highest species

diversity for thiarids is found in the coastal rivers and inland streams of the wet-dry

tropical northern parts. Although in an arid continent like Australia the freshwater fauna

should deserve particular attention, appraisals of its components are rare. There were

essentially only three studies before the work of Glaubrecht et al. (2009) that dealt in

some more detail with the taxonomy of thiarids: the “basic list of freshwater Mollusca

of Australia” compiled by Iredale (1943), the contribution of McMichael and Weatherley

(1967) based essentially on non-Australian Thiaridae and a catalogue of freshwater taxa

with some taxonomic decisions compiled by B.J. Smith (1992). According to Smith (1996)

thiarids are third in Australia in terms of number of native genera and species after the

Hydrobiidae and the Planorbidae, but the number of species and genera of Australian

thiarids remained at best tentative till the comprehensive investigations of Glaubrecht

et al. (2009).

Based on their own collections, the study of relevant type material and the comparison

with material from major Australian museum collections, Glaubrecht et al. (2009) sug-

gest differentiating 8 genera with a total of 11 species among the Australian Thiaridae.

Essentially this classification is based on shell morphology. In addition, they describe

and document the radulae and the juvenile’s morphology and discuss the taxonomical

implications and nomenclatural consequences of all relevant thiarid taxa. Of these 11

species they consider more than half (n = 6 species) as being endemic to Australia, viz.

“Thiara australis”, Plotiopsis balonnensis and “Stenomelania” denisoniensis with wider

distribution as well as with more restricted ranges Melasma onca, Sermyla venustula and

Ripalania queenslandica. In contrast to these endemics, they infer that Thiara amarula

and Stenomelania cf. aspirans as well as Melanoides tuberculata, Plotia scabra, and

Sermyla riqueti are widely distributed also outside of Australia.

As mentioned, in the work of 2009 primarily morphological features were used to char-

acterize and distinguish individual taxa. These comprehensive investigations are now

complemented with molecular analyses and additional sampling with the objective of

testing the identity of these taxa as phylogenetic species (i.e. monophyletic units), in the

course of a preparation of a systematic revision. The merging of the results provides a

more complete picture of all Australian thiarid species and their geographical distribution

on the continent with references ranging from continent-wide to drainage-based patterns.
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4.2 Specific material and methods

4.2.1 Distribution maps

The distribution maps and material lists used in this study are based on those of

Glaubrecht et al. (2009) and complemented, updated and corrected by the molecular

results and additional sampling data from four additional surveys conducted between

2009 and 2012. All known localities of material pertaining to the collected thiarids (or

consulted collections) were comprehensively compiled in “material examined” tables and

distribution maps for each species. Given the limited accessibility to freshwater in remote

areas of Australia repeated collections were made at the same spots on different expe-

ditions. The museum numbers of lots from these different sampling years on the same

locality are listed one after another in the corresponding table entry. The names of the

regions are aligned to correspond to the Australian Bioregionalisation Atlas (ABA), a

formalised and comparative system for Australia’s biogeographical regions established by

Ebach et al. (2013) which is based on the fluvifaunal regions proposed by Iredale and

Whitley (1938) (see fig.11).

Figure 11 Freshwater zoogeographical regions as proposed by Ebach et al. (2013) in the Austral
Bioregionalisation Atlas, which aims to be a repository of all names and maps used to describe
and depict phytogeographical, zoogeographical, freshwater zoogeographical and marine areas
within the Austral region.
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As the ABA regions represent only a rough division, whenever referring to several parts

or drainage systems within one region I apply the names used in McMichael and Hiscock

(1958), in combination with those of the major drainage systems as given in Williams

and Allen (1987) as proposed by Glaubrecht et al. (2009) (see fig. 12). This is necessary

for the Leichhardtian region in particular, which includes the Northwestern and Gulf of

Carpentaria coastal drainages extending from the Fitzroy River (Western Australia) to

the Torres Straits.

Figure 12 Drainage systems in Australia. The highest species diversity for thiarids is found
in the coastal rivers and inland streams of the wet-dry tropical northern parts of Australia viz.
the Timor Sea Drainage (shown in green) and the Gulf of Carpentaria drainage (blue).

Note that for the readability of the maps, in cases of analysed multiple samples from

closely adjacent localities only one dot is shown to represent the occurrence, that is why the

number of dots does not always correspond to the number of list entries. Furthermore, in

case of early museum samples usually no geographic coordinates were available (marked by

n.d. (= no data) in the corresponding table entry). Different dots are used to distinguish

the type and processing status of material: Black dots represent genetically confirmed

localities, white dots with an inner black dot stand for ethanol material (that either has

not yet been extracted or whose extraction failed) and white dots represent dry shell

material.
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4.2.2 Photos of shells

Photos of the shells were taken with a digital reflex camera (Canon EOS 350D and 550D).

Shells were arranged in a standardized position with the aperture at 90◦angle to the cam-

era and the apex forming a horizontal line with the columella. Note that only photos of

individuals are shown for which the preliminary species identification was verified or cor-

rected by molecular genetics. The small amount of shell photos is due to the problem that

extractions were mostly made of snails with cracked shells. Thiarids can close the aper-

ture of their shell with an operculum, which prevents ethanol from entering and fixing the

tissue for DNA preservation. Thus cracking the shell directly after sampling in the field is

inevitable to make sure that the ethanol penetrates the complete soft tissue. On account

of this problem, in 2011 photos were also taken in the field before cracking, unfortunately

individuals could not be handled separately because of logistic issues. Hence, in most

cases where sequences are present, no photo of a corresponding intact shell is available.

The appearance of shells of T. amarula, S. cf. aspirans and R. queenslandica is charac-

teristic of each species. They haven’t been confused with another species in any case. For

these species a typical shell, that hasn’t been explicitly genetically confirmed is displayed

beside the corresponding distribution map. For pictures of types see (Glaubrecht et al.,

2009).

4.2.3 Genetic data

As the nuclear data did not comprise sufficient genetic disparity for species delimitation,

mitochondrial sequences were used for that purpose. At the beginning of the project

16S sequences were partly available and the alignment was complemented reaching 523

sequences for representative thiarids from all over the world and outgroups. From these,

255 16S sequences derive from Australian thiarids. In addition, a fragment of COI was

sequenced to check accordance with 16S results, getting 430 sequences in total and 155

from Australian thiarids. Details for sequencing and phylogenetic analyses are given in

the ‘General Material and Methods’ section. Note that in this chapter the resulting mt-

phylogenies are only considered for assigning individual sequences (and the corresponding

locality) to phylogenetic species (i.e. monophyletic units). A locality or lot is considered

to be genetically confirmed for a species if the appertaining sequence clusters in the

appropriate branch in the 16S and/or COI tree. If the genetic result is in concordance

with morphology and geography the individual is assigned to the species. In cases where

the results are in conflict it is checked if there might have been a misassignment in the

field. Conflicts are discussed in the comments at the end of each species section.
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4.3 Results

As the nuclear data does not comprise sufficient genetic disparity for species delimitation,

mitochondrial sequences are used for that purpose. The COI and 16S gene portions were

analysed separately and considered for assigning 295 individual sequences to phylogenetic

species. Monophyletic clusters of individuals corresponding to the Australian species

delimited by Glaubrecht et al. (2009) were recovered in both phylogenies.
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Plotiopsis balonnensis
Sermyla venustula
Melanoides tuberculata
Pseudoplotia scabra
Melasma onca
Ripalania queenslandica
Thiara amarula
„Thiara“ australis
„Stenomelania“ denisonensis
Thiara rudis
Stenomelania aspirans

Figure 13 Phylogenetic tree reconstruction by maximum likelihood based on COI sequences
of the haplotype reduced dataset conducted with RAxML. Sequences highlighted by coloured
areas are from Australia, accordingly conspecifics from outside of the continent have coloured
letters. An exception is the genus Melanoides, where only the branch with sequences from the
type locality is coloured. Numbers on nodes indicate bootstrap support of the shown topology
(displayed if higher than 50). Four and five-digit numbers represent extraction numbers, numbers
with prefix letter codes museum numbers. Taxa abbreviations in sequence names are uncorrected
(see text). Note that not all lots are represented as the alignment was reduced to unique
haplotypes before analyses. For abbreviations in taxa names see appendix.
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One exception is Stenomelania denisoniensis, the Australian sequences of this species

fall together with mostly Asian Melanoides sequences, which build a cluster separate

to a second Melanoides cluster which contains the Australian Melanoides tuberculata

sequences and those from the type locality of the species in India.

Apart from this, species from Australia were shown to possess unique mt-haplotypes by

which they could be identified as can be seen in the RAxML tree reconstruction based on

COI sequences (see fig. 13). In no case differences in species identification between the

COI and the 16S gene were found. The phylogenetic tree reconstruction by maximum

likelihood based on 16S sequences is shown in the appendix (see fig. 57).

The genetical confirmation exhibits that many individuals have been erroneously named

in the field. Figure 14 shows the rate of successful und unsuccessful pre-identifications

(pre-IDs) per taxa, meaning the identifications based on morphology undertaken in the

field. Differentiation using only external features was particularly unsuccessful in the

case of Melanoides tuberculata that was misassigned in almost 60%. The Australian

individuals that preliminarily had been labelled as Sermyla riqueti, turned out to have

typical Sermyla venustula haplotypes. Furthermore, the thiarid Thiara rudis could be

identified by molecular data, clustering with T. rudis sequences from Indonesia (see fig.57

in appendix). The specimens have already been collected in field trips since 2004 but

misidentified as “Thiara” australis and Sermyla venustula.

Figure 14 Charts showing the extent of species mis-assignments. In both graphs, the taxa
names in the horizontal axis represent the pre-IDs, i.e. the species name to which the individual
was assigned in the field. The values on the vertical axis of the left chart represent the number
of pre-IDs. In the right-hand chart the percentage of mis-IDs is shown per species.
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Table 6 List of wrong and correct pre-IDs per taxa. Conflicts show where specimens were
found outside of the known range of the newly assigned species.

pre-ID correct wrong new assignment conflict

P. balonnensis 32 1: 1x “T.” australis
M. onca 21 0 0
“T.” australis 77 21: 10x P. scabra, 6x M. onca, 3x T. rudis 2x P. balonnensis
S. venustula 38 27: 8x “T.” australis , 7x T. rudis , 11x S. denisoniensis 0
S. riqueti 0 2: 2x S. venustula 0
M. tuberculata 3 5: 3x S. venustula, 1x “T.” australis 1x S. venustula
S. denisoniensis 25 14: 8x M. tuberculata, 4x “T.” australis , 2x S. venustula 0
P. scabra 6 1: 1x “T.” australis 0
T. rudis 3 2: 1x “T.” australis , 1x P. scabra 0
T. amarula 6 0 0
R. queenslandica 7 0 0
S. cf. aspirans 4 0 0

All in all, the mt based species identification system worked out. In the case of M. onca,

R. queenslandica, T. amarula and S. cf. aspirans the morphological field identifications

are 100% identical to the molecular assignments.

Concerning the mis-IDs, 69 out of 73 are excepted as simply mis-identified species in

the field. These new assignments can all be confirmed by examining the morphology

of the shell and besides they are in accordance with the known geographical range of

the appropriate species. Only in four cases the new assignment seems doubtful because

the sampling locality lies outside of the known range of the species to which it was

attributed by molecular data (see tab.6). Of these conflicts, one sequence originating

from a locality in the P. balonnensis range and pre-identified to this species, turned out

to have typical mt-data of “Thiara” australis. Vice versa on two localities near the Gulf

of Carpenteria coast (the “Thiara” australis range) P. balonnensis could be genetically

identified although it has never been found in that area before. In these two cases the

morphology can’t be consulted because the two species are not distinguishable by shell

shape. The last conflicting case, a predefined M. tuberculata record in West Australia,

turned out to be indeed a mis-identification as the molecular assignment to S. venustula

could be clearly confirmed by morphology.
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4.3.1 Systematic revision

In this systematic part taxa are arranged starting with the type species of the Thiaridae,

viz. Thiara amarula, followed by subsequent taxa in alphabethical order. For more de-

tailed information about taxonomy, description and ecology see Glaubrecht et al. (2009).

Differences to the findings of the latter study are pointed out in the comments under the

individual species. As suggested in the mentioned paper, the two generic allocations of

“Thiara” (in case of australis) and “Stenomelania” (in case of denisoniensis) are used in

quotation marks only, in order to denote that the phylogenetic placement is doubtful.

It should be noted that here for the first time an additional thiarid, viz. Thiara rudis,

is documented as taxa with (more or less regular) occurrences in Australia not listed by

Glaubrecht et al. (2009) or known to the last available surveys.

Thiara amarula (Linnaeus, 1758)

Type locality: “Asiae fluviis”, as given by Linnaeus; i.e. in Asian rivers.

Distribution: The distribution of Thiara amarula extends from the south and east coast

of Africa west of the Indian Ocean to the Malay Archipelago, the Philippines and further

out into the Indo-West Pacific reaching the Solomon and Fiji Islands as well as Samoa,

as documented in Schütt and Glaubrecht (1999) and Glaubrecht et al. (2009).

On the Australian continent T. amarula is restricted within the Jardinian fluvifaunal

province to a small region along the east coast of Queensland, reaching from Bloomfield

River south of Cooktown to about a hundred kilometres south of Cairns (see fig. 15).

The preferred habitat is just above the brackish water zone of streams and rivers draining

to the Coral Sea.

Comments: The present analysis confirms the restricted distribution of Australian spec-

imens in the drainages along the east coast of Queensland. The sequences of Australian

T. amarula cluster together and build a sister group relationship to sequences obtained

from Indonesian samples.
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Figure 15 Geographic range of Thiara amarula on the Australian continent. Note the re-
striction within the Jardinian fluvifaunal province. Black dots represent genetically confirmed
localities and white ones dry material. Some dots represent multiple nearby localities.

Table 7 Locality data for the material examined of Thiara amarula. Bold ZMB numbers are
genetically confirmed.

Locality Coordinates Museum n◦

QL: Bloomfield River n.d. ZMB 210026
QL: Granite Creek 15◦55.99 S 145◦19.54 E ZMB 107217
QL: Woobadda River 15◦57.35 S 145◦21.11 E ZMB 106348
QL: Douglas Creek, Daintree Riv. 16◦16.194 S 145◦58.60 E ZMB 107218, 107594
QL: Cooper Creek 16◦10.43 S 145◦25.18 E ZMB 106350
QL: Martins Creek, Daintree Riv. 16◦14.163 S 145◦18.323 E ZMB 107599
QL: Mossman, Daintree Riv. n.d. AMS C.109658; ZSM 12430
QL: Mossman River n.d. AMS C.93924; CAS 46935
QL: Mowbray River 16◦33.87 S 145◦27.83 E AMS C.158117, 158275, 317842;

QM 16571, 64459; USNM 854006;
ZMB 106353, 210027, 107219, 107585,
107590

QL: Barron River 16◦52.170 S 145◦40.405 E ZMB 107220
QL: Barron River n.d. BMNH 1922.3.24.9; MCZ 198983
QL: N of Cairns n.d. AMS C.117626, C.117617, C.158127
QL: near Cairns n.d. AMS C.109659; MCZ 31304, 183317; SMF

108247/2
QL: North Johnstone River 17◦30.34 S 145◦59.55 E ZMB 106349, 106354
QL: Clump Point n.d. AMS C.109435
QL: Tully River n.d. AMS C.9285
QL: Rockingham Bay n.d. BMNH 1879.5.21.405
QL: Cardwell n.d. AMS C.109657, syntypes of “amaruloides”
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“Thiara” australis (Lea & Lea, 1851)

Type locality: “Victoria River, North Australia”

Distribution: The geographic range of “Thiara” australis is limited to the tropical north

of the Australian continent. Starting from the westernmost locality at the Fitzroy River

of the Kimberley drainages, it ranges through most rivers in the hot-wet zone of Northern

Territory to the Gulf of Carpentaria drainages in northwestern Queensland and ends in

the region of the Gregory-Einasleigh Range (see fig.16).
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Figure 16 Geographic range of “Thiara” australis. Some dots represent multiple nearby
localities. Black dots represent genetically confirmed localities, white ones dry material and
white ones with a black inner circle wet material. The red dot on the East coast shows the
locality in the P. balonnensis range from which mt-sequences cluster with “Thiara” australis
sequences (shell is shown in fig.17d).

Comments: In 2009, the distribution of “Thiara” australis in comparison to Plotiop-

sis balonnensis was stated to be “apparently completely exclusive, thus vicariant (al-

lopatric).” The genetic results are inconsistent with this statement, giving hints to



46 4 A biogeographical revision of Australian thiarids

“Thiara” australis occurrences in the Coral Sea drainage. In three cases sequences orig-

inating from localities in this P. balonnensis range have turned out to have typical mt-

data of “Thiara” australis. Note that the preliminary identification in the field as P.

balonnensis being easily misidentified as “Thiara” australis was done based on geogra-

phy only. None of these three extractions and PCRs were conducted by the author but

they were repeated. For one (ZMB 107259-1) the second extraction didn’t work but for

the second (ZMB 107244-2) the result of the rerun showed that there was a mix-up in

the lab and that the sequence does not belong to “Thiara” australis. As it cannot be

ruled out that this is also the case for the sample for which rerunning failed, these two

are not discussed further. However, in the third case, i.e. ZMB 106347-2 from Three

Mile/Poison Creek (see fig.17d), the second extraction confirmed that the sequence from

this P. balonnensis range equates to typical mt-data of “Thiara” australis. In addition,

in 2011 both species were found at the same time and locality (see for more details under

P. balonnensis section).

Figure 17 Shells of “Thiara” australis. a./b. NT: Daly River, Oolloo crossing (ZMB127748),
Shells resemble those of M. onca, they are partly cracked, the red gleam comes from modeling
clay on which shells are fixed for photograhy. c. QL: Bynoe River (ZMB 107579-1) sampled in
2009, locality in “Thiara” australis range where P. balonnensis mt-sequence was found in 2011
(see fig.27) d. QL: Three Mile-Poison Creek (ZMB 106347-2), in Plotiopsis balonnensis range,
mt-sequences cluster with “Thiara” australis sequences. Scale: 1 cm
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Table 8 Locality data for the material examined of “Thiara” australis. Bold ZMB numbers
are genetically confirmed. Cr-Creek; Hw-Highway; Riv.-River; Rd- Road

Locality Coordinates Museum n◦

WA: Kimberley n.d. BMNH

WA: Fitzroy Riv. n.d. BMNH 1841.11.74.93.103; AMS

WA: Geike Gorge, Fitzroy Riv. 18◦05 S 125◦43 E AMS C.324388; VK 0951

WA: Geiki Gorge 18◦06.521 S 125◦41.891 E ZMB 106696, 127510

WA: Fitzroy Riv., Fitzroy crossing township n.d. AMS C.427355

WA: Bank of Fitzroy Riv. at Sheep Yard Camp n.d. WAM 459-80

WA: Fitzroy crossing 18◦12.653 S 125◦34.74 E ZMB 106693,127505

WA: Lennard Riv., near Windjana Gorge 17◦25 S 124◦50 E ZMB 127506

WA: Isdell Riv. n.d. AMS

WA: Charley Riv., 25.3 km WSW of Mt. Blythe 16◦22.35 S 125◦12.35 E VK 12.386

WA: Billabong on side of Weber Plains Rd 15◦40.35 S 128◦44.39 E AMS

WA: Fowl Yard, Osmand Ck. 17◦16 S 128◦30 E AMS

WA: Ord Riv., W of Riv. 15◦47.480 S 128◦41.580 E AMS C.427964, 114695; ZMB

127512

WA: Ord Riv., Ivanhoe crossing 15◦41.22 S 128◦41.23 E AMS; VK 24.180

WA: Kununurra, Lake behind Diversion Dam 15◦47.51 S 128◦41.94 E AMS C.324387

WA: Ord Irrigation area, Kununurra n.d. WAM 728-77

WA: Farber Beach, Ord Riv., Kununurra n.d. AMS

WA: Lake Kununurra 15◦47.340 S 128◦43.005 E ZMB 106692

NT: North Australia n.d. BMNH 1857.9.30.9

NT: N.T. n.d. AMS C.26019, C.26017

NT: East Baines Riv., at crossing 15◦45.737 S 130◦1.75 E ZMB 106697, 127513

NT: Victoria Riv. n.d. BMNH 1844.12.27.1.11,

1857.11.18.130, 1857.9.30.10

NT: Victoria Riv., on Victoria Hw 15◦36.890 S 131◦07.820 E AMS C.427957, 427657

NT: Victoria Riv., bridge n.d. WAM 458-50

NT: Victoria Riv., crossing 14◦45.46 S 131◦35.68 E AMS C.22645; VK 24.182

NT: Victoria Riv., Timber Cr 15◦38.203 S 130◦28.529 E ZMB 127744

NT: Victoria Riv., Big Horse Cr 15◦36.878 S 130◦23.7 E ZMB 127621

NT: Victoria Riv., old crossing 15◦34.862 S 131◦06.142 E ZMB 106619, 127735

NT: Victoria Riv., Victoria Riv. Gorge 15◦37.79 S 131◦08.099 E ZMB 106621

NT: Victoria Riv., 195 km W of Katherine n.d. AMS C.324389

NT: Victoria Riv., Bulita Station 16◦07 S 130◦25 E NTM P7843

NT: Victoria Riv., Dashwood crossing 16◦20.02 S 131◦06.86 E AMS

NT: Victoria Riv., Top Spring, Timber Rd n.d. AMS

NT: Port Essington n.d. BMNH

NT: Port Darwin n.d. AMS

NT: Howard Springs, 66 km E of Stuart Hw 12◦27.5 S 131◦30 E AMS C.324390, 110490, ex 68505

NT: Margins of Howards Springs 12◦27.5 S 131◦03.0 E NTM 27451

NT: Howard Springs Cr 12◦27.268 S 131◦03.108 E ZMB 106594, 107628, 127736

NT: Howard Cr, 30 miles from Darwin n.d. AMS

NT: Howard Riv., crossing 12◦27.752 S 131◦05.008 E ZMB 106596, 106598, 106701,

106702

NT: Berry Springs, S of Darwin 12◦42.111 S 130◦59.854 E ZMB 106704, 107290, 107592,

127730; AMS

NT: Darwin Riv., 46 Rd miles from Darwin 12◦44.56 S 130◦57.88 E NMT P27467, AMS

NT: Darwin Riv., Weed Quad. 1, 2, 4 n.d. NMT P27469, P27472,

P27468, P27470, P27473

NT: Coomalie Cr, Stuart Hw 13◦0.88 S 131◦07.04 E AMS C.324138

NT: Stuart Hw 13◦01 S 131◦07.5 E NTM P6467

NT: Finnis Riv., NW of Batchelor 13◦01.316 S 130◦57.093 E ZMB 106648, 106649, 106664

NT: Crater Lake, NE of Adelaide Riv. 13◦02.76 S 131◦05.445 E ZMB 106659

NT: Rum Jungle at Litchfield Rd 13◦02.604 S 130◦59.862 E ZMB 106661

NT: Adelaide Riv. n.d. BMNH 1891.11.21.153-166,
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Locality Coordinates Museum n◦

1892.1.29.194

NT: Adelaide Riv., downstream from crossing 13◦08.742 S 131◦13.14 E ZMB 106610

NT: Adelaide Riv. 13◦10.353 S 131◦11.501 E ZMB 107554

NT: Adelaide Riv., S at crossing 13◦28.975 S 131◦5.853 E ZMB 106611

NT: Scott’s Cr, 9 km E of Adelaide R n.d. VK 0969

NT: Glass Water Swamp, Litchfield Station 13◦19.52 S 130◦32.57 E VK 24.370

NT: Bamboo Cr, 3-10 m from Daly R 13◦40.118 S 130◦39.501 E ZMB 106612, 106672, 106674,

107263; VK 24.394

NT: Douglas Riv. crossing 13◦40.09 S 130◦39.59 E AMS; VK 24.369

NT: Douglas Riv. crossing, Bond Bridge 13◦47.36 S 131◦21.185 E ZMB 106615

NT: Douglas Riv., crossing to Tipperary Station 13◦50.22 S 131◦09.71 E VK 24.375

NT: Junction of Douglas and Daly Rs 13◦50.26 S 131◦08.49 E NTM P27450

NT: Daly Riv. crossing 13◦46.026 S 130◦42.688 E ZMB 106670, 106710, 106715,

107264

NT: Daly Riv., Oolloo crossing 14◦4.24 S 131◦15.056 E ZMB 106666, 107289, 127748,

127633

NT: Daly Riv. at Kathleen Falls 14◦45.46 S 131◦35.65 E AMS C.21440, 324384

NT: Kathleen Falls, Flora Riv. 14◦45.412 S 131◦35.791 E ZMB 106618, 127731; VK 24.179,

24.181

NT: Flora Riv., below Kathleen Falls 14◦43.992 S 131◦36.487 E ZMB 127746

NT: Flora Riv., c. 18km from Djarrung campground 14◦40.092 S 131◦40.963 E ZMB 127745

NT: Katherine Riv., at Katherine 14◦29.441 S 132◦14.991 E ZMB 107288, 127747

NT: Katherine Riv., downstream Land Bridge 14◦29.49 S 132◦14.73 E ZMB 106698

NT: Lagoon, King Riv., S Katherine n.d. AMS

NT: Cr, SW of Katherine, fossil n.d. AMS

NT: Cr, SE of Katherine, fossil n.d. AMS

NT: Roper Riv. n.d. AMS C.109742

NT: Elsey Falls, Roper Riv. on Elsey Station n.d. VK 0957

NT: Elsey Cementery, S of Mataranka Springs 15◦05.15 S 133◦07.44 E AMS C.339837

NT: Elsey Riv., at Elsey Cementery n.d. ZMB 106652

NT: Warloch Ponds on Elsey Cr 16◦5.042 S 133◦7.258 E ZMB 192014, 127632

NT: Waterhouse Riv., Stevie
’
Äôs Hole 14◦55.782 S 133◦8.732 E ZMB 106680, 107287, 107612

NT: Roper Riv., at Botanic Walk 14◦56.126 S 133◦8.532 E ZMB 127727

NT: Little Roper Riv. 14◦55.581 S 133◦7.176 E ZMB 106627, 106630, 106677,

107285, 107286, 107560,

127726, 127730; AMS C.317321

NT: Little Roper Riv., south bank 14◦55.59 S 133◦7.14 E ZMB 127516, 127719, 127721,

127735

NT: Mataranka, 1 km of Kowai Roper Ck. 14◦55.74 S 133◦7.06 E AMS C. 5776, 324383

NT: Roper Riv. at 4 Mile Point 14◦56.137 S 133◦10.033 E ZMB 106625, 107284, 107567,

127722, 127742

NT: Wabalarr, Roper Riv. 14◦45.028 S 133◦10.44 E ZMB 107620, 127724, 127743

NT: Mulurark Rapids, Roper Riv. 14◦56.68 S 133◦12.38 E AMS C.324385; VK 24.384-386;

ZMB 127729, 127741

NT: Roper Riv., at Jalmurark Campground 14◦57.158 S 133◦13.29 E ZMB 106675, 107265, 107559

NT: Roper Riv., 2km below Jalmurark 14◦57.515 S 133◦14.275 E ZMB 127732

NT: Roper Riv., Roper Falls 14◦57.401 S 133◦15.018 E ZMB 107283, 107556, 127723

NT: Salt Cr near Elsey Cr 15◦0.703 S 133◦14.417 E ZMB 106631, 106633,

106683, 106684, 107266, 127740

NT: Elsey Cr on Roper Hw 15◦0.627 S 133◦15.096 E ZMB 106707, 107267, 127717

NT: Roper Riv. at Roper Bar 14◦42.802 S 134◦30.474 E ZMB 106635, 106708, 107268,

127733; AMS

NT: Roper Riv., Mountain Cr 14◦46.543 S 134◦48.016 E ZMB 127739

NT: East Alligator Riv., at crossing to Arnhem Land 12◦25.542 S 132◦57.882 E ZMB 106642

NT: Goyder Riv., Arnhem Land n.d. AMS

NT: Koolatong Riv., Arnhem Land 13◦9.575 S 135◦51,839 E ZMB 107291

NT: E Goyder Riv. crossing, Arnhem Land 13◦02.70 S 134◦97.7 E AMS C.461368

NT: Rose Riv. catchment, Arnhem Land 13◦43.40 S 135◦06.2 E NTM P8703
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Locality Coordinates Museum n◦

NT: Mumpumapu waterhole, Arnhem Land 14◦38.3 S 135◦32.6 E AMS C.461355

NT: Wandoo Riv., Arnhem Land 14◦14.02 S 135◦36.11 E AMS C.461357

NT: Arnhem Land track to Arthur rd. and Numbulwar 13◦10.5 S 135◦72.6 E AMS C.461365

NT: Wilton Riv., Arnhem Land n.d. VK 0956

NT: ca 8 km NE of Towns Riv. crossing 14◦59.82 S 135◦16.28 E ZMB 192015

NT: ca 3.8 km NE of Towns Riv. crossing 15◦1.199 S 135◦14.136 E ZMB 190010

NT: Towns Riv., at crossing 15◦2.57 S 135◦12.718 E ZMB 106640, 107269, 127623

NT: Towns Riv., at boat ramp 15◦2.09 S 135◦13.161 E ZMB 127718

NT: Towns Riv., downstream 14◦59.839 S 135◦16.262 E ZMB 127737

NT: Towns Riv., northern bank 14◦59.792 S 135◦17.156 E ZMB 127738

NT: Towns Riv., backwater at junction with Cr 14◦59.999 S 135◦17.03 E ZMB 127728

NT: Cox Riv. crossing, billabong 2 km SE 15◦20.30 S 135◦21.15 E VK 25.912

NT: Limmen Bight Riv., at Rd crossing 15◦28.865 S 135◦24.054 E ZMB 107271, AMS

NT: Booroloola, McArthur Riv. crossing 16◦04.866 S 136◦19.026 E ZMB 107272, 107569; VK 24.374

NT: Borroloola, junction Rocky Cr./McArthur R. 16◦05.00 S 136◦18.50 E VK 24.381

NT: Wearyan Riv., along beach at crossing 16◦10.02 S 136◦45.481 E ZMB 107273

NT: Foelsche Riv. 16◦12.628 S 136◦53.034 E ZMB 107274

NT: Robinson Riv., at crossing 16◦28.27 S 137◦02.932 E ZMB 107275, 107573

NT: Calvert Riv., below junction with Bluey Ck 16◦56.066 S 137◦21.578 E ZMB 106709, 107276; AMS

QL: Gregory Riv., SE of Burketown 17◦53.517 S 139◦17.209 E ZMB 107277

QL: Gregory Riv., Beame Brook 17◦52.708 S 139◦20.576 E ZMB 127629, 107578

QL: Gregory Riv. at Gregory Downs 18◦38.695 S 139◦14.875 E ZMB 107278, 107628, 127628

QL: Lawn Hill Cr at Adels’ Grove 18◦41.365 S 138◦31.81 E ZMB 106705, 127622

QL: Lawn Hill Cr, nr the Cascades 18◦42.00 S 138◦29.00 E VK 26.353, 26354

QL: Lawn Hill, Boodjamulla Cr 18◦42.051 S 138◦29.196 E ZMB 107281, 127627

QL: Gregory Riv. at Riversleigh 19◦01.116 S 138◦43.529 E ZMB 107279, 107576, 127624-26

QL: Gregory Riv. crossing, Rsleigh Station 19◦01.25 S 138◦43.22 E VK 26.357, ZMB 106706

QL: O Shanassy Riv. 19◦01.354 S 138◦45.741 E ZMB 107280, 107574

QL: Judy Lagoon, Armraybald Station 17◦57.37 S 139◦45.12 E VK 26.360

QL: small stream, 6.5 km N of Almora 18◦14.27 S 139◦15.38 E VK 26.355

QL: Bynoe Riv., at crossing 17◦51.53 S 140◦47.58 E VK 26.350, ZMB 107579, 127630

QL: Norman Riv., at Glenmore 17◦51.228 S 141◦08.047 E ZMB 127631

QL: Gilbert Riv., at Burke Rd crossing 17◦10.117 S 141◦45.999 E ZMB 107282, VK 26.361

Thiara rudis (Lea, 1850)

Type locality: “Hab. Amboyna”; i.e. Indonesia, Molukka, Ambon

Distribution: Given the recent discovery of its occurrence in Australia only five locali-

ties on the continent have been known till now (see tab.9 and fig.18)). The species was

found in the Northern Territory in Berry Springs (close to Darwin) and on three localities

along the Roper River. So far the easternmost locality is in Queensland at the O’Shanassy

River. Outside of Australia Thiara rudis has a very wide distribution in south and south-

east Asia as reported from India, Sri Lanka, Myanmar, Cambodia, Indonesia and the

Philippines.
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Figure 18 Shell morphology of Thiara rudis in Australia. a./b. NT: Wabalarr, Roper River
(ZMB 107617).c. NT: Berry Springs (ZMB 106599).Scale: 1 cm
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Figure 19 Geographic range of Thiara rudis on the Australian continent. Note that here for
the first time this species’ occurrence in Australia is recorded. Given its recent discovery only
five localities on the continent have been known till now which are all genetically confirmed.
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Comments: Here for the first time the thiarid Thiara rudis is recorded and verified as

taxa with occurrences in Australia. It could be identified by molecular data, clustering

with T. rudis sequences from Indonesia (see fig.57 in appendix). With the knowledge of

its occurrence, the species could be selectively and successfully searched for on the field

trip in 2011.

Table 9 Locality data for the material examined of Thiara rudis. Bold ZMB numbers are
genetically confirmed. Asterisk (*) after the museum number indicates that the individual was
assigned to a different species in the field.

Locality Coordinates Museum n◦

NT: Berry Springs, SE of Darwin 12◦42.111 S 130◦59.875 E ZMB 106704*, 106599*, 127616
NT: Salt Creek at junction 14◦57.453 S 133◦15.095 E ZMB 127619, 127636*, 127637*
NT: Wabalarr, Roper River 14◦56.028 S 133◦10.44 E ZMB 107614*, 107617*, 127645*
NT: Roper River, Mountain Creek 14◦46.543 S 134◦48.016 E ZMB 127620
QL: O’Shanassy River 19◦1.354 S 138◦45.741 E ZMB 107280*

Melanoides tuberculata (O.F. Müller, 1774)

Type locality: “In littore Coromandel”; i.e. India, Coromandel Coast.

Distribution: Melanoides tuberculata has a very broad distribution, being found in

northern and southern Africa, eastern Mediterranean countries, the Arabian Peninsula,

south and southeast Asia, southern China, Japan, Malaysia, and northern Australia.

M. tuberculata has become widely invasive in the tropics outside of its native range (Fa-

con et al., 2003). In the Neotropical region, it occurs in most countries between the

southern states of the USA and Argentina. Its occurrence in Australia is verified for more

and more samples. The species is found in the north of Western Australia, in several

localities near Darwin and along the east coast of Arnhem Land in Northern Territory.

Apparently it is missing in the eastern part of the Gulf of Carpenteria drainage (see fig.21).

Its identity on the East Coast, that means all records from Queensland and New South

Wales, so far is only based on shell morphology (see shell fig.22). The extensive attempts

to get sequences from the eastern localities failed due to the lack of fresh material.

Comments: Because of its spotty occurrences on the continent with vicinity to larger

cities, it was assumed that the species is a possible recent introduction to Australia.

Now the findings show that it (or at least its typical mt-haplotypes) appears more of-

ten than thought. In the field the snails of this species have often been mixed-up with

“S.” denisoniensis. Although co-occurring they look quite different, as can be seen in

fig.20. A first idea was, that the records from the East coast might all have been confused
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with “S.” denisoniensis samples, but the appearance of the shell (see fig.22) shows that

in fact it seems to belong to M. tuberculata.

Figure 20 Picture of Melanoides tuberculata (left side) and “Stenomelania” denisoniensis
(right side) from locality where they co-occur. “12-11” is the code for the sampling locality
“Bitter Springs”.
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Figure 21 Distribution map of Melanoides tuberculata in Australia. Black dots represent
genetically confirmed localities, white ones dry material and white ones with a black inner circle
wet material. The extensive attempt to get sequences from the east coast failed (see text).
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Figure 22 Shell of Melanoides tuberculata from the East coast of Australia, i.e. Frenchman
Creek, Rockhampton in Queensland (AMS C414973). Extraction failed probably due to age, as
it was sampled in 2002. Scale: 1 cm.

Table 10 Locality data for the material examined ofMelanoides tuberculata. Bold ZMB numbers
are genetically confirmed. Asterisk (*) after the museum number indicates that the individual
was assigned to a different species in the field.

Locality Coordinates Museum n◦

WA: Lilly Lagoon, Kununurra 15◦46.825 S 128◦44.477 E ZMB 106690
WA: Lake Ord, Ord River, at Kununurra 15◦47.203 S 128◦44.163 E ZMB 127511
NT: Darwin, George Brown Botanic Garden 12◦26.739 S 130◦50.179 E ZMB 103694, 106592
NT: Howard Springs, Spring creek 12◦27.553 S 131◦3.069 E ZMB 127659*
NT: Darwin River 12◦44.527 S 130◦57.93 E ZMB 106726*
NT: One Mile Railway Dam, Darwin 12◦27.39 S 130◦50.44 E AMS C.322948
NT: Darwin, Ludmilla Creek 12◦25 S 130◦50.5 E AMS C.307840
NT: Berry Springs on Stuart Highway 12◦42.309 S 131◦0.401 E ZMB 107545
NT: Manton River 12◦50.282 S 131◦7.998 E ZMB 106603*
NT: Blacksoil Plan, Adelaide River 12◦39.7 S 131◦20.3 E AMS C.322949
NT: Springvale Hmst, Katherine 14◦30.09 S 132◦13.72 E AMS C.322950
NT: River, E of Maturanka 14◦42.94 S 34◦30.44 E AMS C.317344
NT: Arnhem Land, ‘’RR road” 14◦14.07 S 135◦36.18 E AMS 461367*
NT: Arnhem Land, Gove Peninsula 12◦14.94 S 136◦53.28 E AMS 461356*
NT: Arnhem Land 14◦9.12 S 135◦42.06 E AMS 461372*
NT: Arnhem Land, Mumpumampu 14◦22.98 S 135◦19.56 E AMS 461354*
NT: Arnhem Land Nhulunbry 12◦10.86 S 136◦47.1 E AMS 461350*
NT: Bitter Springs 14◦54.642 S 133◦5.362 E ZMB 127613
NT: CoxRiver 15◦19.394 S 135◦20.699 E ZMB 107240*
QL: Buchans Pt., N Cairns n.d. AMS
QL: Crystal Creek, Paluma, N Townsville n.d ZMB 104144
QL: Alice River, 25 km W Townsville 19◦20 S 146◦40 E ZMB 104145
QL: Airlie Beach n.d AMS
QL: Frenchman Creek, Rockhampton 23◦21 S 150◦34 E AMS C.414973
QL: Brisbane n.d AMS
NSW: Cudgen Lake, south end 28◦19.66 S 153◦33.47 E AMS C.337978
NSW: Yamba, near Grafton n.d AMS
NSW: Sydney, St. Peters, Brown Street n.d AMS
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Melasma onca (Adams & Angus, 1864)

Type locality: “North Australia, tributary of Adelaide River”

Distribution: Melasma onca is endemic to the tropical wet northern part of the North-

ern Territory of Australia. Its geographic range is restricted essentially to the inland areas

of the western Leichhardtian fluvifaunal province, including Timor Sea, but also Gulf of

Carpentaria drainages. Here the species is found in the river systems of the Daly and

the Roper River drainage, from the Adelaide River and South Alligator River eastwards

to rivers in Arnhem Land (see fig.23). Indicated by dry shells in the AMS, there is an

isolated occurrence at Robinson River, south of the Gulf of Carpentaria. This could not

be verified by own collections in 2007, 2009 and 2011 and this survey provides no evidence

for a distribution in this area or outside of the Northern Territory.

Comments: It should be noted that Melasma onca is (with the exception of the three

species only occurring in the Jardinian fluvifaunal province, i.e. Ripalania queenslandica,

Thiara amarula and Stenomelania cf. aspirans) the only one that can be easily diagnosed

and distinguished from other Australian thiarids. Each individual that was assigned to

this taxa in the field and molecularly examined, turned out to be, indeed, part of it.
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Figure 23 Distribution map of Melasma onca. Black dots represent genetically confirmed
localities, white ones dry material. Some dots represent multiple nearby localities.

Figure 24 Shells of Melasma onca of individuals that were genetically confirmed. a. NT:
Roper River (ZMB 107223). b. NT: Daily River crossing (ZMB 106711). c./d. NT: Bamboo
Creek (ZMB 106673). e. NT: Roper River (ZMB 106636). Scale: 1 cm
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Table 11 Locality data for the material examined of Melasma onca. Bold ZMB numbers are
genetically confirmed. Cr.-Creek; Riv.-River

Locality Coordinates Museum n◦

NT: Daly Riv. crossing 13◦46.026 S 130◦42.688 E ZMB 107549, 106671, 106711, 107221
NT: Bamboo Cr., 3-10 m from Daly R 13◦40.118 S 130◦39.501 E ZMB 107550, 106673
NT: Oolloo Crossing, Daly Riv. 14◦04.24 S 131◦15.056 E ZMB 106667, 107227, 127749
NT: Kathleen Falls, Flora Riv. 14◦45’33” S 131◦35’36” E VK 24.183, ZMB 127753
NT: Flora Riv., below Kathleen Falls 14◦43.992 S 131◦36.487 E ZMB 127754
NT: Flora Riv., near junction 14◦40.092 S 131◦40.963 E ZMB 127755
NT: Katherine Riv. 13◦43 S 132◦58 E NTM P15835
NT: Katherine Riv., at Katherine 14◦29.441 S 132◦14.991 E ZMB 106617, 106699, 127752
NT: South Alligator Riv., Coronation Hill 13◦36 S 132◦36 E AMS C.323838
NT: Roper Riv. n.d. AMS C.109742
NT: Arnhem Land, Waterhouse n.d. ZMB 19084
NT: Waterhouse Riv., E of Mataranka 14◦56’ S 133◦7’ E AMS C.317348
NT: Stevie’s Hole at Waterhouse Riv. 14◦55.782 S 133◦08.732 E ZMB 106681, 106682, 107226,

107613; AMS C.317333
NT: Little Roper Riv., at crossing 14◦55.581 S 133◦7.176 E ZMB 106628, 127760
NT: Roper Riv., at 4 Mile Point 14◦56.137 S 133◦10.033 E ZMB 106626, 107225, 107565, 127751
NT: Wabalarr, Roper Riv., E of 4 Mile Point 14◦56.028 S, 133◦10.44 E ZMB 107587, 107610, 107619
NT: Roper Riv., Mulurark 14◦56.771 S 133◦12.609 E ZMB 106622, 107625, 127761
NT: Elsey Falls, on Roper Riv., Elsey Sta-
tion

14◦57’15” S 133◦15’45” E VK 25.851, 25.841;

ZMB 107555, 127756
NT: Roper Riv., 2km below Jalmurark 14◦57.515 S, 133◦14.275 E ZMB 127757
NT: Roper Riv., at Jalmurark Camp Ground 14◦57.158 S 133◦13.29 E ZMB 107222
NT: Roper Riv., Roper Falls 14◦57.401 S 133◦15.018 E ZMB 107224; VK 24.387
NT: Elsey Park, near junction 14◦57’45” S 133◦15’02” E VK 24.388
NT: Roper Riv. at Roper Bar 14◦42.795 S 134◦30.575 E ZMB 106636, 107223, 127762;

VK 701, 26.351, 25.842
NT: Goyder Riv., Arnhem L. 13◦01.68 S 134◦58.60 E NTM P24903; VK 10.126
NT: W Goyder Riv. crossing, Arnhem L. 14◦14.02 S 135◦36.11 E AMS C.461364
NT: E Goyder Riv. crossing, Arnhem L. 13◦01.19 S 134◦58.34 E AMS C.461366
NT: E Goyder Riv. crossing, Arnhem L. 13◦01.37 S 134◦58.37 E AMS C.461370
NT: track to Numbulwar, Arnhem L. 13◦35.10 S 135◦42.18 E AMS C.461352
NT: Ngukurr-Roper Bar, Arnhem L. 14◦40.55 S 134◦34.19 E AMS C.461351
NT: Robinson Riv., at road crossing 16◦45.5 S 136◦59 E AMS
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Plotiopsis balonnensis (Conrad, 1850)

Type locality: “Balonne River, Australia”; river to the west of Brisbane, Queensland.

Distribution: Apparently the species is restricted thus endemic to the Australian con-

tinent where its geographic range includes the Greyian, Vlaminghian, Sturtian, and

Mitchellian as well as Northeast and Southeast Coast fluvifaunal provinces, with loca-

tions widespread in Western Australia, South Australia, Victoria and along the coast of

New South Wales (see fig.25).

200 km

30°

20°

120° 130° 140° 150°

Figure 25 Distribution map of Plotiopsis balonnensis. Black dots represent genetically con-
firmed localities, white ones dry material and white ones with a black inner circle wet material.
Some dots represent multiple nearby localities.

Unexpectedly, in the Leichhardtian province, where “Thiara” australis clearly dominates

and Plotiopsis balonnensis apparently is missing, there are two localities near to the Gulf

of Carpenteria coast, i.e. Bynoe River and Gregory River where the species could be ge-

netically identified. In addition but known before, in the extreme east of this province in

the Great Dividing Range there are locations in the tributaries of the Einasleigh and the



58 4 A biogeographical revision of Australian thiarids

Flinders River. However, Plotiopsis balonnensis is notably missing in the entire Timor

Sea drainage, where “Thiara” australis is widespread. Most remarkable are the isolated

occurrences of P. balonnensis in the desert central of Australia (i.e. Sturtian or Lake

Eyre province), where it could be genetically verified in the Finke River drainage and, in

addition, was reported from isolated localities along the Georgina and Diamantina River

drainages. These are the only known occurrences in the entire Northern Territory.

Comments: The lacking of P. balonnensis in the Leichhardtian province and the appar-

ently completely exclusive distribution of “Thiara” australis in this area could be rejected

by the molecular study. In addition to the exception of locations in the extreme east

of the Leichhardtian province in the Great Dividing Range where “Thiara” australis is

missing, occurrences at two localities near the Gulf of Carpenteria coast (thus in the

“Thiara” australis range), i.e. Bynoe River and Gregory River, could be identified for P.

balonnensis. On the former locality the species could even be found at the same time as

“Thiara” australis (see fig.27).

It is worth mentioning that on the sampling trip in 2011, no living snails of P. balonnensis

were found in West Australia. Even on localities where on earlier trips living populations

existed (Lake Leschenaultia and Swan River, see tab.12), only empty shells could be col-

lected despite extensive search. One possible explanation is that seasonal fluctuations in

water volume might have led to local extinctions of populations by complete desiccation

of refugial pools. The bureau of Meteorology of the Australian Government reported

that 2009 was the second warmest year on record and that, combined with an annual

rainfall very much below average, West Australia suffered from a very serious drought

year (http://www.bom.gov.au). Lake Leschenaultia which is a man-made lake, dried up

completely in that year, but admittedly along the Swan River (Walyunga National Park)

there are a number of large and quite deep permanent freshwater pools which should have

the potential as refugial pools.
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Figure 26 Shells of Plotiopsis balonnensis a. QL: Mareeba, upper Barron River (ZMB107583-
1). b. NT: Gregory River (ZMB107277-1), range of “Thiara” australis. c. NT: Three Mile Point,
Finke River (ZMB 106689). Note that in the last case the shown shell belongs to an individual
that itself hasn’t been genetically confirmed whereas two other individuals from this lot have
been confirmed. As the locality and area around is only known for Plotiopsis balonnensis, it is
quite certain that the shell of which the picture was taken belongs to it, too. Scale: 1 cm

Figure 27 Field picture of location where P. balonnensis and “Thiara” australis were found
simultaneously in 2011. The picture was taken before cracking the shells for preservation with
ethanol. Due to this procedure individuals can’t be traced back. Out of this lot two individuals
were genetically analysed, one turned out to have typical “Thiara” australis haplotype and one
P. balonnensis haplotype.“39-11” is the code for the sampling locality “Bynoe River”. To be
compared with fig.17c., a shell of “Thiara” australis from the same locality in 2009.
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Table 12 Locality data for the material examined of Plotiopsis balonnensis. Bold ZMB numbers
are genetically confirmed. Two Asterisks (**) after the museum number show localities where
mt-haplotypes of “Thiara” australis were found. Cr-Creek; Hwy-Highway; Riv.-River; Rd-
Road; NP-National Park

Locality Coordinates Museum n◦

WA: De Grey Riv. 20◦11 S 119◦11 E AMS

WA: De Grey Riv., at crossing of Gt. Nt. Hwy 20◦20 S 119◦12 E AMS

WA: De Grey Riv., E of Port Hedland 20◦18.665 S 119◦15.383 E ZMB 127507

WA: Fortescue Riv., at NW Coastal Highway 21◦18 S 116◦08 E AMS

WA: Bilanoo Pool, Fortescue Riv., Pilbara Region 21◦17.44 N 166◦8.4 E ZMB 107261

WA: Pilbara Springs, Miaree Pool, S. of Dampier 20◦51.15 S 116◦36.50 E AMS

WA: Miaree Pool, Maintland River 20◦51.23 S116◦36.51 E ZMB 107262

WA: Millstream National Park 21◦35’40 S 117◦04 E AMS

WA: Fortescue Riv., at Millstream creek 21◦35.355 S117◦4.33 E ZMB 127508, 127509, 117731

WA: Hamersley Region, Karijni NP 22◦28.521 S 118◦33.080 E ZMB 106727, 106728

WA: Murchinson Riv., Kalbarri N.P. 27◦48.770 S 114◦28.540 E ZMB 106583

WA: SE of Kalbarri, Murchisson River 27◦49 S 114◦41 E ZMB 106584

WA: Murchinson River 27◦49 S 114◦44 E AMS

WA: Ellendale Pool, Greennough Riv. n.d. WAM 465-80

WA: Ellendale Pool, Greennough Riv. 28◦51.63 S 114◦58.43 E ZMB 106582

WA: ’Perth” n.d. BMNH

WA: Swan Riv. n.d. BMNH

WA: Avon Riv., NE of Perth, Walyunga 31◦44 S 116◦4 E AMS C.60411, 322680,

322655; ZMB 106581; WAM

WA: Walyunga Pool, NE corner 31◦44.080 S 116◦04.280 E ZMB 106658, 117732, 117734

WA: Lake Leschenaultia, Chidlow n.d. WAM 471-80

WA: Lake Leschenaultia, NE corner 31◦51.020 S 116◦14.990 E ZMB 106725

WA: Ashburton Riv., 500m E of NW coastal Hwy 21◦58 S 115◦01 E AMS

NT: Finke Creek n.d. BMNH 1908.12.8.7-9

NT: Finke Riv., nr Glen Helen 23◦25 S 132◦16 E NTM P15965

NT: Glen Helen Reserve 23◦25 S 132◦16 E NTM P15858

NT: Finke Riv., at Glen Helen Gorge, nr resort 23◦41.322 S 132◦40.606 E ZMB 106687, 106716

NT: Ormiston Creek, Ormiston Reserve 23◦38 S 132◦45 E NTM P15859; AMS

NT: Ormiston Gorge, outlet 23◦37.704 S 132◦43.375 E ZMB 106686, 106717

NT: Hermannsburg n.d. BMNH 1909.10.23.9-11

NT: Finke Riv., Hermannsburg Mission 26◦20 S 136◦00 E AMS C.322658

NT: Finke Riv., near Hermannsburg n.d. AMS

NT: Finke Gorge, SW of Alice Springs 24◦03 S 132◦43 E NTM P4250

NT: Finke Riv. at Finke Gorge n.d. AMS NT 79-32

NT: Palm Valley, Palm Creek, Krichauff Ranges 24◦03 S 132◦44 E NTM P24424

NT: Cycad Gorge, Palm Valley n.d. AMS

NT: Palm Valley, 2 km up into valley 24◦03.036 S 132◦41.680 E ZMB 106718

NT: Finke Riv., Boggy Hole 24◦08.113 S 132◦50.233 E ZMB 106688, 106719

NT: Boggy Hole 24◦08 S 132◦53 E NTM P15861

NT: Three Mile Point, Finke Riv. 24◦33.182 S 133◦14.355 E ZMB 106689

NT: Walker Riv., nr Alice Springs n.d. AMS C.2149

QL: ”Central Queensland” n.d. AMS C.118147

QL: Georgina Riv. n.d. AMS

QL: King Creek, 21 km S of Bedourie 24◦31.93 S 139◦33.9 E AMS C.322677

QL: Einasleigh Riv., 4 km E of Einasleigh 18◦30.938 S 144◦06.682 E ZMB 107260; AMS

QL: Einasleigh Riv. 18◦30.915 S 144◦6.645 E ZMB 127614

QL: Soda Gorge Spring and Soda Valley Creek 20◦36.30 S 144◦02.00 E AMS

QL: Innot Hot Springs n.d. AMS

QL: Endeavour Riv. Falls 15◦22.270 S 145◦01.770 E ZMB 106346, 107256

QL: Bloomfield Riv. n.d. AMS C.488

QL: Barron Riv. at Gilies Highway n.d. AMS
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Locality Coordinates Museum n◦

QL: Barron Riv. Gorge, half way to hydro station 16◦51.632 S 145◦39.791 E ZMB 107258; AMS

QL: Barron Riv., at Barron Gorge Power Station n.d. AMS C.127066, C.322679

QL: Rapids below Lake Placid, Barron Riv. Gorge 16◦52.17 S 145◦40.405 E ZMB 107257; AMS

QL: Mareeba, upper Barron Riv. 16◦59.134 S 145◦25.158 E ZMB 107583

QL: Barron Falls n.d. AMS C.9284

QL: Rocky Creek, Atherton Tableland n.d. AMS C.158252

QL: Lake Eacham n.d. QM 14001

QL: Lake Barrine 17◦15 S 145◦38 E AMS

QL: Peterson Creek, Gauging Stn. n.d. QM 64462

QL: Bellenden-Ker Range, nr Babinda n.d. AMS

QL: Salt Water Creek S of Lynd Riv. Crossing 17◦48.985 S 144◦25.046 E ZMB 107603

QL: Porcupine Creek at Pyramid Pool in Gorge 20◦20.752 S 144◦27.676 E ZMB 107611

QL: Porcupine Creek at Porcupine Gorge 20◦21.197 S 144◦28.07 E ZMB 127615

QL: Bynoe River 17◦51.685 S 140◦48.231 E ZMB 127630**

QL: Gregory Riv. 17◦53.517 S 139◦17.209 E ZMB 107277**

QL: Fisher’s Creek, Palmeston Rock 17◦34.167 S 145◦53.876 E ZMB 107259; AMS C.126522

QL: Nr Gregory Falls 17◦35.57 S 145◦52.29 E ZMB 106345

QL: Johnstone Riv. n.d. QM 64490

QL: Herbert Riv., N of Ingham n.d. AMS

QL: Waterview Creek, Iourama Falls NP 18◦52 S 146◦07 E AMS

QL: Ross Riv. 19◦21.73 S 146◦43.93 E AMS C.338671

QL: Ross Riv. 19◦17 S 146◦49 E AMS C.338666;

BMNH 1884.12.27.8-18

QL: Burdekin Riv. n.d. BMNH 1846.10.?.26-29

QL: Burdekin Riv., nr Charter Towers n.d. AMS

QL: Alice Riv., Townsville 19◦19 S 146◦35 E AMS

QL: Hervey Range, 100 km SW of Townsville 19◦46 S 146◦05 E AMS

QL: Fletcher Creek, near Charters Towers n.d. QM 14196

QL: Charter Towers, NW at Toomba Station 19◦58 S 145◦34 E QM 53804

QL: Charter Towers, 51 miles WNW n.d. QM 64488

QL: Lolworth Creek, nr Gt Basalt Wall n.d. QM 14211

QL: Alligator Creek, Charters Towers n.d. QM 64494

QL: Bowen n.d. AMS

QL: Bowen, Port Denison n.d. AMS

QL: Port Denison n.d. BMNH 1879.5.21.489-90

QL: Rolleston Riv., Mount Cooper n.d. AMS

QL: Gregory Riv., 10 miles N of Proserpine n.d. AMS

QL: Mrytle Creek, 5 miles N of Proserpine n.d. AMS C.322654

QL: Digging Crossing, Eungella, upper Burdekin 21◦10.419 S 148◦28.759 E ZMB 113636

QL: Broken Riv. trib. to Bowen Riv. at Eungella 21◦10.13 S 148◦30.129 E ZMB 107956

QL: Saltwater Ck., Proserpine n.d. QM 4412

QL: Pioneer Riv., 16 miles from Mackay n.d. AMS C.118146

QL: Lethe Brook, 5 km S of Proserpine on Bruce Hwy n.d. AMS

QL: Cattle Creek W of Mackay n.d. AMS

QL: Broken Riv., Eungella Dam n.d. AMS

QL: Cedar Creek, tributary of S. Pine Riv. n.d. AMS

QL: Euri Creek 20◦12.294 S 147◦57.613 E ZMB 107951

QL: N. Pine Riv., 2 miles S of Dayboro n.d. AMS

QL: Denison Creek, on Nebo-Mackay Hwy n.d. AMS

QL: 16 km S of Sarina, Sarina-Malborough Rd. n.d. AMS

QL: Boyne Riv. at Rosedale, S of Gladstone 24◦13.40 S 151◦15.30 E AMS

QL: Barambah Ck., tributary of Boyne River 26◦19.983 S 152◦11.983 E AMS

QL: Boyne Riv., Gayndah n.d. AMS

QL: Twelve Mile Creek, Boyne Riv., near Gladstone n.d. AMS

QL: Eastern Boyne Riv., S of Gladstone 24◦18.15 S 151◦23.30 E AMS C.322660, 274Q

QL: Calliope Riv., S of Gladstone, Bruce Hwy n.d. AMS

QL: Bobs Creek, Fitzroy Riv., nr Rockhampton n.d. AMS

QL: Fairy Bower, 6 miles from Rockhampton n.d. AMS
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Locality Coordinates Museum n◦

QL: Rockhampton n.d. AMS

QL: Rockhampton, Yeppen Lagoon n.d. AMS

QL: Baffle Creek, 4 km E Miriam Vale n.d. QM 4274

QL: Woolwash Lagoon, S of Rockhampton 23◦23 S 150◦29 E AMS C.414039

QL: 15 km N of Miriam Vale 24◦16 S 151◦29 E AMS C.322656

QL: Rockhampton, Frogmore Lagoon n.d. AMS

QL: creek nr Springsure n.d. AMS

QL: Port Curtis n.d. AMS C.109649;

BMNH 1928.5.5.144-149

QL: Montrose Creek, 163 km S Sarina 22◦39 S 149◦33 E AMS

QL: Miriam Vale n.d. AMS C.109427

QL: NW of Miriam Vale, Colossem Ck. 24◦24.20 S 151◦28.30 E AMS

QL: 18 miles S of Biggenden on Biggenden-Gayndah

Rd

n.d. AMS

QL: Kolan Riv., Bruce Hwy n.d. AMS

QL: Prospect Ck., Biloela n.d. AMS

QL: Prospect Creek, Dawson Valley n.d. AMS

QL: Granite Creek, crossing Bruce Hway, N Gin Gin 24◦28 S 151◦35 E QM 43552

QL: Gin Gin n.d. AMS C.41983, C.42297

QL: Granite Creek, 36 km S of Miriam Vale n.d. AMS

QL: Walkamin, Granite Creek n.d. QM 64466

QL: Dawson Riv., 8 miles from Moura n.d. AMS

QL: Dawson Riv., Taroom 25◦38.7 S 149◦47.69 E AMS C.327313

QL: Taroom, banks of Dawson Riv. 25◦39 S 149◦47 E QM 56522

QL: Taroom, NE at Croker Gully 25◦27 S 150◦09 E QM 56586

QL: Barambah Creek at Thompson crossing 25◦41.08 S 151◦46.728 E ZMB 107816

QL: Burnett Riv., W of Childers 25◦13.45 S 152◦00.45 E AMS

QL: Kalliwa Creek, tributary of Burnett Riv. 25◦21 S 151◦52 E QM 64489

QL: Mingo Crossing, Burnett Riv. n.d. QM 64463

QL: Isaac and Burnett Rivers n.d. BMNH 1885.6.12.48-60

QL: Iris Riv., S of Childers 25◦14 S 152◦22 E AMS

QL: Munna Creek 25◦55.499 S 152◦25.941 E ZMB 107820

QL: Eidsvold n.d. AMS C.33773

QL: Mary S Creek, nr Gympie n.d. AMS

QL: NW of Gympie, Wide Bay Creek 26◦04 S 152◦14 E AMS

QL: Mary Riv. n.d. AMS

QL: Borumba Dam, Mary Riv. n.d. QM 3028

QL: Mary Riv., at Kenilworth n.d. AMS

QL: Deacon S Creek, on Bruce Hwy n.d. AMS

QL: Litte Widgee Creek trib. to Mary Riv. 26◦12.31 S 152◦27.193 E ZMB 107950

QL: Isis Riv., Bruce Highway, S of Childers n.d. AMS

QL: Isis Riv. 25◦13.606 S 152◦25.238 E ZMB 107819

QL: Barambah Ck., Central Burnett Hwy 26◦20 S 152◦12 E AMS

QL: Burnett Riv., on Mt. Perry Road, nr Gayndah n.d. AMS

QL: Burnett Riv. at Trurich Creek, W of Childers 25◦18.40 S 151◦56.15 E AMS

QL: Burnett Riv. n.d. ZMB 46270, 104176

QL: Coominga, NW of Ipswich 27◦37 S 152◦47 E NTM P27453

QL: Atkinson S Dam, 50 km W of Brisbane n.d. NTM P27458

QL: Woody Point, Clontarf, Redcliff Peninsula n.d. AMS

QL: Clontarf, Moreton Bay n.d. AMS

QL: Sandgate, Moreton Bay n.d. AMS

QL: Brisbane n.d. AMS C.109648 spinose forms

QL: Brisbane Riv., 60 miles from bay n.d. AMS

QL: Obi Creek, near Maleny, Landsborough Shire 26◦43 S 152◦53 E NTM P27456

QL: Wide Bay Creek nr Brooyar 26◦0.992 S 152◦38.104 E ZMB 107821

QL: South Maroochy Riv. at Yandina 26◦33.626 S 152◦56.629 E ZMB 107948

QL: Moggill Creek, Brisbane 27◦29 S 152◦54 E NTM P27459; AMS

QL: Moggill Creek, Brookfield 27◦30 S 152◦30 E QM 64461
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Locality Coordinates Museum n◦

QL: Kilcoy n.d. AMS

QL: Dalby n.d. AMS

QL: South Pine Riv. at Samford 27◦21.319 S 152◦52.912 E ZMB 107957

QL: Camp Hill, Brisbane 27◦30 S 153◦05 E QM 54747

QL: Bulimba Creek at Stackpole Street 27◦33.196 S 153◦6.723 E ZMB 107817

QL: Mt Crosby Weir & Pumping Station, Brisbane 27◦32 S 152◦48 E NTM P27455

QL: Candamine Riv., near Cecil Plains n.d. AMS

QL: Brisbane Riv. n.d. AMS

QL: Pullen Creek, Brisbane Riv. n.d. QM 64460

QL: tributaries of the Brisbane Riv. n.d. WAM 463-80

QL: upper Brisbane Riv. 27◦26.226 S 152◦38.056 E ZMB 107946

QL: Riv. Brisbane, near Ipswich n.d. BMNH 1886.4.26.168-77

QL: Ipswich n.d. AMS

QL: Ipswich, Swanbank Powerstation n.d. AMS

QL: Brisbane, Walton Bridge, Recreation Reserve 27◦26 S 152◦57 E QM 47184

QL: Stream flowing out of Enoggera Reservoir 27◦27 S 152◦55 E NTM P27457

QL: Coomera Riv., near Canungra n.d. AMS C.109645

QL: Tartar S Ck., Macpherson Ranges 28◦28 S 152◦50 E AMS C.129350

QL: Hoffman S Ck., tributary Hewtsons Hill 28◦26 S 152◦24 E AMS C.128691; QM 10366

QL: Balonne Riv. n.d. AMS; BMNH 1859.10.24.2

QL: Dalrympie Creek, 10.8 km from Goomburra 28◦00 S 152◦15 E AMS C.129351; QM 10534

QL: Moonie Riv. n.d. AMS C.33009

QL: Ban Ban n.d. AMS

QL: Caboolture, Burpengary Creek n.d. QM 64491

QL: Condamine Riv., weir at Chinchilla n.d. QM 5162

QL: Chowey Creek, 15 km W of Biggenden n.d. QM 14182

QL: Chinchilla Weir n.d. QM 19443, 19457

QL: Marlborough, S at Princhester Creek 22◦53 S 150◦01 E QM 19932

QL: Marlborough Creek, banks Godhelp n.d. QM 64493

QL: Barcaldine n.d. QM 35222

QL: Carnarvon Gorge, Carnarvon NP n.d. QM 44144, 64498

QL: Dawson Riv. at Theodore 24◦57.417 S 150◦4.443 E ZMB 107818, 192770, 192391

QL: Banana, 6 km S Banana - Biloela 24◦28 S 150◦25 E QM 50643

QL: Blackall, W at Noonbah Stn 24◦07 S 143◦11 E QM 53110

QL: Springsure, Minerva Creek, nr Marmadilla Stn 24◦00 S 148◦08 E QM 60714

QL: Charleville, Warrego Riv. n.d. QM 64455

QL: Roma, Bungil Creek n.d. QM 64456

QL: Taloona Homestead, Roma n.d. QM 64487

QL: Kings Creek, Darling S Down, Post-Tertiary fossil n.d. AMS C.109774

QL: N. Pine Riv., at Young S Riv. crossing n.d. AMS

QL: Howard Ck., 12 km from Mt Tambourine n.d. AMS C.128695; QM 10370

QL: Innis Creek n.d. ZMB 103713

NSW: Mole Riv., below Bonshaw Weir 28◦44 S 152◦57 E AMS C.167652

NSW: Richmond Riv., Woodburn n.d. AMS

NSW: Upper Richmond Riv. n.d. AMS

NSW: Richmond Riv., upstream from Irving Bridge 28◦52 S 153◦03 E AMS C.31555, 167443

NSW: Murray Swamps n.d. AMS

NSW: Upper Clarence Riv. n.d. BMNH 1879.5.21.482-4

NSW: Clarence Riv., nr Baryulgil crossing 29◦13 S 152◦33 E AMS

NSW: Little Riv., Bawdens Bridge, Grafton n.d. AMS

NSW: Wollombi Riv., Bulga, W of Singleston n.d. AMS

NSW: Macquarie Riv. n.d. AMS

NSW: Lake Lidell, Hunter Valley, nr Musswelbrook n.d. AMS C.110529; WAM 460-80

NSW: 25 miles S of Forbes, on Newell Hwy n.d. AMS

NSW: Peel Riv., Tamworth n.d. AMS

NSW: Halls Creek, Goulburn Riv., Denman n.d. AMS

NSW: Worondi Riverlet, nr Gouburn Riv., n.d. AMS

NSW: Dalwood, Hunter Riv., n.d. AMS
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Locality Coordinates Museum n◦

NSW: Hunter Riv. n.d. AMS

NSW: Williams Riv. 32◦23.790 S 151◦45.750 E AMS C.421943

NSW: Lake Burragorang 34◦0 S 150◦26 E AMS C.311883

NSW: Wah Wah Main, Murrumbidgee Irrigation Area n.d. AMS C.110529

NSW: Hay, Murrumbidgee Riv. n.d. BMNH 1836.7.26.183-92; AMS

NSW: Spring Creek, Backmead n.d. AMS

NSW: Narrandera n.d. AMS

NSW: Narrandera n.d. AMS

NSW: Yanco, Agricultural High School n.d. AMS C.57886

NSW: Lachlan Riv. n.d. AMS C.109644

NSW: Gooloogong, Lachlan Riv. n.d. AMS C.57038

NSW: Lachlan Riv., 8 miles from Lake Cargelligo n.d. AMS

NSW: Lake Cargelligo, Willow Dam n.d. AMS

NSW: Leeton n.d. AMS C.109646

NSW: 3 miles W of Hillston n.d. AMS

NSW: 25 miles S of Forbes, on Newell Hwy n.d. AMS

NSW: Cudgegong Riv., nr Mudgee, Twelve Mile n.d. AMS

NSW: Bogan Riv., Brewarrine n.d. AMS C.109865

NSW: Rochs, Barwon Riv., Brewarrina n.d. AMS

NSW: Macquarie Riv., nr Carinda n.d. AMS

NSW: Marthaguy Creek, tributary of Macquarie Riv. n.d. AMS C.100836

NSW: Macquarie Riv., nr Dubbo n.d. AMS

NSW: Dubbo, Western Plains Zoo n.d. AMS

NSW: Crunningbar Creek, Warren n.d. AMS

NSW: Gouburn Riv. 32◦03 S 150◦10 E AMS

NSW: Namoi Riv., Narrabri n.d. AMS C.263;

BMNH 1894.6.5.194-197

NSW: Junction of Bibba Creek and Namoi Riv. n.d. AMS

NSW: Namoi Riv. at Tarriaro Bridge n.d. AMS C.101257

NSW: Namoi Riv., nr Gunnedah n.d. AMS

NSW: Namoi Riv., 6 miles N of Boggabri n.d. AMS

NSW: Poncaree, Darling Riv. n.d. AMS

NSW: N bank of Darling Riv., 37 miles SW of Bourke n.d. AMS

NSW: Bourke n.d. AMS C.100624

syntypes of oncoides

NSW: Menindee, Darling Riv., Krinchega NP 32◦24 S 142◦23 E AMS C.322676

NSW: E Bank of Lake Menindee 32◦20 S 142◦20 E AMS

NSW: Barraba, Gizzard of Black Duck n.d. AMS

NSW: Lowry Creek, Warrabah NP 30◦33 S 150◦54 E AMS

NSW: Cobbadah Creek, near Barraba n.d. AMS

NSW: Myall Greek, Bingara n.d. AMS C.109781; QM 64486

NSW: Riv. nr Bundarra n.d. AMS

NSW: Gwyder Riv., Moree n.d. AMS

NSW: Gwyder Riv., Anderson Creek, SE of Moree n.d. AMS

NSW: Gwyder Riv., bridge at Bingara 29◦51.74 S 150◦34.65 E AMS C.322678

NSW: Moree n.d. AMS C.51670

NSW: ’Yurunga” Warialda, fossil in lacustrine deposit n.d. AMS C.87453

NSW: MacIntyre Riv., 3 m N Inverell n.d. AMS

NSW: Kings Creek, off MacIntyre Riv. n.d. AMS C.146292

NSW: N of Inverell, 8 miles NW of Graman n.d. AMS

NSW: MacIntyre Riv., Inverell, Stannifer Rd. n.d. AMS

NSW: Moonie Riv., 40 miles NW of Collarenebri n.d. AMS C.33009, 109647

NSW: Barwon Riv., downstream from Walgett n.d. AMS

NSW: Barwon Riv., Brewarrina n.d. AMS

NSW: Nenegara Waterhole, Paroo Riv. n.d. AMS

NSW: Bulloo Riv., Tibooburra n.d. AMS C.139443

syntypes of thrascia

NSW: Menindee, 27 ft. below surface, fossil n.d. AMS
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Locality Coordinates Museum n◦

NSW: Reservoir nr Silverton, W. of Broken Hill n.d. AMS

NSW: Darling Riv. at Bourke n.d. AMS

NSW: Pocucaree, Darling Riv. n.d. AMS

VIC: Victoria n.d. BMNH 1879.1.21.10

VIC: Echuca n.d. AMS C.1927

VIC: Lake Culluleraine n.d. AMS

VIC: Goulburn Riv., Shepparton n.d. AMS

SA: Coopers Creek, at Innamincka n.d. AMS

SA: Cullymurra Waterhole, 11 km E of Innamincka 27◦42.1 S 140◦50.11 E AMS

SA: Cullymurra Waterhole, E of Innamincka 27◦42.58 S 140◦53.1 E AMS

SA: Adelaide n.d. AMS C.109708

SA: Murray Riv. n.d. BMNH 1879.5.21.461-4

SA: Murray Bridge n.d. AMS C.109404

SA: Mundalla, nr Bordertown n.d. AMS

SA: Tailem Band, Murray Riv. n.d. AMS C.43663

SA: Morgon, Murray Riv., fossil from Post-Pleistocene n.d. AMS C.109780

Pseudoplotia scabra (O.F. Müller, 1774)

Type locality: “In paludosis littoris Coromandel Tranquebari Danorum maxime vul-

gare; centena & ultra benevoleutia D. Spengler”; i.e. India: Tranquebar, Coromandel

Coast.

Distribution: Outside of Australia Pseudoplotia scabra (formerly known as Thiara

scabra) exhibits a wide distribution from the east coast of South Africa to India and

Sri Lanka across the Southeast Asian mainland and the islands of the western Indo-West

Pacific, where P. scabra can be found from the Sunda Islands and the Philippines to New

Guinea including the Bismark Archipelago, the Solomons, the New Hebrides and Fiji

(Glaubrecht et al., 2009). In Australia P. scabra occurs in the Leichhardtian (thus the

Timor Sea and Gulf of Carpentaria drainage systems) and in the Jardinian fluvifaunal

provinces of the East Coast. More detailedly, in the Northern Territory it is found in

Berry Springs, the Victoria, Daly and Roper River systems, as well as in Queensland in

the Gregory and O’Shanassy River and in at least three locations along the Coral Sea

coast (see fig.28).

Comments: Pseudoplotia scabra was formerly placed in the genus Plotia by Glaubrecht

et al. (2009) but corrected into Pseudoplotia by Mienis (2012), followed here.

In 2009, Glaubrecht and colleagues assumed that the Australian populations of this species

have either been introduced, or represent a hitherto cryptic species for the continent. With

28 occurrences (as listed in tab.13) the results in this study show that the species is much

more common than thought at that time when only eight localities were known.
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Figure 28 Distribution map of Pseudoplotia scabra in Australia. Black dots represent geneti-
cally confirmed localities, white ones dry material and white ones with a black inner circle wet
material. Some dots represent multiple nearby localities.

Figure 29 Shells of Pseudoplotia scabra of individuals that were genetically confirmed. a. QL:
Little Roper River (ZMB 107564-1). b./c. NT: Limmen Bight River (ZMB 107271), both were
initially named “Thiara” australis but mt-data confirmes that individuals belong to P. scabra.
Scale bar: 1 cm
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Table 13 Locality data for the material examined of Pseudoplotia scabra. Bold ZMB numbers
are genetically confirmed. Asterisk (*) after the museum number indicates that the individual
was assigned to a different species in the field. ZMB numbers starting with digits 127 represent
material that was sampled in 2011.

Locality Coordinates Museum n◦

NT: Berry Springs 12◦42.153 S 130◦59.875 E ZMB 106599
NT: Bamboo Creek, 3-10m from Daly River 13◦40.118 S 130◦39.501 E ZMB 107215, 107263*, 107551
NT: Daly River Crossing 13◦46.142 S 130◦42.874 E ZMB 107546
NT: Oolloo Crossing, Daly River 14◦04.24 S 131◦15.056 E ZMB 107216, 127774
NT: Cox River 15◦19.394 S 135◦20.699 E ZMB 107270*
NT: Limmen Bight River 15◦28.865 S 135◦24.054 E ZMB 107271*
NT: Little Roper River, north bank 14◦55,63 S 133◦7,105 E ZMB 107564, 127778
NT: Little Roper River, south bank 14◦55.589 S 133◦07.137 E ZMB 106679, 127514
NT: Stevie s Hole at Waterhouse River, Elsey N.P. 14◦55.782 S 133◦8.732 E ZMB 107287*
NT: Roper River, at Botanic Walk 14◦56.126 S 133◦8.532 E ZMB 127780
NT: Roper River, at 4 Mile Point 14◦56.137 S 133◦10.033 E ZMB 107284*, 127770
NT: Wabalarr, at Roper River 14◦56.028 S 133◦10.444 E ZMB 127772
NT: Mulurark, at Roper River 14◦56.763 S 133◦12.614 E ZMB 127769
NT: Salt Creek at junction to Roper River 14◦57.453 S 133◦15.095 E ZMB 127779
NT: Salt Creek, near Elsey Creek 15◦0.703 S 133◦14.417 E ZMB 106634, 107266*, 127766
NT: Elsey Creek, at Warloch ponds 15◦05.083 S 133◦07.439 E ZMB 127767
NT: Roper River, at Roper Bar 14◦42.802 S 134◦30.474 E ZMB 127768
NT: Roper River, Mountain Creek 14◦46.543 S 134◦48.016 E ZMB 127771
NT: Timber Creek, above junction of Victoria River 15◦38.203 S 130◦28.529 E ZMB 127618*
NT: Victoria River, Big Horse Creek 15◦36.878 S 130◦23.7 E ZMB 127763
QL: Gregory River, SE of Burketown 17◦53.517 S 139◦17.209 E ZMB 107277*
QL: Gregory River at Riversleigh 19◦1.116 S 138◦43.529 E ZMB 107279, 107575, 127775
QL: O Shanassy River, at crossing 19◦1.378 S 138◦45.73 E ZMB 127764
QL: Gregory River, at crossing, Gregory Downs 18◦38.829 S 139◦14.912 E ZMB 127765, 127773
QL: Gregory River, Beame Brook, at crossing 17◦52.708 S 139◦20.576 E ZMB 127777
QL: Three Mile, Poison Creek 15◦25.81 S 145◦7.05 E ZMB 106351
QL: Daintree River, Martins Creek 16◦14.163 S 145◦18.323 E ZMB 107596
QL: Broken River, Eungella 21◦07.9 S 148◦29.6 E ZMB 103714
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Ripalania queenslandica (E.A. Smith, 1882)

Type locality: “Saltwater Creek next to the coast, Cardwell”, in “Queensland, Aus-

tralia”. Note that the second location “Paroo River” given by E.A. Smith (1882) was

declared to be an error by Glaubrecht et al. (2009).

Distribution: The geographic range of Ripalania queenslandica was reported to be re-

stricted to Australia with isolated occurrences in few rivers and streams along the tropical

coast of NE Queensland within the Jardinian fluvifaunal region. Accordingly, there are

also isolated occurrences of the species in the Iron Range and Lockhart River area, and

again from the Daintree River drainage south to Cardwell (see fig.30). Now, however, we

also have a record outside of the Australian continent in Papua New Guinea.

Comments: The species was thought to be endemic to Australia, but now we have

positive indication of conspecifics in other than the Australian region. As described in

Chapter 5 a new record in Papua New Guinea could be genetically confirmed.
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Figure 30 Distribution map of Ripalania queenslandica in Australia. Black dots represent
genetically confirmed localities and white ones dry material. Some dots represent multiple
nearby localities. Note the restriction within the Jardinian region.



4.3 Results 69

Table 14 Locality data for the material examined of Ripalania queenslandica. Bold ZMB
numbers are genetically confirmed.

Locality Coordinates Museum n◦

QL: ”Australia” n.d. ZMB coll. Paetal 1885
QL: Line Hill, Iron Range 12◦45’ S 143◦25’ E QM 64464
QL: Lockhart River, SW of airfield 12◦48’ S 143◦17’ E QM 21407
QL: Daintree River 16◦18’ S 145◦17’ E AMS C.317982, C.100354;

NHMB 10.751
QL: Daintree River, above Allanton Hill 16◦14’ S 145◦19’ E AMS C.317986, C.125802;

QM 16272
QL: Daintree River, near Daintree n.d. QM 13483
QL: Douglas Creek, at crossing 16◦16.194 S 145◦58.60 E ZMB 107213
QL: Martins Creek, Daintree River 16◦14.163’S 145◦18.323’E ZMB 107595
QL: Stewart Creek, junction with Daintree Riv. 16◦18’ S 145◦19’ E AMS C.317984
QL: Low Isles, near Port Douglas n.d. AMS
QL: Barron River n.d. AMS C.109650
QL: Cairns n.d. AMS C.1334; ZMB 61751
QL: near Innisfail n.d. AMS C.51805
QL: Innisfail, Blackfellow Creek n.d. AMS
QL: North Johnstone River 17◦30.34 S 145◦59.55 E ZMB 106355, 107214, 192474
QL: Tully River n.d. AMS C.9282
QL: Cardwell n.d. AMS

Sermyla riqueti (Grateloup, 1840)

Type locality: “Bombay” was mentioned as locus typicus by Grateloup (1840: 433);

but, as stated by Glaubrecht et al. (2009), this is not in line with the label information of

the type material “Batavia [1. line], Samarang [2. line]”, which is today Jakarta, Java.

Distribution: Individuals of Sermyla riqueti are widely distributed from India and

Southeast Asia including Thailand, Vietnam the Philippines and the Sunda Islands in

Indonesia, into the Indo-West Pacific. Glaubrecht et al. (2009) also reported records from

the Bismarck Archipelago and the Solomon Islands. Reports about the occurrence of this

species in Australia are only based on dry shells in museum collections and any attempt

to find them recently has failed.

Comments: All individuals from the conducted field trips that preliminarily had been

labelled as Sermyla riqueti, turned out to belong to a different species. As living snails

could not be found until the present date, no final statement of the recent existence of

Sermyla riqueti in Australia can be made. At least a regular occurrence can be ruled out.
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Sermyla venustula (Brot, 1877)

Type locality: “Port Denison, Nov. Holl. [Novae Hollandia]”, given by Brot (1877) and

B.J. Smith (1992: 77), which today is Bowen, south of Townsville in Queensland (see star

in fig. 31). According to Glaubrecht et al. (2009) and the results of this study, the species

does not occur in drainages of the Jardinian province.

Distribution: Sermyla venustula is endemic in Australia and its geographic range is

mainly restricted to inland rivers of the Northern Territory and Queensland. Next to

several rivers along the southern coast of the Gulf of Carpentaria, the records comprise in

particular localities from the Roper River drainage and its tributaries, where the species

can be found in brackish, in some cases almost saline environments.
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Figure 31 Distribution map of Sermyla venustula. Star: Representing the type locality, which
is probably incorrect (see text). Note the highly isolated location of Bundara Sinkhole - a cave
with an underground connection to the ocean - in West Australia. All localities are genetically
confirmed.
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The locations Howard Springs and Berry Springs near Darwin are remarkable, because

these creeks are highly isolated in northwestern Northern Territory. But it is most re-

markable that the occurrence of S. venustula is extended exceedingly through a genetically

confirmed new locality in West Australia, i.e. Bundara Sinkhole in the Greyian region,

far away from the common northern range.

Comments: Two occurrences of S. venustula worth mentioning are reported here for the

first time: Berry Springs (southwest from Darwin) and the most western record in Bundara

Sinkhole, West Australia. The latter is an anchialine cave - an inland cave fluctuating with

marine tides - which is about 1.7 km from the sea and with salinity stratified with about

50% seawater (pers. communication Bill Humphreys). Hence, although this locality is

far away from the common range, its habitat fits well to the preferences of S. venustula,

which is tolerant of moderately brackish conditions.

Note that the large and less sculptured specimens from Howard Springs (see fig. 32b),

referred to as “carbonata” (Reeve, 1859) by Glaubrecht et al. (2009), do not differ genet-

ically from S. venustula and therefore are not treated separately any longer.
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Figure 32 Shell variability of Sermyla venustula. As this species was the subject of a master
thesis (conducted within the scope of this study), comprehensive shell pictures of genetically
confirmed individuals are present (Maaß, 2012). a. WA: Bundara Sinkhole (WAM 10048). b.
NT: Howard Spings (ZMB 107630). c. NT: Little Roper River (ZMB 107561). d.-g. NT:
Roper River: d. Mulurark (ZMB 107621). e. Jalmurark (ZMB 106676, 107557). f. Elsey creek
(ZMB 107231). g. Warloch ponds (ZMB 192019). h. NT: Towns River (ZMB 192018). i. QL:
Foelsche River (ZMB 107232). j. QL: Norman River (ZMB 107209, 107235). Scale bar: 0.5 cm.
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Table 15 Locality data for the material examined of Sermyla venustula. Bold ZMB numbers
are genetically confirmed.

Locality Coordinates Museum n◦

WA: Bundara Sinkhole 22◦25 S 113◦46 E WAM 10048, 10049, 10050, 13049, 13050
NT: Howard Springs 12◦27.345 S 131◦03.146 E ZMB 106593, 106700, 127660, 107228
NT: Howard Springs Creek 12◦27.268 S 131◦03.108 E ZMB 106595, 107627, 107630; AMS

C.427959
NT: Spring creek at Howard Springs 12◦27.553 S 131◦03.069 E ZMB 127660
NT: Berry Springs, SE of Darwin 12◦42.111 S 130◦59.875 E ZMB 107544, 107545, 127634, 107210
NT: Little Roper River, at crossing 14◦55.581 S 133◦07.176 E ZMB 106629, 106678, 107236, 107561,

107562
NT: Little Roper River, south bank 14◦55.589 S 133◦07.137 E ZMB 127639
NT: Little Roper River, north bank 14◦55.630 S 133◦07.105 E ZMB 127640, 127641
NT: Stevie’s Hole at Waterhouse River 14◦55.782 S 133◦08.732 E ZMB 106682
NT: Roper River, at Botanic Walk 14◦56.126 S 133◦08.532 E ZMB 127642, 127643
NT: Roper River, at 4Mile Point 14◦56.120 S 133◦10.069 E ZMB 127644
NT: Wabalarr, at Roper River 14◦56.028 S 133◦10.444 E ZMB 107616, 127645
NT: Mulurark, at Roper River 14◦56.763 S 133◦12.614 E ZMB 107615, 107621, 127646
NT: Roper River, at Jalmurark Camp 14◦57.158 S 133◦13.29 E ZMB 106676, 107229, 107557, 107558
NT: Roper River, 2km below Jalmurark 14◦57.515 S 133◦14.275 E ZMB 127638
NT: Salt Creek, junction to Roper River 14◦57.453 S 133◦15.095 E ZMB 127635, 127636, 127637
NT: Elsey Creek on Roper Highway 15◦00.627 S 133◦14.417 E ZMB 107231, 127649, 127650
NT: Salt Creek, nr Elsey Creek, 15◦0.703 S 133◦14.417 E ZMB 107230, 127647, 127648
NT: Warloch Ponds on Elsey Creek 15◦05.042 S 133◦07.258 E ZMB 192019, 127657, 127658
NT: Roper Bar, Roper River 14◦42.816 S 134◦30.501 E ZMB 192017
NT: Mumpumapu waterhole, Arnhem Land 14◦22.59 S 135◦19.34 E AMS C.461353
NT: 8 km NE of Towns River Crossing 14◦59.82 S 135◦16.28 E ZMB 192016, 192018
NT: Towns River, at crossing 15◦02.570 S 135◦12.718 E ZMB 127651
NT: Towns River, at junction with creek 14◦59.999 S 135◦17.030 E ZMB 127654, 127655
NT: Foelsche River 16◦12.628 S 136◦53.034 E ZMB 107232
QL: Bynoe River 17◦12.967 S 150◦40.433E ZMB 106712
QL: 4.5 km NW of Normanton 17◦39.43 S 141◦06.03 E VK 26.356; ZMB 106713
QL: Norman River, 1km N of Normanton 17◦39.712 S 141◦06.154 E ZMB 107209, 107235, 127656

Stenomelania cf. aspirans (Hinds, 1844)

Type locality: “in rivers of Feejee Islands”; Fiji.

Distribution: Stenomelania cf. aspirans, is reported to be widespread in the Aus-

tralasian region, with known occurrences, in the Bismark Archipelago, the Solomon Is-

lands, Vanuatu, New Caledonia, Fiji and Samoa. On the Australian continent the occur-

rence of Stenomelania cf. aspirans is restricted to the Jardinian region, where it occurs

in few streams along the tropical coast of Queensland (see fig. 33). Here it is known only

from highly isolated locations in the Iron Range and Lockhart River area, the Bloomfield

to Barron River region with the southernmost locality at Clump Point.

Comments: The species was not listed in any faunal survey of Australian freshwater

molluscs (e.g. E.A. Smith 1882; Iredale 1943; B.J. Smith 1992, 1996), and was recorded

for the first time by Glaubrecht et al. (2009).
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Figure 33 Distribution map of Stenomelania cf. aspirans in Australia. Some dots represent
multiple nearby localities. Like Thiara amarula and Ripalania queenslandica, the species is
restricted within the Jardinian region.

Table 16 Locality data for the material examined of Stenomelania cf. aspirans. Bold ZMB
numbers are genetically confirmed and represent own collections. Note that the coordinates
given by the AMS for the Locality Rocky River are out in the Coral Sea.

Locality Coordinates Museum n◦

QL: ”Cape York Peninsula” n.d. AMS C.109655
QL: Rocky River 13◦49 S 145◦28 E AMS C.317983
QL: Creek into West Claudie River 12◦47 S 143◦19 E AMS C.317327
QL: Granite Creek, W of Bloomfield 15◦55.99 S 145◦19.54 E ZMB 107211
QL: Mowbray River 16◦33.87 S 145◦27.83 E ZMB 106171, 106344, 107212, 107586;

AMS C.115338
QL: Barron River, N of Cairns n.d. AMS C.105172
QL: Hartley’s Creek, N of Cairns n.d. AMS C.109654
QL: Froma Creek, N of Cairns n.d. AMS C.158276
QL: Clump Point n.d. AMS C.30757
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“Stenomelania” denisoniensis (Brot, 1877)

Type locality: “Port Denison”, Queensland, as given originally by Brot (1877); today

this corresponds to Bowen, S Townsville.

Distribution: In contrast to most Australian thiarids, “Stenomelania” denisoniensis is

widely distributed throughout the Australian continent, with occurrences ranging from

the Greyian across the Leichhardtian region (with Timor Sea and Gulf drainages to the

North) and the fluvifaunal provinces Jardinean, Kreftian and northern Lessonian on the

East Coast (see fig. 34). While the species occurs in rivers along the southern coast of the

Gulf of Carpentaria and in many streams and rivers of the Northern Territory including

the Daly and Roper River systems, as well as in the Victoria River, its main occurrences

are in the coastal rivers of Queensland draining east to the Coral Sea. On the East coast

it reaches its southernmost known occurrence near the border to New South Wales and

on the West coast, located at nearly the same latitude, at the Greenough River south

of Geraldton. In addition, in Australia’s North West there are a few records from iso-

lated populations in the Kimberley and Pilbara regions. Remarkably (as compared e.g.

to P. balonnensis), this otherwise widely distributed species is lacking in the Sturtian,

the Mitchellian and the Vlaminghian provinces. S. denisoniensis has been considered as

being endemic to Australia. The findings presented here show that the species is actu-

ally widespread in the Australasian area, as it could be verified in Indonesia and on Timor.

Comments: “Stenomelania” denisoniensis is not endemic to Australia as considered

before. Sequences from Timor and Indonesia cluster with those of Australian “Stenome-

lania” denisoniensis. Note that the mt-data is quite inconsistent in the case of “Stenome-

lania” denisoniensis, as well as for M. tuberculatus, and that these two species are often

mixed-up on account of their similarity. Another source of error is that snails appearing

like S. venustula turned out to be “Stenomelania” denisoniensis (see fig.35 a).
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Figure 34 Distribution map of “Stenomelania” denisoniensis on the Australian continent. In
contrast to most Australian thiarids, the species is widely distributed throughout the Australian
continent. Black dots represent genetically confirmed localities and white ones dry material.
Some dots represent multiple nearby localities.

Figure 35 Shells of “Stenomelania” denisoniensis. a. QL: Gregory River (ZMB 107234-1),
initially named S. venustula but mt-data confimes that the individual belongs to “Stenomelania”
denisoniensis. b. NT: Bitter Springs (ZMB 127783-1), cracked in the field, found simultaneously
with M. tuberculatus (see fig.20). Scale bar: 1 cm.
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Table 17 Locality data for the material examined of Stenomelania denisonensis. Bold ZMB
number are genetically confirmed. Asterisk (*) after the museum number indicates that the
individual was assigned to a different species in the field. Abbreviations: Riv. - River; Rd -
Road; Hwy - Highway; Cr. - Creek; NP - National Park; L. -Land; Stn - Station

Locality Coordinates Museum n◦

WA: Ellendale Pool at Greenough Riv. 28◦51.630 S 114◦58.430 E ZMB 106586

WA: Pilbara Springs, S of Dampier 20◦51’15’ S 116◦36’50’ E AMS

WA: Pilbara Springs, pool of spring 21◦37 S 117◦06’20’ E AMS

WA: Millstream, Millstream NP 21◦35.5 S 118◦4 E AMS C.324141

WA: Pardoo Station, NE of Port Hedland 20◦02 S 199◦41 E AMS stn P27

WA: 150 km E Nullagine 21◦40’45’ S 121◦08 E AMS C.324137

WA: Kimberleys: Mt. Mathew, Mt. Hart Station n.d. VK 12387

NT: ”North Australia” n.d. BMNH 1857.9.30.18

NT: Black Point Lagoon, Cobourg Peninsula n.d. AMS

NT: Lagoon behind Ranger Station, Cobourg Peninsula n.d. AMS

NT: Holmes Cr., 12 miles NE of Darwin n.d. AMS

NT: Darwin Riv., crossing with Hwy to Cox Peninsula 12◦44.527 S 130◦57. 930 E ZMB 106704

NT: Howard Springs, S Darwin 12◦27.5 S 131◦03.0 E NTM P1013, P27464, P27466;

AMS C.110450;

QM 5132; ZMB 107629,

127798, 127781

NT: Howard Riv., crossing 12◦27.752 S 131◦05.008 E ZMB 106597

NT: Berry Springs, S of Darwin 12◦42.111 S 130◦59.854 E ZMB 106600, 107255, 127789;

QM 5624

NT: Foggy Dam, Humpty Doo n.d. AMS C.110490; VK 2523

NT: Middle Point jungle, near Fogg Dam n.d. VK 7724

NT: Manton Riv., Weed Quad 3 n.d. NTM P27465

NT: Manton Riv. at Stuart Hwy, 66 km S of Darwin n.d. AMS

NT: Coomalie Cr., at Rd crossing 13◦00.602 S 131◦06.850 E ZMB 106645

NT: Coomalie Cr., at rest area on Stuart Hwy 13◦0.88 S 131◦7.4 E AMS C. 324138; VK 973; NTM

P6468

NT: Crater Lake, 7 km W of Batchelor 13◦02.760 S 131◦05.445 E ZMB 106660; VK 24531

NT: Adelaide Riv. n.d. BMNH 1891.11.21.151-152;

1892.1.29.193

NT: Rum Jungle at Litchfield Rd 13◦02.604 S 130◦59.862 E ZMB 106662

NT: Black Jungle Spring, Kakadu NP 13◦02.898 S 132◦09.889 E ZMB 106644; AMS C.32413;

VK 25909

NT: Bamboo Cr. at the junction with Daly Riv. 13◦40.05 S 130◦39.29 E VK 24378

NT: Daly Riv. Crossing 13◦46.02 S 130◦42.61 E AMS C.323809

NT: Victoria Riv. n.d. BMNH 1857.9.30.17

NT: Upper Victoria Riv., North Australia 17◦18 S BMNH 1857.11.18.26

NT: Victoria Riv., 195 km W of Katherine n.d. AMS C.324142

NT: Kathrine Riv., downstream lower level 14◦29.5 S 132◦14.847 E ZMB 127785

NT: Bitter Springs, at Mataranka 14◦54.642 S 133◦5.362 E ZMB 127783

NT: Roper Riv., old bridge crossing at Mataranka

Homestead

14◦55.5 S 133◦6.5 E AMS C.317320

NT: Little Roper Riv., at crossing 14◦55.581 S 133◦07.176 E ZMB 107253, 107563, 127792,

127794

NT: Roper Riv., just below crossing at Mataranka 14◦56 S 133◦7 E AMS C.151987

NT: Stevie’s Hole at Waterhouse Riv., Elsey NP 14◦55.782 S 133◦08.732 E ZMB 107254

NT: Roper Riv., at Botanic Walk 14◦56.126 S 133◦8.532 E ZMB 127791

NT: Waterhouse Riv., Mantaranka tourist resort n.d. QM 5156

NT: Roper Riv., Roper Falls, 4 km E of Jamurak 14◦57.401 S 133◦15.018 E ZMB 107252, 127784

NT: Mataranka Falls, Roper Riv., Elsey Park 14◦57.30 S 133◦15.00 E VK 24.377

NT: Elsey Cemetery, 11 km of Mataranka Springs 15◦5.15 S 133◦7.44 E AMS

NT: Elsey Riv., Elsey Cemetery n.d. ZMB 106651
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Locality Coordinates Museum n◦

NT: Salt Cr., near Elsey Cr., at crossing of Roper Hwy 15◦00.703 S 133◦14.417 E ZMB 106685, 107238, 127786

NT: Elsey Cr. 15◦0.624 S 133◦14.962 E ZMB 127649*

NT: Elsey Cr., at Warloch ponds 15◦5.083 S 133◦7.439 E ZMB 190197, 127782

NT: Roper Riv. at Roper Bar camping ground 14◦42.71 S 134◦30.78 E AMS C.338661, C.338657

NT: Goyder Riv., Arnhem L. n.d. AMS

NT: eastern Goyder Riv. crossing, Arnhem L. 13◦01.37 S 134◦58.37 E AMS C.461369

NT: Rose Riv. catchment, 150 km N of Roper Bar 13◦43.40 S 135◦06.2 E NTM P8702

NT: Mumpumapu waterhole, Arnhem L. 14◦22.59 S 135◦19.34 E AMS C. 461371

NT: Wearyan Riv. crossing 16◦10.05 S 136◦45.25 E VK 13.870

NT: Calvert Riv. crossing 16◦56.06 S 137◦21.25 E VK 25.837, 25.846

NT: Calvert Riv., below junction with Bluey Cr. 16◦56.1 S 137◦21.52 E AMS C.151987

NT: Roper Riv., Mountain Cr. 14◦46.543 S 134◦48.016 E ZMB 127795

NT: Towns Riv., at crossing with Roper Hwy 15◦2.57 S 135◦12.718 E ZMB 106641, 107239, 127799

NT: Towns Riv., downstream, point 1 14◦59.839 S 135◦16.262 E ZMB 127788

NT: Towns Riv., two pools on northern bank 14◦59.792 S 135◦17.156 E ZMB 127796

NT: Towns Riv., backwater at junction with Cr. 14◦59.999 S 135◦17.03 E ZMB 127793

NT: Cox Riv., N of causeway 15◦19.394 S 135◦20.669 E ZMB 107240

NT: Wearyan Riv., at crossing 16◦10.03 S 136◦45.506 E ZMB 127797

NT: Kangaroo Cr. 16◦47.553 S 137◦06.107 E ZMB 107233*

QL: running Cr., 27.7 km Brookdale 18◦19.25 S 139◦15.45 E VK 13.872

QL: Lawn Hill Cr., near the cascades, Lawn Hill NP 18◦42.00 S 138◦29.00 E VK 26.335

QL: Gregory Riv., Riversleigh Stn n.d. QM 64453

QL: Gregory Riv. crossing, Riversleigh Station 19◦01.15 S 138◦43.25 E VK 13.873; ZMB 107577,

127790

QL: Leichhardt Riv., east branch 2 km below dam 20◦44 S 139◦47 E AMS C.300838

QL: Bynoe Riv., Burketown to Normanton Rd 17◦51.53 S 140◦47.58 E AMS C.338669; VK 26.336

QL: Normanton Riv., Glenmore 15◦51.199 S 141◦08.048 E ZMB 107242, 127800; VK

26.331

QL: Walker Cr. Crossing on Normanton, Karumba Rd 17◦28.22 S 141◦10.42 E VK 26.338

QL: Billabong, 1 km from Norman Riv., Kurumba Rd 17◦39.64 S 141◦6.1 E AMS C.338659

QL: Norman Riv., billabong 1 km N of Normanton 17◦39.712 S 141◦06.154 E ZMB 107241, 127787

QL: Mt. Isa, Lake Moondarra n.d. QM 64474

QL: Soda Gorge Spring, NE of Hughenden 20◦37.00 S 144◦05.33 E AMS C.145015

QL: Line Hill, Iron Range 12◦45 S 143◦25 E QM 64470

QL: Lockhart Riv., S Claudie Riv. crossing 12◦48 S 143◦17 E QM 21408

QL: 80 km N Cooktown, McIvor Riv. 15◦0.9 S 145◦06 E AMS

QL: Endeavour Riv. Falls 15◦22.270 S 145◦01.770 E ZMB 106338, 107244

QL: McLeod Cr., tributary of Endeavour Riv. 15◦25.505 S 145◦06.049 E ZMB 107243

QL: Endeavour Riv., 12 miles WNW of Cooktown n.d. AMS

QL: Cooktown n.d. AMS C.437129

QL: Laura Riv. 15◦34.680 S 144◦27.410 E ZMB 106339

QL: Boggy Cr., W Normanby tributary 15◦49.97 S 144◦52.910 E ZMB 106373

QL: Three Mile Cr./Poison Cr., tributary of Endeav-

our Riv.

15◦25.789 S 145◦07.04 E ZMB 106356, 107245

QL: Bloomfield Riv. n.d. AMS C.487

QL: Granite Cr., W of Bloomfield 15◦55.99 S 145◦19.54 E ZMB 107246

QL: Bloomfield Riv. crossing, 2.9 km on N side 15◦56 S 145◦20 E QM 24004

QL: Woobadda Cr. 15◦57.969 S 145◦22.858 E ZMB 107247

QL: Woobadda Riv. 15◦58 S 145◦22.480 E ZMB 106342

QL: Meelele Riv. 15◦58.250 S 145◦23.850 E ZMB 106341, 107248

QL: Wonga Beach, 14 km NNE of Mossman 16◦20.30 S 145◦25.00 E VK 21.054

QL: Mossman Riv., Cr. at crossing n.d. ZMB 104150

QL: Cr. entering Mossman Riv., at Mossman Gorge n.d. AMS C.127104, C.426370

QL: Mossman Riv., outside Mossman Gorge NP n.d. AMS

QL: Mossman Riv. Gorge, small Cr. nr parking area n.d. AMS stn 53a

QL: Mowbray Riv., nr Port Douglas n.d. AMS C.324143

QL: Mowbraw Riv., near Port Douglas 16◦33.812 S 145◦27.877 E ZMB 107588

QL: W side of Daintree Riv. Valley n.d. AMS
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Locality Coordinates Museum n◦

QL: Martins Cr., upper Daintree Rd, Daintree Riv. 16◦14.163 S 145◦18.323 E ZMB 107598

QL: E of Dimbulah, Walsh Riv. near Mutchilba 17◦7.283 S 145◦16.205 E ZMB 107600

QL: Salt Water Cr., near Lynd Brook 17◦48.985 S 144◦25.046 E ZMB 107602

QL: Porcupine Cr. at Pyramid pool in gorge 20◦20.752 S 144◦27.676 E ZMB 107609

QL: Kewarra Beach, N of Cairns n.d. AMS

QL: Barron Riv. n.d. BMNH 1885.3.18.3-6; AMS

C.127065

QL: Cr. off Mulgrave Riv., N Cairns 17◦14 S 145◦46 E AMS

QL: Mulgrave Riv., near Goldsboroug, Cairns n.d. QM 64451

QL: Mulgrave Riv., nr Cairns n.d. AMS

QL: Barron Falls n.d. AMS C.9283

QL: Stony Cr., nr Barron Riv. n.d. QM 4991

QL: Barron Riv., Hemmings Rd. n.d. QM 64503

QL: Barron Riv., Picnic Crossing n.d. QM 64478

QL: Barron Riv. Falls n.d. AMS C.51468

QL: Barron Riv., George Rd 16◦51.632 S 145◦39.791 E ZMB 107250

QL: Barron Riv., below 150 m Lake Placid 16◦52.17 S 145◦40.405 E ZMB 107249

QL: Mareeba, upper Barron Riv. 16◦59.134 S 145◦25.158 E ZMB 107584

QL: spring beside Barron Riv., 12 miles N of Atherton n.d. AMS C.324144

QL: Crystal Cascades, Redlynch, nr Cairns n.d. QM 64476

QL: Yarrabah Rd., Pine Cr. 17◦00 S 145◦50 E QM 48184

QL: Pine Cr., NW of Malbon Thompson Rd., Cairns n.d. AMS stn 44

QL: Musgrave Riv., downstream from Goldsborough Bridge 17◦11.40 S 145◦44.13 E VK 26.346

QL: Tributary of Musgrave Riv., near Gouldsborough Val-

ley Camping Area

17◦14.19 S 145◦46.28 E VK 26.333

QL: Dowah Cr., at Freshwater Cr. junction, W Cairns n.d. AMS C.324140

QL: Pelican Cr. n.d. BMNH 1884.12.27.1-7

QL: Near Gregory Falls 17◦35.570 S 145◦52.290 E ZMB 106352

QL: Tinaroo Dam & Lake Tinaroo, Atherton Tableland n.d. AMS C.158125, C.158280

QL: Lake Tinaroo n.d. AMS C.158280

QL: Chambri Lakes, Atherton Tableland, Lake Eacham 17◦17 S 145◦37 E QM 14002

QL: Atherton Tableland, Lake Tinaroo 17◦10 S 145◦33 E QM 46349

QL: Tinaroo 17◦08 S 145◦35 E QM 64505

QL: Johnson Riv., Innisfail n.d. AMS C.51806

QL: Cr. 10 miles of Innisfail, nr Johnson Riv. n.d. AMS C.109653

QL: Burdekin Riv. n.d. BMNH 1846.10.7.33-35,

1879.5.21.399-401, 406-7)

QL: Bellenden-Ker Range, nr Babinda n.d. AMS C.51353, C.109651

QL: Fisher’s Cr., at Palmerston Hwy 17◦34.167 S 145◦53.876 E ZMB 107251

QL: Mena Cr., Innisfail n.d. AMS

QL: South Mission Beach 17◦56.840 S 146◦03.290 E ZMB 106340

QL: Cardwell, Rockingham Bay n.d. BMNH 1879.5.21.397-8, 415-6,

433-4

QL: Fisher’s Cr., Palmerston Hwy n.d. AMS C.126522

QL: Upp Lynd Riv., Mt. Garnet to Mt. Surprise n.d. QM 1620

QL: Elizabeth Cr., E of Mt. Surprise 18◦08.351 S 144◦19.414 E ZMB 106726

QL: Ross Riv. 19◦21.73 S 146◦43.93 E AMS C.338675

QL: Saltwater Cr., Atherton n.d. AMS C.109132

QL: Burdekin Riv., 100 km from the coast n.d. VK 7780

QL: Rosetta Plains, Burdekin Riv. n.d. AMS C.8892

QL: Rosella Plains, near Cardwell n.d. BMNH

QL: Missionary Bay, Hichinbrook Island, South Cr. n.d. BMNH

QL: Townsville, Aplins Weir, Ross Riv. n.d. QM 38407

QL: Townsville n.d. AMS

QL: nr Almaden, Chilagoe Railway, Four Miles Cr. n.d. AMS C.54093

QL: off Ingham Rd, Townsville n.d. AMS

QL: nr Eungella, Broken Riv. n.d. AMS

QL: Alice Riv., at Eubenangee NP entrance 17◦24.52 S 145◦58.85 E AMS C.338679

QL: Charter Towers, Tank College n.d. QM 1600
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Locality Coordinates Museum n◦

QL: Charters Towers, NW at Toomba Stn 19◦58 S 145◦34 E QM 53803

QL: Allingham Cr., Bluff Downs Stn 19◦43 S 145◦36 E QM 64450

QL: Alligator Cr., Wando Vale Rd crossing n.d. QM 64452

QL: Calcifer Cr., nr Chillagoe n.d. AMS C. 54417

QL: Euri Cr., at Bowen to Collinsville Rd 20◦12.294 S, 147◦57.613 E ZMB 107955

QL: Botanic Garden, Mackay, on Bruce Hwy 21◦9.485 S, 149◦9.582 E ZMB 107963

QL: Proserpine n.d. QM 4411, 35346

QL: Lethe Beach, 5 km S of Proserpine on Bruce Hwy n.d. AMS

QL: Conway Riv. NP, E of Prosperpine 20◦16 S 148◦46 E QM 35346

QL: Myrtle Cr., crossing on Bruce Hwy n.d. AMS

QL: McKinley Cr., near Mackay n.d. VK 977

QL: Isaac and Burnett Rivers n.d. BMNH 1885.6.12-60

QL: Fitzroy Riv. n.d. BMNH 1879.5.21.468-72

QL: Fitzroy Island n.d. AMS C.58394

QL: Rockhampton n.d. BMNH 1879.5.21.420.7

QL: Rockhampton, Yeppen Lagoon n.d. AMS C.118148

QL: Rockhampton, western side of Frogmore Lagoon n.d. AMS C.109652

QL: Alligator Cr., 20 km N of Rockhampton n.d. AMS

QL: Addy Cr. n.d. BMNH

QL: Andromache Riv. crossing, via Gunyarra 20◦34 S 148◦29 E QM 26376

QL: Port Curtis n.d. AMS

QL: Mt. Cooper, Rolleston Riv. n.d. AMS C.109429

QL: Hays Inlet, nr Kallangur n.d. QM 28789

QL: Gloucester Passage n.d. QM 33609

QL: Brookfield, Moggill 27◦30 S 152◦30 E QM 64471

QL: North Pine Riv., Dayboro 27◦15 S 152◦50 E QM 64472

QL: Kedron Brook at Brook St. n.d. QM 64473

QL: Fox Bridge, Mazlin Cr. n.d. QM 64479

QL: Beantree Bridge, Mazlin Cr. n.d. QM 65404

QL: South Maroochy Riv. at Yandina 26◦33.626 S 152◦56.629 E ZMB 107949

QL: Kenilworth, Little Yabba Cr. junction n.d. QM 64495

QL: Peterson Cr. n.d. QM 64506

QL: Burrum Riv., Howard n.d. QM 64507, 64508

QL: Paluma, Mt Spec NP, Crystal Cr. n.d. QM 59919

QL: Walkamin, granite n.d. QM 64465

QL: Palms Island n.d. QM 64469

QL: Blackmans Cr., SW Galdstone 24◦26.30 S 151◦25.30 E AMS C.324136

QL: Boyne Riv. at Rosedale, S Galdstone 24◦13.40 S 151◦15.30 E AMS

QL: Brisbane, Sinnamon Pk. n.d. QM 64475

NSW: Clarence Riv., S Grafton 29◦40 S 152◦55.983 E AMS C.170629
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4.4 Discussion

Based on the data presented in this study, the suggestion is made to differentiate eleven

species among the Australian Thiaridae which are mostly in accordance with the results

of Glaubrecht et al. (2009) by (shell) morphology. The main differences to this previ-

ous systematic account as well as new insights in the light of the molecular results of

the mitochondrial data are discussed in the following. First of all the importance of the

genetical confirmation should be noted. As the shells are highly variable, many popula-

tions/individuals have been erroneously named. The collector assigned each specimen in

the field, based solely on external appearance in combination with previous geographic

knowledge, and not necessarily to the appropriate taxon. The extent of this source of

error is only apparent in molecular results and shows that morphological classification of

thiarids have to be undertaken with caution, a well-known phenomenon for other fresh-

water gastropods (Reid et al., 2013).

The thiarid Thiara rudis could be identified by molecular data and is recorded here for the

first time as taxa with occurrences in Australia. The specimens were already collected in

2004 but misidentified as “Thiara” australis and Sermyla venustula. Only the molecular

analyses show that they actually have typical Thiara rudis sequences and this assignment

can be confirmed by examining the morphology.

In the genus Sermyla, the sequencing results show that Sermyla riqueti is not (or at least

not often/anymore) represented in Australia and that specimens from Howard Springs

(see fig. 32b), referred to as “carbonata” (Reeve, 1859), do not differ genetically from

the endemic S. venustula which makes the latter the only species in Australia from that

genus. Its occurrence in Bundara Sinkhole, far away from the normal distribution range,

is quite interesting. Although alternative explanations exist, it could be a population that

might have survived as relictual form from times long gone. Of course this explanation

is based on the assumption that the species had a wider distribution in the past which

could also explain why the type locality is outside of its present-day range.

Glaubrecht et al. (2009) conjectured that Melanoides tuberculata and potentially Pseudo-

plotia scabra are most likely anthropochorous introductions from Asia to Australia. The

authors reasoned that the spotty occurrences on the continent with the vicinity of larger

cities are indications for a possible recent introduction or invasion to the continent. New

records show that they appear more often than thought and the localities are not only

restricted to areas near human settlements. In any case, both species are known for being

invasive in other parts of the world. Their adaptability to a wide range of environmental

conditions in combination with their ability for rapid dispersal and population explosion

had serious consequences, for example in case of M. tuberculata in Argentina (Gregoric,

2010). Actually, M. tuberculata has invaded the whole intertropical belt, mainly as a
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result of the trade for aquarium plants (Facon et al., 2003). Concerning P. scabra only

recently a study has been published that captures the rapid dispersal and population ex-

plosion of this invasive species in Lake Kinneret, Israel (Heller et al., 2014). The species,

which is also commonly bred in aquaria, probably reached the Lake during the mid-2000s

and currently comprises 95% of its snail fauna. However, it remains open whether the

Australian populations of this species have been introduced recently. Further studies are

necessary in order to understand the invasive behaviour and impacts of the species in

Australia. The distribution of the species could rapidly spread in new water courses and

it should be under supervision if new records are reported in the future.

Ripalania queenslandica was thought to be an endemic species of Australia, occurring only

(as its name already reflects) on a small coastal sector along the Jardinian in Queensland.

Already in 2009 it was considered that it could be more widespread in the Australasian

region. Now there is evidence for this erstwhile assumption as shells from New Guinea

very similar in appearance turned out to belong to the species (see chapter 5). With

this range expansion it shows the same pattern as Thiara amarula and Stenomelania

cf. aspirans : the three species are restricted to the same area in Australia, but have a

more or less extensive distribution in the SE Asian and Pacific region. While all other

Australian thiarids retain their eggs within the brood pouch (eu-vivipar), these three taxa,

release veligers (ovo-vivipar). Anatomical studies reveal that their marsupia only contain

eggs and embryos up to very early developmental stages which are then released as free

swimming veligers. As they have the same potential for passive dispersal by planktonic

larvae and as (not only near relatives but even) conspecifics can be found over the entire

SE Asian and Pacific region, it can be assumed that these three ovo-viviparous thiarids

might be recent colonizers from the north. Their marine veligers might have crossed vast

areas with ocean currents coming from the north and managed to colonize in this area.

The restricted appaerence in Australia (despite the capability of long-distance dispersal)

seems to be connected to the climatic conditions in the Jardinian, as this region is the only

area in Australia with conditions quite similar to those in other monsoonal regions of the

Asia-Pacific region where these three can be found. As an alternative viewpoint to this

colonization, it should be considered that these three thiarids might represent an ancient

Australian freshwater faunal element. As such they might have survived as relictual forms

in the Jardinian from times long gone as known about many Australian faunal and floral

elements and discussed in Glaubrecht et al. (2009).

It remains a special case of interest that these three differing species R. queenslandica, T.

amarula and S. cf. aspirans are easily diagnosed and distinguished from other Australian

thiarids as being the biggest among the Australian thiarids with highly distinct shells (see

fig.14 and tab.). The pattern observed by Glaubrecht et al. (2009) that species with a more

restricted geographic range on the continent in general are also less variable, holds true not

only for these three Jardinean species but in particular for Melasma onca as a species with
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restricted occurrences and fairly constant conchology. In contrast, species with a wider

distribution across Australia, like “Thiara” australis, Plotiopsis balonnensis and Stenome-

lania denisoniensis, are often extraordinarily variable even within single populations. In

this context it is noteworthy to mention that M. onca also differs in reproductive mode

as it is eu-vivipar but has a strategy distinct from other eu-vivipar Australian thiarids

concerning the number of embryonic stages within the marsupium (Maaß and Glaubrecht,

2012).

Glaubrecht et al. (2009) considered the distribution of “Thiara” australis in comparison

to Plotiopsis balonnensis as being “apparently completely exclusive, thus vicariant (al-

lopatric).” The genetic results are inconsistent with this statement, confirming “Thiara”

australis occurrences in the Coral Sea drainage (an area of P. balonnensis) and vice versa

localities of Plotiopsis balonnensis near the Gulf of Carpenteria coast, i.e. Bynoe River

and Gregory River, where “Thiara” australis clearly dominates. At Bynoe River there

even is a record of sympatric and syntopic occurrences of these two thiarids in Australia

(see fig.27).

Figure 36 Region where the geographical range of “Thiara”’ australis (black symbols) abuts
against the distribution range of P. balonnensis (red symbols). Exceptions are marked with
numbers, in which 1+2 represent cases where P. balonnensis sequences were found in the range
of “Thiara” australis, and number 3 shows the contrary case. 1: Gregory River and 2: Bynoe
River; 3: Three Mile (Poison) Creek (Endeavour River). a,b,c show localities in the Great
Dividing range, that drain into the Gulf of Carpenteria but belong to the range of P. balonnensis.
a: Lynd River (merges with Mitchell River); b: Gilbert-Einasleigh River; c: Porcupine Creek
(Flinders River). Note that the representation of distributions is clearly influenced by collecting
effort and river accessibility.
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The occurrence in the Bynoe River isn’t surprising that much as it is an arm of the

Flinders River delta and P. balonnensis is known to occur in the upper river section of

the Flinders River in the Great Dividing Range (see fig.36). Hence, the two species coexist

in the same drainage system, with apparently with each species at opposite ends of the

river, but as can be seen now with scattered exceptions. One explanation could be that

often the streams are seasonally fed by rainfall and the resulting monsoonal flooding of

vast areas might lead to diversion of single snails. Another possibility is passive trans-

port for instance by humans along coastal highways which could also explain the second

out-of-range occurrence in the Gregory River. However, P. balonnensis is notably absent

in the entire Timor Sea drainage and the occurrences in the Gulf of Carpenteria are only

scattered and uncommon. The best explanation for this observed disjunct distribution,

is that it represents a fragmentation of a widespread ancestral species (Wiley, 1988) and

with regard to the phylogenetic framework it would have been expected that the two

species turn out to have a sister group relationship. Morphologically they are indeed hard

to distinguish, but from the molecular point of view (speaking only of the mitochondrial

data), “Thiara” australis is quite different from Plotiopsis balonnensis. In order to shed

light on this paradoxon, an AFLP analyses was conducted with a special focus on these

two species (see chapter 6). In addition, a bachelor thesis at the Humboldt University in

Berlin, was disposed (Melanie Krause, unpublished 2014). The results are discussed in

summary on page 111.

To sum up, the degree of endemisms in Australian thiarids declines from six to four

species (see also tab.46), as “Stenomelania” denisoniensis and Ripalania queenslandica

are not endemic to the continent. Out of the four remaining endemics, three viz. “Thiara”

australis, Sermyla venustula and Melasma onca are restricted to only certain regions in

the Leichhardtian and one i.e. Plotiopsis balonnensis is widespread on the continent.

Note that the aim of the present account was to incorporate the mitochondrial-data (in

addition to new biogeographic data) into the existing knowledge about the Australian

thiarids. For the aggregation of all results, including nuclear sequencing and AFLP data,

see the corresponding and ‘General discussion’ chapter.
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5 New insights from a lost world - Unlocking the po-

tential of museum collections using historical spec-

imens

5.1 Specific introduction

Museum collections contain specimens gathered over several centuries of natural history

explorations and represent a fantastic and underused source of material for biological stud-

ies. In the last decade, the number of studies using natural history museum collections

for genetic analyses has risen sharply and the growing demand of molecular biologists to

sample museum specimens is putting an increasing pressure on the collections (Hofreiter,

2012). Exploiting museum specimens as a source of genetic data is a big challenge due

to the degraded nature of the DNA which leads to low rates of amplification and high

levels of contamination (Wandeler et al., 2007). The technological challenges are similar

to those that occur when working with samples from the fossil record and the method-

ological approaches are thus similar to those used with ancient DNA (aDNA) techniques

(Paijmans et al., 2012). The field of aDNA met with severe criticism when grave errors

were found in some influential publications from the early 1990s. In spite of these past

controversies, the study of aDNA is now a reliable research area due to recent methodolog-

ical improvements (Rizzi et al., 2012). The development of next generation sequencing

(NGS) has revolutionized aDNA research like almost no other field of genetics leading to

reproducible and authentic results (Knapp et al., 2012).

Because of the similar methodological approaches used when working with historical mu-

seum specimens, they have often been included in the definition of ancient DNA (Pääbo

et al., 2004) but beside the fact that historical samples from museums can be millennia

younger than samples from the fossil record there is an important difference. In con-

trast to analyses of extinct organisms the results of modern degraded DNA or historical

DNA (hDNA) can be confirmed by comparisons with results from high-quality DNA sam-

ples taken from extant populations. That means there is some knowledge of and control

over what has been amplified (Knapp et al., 2012). For this reason, in hDNA research

the state-of-the-art NGS-approach used in aDNA research is not mandatory. The most

widely used technique for hDNA is whole genome extraction, PCR amplification of short,

at best overlapping fragments followed by Sanger-sequencing (Rizzi et al., 2012) allowing

inexpensive but confidential studies. PCR amplification is restricted to short amplicons

because the high fragmentation of hDNA molecules leads to average fragment sizes of only

200 base pairs (Wandeler et al., 2007). The sequences derived from these short amplicons

can be used as ‘mini-barcodes’ and have been shown to be effective for accurate identi-

fication in many animal groups (Hajibabaei et al., 2006; Kirchman et al., 2010; Dubey

et al., 2011; Strutzenberger et al., 2012). Studies of invertebrates are surprisingly rare.
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In case of molluscs, there is a variety of material stored under diverse conditions from

which DNA can be extracted, such as soft bodies, operculums and shells preserved both

wet or dry. However, the majority of museum holdings are represented by dry and empty

shells which often constitute taxonomically or historically important lots, such as types

(Köhler et al., 2008). Working with unique type material minimizing damage to the

specimens is an important consideration and therefor a non-destructive extraction method

should be used (Casas-Marce et al., 2010). To the best of my knowledge, there is no

published protocol for non-invasive DNA extraction from entire dry mollusk shells up

to now, that worked on samples older than 10 years of storage. Only few publications

describe the use of dry mollusc shell material for extraction and the existing ones use shell

fragments (Geist et al., 2008; Barsh and Murphy, 2007; Hawk, 2010) or they perforate

the shell (Caldeira et al., 2004). The only extraction from an entire gastropod shell was

published by Andree and López (2013) but the material had only been stored for ten

years.

Here it is tried to extract DNA from historical material stored up to over a hundred

years ago using museum specimens from the Malacological Collection at the NHM Berlin.

Extractions are tested for dried entire shells, ethanol-preserved soft bodies and one dried

operculum (see tab. 18). With the design of novel primers the use of short amplicons for

the identification of museum specimens is explored by comparing them with fresh material

using Cerithioidean gastropods as models. In five case studies concerning the Thiaridae

and Paludomidae the effectiveness and relevance of this technique is shown.
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5.2 Specific material and methods

DNA extraction and pre-PCR procedures of all historical samples were conducted at the

Leibniz Institute for Zoo and Wildlife Research (IZW) Berlin in a separate laboratory

solely dedicated to ancient DNA work to avoid contamination of historical samples with

modern DNA. A list with all 34 historical samples (covering different ages, storage condi-

tions and tissue types) used for initial extraction and PCR tests is given in the appendix

(see tab. D). Samples that were chosen for further analyses representing the five case

studies are provided in tab. 18.

Table 18 List of studied specimens from the Malacological Collection at the NHM Berlin. All
specimen were stored at room temperature. Museum codons see appendix.

Museum n◦ Species Date Location Tissue Storage Lab n◦

ZMA w/o no. Balanocochlis glans 1903 New Guinea Mamapiri foot tissue ethanol SC6
ZIM 3948-1 Neoradina prasongi 1968 Thailand Kao Tong foot tissue ethanol SC10
ZIM 3948-3 Neoradina prasongi 1968 Thailand Kao Tong foot tissue ethanol SC11
MZB 12.300-1 Paludomus sp. 1980 Indonesia Lombok foot tissue SC25
ZMB 86812-1 Ripalania queenslandica 1937 Papua New Guinea Manus Island operculum dry SC26
ZMB 87263-1 Ripalania queenslandica 1937 Papua New Guinea Ramu estuary shell dry SC27
ZMB 87264-1 Ripalania queenslandica 1937 Papua New Guinea Sattelberg shell dry SC28
USNM 859456 Simulathena papuensis 1970 New Guinea Yule Island foot tissue ethanol SC13

5.2.1 Historical DNA extractions

Extractions were done using the GENECLEAN Kit for Ancient DNA (Bio 101) according

to the supplied protocol including a preincubation with Proteinase K. Dried shells, one

operculum and foot tissue samples (see tab. 18) were pre-incubated overnight and removed

during a centrifuge step after which only the supernatant is carried over to the next step

(step 3 of alternative, supplied protocol). Extracted DNA was purified using QIAquick

PCR Purification Kit (Qiagen) and stored at -20◦C until further use.

5.2.2 Primerdesign & PCR

Primers were specifically designed for the group of interest based on an alignment of 16S

sequences of Thiaridae targeting highly conserved regions. In order to exclude contam-

inations resulting primer pairs were tested with chimp DNA (as substitute for human

DNA), rat DNA (Na 52 (R4864)) and bovine herpes virus from a cell growth (BHV-1

(DNA)). Two novel primer pairs S4 (16S F AWmod: 5‘ACAAGAAGACCCTGTCGAGC

3‘;16S R AS1: GATTATGCTGTTATCCCTGCGG) and S5 (16 F Thia2: 5‘CTTYCG-

CACTGATGATAGCTAG 3‘; 16S R FA AWmod: 5‘CAAYTTTCGAGCTTATCCTC

3‘) did not bind to bovine, rodent or human DNA and were chosen for further analy-

ses. Primer sets were first tested on a range of modern samples in a different laboratory
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prior to being used on historical specimens. PCRs were performed in a 30,5 μl final vol-

ume containing 22,5 μl Platinum R© PCR SuperMix (Invitrogen), 1 μl of each primer (10

pmol/μl), 1 μl BSA (20 mg/ml) and 5μl purified template DNA. The thermal profile of

PCRs were 94◦C for 4 min, then 60 cycles of 94◦C for 30 seconds, 53,3◦C (S4) or 50,3◦C

(S5) for 30 seconds and 72◦C for 30 seconds. Final elongation period was 5 min at 72◦C.

PCR products were run on a 1.5 % agarose gel for amplification qualification and puri-

fied using QIAquick R© PCR Purification Kit according to the supplied protocol. Forward

and reverse DNA strands were cycle sequenced using ABI Prism BigDyeTM terminator

chemistry and visualized on an ABI Prism 3130 automated sequencer (SMB Services in

Molecular Biology GmbH).

Figure 37 Position of products S4 and S5 within the 16S mtDNA sequence including primer
sequences - modified from master thesis J. Ebersbach.

5.2.3 Phylogenetic analysis

Alignments of forward and reverse strands were conducted using CodonCode Aligner v.

3.7.1 (CodonCode Corporation, Dedham, MA, USA). Primer sequences were trimmed

leading to hDNA sequences lengths of ∼75 (S5) and ∼150 (S4) basepairs. Sequences

from fresh material (∼880bp) and hDNA sequences were aligned using MUSCLE (Edgar,

2004b,a) and corrected manually for algorithm-specific errors. As recommended by

Dittmar et al. (2006) unobtainable characters were coded as missing. Bayesian infer-

ence (BI) (Huelsenbeck et al., 2001) was employed to infer phylogeny by using Mr-

Bayes 3.1.2 (Ronquist and Huelsenbeck, 2003) for 5,000,000 generations (samplefreq=200

burnin=35001) using the substitution model HKY+G+I, according to MODELTEST ver-

sion 0.1.1 (Posada, 2008). In addition, phylogenetic trees were reconstructed by maximum

parsimony (MP) using the heuristic search algorithm as implemented in PAUP* 4.0b10n

(Swofford, 2002), with gaps treated as fifth base. Support for nodes was estimated by

bootstrap analysis (10000 replicates). Maximum Likelihood (ML) analyses were con-

ducted with TREEFINDER (Jobb et al., 2004) (1000 bootstrap replicates) using the

model specified above. The final calibrated chronograms and node estimates were edited

using FigTree version 1.3.1 (Rambaut, 2009).
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5.3 Results and discussion

5.3.1 Extraction

The extractions worked in each case leading to DNA of sufficient quantity and quality

for successful PCR amplification with the designed primers (see next paragraph). Ampli-

fication success was seemingly independent of used tissue type, as PCR products could

be recovered from both, dry gastropod shell/operculum as well as soft tissue preserved

in ethanol. The extraction procedure proved to be minimally invasive and apparently

nondestructive for the entire dry shell. While the periostracum did suffer some slight

damage, the shell itself appeared to be largely intact (see fig.38).

Figure 38 Shells of Ripalania queenslandica before (a,c) and after (b,d) extraction procedure
(a, b: ZMB87264; c, d: ZMB87263). In d the upper whorls of the shell were found to be slightly
damaged. Scale bar = 1 cm.

As an important application of hDNA amplicons lies in obtaining sequence information

from old type specimens, any possibility of damaging this unique material must be elimi-

nated. The method can be considered non-destructive only in the sense that the shell stays

complete. However, it is semi-destructive because the periostracum suffers some damage.

This organic layer is probably the source of the extracted DNA as Geist et al. (2008)

found out that removal of the periostracum before the extraction resulted in decreased

yield of DNA.

5.3.2 Primer design and phylogenetic analysis

Two sets of conserved primers that reliably amplified short DNA fragments (S4 and S5)

from historical samples were designed and tested. The positions of these amplicons in the

16S alignment of full-lenghts sequences are shown in fig. 37.

The S5 fragment (∼75bp) was amplified in all thiarid species studied but did not work

with the Paludomus sample which represents another family. The S4 amplicon (∼150bp)



90 5 Historical DNA - Museum specimens as a source of genetic data

was obtained in 7 out of 8 species. It could not be amplified from the extraction of the

Simulathena sample (discussed in 5.3.3).

It was not possible to get a set of primers for multiple overlapping amplicons to recover the

full 16S sequence, because the requirements concerning the authentication criteria could

only be fulfilled by the two chosen ones. However, Meusnier et al. (2008) analysed the

minimum amount of sequence information required for identifying species and found out

that in 90% of the species tested in their analyses a DNA barcode of only 100bp contained

nucleotide substitution(s) specific to members of a particular species. In this study the

two short amplicons from old museum specimens having a total lenght of ∼225bp were

also effective in identifying specimens as shown in the phylogenetic reconstruction (see fig

39). They formed monophyletic groups with sequences of freshly collected specimens of

the corresponding species (discussed in the next section). The Bayesian analysis resulted

in a topology very similar to those of the ML and MP analyses (see appendix fig. 55 and

fig. 56), so only the BI phylogram is presented.
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Papua New Guinea

Papua New Guinea

Queensland, Australia

Figure 39 Bayesian consensus phylogram based on 16S sequences. Numbers on nodes indicate
support of the shown topology by means of Bayesian posterior probabilities. Museum samples
are shown in red (Ripalania samples) and green (see text 5.3.3). Red symbols correspond to
localities and shells shown in fig. 40. Rque: Ripalania queenslandica; Bgla: Balanochochlis
glans; Psia: Paludomus siamensis. For other abbreviations in taxa names see appendix. Four
and five-digit numbers represent extraction numbers, numbers with prefix letter codes museum
numbers.
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5.3.3 Systematic relevance of the results

In the following five case studies the effectiveness of this technique is shown. The taxa

included were chosen because their identification was needed to clarify specific biogeo-

graphical and systematical questions. As this thesis focuses on the Australian taxa, the

results and the systematic relevance of non-Australian taxa are only briefly discussed.

Ripalania queenslandica (Smith, 1882) is said to be endemic to Australia however

the Malacozoological Collection Berlin hosts samples which closely resemble this species

morphologically, but which were collected in Papua New Guinea (viz. SC27, SC28) and

the Admiralty Islands (viz. SC26) in 1937. DNA from these three samples could be

extracted and amplified with the two novel primer pairs. The analysis shows that two

of the historic specimens (viz. SC26, SC27) from Papua New Guinea cluster with R.

queenslandica sequences from Australia indicating that the species is, in fact, not actu-

ally endemic to Australia.

Figure 40 Formerly considered as being endemic to Australia, historic samples from the
Bismarck Archipelago, suggest a wider distribution of R. queenslandica outside of Australia.
Scale bar: 1 cm. Symbols: quad - SC26; triangle - SC27; pentagon - SC28; circle - fresh
material from Australia represented by one typical shell.



5.3 Results and discussion 93

One sample (viz. SC28) that was thought to be R. queenslandica does not cluster within

the R. queenslandica cluster. The shell is much smaller than the others and the parietal

wall of the aperture is slightly different in shape (see fig 40) indicating that this shell

might belong to another species.

Neoradina prasongi (Brandt, 1974) is the type species of the genus and only known

from Thailand where it has been exclusively reported from the type locality near Kao

Tong (Brandt, 1974). Up to now, the genus has been neglected by phylogenetic scrutiny

because species identification is difficult due to its close resemblance to other thiarid

genera (Melanoides and Stenomelania). The phylogenetic reconstruction indicates that

the cluster of the two historic specimens of N. prasongi, verified here with types (viz.

SC10 and 11), and fresh topotypical material from southern Thailand, represents an

independent thiarid lineage, distinct both from Melanoides and Stenomelania.

Balanocochlis glans (Busch, 1842) (viz. SC6) clusters with the appropriate se-

quences from fresh material of the species. This taxa is discussed separately in Glaubrecht

et al. 2013: The two clades of Balanocochlis constitute strong evidence for an interesting

geographical break across the island of New Guinea, clearly separating the western clade

from an eastern clade.

Simulathena papuensis (Houbrick, 1992) was originally described as a member

of the Planaxidae (Mollusca: Cerithioidea) (Houbrick, 1992). Morphologically, particu-

larly regarding shell, radula and reproductive biology, it might rather represent a member

of the limnic Thiaridae (Glaubrecht, personal communication), rendering its interest for

genetic analysis. Only the product of primer pair S5 could be amplified from the histor-

ical sample. The short amplicon (73bp) clusters with a sequence of Pseudoplotia scabra

from Laos differing in only 3bp. In a separate analyses including outgroups of Pachychili-

dae, Planaxidae, Potamididae, Cerithiidae and Pleuroceridae, the Simulathena papuensis

sequence (viz SC13) appears at the same position within the Thiaridae (see fig. 54 in

appendix). This provides the final proof that it is a representative of this family.

Paludomus sp. (Swainson, 1840) The genus is widespread in the Indo-West Pacific

from the Seychelles and India to Indonesia and the Philippines. Sample SC25 was col-

lected in Lombok, Indonesia, and is one of the only Paludomus samples ever to be found

beyond the Wallace Line. Only the product of primer pair S4 could be amplified. The

150 bp amplicon from the old museum specimen (viz SC25) formed a monophyletic group

with freshly collected specimens of the corresponding genus. The result reveals that the

taxon is apparently not strictly Oriental in its distribution.
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5.3.4 Summary and conclusion

Two sets of novel primers for targeting regions within the 16S gene to produce ∼75bp

(S5) and ∼150bp (S4) amplicons from hDNA were designed. Comparison of sequence

information obtained from these hDNA fragments with recently collected samples pro-

vided excellent corroboration. The mini-barcodes enabled the identification of species by

phylogeny reconstructions as illustrated by five thiarid case studies.

Concerning the extraction from entire shells, shell DNA provides a useful additional source

for DNA-based analyses but damage of the periostracum makes the procedure not safe

enough when using type material. However, the extraction method was only minimally

invasive and even dried tissue of soft body proved to be suitable material for amplifying

DNA.

It should be noted that if samples were collected and handled without DNA studies in

mind, as is common for most museum specimens, the extracts can contain significant

amounts of contaminating human DNA (Knapp et al., 2012). Thus, this approach should

only be used if enough data for comparison is available and if dedicated laboratory facil-

ities exist. Fulfilling these conditions, the shown procedure enables to contextualize old

museum material within biosystematics research in an inexpensive but confidential way.

Since it was feasible to amplify mtDNA fragments from a historical sample stored over a

hundred years ago (viz. SC6), it is possible to think about amplifying material even older.
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6 AFLP fingerprints reveal contrasting patterns of

genetic structure between nuclear and mitochon-

drial data

6.1 Specific introduction

In the preceding sections it was shown that the nuclear data does not comprehend enough

information to clear the relationships among closely related species of thiarid taxa. In

contrast to the mitochondrial based inferences, the relationships among the genera and

taxa within the thiarids are poorly resolved in the nuclear gene trees providing little

phylogenetic signal.

The lack of population structure in nuclear genealogies within highly differentiated

mtDNA lineages is not uncommon. But the sole use of mitochondrial data to infer a

family’s evolutionary history can be greatly misleading, as the genealogy does not neces-

sarily match the true history of the species (Ballard and Whitlock, 2004). Hence more

nuclear data is needed to uncover the genetic differences between species and to build a

more robust phylogeny of the family. When working with molluscs, the absence of suitable

sequencable loci is a phenomenon one is often faced with (Greve et al., 2012; Haase et al.,

2014). With regard to the extensive process of developing sequence-based nuclear markers

useful for phylogenetic reconstructions, a number of recent studies have emphasized the

utility of amplified fragment length polymorphism (AFLP) markers for the analysis of

species where other markers have yet to be developed (Dasmahapatra et al., 2009). The

AFLP technique has become an attractive tool in phylogenetics as it allows molecular ge-

netic analyses without any prior DNA sequence information of the organism under study.

Because AFLP markers are sampled throughout the genome, they are likely to uncover

rare genetic differences in groups with low sequence variation and they have proved to be

valuable characters to resolve phylogenetic relationships among closely related taxa, but

also at the family-level (Dasmahapatra et al., 2009; Meudt and Clarke, 2007).

In addition, the AFLP technique is an attractive tool in population genetics and might

help to assess genetic variation and population structuring of the thiarids with regard to

the different river drainage systems. This could lead to a better understanding of the

distribution patterns in Australia and their connection with different dispersal potential

as dicsussed in chapter 4.

However, due to the nature of the AFLP technique its reliability has been an issue since

the introduction of this method. Unlike DNA sequencing, where each nucleotide can be

determined with high degree of confidence, AFLPs can contain amplification failures and

there is a lack of a reliable control. For this reason a new automated scoring approach,

called AMARE, is used in this study that works in an objective and perfectly reproducible

way (Kück et al., 2012). In order to be comparable with the preliminary sequencing
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results a similar data set (see chapter 3) was aimed for with an additional focus on

the two endemic species “Thiara” australis and Plotiopsis balonnensis. As mentioned in

the introduction and discussed in the biogeographical revision (chapter 4), the simplest

explanation for their observed disjunct distribution and morphological similarity, is that

they represents a fragmentation of a widespread ancestral species. If so, the two species

are sister groups, but the mitochondrial data reject this relationship even showing that

“Thiara” australis is genetically quite different from Plotiopsis balonnensis (see fig. 5).

In order to shed light on the evolution of the thiarid taxa the phylogenetic signal in AFLP

data is compared to the efficacy of mtDNA sequences.

6.2 Specific material and methods

6.2.1 Sample choice

To have comparable results with the dataset of the sequence-based trees from the first

chapter, it would, of course, have been best to take exactly the same samples as in these

anaylses. However, electrophoresis tests showed that in most cases the DNA quality was

insufficient for the AFLP technique. Especially older samples or older extractions showed

a high degree of degradation. As low DNA quantity and/or quality are known to promote

genotyping errors (Pompanon et al., 2005) these samples had to be excluded.

To get results that are still comparable with the sequence data, an effort was made to

replace samples that did not work by congeners from the same locality. Over 200 samples

from older collections were checked (see section DNA concentration adjustment) in order

to make the dataset as similar as possible. For taxa from Australia fresh material from

a special expedition in 2011 was taken. The list of material is given in the appendix (see

page 169).

6.2.2 Amplified Fragment Length Polymorphism (AFLP)

Amplified fragment length polymorphism (AFLP) is a fingerprinting technology based

on the polymerase chain reaction (PCR) and was first described by Vos and Hogers

(1995). AFLPs are generated by complete restriction endonuclease digestion of total

genomic DNA, followed by selective PCR amplification and electrophoresis of a subset of

fragments, resulting in a unique, reproducible fingerprint (or profile) for each individual.

The markers that make up the fingerprint are widely distributed throughout the genome,

allowing an assessment of genome wide variation (Meudt and Clarke, 2007).

DNA concentration adjustment To yield comparable and homogeneous fingerprints,

quality and quantity of DNA was checked on a 1.5% agarose gel and the DNA concentra-

tion was standardized among samples. Concentrations were measured using the Thermo

Scientific NanoDropTMND1000 spectrophotometer. TE buffer in which the DNA was dis-
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solved after extraction was used as reference material (blank). When a measurement of a

sample is taken, the intensity of light that is transmitted through the sample is recorded.

The sample intensities along with the blank intensities are used to calculate the sample

absorbance at a given wavelength (260 nm). The analyte concentration is correlated with

the calculated absorbance. For each sample, two independent measurements were taken

and averaged afterwards. After measurement, the concentration of DNA samples was

adjusted to 50 ng/μl. Samples with higher concentration were diluted with TE buffer.
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Figure 41 Restriction and ligation. In step 1, genomic DNA is digested with a pair of restriction
endonucleases (EcoRI and MseI), producing three categories of DNA fragments (see text). In
step 2, double-stranded EcoRI and MseI adaptors with complementary sticky ends are ligated
to the restriction fragments.

Restriction and ligation (RL) For the AFLP procedure, restriction and ligation

(see fig. 41) were carried out in a single step. Genomic DNA was digested with two

restriction enzymes, a frequent cutter MseI (4bp restriction site) and a rare cutter EcoRI

(6bp restriction site). After digestion, three categories of fragments exist in the mixture:

fragments with EcoRI cuts at both ends (longer ones on average), fragments with MseI

cuts at both ends (smaller ones on average), and fragments with an EcoRI cut at one

end and a MseI cut at the other end. The AFLP protocol is designed to amplify and

preferentially detect this last kind of fragments. Each obtained fragment possesses sticky

ends on both sides, which consist of a few bases to which adapters are ligated using DNA

ligase (Bonin et al., 2005). The adaptors (see fig. 42) contain core sequences, which

are complementary to primers used in the following amplification steps (Vos and Hogers,
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1995). In a 0.2 ml Eppendorf tube, 2.75 μl DNA sample and 8.25 μl mastermix (see

appendix tab.26) were merged. After short centrifugation at 8000 rpm, samples were

incubated over night in a thermocycler (2h at 37◦C, 8h at 16◦C). After incubation, the

reaction product was diluted in 39 μl of TE buffer.

top    GACGATGAGTCCTGAG - -   (5´-3´)
bottom   - - - - -TACTCAGGACTCAT   (3´-5´)

top   CTCGTAGACTGCGTACC - - - -     (5´-3´)
bottom  - - - CATCTGACGCATGGTTAA    (3´-5´)

AATTG 
C

MseI adaptor EcoRI adaptor

G
C TA

Figure 42 AFLP adaptors: short DNA fragments with sticky ends corresponding to the
cuttings of the enzymes. The highlighted part shows sequences complementary to amplification
primers.

Preselective amplification (PA) Preselective amplification aims to decrease the com-

plexity of the initial fragment mixture by amplifying only a subset of fragments (Bonin

et al., 2005). It is conducted as normal PCR with two primers (see tab. 19) whose struc-

ture consists of a core sequence, an enzyme specific sequence, and a selective single-base

extension at the 3‘ end of the primer (Zabeau and Vos, 1993). Only fragments exhibiting

the chosen bases inside the fragments will be amplified resulting in a reduction of fragment

numbers by 1\16 of the initial amount (Meudt and Clarke, 2007).

Table 19 Primer used for preselective amplification. enz.= enzyme specific sequence, ext.=
selective extension.

primer core sequence enz. ext.

preselective EcoRI GACTGCGTACC - AATTC - A

preselective Mse I GATGAGTCCTGAG - TAA - C

For PCR reaction, 4 μl diluted RL product and 16 μl mastermix were mixed in a 2 ml

Eppendorf tube and shortly centrifuged at 8000 rpm. The used mastermix and PCR

profile is shown in the appendix (fig.58 and tab.27).

To ensure complete digestion and to prevent later amplification of uncut fragments, an

important quality control consists of running a portion of the preamplification product on

an agarose gel (Mueller and Wolfenbarger, 1999). Successful samples should show a smear

and the intensity of this smear should be similar across samples (Bensch and Akesson,

2005). Of the resulting PA product 9 μl were analyzed via agarose gel electrophoresis for
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one hour with 55 V and 400 mA. The remaining PCR products were diluted in 50 μl of

TE buffer.

Selective amplification The selective amplification is based on the same principle as

the preselective one. A small aliquot of preamplified fragments is used in a second PCR

with two primers that additionally extend two bases inwards. This further reduces the

number of fragments by 1\256. The EcoRI primer is labeled with a fluorescent dye (a

fluorophore), so that all strands synthesized from this primer are fluorescently labeled

(Meudt and Clarke, 2007). Because the restriction/ligation step results in three types of

fragments (i.e. EcoRI-EcoRI, EcoRI-MseI and MseI-MseI), labeling of the EcoRI primer

has the advantage that fragments amplified only by the MseI primer will not be visualized

(Bensch and Akesson, 2005).

For selective amplification, 4 μl diluted product from the PA reaction was taken and

mixed with 18 μl mastermix. Samples were centrifuged (1 min, 8000 rpm) and placed

in the thermocycler. EcoRI selective primers are specially designed to have a higher

annealing temperature than MseI selective primers. As a result, a touchdown PCR allows

a preferential amplification of EcoRI/MseI versus MseI/MseI fragments (Bonin et al.,

2005). The first cycle of the PCR had an annealing-temperature of 65◦C and was then

gradually reduced (1◦C per cycle). The used mastermix and complete touchdown PCR

profile is given in the appendix (fig.59 and tab.28).
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G
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AA T T Gx x xG

preamplified fragment

Selective amplification

Figure 43 The selective amplification further reduces the amount of fragments, due to the
extension of the primers by two selective bases (”X”).
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Selection of primers Before embarking on the full project, different primer combi-

nations were tested on a small number of samples. Initial tests of primers for AFLP

experiments are necessary to ensure that they produce an appropriate number of frag-

ments (Fink et al., 2010). High quality profiles show well separated peaks, a lack of

shoulder or stutter peaks, fragments distributed throughout the available size range, and

clear polymorphisms (Meudt and Clarke, 2007). Using these criteria, we found five primer

combinations out of 17 that produced profiles suitable for high throughput genotyping.

The EcoRI selective primers were labeled with different fluorophores, enabling the prod-

ucts from different primer combinations to be pooled for capillary electrophoresis (see tab.

20).

Table 20 Primer combinations used for selective amplification. Selective bases are shown in
bold type. The EcoRI primers are labeled with two kinds of fluorescent dye (blue and green) in
order to enable poolplexing of differently labeled products.

selective primer core sequence extension dye color

EcoRI ACA GACTGCGTACCAATTC ACA HEX green

MseI CTT GATGAGTCCTGAGTAA CTT - -

EcoRI AGA GACTGCGTACCAATTC AGA FAM blue

MseI CGG GATGAGTCCTGAGTAA CGG - -

EcoRI ACC GACTGCGTACCAATTC ACC HEX green

MseI CTG GATGAGTCCTGAGTAA CTG - -

EcoRI AGC GACTGCGTACCAATTC AGC FAM blue

MseI CGG GATGAGTCCTGAGTAA CGG - -

EcoRI AGG GACTGCGTACCAATTC AGG HEX green

MseI CGA GATGAGTCCTGAGTAA CGA - -

Capillary electrophoresis of fluorescently labeled AFLPs In order to separate

the different fragments after selective amplification and to estimate their size, samples

were loaded on an ABI Genetic Analyser from Applied Biosystems by SMB Services in

Molecular Biology GmbH. Capillary electrophoresis follows the same principle as agarose

gel electrophoresis and occurs when an electric field is applied to an electrolyte solution

within a capillary, causing ions to migrate. The labeled DNA fragments are automatically

denatured, separated and then detected by laser-induced fluorescence. The capillary

instrument detects fragments present in the spectrum of each fluorophore, producing an

electronic profile of relative fluorescence units (RFU) versus fragment size (Meudt and

Clarke, 2007). The program determines the size of the amplified restriction fragments with

the help of a size standard, then it classifies them according to their size with single-base

resolution (Bonin et al., 2005). Blue labeled products and green labeled products were
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pooled for capillary electrophoresis. 1 μl blue labeled PCR product and 1 μl green labeled

PCR product was added to 11μl HiDi with formamide GS 500(-250) and denaturated at

90◦C in a thermal cycler (2720 Applied Biosystems) for two minutes before capillary

electrophoresis.

Preparation of samples Since replicated pairs are the only objective measure of qual-

ity of AFLPs (Meudt and Clarke, 2007) replicates were produced for more than 40% of

the 115 samples for each primer combination. To pick up handling errors at any stage

of the analysis the 52 replicates were of different kinds representing different treatments.

In 26 cases the extraction product was used twice for restriction/ligation and 26 times

the same PA product from the same individual was used twice for selective amplification.

These replicates were analyzed independently partly on different plates to detect differ-

ences between the electrophoresis runs and to account for potential position effects on the

96-well plate of the sequencer.

Analysis of raw data The software program GeneMapper version 4.0 (Applied Biosys-

tems) was used to analyze the raw fluorescent AFLP data and to convert it into binary

matrices. The peak height threshold (PHT) determines if a peak is called present (1) or

absent (0). That is why it should not be too low because also backround noise could be

scored. If, on the other hand, it is set too high, a peak would not be scored although

it is present (Holland and Clarke, 2008). In this study the PHT was set to 50 rfu (rela-

tive fluorecent units). The minimum fragment length (MFL) determines the size of the

characters in base pairs that are scored and included in the profile. Short fragments

show a higher risk of homoplasy (Vekemans et al., 2002) so scoring was conducted be-

tween 50 and 500 bases (MFL value of 50 rfu). As recommended by Holland (2008),

bin width was reduced from the default 1.0 bp setting and set to 0.85 bp, because this

helps to distinguish between nonidentical fragments that differ in mobility by less than 1

bp. All profiles were checked concerning correct fit of the size standard and distribution

of fragments throughout the available size range. Low quality profiles were discarded.

After automated scoring, binary 0-1 matrices were exported as text files having a format

compatible with the AMARE software, see next section.

6.2.3 Automatic masking - marker selection

In the AFLP fingerprint, a marker is an amplified locus that is identified as peaks of

equal fragment size across multiple samples (Meudt and Clarke, 2007). The AFLP scoring

software produces marker matrices by converting fluorescence data to binary data by first

binning the data (grouping the peaks of equal fragment size from different accessions into

a single marker) and then scoring the peaks as 1 (present) or 0 (absent) (Holland and

Clarke, 2008). After this procedure it can happen that markers are grouped multiply
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(multiple markers with identical fragment size) or that two peaks are present in one

marker. As the number of markers is around several hundreds per primer combination

manual correction is time-consuming. In addition the remaining markers after correction

differ in reliability and with such an amount it is hard to get a correct impression of the

quality of the dataset. Furthermore, manual selection of markers is subjective and not

repeatable.

For these reasons a procedure was designed by the author and colleagues (Kück et al.,

2012) that can be used to optimize the selection of markers in an automated way. A

PERL script was written and applied to clean up the data and to detect unreliable mark-

ers (markers that are unstable or difficult to score). The procedure is shortly described

in the following.

AMARE - AFLP MAtrix REduction (Kück et al., 2012)

AMARE serves as a second filter for marker selection after using commercial software

packages for bin width definition and peak height detection (as described above). The

approach is based on replicates and makes marker selection dependent on marker repro-

ducibility to control for scoring errors. Strength and accuracy of the approach depend on

the number of replicates and whether they are representative for the whole data set. The

starting point is the assumption that these replicates can help to detect unreliable bins.

Unreliable bins are defined as bins which show a high number of incongruent scorings

among replicates. AMARE uses three criteria (tresholds) to mask the matrix: A treshold

of bin reliability (BR) sets the acceptance value of the minimal number of reproducible

(0,0) and (1,1) bin states. If a bin has a BR below this treshold it is considered unreliable

and will be masked in the matrix. The BR treshhold is automatically incremented by

0.01 starting from the user defined treshold until BR=0.95. Hence, after the execution

of AMARE different output matrices (for each individual threshold set) are recorded.

The user might most likely choose the largest (n’ x m’)-character matrix where n’ is the

number of replicates and m’ is the number of remainig bins.

AMARE tries to keep as many characters as possible by inspecting the quality of replicates

of individuals. Low quality replicates are discarded from the data set dependent on a

replicate reliability threshold (RR). Further, the user can indicate a minimum bin distance

threshold (BD) of allowed distances between differently sized bins corresponding to the

standard deviation of the sequencer’s sizing precision. For more details please read the

detailed description in Kück et al. 2012. The approach of bin masking among replicates

is outlined in figure 44. In the present study, AMARE matrices were obtained by setting

the minimum BR threshold to 0.7 and the BD treshold to 0.15 according to the sizing

precision of the ABI sequencer.
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Figure 44 Flowchart of AMARE (Kück et al. 2012). The approach of bin masking among
replicates can be separated into four steps.
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6.2.4 Analyses

Phylogenetic analysis of the AFLP data was carried out in PAUP* v4.0b10 (Swofford,

2002) using the neighbour-joining algorithm (Saitou and Nei, 1987) with 1000 bootstrap

replicates. The principle of the neighbour-joining method is to find pairs of operational

taxonomic units (neighbours) that minimize the total branch length at each stage of

clustering of neighbours starting with a starlike tree (Saitou and Nei, 1987). The process

of testing all pairs of neighbours is repeated until no more joining can be done (Hartl and

Clark, 1997).

6.3 Results

All samples turned out to have poor-quality electropherograms with weak signal peaks.

The weakness of the signal led to peaks that weren’t high enough to be clearly detectable,

measurable and delimitable. Due to this, even the fingerprints from replicate DNA ex-

tractions showed an unexpected high degree of differences. There was no correlation to

the age of the samples, so degradation of DNA as a cause could be ruled out. Despite

extensive attempts including variations of primer combinations, recipes, PCR programs,

chemicals and concentrations the profiles stayed unclear. Also the separation of restriction

and ligation didn’t improve the results neither did the separate analyses of the different

dyes. However, having treated all samples in the same manner, the electropherograms

were analysed showing at least moderate signal.

6.3.1 AMARE output

Starting with a BR treshhold of 0.7 260 matrices were generated. A summary of all

threshold sets and corresponding error rates is shown in the appendix (see p.166). Note

that after a first run the replicate sample of Neoradina was excluded. As this sample is of

high importance, it was not treated as replicate again but still included in the analyses.

Doing so the largest (n’ xm’)-character matrix (n’: number of replicates = 51; m’: number

of remaining bins = 704) was BR: 84 % RR: 80 % and selected for further analyses. The

number of selected markers decreased from 1998 to 704 markers in the AMARE masked

matrix (see tab. 21).
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Table 21 Number of bins per primer combination before and after masking with AMARE (BR
84% RR 80%). The numbers of initial bins and those that were excluded are in the same range
for each primer combination.

primer combination no. of bins before AMARE no. of bins after AMARE

EcoRI ACA & MseI CTT 436 144

EcoRI AGA & MseI CGG 352 116

EcoRI ACC & MseI CTG 437 116

EcoRI AGC & MseI CGG 401 178

EcoRI AGG & MseI CGA 372 150

in total 1998 704

6.3.2 Neighbour-joining tree

The neighbour-joining tree of the AMARE reduced character matrix is partly unresolved

containing 78 polytomies and all in all moderate bootstrap support (BS) (see fig. 45).

The included replicates group as sister taxa with bootstrap support ≥ 50% in 33 cases

(out of 52). Out of those a bootstrap support of 100% is present in only 9 cases. 16

replicated samples do not even group as sister taxa.

Despite the general pattern of weak signal peaks in the electropherograms, the neighbour

joining tree shows phylogenetic signal, as most of the predefined species are well separated

from each other. From the Australian taxa the phylogenetic tree clearly resolves Thiara

rudis, Ripalania queenslandica, Thiara amarula, Pseudoplotia scabra and Melasma onca.

The single Australian Stenomelania aspirans sequence clusters with congeners from South

Bali and Stenomelania sp. from Seram (BS: 98,8%).

Discrepancies exist in five species, that did not form a monophyletic cluster: In case of

Sermyla venustula two individuals from Howard springs are not included in the main

cluster. Furthermore Melanoides tuberculata and “Stenomelania” denisoniensis are poly-

phyletic in the tree as they were in the sequence based topologies (see fig. 5 and 6).

The main discrepancy to the mitochondrial data and the most suprising result is that all

individuals of “Thiara” australis and Plotiopsis balonnensis build a monophyletic group

(BS: 87,7%). The high genetic divergence between the mitochondrial data of these two

species are not corroborated at all by AFLP data.

Looking at the phylogenetic relationships between the species, the AFLP tree does not

support the majority of the mtDNA lineages. The position of the M. onca sequences that

are closely related to a clade comprising individuals of Tarebia lineata from Indonesia is

in concordance. These two branches cluster with Tarebia granifera from Indonesia and

Timor as they do in the sequence based mt-topology (see fig. 5). The close relationship

between Sermyla venustula, Sermyla riqueti and sequences of Melanoides tuberculata is

another congruence between AFLP tree and mitochondrial data.
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6.4 Discussion

In case of thiarids for which the AFLP technique had not been previously developed,

the establishment and modification of the AFLP protocol was extremely time-consuming

and the result still underperforming. Probably due to the weak signal, scoring was often

misleading, a problem with which also the program AMARE cannot help, as it concerns

the whole dataset and not specific unreliable bins. The bad quality of the profiles can be

seen in the high number of incongruent scorings among the included replicates: 30% do

not even group as sister taxa. Only 60% of the replicated samples group as sister taxa

with bootstrap support ≥ 50%. It would have been expected that all or at least a great

majority of replicates have identical AFLP profiles resulting in a sister group relationship

with 100% bootstrap support, as was the case in only 17% of the samples.

The difficulty to obtain good quality profiles should be further analysed as there might

be a connection to the problems in DNA extraction in this taxonomic group. In general,

snails have enormous quantities of mucopolysaccharides which make standard DNA ex-

traction problematic (Skujienė and Soroka, 2003). Common ready-made extraction kits

(e.g. Qiagen DNeasy) cannot be successfully applied with thiarids, here only extraction

techniques including chloroform/phenol steps lead to purified DNA. Although the inserted

DNA should be freed from mucopolysaccharides through the purification steps, the prob-

lem might be linked to the underperforming AFLP analyses.

Because of the low confidential degree, a population based approach with regard to the

genetic differentation within species between different river drainage systems was aban-

doned. Based on this data also confidential inferences about the evolutionary relation-

ships among the species are difficult to be made. Nevertheless, there is quite interesting

phylogenetic signal in the neighbour-joining tree that can’t be ignored: The AFLP data

indicates a very close relationship between the two endemic species “Thiara” australis and

Plotiopsis balonnensis. This is in striking conflict with the results from the mitochondrial

sequences, but consistent with morphological expectations. As mentioned, the two cannot

be distinguished by external appearance and their geographical distribution looks like a

result of vicariance as they usually do not occur together (see chapter 4). Assuming that

they share a most recent common ancestor as indicated by the AFLP data and in the ab-

sence of clear morphological differences, these two species could be treated as species (or

even populations) which have diverged only very recently. However, robust phylogenies

are necessary to gain insight into the evolutionary histories of these taxa. The results

concerning “Thiara” australis and Plotiopsis balonnensis are discussed in more detail on

page 111 and the AFLP results in a broader context are debated in the following ‘General

discussion’ chapter.
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7 General discussion

The subject of this thesis was to reconstruct the evolutionary history of the freshwater

snail family Thiaridae with particular focus on phylogeography and the biogeographic

origin of the Australian fauna. The results presented here reject the long-held view of

the thiarid fauna being an appendage to the southeast Asian biota. Instead the revealed

analyses are largely congruent with a vicariance scenario within the framework of Gond-

wanian fragmentation and an ancestral thiarid lineage that originated in Australia. In

addition, emphasis in this work was laid on the extensive inventory of the current species

diversification and distributional areas on the continent. In summary, a total of eleven dis-

tinct clades were confirmed by the molecular data, contextualizing even historical museum

material within biosystematic research. With over 1000 records and recent distribution

maps on a drainage based scale, the extensive data on extant species gives new insights

into the spatial patterns and the degree of endemism. In the following, a summary of

the molecular results with focus on the detected mito-nuclear discord is provided and

discussed in the light of the proposed Gondwanian origin.

The fact that estimating the phylogenetic history of species by gene trees can be mis-

leading, is a well known phenomenon and the mechanisms underlying it are understood

(Pamilo and Nei, 1988; Maddison and Maddison, 1992; Funk and Omland, 2003; Edwards,

2009). This work gives another example of the potential pitfalls of inferring relationships

from only a small portion of the genome and elucidates the importance and necessity

to include a broad spectrum of approaches, combining data from morphology, genetics

and other sources to delimit species. The comprehensive molecular study presented here

does not have sufficient conclusiveness to satisfactorily resolve the relationships among the

species in the Thiaridae. The different genes and techniques paint contradictory pictures

of evolutionary relationships, which is a known phenomenon especially in freshwater taxa

(Puslednik et al., 2009). The classification of limnic gastropods can present difficulties as

a result of fine-scale geographical differentiation, isolation in separate drainage systems,

introgressive hybridization and ancestral polymorphism, resulting in a poor match be-

tween morphological and genetic delineated species (Lee et al., 2007; Köhler and Deein,

2010; Miura et al., 2013; Reid et al., 2013).

This thesis presents the first molecular study of the freshwater snail family Thiaridae

based on four DNA sequence markers (COI, 16S, H3 and 28S) and amplified fragment

length polymorphisms (AFLPs). Taken together, the comparison of the phylogeographic

patterns inferred from these different molecular marker types support the suggestion that

in case of thiarids the mitochondrial DNA might not reflect the phylogeographic structure

of the species correctly, although it shows high structuring and clearly separates different

thiarid species phylogenetically. On this level, however, the investigations based on the

nuclear sequences have been unsuccessful in this case. Overall, the nDNA phylogeny of-



110 7 General discussion

fers little power for resolving relationships among younger evolutionary lineages, but the

tree shows consistent and well-supported deeper nodes: The Paludomidae are at the base

of a clade uniting the Hemisinidae and Thiaridae as sister taxa. The topology of these

three freshwater families builds the foundation for a Gondwanian vicariant scenario and

it is supported by both nDNA and mtDNA. Although the resolution is generally poor in

the nDNA phylogeny, at least the tendencies reveal congruence with the (mostly nuclear)

AFLP data, which in turn is more congruent with relationships inferred from morpholog-

ical data than the mitochondrial splits are. AFLP markers provide a nuclear, multilocus,

genome-wide picture of genetic divergence and as they sample noncoding variation, they

have relatively rapid rates of evolution. In contrast, the mitochondrion bears the evolu-

tionary history of only a small fragment of a single gene and genetic clustering revealed by

multiple AFLP markers is more likely to discover ‘real species’ than mtDNA data (Das-

mahapatra et al., 2010). The most notable point where the nuclear and mitochondrial

analyses disagree is the relation between “Thiara” australis and Plotiopsis balonnensis

as discussed in chapter 6 and summarised later on. Another indication for the mislead-

ing information in the mtDNA data comes from non-Australian thiarid taxa or rather

sequences. The species Thiara rudis and Sermyla riqueti appear as non-monophyletic

in the mtDNA tree but each comprise two distinct mt-clusters in each case (see fig. 5).

Indeed, in the nDNA tree these individuals build monophyletic clusters according to the

morphologically delimited species (see fig. 6).

From the congruence between the AFLP, the nuclear sequencing data and the morpholog-

ical results in combination with the non-monophyly of morphologically delimited species

in the mt phylogeny, it is concluded that the mitochondrial DNA (COI and 16S) is mis-

leading in case of Thiaridae and does not reflect the phylogeographic structure of the

species. Of course, this conclusion calls into question the practice of species identification

based on mtDNA sequences alone (as done in the biogeographical revision, chapter 4)

and launches the same discussion as in the barcoding debate. In general, there has been

a striking discord about the suitability of mtDNA in phylogenetics and taxonomy since

Hebert et al. (2003) argued that mtDNA barcodes can be used as a universal barcode for

all life. Although a lively debate about what it can and should be used for is continuing

(Moritz and Cicero, 2004; Ebach and Holdrege, 2005; DeSalle et al., 2005; Hajibabaei

et al., 2007; Waugh, 2007; Valentini et al., 2009; Casiraghi et al., 2010; Goldstein and De-

Salle, 2011; Kekkonen and Hebert, 2014), DNA barcoding is a well-established research

field attracting large amounts of funding today (Taylor and Harris, 2012). However,

species identification via tree-based methods gives the impression of inferring phyloge-

nies and relationships from single gene trees which is widely recognized as a problem by

phylogeneticists (DeSalle et al., 2005; Valentini et al., 2009). In this work it is shown

that the mitochondrial COI (the standard barcoding gene) and 16S gene provide useful

markers for thiarid species identification but not for the inference of phylogenetic rela-
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tionships between them. Although the signal embedded diverges from the true phylogeny

and must therefore be interpreted with caution, it is still a powerful signal that has its

causes. Well differentiated monophyletic clades of COI and 16S haplotypes were detected

and each of the morphologically delimited species is characterized by fixed mutational

differences. With such a substructure and high genetic divergence between mitochondrial

lineages it is suprising that these are not corroborated by the nuclear data. There are

many ways in which the biology of the mitochondria differs from the nuclear genome, and

these affect the pattern and process of its evolution substantively (Ballard and Whitlock,

2004; Toews and Brelsford, 2012). The resulting conflicting patterns between mtDNA

and nDNA can be ascribed to different reasons namely incomplete lineage sorting of an-

cestral polymorphisms (Avise and Wollenberg, 1997; Pollard et al., 2006; Rato et al.,

2010; McKay and Zink, 2010), introgression resulting from interspecific gene flow in the

early stages of speciation (Gompert et al., 2008; Rheindt and Edwards, 2011) or mito-

chondrial gene rearrangements (Inoue et al., 2003; Rawlings et al., 2010; Lin et al., 2014).

An alternative explanation is that the conflicting patterns obtained could be due to a

gender-biased gene flow, with recurrent dispersion of males and rare dispersion of females

or vice versa (Pardini et al., 2001). Of course this would assume the existence of males,

which is not secured in case of most thiarids. Selection could also cause increased mtDNA

divergence relative to weak nuclear differentiation and the revealed deep mitochondrial

splits may correspond to ecologically distinct groups or geographical areas (Cheviron and

Brumfield, 2009; Nosil et al., 2009).

The latter in particular could be the case for “Thiara” australis and Plotiopsis balonnensis.

An interesting outcome of this thesis is that these two species, although morphologically

similar, exhibit extensive differences among mtDNA haplotypes (chapter 4). However, the

AFLP data indicate that these two species share a most recent common ancestor which

is congruent with the morphological overlap (chapter 6). The suggestion of Glaubrecht et

al. (2009) to distinguish a lineage Plotiopsis and to accommodate balonnensis as taxon

quite distinct from the very similar australis, was based on preliminary results of molecu-

lar genetic analyses using mtDNA fragments in connection with the distinctive parapatric

distribution of both. Prior to this finding B. J. Smith (1992, 1996) considered Plotiop-

sis as subgenus of Thiara and Iredale (1943), in addition to balonnensis, included four

other species among them also Plotiopsis australis. However, both purely nomenclatorial-

taxonomic treatments were not substantiated by any detailed study or data of any nature.

Nevertheless, the close affinity of these two entities is confirmed by their morphology while

the new interpretation is based on apparently misleading molecular data. The two species

are obviously closely related based on the AFLP data and in the absence of clear mor-

phological differences, they can be treated as para-species (or even populations within a

superspecies) which diverged only very recently. The questions arise if they are indeed

reproductively isolated, biological species or if they may have consisted of two formerly
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allopatric taxa that may be in the process of remerging and fusion. Thus, the situation

here is probably best explained by introgression of mitochondrial genes due to secondary

contact of previously geographically isolated populations or species. It is known, that in

other cases of freshwater Cerithioidea, such as e.g. the Asian pachychilids geographical

separation is the main factor that drives speciation and that secondary contact between

originally allopatric populations frequently leads to the introgression of neutral markers

(Köhler and Deein, 2010). If we are dealing with recently diverged sister species whereby

no isolation mechanisms have evolved that prevent species from cross-breeding, there is

the possibility of hybridization in the overlap of the geographic ranges. The dynamics

of hybrid zones are of considerable interest from an evolutionary point of view because

such regions often play important roles in models of speciation (Barton and Hewitt, 1985;

Hewitt, 2001). Hybridization with introgression of alleles is discussed as potentially en-

hancing speciation, thus with potentially important consequences in evolutionary biology

and speciation theory (Dowling and Secor, 1997; Barton, 2001; Mallet, 2007; Twyford

and Ennos, 2012; Abbott et al., 2013). Its evolutionary role has recently been revisited

in the literature now that larger nuclear datasets are increasingly available but we still

lack textbook studies of particular molluscs for hybridisation (Glaubrecht, 2011). In the

present case, a potential hybrid zone is found in the northern Dividing Range between

the Jardinian and the Leichhardtian province, where one documented case of a “Thiara”

australis mtDNA haplotype was found in the P. balonnensis region and vice versa two

cases of P. balonnensis haplotypes in the “Thiara” australis range. Even by looking at

the shells of two of these outlier individuals, it is directly apparent that they are much

smaller than the shells of their congeners (see fig.17d and fig.26). Such a discrepancy in

shell size wasn’t found in other individuals and might be a hint to preexisting reproductive

isolation in the form of reduced hybrid fitness. An alternative explanation is that these

individuals are translocated specimens that do not find their favourable living conditions

in the new habitat which would be consistent with the relative stability of the parapatric

distribution not allowing the further fusion of both species’ ranges. Future genetic and

field research is needed to determine whether there is current gene flow between the two

clades and whether the two clades are ecologically distinct. If hybridization plays a role

in the evolution of these two species the geographical distribution and phylogenetic pat-

terns make them an excellent group for studying the process of speciation, or possibly the

processes that allow separate populations to merge and not differentiate as species.

One disadvantage in the case of thiarids is that the application of a particular species

concept is not made easy given the prediction that these gastropods reproduce largely

via, at least partial, parthenogenesis. For the discussion of the applicability of currently

used species concepts see Glaubrecht et al. (2009) and Glaubrecht (2011) . The delim-

itation of species using genetic data is based on the criterion that species are groups

of organisms with similar genotypes as suggested in the genotypic cluster definition of
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species given by Mallet (1995), a concept that focuses only on the identification of species

and not on their origin (Coyne and Orr, 2004). In this study the delimitation of provi-

sional species is, in the first instance, based on morphological characters as conducted by

Glaubrecht et al. (2009). Congruence between these morphologically delimited groups,

clades in the mitochondrial gene tree and/or in the nj tree based on the AFLP data

corroborates that such groups are evolutionary units that can be considered provision-

ally as (bio-)species. Two morphologically delimited species from Australia could neither

be distinguished by mtDNA data nor by the AFLP data, i.e. Melanoides tuberculata

and Stenomelania denisoniensis. Given the polyphyletic nature revealed by molecular

analyses, these taxa deserve further investigation. In the present situation, defining the

taxonomic status of the various clades is an extremely difficult task. The phylogenetic

investigation has called former taxonomic assignments into question. Especially a new

concept for the widely delineated genus Thiara, which was found to be polyphyletic in

each analysis is needed. In order to solve the obvious discrepancies between molecular

and conchological data, additional morphological and anatomical studies are needed to

shed light on the taxonomic status and evolutionary history of each particular taxon. The

present study fortifies the finding of Glaubrecht et al. (2009) that characters of shell plus

radula that are classically utilized in limnic malacology (e.g. Martens 1883; Thiele 1928;

Rensch 1934; Starmühlner 1969) are only of very limited use in genus or even species level

taxonomy in freshwater Cerithioidea which all exhibit large phenotypic plasticity.

A resolved phylogeny and knowledge of geographical range are prerequisites for the in-

ference of biogeographic processes and evolutionary history in general. Unfortunately

a robust molecular phylogeny of Thiaridae could not be established, so that suggestions

about speciation patterns remain highly speculative, as discussed above for one case study.

Although many details of the historical processes and their evolutionary consequences re-

main to be studied, some of the relevant aspects for the Thiaridae will be discussed in

the following in the light of a Gondwanian origin. The synthesis of the findings concern-

ing the species occurrences in Australia is summarized and visualized in Figure 46. One

striking biogeographical pattern in the Australian thiarids that is immediately obvious is

the widespread occurrence of P. balonnensis over vast areas of the continent. As the only

thiarid P. balonnensis is recorded to be extant in highly isolated water-bodies in desert

springs of central Australia. During the Miocene the climate of Australia was much more

humid, sustaining large rainforest areas that were drained by systems of rivers and lakes.

Changing climatic events during the Pliocene and Pleistocene resulted in the progres-

sion of aridity in the central deserts and, accordingly, in the isolation of water bodies

and the erasure of limnic faunal elements (Unmack, 2001). The isolated occurrences of

P. balonnensis represent most likely relictual populations of the previously widespread

species that were trapped in these desert refugia.
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Indo-West 
pacific

drainage division: Sw Coast Ind Oc Tim S Carp Ne Coast Se Coast L Eyre M-Dar

fluvifaunal province: Vlam Grey Leich Leich Jard Kref Less Sturt Mitch

taxon status 2009               2015

Plotiopsis balonnensis e e

„ Thiara“  australis e e

Melasma onca e e

Sermyla venustula e e

Sermyla riqueti b

„ Stenomelania“ denisoniensis e a

Thiara rudis x a

Melanoides tuberculata i a

Pseudoplotia scabra i a

Thiara  amarula a a

Stenomelania cf. aspirans a a

Ripalania queenslandica    e a

Australia

?

?x

?

Figure 46 Summary of the geographic ranges of thiarid species in Australia according to
their occurrences in major drainage systems and fluvifaunal provinces. Red bars represent
genetically confirmed localities, black ones dry material, diagonally striped bars represent cases
with scattered and deviant occurrences and white bars with questionmarks symbolise doubtful
records as discussed in chapter 4. The following abbreviations are used for status description as
determined by Glaubrecht et al. (2009): e - endemic to Australia; a - autochthonous (indigenous)
in Australia, but widely distributed elsewhere; b - possibly occassional brackish water invasion;
i - recently introduced; x - not occurring in Australia. For abbreviations of fluvifaunal provinces
and major drainage systems see appendix.

As mentioned the rainforests are known to have been much more abundant and widespread

during the Miocene and the remaining rainforest habitats in the Jardinian are generally

considered ancient and providing places of refuge for many Miocene faunal elements of

Australia (Webb and Tracey, 1981; Sanderson, 2008; Rossetto, 2015). These formerly

continous rainforest habitats could have provided suitable environments also for Thiara

amarula, Stenomelania cf. aspirans and Ripalania queenslandica. Despite their capability

of long-distance dispersal these three species occur only in few streams along the coast of

Queensland. Their restricted appearence seems to be connected to the climatic conditions

in the Jardinian, as this region is the only area in Australia with conditions quite similar to

those in other monsoonal regions of the Asia-Pacific region where these three can be found.

In the light of the presented scenario, it should be considered that these three thiarids

might rather represent an ancient Australian freshwater faunal element than being recent

invaders from the north through passive dispersal by planktonic larvae.

Thiarids in Australia occur in the northern-central region of the Leichhardtian zoogeo-

graphic region in particular which is approximately represented by the Timor Sea and

Gulf of Carpenteria drainage systems (see fig.46). The thiarids might have had a wider

distribution in the past and with the increasing aridity that had occurred earlier in the

southern parts of the continent, the southern populations went extinct. This scenario also
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helps to understand the occurrence of S. venustula which is distributed highly disjunctly

in the Greyian region of West Australia, far away from the otherwise northern range of

the species. As mentioned in chapter 4, the highly isolated location of Bundara Sinkhole

could harbour a population that might have survived as relictual form from times long

gone.

Taken together the continent “down under” possesses some unique freshwater lineages

with peculiar elements that are endemic on a continental scale, but also some species that

are restricted to only certain regions - in particular to the northern coastal wet-dry region

of the Leichhardtian province - and even to certain river drainage systems. The peculiar

and, possibly highly specialised and adapted, thiarid fauna of Australia has apparently

managed to persist for a long time. Their current distribution and past diversification

on the continent is the result of a complex history most likely promoted by the interplay

between the hydrogeomorphological impacts leading to phenomena like river captures

or drying-up of waterbodies provoking spreading or extinctions of populations under a

fusion-fission scenario.

Prospects Although there are still ambiguities to be resolved concerning phylogeneti-

cal relationships among the thiarid species, the comparison of the resultant phylogenies

offers considerable insight into this enigmatic group. Australian thiarids represent a chal-

lenging but also extremely interesting case for studying biogeography due to their now

assumed long history on the continent. In the light of the upcoming global warming,

understanding the influence of past climate change on the biogeography, evolution and

extinction of faunas is critical for the development of conservation strategies. This is of

particular importance in Australia, where intensified aridity has shaped large portions

of the continent. In fact, no other continent of its size underwent such radical shift to

intensive aridity as Australia. The potential use of the phylogeographic framework to

predict the possible future responses of species to climate change scenarios is noteworthy.

The Australian thiarids represent an important and realistic model system in speciation

research which provides detailed insight into the dynamics of the underlying mechanisms

of speciation under the influence of climate change.

It is of further concern that Thiaridae serve as first intermediate snail host for several

trematode species, among them the human lung and intestinal fluke (Chaniotis et al.,

1980; Krailas et al., 2011). Regarding their known potential for being invasive they might

become established and spread elsewhere and of course mollusc-transmitted diseases need

recognition and emphasis due to their importance for the veterinary and public health.

A focus of future work should be on the mitigation of the effect of invasive species and

on preventing future invasions. The diversity of life on Earth is rapidly declining under
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the current biodiversity crisis (Olson et al., 2002) and invasive species are one of the most

commonly cited causes of this biodiversity loss (Ricciardi, 2004; Didham et al., 2007;

Hermoso et al., 2011). This situation is especially worrying in freshwater environments

worldwide (Dudgeon et al., 2006; Abell et al., 2008; Stow et al., 2014). Of the global

terrestrial fauna, freshwater molluscs are among the most diverse and threatened groups,

so that their conservation is a matter of concern (Lydeard et al., 2004; Lysne et al., 2008;

Lopes-Lima et al., 2014).

The results of the present study offer a solid basis for further profound investigation on the

study of biodiversity and evolution in freshwater snails. New technological advances facil-

itate the generation of huge amounts of genomic sequence data which may allow for more

informed decisions on phylogenetic relationships and taxonomic assignments. In combi-

nation with the untapped genetic data within archived museum specimens that is now

available due to the presented method developed within the scope of this thesis. Broad

application of this approach to other taxa will further enhance our ability to accurately

estimate the true number of species on Earth. In the light of the increasing biodiver-

sity crisis, the study of this biological diversity on all levels as well as the underlying

evolutionary forces is becoming even more urgent.
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D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Sti-

assny, M. L., et al. (2006). “Freshwater biodiversity: importance, threats, status

and conservation challenges.” Biological reviews, 81(2): 163–182.

Ebach, M. C., Gill, A. C., Kwan, A., Ahyong, S. T., Murphy, D. J., and

Cassis, G. (2013). “Towards an Australian Bioregionalisation Atlas: A provisional

area taxonomy of Australia’s biogeographical regions.” Zootaxa, 3619(3): 315–342.

Ebach, M. C. and Holdrege, C. (2005). “DNA barcoding is no substitute for taxon-

omy.” Nature, 434(7034): 697–697.

Edgar, R. C. (2004a). “MUSCLE: a multiple sequence alignment method with reduced

time and space complexity.” BMC bioinformatics, 5(1): 113.

Edgar, R. C. (2004b). “MUSCLE: multiple sequence alignment with high accuracy and

high throughput.” Nucleic acids research, 32(5): 1792–1797.

Edwards, S. V. (2009). “Is a new and general theory of molecular systematics emerg-

ing?” Evolution, 63(1): 1–19.

Facon, B., Pointier, J.-P., Glaubrecht, M., Poux, C., Jarne, P., and David,

P. (2003). “A molecular phylogeography approach to biological invasions of the New

World by parthenogenetic Thiarid snails.” Molecular Ecology, 12(11): 3027–3039.



REFERENCES 121

Felsenstein, J. (1985). “Confidence limits on phylogenies: An approach using the

bootstrap.” Evolution, 39: 783–791.

Fink, S., Fischer, M. C., Excoffier, L., and Heckel, G. (2010). “Genomic scans

support repetitive continental colonization events during the rapid radiation of voles

(Rodentia: Microtus): the utility of AFLPs versus mitochondrial and nuclear sequence

markers.” Systematic Biology, 59 (5): 548–572.

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). “DNA

primer for amplification of mitochondrial cytochrome c oxidase subunit I from diverse

metazoan invertebrates.” Molecular Marine Biology and Biotechnology, 3(5): 294–299.

Funk, D. J. and Omland, K. E. (2003). “Species-level paraphyly and polyphyly:

frequency, causes, and consequences, with insights from animal mitochondrial DNA.”

Annual Review of Ecology, Evolution, and Systematics, pages 397–423.

Futuyma, D. J. (2005). Evolution. Sinauer Associates, Sunderland, Massachusetts.

Geist, J., Wunderlich, H., and Kuehn, R. (2008). “Use of mollusc shells for DNA-

based molecular analyses.” Journal of Molluscan Studies, 74(4): 337–343.

Glaubrecht, M. (1993). “Mapping the diversity: geographical distribution of the fresh-

water snail Melanopsis (Gastropoda: Cerithioidea: Melanopsidae) with focus on its

systematics in the Mediterranean Basin.” Mitteilungen aus dem Hamburgischen Zool-

ogischen Museum und Institut, 90: 41–97.

Glaubrecht, M. (1996). Evolutionsökologie und Systematik am Beispiel von Süß-
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Glaubrecht, M., Brinkmann, N., and Pöppe, J. (2009). “Diversity and dispar-

ity
’
down under‘: Systematics, biogeography and reproduction modes of the

’
marsu-

pial‘ freshwater Thiaridae (Caenogastropoda, Cerithioidea) in Australia.” Zoosystem-

atics and Evolution, 85 (2): 199–275.

Glaubrecht, M. and von Rintelen, T. (2008). “The species flocks of lacustrine

gastropods: Tylomelania on Sulawesi as models in speciation and adaptive radiation.”

Hydrobiologia, 615(1): 181–199.

Goldstein, P. Z. and DeSalle, R. (2011). “Integrating DNA barcode data and taxo-

nomic practice: determination, discovery, and description.” Bioessays, 33(2): 135–147.

Gompert, Z., Forister, M. L., Fordyce, J. A., and Nice, C. C. (2008).

“Widespread mito-nuclear discordance with evidence for introgressive hybridization and

selective sweeps in Lycaeides.” Molecular ecology, 17(24): 5231–5244.

Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., and

Lopez, R. (2010). “A new bioinformatics analysis tools framework at EMBL–EBI.”

Nucleic acids research, 38 (Suppl. 2): W695–W699.

Gregoric, G. (2010). “Colonization risks of the invading freshwater gastropod

Melanoides tuberculatus (Thiaridae) in Rio de la Plata (Argentina-Uruguay).” Revista

Mexicana de Biodiversidad, 81(2): 573–577.

Greve, C., Gimnich, F., Hutterer, R., Misof, B., and Haase, M. (2012). “Radi-

ating on Oceanic Islands: Patterns and Processes of Speciation in the Land Snail Genus

Theba (Risso 1826).” PLoS ONE, 7(4): e34 339.

Haase, M., Greve, C., Hutterer, R., and Misof, B. (2014). “Amplified fragment

length polymorphisms, the evolution of the land snail genus Theba (Stylommatophora:

Helicidae), and an objective approach for relating fossils to internal nodes of a phyloge-

netic tree using geometric morphometrics.” Zoological Journal of the Linnean Society,

171(1): 92–107.

Hajibabaei, M., Singer, G. A., Hebert, P. D., and Hickey, D. A. (2007). “DNA

barcoding: how it complements taxonomy, molecular phylogenetics and population

genetics.” TRENDS in Genetics, 23(4): 167–172.

Hajibabaei, M., Smith, M., Janzen, D. H., Rodriguez, J. J., Whitfield, J. B.,

and Hebert, P. D. (2006). “A minimalist barcode can identify a specimen whose

DNA is degraded.” Molecular Ecology Notes, 6(4): 959–964.



REFERENCES 123

Hall, T. A. (1999). “BioEdit: a user-friendly biological sequence alignment editor and

analysis program for Windows 95/98/NT.” Nucleic Acids Symposium Series, 41: 95–98.

Hamilton-Bruce, R. J., Kear, B. P., and Smith, B. J. (2004). “A new nonmarine

Early Cretaceous gastropod species from the Lightning Ridge, New South Wales.”

Alcheringa, 28: 485–492.

Hartl, D. L. and Clark, A. G. (1997). Principles of population genetics, third edition.

Sinauer Associates, Sunderland, Massachusetts.

Hawk, H. L. (2010). Historic genetic diversity of the endangered white abalone (Haliotis

sorenseni). Master’s thesis, California State University Monterey Bay.

Hebert, P. D., Ratnasingham, S., and de Waard, J. R. (2003). “Barcoding

animal life: cytochrome c oxidase subunit 1 divergences among closely related species.”

Proceedings of the Royal Society of London B: Biological Sciences, 270 (Suppl. 1): 96–

99.

Heller, J., Dolev, A., Zohary, T., and Gal, G. (2014). “Invasion dynamics of the

snail Pseudoplotia scabra in Lake Kinneret.” Biological invasions, 16(1): 7–12.

Hermoso, V., Clavero, M., Blanco-Garrido, F., and Prenda, J. (2011). “Inva-

sive species and habitat degradation in Iberian streams: an analysis of their role in

freshwater fish diversity loss.” Ecological Applications, 21(1): 175–188.

Hewitt, G. M. (2001). “Speciation, hybrid zones and phylogeography - or seeing genes

in space and time.” Molecular Ecology, 10(3): 537–549.

Hofreiter, M. (2012). “Nondestructive DNA Extraction from Museum Specimens.” In

“Ancient DNA,” pages 93–100. Springer.

Holland, B. R. and Clarke, A. C. (2008). “Optimizing automated AFLP scoring

parameters to improve phylogenetic resolution.” Systematic Biologists, 57: 347–366.

Houbrick, R. (1992). “Simulathena papuensis, a new planaxic genus and species from

the Indo-West Pacific.” The Veliger, 35(1): 64–69.

Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. (2001).

“Bayesian inference of phylogeny and its impact on evolutionary biology.” Science,

294(5550): 2310–2314.

Inoue, J. G., Miya, M., Tsukamoto, K., and Nishida, M. (2003). “Evolution of the

deep-sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated

within the eels.” Molecular biology and evolution, 20(11): 1917–1924.



124 REFERENCES

Iredale, T. (1943). “A basic list of the fresh water Mollusca of Australia.” Australian

Zoologist, 10(2): 188–230.

Iredale, T. and Whitley, G. (1938). “The fluvifaunulae of Australia.” South Australian

Naturalist, 18(4): 64–68.

Jobb, G., Von Haeseler, A., and Strimmer, K. (2004). “TREEFINDER: a powerful

graphical analysis environment for molecular phylogenetics.” BMC evolutionary biology,

4(1): 18.

Jønsson, K. A., Fabre, P.-H., Ricklefs, R. E., and Fjelds̊a, J. (2011). “Major

global radiation of corvoid birds originated in the proto-Papuan archipelago.” Proceed-

ings of the National Academy of Sciences, 108(6): 2328–2333.

Jønsson, K. A. and Fjelds̊a, J. (2006). “Determining biogeographical patterns of

dispersal and diversification in oscine passerine birds in Australia, Southeast Asia and

Africa.” Journal of biogeography, 33(7): 1155–1165.

Jung, P. (1989). “Revision of the Strombina group (Gastropoda: Columbellidae), fossil

and living. Distribution, biostratigraphy, and systematics.” Schweizerische Palaeontol-

ogische Abhandlungen, 111: 1–298.

Kailola, P. J. and Pierce, B. E. (1988). “A new freshwater catfish (Pisces: Ariidae)

from northern Australia.” Records of the Western Australian Museum, 14: 73–89.

Kano, Y., Strong, E. E., Fontaine, B., Gargominy, O., Glaubrecht, M., and

Bouchet, P. (2011). “Focus on Freshwater Snails.” In P. Bouchet, H. Le Guyader,

and O. Pascal, editors, “Santo,” Muséum National d’Histoire Naturelle.
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Miura, O., Köhler, F., Lee, T., Li, J., and Foighil, D. Ó. (2013). “Rare, divergent
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Jahrbücher, Abteilung Systematik, Ökologie und Geographie der Tiere, 55: 351–402.

Thompson, J. D., Gibson, T., Higgins, D. G., et al. (2002). “Multiple sequence

alignment using ClustalW and ClustalX.” Current protocols in bioinformatics, pages

2–3.

Toews, D. P. and Brelsford, A. (2012). “The biogeography of mitochondrial and

nuclear discordance in animals.” Molecular Ecology, 21(16): 3907–3930.

Twyford, A. and Ennos, R. (2012). “Next-generation hybridization and introgres-

sion.” Heredity, 108(3): 179–189.

Unmack, P. J. (2001). “Biogeography of Australian freshwater fishes.” Journal of

biogeography, 28(9): 1053–1089.

Valentini, A., Pompanon, F., and Taberlet, P. (2009). “DNA barcoding for ecolo-

gists.” Trends in Ecology & Evolution, 24(2): 110–117.

Van der Auwera, G., Chapelle, S., and De Wächter, R. (1994). “Structure of
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APPENDIX

A List of sampling localities sorted by sampling year

Table 22 Sampling localities of Australia sorted by sampling year.

Exp. & Loc n◦ Taxa ZMBn◦ Locality Coordinates

AUS 2002 14 S. denisoniensis 106340 QL: South Mission Beach 17◦56,84’S, 146◦3,29’E

AUS 2002 15 P. balonnensis 106345 QL: nr. Gregory Falls 17◦35,57’S, 145◦52,29’E

AUS 2002 15 S. denisoniensis 106352 QL: nr. Gregory Falls 17◦35,57’S, 145◦52,29’E

AUS 2002 16 R. queenslandica 106355 QL: North Johnston River 17◦30,34’S, 145◦59,55’E

AUS 2002 16 R. queenslandica 192474 QL: North Johnston River 17◦30,34’S, 145◦59,55’E

AUS 2002 16 Stenomelania

sp.

106343 QL: North Johnston River 17◦30,34’S, 145◦59,55’E

AUS 2002 16 T. amarula 106349 QL: North Johnston River 17◦30,34’S, 145◦59,55’E

AUS 2002 16 T. amarula 106354 QL: North Johnston River 17◦30,34’S, 145◦59,55’E

AUS 2002 21 T. amarula 193470 QL: Mowbray River 16◦33,87’S, 145◦27,83’E

AUS 2002 24 S. denisoniensis 106341 QL: Meelele River 15◦58,25’S, 145◦23,85’E

AUS 2002 25 S. denisoniensis 106342 QL: Woobadda River 15◦58’S, 145◦22,48’E

AUS 2002 26 T. amarula 106348 QL: Woobadda River, Tributary of Bloomfield

River

15◦57,35’S, 145◦21,11’E

AUS 2002 28 P. scabra 106351 QL: Three Mile - Poison Creek 15◦25,81’S, 145◦7,05’E

AUS 2002 28 P. balonnensis 106347 QL: Three Mile - Poison Creek 15◦25,81’S, 145◦7,05’E

AUS 2002 28 S. denisoniensis 106356 QL: Three Mile - Poison Creek 15◦25,81’S, 145◦7,05’E

AUS 2002 30 P. balonnensis 106346 QL: Endeavour River Falls 15◦22,27’S, 145◦1,77’E

AUS 2002 30 S. denisoniensis 106338 QL: Endeavour River Falls 15◦22,27’S, 145◦1,77’E

AUS 2002 31 S. denisoniensis 106339 QL: Laura River 15◦34,68’S, 144◦27,41’E

AUS 2002 32 S. denisoniensis 106373 QL: Boggy Creek, W Normanby tributary 15◦49,97’S, 144◦52,91’E

AUS 2002 35 S. aspirans 106344 QL: Mowbray River 16◦33,87’S, 145◦27,83’E

AUS 2004 76 M. tuberculata 106592 NT: Darwin: George Brown Botanic Garden, pool 12◦26,739’S, 130◦50,179’E

AUS 2004 76 M. tuberculata 106592 NT: Darwin: George Brown Botanic Garden, pool 12◦26,739’S, 130◦50,179’E

AUS 2004 79 S. carbonata 106593 NT: Howard Springs 12◦27,345’S, 131◦3,146’E

AUS 2004 79 S. carbonata 106593 NT: Howard Springs 12◦27,345’S, 131◦3,146’E

AUS 2004 80 S. carbonata 106595 NT: Howard Springs Creek, N of Howard Springs 12◦27,268’S, 131◦3,108’E

AUS 2004 80 S. carbonata 106595 NT: Howard Springs Creek, N of Howard Springs 12◦27,268’S, 131◦3,108’E

AUS 2004 80 T. australis 106594 NT: Howard Springs Creek, N of Howard Springs 12◦27,268’S, 131◦3,108’E

AUS 2004 80 T. australis 106594 NT: Howard Springs Creek, N of Howard Springs 12◦27,268’S, 131◦3,108’E

AUS 2004 81 S. denisoniensis 106597 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2004 81 S. denisoniensis 106597 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2004 81 T. australis 106596 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2004 81 T. australis 106596 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2004 81 T. australis 106598 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2004 81 T. australis 106598 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2004 82 S. denisoniensis 106600 NT: Berry Springs 12◦42,153’S, 130◦59,875’E

AUS 2004 82 S. denisoniensis 106600 NT: Berry Springs 12◦42,153’S, 130◦59,875’E

AUS 2004 82 T. australis 106599 NT: Berry Springs 12◦42,153’S, 130◦59,875’E

AUS 2004 82 T. australis 106599 NT: Berry Springs 12◦42,153’S, 130◦59,875’E

AUS 2004 84 M. tuberculata 106603 NT: Manton River 12◦50,282’S, 131◦7,998’E

AUS 2004 84 S. denisoniensis 106603 NT: Manton River 12◦50,282’S, 131◦7,998’E

AUS 2004 87 T. australis 106610 NT: Adelaide River, North, c. 18km downstream from

highway crossing

13◦8,742’S, 131◦13,14’E

AUS 2004 87 T. australis 106610 NT: Adelaide River, North, c. 18km downstream from

highway crossing

13◦8,742’S, 131◦13,14’E

AUS 2004 88 T. australis 106611 NT: Adelaide River, South, at crossing 13◦28,975’S, 131◦5,853’E

AUS 2004 88 T. australis 106611 NT: Adelaide River, South, at crossing 13◦28,975’S, 131◦5,853’E

AUS 2004 89 M. onca 106614 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E
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AUS 2004 89 M. onca 106614 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2004 89 T. australis 106612 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2004 90 T. australis 106615 NT: Douglas River crossing, Bond bridge 13◦47,36’S, 131◦21,185’E

AUS 2004 90 T. australis 106615 NT: Douglas River crossing, Bond bridge 13◦47,36’S, 131◦21,185’E

AUS 2004 91 M. onca 106617 NT: Katherine River, at Katherine, Low Level cross-

ing, downstream from bridge

14◦29,441’S, 132◦14,991’E

AUS 2004 91 M. onca 106617 NT: Katherine River, at Katherine, Low Level cross-

ing, downstream from bridge

14◦29,441’S, 132◦14,991’E

AUS 2004 92 T. australis 106618 NT: Katherine Falls, at Flora River N.P. 14◦45,412’S, 131◦35,791’E

AUS 2004 93 T. australis 106619 NT: Victoria River, Old Victoria River Crossing 15◦34,862’S, 131◦6,142’E

AUS 2004 93 T. australis 106619 NT: Victoria River, Old Victoria River Crossing 15◦34,862’S, 131◦6,142’E

AUS 2004 94 T. australis 106621 NT: Victoria River, at Victoria River Gorge 15◦37,79’S, 131◦8,099’E

AUS 2004 94 T. australis 106621 NT: Victoria River, at Victoria River Gorge 15◦37,79’S, 131◦8,099’E

AUS 2004 95 M. onca 106622 NT: Roper River, at Mataranka 14◦56,771’S, 133◦12,609’E

AUS 2004 95 S. venustula 106623 NT: Roper River, at Mataranka 14◦56,771’S, 133◦12,609’E

AUS 2004 95 T. australis 106624 NT: Roper River, at Mataranka 14◦56,771’S, 133◦12,609’E

AUS 2004 95 T. australis 106624 NT: Roper River, at Mataranka 14◦56,771’S, 133◦12,609’E

AUS 2004 96 M. onca 106626 NT: Roper River, at 4 Mile Point 14◦56,137’S, 133◦10,033’E

AUS 2004 96 M. onca 106626 NT: Roper River, at 4 Mile Point 14◦56,137’S, 133◦10,033’E

AUS 2004 96 T. australis 106625 NT: Roper River, at 4 Mile Point 14◦56,137’S, 133◦10,033’E

AUS 2004 96 T. australis 106625 NT: Roper River, at 4 Mile Point 14◦56,137’S, 133◦10,033’E

AUS 2004 97 M. onca 106628 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2004 97 S. venustula 106629 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2004 97 S. venustula 106629 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2004 97 T. australis 106627 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2004 97 T. australis 106627 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2004 97 T. australis 106630 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2004 97 T. australis 106630 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2004 98 S. venustula 106632 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2004 98 S. venustula 106632 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2004 98 T. australis 106631 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2004 98 T. australis 106633 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2004 98 T. australis 106633 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2004 98 T. australis 106634 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2004 98 T. australis 106634 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2004 99 M. onca 106636 NT: Roper River, at Roper Bar 14◦42,802’S, 134◦30,474’E

AUS 2004 99 M. onca 106636 NT: Roper River, at Roper Bar 14◦42,802’S, 134◦30,474’E

AUS 2004 99 T. australis 106635 NT: Roper River, at Roper Bar 14◦42,802’S, 134◦30,474’E

AUS 2004 99 T. australis 106635 NT: Roper River, at Roper Bar 14◦42,802’S, 134◦30,474’E

AUS 2004 100 S. denisoniensis 106641 NT: Towns River, at crossing 15◦2,57’S, 135◦12,718’E

AUS 2004 100 T. australis 106640 NT: Towns River, at crossing 15◦2,57’S, 135◦12,718’E

AUS 2004 100 T. australis 106640 NT: Towns River, at crossing 15◦2,57’S, 135◦12,718’E

AUS 2004 101 S. venustula 106654 NT: Elsey River, at Elsey Cemetery

AUS 2004 101 S. denisoniensis 106651 NT: Elsey River, at Elsey Cemetery

AUS 2004 101 T. australis 106652 NT: Elsey River, at Elsey Cemetery

AUS 2004 102 T. australis 106642 NT: East Alligator River, Ubir, at Cahills Crossing

to Arnhemland

12◦25,542’S, 132◦57,882’E

AUS 2004 102 T. australis 106642 NT: East Alligator River, Ubir, at Cahills Crossing

to Arnhemland

12◦25,542’S, 132◦57,882’E

AUS 2004 103 S. denisoniensis 106644 NT: Black Jungle Springs, Kakadu N.P. 13◦2,898’S, 132◦9,889’E

AUS 2004 103 S. denisoniensis 106644 NT: Black Jungle Springs, Kakadu N.P. 13◦2,898’S, 132◦9,889’E

AUS 2004 104 S. denisoniensis 106645 NT: Coomalie Creek, at crossing of road to W 13◦0,602’S, 131◦6,85’E

AUS 2004 105 T. australis 106648 NT: Finnis River, NW of Batchelor 13◦1,316’S, 130◦57,093’E

AUS 2004 105 T. australis 106648 NT: Finnis River, NW of Batchelor 13◦1,316’S, 130◦57,093’E
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AUS 2004 106 S. venustula 106650 NT: Daly River Crossing 13◦46,026’S, 130◦42,688’E

AUS 2004 109 P. balonnensis 106582 West SE of Geraldton, Ellendale Pool at Gree-

nough River

28◦51,63’S, 114◦58,43’E

AUS 2004 109 P. balonnensis 106582 West SE of Geraldton, Ellendale Pool at Gree-

nough River

28◦51,63’S, 114◦58,43’E

AUS 2004 109 S. denisoniensis 106586 West SE of Geraldton, Ellendale Pool at Gree-

nough River

28◦51,63’S, 114◦58,43’E

AUS 2004 109 S. denisoniensis 106586 West SE of Geraldton, Ellendale Pool at Gree-

nough River

28◦51,63’S, 114◦58,43’E

AUS 2004 112 P. balonnensis 106583 West Murchinson River, Kalbarri N.P., at Ross

Graham Lookout

27◦48,77’S, 114◦28,54’E

AUS 2004 112 P. balonnensis 106583 West Murchinson River, Kalbarri N.P., at Ross

Graham Lookout

27◦48,77’S, 114◦28,54’E

AUS 2004 112 P. balonnensis 106583 West Murchinson River, Kalbarri N.P., at Ross

Graham Lookout

27◦48,77’S, 114◦28,54’E

AUS 2005 1 S. denisoniensis 106660 NT: Crater Lake, S Bachelor, NE of Adelaide River 13◦2,76’S, 131◦5,445’E

AUS 2005 1 S. denisoniensis 106660 NT: Crater Lake, S Bachelor, NE of Adelaide River 13◦2,76’S, 131◦5,445’E

AUS 2005 1 T. australis 106659 NT: Crater Lake, S Bachelor, NE of Adelaide River 13◦2,76’S, 131◦5,445’E

AUS 2005 1 T. australis 106659 NT: Crater Lake, S Bachelor, NE of Adelaide River 13◦2,76’S, 131◦5,445’E

AUS 2005 2 S. denisoniensis 106662 NT: Rum Jungle at Litchfield Road, 2nd lake 13◦2,604’S, 130◦59,862’E

AUS 2005 2 T. australis 106661 NT: Rum Jungle at Litchfield Road, 2nd lake 13◦2,604’S, 130◦59,862’E

AUS 2005 2 T. australis 106661 NT: Rum Jungle at Litchfield Road, 2nd lake 13◦2,604’S, 130◦59,862’E

AUS 2005 3 T. australis 106664 NT: Finnis River, NW of Batchelor 13◦1,316’S, 130◦57,093’E

AUS 2005 3 T. australis 106664 NT: Finnis River, NW of Batchelor 13◦1,316’S, 130◦57,093’E

AUS 2005 4 M. onca 106667 NT: Oolloo Crossing, Daly River 14◦4,24’S, 131◦15,056’E

AUS 2005 4 M. onca 106667 NT: Oolloo Crossing, Daly River 14◦4,24’S, 131◦15,056’E

AUS 2005 4 P. scabra 106668 NT: Oolloo Crossing, Daly River 14◦4,24’S, 131◦15,056’E

AUS 2005 4 T. australis 106666 NT: Oolloo Crossing, Daly River 14◦4,24’S, 131◦15,056’E

AUS 2005 4 T. australis 106666 NT: Oolloo Crossing, Daly River 14◦4,24’S, 131◦15,056’E

AUS 2005 5 M. onca 106671 NT: Daly River Crossing 13◦46,026’S, 130◦42,688’E

AUS 2005 5 M. onca 106671 NT: Daly River Crossing 13◦46,026’S, 130◦42,688’E

AUS 2005 5 T. australis 106670 NT: Daly River Crossing 13◦46,026’S, 130◦42,688’E

AUS 2005 6 M. onca 106673 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2005 6 M. onca 106673 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2005 6 T. australis 106672 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2005 6 T. australis 106674 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2005 6 T. australis 106674 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2005 7 S. venustula 106722 NT: Bitter Springs at Mataranka 14◦54,669’S, 133◦5,319’E

AUS 2005 7 Stenomelania

sp.

106721 NT: Bitter Springs at Mataranka 14◦54,669’S, 133◦5,319’E

AUS 2005 8 S. venustula 106676 NT: Roper River, at Jalmurark Camp Ground 14◦57,158’S, 133◦13,29’E

AUS 2005 8 S. venustula 106723 NT: Roper River, at Jalmurark Camp Ground 14◦57,158’S, 133◦13,29’E

AUS 2005 8 Stenomelania

sp.

106724 NT: Roper River, at Jalmurark Camp Ground 14◦57,158’S, 133◦13,29’E

AUS 2005 8 T. australis 106675 NT: Roper River, at Jalmurark Camp Ground 14◦57,158’S, 133◦13,29’E

AUS 2005 9 P. scabra 106679 NT: Little Roper River, South bank at old crossing 14◦55,589’S, 133◦7,137’E

AUS 2005 9 S. venustula 106678 NT: Little Roper River, South bank at old crossing 14◦55,589’S, 133◦7,137’E

AUS 2005 9 S. venustula 106678 NT: Little Roper River, South bank at old crossing 14◦55,589’S, 133◦7,137’E

AUS 2005 9 T. australis 106677 NT: Little Roper River, South bank at old crossing 14◦55,589’S, 133◦7,137’E

AUS 2005 9 T. australis 106677 NT: Little Roper River, South bank at old crossing 14◦55,589’S, 133◦7,137’E

AUS 2005 10 M. onca 106681 NT: Stevie’s Hole at Waterhouse River, Elsey N.P. 14◦55,782’S, 133◦8,732’E

AUS 2005 10 M. onca 106681 NT: Stevie’s Hole at Waterhouse River, Elsey N.P. 14◦55,782’S, 133◦8,732’E

AUS 2005 10 S. venustula 106682 NT: Stevie’s Hole at Waterhouse River, Elsey N.P. 14◦55,782’S, 133◦8,732’E

AUS 2005 10 T. australis 106680 NT: Stevie’s Hole at Waterhouse River, Elsey N.P. 14◦55,782’S, 133◦8,732’E

AUS 2005 11 S. riqueti 106684 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2005 11 S. riqueti 106684 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E
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AUS 2005 11 S. denisoniensis 106685 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2005 11 T. australis 106683 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2005 12 P. balonnensis 106686 NT: Red Centre: Ormiston Gorge, outlet, water-

hole with vegetation

23◦37,704’S, 132◦43,375’E

AUS 2005 12 P. balonnensis 106717 NT: Red Centre: Ormiston Gorge, outlet, water-

hole with vegetation

23◦37,704’S, 132◦43,375’E

AUS 2005 13 P. balonnensis 106687 NT: Red Centre: Finke River, at Glen Helen Gorge

nr. resort

23◦41,322’S, 132◦40,606’E

AUS 2005 13 P. balonnensis 106716 NT: Red Centre: Finke River, at Glen Helen Gorge

nr. resort

23◦41,322’S, 132◦40,606’E

AUS 2005 14 P. balonnensis 106718 NT: Red Centre: Palm Valley, 2 km into the valley 24◦3,036’S, 132◦41,68’E

AUS 2005 15 P. balonnensis 106719 NT: Red Centre: Finke River, shallow waterhole

in dry river bed, nr. Boggy Hole

24◦8,113’S, 132◦50,233’E

AUS 2005 16 P. balonnensis 106688 NT: Red Centre: Boggy Hole, Campground, Finke

River

24◦8,174’S, 132◦51,768’E

AUS 2005 16 P. balonnensis 106688 NT: Red Centre: Boggy Hole, Campground, Finke

River

24◦8,174’S, 132◦51,768’E

AUS 2005 17 P. balonnensis 106689 NT: Red Centre: Three Mile Point, Finke River

at crossing of Stuart HWY

24◦33,182’S, 133◦14,355’E

AUS 2005 17 P. balonnensis 106689 NT: Red Centre: Three Mile Point, Finke River

at crossing of Stuart HWY

24◦33,182’S, 133◦14,355’E

AUS 2005 18 M. tuberculata 106690 West Kimberley Region: Lilly Lagoon, nr. Lake

Kununurra, above Diversion Dam

15◦46,825’S, 128◦44,477’E

AUS 2005 18 M. tuberculata 106690 West Kimberley Region: Lilly Lagoon, nr. Lake

Kununurra, above Diversion Dam

15◦46,825’S, 128◦44,477’E

AUS 2005 21 T. australis 106692 West Kimberley Region: Kununurra, 250 m along

canal at pump station, Lake Kununurra

15◦47,34’S, 128◦43,005’E

AUS 2005 21 T. australis 106692 West Kimberley Region: Kununurra, 250 m along

canal at pump station, Lake Kununurra

15◦47,34’S, 128◦43,005’E

AUS 2005 22 T. australis 106693 West Kimberley Region: Fitzroy Crossing, Fitzroy

River

18◦12,653’S, 125◦34,74’E

AUS 2005 22 T. australis 106693 West Kimberley Region: Fitzroy Crossing, Fitzroy

River

18◦12,653’S, 125◦34,74’E

AUS 2005 23 T. australis 106696 West Kimberley Region: Geiki Gorge, Fitzroy

River

18◦6,521’S, 125◦41,891’E

AUS 2005 24 T. australis 106697 NT: East Baines River, crossing at Victoria HWY 15◦45,737’S, 130◦1,75’E

AUS 2005 24 T. australis 106697 NT: East Baines River, crossing at Victoria HWY 15◦45,737’S, 130◦1,75’E

AUS 2005 25 M. onca 106699 NT: Katherine River, 500 m downstream from

Lower Land Bridge at Springvale Homestead de-

tour

14◦29,49’S, 132◦14,73’E

AUS 2005 25 M. onca 106699 NT: Katherine River, 500 m downstream from

Lower Land Bridge at Springvale Homestead de-

tour

14◦29,49’S, 132◦14,73’E

AUS 2005 25 T. australis 106698 NT: Katherine River, 500 m downstream from

Lower Land Bridge at Springvale Homestead de-

tour

14◦29,49’S, 132◦14,73’E

AUS 2005 26 S. carbonata 1000 NT: Howard Springs 12◦27,345’S, 131◦3,146’E

AUS 2005 26 S. carbonata 106700 NT: Howard Springs 12◦27,345’S, 131◦3,146’E

AUS 2005 27 T. australis 106701 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2005 27 T. australis 106701 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2005 27 T. australis 106702 NT: Howard River, crossing 12◦27,752’S, 131◦5,008’E

AUS 2005 28 M. tuberculata 106726 NT: Darwin River, at crossing with HWY to Cox

Peninsula

12◦44,527’S, 130◦57,93’E

AUS 2005 28 Stenomelania

sp.

106726 NT: Darwin River, at crossing with HWY to Cox

Peninsula

12◦44,527’S, 130◦57,93’E

AUS 2005 29 T. australis 106704 NT: Berry Springs 12◦42,153’S, 130◦59,875’E

AUS 2007 67 S. venustula 107228 NT: Howard Springs Creek, N of Howard Springs 12◦27,268’S, 131◦3,108’E
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AUS 2007 68 P. scabra 107215 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2007 68 T. australis 107263 NT: Bamboo Creek, c. 3-10m from Daly River 13◦40,118’S, 130◦39,501’E

AUS 2007 69 M. onca 107221 NT: Daly River Crossing 13◦46,026’S, 130◦42,688’E

AUS 2007 69 T. australis 107264 NT: Daly River Crossing 13◦46,026’S, 130◦42,688’E

AUS 2007 70 M. onca 107222 NT: Roper River, at Jalmurark Camp Ground 14◦57,158’S, 133◦13,29’E

AUS 2007 70 S. venustula 107229 NT: Roper River, at Jalmurark Camp Ground 14◦57,158’S, 133◦13,29’E

AUS 2007 70 T. australis 107265 NT: Roper River, at Jalmurark Camp Ground 14◦57,158’S, 133◦13,29’E

AUS 2007 71 S. venustula 107230 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2007 71 S. denisoniensis 107238 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2007 71 T. australis 107266 NT: Salt Creek nr Elsey Creek, at crossing of Roper

Highway

15◦0,703’S, 133◦14,417’E

AUS 2007 72 S. venustula 107231 NT: Elsey Creek on Roper Highway (Roper River

Catchment)

15◦0,627’S, 133◦15,096’E

AUS 2007 72 T. australis 107267 NT: Elsey Creek on Roper Highway (Roper River

Catchment)

15◦0,627’S, 133◦15,096’E

AUS 2007 73 M. onca 107223 NT: Roper River at Roper Bar (Roper River

Catchment)

14◦42,795’S, 134◦30,575’E

AUS 2007 73 T. australis 107268 NT: Roper River at Roper Bar (Roper River

Catchment)

14◦42,795’S, 134◦30,575’E

AUS 2007 74 S. denisoniensis 107239 NT: Towns River, at crossing 15◦2,57’S, 135◦12,718’E

AUS 2007 74 T. australis 107269 NT: Towns River, at crossing 15◦2,57’S, 135◦12,718’E

AUS 2007 75 S. denisoniensis 107240 Cox River, in last along stagnant waterhole N of

couseway

15◦19,394’S, 135◦20,699’E

AUS 2007 75 T. australis 107270 Cox River, in last along stagnant waterhole N of

couseway

15◦19,394’S, 135◦20,699’E

AUS 2007 76 T. australis 107271 NT: Limmen Bight River 15◦28,865’S, 135◦24,054’E

AUS 2007 77 T. australis 107272 NT: McArthur River at Boorolooa 16◦4,866’S, 136◦19,026’E

AUS 2007 78 T. australis 107273 NT: Wearyan River, along beach at crossing 16◦10,02’S, 136◦45,481’E

AUS 2007 79 S. venustula 107232 NT: Foelsche River 16◦12,628’S, 136◦53,034’E

AUS 2007 79 T. australis 107274 NT: Foelsche River 16◦12,628’S, 136◦53,034’E

AUS 2007 80 T. australis 107275 NT: Robinson River 16◦28,27’S, 137◦2,932’E

AUS 2007 81 S. venustula 107233 NT: Kangaroo Creek 16◦47,553’S, 137◦6,107’E

AUS 2007 82 T. australis 107276 NT: Blueys Creek on The Savannah Way (Clavert

River Catchment)

16◦56,066’S, 137◦21,578’E

AUS 2007 83 T. australis 107277 QL: Gregory River, SE of Burketown at Savannah

Highway crossing

17◦53,517’S, 139◦17,209’E

AUS 2007 84 T. australis 107278 QL: Gregory River at Gregory Downs 18◦38,695’S, 139◦14,875’E

AUS 2007 85 S. venustula 107234 QL: Gregory River at Riversleigh (Gregory River

Catchment)

19◦1,116’S, 138◦43,529’E

AUS 2007 85 T. australis 107279 QL: Gregory River at Riversleigh (Gregory River

Catchment)

19◦1,116’S, 138◦43,529’E

AUS 2007 86 T. australis 107280 QL: O’Shanassy River 19◦1,354’S, 138◦45,741’E

AUS 2007 87 T. australis 107281 QL: Lawn Hill, Boodjamulla Creek, downstream

of Indarri Falls

18◦42,051’S, 138◦29,196’E

AUS 2007 89 S. venustula 107209 QL: Norman River, Billabong 1 km N of Norman-

ton

17◦39,712’S, 141◦6,154’E

AUS 2007 89 S. venustula 107235 QL: Norman River, Billabong 1 km N of Norman-

ton

17◦39,712’S, 141◦6,154’E

AUS 2007 89 S. denisoniensis 107241 QL: Norman River, Billabong 1 km N of Norman-

ton

17◦39,712’S, 141◦6,154’E

AUS 2007 90 S. denisoniensis 107242 QL: Normanton River, Glenmore, SE of Norman-

ton River

15◦51,199’S, 141◦8,048’E

AUS 2007 91 S. denisoniensis 107243 QL: McLeod Creek, at crossing, tributary to En-

deavour River

15◦25,503’S, 145◦6,049’E

AUS 2007 92 P. balonnensis 107256 QL: Endeavour River Falls 15◦22,27’S, 145◦1,77’E

AUS 2007 92 S. denisoniensis 107244 QL: Endeavour River Falls 15◦22,27’S, 145◦1,77’E
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AUS 2007 93 S. denisoniensis 107245 QL: Three Mile Creek/ Poisson Creek (Tributary

to Endeavour River)

15◦25,789’S, 145◦7,04’E

AUS 2007 94 S. aspirans 107211 QL: Granite Creek, W of Bloomsfield 15◦55,99’S, 145◦19,54’E

AUS 2007 94 S. denisoniensis 107246 QL: Granite Creek, W of Bloomsfield 15◦55,99’S, 145◦19,54’E

AUS 2007 94 T. amarula 107217 QL: Granite Creek, W of Bloomsfield 15◦55,99’S, 145◦19,54’E

AUS 2007 95 S. denisoniensis 107247 QL: Woobadda Creek 15◦57,969’S, 145◦22,858’E

AUS 2007 96 S. denisoniensis 107248 QL: Meelele River 15◦58,25’S, 145◦23,85’E

AUS 2007 97 R. queenslandica 107213 QL: Douglas Creek, near Daintree at crossing 16◦16,194’S, 145◦58,6’E

AUS 2007 97 T. amarula 107218 QL: Douglas Creek, near Daintree at crossing 16◦16,194’S, 145◦58,6’E

AUS 2007 98 S. aspirans 107212 QL: Mowbray River 16◦33,87’S, 145◦27,83’E

AUS 2007 98 T. amarula 107219 QL: Mowbray River 16◦33,87’S, 145◦27,83’E

AUS 2007 98 T. amarula 107219 QL: Mowbray River 16◦33,87’S, 145◦27,83’E

AUS 2007 99 P. balonnensis 107257 QL: Barron River, below 150 m Lake Placid 16◦52,17’S, 145◦40,405’E

AUS 2007 99 S. denisoniensis 107249 QL: Barron River, below 150 m Lake Placid 16◦52,17’S, 145◦40,405’E

AUS 2007 99 T. amarula 107220 QL: Barron River, below 150 m Lake Placid 16◦52,17’S, 145◦40,405’E

AUS 2007 100 P. balonnensis 107258 QL: Barron River Gorge Road, half way to hydro

station at River Access

16◦51,632’S, 145◦39,791’E

AUS 2007 100 S. denisoniensis 107250 QL: Barron River Gorge Road, half way to hydro

station at River Access

16◦51,632’S, 145◦39,791’E

AUS 2007 101 R. queenslandica 107214 QL: North Johnston River 17◦30,34’S, 145◦59,55’E

AUS 2007 102 P. balonnensis 107259 QL: Fisher’s Creek, Palmeston Rock, at Palmer-

ston Hwy

17◦34,167’S, 145◦53,876’E

AUS 2007 102 S. denisoniensis 107251 QL: Fisher’s Creek, Palmeston Rock, at Palmer-

ston Hwy

17◦34,167’S, 145◦53,876’E

AUS 2007 103 P. balonnensis 107260 QL: Einasleigh River, 4 km E of Einasleigh 18◦30,938’S, 144◦6,682’E

AUS 2007 104 T. australis 107282 QL: Gilbert River, downstream from crossing

Burke Dev. Road, 10 km NE of Normanton

17◦10,117’S, 141◦45,999’E

AUS 2007 104 T. australis 107282 QL: Gilbert River, downstream from crossing

Burke Dev. Road, 10 km NE of Normanton

17◦10,117’S, 141◦45,999’E

AUS 2007 105 M. onca 107224 NT: Roper River, Roper Falls, 4 km E of Jarmurak 14◦57,401’S, 133◦15,018’E

AUS 2007 105 S. denisoniensis 107252 NT: Roper River, Roper Falls, 4 km E of Jarmurak 14◦57,401’S, 133◦15,018’E

AUS 2007 105 T. australis 107283 NT: Roper River, Roper Falls, 4 km E of Jarmurak 14◦57,401’S, 133◦15,018’E

AUS 2007 106 M. onca 107225 NT: Roper River, at 4 Mile Point 14◦56,137’S, 133◦10,033’E

AUS 2007 106 T. australis 107284 NT: Roper River, at 4 Mile Point 14◦56,137’S, 133◦10,033’E

AUS 2007 107 S. venustula 107236 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2007 107 T. australis 107285 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2007 108 S. venustula 107237 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2007 108 S. denisoniensis 107253 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2007 108 T. australis 107286 NT: Little Roper River, at crossing 14◦55,581’S, 133◦7,176’E

AUS 2007 109 M. onca 107226 NT: Stevie’s Hole at Waterhouse River, Elsey N.P. 14◦55,782’S, 133◦8,732’E

AUS 2007 109 S. denisoniensis 107254 NT: Stevie’s Hole at Waterhouse River, Elsey N.P. 14◦55,782’S, 133◦8,732’E

AUS 2007 109 T. australis 107287 NT: Stevie’s Hole at Waterhouse River, Elsey N.P. 14◦55,782’S, 133◦8,732’E

AUS 2007 110 T. australis 107288 NT: Katherine River, at Katherine, Low Level

crossing, downstream from bridge

14◦29,441’S, 132◦14,991’E

AUS 2007 111 M. onca 107227 NT: Oolloo Crossing, Daly River 14◦4,24’S, 131◦15,056’E

AUS 2007 111 P. scabra 107216 NT: Oolloo Crossing, Daly River 14◦4,24’S, 131◦15,056’E

AUS 2007 111 T. australis 107289 NT: Oolloo Crossing, Daly River 14◦4,24’S, 131◦15,056’E

AUS 2007 112 S. venustula 107210 NT: Berry Springs, S of Darwin 12◦42,111’S, 130◦59,854’E

AUS 2007 112 S. denisoniensis 107255 NT: Berry Springs, S of Darwin 12◦42,111’S, 130◦59,854’E

AUS 2007 112 T. australis 107290 NT: Berry Springs, S of Darwin 12◦42,111’S, 130◦59,854’E

AUS 2009 1 M. tuberculata 107545 NT: Berry Springs on Stuart Highway 12◦42,309’S, 131◦0,401’E

AUS 2009 1 S. venustula 107544 NT: Berry Springs on Stuart Highway 12◦42,309’S, 131◦0,401’E

AUS 2009 1 T. australis 107592 NT: Berry Springs on Stuart Highway 12◦42,309’S, 131◦0,401’E

AUS 2009 2 M. onca 107264 NT: Daly River Crossing 13◦46,142’S, 130◦42,874’E

AUS 2009 2 P. scabra 107546 NT: Daly River Crossing 13◦46,142’S, 130◦42,874’E

AUS 2009 2 T. australis 107548 NT: Daly River Crossing 13◦46,142’S, 130◦42,874’E

AUS 2009 3 M. onca 107550 NT: Bamboo Creek at Daly River 13◦40,083’S, 130◦39,542’E

AUS 2009 3 P. scabra 107551 NT: Bamboo Creek at Daly River 13◦40,083’S, 130◦39,542’E
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AUS 2009 4 T. australis 107554 NT: Adelaide River 13◦10,353’S, 131◦11,501’E

AUS 2009 5 M. onca 107555 NT: Elsey Falls at junction of Salt Creek, 50

m above confluence with Roper River, below

Mataranka Falls

14◦57,412’S, 133◦15,103’E

AUS 2009 5 T. australis 107556 NT: Elsey Falls at junction of Salt Creek, 50

m above confluence with Roper River, below

Mataranka Falls

14◦57,412’S, 133◦15,103’E

AUS 2009 6 S. venustula 107557 NT: Roper River at Jalmurark camp 14◦57,1’S, 133◦13,42’E

AUS 2009 6 S. venustula 107558 NT: Roper River at Jalmurark camp 14◦57,1’S, 133◦13,42’E

AUS 2009 6 T. australis 107559 NT: Roper River at Jalmurark camp 14◦57,1’S, 133◦13,42’E

AUS 2009 7 P. scabra 107564 NT: Little Roper River at crossing 14◦55,63’S, 133◦7,105’E

AUS 2009 7 S. venustula 107561 NT: Little Roper River at crossing 14◦55,63’S, 133◦7,105’E

AUS 2009 7 S. venustula 107562 NT: Little Roper River at crossing 14◦55,63’S, 133◦7,105’E

AUS 2009 7 S. denisoniensis 107563 NT: Little Roper River at crossing 14◦55,63’S, 133◦7,105’E

AUS 2009 7 T. australis 107560 NT: Little Roper River at crossing 14◦55,63’S, 133◦7,105’E

AUS 2009 8 M. onca 107565 NT: Roper River at 4 Mile Point 14◦56,151’S, 133◦10,034’E

AUS 2009 8 T. australis 107567 NT: Roper River at 4 Mile Point 14◦56,151’S, 133◦10,034’E

AUS 2009 9 T. australis 107569 NT: MacArthur River, Borroloola 16◦4,889’S, 136◦19,148’E

AUS 2009 10 T. australis 107573 NT: Robinson River, West of border to Queens-

land

16◦28,27’S, 137◦2,995’E

AUS 2009 11 T. australis 107574 QL: O‘Shanassy River, nr Riversleigh 19◦1,322’S, 138◦45,697’E

AUS 2009 12 P. scabra 107575 QL: Gregory River at Riversleigh 19◦1,101’S, 138◦43,5’E

AUS 2009 12 S. denisoniensis 107577 QL: Gregory River at Riversleigh 19◦1,101’S, 138◦43,5’E

AUS 2009 12 T. australis 107576 QL: Gregory River at Riversleigh 19◦1,101’S, 138◦43,5’E

AUS 2009 13 T. australis 107578 QL: Beame Brook, lower part of Lawn Hill Creek

System, above Albert River junction

17◦52,77’S, 139◦20,445’E

AUS 2009 14 T. australis 107579 QL: Bynoe River, west of Normanton 17◦51,685’S, 140◦48,231’E

AUS 2009 17 P. balonnensis 107583 QL: Mareeba, upper Barron River 16◦59,134’S, 145◦25,158’E

AUS 2009 17 S. denisoniensis 107584 QL: Mareeba, upper Barron River 16◦59,134’S, 145◦25,158’E

AUS 2009 18 S. aspirans 107586 QL: Mowbraw River, near Port Douglas 16◦33,812’S, 145◦27,877’E

AUS 2009 18 S. denisoniensis 107588 QL: Mowbraw River, near Port Douglas 16◦33,812’S, 145◦27,877’E

AUS 2009 18 T. amarula 107585 QL: Mowbraw River, near Port Douglas 16◦33,812’S, 145◦27,877’E

AUS 2009 18 T. amarula 107590 QL: Mowbraw River, near Port Douglas 16◦33,812’S, 145◦27,877’E

AUS 2009 20 T. amarula 107594 QL: Douglas Creek, Daintree River 16◦16,19’S, 145◦18,579’E

AUS 2009 21 P. scabra 107596 QL: Martins Creek, upper Daintree Road, Dain-

tree River

16◦14,163’S, 145◦18,323’E

AUS 2009 21 R. queenslandica 107595 QL: Martins Creek, upper Daintree Road, Dain-

tree River

16◦14,163’S, 145◦18,323’E

AUS 2009 21 S. denisoniensis 107598 QL: Martins Creek, upper Daintree Road, Dain-

tree River

16◦14,163’S, 145◦18,323’E

AUS 2009 21 T. amarula 107599 QL: Martins Creek, upper Daintree Road, Dain-

tree River

16◦14,163’S, 145◦18,323’E

AUS 2009 22 S. denisoniensis 107600 QL: E of Dimbulah, Walsh River near Mutchilba 17◦7,283’S, 145◦16,205’E

AUS 2009 23 P. balonnensis 107603 QL: Salt Water Creek, S of Lynd River crossing,

near Lynd Brook

17◦48,985’S, 144◦25,046’E

AUS 2009 23 S. denisoniensis 107602 QL: Salt Water Creek, S of Lynd River crossing,

near Lynd Brook

17◦48,985’S, 144◦25,046’E

AUS 2009 26 P. balonnensis 107611 QL: Porcupine Creek at Pyramid pool in gorge,

trib. to Flinders River

20◦20,752’S, 144◦27,676’E

AUS 2009 26 S. denisoniensis 107609 QL: Porcupine Creek at Pyramid pool in gorge,

trib. to Flinders River

20◦20,752’S, 144◦27,676’E

AUS 2009 27 M. onca 107613 NT: Stevie’s Hole at Waterhouse River, junction

to Roper River

14◦55,734’S, 133◦8,712’E

AUS 2009 27 T. australis 107612 NT: Stevie’s Hole at Waterhouse River, junction

to Roper River

14◦55,734’S, 133◦8,712’E

AUS 2009 28 M. onca 107587 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E
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AUS 2009 28 M. onca 107610 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E

AUS 2009 28 M. onca 107619 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E

AUS 2009 28 S. venustula 107614 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E

AUS 2009 28 S. venustula 107615 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E

AUS 2009 28 S. venustula 107616 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E

AUS 2009 28 S. venustula 107617 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E

AUS 2009 28 S. venustula 107618 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E

AUS 2009 28 T. australis 107620 NT: Wabalarr, Roper River, E of 4 Mile Point on

way to Jalmurark

14◦56,028’S, 133◦10,44’E

AUS 2009 29 M. onca 107625 NT: Mulurark, Roper River, 2km W of Jalmurark,

6km E of Wabalarr

14◦56,789’S, 133◦12,626’E

AUS 2009 29 S. venustula 107621 NT: Mulurark, Roper River, 2km W of Jalmurark,

6km E of Wabalarr

14◦56,789’S, 133◦12,626’E

AUS 2009 29 T. australis 107626 NT: Mulurark, Roper River, 2km W of Jalmurark,

6km E of Wabalarr

14◦56,789’S, 133◦12,626’E

AUS 2009 30 S. venustula 107627 NT: Howard Springs Creek 12◦27,268’S, 131◦3,108’E

AUS 2009 30 S. venustula 107630 NT: Howard Springs Creek 12◦27,268’S, 131◦3,108’E

AUS 2009 30 S. denisoniensis 107629 NT: Howard Springs Creek 12◦27,268’S, 131◦3,108’E

AUS 2009 30 T. australis 107628 NT: Howard Springs Creek 12◦27,268’S, 131◦3,108’E

AUS 2010 1 P. balonnensis 107946 QL: Upper Brisbane River, at Fernvale, W Bris-

bane, at old bridge crossing

27◦26,226’S, 152◦38,056’E

AUS 2010 1 P. balonnensis 107946 QL: Upper Brisbane River, at Fernvale, W Bris-

bane, at old bridge crossing

27◦26,226’S, 152◦38,056’E

AUS 2010 2 P. balonnensis 107957 QL: South Pine River at Samford, NW Brisbane 27◦21,319’S, 152◦52,912’E

AUS 2010 4 P. balonnensis 107948 QL: South Maroochy River at Yandina, Coleman’s

Road crossing

26◦33,626’S, 152◦56,629’E

AUS 2010 4 P. balonnensis 107948 QL: South Maroochy River at Yandina, Coleman’s

Road crossing

26◦33,626’S, 152◦56,629’E

AUS 2010 4 S. denisoniensis 107949 QL: South Maroochy River at Yandina, Coleman’s

Road crossing

26◦33,626’S, 152◦56,629’E

AUS 2010 5 P. balonnensis 107950 QL: Litte Widgee Creek, trib. to Mary River, W

Gympie

26◦12,31’S, 152◦27,193’E

AUS 2010 6 P. balonnensis 107951 QL: Euri Creek, at Bowen to Collinsville road 20◦12,294’S, 147◦57,613’E

AUS 2010 6 S. denisoniensis 107955 QL: Euri Creek, at Bowen to Collinsville road 20◦12,294’S, 147◦57,613’E

AUS 2010 8 S. denisoniensis 107963 QL: Botanic Garden, Mackay, on Bruce Hwy 21◦9,485’S, 149◦9,582’E

AUS 2010 9 P. balonnensis 107956 QL: Broken River, trib. to Bowen River, at Eun-

gella

21◦10,13’S, 148◦30,129’E

AUS 2011 1 S. venustula 127634 NT: Berry Springs, SE of Darwin 12◦42,111’S, 130◦59,875’E

AUS 2011 1 S. denisoniensis 127789 NT: Berry Springs, SE of Darwin 12◦42,111’S, 130◦59,875’E

AUS 2011 1 T. australis 127720 NT: Berry Springs, SE of Darwin 12◦42,111’S, 130◦59,875’E

AUS 2011 1 T. australis 127734 NT: Berry Springs, SE of Darwin 12◦42,111’S, 130◦59,875’E

AUS 2011 1 T.rudis 127616 NT: Berry Springs, SE of Darwin 12◦42,111’S, 130◦59,875’E

AUS 2011 1 T.rudis 127617 NT: Berry Springs, SE of Darwin 12◦42,111’S, 130◦59,875’E

AUS 2011 2 M. onca 127750 NT: Daly River, at crossing 13◦46,001’S, 130◦42,638’E

AUS 2011 3 M. onca 127752 NT: Kathrine River, downstream lower level, wa-

ter channel next to main river

14◦29,5’S, 132◦14,847’E

AUS 2011 3 S. denisoniensis 127785 NT: Kathrine River, downstream lower level, wa-

ter channel next to main river

14◦29,5’S, 132◦14,847’E

AUS 2011 3 T. australis 127747 NT: Kathrine River, downstream lower level, wa-

ter channel next to main river

14◦29,5’S, 132◦14,847’E
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AUS 2011 4 M. onca 127753 NT: Flora River, at Flora Falls, Djarrung comp-

ground

14◦45,456’S, 131◦35,705’E

AUS 2011 4 T. australis 127731 NT: Flora River, at Flora Falls, Djarrung comp-

ground

14◦45,456’S, 131◦35,705’E

AUS 2011 5 M. onca 127754 NT: Flora River, below Kathleen Falls, 3km down,

at boat ramp

14◦43,992’S, 131◦36,487’E

AUS 2011 5 T. australis 127746 NT: Flora River, below Kathleen Falls, 3km down,

at boat ramp

14◦43,992’S, 131◦36,487’E

AUS 2011 6 M. onca 127755 NT: Flora River, near junction, c. 18km from

Djarrung campground

14◦40,092’S, 131◦40,963’E

AUS 2011 6 T. australis 127745 NT: Flora River, near junction, c. 18km from

Djarrung campground

14◦40,092’S, 131◦40,963’E

AUS 2011 7 T. australis 127725 NT: Victoria River, at old crossing 15◦34,866’S, 131◦6,137’E

AUS 2011 8 T. australis 127744 NT: Timber Creek, above junction of Victoria

River

15◦38,203’S, 130◦28,529’E

AUS 2011 8 T.rudis 127618 NT: Timber Creek, above junction of Victoria

River

15◦38,203’S, 130◦28,529’E

AUS 2011 9 P. scabra 127763 NT: Big Horse Creek, at Victoria River 15◦36,878’S, 130◦23,7’E

AUS 2011 9 T. australis 127621 NT: Big Horse Creek, at Victoria River 15◦36,878’S, 130◦23,7’E

AUS 2011 10 M. onca 127756 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 10 P. scabra 127779 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 10 P. balonnensis 117733 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 10 S. venustula 127635 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 10 S. venustula 127636 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 10 S. venustula 127637 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 10 S. denisoniensis 127784 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 10 T. australis 127723 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 10 T.rudis 127619 NT: Salt Creek at junction to Roper River 14◦57,453’S, 133◦15,095’E

AUS 2011 11 M. onca 127757 NT: Roper River, between Mataranka Falls and

Jalmurark campground, 2km below Jalmurark

(downstream)

14◦57,515’S, 133◦14,275’E

AUS 2011 11 S. venustula 127638 NT: Roper River, between Mataranka Falls and

Jalmurark campground, 2km below Jalmurark

(downstream)

14◦57,515’S, 133◦14,275’E

AUS 2011 11 T. australis 127732 NT: Roper River, between Mataranka Falls and

Jalmurark campground, 2km below Jalmurark

(downstream)

14◦57,515’S, 133◦14,275’E

AUS 2011 12 M. tuberculata 127613 NT: Bitter Springs, at Mataranka 14◦54,642’S, 133◦5,362’E

AUS 2011 12 S. denisoniensis 127783 NT: Bitter Springs, at Mataranka 14◦54,642’S, 133◦5,362’E

AUS 2011 13 M. onca 127760 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E

AUS 2011 13 P. scabra 127514 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E

AUS 2011 13 S. venustula 127515 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E

AUS 2011 13 S. venustula 127639 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E

AUS 2011 13 S. denisoniensis 127794 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E

AUS 2011 13 T. australis 127516 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E

AUS 2011 13 T. australis 127719 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E

AUS 2011 13 T. australis 127721 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E

AUS 2011 13 T. australis 127735 NT: Little Roper River at crossing, south bank,

lilly pond

14◦55,589’S, 133◦7,137’E
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AUS 2011 14 P. scabra 127778 NT: Little Roper River at crossing, north bank,

among palms

14◦55,63’S, 133◦7,105’E

AUS 2011 14 S. venustula 127640 NT: Little Roper River at crossing, north bank,

among palms

14◦55,63’S, 133◦7,105’E

AUS 2011 14 S. venustula 127641 NT: Little Roper River at crossing, north bank,

among palms

14◦55,63’S, 133◦7,105’E

AUS 2011 14 S. denisoniensis 127792 NT: Little Roper River at crossing, north bank,

among palms

14◦55,63’S, 133◦7,105’E

AUS 2011 14 T. australis 127726 NT: Little Roper River at crossing, north bank,

among palms

14◦55,63’S, 133◦7,105’E

AUS 2011 14 T. australis 127730 NT: Little Roper River at crossing, north bank,

among palms

14◦55,63’S, 133◦7,105’E

AUS 2011 15 P. scabra 127780 NT: Roper River, at Botanic Walk 14◦56,126’S, 133◦8,532’E

AUS 2011 15 S. venustula 127642 NT: Roper River, at Botanic Walk 14◦56,126’S, 133◦8,532’E

AUS 2011 15 S. venustula 127643 NT: Roper River, at Botanic Walk 14◦56,126’S, 133◦8,532’E

AUS 2011 15 S. denisoniensis 127791 NT: Roper River, at Botanic Walk 14◦56,126’S, 133◦8,532’E

AUS 2011 15 T. australis 127727 NT: Roper River, at Botanic Walk 14◦56,126’S, 133◦8,532’E

AUS 2011 16 M. onca 127751 NT: Roper River, at 4Mile Point 14◦56,12’S, 133◦10,069’E

AUS 2011 16 P. scabra 127770 NT: Roper River, at 4Mile Point 14◦56,12’S, 133◦10,069’E

AUS 2011 16 S. venustula 127644 NT: Roper River, at 4Mile Point 14◦56,12’S, 133◦10,069’E

AUS 2011 16 T. australis 127722 NT: Roper River, at 4Mile Point 14◦56,12’S, 133◦10,069’E

AUS 2011 16 T. australis 127742 NT: Roper River, at 4Mile Point 14◦56,12’S, 133◦10,069’E

AUS 2011 17 P. scabra 127772 NT: Wabalarr, at Roper River 14◦56,028’S, 133◦10,444’E

AUS 2011 17 S. venustula 127645 NT: Wabalarr, at Roper River 14◦56,028’S, 133◦10,444’E

AUS 2011 17 T. australis 127724 NT: Wabalarr, at Roper River 14◦56,028’S, 133◦10,444’E

AUS 2011 17 T. australis 127743 NT: Wabalarr, at Roper River 14◦56,028’S, 133◦10,444’E

AUS 2011 18 M. onca 127761 NT: Mulurark, at Roper River 14◦56,763’S, 133◦12,614’E

AUS 2011 18 P. scabra 127769 NT: Mulurark, at Roper River 14◦56,763’S, 133◦12,614’E

AUS 2011 18 S. venustula 127646 NT: Mulurark, at Roper River 14◦56,763’S, 133◦12,614’E

AUS 2011 18 T. australis 127729 NT: Mulurark, at Roper River 14◦56,763’S, 133◦12,614’E

AUS 2011 18 T. australis 127741 NT: Mulurark, at Roper River 14◦56,763’S, 133◦12,614’E

AUS 2011 19 P. scabra 127766 NT: Salt Creek, at crossing of Roper Hwy 15◦0,703’S, 133◦14,417’E

AUS 2011 19 S. venustula 127647 NT: Salt Creek, at crossing of Roper Hwy 15◦0,703’S, 133◦14,417’E

AUS 2011 19 S. venustula 127648 NT: Salt Creek, at crossing of Roper Hwy 15◦0,703’S, 133◦14,417’E

AUS 2011 19 S. denisoniensis 127786 NT: Salt Creek, at crossing of Roper Hwy 15◦0,703’S, 133◦14,417’E

AUS 2011 19 T. australis 127740 NT: Salt Creek, at crossing of Roper Hwy 15◦0,703’S, 133◦14,417’E

AUS 2011 20 S. venustula 127649 NT: Elsey Creek, at crossing of Roper Hwy 15◦0,624’S, 133◦14,962’E

AUS 2011 20 S. venustula 127650 NT: Elsey Creek, at crossing of Roper Hwy 15◦0,624’S, 133◦14,962’E

AUS 2011 20 T. australis 127717 NT: Elsey Creek, at crossing of Roper Hwy 15◦0,624’S, 133◦14,962’E

AUS 2011 21 M. onca 127762 NT: Roper River, at Roper Bar 14◦42,802’S, 134◦30,474’E

AUS 2011 21 P. scabra 127768 NT: Roper River, at Roper Bar 14◦42,802’S, 134◦30,474’E

AUS 2011 21 T. australis 127733 NT: Roper River, at Roper Bar 14◦42,802’S, 134◦30,474’E

AUS 2011 22 P. scabra 127771 NT: Roper River, Mountain Creek, 500m below

crossing of Roper Hwy

14◦46,543’S, 134◦48,016’E

AUS 2011 22 S. denisoniensis 127795 NT: Roper River, Mountain Creek, 500m below

crossing of Roper Hwy

14◦46,543’S, 134◦48,016’E

AUS 2011 22 T. australis 127739 NT: Roper River, Mountain Creek, 500m below

crossing of Roper Hwy

14◦46,543’S, 134◦48,016’E

AUS 2011 22 T.rudis 127620 NT: Roper River, Mountain Creek, 500m below

crossing of Roper Hwy

14◦46,543’S, 134◦48,016’E

AUS 2011 23 S. venustula 127651 NT: Towns River, at crossing with Roper Hwy 15◦2,57’S, 135◦12,718’E

AUS 2011 23 S. denisoniensis 127799 NT: Towns River, at crossing with Roper Hwy 15◦2,57’S, 135◦12,718’E

AUS 2011 23 T. australis 127623 NT: Towns River, at crossing with Roper Hwy 15◦2,57’S, 135◦12,718’E

AUS 2011 23 P. scabra 127776 NT: Towns River, at crossing with Roper Hwy 15◦2,57’S, 135◦12,718’E

AUS 2011 24 T. australis 127718 NT: Towns River, at boat ramp 15◦2,09’S, 135◦13,161’E

AUS 2011 25 S. venustula 127652 NT: Limmen Bight River, delta 15◦15,19’S, 135◦31,7’E

AUS 2011 26 S. venustula 127653 NT: Towns River, downstream, point 1 14◦59,839’S, 135◦16,262’E

AUS 2011 26 S. denisoniensis 127788 NT: Towns River, downstream, point 1 14◦59,839’S, 135◦16,262’E
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AUS 2011 26 T. australis 127737 NT: Towns River, downstream, point 1 14◦59,839’S, 135◦16,262’E

AUS 2011 27 S. denisoniensis 127796 NT: Towns River, two pools on northern bank 14◦59,792’S, 135◦17,156’E

AUS 2011 27 T. australis 127738 NT: Towns River, two pools on northern bank 14◦59,792’S, 135◦17,156’E

AUS 2011 28 S. venustula 127654 NT: Towns River, backwater at junction with

creek, ”Sermyla point”

14◦59,999’S, 135◦17,03’E

AUS 2011 28 S. venustula 127655 NT: Towns River, backwater at junction with

creek, ”Sermyla point”

14◦59,999’S, 135◦17,03’E

AUS 2011 28 S. denisoniensis 127793 NT: Towns River, backwater at junction with

creek, ”Sermyla point”

14◦59,999’S, 135◦17,03’E

AUS 2011 28 T. australis 127728 NT: Towns River, backwater at junction with

creek, ”Sermyla point”

14◦59,999’S, 135◦17,03’E

AUS 2011 29 S. denisoniensis 127797 NT: Wearyan River, at crossing 16◦10,03’S, 136◦45,506’E

AUS 2011 31 T. australis 127622 QL: Lawn Hill Creek, at Adels Grove 18◦41,383’S, 138◦31,655’E

AUS 2011 32 P. scabra 127775 QL: Gregory River, at 2nd crossing, Riversleight 19◦1,195’S, 138◦43,567’E

AUS 2011 32 S. denisoniensis 127790 QL: Gregory River, at 2nd crossing, Riversleight 19◦1,195’S, 138◦43,567’E

AUS 2011 32 T. australis 127624 QL: Gregory River, at 2nd crossing, Riversleight 19◦1,195’S, 138◦43,567’E

AUS 2011 32 T. australis 127625 QL: Gregory River, at 2nd crossing, Riversleight 19◦1,195’S, 138◦43,567’E

AUS 2011 32 T. australis 127626 QL: Gregory River, at 2nd crossing, Riversleight 19◦1,195’S, 138◦43,567’E

AUS 2011 33 P. scabra 127764 QL: O’Shanassy River, at crossing 19◦1,378’S, 138◦45,73’E

AUS 2011 34 T. australis 127627 QL: Lawn Hill Creek, at Boudjamulla camp 18◦42,056’S, 138◦29,211’E

AUS 2011 35 P. scabra 127765 QL: Gregory River, at crossing, Gregory Downs 18◦38,829’S, 139◦14,912’E

AUS 2011 35 P. scabra 127773 QL: Gregory River, at crossing, Gregory Downs 18◦38,829’S, 139◦14,912’E

AUS 2011 35 T. australis 127628 QL: Gregory River, at crossing, Gregory Downs 18◦38,829’S, 139◦14,912’E

AUS 2011 36 P. scabra 127777 QL: Gregory River, Beame Brook, at crossing 17◦52,708’S, 139◦20,576’E

AUS 2011 36 T. australis 127629 QL: Gregory River, Beame Brook, at crossing 17◦52,708’S, 139◦20,576’E

AUS 2011 38 S. venustula 127656 QL: Norman River, 1km N of Normanton 17◦39,712’S, 141◦6,154’E

AUS 2011 38 S. denisoniensis 127787 QL: Norman River, 1km N of Normanton 17◦39,712’S, 141◦6,154’E

AUS 2011 39 T. australis 127630 QL: Bynoe River, at crossing 17◦51,719’S, 140◦48,067’E

AUS 2011 40 S. denisoniensis 127800 QL: Norman River, at Glenmore, crossing at old

bridge

17◦51,228’S, 141◦8,047’E

AUS 2011 40 T. australis 127631 QL: Norman River, at Glenmore, crossing at old

bridge

17◦51,228’S, 141◦8,047’E

AUS 2011 41 P. balonnensis 127614 QL: Einasleigh River, 4km E of Einasleigh 18◦30,915’S, 144◦6,654’E

AUS 2011 42 P. balonnensis 127615 QL: Porcupine Creek at Porcupine Gorge 20◦21,197’S, 144◦28,01’E

AUS 2011 43 P. scabra 127767 NT: Elsey Creek, at Warloch ponds 15◦5,083’S, 133◦7,439’E

AUS 2011 43 S. venustula 127657 NT: Elsey Creek, at Warloch ponds 15◦5,083’S, 133◦7,439’E

AUS 2011 43 S. venustula 127658 NT: Elsey Creek, at Warloch ponds 15◦5,083’S, 133◦7,439’E

AUS 2011 43 S. denisoniensis 127782 NT: Elsey Creek, at Warloch ponds 15◦5,083’S, 133◦7,439’E

AUS 2011 43 T. australis 127632 NT: Elsey Creek, at Warloch ponds 15◦5,083’S, 133◦7,439’E

AUS 2011 44 M. onca 127749 NT: Daly River, at Oolloo crossing 14◦4,24’S, 131◦15,084’E

AUS 2011 44 P. scabra 127774 NT: Daly River, at Oolloo crossing 14◦4,24’S, 131◦15,084’E

AUS 2011 44 T. australis 127633 NT: Daly River, at Oolloo crossing 14◦4,24’S, 131◦15,084’E

AUS 2011 44 T. australis 127748 NT: Daly River, at Oolloo crossing 14◦4,24’S, 131◦15,084’E

AUS 2011 45 S. venustula 127659 NT: Spring creek at Howard Springs 12◦27,553’S, 131◦3,069’E

AUS 2011 45 S. denisoniensis 127798 NT: Spring creek at Howard Springs 12◦27,553’S, 131◦3,069’E

AUS 2011 46 S. venustula 127660 NT: Howard Springs, below pond 12◦27,366’S, 131◦3,19’E

AUS 2011 46 S. denisoniensis 127781 NT: Howard Springs, below pond 12◦27,366’S, 131◦3,19’E

AUS 2011 46 T. australis 127736 NT: Howard Springs, below pond 12◦27,366’S, 131◦3,19’E

AUS 2012 4 T. australis 127505 Fitzroy River, at Fitzroy Crossing, 500m S of

bridge

18◦12,659’S, 125◦34,801’E

AUS 2012 5 T. australis 127506 Lennard River, near Windjana Gorge 17◦25’S, 124◦50’E

AUS 2012 7 P. balonnensis 127507 De Grey River, E of Port Hedland 20◦18,665’S, 119◦15,383’E

AUS 2012 8 P. balonnensis 117731 Millstream National Park, Fortescue River, at

Millstream Creek, below pond, among stones, at

Millstream old Homestead

21◦35,355’S, 117◦4,33’E

AUS 2012 8 P. balonnensis 127508 Millstream National Park, Fortescue River, at

Millstream Creek, below pond, among stones, at

Millstream old Homestead

21◦35,355’S, 117◦4,33’E
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AUS 2012 8 P. balonnensis 127509 Millstream National Park, Fortescue River, at

Millstream Creek, below pond, among stones, at

Millstream old Homestead

21◦35,355’S, 117◦4,33’E

AUS 2012 9 T. australis 127510 Geikie Gorge, at Fitzroy River 18◦6,394’S, 125◦42,026’E

AUS 2012 10 M. tuberculata 127511 Lake Ord, Ord River, at Kununurra 15◦47,203’S, 128◦44,163’E

AUS 2012 11 T. australis 127512 Ord River at Lake Ord, along canal, downstream

pump station

15◦47,339’S, 128◦43,01’E

AUS 2012 12 T. australis 127513 East Bearns River, at cossing, 50 km W of Timber

Creek

15◦45,67’S, 130◦1,653’E
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Table 23 Mastermix used for PCR of COI, 16S, H3 and 28S

reagent volume for 1 reaction

ddH2O 18.8 μl

primer I 1.0 μl

primer II 1.0 μl

dNTPs 0.5 μl

buffer 2.5 μl

Taq 0.2 μl

DNA 1.0 μl

sum 25.0 μl

Table 24 Multiplex Mastermix used for PCR of COI

reagent volume for 1 reaction

H2O 4.3 μl

primer I 1.6 μl

primer II 1.6 μl

Q-solution 2.0 μl

Multiplex 9.5 μl

DNA 1.0 μl

sum 20.0 μl

Thermal cycling conditions for COI multiplex approach were as follows: 95 ◦C for 15 min,

35 cycles of touchdown PCR (94 ◦C for 0:30 min, 55-40 ◦C annealing for 1:30 min and

72 ◦C extension for 1:30 min) followed by 5 cycles (94 ◦C for 0:30 min, 40 ◦C annealing

for 1:30 min and 72 ◦C extension for 1:30 min) and a final extension step at 72 ◦C for 10

min.



148 B Mastermix and PCR profiles

Table 25 Multiplex Mastermix used for PCR of 16S.

reagent volume for 1 reaction

H2O 4.3 μl

primer I 1.6 μl

primer II 1.6 μl

BSA 2.0 μl

Multiplex 9.5 μl

DNA 1.0 μl

sum 20.0 μl

Thermal cycling conditions for 16S multiplex PCR were as follows: 95 ◦C for 15 min, 35

cycles of touchdown PCR (94 ◦C for 0:30 min, 67.5-50 ◦C annealing for 1:30 min and 72
◦C extension for 1:30 min) followed by 5 cycles (94 ◦C for 0:30 min, 50 ◦C annealing for

1:30 min and 72 ◦C extension for 1:30 min) and a final extension step at 72 ◦C for 10 min.



149

C Additional analyses of phylogenetic trees

0.5

Twin_ZMB106554_IDN_Ba_1043

Trud_ZMB106472_IDN_Ba_1001

Tgra_ZMB107533_IDN_Fl_6917

Cebu_ZMB106323_USA_FL_1946

Psca_ZMB107216_AUS_NT_4781

Hsp_ZMB107126_JAM_2849

Bgla_ZMB107366_IDN_Su_6493

Sden_ZMB106586_AUS_WA_1516

Mtub_ZMB200313_IND_2820

Hsp_ZMB113128_COL_2999

Sasp_ZMB191208_IDN_Su_2223

Tgra_ZMB191454_IDN_Ha_6523

Ppet_ZMB107881_THA_7336

Tlin_ZMB200325_IND_1469

Sden_ZMB107449_IDN_Am_6507

Tcan_ZMB191431_IDN_Ob_2817

Tgra_ZMB191458_IDN_Su_2866

Trud_ZMB191262_IDN_Su_4561

Psia_ZMB107910_THA_7338

Bgla_ZMB191147_IDN_Su_1806

Psia_ZMB107726_THA_7196

Taus_ZMB106698_AUS_NT_1836

Sven_ZMB106713_AUS_QL_2859

Trud_ZMB106704_AUS_NT_2811

Pbal_ZMB106728_AUS_WA_2815

Ecat_ZMB106412_USA_2630

Mtub_ZMB107125_JAM_2860

Msp_ZMB113598_IDN_7347

Cbre_ZMB107174_CUB_3493

Msp_ZMB190964_IDN_Su_2937

Tama_ZMB191489_IDN_Ob_2886

Tlin_ZMB106518_IDN_Ba_1470

Trud_ZMB191279_IDN_Ba_4559

Taus_ZMB106709_AUS_NT_1866

Tmir_ZMB191270_IDN_Su_2881

Fmac_ZMB106379_FIJ_0508

Pbal_ZMB106583_AUS_WA_1512

Tmir_ZMB191429_IDN_Ob_2883

Ssp_ZMB107483_IDN_Am_6508

Tama_ZMB107220_AUS_QL_4785

Msp_ZMB107717_IDN_7346

Taus_AMS427964_AUS_WA_3076

Taus_ZMB106706_AUS_QL_1845

Ssp_ZMB107457_IDN_Se_6539

Mtub_ZMB107129_JAM_2855

Sasp_ZMB191212_IDN_Ba_2176

Psca_ZMB106425_IDN_Ja_1096

TrudTaus_ZMB107280_AUS_QL_4867

Mtub_SUT0210030_THA_8051

Rque_ZMB107214_AUS_QL_7662

Monc_ZMB106636_AUS_NT_1781

Sriq_ZMB191388_IDN_Su_3052

Sasp_ZMB191210_IDN_Su_2175

Tama_ZMB106354_AUS_QL_2870

Neoradina_ZMB107867_THA_7528

Mtub_ZMB107193_MAL_5134

Psca_ZMB107392_IDN_Am_6511

Taus_ZMB107286_AUS_NT_4878

Sriq_ZMB107883_THA_7354

Tgra_ZMB127609_IDN_Ti_8180

Sden_ZMB107239_AUS_NT_4897

Sden_AMS461354_AUS_NT_6096

Sasp_ZMB106391_FIJ_VL_1448

Mtub_ZMB106726_AUS_NT_4129

Paca_ZMB191487_IDN_Su_2885

Psca_ZMB191498_IDN_Su_2891

Tgra_ZMB107396_IDN_Am_6521

Psia_ZMB107721_THA_7334

TrudTwin_ZMB107377_IDN_Pe_6494

Psca_ZMB106679_AUS_NT_1832

Tgra_ZMB190883_IDN_Su_3018

Pbal_ZMB106686_AUS_NT_1827

Sven_ZMB192019_AUS_NT_3799

Sasp_ZMB107586_AUS_QL_7555

Taus_ZMB107290_AUS_NT_4916

Mtub_ZMB107128_JAM_2857

Tcan_ZMB107489_IDN_Pe_6498

Psca_ZMB114990_LAO_7535

Pfus_ZMB191443_NIG_2507

Sven_WAM10048_AUS_WA_7664

Taus_ZMB107579_AUS_QL_7990

0,5

0,97

1

1

1

0,86

1

0,88

1

1

0,99

1

1

0,73

1

1

0,65

0,55

0,63

1

0,97

0,83

0,98

1

0,79

0,77

0,96

0,95

0,57

0,98

1

1

0,96

0,72

Figure 47 Bayesian inference phylogram based on combined 28S and H3 sequences (81 taxa).
Analyses was conducted by using MrBayes (ngen: 5000000; samplefreq: 100; burnin: 35001).
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Figure 48 Maximum Parsimony topology based on concatenated mtDNA estimated by PAUP
4.0. Numbers on branches denote bootstrap values which are only shown when higher than 50%.



151

400.0

Hsp_ZMB113128_COL_2999

Msp_ZMB113598_IDN_7347

Psca_ZMB114990_LAO_7535

Ssp_ZMB107483_IDN_Am_6508

Hsp_ZMB107126_JAM_2849

Fmac_ZMB106379_FIJ_0508

Sden_ZMB107449_IDN_Am_6507

Cbre_ZMB107174_CUB_3493

Mtub_ZMB107125_JAM_2860

Tgra_ZMB190883_IDN_Su_3018

Trud_ZMB191262_IDN_Su_4561

Taus_AMS427964_AUS_WA_3076

Tlin_ZMB106518_IDN_Ba_1470

Paca_ZMB191487_IDN_Su_2885

Psia_ZMB107910_THA_7338

Pfus_ZMB191443_NIG_2507

Sden_AMS461354_AUS_NT_6096

Mtub_ZMB107193_MAL_5134

Tama_ZMB107220_AUS_QL_4785

Tcan_ZMB107489_IDN_Pe_6498

Taus_ZMB106706_AUS_QL_1845

Twin_ZMB106554_IDN_Ba_1043

Sden_ZMB106586_AUS_WA_1516

Sven_ZMB106713_AUS_QL_2859

Sven_ZMB192019_AUS_NT_3799

Sden_ZMB107239_AUS_NT_4897

Rque_ZMB107214_AUS_QL_7662

Ecat_ZMB106412_USA_2630

Psca_ZMB107216_AUS_NT_4781

Sasp_ZMB106391_FIJ_VL_1448

Tcan_ZMB191431_IDN_Ob_2817

Tmir_ZMB191429_IDN_Ob_2883

Tgra_ZMB191458_IDN_Su_2866

Ppet_ZMB107881_THA_7336

Msp_ZMB190964_IDN_Su_2937

Psia_ZMB107726_THA_7196

Trud_ZMB106704_AUS_NT_2811

Sasp_ZMB191208_IDN_Su_2223
Bgla_ZMB191147_IDN_Su_1806

Taus_ZMB106698_AUS_NT_1836

Sven_WAM10048_AUS_WA_7664

Taus_ZMB107290_AUS_NT_4916

Psia_ZMB107721_THA_7334

Tgra_ZMB191454_IDN_Ha_6523

Psca_ZMB191498_IDN_Su_2891

Tama_ZMB191489_IDN_Ob_2886

Mtub_ZMB107129_JAM_2855

Sasp_ZMB191212_IDN_Ba_2176

Neoradina_ZMB107867_THA_7528

TrudTwin_ZMB107377_IDN_Pe_6494

Pbal_ZMB106583_AUS_WA_1512

Ssp_ZMB107457_IDN_Se_6539

Bgla_ZMB107366_IDN_Su_6493

Tgra_ZMB127609_IDN_Ti_8180

Msp_ZMB107717_IDN_7346

Cebu_ZMB106323_USA_FL_1946

Sasp_ZMB191210_IDN_Su_2175

Tmir_ZMB191270_IDN_Su_2881

TrudTaus_ZMB107280_AUS_QL_4867

Mtub_SUT0210030_THA_8051

Pbal_ZMB106728_AUS_WA_2815

Trud_ZMB191279_IDN_Ba_4559

Mtub_ZMB106726_AUS_NT_4129

Psca_ZMB106679_AUS_NT_1832

Tama_ZMB106354_AUS_QL_2870

Monc_ZMB106636_AUS_NT_1781

Taus_ZMB107579_AUS_QL_7990

Sriq_ZMB107883_THA_7354

Taus_ZMB106709_AUS_NT_1866

Psca_ZMB106425_IDN_Ja_1096

Tgra_ZMB107533_IDN_Fl_6917

Psca_ZMB107392_IDN_Am_6511

Pbal_ZMB106686_AUS_NT_1827

Tlin_ZMB200325_IND_1469

Mtub_ZMB107128_JAM_2857
Mtub_ZMB200313_IND_2820

Sasp_ZMB107586_AUS_QL_7555

Sriq_ZMB191388_IDN_Su_3052

Trud_ZMB106472_IDN_Ba_1001

Tgra_ZMB107396_IDN_Am_6521

Taus_ZMB107286_AUS_NT_4878

Figure 49 Majority rule (extended) consensus tree based on combined 28S and H3 sequences
and obtained by using PAUP 4.0.
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Figure 50 Bayesian inference based on combined mtDNA dataset (COI and 16S rRNA).
Analyses was conducted by using MrBayes (ngen: 5000000; samplefreq: 100; burnin: 35001).
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Figure 51 Bayesian inference phylogram based on the concatenated data including 79 taxa
(combined mitochondrial and nuclear DNA). Analyses was conducted by using MrBayes (ngen:
5000000; samplefreq: 100; burnin: 35001).
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Figure 52 BEAST chronogram based on 28S sequences. First approach with only one cali-
bration point: A normally distributed calibration prior with mean 42.9 and standard deviation
2.5 (95% range: 38.8-47.8 ma) was set for the node age of the Potamididae. Numbers at nodes
represent divergence dates. Blue bars represent 95% highest posterior density intervals. Scale
is given in millions of years before present.
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Figure 56 Phylogenetic inference reconstructed by maximum parsimony using the heuristic
search algorithm as implemented in PAUP* (Swofford, 2002) based on 16S sequences of the
hDNA dataset (compare with fig. 39). Numbers on nodes indicate bootstrap support of the
shown topology. For abbreviations in taxa names see appendix. Four and five-digit numbers
represent extraction numbers, numbers with prefix letter code museum numbers.
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Table 26 Mastermix and reaction volume for restriction and ligation

reagent volume for 1 reaction

ddH2O 3.8 μl

T4 DNA ligase buffer (10x) 1.1 μl

BSA diluted (1mg/ml) 0.55 μl

NaCl (1M) 0.55 μl

MseI adaptor pair kit (50pm/μl ) 1.0 μl

EcoRI adaptor pair kit (5pm/μl ) 1.0 μl

MseI enzyme (NEB R0525S, 1U) 0.1 μl

EcoRI enzyme (NEB R0101T, 5U) 0.05 μl

T4 DNA ligase (NEB M0202S) 0.1 μl

sum 8.25 μl

DNA (50ng/μl) 2.75 μl

reaction volume 11.0 μl

Table 27 Mastermix and reaction volume for preselective amplification

reagent volume for 1 reaction

ddH2O 8.85 μl

dNTP (1:4) 2.0 μl

10xPCR buffer 2.0 μl

MgCl2 (25mmol) 2.0 μl

preselective primer pair 1.0 μl

Taq polymerase 0.15 μl

sum 16.0 μl

R/L product 4.0 μl

reaction volume 20.0 μl

94 °C92 °C

56 °C

72 °C

60 °C

20 cycles

4 °C
endless

2 min 20 sec

30 sec

2 min

30 min

Figure 58 PCR profile for preselective amplification in AFLP analysis
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Table 28 Mastermix and reaction volume for selective amplification

reagent volume for 1 reaction

ddH2O 9.85 μl

dNTPs (1:4) 2.00 μl

10xPCR buffer 2.00 μl

MgCl2 (25mmol) 2.00 μl

MseI selective primer (5μM) 1.0 μl

EcoRI selective primer with dye (1μM) 1.0 μl

Taq polymerase (5U/ μl) 0.15 μl

sum 18 μl

PA product 4 μl

reaction volume 22.0 μl

94 °C 92 °C 92 °C

66 - 56 °C *

72 °C

56 °C

72 °C

60 °C

10 cycles 19 cycles

2 min

2 min

20 sec

30 sec

30 sec

20 sec

2 min

30 min

Figure 59 PCR profile for selective amplification; * Reduction in 1 ◦C steps
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Table 29 AMARE output giving an overview of character matrices and quality estimates.
Bin and Replicate reliability values are given in percentages. Selected character matrices are
indicated in bold.

Bin reliability Replicate reliability n◦of taxa n◦of markers n◦of characters Error rate

70.0 0.0 - 80.0 51 678 34578 0.06111

70.0 90.0 36 542 19512 0.06160

71.0 0.0 - 80.0 51 680 34680 0.06038

71.0 90.0 36 547 19692 0.06150

72.0 0.0 - 80.0 51 680 34680 0.06038

72.0 90.0 36 547 19692 0.06150

73.0 0.0 - 80.0 51 682 34782 0.05969

73.0 90.0 36 552 19872 0.06089

74.0 0.0 - 80.0 51 682 34782 0.05969

74.0 90.0 36 552 19872 0.06089

75.0 0.0 - 80.0 51 690 35190 0.05925

75.0 90.0 36 546 19656 0.05881

76.0 0.0 - 80.0 51 690 35190 0.05925

76.0 90.0 36 550 19800 0.05778

77.0 0.0 - 80.0 51 695 35445 0.05829

77.0 90.0 36 550 19800 0.05778

78.0 0.0 - 80.0 51 695 35445 0.05829

78.0 90.0 36 535 19260 0.05317

79.0 0.0 - 80.0 51 695 35445 0.05623

79.0 90.0 37 547 20239 0.05445

80.0 0.0 - 80.0 51 695 35445 0.05623

80.0 90.0 37 547 20239 0.05445

81.0 0.0 - 80.0 51 703 35853 0.05458

81.0 90.0 37 547 20239 0.05405

82.0 0.0 - 80.0 51 703 35853 0.05458

82.0 90.0 37 551 20387 0.05145

83.0 0.0 - 80.0 51 704 35904 0.05239

83.0 90.0 37 551 20387 0.05145

84.0 0.0 - 70.0 51 704 35904 0.05239

84.0 80.0 51 704 35904 0.05239

84.0 90.0 37 547 20239 0.04674

85.0 0.0 - 80.0 51 702 35802 0.05019

85.0 90.0 37 547 20239 0.04674

86.0 0.0 - 80.0 51 702 35802 0.05019

86.0 90.0 37 547 20239 0.04674
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Bin reliability Replicate reliability n◦of taxa n◦of markers n◦of characters Error rate

87.0 0.0 - 80.0 51 701 35751 0.04671

87.0 90.0 37 538 19906 0.04165

88.0 0.0 - 80.0 51 701 35751 0.04671

88.0 90.0 37 538 19906 0.04165

89.0 0.0 - 80.0 51 682 34782 0.04244

89.0 90.0 37 538 19906 0.04165

90.0 0.0 - 80.0 51 682 34782 0.04244

90.0 90.0 37 494 18278 0.03201

91.0 0.0 - 80.0 51 623 31773 0.03534

91.0 90.0 37 494 18278 0.03201

92.0 0.0 - 80.0 51 623 31773 0.03534

92.0 90.0 37 441 16317 0.02445

93.0 0.0 - 80.0 51 552 28152 0.02817

93.0 90.0 37 441 16317 0.02445

94.0 0.0 - 80.0 51 552 28152 0.02817

94.0 90.0 37 441 16317 0.02445

95.0 0.0 - 80.0 51 444 22644 0.01974

95.0 90.0 37 335 12395 0.01331
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Table 30 AFLP samples. R: Replicate; *sample was included three times. **sample was
included twice but did not work as a replicate in AMARE. For other abbreviations see appendix.

Taxa Museum-Id Locality Lab-Id

Balanocochlis glans ZMB107292 VAN Santo 5806

Balanocochlis glans ZMB107493 IDN Ambon 6506

Hemisinus spec. ZMB107126 JAM Middlesex R2849

Melanoides jugicostris ZMB127446 THA Erawan Waterfall 9228

Melanoides jugicostris ZMB127447 THA Klong Palian River 9229

Melanoides jugicostris ZMB191499 IDN Java R2892

Melanoides spec. ZMB190964 IDN Central Sulawesi R2937

Melanoides tuberculata AMS461372 AUS NT: Arnhem Land R6107

Melanoides tuberculata ZMB107125 JAM Cornwall 2860

Melanoides tuberculata ZMB107128 JAM Rio Negro R2857

Melanoides tuberculata ZMB107129 JAM Cornwall R2855

Melanoides tuberculata ZMB107180 MAL Lake Malawi 7632

Melanoides tuberculata ZMB107193 MAL Lake Malawi 7623

Melanoides tuberculata ZMB107194 MAL Lake Malawi R7630

Melanoides tuberculata ZMB107535 FU Mt. Puke valley R6918

Melanoides tuberculata ZMB107536 WAL Lac Kikila R6919

Melanoides tuberculata ZMB107538 FU Tarodière Nuku R6920

Melanoides tuberculata ZMB107875 THA Wiphawadi Waterfall 7858

Melanoides tuberculata ZMB127078 MAD Befandriana R7876

Melanoides tuberculata ZMB127442 THA Khao Thong R9224

Melanoides tuberculata ZMB127443 THA Khao Thong 9225

Melanoides tuberculata ZMB127511 AUS WA: Lake Ord R10421*

Melanoides tuberculata ZMB127613 AUS NT: Bitter Springs R8187

Melanoides tuberculata ZMB200313 IND Tamil Nadu R2820

Melasma onca ZMB127749 AUS NT: Daly River 9322

Melasma onca ZMB127756 AUS NT: Salt Creek 9331

Neoradina spec. ZMB107867 THA West of Krabi 7528**

Paludomus petrosus ZMB107881 THA Pranburi River R7336

Paludomus siamensis ZMB107721 THA Sai Yok Yai NP R7334

Paludomus siamensis ZMB107909 THA Ban Pa Koh R7337

Plotiopsis balonnensis ZMB106582 AUS WA: Greenough River R1517*

Plotiopsis balonnensis ZMB106583 AUS WA: Murchinson River R1512

Plotiopsis balonnensis ZMB106583b AUS WA: Murchinson River R1515

Plotiopsis balonnensis ZMB106658 AUS WA: Walyunga Pool 1809

Plotiopsis balonnensis ZMB106687 AUS NT: Finke River R1826

Plotiopsis balonnensis ZMB106688 AUS NT: Finke River R1825

Plotiopsis balonnensis ZMB107583 AUS QL: Barron River R7991

Plotiopsis balonnensis ZMB107603 AUS QL: Salt Water Creek R8004

Plotiopsis balonnensis ZMB107611 AUS QL: Porcupine Creek 8006

Plotiopsis balonnensis ZMB107946 AUS QL: Brisbane River 8025

Plotiopsis balonnensis ZMB107946 AUS QL: Brisbane River 8027

Plotiopsis balonnensis ZMB107946 AUS QL: Brisbane River 8026

Plotiopsis balonnensis ZMB107948 AUS QL: South Maroochy River 8039

Plotiopsis balonnensis ZMB107948 AUS QL: South Maroochy River 7522

Plotiopsis balonnensis ZMB107951 AUS QL: Euri Creek 9333

Plotiopsis balonnensis ZMB107951 AUS QL: Euri Creek 9334

Plotiopsis balonnensis ZMB107951 AUS QL: Euri Creek 7524

Plotiopsis balonnensis ZMB107956 AUS QL: Broken River 7527

Plotiopsis balonnensis ZMB127507 AUS WA: De Grey River 10415

Plotiopsis balonnensis ZMB127507 AUS WA: De Grey River 10416

Plotiopsis balonnensis ZMB127509 AUS WA: Millstream Creek 10417

Plotiopsis balonnensis ZMB127509 AUS WA: Millstream Creek 10418

Pseudoplotia cf. acanthica ZMB191487 IDN Cenral Sulawesi 2885

Pseudoplotia scabra ZMB107216 AUS NT: Daly River 4781
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Taxa Museum-Id Locality Lab-Id

Pseudoplotia scabra ZMB107392 IDN Ambon R6511

Pseudoplotia scabra ZMB127775 AUS QL: Gregory River 9324

Pseudoplotia scabra ZMB191264 IDN Sulawesi 2199

Ripalania queenslandica ZMB107214 AUS QL: North Johnston River R7663*

Ripalania queenslandica ZMB107595 AUS QL: Daintree River R7556*

Sermyla riquetii ZMB106474 IDN South Bali 1027

Sermyla riquetii ZMB191388 IDN South Sulawesi R2181

Sermyla venustula ZMB106713 AUS QL: Norman River R2859

Sermyla venustula ZMB127650 AUS NT: Elsey Creek R8429

Sermyla venustula ZMB127654 AUS NT: Towns River 8447

Sermyla venustula ZMB127660 AUS NT: Howard Springs R8698

Stenomelania aspirans ZMB107211 AUS QL: Granite Creek 4776

Stenomelania aspirans ZMB191212 IDN South Bali R2176

“Stenomelania” denisoniensis ZMB106586 AUS WA: Ellendale Pool R1516

“Stenomelania” denisoniensis ZMB107449 IDN Ambon 6507

“Stenomelania” denisoniensis ZMB107584 AUS QL: Barron River 7992

“Stenomelania” denisoniensis ZMB127607 IDN Timor 8176

“Stenomelania” denisoniensis ZMB127783 AUS NT: Bitter Springs 9329

“Stenomelania” cf. denisoniensis ZMB127796 AUS NT: Towns River 9328

Stenomelania spec. ZMB107457 IDN Seram 6539

Stenomelania spec. ZMB107460 IDN Obi 6540

Stenomelania spec. ZMB107483 IDN Ambon R6508

Tarebia granifera ZMB107360 IDN Seram 6525

Tarebia granifera ZMB107367 IDN Ambon 6518

Tarebia granifera ZMB107384 IDN Obi 6524

Tarebia granifera ZMB107396 IDN Ambon R6521

Tarebia cf. granifera ZMB127445 THA Erawan Waterfall R9227

Tarebia granifera ZMB127609 IDN Timor 8180

Tarebia granifera ZMB191458 IDN Central Sulawesi 2866

Tarebia lineata ZMB106518 IDN South Bali R1091

Tarebia lineata ZMB106518 IDN South Bali R1526*

Tarebia lineata ZMB191207 IDN South Bali 2856

Thiara amarula ZMB107364 IDN Central Sulawesi R6491

Thiara amarula ZMB107585 AUS QL: Mowbraw River R7993

Thiara amarula ZMB107599 AUS QL: Daintree River 8001

“Thiara” australis ZMB106698 AUS NT: Kathrine River R1836

“Thiara” australis ZMB106706 AUS QL: Gregory River R1845

“Thiara” cf. australis ZMB107277 AUS QL: Gregory River 4860

“Thiara” australis ZMB106709 AUS NT: Blueys Creek R1866

“Thiara” australis ZMB107282 AUS QL: Gilbert River 4870

“Thiara” australis ZMB107286 AUS NT: Little Roper River 4878

“Thiara” australis ZMB107574 AUS QL: O’Shanassy River R7343

“Thiara” australis ZMB107576 AUS QL: Gregory River 9336

“Thiara” australis ZMB107579 AUS QL: Bynoe River 7990

“Thiara” australis ZMB127505 AUS WA: Fitzroy River R10411*

“Thiara” australis ZMB127505 AUS WA: Fitzroy River 10412

“Thiara” australis ZMB127510 AUS WA: Fitzroy River 10413

“Thiara” australis ZMB127510 AUS WA: Fitzroy River 10414

“Thiara” australis ZMB127728 AUS NT: Towns River 9326

“Thiara” australis ZMB127736 AUS NT: Howard Springs 9318

“Thiara” australis ZMB127748 AUS NT: Daly River 9320

Thiara cancellata ZMB107489 IDN Central Sulawesi R6498

Thiara cancellata ZMB191431 IDN Obi 2817

Thiara mirifica ZMB107473 IDN Ambon 6497

Thiara mirifica ZMB191270 IDN Southeast Sulawesi R2881

Thiara rudis ZMB106704 AUS NT: Berry Springs 2811

Thiara rudis ZMB107614 AUS NT: Roper River R7583

Thiara rudis ZMB107617 AUS NT: Roper River R7586



169

Taxa Museum-Id Locality Lab-Id

Thiara rudis ZMB127616 AUS NT: Berry Springs 8198

Thiara rudis ZMB127619 AUS NT: Salt Creek 8201

Thiara rudis ZMB127620 AUS NT: Roper River R8202
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F Abbreviations

% percentage
◦C degree Celsius

μ micro

AFLP amplified fragment lenght polymorphism

AMARE AFLP matrix reduction

AMOVA analysis of molecular variance

AMS Australian Museum, Sydney

ANSP Academy of Natural Sciences, Philadelphia

AUS Australien

Bgla Balanocochlis glans

BMNH The Natural History Museum, London (formerly British Museum Natural History)

bp base pair

BT bootstrap

C Cytosine

ca. circa

Carp Gulf of Carpenteria

CAS California Academy of Sciences, San Francisco

Cbre Cubaedomus brevis

Cbul Cleopatra bulimoides

Cdec Cerithidea decollata

Cdja Cerithideopsilla djadjariensis

Cebu Cerithium eburneum

cf. confer

Cjoh Cleopatra johnstoni

Clar Cerithideopsis largillierti

COI cytochrome c oxidase subunit I

CTAB Cetyltrimethyl ammonium bromide

D data

ddNTP di-deoxy-Nucleotide-Tri-Phosphate

df degree of freedom

DFG Deutsche Forschungsgemeinschaft

DNA Desoxyribo-Nuclein-Acid

dNTP deoxy-Nucleotide-Tri-Phosphate

dsDNA double stranded DNA

Ecat Elimia catenaria

EDTA Ethylenediaminetetraacetic acid

Eesp Esperiana esperi



174 F Abbreviations

Eint Elimia interrupta

et al. et alii (and others)

fig. figure

Fmac Fijidoma maculata

G Guanin

GPS global positioning system

Grey Greyian

GTR general time reversible

Hcub Hemisinus cubanianus

HPLC high performance liquid chromatography

Hsp Hemisinus spec.

i.e. id est (that is)

IBD isolation by distance

Ind Oc Indian Ocean

ITS internal transcribed spacer

IZW Leibniz Institute for Zoo and Wildlife Research

Jard Jardinian

k kilo

km kilometre

Kref Krefftian

L Eyre Lake Eyre

l litre

Leich Leichhardtian

Less Lessonian

ln natural logarithm

M-Dar Murray-Darling

m metre

Ma Mega annum (one million years)

MAFFT Multiple Alignment using Fast Fourier Transform

MCMC Markov Chain Monte Carlo

MCZ Museum of Comparative Zoology, Harvard University

MFL minimum fragment length

MgCl2 magnesium chloride

MHNG Musee d’Histoire Naturelle de Geneve

Mitch Mitchellian

ml millilitre

Monc Melasma onca

Mpra Melanopsis praemorsa

Msp Melanoides spec.
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mt mitochondrial

Mtub Melanoides tuberculata

MUSCLE MUltiple Sequence Comparison by Log- Expectation

MZB Museum Zoologicum Bogoriense

Ne Coast North-East Coast

ngen number of generations

NHMB Naturhistorisches Museum, Basel

no. number

Nsp Neoradina spec.

NSW New South Wales

NT Northern Territory

NTM Northern Territory Museum, Darwin

OUT outgroup

p probability

PA preselective amplification

Paca Pseudoplotia acanthica

Pbal Plotiopsis balonnensis

Pbyr Pachymelania byronensis

PCA principal components analysis

PCR polymerase chain reaction

Pfus Pachymelania fusca

PHT peak height threshold

Ppet Paludomus petrosus

Psca Pseudoplotia scabra

Psia Paludomus siamensis

QLD Queensland

QM Queensland Museum, Brisbane

RAxML randomized axelerated maximum likelihood

rfu relative fluorescence units

RL restriction and ligation

rpm rounds per minute

Rque Ripalania queenslandica

SA South Australia

Sasp Stenomelania aspirans

Sden Stenomelania denisoniensis

Se Coast South-East Coast

sec second

Slib Semisulcospira libertina

SMF Senckenbergmuseum, Frankfurt am Main
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sp. unspecified

Sriq Sermyla riquetii

Ssp Stenomelania spec.

Sturt Sturtian

SUT Silapakorn University Thailand

Sven Sermyla venustula

Sw Coast South-West Coast

tab. table

Tama Thiara amarula

Taus Thiara australis

Taq Thermus aquaticus

Tcan Thiara cancellata

TE buffer Tris-EDTA buffer

Tfus Tympanotonus fuscatus

Tgra Tarebia granifera

Tim S Timor Sea

Tlin Tarebia lineata

Tmir Thiara mirifica

Tpal Terebralia palustris

Tris tris(hydroxymethyl)aminomethane

Trud Thiara rudis

Ttel Telescopium telescopium

Twin Thiara winteri

UPGMA unweighted pair group method with arithmetic mean

USNM National Museum of Natural History, Washington, D.C.

(formely United States National Museum)

UV ultraviolet

V Volt

VK private collection of Vince Kessner, Adelaide River

Vlam Vlaminghian

WA Western Australia

WAM Western Australian Museum, Perth

ZMB Museum für Naturkunde, Berlin (formerly Zoologisches Museum Berlin)

ZMUC Zoologisk Museum University, Copenhagen

Ztri Zemelanopsis trifasciata
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