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Abstract

The thesis develops and examines tools for the analysis of dynamic multi–

equation models (VAR models). First, a general concept for the integration of

statistic procedures into a menu controlled software is developed. The resulting

Java–library consists of configurable graphical user interface components and

functions, which allow communication to the statistic software package Gauss.

This library is the basis for the software JMulTi, a menu-driven program for

analyzing univariate and multivariate time series.

The use of JMulTi for analyzing VAR models is documented next. Unre-

stricted and restricted VAR models for the monetary sector of Germany are

estimated and different bootstrap confidence intervals for impulse responses are

computed and compared. These intervals are subject of a concluding and de-

tailed analysis. It is examined whether the bootstrap methods used in JMulTi

(and further suggestions, e.g. the subsampling) are able to overcome the pos-

sible inconsistency of the standard asymptotic method when computing con-

fidence intervals for impulse responses. A Monte–Carlo–study illustrates the

performance of the examined methods.
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Zusammenfassung

Die Dissertation entwickelt und untersucht Methoden für die Analyse dy-

namischer Mehrgleichungsmodelle (VAR Modelle). Zuerst wird ein allgemeines

Konzept für die Einbindung statistischer Prozeduren in eine menügesteuerte

Software entwickelt. Die resultierende Java–Bibliothek besteht aus konfigu-

rierbaren Oberflächenkomponenten und Funktionen, die die Kommunikation

zum statistischen Softwarepaket Gauss ermöglichen. Diese Bibliothek ist die

Grundlage für die Software JMulTi, einem menügeführten Programm zur Ana-

lyse univariater und multivariater Zeitreihen.

Der Einsatz von JMulTi bei der Analyse von VAR Modellen wird anschlie-

ßend dokumentiert. Dazu werden für den monetären Sektor in Deutschland

unrestringierte und restringierte VAR Modelle geschätzt und unterschiedliche

Bootstrapkonfidenzintervallen für Impulsantworten berechnet und verglichen.

Diese Intervalle sind Gegenstand einer abschließenden und detaillierten Ana-

lyse. Es wird untersucht, ob die in JMulTi verwendeten Bootstrapverfahren

(und weitergehende Vorschläge wie z.B. das Subsampling) in der Lage sind,

die mögliche Inkonsistenz des standardasymptotischen Verfahrens bei der Be-

rechnung von Konfidenzintervallen für Impulsantworten zu überwinden. Eine

Monte–Carlo–Studie illustriert die Leistungsfähigkeit der untersuchten Metho-

den.
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Chapter 1

Introduction

Many economic time series are analyzed with vector autoregressive (VAR)

models. This framework was set up by Sims (1980) and since it had been deeply

explored. There is a considerable set of theoretical results. Some of them are

available in many commercial and non-commercial software packages. This

makes it easy to apply the VAR framework in empirical research. Nevertheless,

there remain open questions.

An econometric problem is related to the inference in the impulse response

analysis. It is known that the first order asymptotic distribution can be de-

generated in some cases (Lütkepohl (1993a, p. 100, Remark 1)). Even if the

asymptotic distribution is well behaved, confidence intervals based on this dis-

tribution can be unreliable (Griffiths and Lütkepohl (1989)). It is therefore

interesting to investigate alternative methods for computing confidence inter-

vals. This is done in Chapter 4. This chapter analyzes the question whether

bootstrap confidence intervals can overcome the known problem.

In addition to that question, some authors (e.g. Runkle (1987)) raised crit-

ics about the size of confidence intervals. They argue that the intervals are so

large that an interpretation of significant results is possible only in a few cases.

An often proposed solution is to include more information in model building.

1



CHAPTER 1. INTRODUCTION 2

Chapter 3 illustrates this approach on a small German money demand model.

The discussion on the inferential procedures in Chapter 4 ends with a clear

recommendation to use a specific methodology in empirical research. In addi-

tion to that, the work on the methods in this chapter produced many software

algorithms that can be used in empirical research right away. This lead to

the question in which way the software can be provided to empirical research.

Since this is a question of general interest some effort was made to find an

applicable answer.

Empirical research can most conveniently apply econometric methods in

software with a graphical user interface (GUI). A GUI frees the analyst from

knowing the software that was used to program the numerical implementation.

Many well known software packages for the VAR analysis have a GUI. However,

they might limit the ability to apply new methods. It is not clear whether

and when these programs adopt new results of methodological research. On

the other side econometric method research produces many excellent software

algorithms that lack, however, a GUI.

A possible solution would be to provide a GUI in addition to the numerical

implementation of the statistical methods. This GUI queries input arguments

from the user and displays the results in a convenient manner. However, there

does not exist a closed framework for connecting statistical procedures with

GUIs. Such a framework can ease the development of GUIs since they do have

special needs like input of data, display of results, matrix editing etc.

Chapter 2 proposes a framework for creating GUIs of statistical procedures.

The key idea of this framework is to connect a graphical front end with statis-

tical procedures. Reusable software components reflecting the special needs of

“statistical” GUIs are developed. They are assigned to standard tasks which

are exactly identified.

Statistical methods represented by GUIs can be connected in a menu-driven
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manner. This allows to use the results of method calls in an early stage of the

analysis as input arguments for method calls later. It has turned out that

complex programs, for example JMulTi, can be created with this approach.

These programs are easy to maintain and to extend because of their component

oriented design. The development of the software JMulTi was started by the

author in order to make bootstrap inference in the impulse response analysis

easily available to the VAR–modeller. The underlying VAR model is quite

general. In addition to the autoregressive part, it includes an arbitrary number

of deterministic variables and exogenous variables, the latter optionally with

a lag structure. Subset models can be specified, either manually or by using a

search algorithm. The analysis of cointegrated systems is also possible.

Chapter 3 discusses the general outline of JMulTi and documents parts of

the VAR analysis. More methods and model classes were added in the past

to JMulTi, for example, tools for the nonparametric time series analysis. The

econometrics of today’s JMulTi is the work of many people. Although the

program has been developed in the spirit of MulTi1.0 (Haase et al. (1992)),

the differences are so great, that it is not a real successor of MulTi1.0.



Chapter 2

A graphical user interface for

statistical procedures

Statistical software packages are important when carrying out statistical anal-

yses. In economics, empirical research relies on statistical software with the

most common econometric methods in use. But also econometric method re-

search utilizes these programs. Usually an econometric method is theoretically

developed or adopted first. If the method is promising a numerical implemen-

tation is needed which is of course not available for new methods. This im-

plementation is efficiently done with some specialized statistical software. It

is then used in empirical or method research (e.g. to investigate small sample

properties of inferential procedures).

Econometric software packages are either menu driven (e.g. PcFiml (Doornik

and Hendry (1997))), command driven (e.g. Gauss1), or a mixture of both

(e.g. EViews2). This design determines how user and software can interact:

Either by selecting command choices from various menus displayed on the

computer screen or by typing the commands directly into a textual input area.

1http://www.aptech.com
2http://www.eviews.com

4

http://www.aptech.com
http://www.eviews.com
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As Yamamoto et al. (2001) pointed out the menu structure and the menus

themself apparently decide to a great extend about the usefulness of the statis-

tical software although the total value is affected by many other factors. Menu

structures suffer the drawback that they are in general not extendible. The

menus can be seen as a closed system. On the other hand command driven

software is easily extendible but lacks in general a sufficient user guidance.

However, there are already approaches in order to overcome this last draw-

back. For instance, XploRe3 and Ox4 provide commands that make statistical

procedures interactive.

This chapter develops an approach for creating a graphical user interface

(GUI) for an existing command driven (statistical) software. A GUI is a graph-

ical (rather than purely textual) program interface that takes advantage of the

computer’s graphics capabilities to make the program easier to use. Well-

designed graphical user interfaces can free the user from learning complex

command languages. An intermediate step in the development of user inter-

faces between the command line interface and the GUI was the non-graphical

menu-based interface, which allows interaction by using a mouse or function

keys rather than by having to type in keyboard commands. For instance,

MulTi 1.0 Haase et al. (1992), Lütkepohl (1993b) is based on such a non-

graphical menu-based interface. Now GUIs have matured and become the

norm. In most situations they are now firmly established as the preferred user

interface for end users in most situations when doing the statistical analysis in

empirical research.

The general principle of the presented approach is to collect and generate all

input data by the GUI application, and let the user select statistical analysis

tools which are translated into procedure or function calls to the statistical

command driven software by the GUI program. The GUI application also

3http://www.xplore-stat.de
4http://www.oxmetrics.net

http://www.xplore-stat.de
http://www.oxmetrics.net
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receives the results and can display them in any way wanted by the user. This

means that the analyst does not need to know how to use the underlying

statistical software package, nor how to apply procedures correctly provided

by other people. This is certainly an advantage when dealing with purely

command driven software. Menu driven programs can be used right away and

make it unnecessary to learn the special command syntax or to study procedure

documentation in detail.

The concept strictly separates GUI application (user guidance) and statis-

tical computation. This allows to provide numerical implementations of statis-

tical methods independently of user guidance. Another approach is to mix user

guidance and statistical computation. This is for instance currently provided

by XploRe and Ox. However, in terms of applicability and re-usability of the

statistical procedure the idea of strict separation is better. This approach was

used before by, for instance, Liu et al. (1995).

Special emphasis is put on the idea to have a technique easily to apply but

still flexible for creating a graphical front-end or GUI for statistical procedures.

It is assumed that the GUI is created after having implemented a statistical

method numerically. This means that a second programming process must be

started when the (statistical) programming is done. This chapter also discusses

strategies how this second programming can be achieved with low effort. This

approach does not primarily deal with the question how the GUI application

interacts with the statistical software, i.e. whether a stand-alone or network

solution is used. This work provides a stand-alone solution (i.e. the GUI and

statistical programs run on the same computer), see Subsection 2.2.4 but it

can also be extended to a network solution.

The first section in this chapter will discuss the choice of programming lan-

guage. Analysis, design, and implementation of the task “Creating a GUI for

statistical procedures” are carried out in the second section. Building complex
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applications is treated in the third section. Special emphasis is put on the

question of how to model the program flow or program logic. The forth sec-

tion deals with efficient GUI-programming. Finally a simple real life example

is discussed in the last section with detailed treatment of visual programming.

2.1 Preliminary considerations

Graphical User Interface

Statistical

Software

Package A

Statistical

Software

Package B . . .

Native

methods

Input

Statistical

Computing:

User

Interface:

IPC IPCCommunication: . . .

IPC:=Interprocess Communication

Results
User

Interaction:

Figure 2.1: Software architecture of the concept

The architecture of the concept is shown in Figure 2.1. The user interacts

with the graphical user interface which in turn communicates with a statistical

software package via some so called interprocess communication (IPC). IPC

is the exchange of data between two or more processes or applications. This

exchange takes place solely through software, without any human intervention.

As it can be seen in the figure the approach can utilize more than one statisti-

cal software package. Furthermore, statistical computing can also be executed

by means of so called native methods (lower right box in Figure 2.1). A native
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method (e.g. C-code) is program code that after compilation, runs under a spe-

cific operation system. One could think of having a numerical implementation

of an estimator in Gauss and in C. The advantage of native code is primarily

performance. For instance, people frequently write dynamic linked libraries

(DLLs) for Gauss to speed up computation (Cribari-Neto (1999)). Further-

more the communication level is not needed (see Figure 2.1). This chapter

deals primarily with the question of how to model the two layers between the

bold dashed lines in Figure 2.1, the user interface and communication layers.

2.1.1 Choice of programming language

The choice of the programming language (and thus indirectly the program-

ming technique) is determined by the task to solve. As pointed out, a GUI-

application is needed that uses statistical software packages for doing statistical

computation. A convenient way to solve this task is to use the object oriented

programming approach and visual programming (see Section 2.5).

Object oriented programming is a programming technique in which pro-

grammers define types of operations (functions or procedures) that can be

applied to different types of data (data structures or objects). In this way,

the data structure becomes an object that includes both data and functions.

In addition, programmers can create relationships between one object and

another.

One of the principal advantages of object-oriented programming techniques

over procedural programming techniques is that they enable programmers to

create modules independently of other modules. They do not need to be

changed when a new type of object is added.

An object-oriented design can be kept simple and is easy to understand.

Once designed, individual objects can be implemented and tested separately.

Once finished, each object tends to be robust and bug free. As changes to
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the system are made, existing objects continue to work. And as existing ob-

jects get improved, their interface to the outside world stays the same, so the

whole system continues to work. It is this ease of change and robustness that

really makes object oriented development different, and well worth the effort

Wampler (2001).

To perform object-oriented programming an object-oriented programming

language (e.g. Java, C++ or Smalltalk) is needed. The language Java was

chosen since it is viewed as being superior in terms of some characteristics

that are discussed below. But before some technical terms are explained.

Technical terms

Some of the frequently used terms which are related to object orientation and

Java are explained here. A comprehensive treatment can be found in any

introductory book on Java or in some of the Java online tutorials available on

the world wide web. Some definitions are taken from Sun (2001).

An application is a program that can be executed directly from the operating

system.

An applet is a program designed to be executed from within another applica-

tion. Applets cannot be executed directly from the operating system. Web

browsers, which are often equipped with Java plug-ins, can interpret applets

from web servers.

A class is a template for creating objects. A class is a blueprint, or prototype,

that defines the variables and the methods common to all objects of a certain

kind. The process of creating objects is sometimes referred as to creating an

instance of a class.

An object is an instance of a class. An object shares the behavior of all objects

of the same class (defined by its methods), but each object can have a different

state (represented by their variables).
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An interface is a contract in the form of a collection of method and constant

declarations. When a class implements an interface, it promises to implement

all of the methods declared in that interface.

A JavaBean (or short bean) is a class that can be visually composed into com-

posite beans, applets, and applications using visual application builder tools

(see Section 2.5).

Run-time is the time at which a program executes. This is contrasted with the

design-time, the time during which program code is written.

Advantages of Java

The most important advantages in terms of solving the programming task are

discussed next. For a more detailed treatment of specific Java features see, for

instance, Gosling and McGilton (2002).

Java is easy to apply since it has relatively few commands. Although Java

has pointers (called references), it enjoys high pointer safety by automatic

dereferencing, and lacking pointer arithmetic. Typical pointer errors as in

C++ are not possible. Furthermore, Java has an automatic garbage collec-

tion. This means that the programmer does not need to deal with error prone

memory management (memory leaks).

Java is platform independent. The Java compiler does not generate ma-

chine code but platform independent byte code. This byte code can run on

every machine where a Java interpreter (= Java Virtual Machine, short: JVM)

is installed. The JVM translates the byte code in the machine dependent code.

In order to run a Java program on different operating systems it is not neces-

sary to recompile the code or rewrite parts of the code.

Another important feature of Java is multi threading. Multi threading is

the perceived or actual ability of a software to do more than one task at the

same time. This is a prerequisite for executing code that starts some method
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call (e.g. in Gauss) and waits for the method to finish without blocking other

parts of the application.

Many people work with and on Java. Therefore, it gets permanently im-

proved. There exists a large body of literature (e.g. Eckstein et al. (1998),

Schader and Schmidt-Thieme (1996)), and a large number of detailed and free

tutorials and learning guides in the world wide web (e.g. Sun (2001), Gosling

and McGilton (2002))). There are many already tested and ready to use Java

libraries. The broad information base and the many programmed solutions re-

duce the work of the programmer considerably. It is also worth noting that the

Java compiler can be used without paying fees. Furthermore, Sun grants any-

one the right to redistribute the Java runtime environment. Any self written

Java application can be combined and shipped with a copy of the Java inter-

preter and finally represents a self-contained program running on any major

computer platform.

Disadvantages of Java

Following the discussion of Java’s disadvantages in internet news groups (e.g.

comp.lang.java.*) or in publications the most often mentioned disadvantages

of Java are speed and the difficulties to change from another programming

language to Java (or to learn Java).

First, Java is said to be slow. This statement is imprecise because different

Java interpreters (or JVMs) provide different performance. But before ana-

lyzing speed available, speed needed is discussed. The main task of the JVM

is to create GUIs, managing them, collect input data, generate computational

requests, wait for and display results. Most of the time the JVM responds to

user interactions. This might include to change the GUI (e.g. redraw parts or

the entire application window), prepare data for statistical computation, or ask

some other software to execute the statistical computation. The JVM is not
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used for performing extensive statistical computations. Here, Java is assigned

to a task that does not need outstanding performance. In trade for the lost

speed (compared to C, C++) important features are gained: Increased ease of

porting, increased speed of getting code up and running.

As mentioned before, speed of Java applications depend on the JVM used.

The concept outlined in this Chapter is based on the idea that it can run

with any JVM starting at release 1.2. The recommendation is, however, to

use the most recent release of the Java interpreter because of JVM speed and

bug fixes. In order to illustrate the performance differences a small experiment

was conducted: The time needed to perform two simple matrix operations is

reported in Table 2.1. The first operation is simply to copy a (100 × 100)

matrix. The second task is to compare two (100× 100) matrices. This is done

for the worst case, i.e. the compared matrices contain the same information

which forces the algorithm to compare 104 matrix elements. In Gauss syntax

this is

A=rndn(100,100);
A=B; @ first operation @
call A==B; @ second operation @

The operations were translated in Java code. A deep copy of two dimen-

sional arrays is performed here. Execution time was measured for performing

both operations 1,000 times using different software:

The time Gauss needs to perform the tasks is also reported and can be

seen as a benchmark since Gauss is a matrix oriented statistical software

package. It is optimized for matrix operations. Of course, the speed of C-code

is theoretically even faster. The table shows a significant gain in performance

when using Java 1.3.1 instead of Java 1.2.2.

A widely accepted solution to performance problems is code optimization.

It requires to evaluate and improve the time critical code segments. However,

for the two tasks in Table 2.1 better Java code can hardly be obtained, for

reasons see Budimlic et al. (1999). It is widely accepted that the performance
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Table 2.1: Performance of different JVMs and Gauss. The numbers reported

are the execution time in seconds for performing the respective task 1,000

times. Computation was done under Windows NT 4.0 with a Pentium

200MMX and 128MB RAM.

Software Copying Comparing

matrices matrices

Gauss 3.2.29 1.5 1.6

Java 1.3.1 2.2 5.2

Java 1.2.2 3.7 6.4

of the current Java technology is not sufficient for scientific computation. But

performance is sufficient for GUI applications (e.g. run JMulTi) because they

are less computer intensive.

The second disadvantage is the use of another programming language (in

this case: Java). However, using advanced programming tools and techniques

helps to overcome this disadvantage. Section 2.5 discusses so called integrated

development environments and visual programming. These tools make the task

of writing the (Java-) GUI application manageable for people having some

general programming experience but lack the specific experience with Java.

They were also used to create the software JMulTi introduced in Chapter 3.

Spin-offs of using Java

It may be worth noting that Java has a number of intrinsic advantages that

have not been discussed yet but are nevertheless worth mentioning. The fol-

lowing features are consequences of using Java and can be used by a Java

programmer or can be provided by programming tools with almost none or
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Figure 2.2: Example showing the same application in desktop mode (left) and

presentation mode (right).

little effort. Notable points are:

• Pluggable “look and feel”.

This means that different visual modes of the GUI are possible. One

can make the GUI look like a Windows, a Macintosh, a Motif5, or a

Java application. It is also possible to switch between a contrast rich,

oversized presentation mode used in lectures and an accustomed colored,

normal sized desktop mode used in everyday work on the PC. Figure 2.2

shows two screen shots demonstrating these two modes. Note that in

both cases the application windows have the same geometrical size.

• Running as an applet in an internet browser.

With respect to the security constraints, any Java application is ready to

run as an applet. For example, Figure 2.3 shows the same program run-

ning as an applet in a browser window and as a stand-alone application.

The communication between the applet and the statistical software (the

IPC) must take into account this usage, e.g. by modeling a network com-

munication which is of course slower than the IPC introduced in Section

2.2.4.

5Motif is a set of user interface guidelines created by the Open Software Foundation

(http://www.opengroup.org) that specify how an application should look and feel (or

react on user interaction). It is used on more than 200 hardware and software platforms

and has become the standard GUI for UNIX.

http://www.opengroup.org
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Figure 2.3: Example program running as an applet in a web browser (left) and

as a stand alone application (right).

• Easy extensibility with predefined Java libraries.

See Sun (2002) for a list of all currently available Java products and

libraries. For example, a context sensitive help system can be realized

with the JavaHelp framework. Heiss (1999) explains how help tools are

developed and integrated in applications. A context sensitive help can

provide information on program handling (e.g. How to select variables

jointly?) and can explain statistical methods used (e.g. What is an AIC

criterion?).

2.1.2 Choice of statistical software package

A statistical software package is a software that facilitates efficient coding and

computing of statistical or econometric methods. This is achieved by a set of

common algebraic and statistical functions and by matrix orientation.

Gauss was chosen as the statistical computing software because of the

authors experience with this software, its speed and reliability. This choice also

allows to make use of the graphic capabilities of Gauss. Therefore, graphical

output is not treated here since it is provided by the statistical software.

The design of the software architecture (Figure 2.1) allows to connect the
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GUI application with any statistical software package if some kind of IPC

between the two programs running can be established. Gauss has no built in

communication capabilities, therefore they must be created (see Section 2.2.4

for a communication model).

An interesting feature is offered by some other statistical programs: Code

written in the specific package language can be converted into C-code. For in-

stance Maple, Matlab, and Mathematica provide this functionality. Compiling

the C-code to a dynamic linked library (DLL) for Windows or shared object

for UNIX allows to generate so called native methods. As seen in Figure 2.1

the native methods can be called directly by the GUI application without the

communication layer and without the statistical program. This is certainly

an advantage but also has the drawback of reduced functionality in terms of

debugging.

2.2 Concept specification

This section describes the software concept in detail. In the beginning the

matter of this chapter “Creating a GUI for statistical procedures” is developed

theoretically. A model for controlling a command line statistical software pack-

age is needed as well as a general model for statistical analysis. Then both

models are decomposed into well sized subtasks. The subtasks must be sized

in such a way that an efficient implementation in Java is possible. Finally it

is shown how Gauss can be used as a statistical engine. In the next section a

GUI for statistical procedures is created by re-composing and configuring the

new software parts in a meaningful manner.

Since statistical analysis is of interest here there is a need to distinguish pure

statistical data from the remaining program data. Therefore, in the following

the term statistical data is used for all data in the GUI application that are
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input or output data of the statistical procedures.

2.2.1 Two basic models

A model for executing a Gauss procedure from a GUI

The most compelling question is how a GUI application can use Gauss as a

statistical engine. When doing statistical computation in Gauss (in general

in any statistical software package) from a GUI-application three basic steps

can be identified:

1. Enter input arguments in the GUI application. This can be done by

reading in data files, editing parameters, making selections, and/or gen-

erating input data.

2. Select a statistical method which will execute the statistical computation

in Gauss. Any statistical procedure is executed with m input arguments

and returns n results, m, n ≥ 0. Since the input/ output data are sup-

plied/ displayed by the GUI application, this step can be split further

into:

(a) Transfer input arguments to Gauss.

(b) Execute the Gauss procedure(s) of interest.

(c) Transfer results to the GUI application.

3. Display results in the GUI.

The three steps show the need for modeling (a) statistical data, (b) GUI-

components for editing and displaying that data, and of course (c) the need

for modeling the functionality of Gauss, for example to execute a command

line.
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A model for statistical analysis

The rather general definition of a GUI above does not describe the require-

ments of a GUI for statistical analysis. Therefore, a simple model of statistical

analysis is needed.

Statistical analysis usually consists of several steps: Data sets are opened,

visualized, and transformed. Basic statistics are computed and pre-tests con-

ducted. After these preliminary steps models are selected, fitted, and vali-

dated. This process is repeated until a statistical sound model is found which,

eventually, is interpreted with further tools. In order to proceed, the analyst

must make decisions in each analysis step. These decisions are supported by

statistical methods.

In empirical analysis it is often the case that model fits, tests etc. are

applied on alternative data. The sample size is varied, variables are excluded

or included, method parameters are changed. It turns out that the same set

of methods is applied on changing parameterizations. For better comparison

and judgment this is done simultaneously.

This approach leads to the requirement to have templates or masks for the

data analysis. These masks must be linked with known statistical procedures

from the method set. Real life objects are created and filled with statisti-

cal data during the analysis. This guarantees the ability to apply the same

methods on different data and to compare results easily.

2.2.2 Sub tasks derived from basic models

Statistical data:

A model representing Gauss data types Aptech (1996) is needed. This model

must include at least the features name and data. Furthermore, it must provide

methods for reading and writing data and may provide methods for simple data

manipulation.
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Accessibility of statistical data:

This means the ability to reference objects representing statistical data from

any part of the application. The idea is to administer statistical data centrally

and access it simply by its identifying name. With this mechanism statistical

computation can easily use data from and provide data to other parts of the

application. It also is a convenient way to configure visual software components

for editing and displaying statistical data. At design time only the identifying

name of the statistical data must be configured. The ’correct’ data is found

automatically at run time.

Visualizing statistical data:

This is one of the core tasks. The software must be able to show the user the

state of the statistical data (display results) and to allow the user to edit them

(enter inputs). Common display and edit mechanisms use textual input areas.

However, Java’s Swing packages provide a rich set of more elaborate software

components that can be directly linked to statistical data.

Input validation:

The user can make mistakes when editing statistical data. The error can be

a simple typing error or an implausible input (e.g. choosing a negative lag

length). Without validating the data the statistical procedure may simply

return with an error message or, worse, with erroneous results that are viewed

as correct results. A well configured validation mechanism prevents the editor

component to hand over nonsense data to the statistical data model. As a

consequence the statistical analysis does not proceed as long as wrong input

data is being edited. Implausible input is intercepted at the point where it is

made which makes the GUI-application more comfortable to apply.

Access to the software Gauss:

The steps for executing Gauss code from Java must be modeled (e.g. executing

a command line) as well as some communication with Gauss since this is not
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provided by Gauss. Furthermore, an administration (possibly queueing) of

all procedure call requests is necessary. Since the user does not have direct

access to Gauss and cannot control it directly this mechanism prevents that

current statistical computation is interrupted or disturbed by new request to

the statistical engine.

2.2.3 Implementation in Java

This section concentrates on the implementation of the tasks identified in the

previous section. It tries to use as much as possible from predefined Java con-

cepts and libraries. Especially it heavily depends on the Java library Swing6.

Any application written with this concept is a Swing-application.

The resulting Java library contains 54 classes, 6 interfaces, and native meth-

ods (written in C) for the communication with Gauss. The library and the

native methods were successfully tested with Java 1.2 and 1.3 under Windows

95, 98, 2000, and NT4.0. In the following it is called JStatCom (Java graph-

ical user interface for Statistical Computing). A complete documentation is

provided in Appendix B.

Package structure

The library JStatCom is organized in packages. The structure can be seen in

the Table 2.2.

Classes which implement sub tasks

Statistical data:

Statistical data is modeled by the class

gauss.GaussData .

6Swing was the code name of Sun’s project that developed a new set of GUI components.

Although it is an unofficial name, it is frequently used to refer to the new components.



CHAPTER 2. A GRAPHICAL USER INTERFACE . . . 21

Table 2.2: Package structure of the library JStatCom

Package Content

gauss Representation, visualization, and computation of sta-

tistical data; Modeling the software Gauss.

gauss.control Convenience classes for controlling and visualizing all

statistical data available application-wide.

util Collection of utility classes.

util.component Adopted and improved Swing components.

xlm Gauss communication files

A GaussData object is constructed with a symbol name and optionally with

some data. The symbol name is treated case insensitive and cannot be modified

later. GaussData objects can represent different data types. Currently, the

Gauss data types empty, matrix, string, and string array Aptech (1996) are

implemented. The data type character matrix is not implemented. It is also

possible to handle missing values. In a GaussData object they are represented

by the data type matrix with some or all matrix elements set to NaN (Not

a Number). These NaNs are correctly communicated to Gauss and recoded

appropriately.

The GaussData class defines methods for accessing and manipulating the

data. In order to synchronize the read/ write access by different threads, all

data manipulation is done in the so called event dispatching thread7. It was

chosen here for convenience and because this class serves as the data model for

many GUI components which are displayed and updated in that thread. For

7The event dispatching thread should execute all code that might affect or depend on

the state of a GUI component. This rule comes from the synchronization requirements of

any multi threaded application. However, there are exceptions to that.
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Figure 2.4: Component hierarchy and data accessibility

instance, a GaussData object can be used as the data model for a

gauss.GaussDataTable

which is a software component for displaying and editing statistical data.

Any GaussData object can notify interested listeners about its change of

state. The mechanism which notifies of table model events is inherited from

javax.swing.table.AbstractTableModel

in principle. Originally, it notifies registered listeners every time the Table-

Model is edited. That mechanism is improved in such a way that notification

only takes place if the editing actually changed the data content.

A class that self-evidently wants to get informed when the data model

changes is a class that displays statistical data at the GUI. The notification

is needed in order to update its visual appearance. But it is also possible to

use that information to automate program flow. One might think of making

analysis steps or analysis methods not available until a set of specified data

objects (e.g. the input data) meet predefined needs (e.g. contain sensible val-

ues). One could also automate resetting of results if some input data change.

All that can make the software intuitive and safe to use.

Accessibility of statistical data:

In order to access GaussData objects from any point of the Java application
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(a) GaussData objects are identified by a name

(a) GaussData objects are administered by a special object

(b) A search mechanism based on the component hierarchy finds the right

administration object.

For the administration the class

gauss.GaussSymbolTable

was developed. In order to get reference to a GaussData object from this class

the method

GaussSymbolTable.getGaussData(String symbolName)

can be called with the identifying name as an argument. It returns reference to

the GaussData object with the argument name. If a GaussData object with the

specified argument name does not exist it is created. Every closed analysis step

should have at least one (local) GaussSymbolTable object. (Local) GaussData

objects behave in this case similar to local variables: The same identifying

names can be assigned to different local GaussSymbolTables without mixing

up the data.

For implementing convenient data accessibility the so called containment

hierarchy of the visual software components is used. Containment hierarchy

means that each visual Swing component, i.e. each

javax.swing.JComponent

has a parent component and optionally one or more child components. There-

fore, even the simplest Swing program has multiple levels in its containment

hierarchy. It is easy to define a component in this hierarchy that holds a

GaussSymbolTable and thus acts as the root for providing statistical data.

The root can be any JComponent implementing the interface

gauss.GaussSymbolTableRoot.
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When the application is created at run time, all single components are added

to their parents starting at the topmost component. If a reference to a Gauss-

Data object is needed the program code can ’walk up’ the hierarchy until a

GaussSymbolTableRoot is found from which it can reference any GaussData

object. Figure 2.4 illustrates this idea. Finding an appropriate GaussSymbol-

Table is conveniently implemented with the static method

gauss.GaussObjectLinker.

findGaussSymbolTableForComponent().

The accessibility mechanism is implemented in many other classes of JS-

tatCom, e.g. in classes that display statistical data. It allows to configure

components of these classes simply with the identifying name of the statistical

data at design time. At run time the reference to the contextual right data

object is found and maintained automatically. For instance in the bottom line

of Figure 2.4 are two objects created from class A. They display data with the

name y. In the analysis context represented by the left side of the tree the

actual data is y=0, in the analysis context of the right side it is y=5 .

Visualizing statistical data:

Three classes are defined for displaying statistical data (GaussData objects)

in the application window:

Class Displayable Editable

dimension

gauss.GaussDataTable (M, N) yes

gauss.GaussDataTextField (1, 1) yes

gauss.GaussDataLabel 2× (1, 1) no

This list can easily be extended by other input components like check box,

combo box, list, etc. As outlined before, only the name (identifier) of the

statistical data must be specified at design time. The contextual right data

object is referenced and displayed at run time.
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If the dimension of the statistical data exceeds the available space (e.g. dis-

playing a time series with 100 observations) the GaussDataTable should be

used together with a

gauss.GaussDataTableScrollPane.

This specialized scroll pane can be configured to display a minimum and max-

imum number of rows and columns. The actual number of displayed rows

and columns depends on the available space in the application window at run

time. The available space might change dynamically (e.g. resizing the win-

dow). In this case the GaussDataTableScrollPane adopts to the new space

automatically.

The GaussDataLabel can show up to two matrix elements of a Gauss-

Data object by using a C-style sprintf() format string. The elements can be

specified by configuring row and column indices. The GaussDataTextField

displays and edits one element of a GaussData object that is also specified by

a row and column index. Whenever the underlying GaussData object changes

GaussDataTables, GaussDataLabels, and GaussDataTextFields update auto-

matically.

The editable components can be configured with information about the

type and range of valid values. The range is specified with a lower and upper

bound {a, b}, with an interval type ((a, b), (a, b], [a, b), or [a, b]), and with the

input data type (integer, real number, or string). The input validation algo-

rithm is triggered if a component finishes editing. It then uses the configured

information about the legal values.

Input validation:

All inputs are made in a textual input field. The textual input must be trans-

lated into the underlying data model when the input is finished. Two events

signal the end of an input: striking the Return-key and moving the input focus

permanently away from the editing component (e.g. a mouse click on a menu).
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Figure 2.5: Error message triggered by the input validation algorithm. The

error dialog is modal, i.e. the remaining part of the program is blocked while

the dialog is shown.

But before translating and writing the input to the underlying GaussData

object the input validation mechanism starts.

There are at least three different ways text input can be validated: key-

stroke level, focus level, and data model level. They all turned out to be

insufficient. Therefore a modal validation mechanism was developed. It is

implemented in the class

util.component.InputValidatingTextField.

It does not release input focus while the editor contains invalid text input. This

means that the user cannot proceed the analysis as long as wrong input data

are in the text area of the editing component. In order to cancel editing and

to prevent this input field from locking (e.g. when the valid range is empty),

striking the ESC-key restores the old value and unsets the focus from this

component. This class is extended by
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util.component.ModalTextField

which is extended by

gauss.GaussDataTextField.

Figure 2.5 shows an error dialog as an example. It informs the user that the

cointegration rank r has to be 0 ≤ r < 2.

Access to the software Gauss:

The class

gauss.Gauss

holds the connection with a running instance of the software Gauss. It con-

tains methods for starting and terminating this program, for writing and read-

ing data, and for executing command lines, loading libraries and DLLs in

Gauss. Furthermore, a registration and queuing mechanism prevents the Java

application from mixing up different statistical computation requests.

The Gauss object is found by “walking up” the containment hierarchy of

the visual software components. Any JComponent in the hierarchy can contain

a Gauss variable. It is identified by implementing the interface

gauss.GaussEngineRoot.

Any class implementing this interface promises to provide reference to a Gauss

object. It is implemented by the class

gauss.GaussFrame.

Whenever a component in the containment hierarchy wants to execute some

computation in Gauss, it simply walks up the hierarchy until it finds a Gauss-

EngineRoot, and executes the method

gauss.GaussEngineRoot.getGauss().
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2.2.4 Run Gauss as a statistical engine

Communication with Gauss

A key feature of the concept is that only the GUI application interacts with

Gauss (see Figure 2.1). This means that Gauss must be controlled automati-

cally. Such functionality is not provided by Gauss and was therefore developed

here. The communication for the Windows platforms was developed by the

author (for Gauss 3.2) and by Markus Krätzig (for Gauss 3.5 and higher). If

Gauss 3.2 is used as the statistical engine, it runs with a (minimized) visible

application window. Note, that in this case the ability to receive keyboard

input of the Gauss application window is disabled. If Gauss 3.5 or higher is

used it starts in the so called terminal mode. In that case Gauss runs as a

command line application and appears to run in the “background”. The com-

munication model can also be used to connect any other statistical software

package as a statistical engine with the Java application.

In contrast to the platform independent GUIs the communication between

the Java application and the statistical engine is implemented in a platform

dependent way because of performance reasons. The model consists of a set

of external functions for controlling the statistical software. The control is

internally achieved with a signaling mechanism for process synchronization

and a data exchange mechanism. See Appendix C for details. Since it is

assumed that the GUI application and Gauss run on the same computer

(i.e. a stand-alone solution) the data exchange is implemented by using shared

memory. The data exchange with files on the hard disk would be too slow and

inefficient. Shared memory is the fastest data exchange available but cannot

be used for network computing. In that case, another mechanism for data

exchange can be implemented.

The current communication is provided by the software Gauss Control
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(GC). It provides external functions in order to achieve the following tasks

with Gauss:

1. Start program,

2. Write data from another application to Gauss,

3. Read data from Gauss by another application,

4. Run command lines,

5. Run program files,

6. Test for errors,

7. Stop current program execution,

8. Quit program.

The external functions are documented in Appendix C. All functions are

synchronized, i.e. they are blocked as long as the tasks 2 to 7 on the Gauss

side are executing. In this software model Gauss cannot write data actively

to the Java application. Even when returning results, Gauss is asked to

return the content of a certain variable. This is advantageous when calling

procedures with many return values from which only a few are needed in the

GUI application. However, actively communicating data from Gauss can also

be useful, for instance to indicate computational progress. This could be an

interesting feature for future development.

The communication library is self-contained and can also be used by other

programs in order to use Gauss as a statistical engine. Here it is part of

JStatCom. Six native methods defined in the class Gauss use the external

functions of GC.

Since the communication library is written in C it is not platform indepen-

dent (in contrast to the remaining Java library) and must be re-implemented
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Figure 2.6: Graphics output of Gauss is used. The picture shows a graphics

window generated by Gauss 3.2 on top of the GUI application.

for other operating systems or other communication models like network com-

munication. A re-implementation does not affect the remaining Java library

nor any Java application based on this library. The effort of creating and test-

ing a GUI application is not wasted. It still can be used on other operating

systems or in web browsers. This is an important advantage of Java (“write

once, run anywhere”).

Graphics output

Clear and expressive graphics are an important part of any statistical software.

It has turned out that the graphic capabilities of Gauss can be used. Figure 2.6

shows a Gauss graphic on top of the application window. When a procedure

generates some graphic output it is displayed in a Gauss graphic window (for

Gauss 3.2, Figure 2.6), or in an external viewer (for Gauss 3.5 and higher,

because of the terminal mode). Any call to a graphics routine must be followed
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by coding convention 3 of the next subsection. This ensures that the external

viewer is started or the last graphics window is displayed on top of the Java

application window. Chapter 3 provides elaborate examples that show the

interaction of an GUI application and Gauss for graphical output.

In general it is possible to provide graphs generated by the Java application.

This provides a uniform graphical output if different statistical engines are

used. However, to provide pure Java solutions to generate graphical output is

beyond the scope of this work.

Coding conventions for Gauss-procedures

In order to call Gauss-procedures from the Java application some minor

Gauss-coding conventions must be fulfilled. In general, Gauss procedures

are used in the statistical engine exactly in the same way as in the usual Win-

dows application. Gauss is started as (or converted to) a statistical engine by

loading the library xlm and the DLL glm.dll. They provide the communica-

tion capabilities on the Gauss side (see Appendix C for details).

Gauss code that runs in the statistical engine should regard the following

four points:

1. Apply procedural programming techniques. Provide the procedures in

a library with a unique name. Give the procedures unique names in

order to avoid name clashes, e.g. libname procedureName. When using

this rule it is only necessary to check whether procedureName already

exists in the library libname which is easier to do than cross-checking

all potential libraries.

2. Try to avoid global variables. If global variables are really important

they should have a unique name, e.g. libname variableName.

3. If Gauss procedures generate graphic output place the following three
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lines after the function call that displays the graphic window:

if __XLM_LOADED;
dllcall showLastGraphic;

endif;

The global variable XLM LOADED and the function showLastGraphic

are defined in the Gauss library xlm. The above three lines ensure

that the last graphic window generated by Gauss is set in front of all

other application windows on the computer screen (especially the GUI

application window) and conveniently signals the user proceedings in

the Gauss procedure call. The library can still be used outside a GUI

application by declaring

declare matrix XLM LOADED?=0;

4. If the procedure wants to report errors to the GUI application it must

use the Gauss errorlog() function. Arguments of this function are

written to an error log file which is monitored by the GUI application.

Conventions 1 and 2 are commonly understood as good programming practice.

Conventions 3 and 4 are specific to the applied software architecture but do not

constrain the coding too much. Note that the code is not written exclusively

for a statistical engine used by a Java application. It can also be used perfectly

outside of this concept. On the other hand already existing Gauss-libraries

can be utilized by this concept.

2.2.5 Error handling

The concept and the single software components were designed and tested

carefully. Nevertheless, programming errors or misspecification can still be

present and can badly affect program execution. Sensible and informative

error handling is important to users and programmers. It provides impor-

tant information about current inabilities of the software and about possible
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Figure 2.7: Gauss error message reported to GUI application.

misspecified input arguments for statistical computations. At least two er-

ror sources can be identified: The Java code executed by the Java interpreter

(i.e. within the self written Java classes or other Java libraries used) and the

code executed by the statistical engine (i.e. self written or third party Gauss

libraries). Errors located in the Java interpreter or statistical engine are not

treated here.

Java errors at run time are reported by so called exceptions. They can be

caught and evaluated by the code and thus made harmless to the application.

Whenever it seemed appropriate Java exceptions were caught in the self written

Java classes. The ability of the GUI program to react on new user input is not

affected in general. This makes the application robust. Deadlocks and program

crashes of applications written with this concept were not experienced by the

author.

Error handling for Gauss computations is a built in feature of the concept.

Figure 2.7 shows an example where an error message caused by wrong Gauss

code is reported. Even if the code syntax is corrected it is still possible to
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formulate a computation task that results in a Gauss error. This indicates

that the requested procedure call was not finished. A run time Gauss error

typically happens when a function cannot evaluate its argument (e.g. inverting

a singular matrix, using a bad matrix index). Gauss stops executing the code

and prints an error message in its textual output area. This message is read

by the Java program and is reported in a message box to the user. It does not

harm neither the Java program, the communication to Gauss, nor the ability

to execute another Gauss procedure.

2.3 How to create single step GUI applica-

tions for Gauss

This section explains how a GUI can be created from which Gauss proce-

dures are executed. It is called “single step” because all graphical input/

output components and control elements (buttons, check boxes, . . .) can be

accommodated in a single GUI. This is usually not possible in complex anal-

yses in which a succession of different GUIs is necessary (e.g. specify model,

estimate model, validate model, . . .). These multiple step GUIs are discussed

in the next section.

Examples for single step GUIs are provided in Section 2.6 and in the Ap-

pendix B. This section explains classes in JStatCom that were used for creating

these examples.

2.3.1 The container class

All input, output, and control components are arranged on a container object.

In Swing the container object usually is of type javax.swing.JPanel . A

JPanel occupies a rectangular area of the computer screen. Visual components

can be arranged on that area.
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In JStatCom the class

gauss.GaussPanel

is defined. GaussPanel is a subclass of JPanel. It extends JPanel’s functionality

with regard to storage and query of statistical data

GaussPanel.storeData(XXX data, String symName) ,

GaussPanel.setGaussData(GaussData data) ,

GaussPanel.getGaussData(String symbolName) .

Furthermore Gauss code can be executed conveniently from GaussPanel ob-

jects using the

GaussPanel.gaussXXX()

methods (see next subsection). If methods are defined that perform manipu-

lation on statistical data or execute Gauss code then the GaussPanel should

be used as a container.

2.3.2 Execute Gauss-code

There are two ways for executing Gauss-code from Java.

For standard computations it is straightforward to use a combination of

the methods defined in the GaussPanel class

GaussPanel.gaussLoadLibrary(String libName) ,

GaussPanel.gaussWrite(String symbolName) ,

GaussPanel.gaussExec(String command) ,

GaussPanel.gaussRead(String symbolName) .

They load a Gauss-library in Gauss, write data from Java to Gauss, execute

a command in Gauss, and read data from Gauss by Java. In Java the

data is read from and written to the next non-local GaussSymbolTable in the

component hierarchy. These methods must be executed within the

GaussPanel.gaussStart(String jobName)

GaussPanel.gaussRun()
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methods, e.g.

gaussPanel.gaussStart("Compute and plot random walk");
gaussPanel.gaussLoadLibrary("pgraph");
gaussPanel.gaussWrite("T");
gaussPanel.gaussExec("y = cumsumc(rndn(T,1))");
gaussPanel.gaussExec("xy(seqa(1,1,T),y)");
gaussPanel.gaussExec("dllcall showLastGraphic");
gaussPanel.gaussRead("y");
gaussPanel.gaussRun();

(see also Appendix B). The single computation steps are stacked up and

passed to the gauss.Gauss object (see page 27) in the gaussRun() method.

The computation is started and monitored by this gauss.Gauss -object when

no other computations are running on Gauss, otherwise it is queued.

It is also possible to program a procedure call by sub-classing

gauss.GaussProcedureCall

and overwrite its runCode() method. In this class a variable “gauss” is

defined which is of type gauss.Gauss . It is set to a gauss.Gauss object

before runCode() is executed. This variable must be used for defining the

different computation and communication requests. For the small example

above one could place the following lines in runCode():

gauss.loadLibrary("pgraph");
gauss.writeGaussData(gaussSymbolTable.getGaussData("T"));
gauss.executeCommand("y = cumsumc(rndn(T,1))");
gauss.executeCommand("xy(seqa(1,1,T),y)");
gauss.executeCommand("dllcall showLastGraphic");
GaussData y = gauss.readGaussData("y");
gaussSymbolTable.setGaussData(y);

When using a GaussProcedureCall, reference to the statistical data must be

defined, e.g. by handing over the GaussData objects or by providing reference

to a GaussSymbolTable. The latter option was applied above by defining the

variable “gaussSymbolTable” which was set to the correct GaussSymbolTable

before executing the code. In order to execute the computation an instance
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of the sub-classed GaussProcedureCall must be created and registered with a

Gauss object using

gauss.Gauss.register(GaussProcedureCall gPC) .

If Gauss is busy the registration queues the call otherwise it is executed im-

mediately.

2.4 How to create and extend multiple step

GUI applications for Gauss

The GUI application consists of several analysis steps in most cases. These

steps cannot (and should not) be accommodated within a single application

window physically at the same time. As a consequence the window must

change its contents dynamically depending on the analysis step. This is noth-

ing new and anybody using Windows software is familiar with that.

This section discusses classes that help to model program flow. Some classes

are part of the JStatCom library, some are adopted from the Swing library but

are also mentioned here for completeness.

It is assumed that each analysis step is already modeled or visualized with

one ore more single step GUI as outlined in the previous section.

2.4.1 Available data

Sometimes it is desirable to add a new GUI to an already existing set of GUIs.

For example, one might think of a new tool for performing tests on residu-

als that were computed in an already provided model estimation algorithm.

For that, the new GUI will use statistical data computed by the other GUIs,

for example the matrix of residuals. Therefore, it is necessary to know the

identifying names of the statistical data objects.
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Figure 2.8: Overview of statistical data used in the program in Section 2.6.

The variable control frame can be used for inspecting all GaussData objects

(i.e. statistical data) available in the application. Figure 2.8 shows the variable

control frame for the example in Section 2.6.

2.4.2 Program flow

Program flow is a automatical succession of single GUIs as created in Sec-

tion 2.3. It is perceived by the user when the application window changes

its contents, e.g. when the program moves from model estimation to model

validation. This change can be caused by the user for example by making a

selection from a menu or by clicking some button.

In the Java library JStatCom two classes are provided for implementing

this behavior conveniently:

util.component.CardChangePanel and

util.component.CardPanelAction .

The CardChangePanel is the parent container for all used displays (cards).
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Figure 2.9: Predefined menu that can be added to any menu bar.

It must be added to the content pane, or must be set as the content pane

of a JFrame or JInternalFrame. The CardChangePanel is designed to switch

efficiently between the cards added.

CardPanelActions help to change conveniently between the single GUIs.

Objects of this class are constructed with the class name of the GUI and with

the reference to a CardSuccessionPanel where it will be displayed. Only the

class name of the target GUI is used for creating a CardPanelAction because

creating complete GUI objects can be time consuming. Furthermore, it is

possible that a program does not need all available GUIs. At the first time the

GUI object is really needed it is constructed. This spreads construction time

over the time the analysis is conducted. CardPanelActions are subclasses of

Swing’s AbstractAction. It can therefore be used for creating menus and tool

bars.

2.4.3 Menus as knots for program flow

Swing provides classes for creating menu bars, menus, and tool bars:

javax.swing.JMenuBar ,

javax.swing.JMenu , and

javax.swing.JToolBar .

Tool bar buttons and menu items can be created by using AbstractActions
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(e.g. CardPanelActions) and by applying the respective add() -method. The

tool bars can be set to an application window. The menus can be added to a

menu bar which is set to the application window as well.

The package gauss.control has a predefined menu

gauss.control.GaussMenu

which contains entries for displaying the variable control frame as shown in

Figure 2.8 and for changing the “look and feel”, see Figure 2.9. The package

also contains the action class

gauss.control.ShowControlFrame

that can be included in any menu or tool bar. If this action is executed the

above mentioned variable control frame appears.

2.4.4 Frames

The application frame is the container for all panels, menus, and tool bars.

JStatCom defines

gauss.GaussFrame

which can be used as the top level component. The GaussFrame is a specialized

JFrame that holds references to a gauss.Gauss object and a GaussSymbol-

Table. If the area within the GaussFrame is organized as a desktop (e.g. in

JMulTi) it is possible to use the class

gauss.GaussInternalFrame

instead of the JInternalFrame class for creating internal frames on the desktop.

The GaussInternalFrame is a specialized JInternalFrame implementing the in-

terface GaussSymbolRoot. This means that any added child which queries

non-local statistical data will be directed to the GaussSymbolTable of the

GaussInternalFrame.
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Figure 2.10: The Visual Composition Editor of IBM’s Visual Age for Java

with the palette of reusable beans (left) and the canvas (area with white back-

ground).

2.5 The use of an integrated development en-

vironment

The integrated development environment (IDE) was possibly invented in the

1980s when software companies like Borland delivered “visual” programming

tools for programmers who needed to program visual applications. The scope

of modern IDEs is not restricted to GUI programming. Complete applications

can be written, tested, and finished with an IDE. IDEs are available for writing

code in many programming languages. Furthermore, for a specific language

there exist different IDEs in most cases.
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2.5.1 Use and advantage

The classical way of programming is done in a file-based environment: Code is

written in source files, compiled and linked into executable binary files. When

building executable code the programmer must manage files and file dependen-

cies. These tasks can be viewed as a standard programming exercise which is

time consuming and error-prone but does not directly solve the programming

problem.

An IDE performs the task of managing and compiling the code. Thus

the standard programming task mentioned is delegated to the IDE. It may

also contain tools for managing code versions and debugging. Using an IDE

the programmer can fully concentrate on translating the problem into the

program. Therefore, it is preferable to use an IDE for the programming of

complex applications. An IDE may also contain tools for visual programming

which is explained in the next subsection.

2.5.2 Visual programming

Programming is the translation of the problem world to the program world.

The problem world might include simultaneous equations and matrix inver-

sion, the program world deals with loops, indices, and temporary variables.

The goal of computer scientists has always been to improve this match be-

tween these two worlds Green and Blackwell (1996). Visual programming is

a programming approach which attempts to improve the match. It refers to

software development where graphical notations and interactively manipulable

software components are primarily used to define and compose programs. The

goal of visual programming is to enhance the comprehensibility of programs

and to simplify programming. Furthermore, visual programming should em-

power end users to build their own programs that otherwise would have to be

written by professional programmers Schiffer (1998).
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Figure 2.11: Property sheet of GaussDataTextField.

An example for visual programming is shown in Figure 2.10. It shows the

Visual Composition Editor (VCE) which is a part of IBM’s Java IDE, Vi-

sual Age for Java (VAJ). The VCE is used for assembling program elements

visually from configurable software components called JavaBeans. To build a

program with the VCE, a picture is drawn using a canvas and a palette of icons

representing reusable beans. This picture specifies the set of beans that imple-

ments a function of the larger program (or bean). For beans like user interface

controls, the position of controls in the picture specifies how the controls will

appear in the final program. Furthermore, the VCE provides a sophisticated

connection capability for specifying how components of the picture will inter-

act to implement functions of the program. Using connections, much of the

behavior of an application can be specified graphically (IBM (1999)).

Bean properties can be changed using the bean property sheet. Figure

2.11 shows the property sheet of a GaussDataTextField bean. For instance,

the property symbolName is set to p. This means that all entered values are

stored in the GaussData object with the name p if they are accepted by the

verification algorithm. This algorithm tests whether the input text represents

a certain data type, and is within an acceptance interval. Furthermore it can
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Figure 2.12: GUI of the program Multiple Time Series.

be seen from Figure 2.11 that the lower interval bound is set to the variable

p min and the upper interval bound is fixed to 15.

The visual expressions represent appearance and function of the developed

software component. They are used as graphical interfaces to the textual

programming language Java in the programming environment VAJ, i.e. VAJ

generates from the picture textual Java source code which is compiled and

executed.

Working with the VCE does not require much knowledge of the underlying

programming language Java. Typing Java code can be avoided completely

for coding standard behavior. Theoretically it can be extended for specifying

complex software behavior. In any case there must exist tools for configuring

software elements and for visually drawing a picture of the program logic. The

shown VCE and property sheet are examples for such tools. However, more

customized tools must be developed in order to use all advantages of visually

programming. With these tools it is potentially possible to create a complete

application visually, i.e. without the need to learn Java.
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2.6 The anatomy of a JStatCom-based pro-

gram

This section takes apart a real program written using the approach which

was outlined in the previous sections. It is called Multiple Time Series and

demonstrates a GUI for executing two different Gauss procedures: (a) to

compute realizations of a given vector autoregressive process and (b) to plot

the computed time series. Figure 2.12 shows a snapshot of the program’s GUI.

Individual lines of code are not treated. Instead, it is discussed how the

GUI-features of the concept are used by the application Multiple Time Series.

This section discusses the use of specialized GUI-components, the containment

hierarchy, data models, and event handling.

2.6.1 Problem description

Assume an application is needed that computes artificial time series from the

VAR model

yt = A1yt−1 + . . . + Apyt−p + ut, (2.1)

with t = 1, . . . , T and ut ∼ N(0, 1), where yt is a K–dimensional vector of

observations at time t, A1, . . . , Ap are (K×K)-dimensional parameter matrices,

and ut is a (K × 1) vector of innovations. In order to ease the specification

of cointegrated processes with r cointegration relations (0 ≤ r < K) the VAR

should optionally be specified in vector error correction form

∆yt = αβyt−1 + Γ1∆yt−1 + . . . + Γp−1∆yt−p+1 + ut, (2.2)

where α is a (K × r), β is a (r × K)-dimensional parameter matrix and

Γ1, . . . , Γp−1 are parameter matrices of dimension (K×K). Equation (2.2) can

be rewritten in the form (2.1) (see Section 3.2.3). Given K, p, T , (y−p+1, . . . , y0),

and A1, . . . , Ap, realizations of yi, i = 1, . . . , T , can be computed recursively.
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Table 2.3: Input and output variables of Multiple Time Series. The acceptance

range of the input values is given in the last column with I denoting integers

and R real numbers.

Description Variable Dimension Legal values of

matrix elements

Input

Process dimension K (1× 1) I, [1, 10]

Number of observations T (1× 1) I, [1, 5000]

Number of lags p (1× 1) I, [0, 15]

Co-integration rank r (1× 1) I, [0, K)

Loading coefficients α (K × r) R, [−100, 100]

Co-integration vector β (r ×K) R, [−100, 100]

Coefficient matrix for VAR A (K ×Kp) R, [−10, 10]

Coefficient matrix for VEC Γ (K ×K(p− 1)) R, [−10, 10]

Output

Time series y (p× T,K) –

2.6.2 Definition of input and output variables

In Figure 2.12 one can see different input components (e.g. number of obser-

vations, number of lags) and an output component for scrolling the computed

time series. They are connected to variables (data models) that store the val-

ues. The variables are summarized in Table 2.3. This table also shows how

the validation algorithm for each input variable is configured.

These variables are centrally administered by a GaussSymbolTable. It is

possible to configure the input-output components in such a way that they

try to reference a local GaussSymbolTable (by default the query is made to a
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non-local GaussSymbolTable). This is done here. A local GaussSymbolTable

is provided by the class LocalGaussPanel. It is used here as the container that

arranges all graphical program elements. Setting up local statistical data is

advantageous when developing beans that want to use variable names locally

or if certain variable names are already used by other parts of the application.

2.6.3 GUI components

The program Multiple Time Series has the following (visible) GUI components:

• The GaussFrame (the application window),

• Four GaussDataTextFields (for K, T , p, and r),

• Four JLabels (to name the text fields),

• One GaussDataTable (for y),

• One GaussDataTableScrollpane (for scrolling y),

• One EquationTermLHS (for displaying the left hand side of equations

(2.1) and (2.2)).

• One EquationTermLagged (for A1, . . . , Ap and Γ1, . . . , Γp−1),

• One EquationTermCI (for α and β),

• One EquationTermDefault (for displaying the residual term),

• One JCheckBox (for switching between equation (2.1) and (2.2))

• Three JButtons (for computing, plotting, and saving).
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GaussFrame

LocalGaussPanel

GaussDataTextFields

JLabels

JButtons

EquationTermPanel GaussDataTable

...

JScrollPane GaussDataTableScrollPaneJPanel
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Figure 2.13: Containment hierarchy.

2.6.4 The containment hierarchy

All visual (and nonvisual) components are hold by so called containers. This

is a component that can contain child components. The container can be

associated with a so called layout manager that is responsible for arranging all

child components with respect to layout constraints, e.g. to display the label

Length of series in the upper left corner. Here, a LocalGaussPanel is used as

the container which holds all input and output components of the previous

section. The LocalGaussPanel is also a child, added to some other parent

component. It represents the i-th layer in the containment hierarchy of the

application. Three more layers are added to the LocalGaussPanel. In the layer

i + 1 are two non visual components, a JPanel and a JScrollPane. The JPanel

is introduced for convenient layout management. The JScrollPane becomes

visible if the EquationTerms in the EquationTermPanel grow to large.

Statistical data is administered by the GaussSymbolTable associated with

the LocalGaussPanel.
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2.6.5 Event handling

User actions (events) cause program behavior. This is achieved by linking an

event listener to a program action. Every time a key is typed or a mouse button

is pushed, an event occurs. Any object can be notified of the event. All the

object has to do is to implement the appropriate listener interface and register

as an event listener on the appropriate event source (i.e. the GUI components).

Event-handling code executes in a single thread, the event-dispatching

thread. This ensures that each event handler will finish executing before the

next one starts executing. For instance, the request to compute the time series

in the example executes in the event-dispatching thread. Painting code also

executes in the event-dispatching thread. This means that while the compu-

tation request is executing, the program’s GUI is frozen – it won’t repaint or

respond to mouse clicks, for example. However, the program should not wait

until the time series is computed and communicated from Gauss to Multiple

Time Series.

In the computation request method only a GaussThread with the Gauss

code is created and registered with the next gauss.Gauss object. The real

computation is then executed in the “background” without blocking the GUI.

This ensures that the program’s perceived performance stays acceptable.

Action listener

Every JButton has an action listener. Whenever the button is clicked, the

action listener calls the specified method. In Figure 2.14 from each button an

arrow leads to a method that executes some code. These arrows symbolize

that “something” is “listening” to the buttons and execute the given methods

once the button is clicked (an action is performed), e.g execute the method

computeTimeSeries() when the Compute series-button is clicked.
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Table model listener

The GaussDataTextFields are not connected with an action listener. Due to

its specialization the GaussDataTextField tries to store every new input to the

data model (a GaussData object) whenever the return key is hit or the input

focus is moved away. Storage is done if the outcome of the input validation

was positive.

Therefore, it is better to connect GaussDataTextFields with TableMod-

elListeners. Changes in the underlying GaussData object are notified to all

interested listeners. When the process dimension K is changed in the program

Multiple Time Series, the parameters A, α, β, and Γ must be checked. If p

changes, the parameters A, and Γ must be checked. When r changes, α and

β must be checked. In all cases y is no longer valid and should be reset.

Window listener

A window listener that is registered on the application frame triggers a confirm-

exit dialog and, eventually, terminates the application when the window is

closed. This listener is already a feature of the GaussFrame. It is not necessary

to implement it for every new application that uses a GaussFrame as the

application window.

2.6.6 Visual programming

Figure 2.14 is an exact snapshot from the VCE that was used to create the

bean which handles user input and computation.

The visual composition editor arranges the visual components exactly as

they appear in the final program. The configuration of the components can

turn out to be complex. The configuration includes, for example, the position

of a component relative to other components, its color, text, font, etc. Tools
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Figure 2.14: Visual representation of the GUI bean for the program Multiple

Time Series. Note the arrows which symbolize software behavior.

such as the property sheet in Figure 2.11 help to change the default configura-

tion of a software component fast and reliable. Time consuming search in the

textual code is therefore avoided.

In addition to the (static) configuration of software components it is also

possible to picture the (dynamic) program logic. The behavior of the software

can be visually determined. It is possible to connect a specific user action

(e.g. click on mouse button) with a method call. This is represented by the

arrows. For example, in Figure 2.14 an arrow leads from the box “Compute

series” to the box “computeTimeSeries()”. This arrow symbolizes the internal

execution of the software method computeTimeSeries() if the user clicks on

the button “Compute series”. It does not matter where the executed methods

are located. In most cases they are defined in the GUI class. Non GUI related

behavior should be placed in special classes, for example the bean Multiple-
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TimeSeriesDataManager in Figure 2.14 provides computational services that

are not directly related to the GUI.

2.7 Summary and perspectives

The approach outlined in this chapter can be used to build graphical user

interfaces for statistical procedures which are coded in Gauss. Numerical

implementations of new econometric methods can be furnished with a GUI

that supports all features of modern user interfaces. These interfaces make

the procedures easier to apply in daily work. People unfamiliar with Gauss

can also work with the implemented methods by using the GUI. It can be

viewed as a way to provide scientists and students easy access to recently

developed statistical methods which are not found in commercial statistical

software packages.

Some statistical software packages have a communication interface to other

programs, e.g. Mathematica8, or Gauss with Mercury. The software Mercury

(Breslaw (2002)) provides access to Gauss. The difference to this work is

that the current version (Mercury 4.0) only communicates with the program

GAUSS Engine9. But the communication software developed in this work con-

nects to Gauss 3.2 or higher instead. The main focus of Mercury is to provide

an interface between Gauss and other Windows applications. In addition to

this task the concept which had been developed here is concerned with creating

menu-driven Windows applications for statistical analyses.

Only few statistical programs have tools for creating graphical control el-

ements that query user input and control program flow. If they are available

8There is a toolkit that integrates Mathematica and Java. See http://www.wolfram.

com/solutions/mathlink/jlink/
9The GAUSS Engine is a dynamic library that can be linked to other programs. See

http://www.aptech.com/s2_ge.html

http://www.wolfram.com/solutions/mathlink/jlink/
http://www.wolfram.com/solutions/mathlink/jlink/
http://www.aptech.com/s2_ge.html
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they only support basic GUI functionality. Furthermore, a close combination

of the GUI part (such as program flow) and statistical computation cannot be

avoided. Although it is possible to create complex programs when mixing GUI

functionality and statistical computation (e.g. the software MulTi from Haase

et al. (1992)) this approach is inefficient. However, it is the only possible ap-

proach if the operating system does not allow for multi-tasking. Nevertheless,

it is complicated to extend existing menus and to add in new program parts.

The user interface and the estimation routines are hard to maintain.

The approach introduced in this chapter does not suffer from these draw-

backs because it exploits the advantages of multi-tasking that comes along

with recent PC operating systems. The GUI program and the statistical com-

putation are strictly separated. They could even run independently. The GUI

application is not tailored to a specific statistical software package (although

currently it only uses Gauss), and the statistical procedures called are also

running perfectly outside the GUI application.

Designing an effective GUI will take considerable effort. It is understood

that there is a strong interest in keeping this effort low. Therefore, program-

ming tools and techniques were discussed which facilitate development of GUIs.

It is argued that widely available standard tools, such as an integrated devel-

opment environment with visual programming, should be used. The level of

support introduced by these tools is considerable. Visual programming makes

the code of the GUI program more transparent and extremely easy to main-

tain. The support can be further enhanced by well designed configuration

tools. The development of such configuration tools is beyond the scope of this

work. But theoretically, they could enable the creation of GUIs for statistical

procedures purely visually, i.e. without any textual coding.

To summarize the discussion it can be said that the strength of the con-

cept is its component related design which allows a high degree of reusability,
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extendibility and maintainability. It can be used to create single GUIs for a

single procedure or to create complex menu-driven programs for a set of related

statistical procedures. These procedures are connected by the GUI program.

Thus different steps in the statistical analysis of a problem can be modeled

with menu-driven applications. An example for a large menu-driven program

is given in the next chapter. It explains and demonstrates parts of the software

JMulTi.



Chapter 3

Analyzing VAR models with

JMulTi

Many econometric analyses are carried out with vector autoregressive (VAR)

models. The advantage of these models is that they allow the embedding of

interesting economic hypotheses in a general statistical framework (Johansen

(1995)) and that their statistical analysis can be done with standard methods

(Lütkepohl (2000)). There already exists a comprehensive body of methods

for detecting the statistical properties of time series, for model specification,

model estimation and validation, for forecasting, and for model interpretation.

Due to the popularity of these models much research has been conducted

in order to solve known problems of current methods. For example, there are

many important macro economic time series with a structural break. These

breaks may be known, for example, the European or German monetary union,

or the transformation process of Eastern European economies. It is known

that unit root tests that do not account for these breaks may suffer from a loss

of power. Research on unit root tests for time series with a break point was

carried out, for example in Lütkepohl et al. (2001).

However, recent methods are usually not provided by commercial econo-

55
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metric software packages. In order to use a new promising method in empirical

research one would have to ask the authors who published a new method for

the software procedure. Even if it is available, it still can be burdensome to

apply the procedure to a problem at hand. But finally, it only stays an isolated

application.

This Chapter introduces the software JMulTi. It is a menu-driven program

for analyzing univariate and multivariate time series. JMulTi is based on

the concept explained in Chapter 2. The program consists of a graphical

user interface (GUI) that executes procedures in Gauss for Windows. The

procedures implement well established and new econometric tools for time

series analysis.

Extending the program structure of JMulTi is a built in feature. Program

extensions are possible conditional on the existing set of econometric methods,

or by providing a complete new analysis tool. Therefore, JMulTi can be seen

as a framework in which new methods for the analysis of time series can be

incorporated. Every new computation can be based on the results of previous

procedures calls. Therefore it is possible to link many statistical procedures

easily.

JMulTi can be used subject to the license agreement of Appendix A. Note

the disclaimer at the end of Appendix A. JMulTi is free of charge and comes

with no support.

This Chapter explains the analysis capabilities of JMulTi in the context of

vector autoregression, and documents the parts provided by the author. The

whole Chapter refers to JMulTi version 1.96 beta in conjunction with Gauss

for Windows version 3.2.29. This JMulTi-version can be downloaded from

http://www.jmulti.de/download.html (without Gauss). Since JMulTi has

been continuously developed and improved it is worth to use the most recent

version which is available from http://ise.wiwi.hu-berlin.de/oekonometrie/

http://www.jmulti.de/download.html
http://ise.wiwi.hu-berlin.de/oekonometrie/index.html
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index.html

This Chapter is organized as follows. The first section makes general re-

marks on program structure and handling. The steps of the VAR analysis

implemented by the author are documented in the second section. The third

section demonstrates JMulTi’s capabilities of computing bootstrap confidence

intervals for impulse responses. This will be illustrated by different models of

a German monetary system.

3.1 Introduction to JMulTi

3.1.1 Program structure

JMulTi

Analysis of univariate

and multivariate time series
Browse and load data files

Model analysis

Initial analysis

− Plots,

  Descriptive statistics

− Unit Root Tests

− Cointegration Tests

VAR VEC STR Nonparametric
analysis

= simultaneous analysis of several models possible

Figure 3.1: Program structure of JMulTi

The general structure of JMulTi is pictured in Figure 3.1. In addition to

the browse and load tools, different tools for analyzing time series are offered.

Currently JMulTi consists of analysis tools for

• Initial analysis (plots and transformation of time series, unit root tests,

cointegration tests),

http://ise.wiwi.hu-berlin.de/oekonometrie/index.html
http://ise.wiwi.hu-berlin.de/oekonometrie/index.html
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• VAR analysis (modeling stationary, stable processes),

• VEC analysis (modeling cointegrated processes),

• Smooth transition regression (STR) analysis (Teräsvirta (1998)),

• Non-parametric analysis (Tschernig and Yang (2000)).

3.1.2 Installation

In order to run JMulTi the software Gauss for Windows version 3.2, 3.5,

or 3.6 and a Java interpreter must be installed on the computer. Gauss is

a commercial statistical software package. See http://www.aptech.com for

details. Regarding Java, it is recommended to use version 1.3.1. The larger

installation routine will install this Java version if it is desired. JMulTi runs

on Windows 98, 2000, ME, NT4.0.

The installation process is standard. At first, a copy of the installation rou-

tine must be obtained from http://ise.wiwi.hu-berlin.de/oekonometrie/

engl/indexeng.html following the Software-link. The larger of the two setup

files contains the recommended Java run time environment (JRE), the smaller

one comes without the JRE.

The installation process is started by executing the downloaded file. All

necessary information and instructions will be displayed. The installation is

fast and will take about one or two minutes.

3.1.3 Starting JMulTi

The program is started by a double click on the JMulTi icon. A window like the

snap shoot shown in Figure 3.2 (henceforth called main window) appears. The

area within the main window is organized as a desktop. It may contain further

(internal) windows (henceforth sub windows) each representing a JMulTi tool

http://www.aptech.com
http://ise.wiwi.hu-berlin.de/oekonometrie/engl/indexeng.html
http://ise.wiwi.hu-berlin.de/oekonometrie/engl/indexeng.html
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Figure 3.2: Main window of JMulTi with opened Dataset sub window and

iconified Initial Analysis sub window.

of Figure 3.1. Sub windows can be iconified, restored/maximized, or closed by

the

buttons in the upper right corner of the window. If the closing operation will

delete analysis results the user is asked for confirmation. Furthermore, sub

windows can be resized. However, all sub windows have a minimum size which

cannot be changed.

After program start two sub windows are opened, one for loading data

from disk into the program and one for conducting initial analyses. Further

sub windows can be added during the analysis.
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3.1.4 General program handling

The main window has a menu bar with the following menus:

File Program exit and loading data sets.

Model Opens sub windows for VAR, VEC, STR, and non-parametric anal-

ysis.

Window Contains a list of all currently available sub windows. This list al-

ways contains the sub windows Dataset and Initial Analysis. Model

windows are added (removed) as soon as they are created (closed).

This menu allows to switch conveniently between different sub win-

dows.

Help Access help functions.

Control Offers tools for controlling the computing environment. There are

functions for restarting Gauss, for displaying a window containing

all system messages, and for displaying a window that shows all

variables that are available JMulTi-wide.

Sub windows may also contain menus for accessing different analysis meth-

ods. Their contents are discussed later. A sub window menu is disabled (i.e. it

cannot be used) if all of its entries are disabled. During model analysis, many

menu entries become enabled. For instance, in the VAR analysis, the impulse

responses can only be analyzed (i.e. the respective menu item becomes enabled)

if the model has been estimated.

In addition to the menus in the main and sub windows there are different

elements in the GUI that open pop-up menus. For example, the time series

list or various coefficient matrices can open a pop-up menu. It is triggered

by clicking the right mouse button. It displays a number of context related

actions. The available pop-up menus are discussed later, too.
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In the following menu selections are referred to as select menu→option from

some window, e.g. in order to open the load data set tool, select File→Dataset

from the main window.

At different points the user is asked to make a selection from a list of items,

e.g. to select some variables. A single item is selected by a simple mouse click

on that item. If several items must be selected one can make a so called single

interval selection or a multiple interval selection. A single interval selection is

made by clicking on the first item, then holding down the Shift-button and

clicking on the last item. A multiple interval selection is made by holding

down the Ctrl-button and making various single selections. It is also possible

to unselect items by doing multiple interval selection on selected items.

3.1.5 Loading data sets

In Figure 3.2, the sub window Dataset can be seen which offers basically two

actions: Browsing data files and loading data sets. The browse function allows

to view data files before adding the data to the list of time series. When the

correct file is found its contents are loaded with the load dataset button. The

new time series are added to the previously loaded time series. Throughout

JMulTi, a time series is identified by its name. If a new time series has a

name that is already in use, JMulTi asks whether or not the existing data

should be overwritten. After loading, the sub window Dataset can be min-

imized or closed. It can be opened again by selecting File→Open Dataset or

Window→Dataset from the main window.

A valid data file contains one or more time series and must consist of ASCII

symbols only. Text between /* and */ is interpreted as a comment. Comments

can be placed anywhere in the data file. The first non-comment row contains

some general information about the data set. It has three entries: The first

is the number of time series (number of data columns). It is followed by the
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date of the first observation. The third entry indicates the periodicity of the

observations, i.e. the number of subperiods within one principal period. For

instance, for quarterly data a year is the principal period, which has 4 sub-

periods. Therefore, 1960.1 denotes the first quarter of year 1960 for quarterly

data (periodicity=4), October of 1960 for monthly data (periodicity=12), and

week 10 of 1960 for weekly data (periodicity=52). The periodicity must be an

integer value ≥ 1, but otherwise it is not restricted to certain values as long

as it is consistent with the subperiod in the date of the first observation.

The next (non-comment) line contains, separated by blanks, the names of

the time series. Each name should be used only once. The remaining (non-

comment) lines contain the observations for the time series, beginning with

t = 1. The observations in a line are, again, separated by blanks. A file with

8 time series could look as follows:

/*
some comments
....
*/
8 1960.1 4
lm1 lp lyr rl lpim s1 s2 s3
3.8497 3.4038 5.4134 0.0619 3.8269 1 0 0
3.8786 3.3802 5.4946 0.0640 3.8152 0 1 0
3.8917 3.4362 5.5761 0.0640 3.7957 0 0 1
3.9596 3.4198 5.5915 0.0619 3.7927 0 0 0
...

The data file can contain one or more missing values. They are identified

by the symbol NaN at the respective position. For instance, the above example

with missing values for the whole 4th quarter 1959 would be:

/*
some comments
....
*/
8 1959.4 4
lm1 lp lyr rl lpim s1 s2 s3



CHAPTER 3. ANALYZING VAR MODELS WITH JMULTI 63

Figure 3.3: Time series selection list

NaN NaN NaN NaN NaN NaN NaN NaN
3.8497 3.4038 5.4134 0.0619 3.8269 1 0 0
3.8786 3.3802 5.4946 0.0640 3.8152 0 1 0
3.8917 3.4362 5.5761 0.0640 3.7957 0 0 1
3.9596 3.4198 5.5915 0.0619 3.7927 0 0 0
...

Note, that the date of first observation is now 4th quarter 1959, and not 1st

quarter 1960 as in the first example.

In addition to the name, a time series is assigned an endogenous, exogenous,

or deterministic property. It is expressed with the symbols Y, X, and D in

front of the name of the time series in the time series list (see Figure 3.3).

This “property” is important when selecting variables for a specific model

but does not describe any statistical properties of the time series. All time

series containing only zeros and/ or ones are regarded deterministic. All other

time series are regarded endogenous. In the sample data file above, the first

five columns are interpreted as endogenous variables whereas the last three

columns are interpreted as deterministic variables. The property of a variable

can be changed in any time series selection list with the Property option of its
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associated popup menu. In Figure 3.3, the property of the time series lpim

was changed to exogenous (X).

In addition to the Set Property option, there are a number of other important

entries in the pop up menu of the time series selection list, for example the

Transform and Rename options. The Transform option allows to apply some

standard transformation to the selected time series. The transformed series is

stored in a new time series which is added to the time series list. The name of

a time series can be changed with the Rename option.

3.2 Analysis of VAR models

This section describes the VAR modeling framework of JMulTi. It starts with

an enumeration of JMulTi’s tools for determining the statistical properties of

time series. Then, the functional forms of the VAR and VEC models used

are discussed. How these models are specified is explained next. Part of

the specification are subset constraints on model coefficients. The estimation

procedures for the VAR and VEC models are treated in separate sub sections.

The sub section on structural analysis explains in detail JMulTi’s tools for

the interpretation of estimated VAR models and the thereby used inferential

procedures.

Any statistical model should be carefully checked for the assumptions it

imposes. JMulTi offers various residual based tools for checking the assump-

tions of the fitted VAR or VEC models, for example diagnostic tests, residual

plots and correlation analysis. Since they were not contributed by the author

they are not documented here. The same holds for the forecast tool of JMulTi.
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3.2.1 Determining statistical properties of time series

The sub window Initial Analysis contains a collection of methods for exploring

the statistical properties of the loaded time series. There are three general

categories

Workbench Various plot functions, computing descriptive statistics,

and creating new time series,

UR Tests Different unit root tests, and

Cointegration Tests Different cointegration tests.

Unit root tests are tools for determining the order of integration of a time

series. Stationary time series have time invariant means, variances, and co-

variance structure. They are integrated of order 0, or short I(0). In JMulTi,

stationary series can be analyzed with VAR models. However, many economic

time series do not have this property. If they have trends which can be re-

moved by differencing, i.e. yit is not stationary while ∆yit = yit−yi,t−1 is, they

are called integrated of order 1. In general, nonstationary series which are

stationary after differencing them d times are called I(d).

If multiple series are I(1) then the next step is to test whether these series

are cointegrated. In general, I(d) variables is called cointegrated if there exists

a linear combination which is I(d1) with d1 < d. In JMulTi, cointegrated series

can be modeled with the VEC model. It is also possible to fit a VAR model

ignoring the property of cointegration.

3.2.2 The VAR model

The general specification of VAR models in JMulTi is

A0yt = AYt−1 + BXt + Cdt + vt (3.1)
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where yt = (y1t, . . . , yKt)
′ is a K–dimensional random vector, containing the

endogenous variables, A0 is a non-singular (K×K) matrix with unit diagonal,

modeling the structural form,

AYt−1 = A1yt−1 + . . . + Apyt−p

is the autoregressive term where the Ai are (K ×K) coefficient matrices,

BXt = B0xt + B1xt−1 + . . . + Bqxt−q

is the exogenous term, where xt = (x1t, . . . , xLt)
′ is a L dimensional (stochastic)

exogenous variable, and Bi are (K × L) coefficient matrices,

Cdt

is the deterministic term, where dt is a M dimensional non stochastic variable,

and C is its (K × M) coefficient matrix, and vt = (v1t, . . . , vKt)
′ is a white

noise process with E(vt) = 0, E(vtv
′
t) = Σ/v, and E(vtv

′
s) = 0 for s 6= t (see

Lütkepohl (1993a)). If A0 6= IK model (3.1) is called structural form.

The reduced form is obtained by left multiplying (3.1) with A−1
0

yt = A−1
0 AYt−1 + A−1

0 BXt + A−1
0 Cdt + A−1

0 vt

= AYt−1 + BXt + Cdt + ut (3.2)

= GZt + ut (3.3)

with G = [A, B, C] with dimension (K ×N),

N = Kp + L(q + 1) + M

Zt =


Yt−1

Xt

dt

 .

This can be written more compactly as

Y = GZ + U (3.4)
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where Y = [y1, . . . , yT ], Z = [Z1, . . . , ZT ], and U = [u1, . . . , uT ].

Currently, JMulTi offers only the analysis of VAR models in reduced form

(3.2). The VAR modelling is started by selecting Model→VAR from the main

frame. A new sub window appears in the desktop area of the main window.

3.2.3 The VEC model

If cointegration relations are present it is useful to consider a parameteriza-

tion which incorporates the cointegration structure. Vector error correction

(VEC) models allow for such parametric structure. See, for example, Lütke-

pohl (1993a, Chapter 11) for different ways of including cointegration relations

in the VAR model.

The functional form of the VEC model in JMulTi is

F0∆yt = αect−1 + F∆Yt−1 + BXt + Csysd
(sys)
t + vt (3.5)

where ∆yt = yt − yt−1 is the first difference of y, F0 a (K × K) matrix of

structural coefficients, α is a (K × r) matrix of coefficients, ect−1 is the (r× 1)

dimensional error correction term, that models the r cointegration relations

by

ect−1 = βyt−1 + β(d)d
(ec)
t , (3.6)

where β and βd are coefficient matrices with dimension (r×K) and (r×M (d)),

respectively, and [β, βd] contains the r cointegration vectors,

F∆Yt−1 = F1∆yt−1 + . . . + Fp−1∆yt−p+1

is the term of differenced lagged endogenous variables, where Fi are (K ×K)

coefficient matrices, C(sys) is a (K × M (sys)) coefficient matrix of the M (sys)

dimensional vector of deterministic variables d(sys). The terms BXt and vt are

defined as for the VAR model (3.1).
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In order to model ect optionally with deterministic terms, the elements

in the variable dt of equation (3.1) are split into d
(sys)
t and d

(ec)
t in (3.5) and

(3.6). The notion that ec at t − 1 is modeled by d(ec) at t can be a source of

misunderstanding at first sight. In some cases this modeling is not important,

e.g. if d
(ec)
t just contains a constant term. If ect−1 is modeled with an additional

step dummy, i.e.

dt =

 0 if t < t1

1 if t ≥ t1

the time index of course matters and dt is usually split up as dt = ∆dt + dt−1.

The ect−1 is modeled with d
(ec)
t = dt−1 and d

(sys)
t = ∆dt is added to the short

term dynamics. Due to ease of notion the exposition of (3.6) is chosen here

but a cautious design and selection of deterministic variables is necessary.

The reduced form VEC model is obtained by left multiplying (3.5) with

F−1
0

∆yt = F−1
0 αect−1 + F−1

0 F∆Yt−1 + F−1
0 BXt + F−1

0 C(sys)d
(sys)
t + F−1

0 vt

= αect−1 + F∆Yt−1 + BXt + Cdt + ut (3.7)

= GZt + ut (3.8)

with G = [α, F , B, C
(sys)

]

Zt =



ec′t−1

∆Yt−1

Xt

d
(sys)′

t


.

Again, this can be written more compactly as

Y = GZ + U (3.9)

where Y = [∆y1, . . . , ∆yT ], Z = [Z1, . . . , ZT ], and U = [u1, . . . , uT ].
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Models (3.1) and (3.5) are indeed equivalent:

F0∆yt = αect−1 + F∆Yt−1 + BXt + Csysd
(sys)
t + vt

⇐⇒

F0(yt − yt−1) = α(βyt−1 + β(d)d
(ec)
t )

+F1(yt−1 − yt−2) + . . . + Fp−1(yt−p+1 − yt−p)

+BXt + Csysd
(sys)
t + vt

⇐⇒

F0yt − F0yt−1 = Πyt−1 + Π(d)d
(ec)
t

+F1yt−1 − F1yt−2 + . . . + Fp−1yt−p+1 − Fp−1yt−p

+BXt + Csysd
(sys)
t + vt,

with Π = αβ

Π(d) = αβ(d)

⇐⇒

F0yt = (F1 + F0 + Π)yt−1 + (F2 − F1)yt−2 + . . .

+(Fp−1 − Fp−2)yt−p+1 − Fp−1yt−p

+BXt + [Csys, Π(d)]

 d
(sys)
t

d
(ec)
t

+ vt

⇐⇒

A0yt = A1yt−1 + A2yt−2 + . . . + Apyt−p

+BXt + Cdt + vt,

with A0 = F0

A1 = F1 + F0 + Π

Ai = Fi − Fi−1, i = 2, . . . , p− 1

Ap = −Fp−1

C = [Csys, Π(d)]

dt = [d
(sys)′

t , d
(ec)′

t ]′

A cointegration analysis is started by selecting Model→VEC from the main
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window. A new sub window will appear within the main window for specifying

and analyzing model (3.5) or (3.7).

3.2.4 Model specification

Model specification deals with variable selection (y, x, d) and lag selection

(p, q). In the cointegration analysis the cointegration rank r is specified ad-

ditionally and the error correction term ect can be modelled optionally. It is

also possible to analyze structural VEC models. Declaring zero restrictions for

single elements of model coefficient matrices can be viewed as a part of the

model specification process. However, this is treated in the next sub sections.

Selection of variables

When the VAR and VEC sub windows are displayed the first time, the variables

and lags input area is shown. From any later step in the analysis one can

return to this display by selecting Specification→Specify Model from the VAR or

Specification→Select Variables, Lags, Rank from the VEC sub window.

VAR models must contain at least one, VEC models at least two endoge-

nous variables. The selection is made with the variable selection list, see Figure

3.3. In addition one can select exogenous and deterministic variables. Stan-

dard deterministic variables, such as a constant term, seasonal dummies and

a trend, can be added with the check boxes. Initially, all models contain a

constant term. Unselect the check box if this is not desired.

The selection order determines how the time series are stacked in the vari-

ables y, x, and d. The start and end date are set such that the largest possible

sample size is used. If the dates are changed to other valid values, the sample

size adjusts.
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Figure 3.4: Computing information criteria for a VAR model, note again the

opened popup menu

Number of lags and cointegration rank

After selecting endogenous (exogenous) variables the number of lags p (q) can

be edited. For specifying the number of lags for the endogenous variables

the FPE, AIC, HQ and SC criteria (see Lütkepohl (1993a, Ch. 4)) can be

computed. Note that in the VEC analysis the optimal number of lags refers

to the lagged differences, not levels. In the VEC analysis, the first input mask

contains additionally a field for editing the cointegration rank r, 0 < r < K,

which is set to r = 1 by default.

Modeling the cointegration relation(s)

Cointegration relations can only be modeled in the VEC analysis. There are

three points in the VEC sub window that affect the modeling of the error correc-

tion term. The cointegration rank r is edited by selecting Specification→Select

variables, lags, rank from the VEC sub window. This models ect−1 = βyt−1.
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Figure 3.5: Specification of cointegration relation(s)

Calling Specification→Add Deterministics to Co-int Relation allows to restrict

deterministic variables to the cointegration relation. From the set of included

deterministic variables one can select none, some, or all to enter the modeling

of ect−1, see equation (3.6).

Finally, in Specification→Specify Estimation of Co-int Relation it is possible

to determine the number of cointegration relations r1 to be estimated, with

(0 ≤ r1 ≤ r), and the method for estimating the r1 cointegration vectors which

is applied in the first step of the two step estimation strategy (see below).

Figure 3.5 shows a screenshot of this input mask. Possible options are

1. No estimation (r1 = 0),

2. Estimation of r1 = 1 cointegration vector from an equation of the VEC

by OLS,

3. Estimation of 0 < r1 ≤ r cointegration vectors by the Johansen approach.

In case of r1 < r, the r − r1 cointegration vectors which are not estimated
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Figure 3.6: Specification of structural form

must be specified manually. In this case a convenient input structure appears

as shown in the lower part of Figure 3.5.

Structural form modeling

Currently, structural forms can only be modeled in the VEC analysis. Struc-

tural VECs are specified by selecting Specification→Specify Structural Form from

the VEC sub window.

At the first time F0 = IK which can be changed with mouse clicks on the

desired structural coefficients. The matrix element changes its symbol from

0 to *. This means that the respective structural coefficient is estimated. A

structural coefficient is removed with a mouse click again.

There is also a switch for estimating a structural model, represented by the

check box Estimate model in structural form, see Figure 3.6. It can be unselected

without affecting the structural coefficients specified before.

3.2.5 Parameter constraints

Linear constraints for a general coefficient matrix G of dimension (M × N)

can be specified by

g = vec(G) = Rζ + r (3.10)
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Figure 3.7: Specification of subset restrictions

where g = vec(G) is a (MN × 1) vector, R is a known (MN × w) matrix of

rank w, ζ is an unrestricted (w × 1) vector of unknown parameters, and r is

a (MN × 1) vector of known constants (see Lütkepohl (1993a)). For instance,

subset restrictions can be expressed by r = 0 and a matrix R that is derived

from a MN -dimensional identity matrix with the i-th column removed if gi is

constrained to 0.

Another possibility to express linear constraints in G is

Sg = s (3.11)

where S is a known (v × MN) matrix of rank v and s is a known (v × 1)

vector. One can show the equivalence of (3.10) and (3.11) (e.g. Lütkepohl

(1993a, Chapter 5)).

Both expressions will be used later when describing estimators and tests,

depending on which is particularly suitable. Although the estimation algo-

rithm can process general linear restrictions of the form (3.10) (see Appendix

D), only subset constraints can be imposed with JMulTi currently.
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3.2.6 Model reduction procedures

Imprecise parameter estimates in the VAR analysis is a common practical

problem because the number of parameters is often quite substantial relative to

the available sample size Lütkepohl (1993a, Chapter 5). Runkle (1987) comes

to the conclusion that unrestricted VAR’s often do not help much in order to

answer interesting macroeconomic questions. The large confidence intervals

for impulse responses do not allow a useful inference on these quantities. In a

comment to Runkle (1987) Watson (1987) argues to use prior information in

order to increase the precision of the estimates. The model reduction procedure

is a type of modelling strategy which tries to better extract the information

from the available data.

Model reduction procedures aim at eliminating variables for which insignif-

icant parameters were estimated. This means to impose zero restrictions on

elements of the coefficient matrices in (3.1), (3.2), (3.5), or (3.7). In JMulTi,

subset models can be specified in a straightforward manner. It is possible

to set the zero constraints by hand, to apply a search algorithm, or to do a

mixture of both, e.g. to apply a search algorithm conditionally on already set

constraints. This allows to conduct a highly individual search procedure.

In Figure 3.7, the elements of the coefficient matrices are replaced by sym-

bols, indicating how the estimation and search algorithms treat the respective

variable. The different meanings are summarized in the following table:

Treatment of respective variable in

Symbol estimation search

* include include

! include exclude

0 exclude exclude

A mouse click on a symbol will change it in the order { . . . , * , ! , 0 , *

, ! , 0 , * , . . . } The popup menu associated with the matrices allows to
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uniformly include or exclude the whole lagged endogenous, lagged exogenous,

or deterministic coefficient matrix from the estimation or search algorithm.

The search algorithms applied are described and analyzed in Lütkepohl (1993a,

Chapter 5, Sec. 5.2.8b) and Brüggemann and Lütkepohl (2001).

3.2.7 VAR Model estimation

Structural form VAR

Estimation of structural VARs (3.1) is currently not possible in JMulTi. Struc-

tural analysis is only available within the cointegration analysis.

Reduced form VAR

Model (3.4) is estimated by ordinary least squares (OLS) or estimated gener-

alized least squares (EGLS). For a discussion of these estimation methods see,

for instance, Judge et al. (1988) and for the application in the context of VAR

models see Lütkepohl (1993a).

The following OLS estimators are computed for model (3.4) in JMulTi

Ĝ = Y Z ′(ZZ ′)−1

Û = Y − ĜZ

Σ̂/u = Û Û ′/(T −N)

Σ̂/g = (ZZ ′/T )⊗ Σ̂/u

where N is the number of estimated parameters in each single equation, see

Equation (3.3) on page 66. For computing the standard deviation of Ĝ and

the respective t-ratios, the asymptotic distribution of ĝ = vec(Ĝ)

N (g, Σ/g/T )

is used, see Lütkepohl (1993a), where N(µ, σ2) is the normal distribution with

mean µ and variance σ2. The above estimator of the residual covariance matrix,
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Σ̂/u, will be referred to as Σ̂/u,OLS in the following. The residuals of the reduced

form are computed as

ût = yt − ĜZt (3.12)

where Ĝ can also denote other estimators of the coefficient matrix which are

introduced in the following.

On the vectorized version of (3.4) linear constraints in the form of (3.10)

can be imposed

y = vec(Y ) = (Z ′ ⊗ IK)vec(G) + vec(U)

= (Z ′ ⊗ IK)(Rg + r) + u

⇐⇒

z = (Z ′ ⊗ IK)Rg + u (3.13)

with z = y − (Z ′ ⊗ IK)r

u = vec(U).

Using (3.13), the following EGLS estimators for model (3.4) subject to linear

constraints as specified in (3.10) are computed in JMulTi:

ζ̂ =
[
R′(ZZ ′ ⊗ Σ̂/

−1

u,OLS)R
]−1

R′(Z ⊗ Σ̂/
−1

u,OLS)z

ĝ = Rζ̂ + r

Û = Y − ĜZ

with Ĝ being the unvectorized ĝ

Σ̂/u = Û Û ′/T

Σ̂/g = R
[
R′((ZZ ′/T )⊗ Σ̂/−1

u )R
]−1

R′

vec(ĜEGLS)
d→ N

(
vec(G), Σ/g

)
For computing the standard deviation of Ĝ the asymptotic distribution of

vec(Ĝ)

N (vec(G), Σ/g/T )

is used, see Lütkepohl (1993a).
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Selection of estimation method

The estimation method is selected automatically. EGLS estimators are com-

puted if (subset) constraints were specified, otherwise the OLS estimators are

computed.

3.2.8 VEC Model estimation

Structural form VEC

Currently, structural VECs can only be estimated with the two step estimation

strategy (see below).

Parameters of a structural model are efficiently estimated with the three-

stage least squares estimator (3SLS). The estimator and its properties are

treated in detail in Dhrymes (1974, Chapter 4) and Judge et al. (1988, Chapter

14).

The 3SLS estimator is chosen automatically for structural models if no

other estimator has been specified by the user. A structural model is identified

by F0 6= IK , i.e. if structural coefficients were specified in F0.

Reduced form VEC model

Model (3.7) can be estimated in two different ways, the Johansen ML approach

(Johansen (1995)) and a two stage estimation (see, e.g., Lütkepohl (1993a,

Chapter 11)).

The Johansen ML approach:

Currently, only the sub model

∆yt = α(βyt−1 + β(d)d
(ec)
t )

+FYt−1 + C(sys)d
(sys)
t + ut (3.14)

can be estimated by the Johansen approach. The estimators α̂JOH , F̂ JOH ,

Ĉ
(sys)

JOH , and [β̂JOH : β̂(d)
JOH ] are described in Johansen (1995, Chapter 6), their
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distribution in Johansen (1995, Chapter 13). Since α̂JOH and [β̂JOH : β̂(d)
JOH ]

are not unique, the cointegration vectors [β̂JOH : β̂(d)
JOH ] are normalized as in

Johansen (1995, Chapter 13.2).

The two-step approach:

As the name suggests the procedure consists of two steps. The first step either

estimates or imposes cointegration vectors [β : β(d)] and the second stage

estimates the remaining parameters conditionally on the first stage.

As outlined above, r1 cointegration vectors, 0 ≤ r1 ≤ r, are estimated

from the data, and r2 = r − r1 cointegration vectors are imposed. If r1 =

1 the cointegration relation can be estimated by OLS or by Johansen’s ML

approach. If r1 > 0 only Johansen’s ML approach is available for estimating

the cointegration vectors. The remaining r2 > 0 cointegration vectors must be

specified by hand, see Figure 3.5.

The OLS and EGLS estimators of the VEC model (3.7) have the same

functional form as for the VAR model (3.2). However, now they are based on

the compact form (3.9), which defines Y , G, and Z differently. The estimators

are not repeated here, see page 76.

Selection of estimation method

Before estimating the VEC model the first time the user is forced to select

Estimation→Estimation Strategy from the VEC sub window. An information

about the current estimation strategy is given. The strategy can be changed

from the two-step approach to Johansen’s ML approach.

For the two step approach there are options for specifying the estimation

method of the first step and second step. For the second step four different

options are available: Automatic, OLS, EGLS, and 3SLS. Automatic chooses

OLS, EGLS, or 3SLS estimation depending on the restrictions imposed.
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Reformulation of the VEC model

Using the equivalence of the VEC form and the VAR form on page 69, the

VEC model can be rewritten in the usual VAR form. Since some of the tools

used later are based on the VAR form, the estimated VEC is automatically

rewritten and additionally displayed in VAR form.

3.2.9 Structural analysis

Model (3.1) summarizes the instantaneous and intertemporal relations between

the variables in the vector y. The exact form of these relations is usually

difficult to see directly from the Ai coefficients. Tools for analyzing these

relations are provided in the menu Structural analysis of the VAR and VEC sub

windows.

The menu is the same for the VAR and VEC analyses. It contains entries

for causality tests, impulse response analysis, and forecast error variance de-

composition. Causality tests and forecast error variance decompositions are

only sensible in the context of VAR(p) models of dimension K > 1 and or-

der p > 0. In all other cases these two options are disabled. Furthermore,

the model must be estimated before forecast error variance decomposition and

impulse response analysis can be conducted.

The tools provided are standard in the VAR literature. However, inferen-

tial methods were refined in the past (Sims and Zha (1999), Benkwitz et al.

(2000)). Especially the various bootstrap confidence intervals for impulse re-

sponses of full and subset VAR and VEC models offered by JMulTi are cur-

rently not found in any other statistical software package.
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Causality tests

Tests for Granger non-causality and instantaneous causality can be performed

when selecting Structural Analysis→Causality Tests from the VAR or VEC sub

window. The concepts and tests are described, for example, in Lütkepohl

(1993a) and Hamilton (1994). Also note the critique of instantaneous and

Granger causality expressed there.

Test for Granger non-causality:

There are different possibilities to translate the concept of Granger-causality

in the context of a VAR analysis and to develop a test based on a specific

translation.

JMulTi translates Granger-causality as shown in Lütkepohl (1993a, Chap-

ter 2): Granger-causality can be expressed with the coefficients of the Ai pa-

rameter matrices. For that, the K variables in yt are classified into a K1-

dimensional vector y1,t and a K2-dimensional vector y2,t (K = K1 + K2)

yt =

 y1,t

y2,t

 .

The model parameter matrices of (3.1) are accordingly written in a block

structure

Ai =

 A11,i A12,i

A21,i A22,i


with Akl,i having dimension (Kk×Kl), k = 1,2 and l = 1,2. The process yk,t

is causal for yl,t in Granger’s sense if there exists at least one Alk,i 6= 0, l 6= k.

The respective blocks in the parameter matrices can be tested whether

they jointly differ significantly from zero. This will create a test for Granger

non-causality. The statement that yk,t does not Granger-cause yl,t translates

into Alk,i = 0 for i = 1 . . . , p, k 6= l. The test must check this parametric

expression. In the cointegration analysis the test procedure fits the VAR-form
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of the VEC model. However, it does not estimate a VAR(p) but a VAR(p+1)

model and completely ignores Ap+1 in the test statistic.

The Wald test of Lütkepohl (1993a) is used here. A Wald statistic is

based on the unconstrained estimator which is asymptotically normal. That

is, an unrestricted VAR (3.2) is estimated first and then tested whether the

coefficients in Akl,i are jointly not significantly different from zero:

H0: Sg = 0

H1: Sg 6= 0

where S is defined as in (3.11). The test statistic

λw = (Sg)′
(
SΣ/

ĝOLS
S ′
)−1

(Sg) (3.15)

is computed and adjusted as follows:

λF = λw/(pKkKl)

which takes into account the use of the estimator Σ̂/g. The statistic λF is

reported and should behave like a F (pKkKl, T −N) under H0. Granger non-

causality can be rejected at significance level γ if FpKkKl,T−N(x < λf ) < 1−γ.

Test for instantaneous causality:

A condition for instantaneous causality is given by

E(u1tu
′
2t) = 0, (3.16)

see Lütkepohl (1993a). This condition translates to zero constraints for σ =

vech(Σ/u), where the vech operator stacks all elements on and below the main

diagonal of Σ/u. Σ̂/u is estimated from the unrestricted VAR model (3.2). Next

it is tested whether the identified coefficients of σ in (3.16) are jointly not

significantly different from zero:

H0: Sσ = 0

H1: Sσ 6= 0
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JMulTi computes the test statistic

λw = T σ̃′S ′
(
2SD+

K(Σ̃/ûOLS
⊗ Σ̃/ûOLS

)D+′

K S ′
)−1

Sσ̃,

where D+′

K is the Moore-Penrose inverse of the duplication matrix DK , and

S is a (v ×K(K + 1)/2) matrix of rank v, see Lütkepohl (1993a, Chapter 3).

Under H0, λw is asymptotically χ2(v) distributed.

Impulse response analysis

Impulse responses are often used for interpreting the relation between the en-

dogenous variables modeled in a VAR. There are different impulse responses

depending on the kind of impulse hitting the system. For detailed discus-

sions see Sims (1980), Lütkepohl (1993a), and Lütkepohl and Breitung (1997)).

JMulTi computes so-called forecast error and orthogonal impulse responses.

Impulse responses considered:

The forecast error impulse response (see Lütkepohl (1991, Sec. 2.3.2)), φij,h

traces out the expected response of yi,t+h to a unit change in yj,t holding

constant all past values of yt, Y−1 = {yt−1, yt−2, . . .}. The impulse response

φij,h is the ijth element of the matrix Φh obtained as

Φh = A−1
0

h∑
i=1

Φh−iAi, h = 1, 2, . . . , (3.17)

where Φ0 = A−1
0 , and Ai = 0 for i > p. Since the change in yit given Y−1 is

measured by the innovation uit and since the ut are the 1-step ahead forecast

errors Φh are called forecast error impulse responses (Lütkepohl (1993a)). The

estimator of Φh is

Φ̂h = Â−1
0

h∑
i=1

Φ̂h−iÂi, h = 1, 2, . . . , (3.18)

with Φ̂0 = IK , and Âi = 0 for i > p.
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Tracing out the effects of shocks that are not isolated in one variable but

reflect the correlation structure of the error terms in ut lead to the so-called

orthogonal impulse responses

Θh = ΦhP, A0 = IK (3.19)

where Φh is defined as in (3.17) and where P is the lower triangular Choleski

decomposition of Σ/u such that Σ/u = PP ′ (Lütkepohl (1993a)). The condition

A0 = IK indicates that this type of impulse response is only computed for

reduced form models. Since Θh can be derived from a transformed model of

(3.2) with diagonal residual covariance matrix (i.e. the transformed residuals

do not have contemporaneous correlation, are orthogonal) this type of impulse

response is called orthogonal. Θh is estimated, of course, by

Θ̂h = Φ̂hP̂ . (3.20)

Inference:

In order to measure estimation uncertainty JMulTi computes three different

bootstrap confidence intervals. Bootstrap confidence intervals enjoy much pop-

ularity. They are regarded as being more reliable than confidence intervals

based on first order asymptotic theory. This view is discussed extensively

later in Chapter 4.

The following residual based bootstrap method is considered:

1. Estimate the parameters of the model (3.1) by a suitable procedure.

2. Generate bootstrap residuals u∗1, . . . , u
∗
T by randomly drawing with re-

placement from the set of estimated and re-centered residuals, {û1 −

ū., . . . , ûT − ū.}, where ût is defined as in (3.12), and ū. = T−1∑ ût.

3. Set (y∗−p+1, . . . , y
∗
0) = (y−p+1, . . . , y0) and construct bootstrap time series

recursively using the levels representation given in (3.1),

y∗t = Â−1
0

(
Â1y

∗
t−1 + · · ·+ Âpy

∗
t−p + B̂Xt + ĈDt + u∗t

)
, t = 1, . . . , T.
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4. Reestimate the model parameters using y∗t instead of yt.

5. Calculate a bootstrap version of the statistic of interest, say φ̂∗ij,h and

θ̂∗ij,h, based on the parameter estimates obtained in Stage 4.

Note that Stage 4 applies the same estimation procedure of Stage 1. This

is important in the cointegration analysis. The cointegration vector is reesti-

mated in every bootstrap replication if it was estimated in Stage 1. Otherwise

all cointegration vectors are held constant during the bootstrap if they were

parametrically imposed to the model before estimation. In other words, the

bootstrap algorithm respects the information on modeling the cointegration

relation as shown in Figure 3.5.

In the following the symbols φ, φ̂T and φ̂∗T denote some general impulse

response coefficient φij,h or θij,h, its estimator implied by the estimators of

the model coefficients and the corresponding bootstrap estimator, respec-

tively. The subscript T indicates the sample size. Furthermore, denote Y =

{y−p+1, . . . , y0, . . . , yT} and X = {x−q+1, . . . , x0, . . . , xT}.

The most commonly used method in setting up confidence intervals for

impulse responses in practice proceeds by using γ/2- and (1− γ/2)-quantiles,

say s∗γ/2 and s∗(1−γ/2), respectively, of the bootstrap distribution L(φ̂∗T | Y , X),

and defining

CIS =
[
s∗γ/2, s

∗
(1−γ/2)

]
. (3.21)

The interval CIS is the percentile confidence interval described, e.g., by Efron

and Tibshirani (1993).

Other intervals proposed in the bootstrap literature (see, e.g., Hall (1992))

are also available in JMulTi. Let t∗γ/2 and t∗(1−γ/2) be the γ/2- and (1 − γ/2)-

quantiles of

L(φ̂∗T − φ̂T | Y , X),
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respectively. According to the usual bootstrap analogy,

L(φ̂T − φ) ≈ L(φ̂∗T − φ̂T | Y , X),

one gets the interval

CIH =
[
φ̂T − t∗(1−γ/2), φ̂T − t∗γ/2

]
. (3.22)

Hall (1992, page 85) calls CIH “percentile interval” as well, and denotes on

page 12 CIS as the “other percentile method”. Therefore, in JMulTi the

method leading to CIH is referred to as Hall’s percentile CI, whereas the

method underlying CIS is referred to as Efron’s percentile CI.

A studentized version of CIH is also available. It uses the statistic (φ̂T −

φ)/
√

v̂ar(φ̂T ) as a basis for constructing confidence intervals. Hence in the

present context it may be useful to determine a bootstrap quantile based on

the statistic (φ̂∗T − φ̂T )/
√

v̂ar(φ̂∗T ). In this approach the variances are also

estimated by a bootstrap, that is,

v̂ar(φ̂T ) =
1

B∗ − 1

B∗∑
i=1

(
φ̂∗,iT − φ̂∗T

)2

and

v̂ar(φ̂∗T ) =
1

B∗∗ − 1

B∗∗∑
i=1

(
φ̂∗∗,iT − φ̂∗∗T

)2

,

where φ̂∗∗,iT is obtained by a double bootstrap, that is, pseudo-data are gen-

erated according to a process obtained on the basis of the bootstrap systems

parameters and B∗ and B∗∗ are the respective numbers of bootstrap replica-

tions in the first and second stages (see Hall (1992) for details).

Let t∗∗γ/2 and t∗∗(1−γ/2) be the γ/2- and (1− γ/2)-quantiles, respectively, of

L
(

(φ̂∗T − φ̂T )/
√

v̂ar(φ̂∗T )
∣∣∣∣Y , X

)
.

Using these quantiles the studentized Hall interval is

CISH =
[
φ̂T − t∗∗(1−γ/2)

√
v̂ar(φ̂T ), φ̂T − t∗∗γ/2

√
v̂ar(φ̂T )

]
. (3.23)
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The question arises which interval should be used in addition to the esti-

mated impulse response. Chapter 4 discusses the intervals CIS, CIH , CISH

and alternative bootstrap confidence intervals in detail. A Monte-Carlo study

shows the small sample properties of these intervals in cases of special interest

in empirical work. See also the next section in this chapter. It demonstrates

the bootstrap confidence intervals contained in JMulTi in the impulse response

analysis of a German monetary system.

Forecast error variance decomposition

The difference between the realization yt+h and its h-step forecast yt(h) is

called forecast error. The forecast error variance decomposition ωjk,h analyzes

the contribution of innovations in variable k to the forecast error variance of

the h-step forecast of variable j.

In JMulTi the they are estimated as

ω̂jk,h =
h−1∑
i=0

θ̂2
jk,i/M̂SE[yj,t(h)]

where θ̂jk,i is the (j, k)-th element of Θ̂i in (3.20) and the MSEs of the yj,t

variables are taken from the diagonal elements of

M̂SE[yt(h)] =
h−1∑
i=0

Θ̂iΘ̂
′
i.

Chapter 4 discusses problems related to asymptotic confidence intervals

for impulse responses. There are cases where these intervals are problematic.

Similar problems exist for forecast error variance decompositions, for instance

if they are 0. Consequently, confidence intervals for ω̂jk,h are currently not

estimated in JMulTi.
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3.3 Analyzing a German monetary system

with JMulTi

The model for the German monetary sector as analyzed by Brüggemann and

Wolters (1998) will be considered next. Their work investigates channels of

German monetary policy. For that purpose, a subset VEC model is specified

and estimated. It is interpreted with an impulse response analysis. However,

no measure is reported for assessing the estimation uncertainty of impulse

responses. This is provided in Benkwitz et al. (2001). Their paper computes

and compares various bootstrap confidence intervals for the M1 system of

Brüggemann and Wolters (1998) and the M3 system of Lütkepohl and Wolters

(1998).

This section demonstrates how JMulTi can be used to analyze the M1 sys-

tem. In addition the roubustness of the results of Brüggemann and Wolters

(1998) is analyzed by using alternative VAR models. Another question is

addressed in the last subsection. It is related to differences of various boot-

strap confidence intervals in empirical analyses. Monte-Carlo studies often

recommend to apply a specific method in the empirical analysis. For example,

Chapter 4 recommends to use CIH . Nevertheless, it is interesting to see to

what extend the most often used bootstrap confidence intervals differ when

they are computed for impulse responses of an empirical VEC model. Com-

parative results are reported for an unconstrained reduced form VAR model

in Benkwitz et al. (2001). In contrast to that, different bootstrap confidence

intervals for the VEC model as specified by Brüggemann and Wolters (1998)

are compared in this section.
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3.3.1 Loading data set

The data set is provided in the file BW M1.DAT. It is available from http:

//www.jmulti.de/download.html and can be loaded into the program with

the load tool (see Subsection 3.1.5 for details). The data set contains quarterly

seasonally unadjusted data. The following variables are included: M1 is nomi-

nal M1; GNP is the real GNP; P is the GNP deflator; R is a long-term interest

rate (‘Umlaufsrendite’); PM is an import price index. In addition there are

a number of deterministic variables in the data set such as seasonal dummies

and a shift dummy S90Q3 which takes into account the level shifts in M1

and GNP due to the German re-unification. It equals zero until 1990(2) and

afterwards it has the value one. Data sources are documented in Brüggemann

and Wolters (1998) and are reproduced in the comment section of the data

file.

3.3.2 Initial analysis

Brüggemann and Wolters (1998) construct quarterly models for the period

1962(1) - 1989(4) and the extended period 1962(1) - 1996(2). In the following

the model version for the extended period 1962(1) - 1996(2) is analyzed. It

includes German re-unification in 1990. The system comprises the following

variables: m1t is the logarithm of M1; yt is the logarithm of GNP ; pt is

the logarithm of P , hence, (m1 − p)t is the logarithm of real M1 and ∆pt =

pt − pt−1 is the quarterly inflation rate; Rt is R, the long-term interest rate

(‘Umlaufsrendite’); pmt is the import price index PM which is treated as

an unmodelled variable reflecting the openness of the German economy and

capturing the effects of exchange rates. In addition the model contains a

number of deterministic variables such as a constant term, seasonal dummies

and the shift dummy S90Q3 which captures the effect of German re-unification.

The transformation tools in the Initial Analysis can be used for transforming

http://www.jmulti.de/download.html
http://www.jmulti.de/download.html
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Figure 3.8: Plot of nominal M1, prices (P), real GNP and long-term interest

rate (R).

the original series. It is also possible to load the variables directly from the

data file BW M1 TRANS.dat which includes the transformed series.

With the plot tool which is found in the Initial Analysis sub frame plots

of the untransformed series M1, P, GNP, and R are created. These plots are

displayed in a graphic window. The window has a menu with functions for

zooming, converting, and printing. Thus all plots can be saved and included in

documents later. For instance, Figure 3.8 is a “JMulTi” graphic. It is created

from a zoomed Gauss graphic (to cut off the main title) which was converted

(i.e. exported) and imported in this document.

Brüggemann and Wolters (1998) found evidence that the variables m1t,

pt, yt and Rt are I(1) and cointegrated with cointegration rank r = 1. These

results can easily be reproduced using the UR Tests and Cointegration Test tools
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of the Initial Analysis. For the period from 1961(4) to 1996(2) Brüggemann and

Wolters (1998, Equation (3.4)) found the following long-run money demand

relation

(m1− p)t = 1.105yt − 5.133Rt + 0.407S90q3t + ect. (3.24)

Here ect stands for the deviations from the long-run relation.

3.3.3 Model specification

Brüggemann and Wolters (1998) estimate the VEC model (3.5) by imposing

the long-run money demand relation (3.24). The estimation results of JMulTi

are given in Table 3.1. There are small differences compared to the results

reported in Brüggemann and Wolters (1998, Table 4.6) due to different esti-

mation methods (in JMulTi GLS vs. 3SLS) and different statistical software

(in JMulTi Gauss vs. EViews2.0).

This model is the result of a specification procedure described in detail in

Brüggemann and Wolters (1998). Lagged differences with insignificant coef-

ficients are removed step by step starting with a specification which contains

differenced values up to the fourth lag. Regardless of the t-values of the coeffi-

cients of the error correction term, this term is included in the regressions until

all insignificant lagged differences have been eliminated. The error correction

term is only eliminated if it turns out to be insignificant in the model in which

the other insignificant terms had already been eliminated. The determinis-

tic variables are not eliminated during the specification procedure even if the

t-value of the respective coefficient indicated an insignificant value.

The specification procedure can be reproduced in JMulTi with the search

algorithm for subset constraints. Since the algorithm imposes slightly different

restrictions the zero constraints of Brüggemann and Wolters (1998) have been

entered by hand here.
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Table 3.1: Estimation results of M1 system. Note that every equation contains

all deterministic variables. Their coefficients are not shown here. Estimation

Period is 1962(1) - 1996(2)

∆m1t ∆pt ∆yt ∆Rt

ect−1 -0.116
(-6.688)a

∆m1t−1 0.045
(2.496)

∆m1t−2 0.195
(3.042)

∆m1t−3 0.112
(1.967)

∆pt−1 -0.129
(-2.500)

∆pt−2 0.203 -0.286
(3.708) (-3.042)

∆pt−4 0.411 0.541
(5.385) (10.245)

∆yt−2 -0.226 0.085 -0.436
(-4.772) (3.759) (-6.497)

∆yt−3 0.118
(5.631)

∆yt−4 0.455
(7.551)

∆Rt−1 -0.877 0.247 0.187
(-3.627) (2.440) (2.277)

∆pmt−4 0.065
(2.757)

a Absolute values of t-ratios in parentheses.

Table 3.2: Residual correlation matrix of M1 System

m1t pt yt Rt

m1t 1
pt 0.180 1
yt 0.170 -0.078 1
Rt -0.161 0.001 0.171 1
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Figure 3.9: Estimated impulse responses for full VAR(5) model with 95% CIH .

Since the model is estimated in reduced form (3.7), a fully unrestricted

version with full rank error correction term can be estimated by considering

the VAR in (3.2) with order p = 5. This is done in the next subsection.

Table 3.2 shows quite small instantaneous residual correlation. Therefore no

orthogonalization is needed for computing meaningful impulse responses.

3.3.4 VAR(5) model

Figure 3.9 shows the estimated impulse responses of a full VAR(5) model with

95% Hall percentile bootstrap confidence intervals (CIH). The intervals for

this and the following model versions were computed using B = 1, 000 boot-

strap replications. The sensitivity of the results with respect to the number of

bootstrap replications is easy to check in JMulTi. Every computed confidence

interval is stored in the program and listed with a label that also includes B. It
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turns out that in this case similar intervals are obtained even if only B = 100

replications are used.

A major problem with the intervals is that they are rather wide and, hence,

the actual responses in the underlying system are quite uncertain if the inter-

vals properly reflect the estimation variability. For example, based on the

confidence intervals in Figure 3.9, an impulse in m1 does not have a significant

effect on the price level (m1 → p). Moreover, an increase in the price level does

not have a significant impact on income (p → y). Thus, an impulse response

analysis based on an unrestricted reduced form model does not give a clear

indication of the relations between the variables. The results in Figure 3.9

also show the importance of computing CIs for the impulse responses because

an interpretation that ignores the substantial estimation uncertainty may be

misleading.

3.3.5 The full VEC model

In a next step the cointegration vector is fixed to Equation (3.24) and the VEC

model (3.5) is estimated. In Figure 3.10 the estimated impulse responses and

CIH intervals are shown. In order to see the effects of imposing the cointegra-

tion restriction, intervals of the full VAR are also displayed. The cointegration

relation is not reestimated in every bootstrap replication. See Benkwitz et al.

(2001) for a discussion about the effect of fixing the cointegration relation in

contrast to a reestimation in every bootstrap replication.

In nearly all cases both models show similar confidence intervals up to the

forcast horizon 4. The deviation for higher forecasts is sometimes considerable,

for example m1 → m1 or R → R. The estimated impulse responses and their

confidence intervals in the VEC model reflect in these cases the parametric

constraints associated with the VEC model. Interestingly enough, the size of

the intervals is in most cases the same. But there are also cases where the es-
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Figure 3.10: Estimated impulse responses for full VEC model with 95% CIH

(dashed lines) and 95% CIH from the full VAR (dotted lines).

timation uncertainty seems to increase when estimating the impulse responses

from the VEC model. It is also possible that the intervals from the VAR model

are distorted due to missing constraints (Benkwitz et al. (2001)).

3.3.6 The subset VEC model

An improvement in the estimation precision can be expected from taking into

account the restrictions imposed by Brüggemann and Wolters (1998). The

results are shown in Figure 3.11. The impulse responses are computed from

the subset VEC model as presented in Table 3.1.

As for the full VEC model the cointegration vector is fixed in each boot-

strap replication. The CIH intervals from the full VEC model are included

for comparison purposes. The comparison indicates that the precision of the
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Figure 3.11: Estimated impulse responses for subset VEC model with point-

wise 95% CIH (dashed lines) and 95% CIH from the full VEC (dotted lines).

estimated impulse responses from the subset VEC model increased. Now the

response of m1 to an impulse in the price level p has become significant and

the same is true for the response of p to an impulse in m1, for instance. Thus,

the interpretation from Brüggemann and Wolters (1998) that the impact of

changes in m1 on the price level may not be very strong is not confirmed here.

In Figure 3.11 it is interesting to see that the impulse responses from the

subset model are in most cases within the intervals from the unrestricted model,

in particular for low lags. On the other hand, the intervals from the subset

model do not always contain the estimates of the impulse responses from the

unrestricted model. Hence, estimating the impulse responses from an unre-

stricted model does not only increase the uncertainty of the estimates but may

also lead to quite different point estimates. The long-run development of the
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Figure 3.12: Comparison of bootstrap confidence intervals for impulse re-

sponses computed from the subset VEC model. The plot shows pointwise

95% confidence intervals: CIH (strong dashes), CIS (fine dots), and CISH

(fine dots and dashes)

impulse responses from both models is similar due to enforcing the cointegra-

tion restriction.

It may also be worth noting that using the bootstrap for an unrestricted

model may result in singularities in the asymptotic distributions of the esti-

mated impulse responses. This in turn may lead to strongly distorted and,

hence, unreliable bootstrap confidence intervals as pointed out in Chapter 4.

Thus, using a subset model is also useful for removing one source of problems

for the bootstrap confidence intervals.
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3.3.7 Comparison of bootstrap confidence intervals

A comparison of the three bootstrap confidence intervals in JMulTi is carried

out next. It discusses the question to what extend the confidence intervals

differ in a real empirical analysis. For that, the intervals CIH , CIS, and CISH

were computed. The results are shown in Figure 3.12.

For the confidence intervals based on a studentized statistic (CISH) 50

bootstrap drawings for estimating v̂ar(φ̂∗T ) were used. Furthermore, the boot-

strap algorithm on page 84 uses the same seed for pseudo randomly drawing

the residuals in Step 2 when computing the intervals CIH/ CIS and CISH .

Therefore, the intervals are computed from the same bootstrap time series.

The differences in the intervals in Figure 3.12 are completely due to differ-

ences between the methods.

Clearly in this case the differences between the methods are not substantial.

Because in most cases the confidence intervals are almost symmetric around

the estimated impulse response coefficients it is not surprising that CIS and

CIH are similar. Also, the CISH intervals are quite similar to CIH in most

cases. The interpretation of the estimated impulse response does not depend on

the type of confidence interval used in this example. However, this statement

cannot be generalized. There are examples where the choice of the type of the

confidence interval affects the interpretation (e.g. Brüggemann and Lütkepohl

(2001), Ehrmann et al. (2001)). Therefore, it is interesting to study these

intervals in more detail. This will be done in the next chapter.

3.4 Summary

In this chapter the software JMulTi was introduced. The part of JMulTi which

has been provided by the author was documented and discussed. The use in

the VAR-framework of JMulTi has been demonstrated on the basis of a small
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monetary system for Germany.

JMulTi makes methods from most recent research available to empirical

analysis. For example, the impulse response analysis provides various boot-

strap confidence intervals which are not available in other popular software

packages for dynamic econometric analysis. They either do not provide con-

fidence intervals for impulse responses (e.g. PcFiml) or they do provide them

but only for simple unrestricted VARs (e.g. EViews)

JMulTi is easy and intuitively to use because it is a fully menu-driven

software. Therefore, it is a good learning and teaching software. Until now,

JMulTi has been used in econometric courses at the Humboldt University,

Berlin and at the European University Institute, Florence.

It has turned out that the capabilities of JMulTi in the context of the

VAR models are good for a “general to specific” modeling strategy. Many

useful tools help to specify and estimate the models fast and reliable. The

specification of zero restrictions in the model coefficient matrices is a good

example. A simple mouse click on a matrix element includes or excludes the

respective variable from the restricted regression. It is also possible to use an

algorithm to search for zero constraints.

The last section finished with an interesting result. The compared boot-

strap confidence intervals do not show differences that are important for the

interpretation. However, this statement cannot be generalized. The shown

intervals are symmetric around the estimated impulse response. In this case

differences between CIH and CIS cannot be expected. But there are studies

(e.g. Brüggemann and Lütkepohl (2001), Ehrmann et al. (2001)) with ex-

tremely unsymmetric intervals. In such cases it matters what interval (CIH

or CIS) has been used. Nevertheless, the small differences between CIH and

CISH are astonishing and question the computational burden that is connected

to CISH .



Chapter 4

Bootstrap confidence intervals

for impulse responses

In Section 3.3 of the previous chapter it was shown how VAR models can be

used for analyzing and understanding economic systems. An impulse response

analysis has been conducted and various bootstrap confidence intervals were

computed. Two known problems related to the inference in the impulse re-

sponse analysis were mentioned. They can arise when computing confidence in-

tervals for estimated impulse responses using the first order asymptotic method

(see Lütkepohl (1993a)).

This chapter analyzes the question whether the known problems can be

solved by using bootstrap methods (see Efron (1979)). The work presented

here is based on Benkwitz et al. (2000) and Benkwitz et al. (2001).

In fact, bootstrap confidence intervals (CIs) or regions are often reported

in empirical studies because they are regarded as being more reliable than con-

fidence intervals based on asymptotic theory. Support for this view seemingly

comes from the skewness of the bootstrap intervals which contrasts with the

symmetry of standard asymptotic intervals. Some Monte Carlo studies have

confirmed this belief (see, e.g., Fachin and Bravetti (1996), Kilian (1998b)).

100
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On the other hand, it was also found that in some cases bootstrap CIs are not

very reliable. There are studies showing that they can lead to extremely poor

CIs with actual confidence content substantially different from the nominal

level (e.g., Griffiths and Lütkepohl (1989), Fachin and Bravetti (1996), Kilian

(1998a), Kilian (1998b)). Of course, this may partly be a small sample prob-

lem and hence small sample modifications and corrections have been proposed

(e.g., Kilian (1998a), Kilian (1998b)). Although these modifications are quite

successful in some cases, it will turn out in the simulations that they do not

help to solve the particular problems encountered with impulse responses in

certain regions of the parameter space.

This chapter will show that in addition to these small sample problems

there are also conceptual problems that prevent the usual asymptotic and

bootstrap CIs for impulse responses from having the correct probability content

even asymptotically. Sims and Zha (1999) also launched a critique of the usual

approaches to construct CIs for impulse responses. Their critique is based on

a Bayesian point of view, however. In contrast, the following treatment will

remain within the classical asymptotic framework. It is argued that even with

this treatment problems may arise.

The main problems result from the fact that the convergence rate of the es-

timators to their asymptotic distribution must remain constant over the whole

parameter space. Otherwise, the standard asymptotics and the bootstrap will

not work in the case considered here. It was noted, e.g., by Lütkepohl (1993a,

Sec. 3.7), that this condition is not even satisfied for stationary VARs, let

alone nonstationary ones. In particular, it is not satisfied for some cases of

interest from an applied point of view. The problem is discussed in detail for

the simplest case of a stationary univariate AR process of order one (AR(1)).

It is clear that a method which has problems even in the simplest case can-

not be expected to perform well for more complicated multivariate processes.
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Therefore, the results question the precision of inference procedures which are

in common use in applied macroeconomics. For the AR(1) case possible al-

ternatives are considered and their potential for being generalized to higher

order and to higher dimensional processes is discussed. Unfortunately, it turns

out, that the methods which perform best in the simplest case are not easily

generalizable.

A general framework of estimating impulse responses was presented in the

last chapter. Inference on impulse responses is considered in Section 4.1 where

also attention is drawn to some basic problems of asymptotic inference in the

present context. A detailed analysis of the AR(1) case is provided and pos-

sible solutions are offered for this special case. A Monte-Carlo experiment is

discussed in Section 4.3. Generalizations for more general cases and recom-

mendations are discussed in Section 4.4.

The following notation is used in this chapter. The operator oP (·) is the

usual symbol for the order of convergence in probability. Furthermore,
d→

signifies convergence in distribution and L(X) denotes the distribution of the

random variable X, while FX is used for the cumulative distribution func-

tion. P (·) is used to denote the probability of some event and Pα(·) is used

if the probability corresponding to a specific parameter α of the underlying

distribution is of interest.

4.1 Inference on estimated impulse responses

Usually the coefficients of the model (3.1) are estimated by some standard

procedure such as LS and estimators of the impulse responses are then obtained

as

φ̂ij,h = φij,h(Â0, Â1, . . . , Âp) (4.1)

where the Â0, . . . , Âp are the estimated VAR coefficient matrices.
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4.1.1 Standard asymptotic inference

Assuming that the Âi have an asymptotic normal distribution,

√
Tvec([Â0, . . . , Âp]− [A0, . . . , Ap])

d→ N(0, ΣÂ), (4.2)

we have that the φij,h have an asymptotic normal distribution as well,

√
T (φ̂ij,h − φij,h)

d→ N(0, σ2
ij,h), (4.3)

where

σ2
ij,h =

∂φij,h

∂α′
ΣÂ

∂φij,h

∂α
(4.4)

with α = vec[A0, . . . , Ap], and ∂φij,h/∂α denotes a vector of partial derivatives.

The result (4.3) holds if σ2
ij,h is nonzero which is a crucial condition for asymp-

totic inference to work. Note that ΣÂ may be singular if there are constraints

on the coefficients or if the variables are integrated and/or cointegrated (see

Lütkepohl (1993a, Chapter 11)). However, even if ΣÂ is nonsingular, σ2
ij,h may

be zero because the partial derivatives in (4.4) may be zero. In fact, they

will usually be zero in parts of the parameter space because the φij,h generally

consist of sums of products of the VAR coefficients and, hence, the partial

derivatives will also be sums of products of such coefficients which may be

zero.

To see the problem more clearly, consider the simple case of a one-dimen-

sional AR(1) process yt = αyt−1 + ut. In this case φh = αh. Suppose α̂ is an

estimator of α satisfying

√
T (α̂− α)

d→ N(0, σ2
α̂) (4.5)

with σ2
α̂ 6= 0. Then

√
T (α̂2 − α2)

d→ N(0, σ2
α̂2) (4.6)

with σ2
α̂2 = 4α2σ2

α̂ which is obviously zero if α = 0. Of course, this is a

well-known result as in that case T α̂2 is known to have a proper asymptotic
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distribution and thus
√

T α̂2 must be degenerate. Hence, estimated impulse

responses may have a degenerate asymptotic distribution even if the underlying

data generation process (DGP) is a well behaved stationary process.

One might be tempted to use (4.6) as a starting point for the construction

of confidence intervals for α2. Since the estimated σ2
α̂2 obtained by replacing

α and σ2
α̂ by their usual LS estimators will be nonzero almost surely one may

consider the t-ratio
√

T (α̂2−α2)/(2α̂σ̂α̂) as a basis for constructing a CI. The

next section shows that this results in a conservative CI for the case α = 0.

It is not clear that a conservative CI will always be obtained in the more

interesting cases where impulse responses from higher dimensional processes

are considered. Of particular concern is the fact that the procedure fails for a

case of special interest, namely when the impulse responses are all zero. This

failure is typical also for higher dimensional processes for which the order may

also be greater than 1. Of course, the situation where some variable does not

react to an impulse in some other variable, i.e. the impulse response is zero, is

of particular interest because it means that there is no causal link in a certain

part of the system. Hence, the asymptotic CIs fail in situations of particular

importance. Note, however, that for stable, stationary VAR(p) processes, the

asymptotic CIs work all right for φij,h with h ≤ p. This fact was used by

Lütkepohl and Poskitt (1996) and Saikkonen and Lütkepohl (2000) to point

out a possibility for circumventing the problem by assuming that the true DGP

is an infinite order VAR process. Although the asymptotic problems can be

fixed in this way, simulations reported in Lütkepohl and Poskitt (1996) indicate

that this may not be very helpful in samples of the size typically available in

macro econometrics.
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4.1.2 Bootstrap inference

In the last two decades, bootstrap methods became popular in empirical work.

The name bootstrap was introduced by Efron (1979). This work is widely seen

as the starting point of the development and analysis of bootstrap methods in

theoretical and empirical sciences which was accelerated by emerging computer

power.

There exist different views about the main characterization of the boot-

strap. One direction explains the bootstrap by replacing an unknown dis-

tribution function F by its empirical estimator F̂ , in a functional form of

an unknown quantity of interest. From this point of view, the estimation of

the population mean by the sample mean is nothing else than applying the

bootstrap Hall (1994). In some cases it is possible to calculate the bootstrap

quantities by analytical means. But in the overwhelming number of cases (and

particularly interesting cases) the analytical derivations are infeasible. Here,

Monte–Carlo procedures are a convenient way to get an approximation for the

bootstrap distribution.

Another view identifies bootstrap methods with procedures that apply

Monte Carlo methods for numerical approximation (e.g. Davison and Hink-

ley (1997)). The main characterization of the bootstrap in this view is to

rerun the experiment that led to the sample Y .

In both views the bootstrap is qualified as an asymptotic method. It does

not provide the exact sample distribution of an estimator but its asymptotic

distribution. This distribution is used as an approximation for the unknown

sample distribution. Whether the approximation is good depends on the used

sample size and on the functional form of the estimator.

Since derivations of the properties of bootstrap methods rely on asymptotic

theory it should not come as a surprise that standard bootstrap techniques do

not work well for some cases of interest here. In the next section implications
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of these phenomena for constructing CIs based on asymptotic theory as well

as the bootstrap are considered in detail. This is done for the simplest case

of a stationary univariate AR(1) process. It is argued that methods that have

problems in simple situations cannot be expected to work well for more general

cases.

4.2 Confidence intervals for impulse responses

from a univariate AR(1)

The analysis starts with standard methods which are followed by alternative

methods. It is discussed whether modifications proposed in the literature help

to circumvent the known problems. The entire section considers the process

yt = αyt−1 + ut, t = 1, 2, . . .

where the ut’s are i.i.d. with E(ut) = 0 and σ2
ut

= σ2
u. The impulse response

coefficient at time horizon h is φh = αh. The estimator for α is in the following

denoted as α̂T , indicating that it is based on a sample size of T .

4.2.1 Confidence intervals based on first order asymp-

totic theory

Let |α| < 1. It is well-known that

√
T (α̂T − α)

d→ N(0, σ2
α̂T

= 1− α2)

so that with T−1∑T
t=1 y2

t−1 → σ2
u/(1− α2) we have√∑T

t=1 y2
t−1

σu

(α̂T − α)
d−→ N(0, 1),

see, for example, Anderson (1959). The standard approach uses α̂h
T as a start-

ing point for constructing a confidence interval for αh. Let σ̃2
u = T−1∑T

t=1(yt −

α̂T yt−1)
2. It is easy to see that σ̃2

u = T−1∑u2
t + oP (1) = σ2

u + oP (1).
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The asymptotic distribution of α̂h
T − αh can be found by the so-called

delta method (e.g. Goldberger (1991, p. 102), Lehmann (1999, pp. 85–93)) as

indicated in (4.3) and (4.4). With g(α) = αh

√
T (g(α̂T )− g(α))

d→ N

0,

(
∂g(α)

∂α

)2

σ2
α̂T

 (4.7)

= N
(
0,
(
hαh−1)

)2
σ2

α̂T

)
(4.8)

for α 6= 0,√∑T
t=1 y2

t−1

σ̃uhα̂h−1
T

(α̂h
T − αh)

d−→ N(0, 1). (4.9)

This asymptotic result may be used to establish an asymptotic CI for αh with

a nominal coverage probability of 1 − γ. Let cβ denote the β-quantile of the

standard normal distribution:

P

c(γ/2) ≤

√∑T
t=1 y2

t−1

σ̃uhα̂h−1
T

(α̂h
T − αh) ≤ c(1−γ/2)

 = 1− γ

= P

α̂h
T −

σ̃uh|α̂h−1
T |√∑T

t=1 y2
t−1

c(1−γ/2) ≤ αh ≤ α̂h
T +

σ̃uh|α̂h−1
T |√∑T

t=1 y2
t−1

c(1−γ/2)

 .

The resulting confidence interval is

CI1 =

α̂h
T − σ̃uh|α̂T |h−1√∑T

t=1 y2
t−1

c(1−γ/2), α̂
h
T +

σ̃uh|α̂T |h−1√∑T
t=1 y2

t−1

c(1−γ/2)

 . (4.10)

It follows immediately from (4.9) that for α 6= 0,

P
(
αh ∈ CI1

)
−→ 1 − γ as T →∞, (4.11)

that is, CI1 has asymptotically the correct coverage probability.

However, for α = 0, it turns out that√∑T
t=1 y2

t−1

σ̃uhα̂h−1
T

(α̂h
T − αh) =

√∑T
t=1 y2

t−1

σ̃uh
α̂T

d−→ N(0, 1/h2). (4.12)

As a consequence CI1 is conservative, with an asymptotic coverage probability

larger than the prescribed 1 − γ. In terms of the length of the interval, CI1
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is about h times too large. Small sample errors in coverage probability are

reported in the Monte-Carlo study in Section 4.3.

At this point some general comments are in order. The difficulty in getting

asymptotically correct confidence intervals is caused by the fact that α̂h
T −

αh has a different limiting behavior for α 6= 0 and α = 0, respectively. In

the first case
√

T (α̂h
T − αh) has a nondegenerate limit distribution, whereas

T h/2(α̂h
T −αh) has a proper limit distribution in the latter case. This change in

the limiting behavior is not fully captured by the factor
√∑T

t=1 y2
t−1/(σ̃uhα̂h−1

T )

that leads to a pivotal statistic only in the case α 6= 0.

Such a situation is already known for α̂T − α for the critical case |α| = 1.

The three cases, |α| < 1, |α| = 1 and |α| > 1, lead to very different limit

distributions.

Hence, if the parameter space is extended and also allows for nonstationary

processes the problem of incorrect CIs arises also in other situations than the

simple one considered in detail in the foregoing. Of course, the problem also

becomes more severe when higher order and higher dimensional processes are

considered. In the following the focus is exclusively on stationary univariate

AR(1) processes. However, it should be clear that similar problems also arise

in other situations.

4.2.2 Confidence intervals based on the standard boot-

strap

This chapter considers the same bootstrap method as implemented in JMulTi.

In the notation of the simplified case analyzed here it reads:

1) Estimate α̂T by least squares.

2) Generate bootstrap residuals u∗1, . . . , u
∗
T by randomly drawing with re-

placement from the set of estimated and re-centered residuals, {û1 −
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ū., . . . , ûT − ū.}, where ût = yt − α̂T yt−1, and ū. = T−1∑ ût.

3) Set y∗0 = y0 and construct bootstrap time series recursively by

y∗t = α̂T y∗t−1 + u∗t , t = 1, . . . , T. (4.13)

4) Calculate a bootstrap version of the statistic of interest, in this case

α̂∗T =
T∑

t=1

y∗t y
∗
t−1/

T∑
t=1

(y∗t−1)
2.

A slightly different method was proposed by Efron and Tibshirani (1986) who

centered the original data {yt} first, rather than centering the estimated resid-

uals. Such a scheme was also proposed by de Wet and van Wyk (1986) in

the context of a linear regression model, where the errors were assumed to be

generated by a linear AR(1) process.

The technique of computing bootstrap confidence intervals established by

Efron and Tibshirani (1993) is presented. The bootstrap impulse responses

(α̂∗T )h are derived in the same manner as described above. Now, let s∗γ/2 and

s∗(1−γ/2) be the γ/2- and (1 − γ/2)-quantiles of L((α̂∗T )h | y0, . . . , yT ), respec-

tively, and define

C̃IS =
[
s∗γ/2, s

∗
(1−γ/2)

]
.

The interval C̃IS is the percentile confidence interval described by Efron and

Tibshirani (1993). However, in the latter reference it is pointed out that C̃IS

may not have the desired coverage. This is for example the case if α̂h
T is a

biased estimator of αh. To fix this drawback different modifications of C̃IS

were proposed in the literature. One possibility is to use a bias correction

based on (Eα̂T − α) and another possibility is to consider (Eα̂h
T − αh). The

latter type of bias correction was introduced in Efron and Tibshirani (1993).

In this study the methodology of Kilian (1998b) is employed that takes into
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account the bias terms of both the initial estimation (Eα̂T − α) and of the

bootstrap estimation (Eα̂∗T − α̂T ). In Kilian (1998b) it is argued that each

time α is estimated by least squares the estimator α̂T is biased. It is therefore

proposed to bias correct the least squares estimator each time it is computed.

The resulting bias corrected estimator will be denoted by α̃T . Kilian

(1998b) proposes to estimate the bias of α̂T by b̂ias = T−1 ∑T
i=1 α̂∗,iT − α̂T ,

which is then used to derive the bias corrected estimator α̃T . If |α̂T | ≥ 1,

set α̃T = α̂T without any adjustments. If |α̂T | < 1 the bias corrected esti-

mate is α̃T = α̂T − b̂ias. If |α̃T | ≥ 1, set α̃T to a value smaller than but

close to one. In the Monte-Carlo experiment in Section 4.3 we use α̃T = .99

for the latter case. The intention of this correction is to circumvent pushing

stationary estimates into the nonstationary region. Then the aforementioned

resampling plan is applied with y∗t = α̃T y∗t−1 + u∗t , t = 1, . . . , T , instead of

formula (4.13). The resulting α̂∗T are bias corrected as α̃∗T = α̂∗T − b̂ias
∗

with

b̂ias
∗

= T−1 ∑T
i=1 α̂∗∗,iT − α̂∗T . In practice b̂ias

∗
is not computed but b̂ias is

used as an approximation.

Now, let t∗γ/2 and t∗(1−γ/2) be the γ/2- and (1− γ/2)-quantiles of L((α̃∗T )h |

y0, . . . , yT ), respectively, and define

CIS =
[
t∗γ/2, t

∗
(1−γ/2)

]
.

Unfortunately, even with bias correction this confidence interval may be

problematic for the purposes considered here. The reason is that an estimator

α̃∗T which is identically equal to zero is very unlikely. Hence, for even h, (α̃∗T )h

is almost always strictly greater than zero. Hence the bootstrap distribution in

this case has positive support and a confidence interval based on the quantiles

of this distribution will not include zero. Consequently, for α = 0 and thus

αh = 0, the coverage probability of such an interval will be zero in small

samples and asymptotically. This phenomenon will become apparent in the

simulations in Section 4.3.
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4.2.3 Hall’s percentile method

Another method of deriving confidence intervals was described by Hall (1992).

Suppose the resampling plan presented at the beginning of the previous sub-

section is used and let t∗γ/2 and t∗(1−γ/2) be the γ/2- and (1 − γ/2)-quantiles

of L((α̂∗T )h − α̂h
T | y0, . . . , yT ), respectively. According to the usual bootstrap

analogy, L(α̂h
T − αh) ≈ L((α̂∗T )h − α̂h

T | y0, . . . , yT ), one gets the interval

CIH =
[
α̂h

T − t∗(1−γ/2), α̂
h
T − t∗γ/2

]
.

Hall (1992) calls such intervals “percentile intervals”. Therefore, in the fol-

lowing the method leading to CIH is referred to as Hall’s percentile method,

whereas the method of the previous subsection is called Efron’s percentile

method.

Benkwitz et al. (2000) show that for α 6= 0 and |α| < 1,

Pα

(
αh ∈ CIH

)
−→ 1 − γ (4.14)

but for the interesting case α = 0 the statement (4.14) does not hold. More-

over, it is argued that usual small sample corrections which aim at reducing

the bias do not help in this context.

It is well-known that a general statistic µT can be better approximated

by the bootstrap if it depends to a lesser extent on the unknown distribution

that governs the data generating process. For example, concerning the sample

mean of i.i.d. random variables it is well known that studentizing leads to a

better rate of approximation by the bootstrap; see Hall (1988). Therefore,

the statistic (α̂h
T − αh)/

√
v̂ar(α̂h

T ) is used as a basis for the construction of a

confidence interval, and determine a bootstrap quantile based on the statistic

((α̂∗T )h − α̂h
T )/

√
v̂ar((α̂∗T )h) . The variances were estimated by the bootstrap

method, that is,

v̂ar(α̂h
T ) =

1

B∗

B∗∑
i=1

(α̂∗,iT )2h −
[

1

B∗

B∗∑
i=1

(α̂∗,iT )h

]2
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and

v̂ar((α̂∗T )h) =
1

B∗∗

B∗∗∑
i=1

(α̂∗∗,iT )2h −
[

1

B∗∗

B∗∗∑
i=1

(α̂∗∗,iT )h

]2

,

where B∗ and B∗∗ are the respective numbers of bootstrap replications. Note

in particular that α̂∗∗,iT is obtained by a double bootstrap, that is, pseudo-data

are generated according to a process with the parameter α̂∗T .

Let t∗∗γ/2 and t∗∗(1−γ/2) be the γ/2- and (1− γ/2)-quantiles, respectively, of

L
(
[(α̂∗T )h − α̂h

T ]/
√

v̂ar((α̂∗T )h) | y0, . . . , yT

)
. Based on the studentized statis-

tics, the interval

CISH =
[
α̂h

T − t∗∗(1−γ/2)

√
v̂ar(α̂h

T ), α̂h
T − t∗∗γ/2

√
v̂ar(α̂h

T )
]

is obtained. However, although studentizing improves the accuracy of the

bootstrap in many “regular”cases, this is not the case here if α = 0 because, for

α = 0 and h > 1, the distributions of (α̂h
T−αh) and ((α̂∗T )h−α̂h

T ) are of different

type, and hence, (α̂h
T −αh)/

√
v̂ar(α̂h

T ) and ((α̂∗T )h− α̂h
T )/

√
v̂ar((α̂∗T )h) do not

coincide asymptotically. In the simulations reported later a closer look will be

taken at the performance of the latter bootstrap CI.

4.2.4 Confidence intervals based on a superefficient es-

timator

The main reason why the standard bootstrap fails at the point α = 0 is that

PαT

(
T h/2 (α̂h

T−αh
T ) ≤ x) remains different from P0

(
T h/2(α̂h

T − αh) ≤ x
)
, even

if the sequence {αT} tends to 0 with the rate T−1/2. Since α̂T converges to

the true value just with this rate, the bootstrap is not able to recognize the

presence of the case α = 0. A well-known remedy to such problems with

singularities in the limit distribution is the use of a so-called superefficient

estimator that converges at a faster rate just at these critical points in the

parameter space. Datta and Sriram (1997) used this idea to devise a bootstrap

for AR(1) processes that estimates L(α̂T − α) consistently for all α ∈ R.
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Whereas Datta and Sriram (1997) used an estimator that is superefficient

at α = ±1, this property is needed here for α = 0. Let {cT} be any sequence

satisfying cT → 0 and T 1/2cT →∞ as T →∞. Then the threshold estimator

α̃T =

 α̂T , if |α̂T | > cT

0 otherwise
(4.15)

is superefficient at α = 0, that is, α̃T converges with a faster rate than T−1/2 to

the true value. This estimator allows to switch between the two cases, α = 0

and α 6= 0. Let:

ST =

√∑T
t=1 y2

t−1

σ̃u[α̂
h−1
T + (h− 1)α̃h−1

T ]
(α̂h

T − αh)

=



√∑T

t=1
y2

t−1

σ̃u[hα̂h−1
T +oP (1)]

(α̂h
T − αh), if α 6= 0√∑T

t=1
y2

t−1

σ̃u[α̂h−1
T +oP (T−1/2)]

(α̂h
T − αh), if α = 0

. (4.16)

Obviously, ST
d−→ N(0, 1) for all |α| < 1. Therefore,

CI5 =

α̂h
T − σ̃u|α̂h−1

T + (h− 1)α̃h−1
T |√∑T

t=1 y2
t−1

c(1−γ/2),

α̂h
T − σ̃u|α̂h−1

T + (h− 1)α̃h−1
T |√∑T

t=1 y2
t−1

cγ/2

 (4.17)

is a confidence interval for αh with an asymptotic level 1− γ, that is,

Pα

(
αh ∈ CI5

)
−→ 1 − γ for all |α| < 1. (4.18)

A closer look at the proposed procedure indicates that in this case the

convergence is not uniform in α. Benkwitz et al. (2000) point out that (4.18)

fails, if instead of any fixed α a sequence {αT} tending to zero at a slightly

slower rate than T−1/2 is considered.

Rather than relying on the asymptotic distribution, a bootstrap approx-

imation of L(α̂h
T − αh) in connection with the above superefficient estimator
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α̃T could be used. This was done by Datta and Sriram (1997) for estimating

the distribution of α̂T − α around |α| = 1. For this approach no uniform

convergence results are available either. Of course, for practical purposes one

may be satisfied with pointwise convergence. Even then it will be difficult to

generalize this approach to higher order and higher dimensional processes be-

cause it requires that care has to be taken for every possible singularity point

of the asymptotic distribution. In general this may be a difficult or impossible

task. The use of superefficient estimators can solve problems with different

limit distributions at known isolated points in the parameter space. Since any

estimator can only be superefficient on sets with measure 0, it is impossible

to apply such a strategy in the case of rapidly changing limit distributions,

where these changes occur at unknown points in the parameter space. There-

fore other procedures have been considered which do not require the user to

identify all possible singularity points prior to using the bootstrap. One such

procedure will be described in the following subsection.

4.2.5 Subsampling

Subsampling is a relatively new technique that aims at improving the relation

between the rate of convergence of the bootstrap version of the estimator

and the rate of convergence of the parameter that controls the DGP in the

bootstrap world. It is characterized by resampling fewer observations than

contained in the observed sample (N < T ). Surveys on this technique are

given by Bertail et al. (1999), in the discussion to Li and Maddala (1996), and

by Bickel et al. (1997).

Subsampling is straightforward, if the rate of convergence is constant over

the whole parameter space and if only the shape of the corresponding limit

distributions is different. Although recent work of Bertail et al. (1999) also

allows for the case of different rates of convergence to be estimated separately,
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these complications are avoided here by multiplying the statistic of interest,

α̂h
T −αh, with an appropriate normalizing factor. This was also done by Datta

(1996) and Heimann and Kreiss (1996) in the case of estimating the distribu-

tion of (var(α̂T ))−1/2(α̂T − α) around |α| = 1. The normalizing factor for all

|α| < 1 turns out to be√∑T
t=1 y2

t−1

α̂h−1
T

(see Benkwitz et al. (2000)).

Let t∗γ/2 and t∗(1−γ/2) be the γ/2- and (1− γ/2)-quantiles of the distribution

of √∑N
t=1(y

∗
t−1)

2

(α̂∗N)h−1

(
(α̂∗N)h − α̂h

T

)
,

respectively. Then

P

t∗γ/2 <

√∑T
t=1 y2

t−1

α̂h−1
T

(α̂h
T − αh) < t∗(1−γ/2)

 −→ 1− γ,

which implies that

CI6 =

α̂h
T − t∗(1−γ/2)

|α̂T |h−1√∑T
t=1 y2

t−1

, α̂h
T − t∗γ/2

|α̂T |h−1√∑T
t=1 y2

t−1


is an asymptotic (1− γ)-confidence interval for |α| < 1.

In more general situations where higher order and higher dimensional pro-

cesses are considered it will not be easy to find a suitable normalization of

estimated impulse responses analogous to the factor
√∑T

t=1 y2
t−1/α̂

h−1
T in this

simple case which guarantees a constant rate of convergence. In the next sub-

section a subsampling approach is presented which is theoretically suitable in

such a case. It may be computationally quite demanding, however.
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4.2.6 Subsampling with estimated rate of convergence

The problem with the subsampling procedure of the previous subsection is

that it may be difficult to find a quantity with constant rate of convergence

in all of the feasible parameter space. For this situation, Bertail et al. (1999)

proposed to estimate the rate of convergence, τT , say.

The convergence rate is estimated using two subsampling distributions

based on the subsample sizes N1 = N1(T ) and N2 = N2(T ). If N1, N2 → ∞

as T →∞

P (τN1((α̂
∗
N1

)h − α̂h
T ) ≤ x|Y )

P (τN2((α̂
∗
N2

)h − α̂h
T ) ≤ x|Y )

 = F∞(x) + oP (1), (4.19)

where Y denotes the sample (y0, . . . , yT ) and F∞ the limit distribution of

τNi
((α̂Ni

)h−α̂h
T ). The quantile functions, that is, the inverses of the cumulative

distribution functions fulfill

F−1
τNi

((α̂∗Ni
)h−α̂h

T )
(x|Y ) = τNi

F−1
((α̂∗Ni

)h−α̂h
T )

(x|Y ), i = 1, 2. (4.20)

Since F∞ is continuous, one can derive from equations (4.19) and (4.20)

F−1
((α̂∗Ni

)h−α̂h
T )

(x|Y ) = τ−1
Ni

F−1
∞ (x) + oP (τ−1

Ni
), i = 1, 2. (4.21)

Let x2j, for j = 1, . . . , J , be some points in the interval (0.5, 1) and x2j−1, for

j = 1, . . . , J , be some points in the interval (0, 0.5). Let

aNi
j = log[ F−1

((α̂∗Ni
)h−α̂h

T )
(x2j|Y ) − F−1

((α̂∗Ni
)h−α̂h

T )
(x2j−1|Y ) ],

for i = 1, 2, and a∞j = log[ F−1
∞ (x2j)−F−1

∞ (x2j−1) ] be the logarithm of the j-th

interquantile range of the subsampling distribution and the limit distribution,

respectively. From (4.21) it follows that

aNi
j = log(τ−1

Ni
) + a∞j + oP (1), j = 1, . . . , J.

Let δ be such that τT = T δ and thus τNi
= N δ

i . Hence, assuming 0 < N2 <

N1 < T one can obtain δ = ( aN2
j −aN1

j ) / ( log(N1)− log(N2) )+ oP (1). There-

fore, δ̂j = ( aN2
j − aN1

j ) / ( log(N1)− log(N2) ) is defined and δ is estimated by
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δ̂ = J−1∑J
j=1 δ̂j. It follows from the consistency established in (4.19) that δ̂ is

a consistent estimator of δ. The estimator of τT is obtained as τ̂T = T δ̂.

Now it is possible to proceed with constructing confidence intervals using

subsampling as introduced in Section 4.2.5. The difference in both methods is

found in the norming factor for the statistic ((α̂∗N)h − α̂h
T ). Here, the norming

factor is estimated for each αh separately, whereas the method in Section 4.2.5

uses algebraic manipulation to handle the problem of different convergence

rates. The latter approach implies that for every statistic new analytical work

is required for this manipulation.

In the present approach where the convergence rate is estimated, the un-

known distribution of interest, L(τ̂T (α̂h
T − αh)), is approximated by

L
(
τ̂N(T )((α̂

∗
N (T ))

h − α̂h
T )|Y

)
, (4.22)

with subsample size N(T ). Let t∗γ/2 and t∗1−γ/2 be the γ/2- and (1 − γ/2)-

quantiles of (4.22), respectively. Then

P
(
t∗γ/2 < τ̂T (α̂h

T − αh) < t∗1−γ/2

)
→ (1− γ).

Hence,

CI7 =

[
α̂h

T −
t∗1−γ/2

τ̂T

, α̂h
T −

t∗γ/2

τ̂T

]

is a confidence interval which has asymptotically the correct coverage proba-

bility of (1− γ).

4.2.7 Indirect confidence intervals

The next method of constructing confidence intervals uses ideas of Sims and

Zha (1999) and may be motivated as follows. Assume for a moment that the

distribution of the innovations ut is exactly known. Then, for each fixed α, the
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(hypothetical) distribution of α̂h
T can be calculated. Let tα,γ/2 and tα,(1−γ/2) be

the γ/2- and (1− γ/2)-quantiles of the corresponding distribution. Define

C̃I8 =
{
αh | α̂h

T ∈ [tα,γ/2, tα,(1−γ/2)]
}

.

By construction,

Pα

(
αh ∈ C̃I8

)
= Pα

(
α̂h

T ∈ [tα,γ/2, tα,(1−γ/2)]
)

= 1 − γ,

that is, C̃I8 is an exact confidence set for αh, for all values of α ∈ R. This

approach was proposed by Andrews (1993, Section 4) in the case of a known

distribution of the innovations.

Since the distribution of the innovations ut is usually unknown, we propose

to estimate it by the bootstrap. Let u∗1, . . . , u
∗
T be drawn with replacement

from {û1 − ū., . . . , ûT − ū.}, where ût = yt − α̂T yt−1, as before. For each value

of α a (hypothetical) bootstrap process is generated. It is based on the model

equation

yα,∗
t = αyα,∗

t−1 + u∗t , t = 1, . . . , T.

Now the behavior of α̂T under each hypothetical value of α can be imitated by

α̂α,∗
T =

T∑
t=1

yα,∗
t yα,∗

t−1/
T∑

t=1

(yα,∗
t−1)

2.

Let t∗α,γ/2 and t∗α,(1−γ/2) be the γ/2- and (1 − γ/2)-quantiles of L((α̂α,∗
T )h),

respectively. According to the theoretical set C̃I8 above, an asymptotic confi-

dence set is constructed as

CI8 =
{
αh | α̂h

T ∈ [t∗α,γ/2, t
∗
α,(1−γ)/2]

}
. (4.23)

The confidence set CI8 is not necessarily an interval. However, Benkwitz et al.

(2000) proofed that CI8 will consist of one large connected set plus perhaps

some additional sets of asymptotically negligible size. Since this “indifference

region” is asymptotically negligible, instead of CI8 the smallest interval which
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contains the complete confidence set, say CI9 is used. Is is also shown that

asymptotically both intervals have the correct probability content and the con-

vergence is in fact quite rapid. Again this method becomes rather complicated

and computer intensive in more general situations with higher order and higher

dimensional processes. However, in principle it can be extended.

4.3 A Monte-Carlo experiment

The Monte-Carlo experiment illustrates the absolute and relative performance

of the statistical methods explained in the previous section. Monte-Carlo stud-

ies are in general suited to provide more insights into the properties of statisti-

cal procedure. They can also provide counter examples. However, such studies

cannot replace proofs since they operate on isolated points in the parameter

space only.

4.3.1 Design

The Monte-Carlo experiment compares the performance of CIS, CIH , CISH ,

and CI1, CI5 – CI8 for estimated impulse responses at response horizons 1,

2, 3, and 4. The reason why higher response horizons are omitted from this

experiment is the missing numerical accuracy of computer software in extreme

cases. Nevertheless, the performance is perfectly illustrated also for the chosen

’low’ forecast horizon.

The performance is evaluated by estimating the real coverage probability,

p, of nominal 95% confidence intervals and by looking at the length of the

confidence intervals, l.

Data was artificially generated by the univariate AR(1) process

yt = αyt−1 + ut, t = 1, . . . , 100, y0 = 0, ut ∼ N(0, 1),

α = 0, 0.2, 0.5, 0.9, 0.99
(4.24)
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Table 4.1: Average threshold cT of the superefficient estimator for sample size

T = 100. Numbers in parentheses are standard deviations.

α = 0 α = .20 α = .50 α = .90 α = .99

.305

(.021)

.299

(.022)

.266

(.024)

.143

(.001)

.074

(.001)

For each α, M = 1, 000 Monte Carlo (MC) replications were performed. If

E(p̂) = p = 0.95, the standard error of p̂ is
√

p(1− p)/M ≈ 0.007.

The bootstrap distributions were approximated using 2,000 bootstrap draw-

ings. The threshold cT for the superefficient estimator in Section 4.1 is chosen

to be

cT =

√
2 log T√∑T

t=1 y2
t

.

While the denominator is just a scaling factor the particular choice of the

numerator,
√

2 log T , is motivated by the fact that a standard normal random

variable exceeds this bound in absolute value with a probability of about T−1,

which is considered as a sufficient value. The actual thresholds were filed and

are reported in Table 4.1.

For CISH the variance of (α̂∗T )h is estimated with B∗∗ = 50 bootstrap

replications. The subsample length for CI6 is N(T ) = 90 for T = 100. Finding

a suitable subsample size is actually a difficult task. Politis and Romano (1994)

found the order N(T ) � T 2/3 to be optimal on the basis of second-order

asymptotic theory. Different values for N(T ) including the proposed ones

were tried in the experiment. The results showed that the estimated coverage

probability does not change much when changing N(T ). However, for T = 100

it is found that “small”N(T ) (e.g. 25 or 30) resulted in confidence intervals

of greater length than rather “large”values for N(T ) (e.g. 80 or 90). Whereas
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Table 4.2: Average coefficient of the rate of convergence for the distribution

of (α̂∗T )h − α̂h
T . Empirical standard deviation in parentheses. Note that the

theoretical value is 1/2 for α 6= 0 (independent of h), and h/2 for α = 0.

Sample size T = 100.

α = 0 α = .20 α = .50 α = .90 α = .99

h = 1 .486

(.041)

.487

(.041)

.492

(.043)

.565

(.062)

.745

(.116)

h = 2 .742

(.197)

.519

(.161)

.455

(.041)

.535

(.060)

.719

(.115)

h = 3 1.025

(.312)

0.671

(.255)

.451

(.050)

.508

(.058)

.696

(.114)

h = 4 1.463

(.425)

.902

(.403)

.468

(.071)

.486

(.056)

.675

(.114)

this phenomenon was not really observable for α = 0, the enlargement of the

confidence intervals became quite substantial for α greater than or equal to

0.5. Therefore, N(T ) = 90 was chosen in the current setting.

For the estimation of the rate of convergence, CI7 uses two subsample sizes

N1 = 80 and N2 = 30, and the interquantile ranges of J = 4 pairs (x2j−1, x2j) =

{(.10, .90), (.15, .85), (.20, .80), (.25, .75)}. The results are reported in Table 4.2

where it is seen that, although the theoretical convergence rate for all α 6= 0

is the same, the estimated coefficient associated with the rate of convergence

for α = 0.2 is an intermediate value between the rate for α = 0 and α = .5

whereas the coefficient for α = .5 and .9 is similar to the theoretical coefficient

of δ = .5. For α = .99 a slightly larger value of δ is usually estimated which

reflects the true coefficient of δ = 1 for nonstationary processes with α = 1.

The confidence intervals CI7 are constructed with subsample sizes N(T )=50.
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Again several subsample sizes were tried and it was found that the chosen

value performs best in the current setting.

A precise coverage probability is considered as the most important feature

of a confidence interval. However, from the point of view of the usefulness of

the intervals, their average length is also an important factor. These two points

are discussed in the following. Possible generalizations of the methods to mul-

tivariate and higher order autoregressive processes are discussed afterwards.

The previous section showed that CI5 to CI8 are asymptotically correct for all

α, whereas CI1, CIS, CIH , and CISH are only correct if α 6= 0. Problems may

also arise for α values close to the nonstationary region, that is, for α close to

one.

4.3.2 Results

In Tables 4.3 to 4.6 the estimated real coverage and estimated interval length

are reported. Efron’s percentile (BC) stands for Efron’s percentile method

(bias corrected). The bias correction was carried out using the method of

Kilian (1998b).

The following observations emerge from Tables 4.3 – 4.6. First, all methods

lead to nearly identical results in the case of h = 1, even for α = 0. For larger

h, the indirect method is overall the most precise in terms of coverage. As

expected it produces the nominal coverage level almost exactly for all cases

considered. The average length of these CIs is in some cases a bit larger than

that of other methods though. The main disadvantage of the indirect method

is the difficulty to extend it to higher dimensional and higher order cases.

For the critical case where α = 0, the CIs based on first–order asymptotics

are clearly conservative for h > 1 and have a considerably larger coverage

probability than the nominal 95%. The length of the intervals is surprisingly

small given that it was found in the asymptotic analysis that even further
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reductions of the length may be possible by taking full advantage of the actual

asymptotic distribution. In this respect the CI1 intervals are just outperformed

by the CIs based on the superefficient estimator which is overall clearly the

best method for the case α = 0. However, for nonzero α both the CIs based

on first–order asymptotics and on the superefficient estimator are problematic

in the currently considered small sample context because their actual coverage

levels deteriorate substantially for α 6= 0. This is true in particular for the

latter CIs. For instance, the coverage frequency of CI5 is only 56.4% for

α = 0.2 when confidence intervals for α4 are considered. Increasing the sample

size to T = 1, 000 in this case led to a far better coverage of 90.8% (results are

not reported here).

Efron’s percentile confidence intervals (BC) show a clear drawback for the

case α = 0 and even h (see Table 4.4 and Table 4.6). In these cases a coverage

of 0% is observed. Hence CIS has to be used cautiously if nothing is known

about the actual parameter values. For α 6= 0, CIS shows excellent coverage.

The latter finding is in line with other studies, e.g., Kilian (1998a), Kilian

(1998b).

Hall’s percentile method leads to similar results as the first–order asymp-

totic theory. In the majority of cases, the performance of the bootstrap inter-

vals is even slightly worse than that of CI1 with respect to both the coverage

probability and the length of the intervals. The coverage probability deterio-

rates again for intermediate values of α and h > 1. This seems to be a small

sample problem, however. Further simulation experiments showed that the

theoretical behavior of CIH is better for samples of size T = 1, 000. The stu-

dentized version of Hall’s bootstrap (CISH) leads to an almost overall better

coverage than CIH . However, as for CIH its coverage deteriorates for inter-

mediate values of α and h > 1.

The CIs based on the subsampling bootstrap (CI6) produce roughly the
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correct coverage level. In some cases their length is considerably greater than

that of other methods, especially for h > 2 and α less or equal to 0.2. In addi-

tion, taking into account that for more complicated situations the subsampling

bootstrap involves a substantially larger computational burden, the virtue of

this method is difficult to see at least in the present context.

In the case of α = 0, the subsampling procedure which additionally es-

timates the rate of convergence (CI7) is superior to the other subsampling

method for h > 1. Even though it estimates more conservative CIs it seems

to have a slight advantage over the standard bootstrap in terms of interval

length. This observation changes for α 6= 0. The interval length is still shorter

compared to the other subsampling method but it is achieved at the cost of

reduced coverage probability. A reason for that might be a poor estimator of

δ which implies poor estimation results for τT (see Table 4.2).

4.4 Summary and recommendations

The simulations show that all CIs have drawbacks. Since some of them work

very poorly for the just considered simplest case there is clearly not much hope

that they generally behave well in more complicated situations where higher

order or higher dimensional processes are of interest unless the problematic

parts in the parameter space are avoided.

The intervals CI1, CIS, CIH , and CISH , and CI7 allow a straightforward

generalization to the case of multivariate autoregressive processes of higher

order. However, CI1, CIS, CIH , and CISH are asymptotically incorrect in

particular cases of interest, which are mimicked by α = 0 and h > 0 in the

simplified context presented here. The subsampling confidence interval CI6 can

also be generalized easily if one finds a norming factor leading to a statistic

with a nondegenerate limit distribution. Even the indirect method, which was



CHAPTER 4. BOOTSTRAP CONFIDENCE INTERVALS . . . 129

clearly the winner in the experiment, can be generalized in principle. However,

this will certainly lead to quite substantial computational problems and, hence,

this method will suffer from the “curse of dimensionality”.

It is recommended in the literature to use biased corrected bootstrap con-

fidence intervals (Efron and Tibshirani (1993), Kilian (1998b)). The effect

of no or poor bias correction can be seen in the simulation study where CIS

failed completely to include the true parameter in the interesting case α = 0

for even h > 1. The Hall percentile interval CIH accounts implicitly for the

bias. Therefore, this interval and refinements based on it, i.e. CISH , are rec-

ommended here in addition to a modeling strategy that avoids the problematic

parts in the parameter space.

Since the problems of the standard methods are essentially caused by zero

elements in the autoregressive matrices it may be a possible strategy to pretest

for zero coefficients and specify subset VAR models. If the zero elements are

specified correctly, all of the standard methods should work asymptotically.

Thus, it may be worth spending some effort in model specification before an

impulse response analysis is carried out.

This modeling strategy had been used in Benkwitz et al. (2001). In addi-

tion, the intervals CIS to CISH and an iterated version of CIH were computed

for impulse responses. It turned out that the statistical interpretation of the

results was not affected by the choice of the confidence interval. Therefore,

Benkwitz et al. (2001) continued to use CIH because of the theoretical advan-

tage and the speed advantage compared to CISH and the iterated version.
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Appendix A

License agreement

JStatCom (Chapter 2), Gauss Control (Appendix C), and JMulTi (Chapter

3) are research, teaching and learning software that can be used free of charge.

They do not come with any support. Note the disclaimer at the end of the

agreement. They are offered to the public in the spirit of the University of

Illinois/NCSA Open Source License:

Copyright (c) 2002 Alexander Benkwitz, Markus Krätzig

All rights reserved.

Developed by:

Alexander Benkwitz, Markus Krätzig

Humboldt University Berlin

http://ise.wiwi.hu-berlin.de

Permission is hereby granted, free of charge, to any person obtaining a copy of

JStatCom, Gauss Control, and JMulTi and associated documentation files (the

”Software”), to deal with the Software without restriction, including without

limitation the rights to use, copy, modify, merge, publish, distribute, subli-
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cense, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimers.

2. Redistributions in binary form must reproduce the above copyright no-

tice, this list of conditions and the following disclaimers in the documen-

tation and/or other materials provided with the distribution.

3. Neither the names of Alexander Benkwitz, Markus Krätzig, Humboldt

University Berlin, nor the names of its contributors may be used to en-

dorse or promote products derived from this Software without specific

prior written permission.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-

TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR

ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN AC-

TION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT

OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS WITH THE SOFTWARE.

(Source: http://www.opensource.org/licenses/UoI-NCSA.html)

http://www.opensource.org/licenses/UoI-NCSA.html
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Documentation of Java library

JStatCom

B.1 The Java library JStatCom

The classes in the Java library JStatCom are organized in the packages gauss,

gauss.control, util, util.component, and xlm. The packages util and

util.component contain classes that were provided by other people in the

world wide web:

util.PrintfFormat a class that allows the formatting of an array of ob-

jects embedded within a string, see http://developer.java.sun.com/

developer/technicalArticles/Programming/sprintf/

util.SwingWorker a class that performs GUI-related work in a dedicated

thread, see http://java.sun.com/docs/books/tutorial/uiswing/misc/

threads.html

util.component.CardPanel a simpler alternative to a JPanel with a CardLay-

out, see http://java.sun.com/products/jfc/tsc/articles/cardpanel/
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util.component.MultiLineLabelUI a rendering class that enables multi-lines

in a JLabel see http://codeguru.earthweb.com/java/articles/198.

shtml

The classes are documented in the Java source code. Although it is recog-

nized to have some documentation at hand, it is not reported here. Reporting

the full documentation would go beyond the scope of this work.

B.2 A simple GUI example

Figure B.1: Screen shot of sample application

The simple GUI application shown in Figure B.1 is explained line by

line. Note that all instructions are placed in the main() method of the class

RandomWalk. This is done for convenience reasons but is not appropriate when

writing more complex programs.

Import statements of packages used by RandomWalk class:

1 import java.awt.*;

2 import java.awt.event.*;

3 import javax.swing.*;

4 import gauss.*;

5 import gauss.control.*;

6 import util.component.*;

Class declaration, begin of main-method body. The code is included in a

try-block for catching and reporting exceptions:

http://codeguru.earthweb.com/java/articles/198.shtml
http://codeguru.earthweb.com/java/articles/198.shtml
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7 class RandomWalk {

8 public static void main(String[] args) {

9 try {

Creating a container that holds all other components:

10 final GaussPanel gaussPanel = new GaussPanel();

11 BoxLayout layout =

12 new BoxLayout(gaussPanel, BoxLayout.X_AXIS);

13 gaussPanel.setLayout(layout);

Creating a label that names the input component. The input component writes

valid input to the database. The data is identified by the name T:

14 JLabel label = new JLabel("Enter number of Observations: ");

15 label.setAlignmentY(JComponent.TOP_ALIGNMENT);

16 gaussPanel.add(label);

17
18 GaussDataTextField textField = new GaussDataTextField(5);

19 textField.setFixedSize(true);

20 textField.setSymbolName("T");

21 textField.setLowerBound(1.0);

22 textField.setDataType(Verifier.INTEGER);

23 textField.setInitialNumber(20.0);

24 textField.setAlignmentY(JComponent.TOP_ALIGNMENT);

25 gaussPanel.add(textField);

Add some space between the input component and the following component:

26 gaussPanel.add(

27 Box.createRigidArea(new Dimension(10, 0)));

Create a button that triggers the Gauss procedure call. The procedure call

loads the Gauss library pgraph (if necessary), writes T to Gauss, computes

yt =
∑T

i=1 xi, xi ∼ N(0, 1), plots the yt, puts the resulting graphic window to

the front, and reads yt from Gauss:

28 JButton button = new JButton("plot!");

29 button.addActionListener(new ActionListener() {

30 public void actionPerformed(ActionEvent e) {

31 gaussPanel.gaussStart("Compute and plot random walk");
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32 gaussPanel.gaussLoadLibrary("pgraph");

33 gaussPanel.gaussWrite("T");

34 gaussPanel.gaussExec("y = cumsumc(rndn(T,1))");

35 gaussPanel.gaussExec("xy(seqa(1,1,T),y)");

36 gaussPanel.gaussExec("dllcall showLastGraphic");

37 gaussPanel.gaussRead("y");

38 gaussPanel.gaussRun();

39 }

40 });

41 button.setAlignmentY(JComponent.TOP_ALIGNMENT);

42 gaussPanel.add(button);

Add some space between the input component and the following component:

43 gaussPanel.add(

44 Box.createRigidArea(new Dimension(10, 0)));

Creating a label that names the output component:

45 label = new JLabel("Values plotted: ");

46 label.setAlignmentY(JComponent.TOP_ALIGNMENT);

47 gaussPanel.add(label);

The output component table displays data from the database. The data is

identified by the symbol name y. Since table may contain to many rows

or columns for a computer screen it is embedded in the scrollpane. The

scrollpane displays only a pre-defined number of rows and columns of table.

By specifying a minimum and maximum number the size can float within this

range depending on the data and space available:

48 GaussDataTable table = new GaussDataTable();

49 table.setSymbolName("y");

50 table.setEditable(false);

51 table.setMinimumColumnWidth(75);

52 table.setDynamicColumnWidth(true);

53 GaussDataTableScrollPane scrollPane =

54 new GaussDataTableScrollPane(table);

55 scrollPane.setMinimumVisibleRows(1);

56 scrollPane.setMaximumVisibleRows(15);

57 scrollPane.setMinimumVisibleColumns(1);

58 scrollPane.setMaximumVisibleColumns(1);
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59 scrollPane.setAlignmentY(JComponent.TOP_ALIGNMENT);

60 gaussPanel.add(scrollPane);

Creating a GaussFrame which establishes the connection to the software pack-

age Gauss. The show-command brings up the frame on the screen:

61 GaussFrame frame =

62 new GaussFrame("Plot Random Walk - Test Program");

63 frame.setSystemExitWhenClosing(true);

64 frame.getGauss().startGauss();

65 frame.setJMenuBar(new JMenuBar());

66 frame.getJMenuBar().add(new GaussMenu());

67 frame.setContentPane(gaussPanel);

68 frame.setSize(400, 300);

69 frame.show();

Ends the try-block, the body of the main method and the body of the class.

70 } catch (Throwable throwable) {

71 throwable.printStackTrace();

72 System.exit(1);

73 } // end of catch()

74 } // end of main()

75 } // end of class
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B.3 Package util

B.3.1 Package Contents

Interfaces
ProcedureCallConstants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
A collection of constants generally used for executing calls to an external
statistical software package.
ProcedureCallListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
The listener interface for receiving ProcedureCallEvents.

Classes
PrintfFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
PrintfFormat allows the formatting of an array of objects embedded
within a string.
ProcedureCall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Thread that executes communication with and computation requests to
some statistical software.
ProcedureCallAdapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
An abstract adapter class for receiving procedure call events.
ProcedureCallEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
An event which indicates that a procedure call is processed.
SwingWorker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

This is the 3rd version of SwingWorker (also known as SwingWorker
3), an abstract class that you subclass to perform GUI-related work in
a dedicated thread.
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B.3.2 Interfaces

Interface ProcedureCallConstants

A collection of constants generally used for executing calls to an external statistical
software package.

Declaration

public interface ProcedureCallConstants

Fields

public static final int EXECUTE
public static final int WRITE
public static final int WRITEARRAY
public static final int READ
public static final int READARRAY
public static final int READ LOCAL
public static final int READARRAY LOCAL
public static final int SHOW
public static final int LOADLIBRARY
public static final int LOADDLIBRARY

Interface ProcedureCallListener

The listener interface for receiving ProcedureCallEvents. The class that is interested
in processing a ProcedureCallEvent implements this interface. The object created
with that class is then registered with a ProcedureCall using the object’s addProce-
dureCallListener method. When an ProcedureCallEvent occurs, the specific listener
object’s listener method is invoked.

Declaration

public interface ProcedureCallListener implements java.util.EventListener

Methods

public void procedureCallFinished (util.ProcedureCallEvent e)
This method is called when a ProcedureCall object finishes.
Firering this event is the last action in the ProcedureCall run() method. Note,
that a ProcedureCallFinished event does not necessarily mean that the proce-
dure call was successful.
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public void procedureCallProgress (util.ProcedureCallEvent e)
This method is called when the progress property of the ProcedureCall object
changed.

public void procedureCallRegistered (util.ProcedureCallEvent e)
This method is called when a ProcedureCall object was successfully registered
with an object that manages various ProcedureCall objects.
Registering a procedure call always proceeds starting it.

public void procedureCallStarted (util.ProcedureCallEvent e)
This method is called when a ProcedureCall object starts execution.
This means that the run() method of the thread ProcedureCall was just called
by some managing object.

B.3.3 Classes

Class PrintfFormat

PrintfFormat allows the formatting of an array of objects embedded within a string.
Primitive types must be passed using wrapper types. The formatting is controlled
by a control string.
A control string is a Java string that contains a control specification. The control
specification starts at the first percent sign (%) in the string, provided that this
percent sign

1. is not escaped protected by a matching % or is not an escape % character,

2. is not at the end of the format string, and

3. precedes a sequence of characters that parses as a valid control specification.

A control specification usually takes the form:
% [’-+ #0]* [0..9]* { . [0..9]* }+

{ [hlL] }+ [idfgGoxXeEcs]

There are variants of this basic form that are discussed below.
The format is composed of zero or more directives defined as follows:

• ordinary characters, which are simply copied to the output stream;

• escape sequences, which represent non-graphic characters; and

• conversion specifications, each of which results in the fetching of zero or more
arguments.

The results are undefined if there are insufficient arguments for the format. Usually
an unchecked exception will be thrown. If the format is exhausted while arguments
remain, the excess arguments are evaluated but are otherwise ignored. In format
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strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.
Conversions can be applied to the nth argument after the format in the argument
list, rather than to the next unused argument. In this case, the conversion characer
% is replaced by the sequence %n$, where n is a decimal integer giving the position
of the argument in the argument list.
In format strings containing the %n$ form of conversion specifications, each argu-
ment in the argument list is used exactly once.
Escape Sequences

The following table lists escape sequences and associated actions on display devices
capable of the action.
Sequence Name Description
““ backlash None.
“a alert Attempts to alert the user

through audible or visible notifi-
cation.

“b backspace Moves the printing position to
one column before the current po-
sition, unless the current position
is the start of a line.

“f form-feed Moves the printing position to
the initial printing position of the
next logical page.

“n newline Moves the printing position to the
start of the next line.

“r carriage-return Moves the printing position to the
start of the current line.

“t tab Moves the printing position to
the next implementation- defined
horizontal tab position.

“v vertical-tab Moves the printing position to the
start of the next implementation-
defined vertical tab position.

Conversion Specifications
Each conversion specification is introduced by the percent sign character (%). After
the character %, the following appear in sequence:
Zero or more flags (in any order), which modify the meaning of the conversion
specification.
An optional minimum field width. If the converted value has fewer characters than
the field width, it will be padded with spaces by default on the left; t will be
padded on the right, if the left- adjustment flag (-), described below, is given to the
field width. The field width takes the form of a decimal integer. If the conversion
character is s, the field width is the the minimum number of characters to be printed.
An optional precision that gives the minumum number of digits to appear for the d,
i, o, x or X conversions (the field is padded with leading zeros); the number of digits
to appear after the radix character for the e, E, and f conversions, the maximum
number of significant digits for the g and G conversions; or the maximum number
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of characters to be written from a string is s and S conversions. The precision takes
the form of an optional decimal digit string, where a null digit string is treated as
0. If a precision appears with a c conversion character the precision is ignored.
An optional h specifies that a following d, i, o, x, or X conversion character applies
to a type short argument (the argument will be promoted according to the integral
promotions and its value converted to type short before printing).
An optional l (ell) specifies that a following d, i, o, x, or X conversion character
applies to a type long argument.
A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer argument supplised the field width precision. The
argument that is actually converted is not fetched until the conversion letter is seen,
so the the arguments specifying field width or precision must appear before the
argument (if any) to be converted. If the precision argument is negative, it will be
changed to zero. A negative field width argument is taken as a - flag, followed by a
positive field width.
In format strings containing the %n$ form of a conversion specification, a field width
or precision may be indicated by the sequence *m$, where m is a decimal integer
giving the position in the argument list (after the format argument) of an integer
argument containing the field width or precision.
The format can contain either numbered argument specifications (that is, %n$ and
*m$), or unnumbered argument specifications (that is % and *), but normally not
both. The only exception to this is that %% can be mixed with the %n$ form. The
results of mixing numbered and unnumbered argument specifications in a format
string are undefined.
Flag Characters

The flags and their meanings are:

’ integer portion of the result of a decimal conversion (%i, %d, %f, %g, or %G)
will be formatted with thousands’ grouping characters. For other conversions
the flag is ignored. The non-monetary grouping character is used.

- result of the conversion is left-justified within the field. (It will be right-
justified if this flag is not specified).

+ result of a signed conversion always begins with a sign (+ or -). (It will begin
with a sign only when a negative value is converted if this flag is not specified.)

<space> If the first character of a signed conversion is not a sign, a space character
will be placed before the result. This means that if the space character and
+ flags both appear, the space flag will be ignored.

# value is to be converted to an alternative form. For c, d, i, and s conversions,
the flag has no effect. For o conversion, it increases the precision to force the
first digit of the result to be a zero. For x or X conversion, a non-zero result
has 0x or 0X prefixed to it, respectively. For e, E, f, g, and G conversions,
the result always contains a radix character, even if no digits follow the radix
character (normally, a decimal point appears in the result of these conversions
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only if a digit follows it). For g and G conversions, trailing zeros will not be
removed from the result as they normally are.

0 d, i, o, x, X, e, E, f, g, and G conversions, leading zeros (following any indi-
cation of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o,
x, and X conversions, if a precision is specified, the 0 flag will be ignored. For
c conversions, the flag is ignored.

Conversion Characters
Each conversion character results in fetching zero or more arguments. The results are
undefined if there are insufficient arguments for the format. Usually, an unchecked
exception will be thrown. If the format is exhausted while arguments remain, the
excess arguments are ignored.
The conversion characters and their meanings are:

d,i The int argument is converted to a signed decimal in the style [-]dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting 0 with an explicit
precision of 0 is no characters.

o The int argument is converted to unsigned octal format in the style ddddd.
The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1. The result of converting 0 with an
explicit precision of 0 is no characters.

x The int argument is converted to unsigned hexadecimal format in the style
dddd; the letters abcdef are used. The precision specifies the minimum num-
berof digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeros. The default precision is 1. The
result of converting 0 with an explicit precision of 0 is no characters.

X Behaves the same as the x conversion character except that letters ABCDEF
are used instead of abcdef.

f The floating point number argument is written in decimal notation in the
style [-]ddd.ddd, where the number of digits after the radix character (shown
here as a decimal point) is equal to the precision specification. A Locale is
used to determine the radix character to use in this format. If the precision is
omitted from the argument, six digits are written after the radix character; if
the precision is explicitly 0 and the # flag is not specified, no radix character
appears. If a radix character appears, at least 1 digit appears before it. The
value is rounded to the appropriate number of digits.

e,E The floating point number argument is written in the style [-]d.ddde{+-}dd
(the symbols {+-} indicate either a plus or minus sign), where there is one digit
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before the radix character (shown here as a decimal point) and the number
of digits after it is equal to the precision. A Locale is used to determine the
radix character to use in this format. When the precision is missing, six digits
are written after the radix character; if the precision is 0 and the # flag is
not specified, no radix character appears. The E conversion will produce a
number with E instead of e introducing the exponent. The exponent always
contains at least two digits. However, if the value to be written requires an
exponent greater than two digits, additional exponent digits are written as
necessary. The value is rounded to the appropriate number of digits.

g,G The floating point number argument is written in style f or e (or in sytle E
in the case of a G conversion character), with the precision specifying the
number of significant digits. If the precision is zero, it is taken as one. The
style used depends on the value converted: style e (or E) will be used only if
the exponent resulting from the conversion is less than -4 or greater than or
equal to the precision. Trailing zeros are removed from the result. A radix
character appears only if it is followed by a digit.

c,C The integer argument is converted to a char and the result is written.

s,S The argument is taken to be a string and bytes from the string are written
until the end of the string or the number of bytes indicated by the precision
specification of the argument is reached. If the precision is omitted from the
argument, it is taken to be infinite, so all characters up to the end of the string
are written.

% Write a % character; no argument is converted.

If a conversion specification does not match one of the above forms, an IllegalArgu-
mentException is thrown and the instance of PrintfFormat is not created.
If a floating point value is the internal representation for infinity, the output is
[+]Infinity, where Infinity is either Infinity or Inf, depending on the desired output
string length. Printing of the sign follows the rules described above.
If a floating point value is the internal representation for ”not-a-number,”the output
is [+]NaN. Printing of the sign follows the rules described above.
In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result.
The behavior is like printf. One exception is that the minimum number of exponent
digits is 3 instead of 2 for e and E formats when the optional L is used before the
e, E, g, or G conversion character. The optional L does not imply conversion to a
long long double.
The biggest divergence from the C printf specification is in the use of 16 bit char-
acters. This allows the handling of characters beyond the small ASCII character
set and allows the utility to interoperate correctly with the rest of the Java runtime
environment.
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Omissions from the C printf specification are numerous. All the known omissions
are present because Java never uses bytes to represent characters and does not have
pointers:

• %c is the same as %C.

• %s is the same as %S.

• u, p, and n conversion characters.

• %ws format.

• h modifier applied to an n conversion character.

• l (ell) modifier applied to the c, n, or s conversion characters.

• ll (ell ell) modifier to d, i, o, u, x, or X conversion characters.

• ll (ell ell) modifier to an n conversion character.

• c, C, d,i,o,u,x, and X conversion characters apply to Byte, Character, Short,
Integer, Long types.

• f, e, E, g, and G conversion characters apply to Float and Double types.

• s and S conversion characters apply to String types.

• All other reference types can be formatted using the s or S conversion char-
acters only.

Most of this specification is quoted from the Unix man page for the sprintf utility.

Declaration

public class PrintfFormat extends java.lang.Object

Constructors

public PrintfFormat (java.util.Locale locale,
java.lang.String fmtArg)

Constructs an array of control specifications possibly preceded, separated, or
followed by ordinary strings. Control strings begin with unpaired percent signs.
A pair of successive percent signs designates a single percent sign in the format.

public PrintfFormat (java.lang.String fmtArg)
Constructs an array of control specifications possibly preceded, separated, or
followed by ordinary strings. Control strings begin with unpaired percent signs.
A pair of successive percent signs designates a single percent sign in the format.
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Methods

public String sprintf( )
Format nothing. Just use the control string.

public String sprintf (double x)
Format a double.

public String sprintf (int x)
Format an int.

public String sprintf (long x)
Format an long.

public String sprintf (java.lang.Object x)
Format an Object. Convert wrapper types to their primitive equivalents and
call the appropriate internal formatting method. Convert Strings using an
internal formatting method for Strings. Otherwise use the default formatter
(use toString).

public String sprintf (java.lang.Object[] o)
Format an array of objects. Byte, Short, Integer, Long, Float, Double, and
Character arguments are treated as wrappers for primitive types.

public String sprintf (java.lang.String x)
Format a String.

Class ProcedureCall

Thread that executes communication with and computation requests to some sta-
tistical software.
The task should be programmed in the mainCode(), and postCode() methods. The
run() method is made final and executes the mainCode(), and postCode() methods
in a predetermined way.

Declaration

public abstract class ProcedureCall extends java.lang.Thread
implements java.io.Serializable,

ProcedureCallConstants,
java.lang.Cloneable

Constructors

public ProcedureCall( )
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Methods

public void addProcedureCallListener (util.ProcedureCallListener l)
Registers listener l so that it will receive ProcedureCallEvents.

public void fireProcedureCallRegistered( )
Execute this method when a ProcedureCall managing object receives an in-
stance of this class.

public double getProgress( )
Returns estimated progress.

public long getStartTime( )
Returns the system time at thread start. This time is filed when the start()
method is executed and is the value of System.currentTimeMillis().

public boolean isSuccess( )
Returns whether the thread is/was executed successful.

public void removeProcedureCallListener (util.ProcedureCallListener l)

Unregisters listener l so that it will no longer receive ProcedureCallEvents.

public final void run( )
This method cannot be overwritten. Place the code instead in the mainCode(),
and postCode() methods.

public void setProgress (double newProgress)
Set a new progress coefficient.

public void start( )
Starts the ProcedureCall thread, writes a time stamp to the startTime-field
and notifies all interested listeners about the start.

Class ProcedureCallAdapter

An abstract adapter class for receiving procedure call events. The methods in this
class are empty. This class exists as convenience for creating listener objects.

Declaration

public abstract class ProcedureCallAdapter extends java.lang.Object
implements ProcedureCallListener



APPENDIX B. THE JAVA LIBRARY JStatCom 154

Constructors

public ProcedureCallAdapter( )

Methods

public void procedureCallFinished (util.ProcedureCallEvent e)

public void procedureCallProgress (util.ProcedureCallEvent e)

public void procedureCallRegistered (util.ProcedureCallEvent e)

public void procedureCallStarted (util.ProcedureCallEvent e)

Class ProcedureCallEvent

An event which indicates that a procedure call is processed.
This event is generated by a ProcedureCall object when:

• it gets registered

• execution starts

• progress in execution is reported

• it finishes

A ProcedureCallEvent object is passed to every ProcedureCallListener or Proce-
dureCallAdapter object which registered to receive the procedure call events using
the ProcedureCall’s addProcedureCallListener method.

Declaration

public class ProcedureCallEvent extends java.util.EventObject

Fields

public static final int CALL REGISTERED
public static final int CALL STARTED
public static final int CALL FINISHED
public static final int CALL PROGRESS

Constructors

public ProcedureCallEvent (util.ProcedureCall source,
int type)

Constructs a ProcedureCallEvent object with the specified source object, and
type.
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Methods

public ProcedureCall getProcedureCall( )
Returns the originator of the event.

public int getType( )
Returns the event type.
The event type is one of
• CALL REGISTERED

• CALL STARTED

• CALL FINISHED

• CALL PROGRESS

Class SwingWorker

This is the 3rd version of SwingWorker (also known as SwingWorker 3), an abstract
class that you subclass to perform GUI-related work in a dedicated thread. For
instructions on using this class, see:
http://java.sun.com/docs/books/tutorial/uiswing/misc/threads.html
Note that the API changed slightly in the 3rd version: You must now invoke start()
on the SwingWorker after creating it.

Declaration

public abstract class SwingWorker extends java.lang.Object

Constructors

public SwingWorker( )
Start a thread that will call the construct method and then exit.

Methods

public abstract Object construct( )
Compute the value to be returned by the get method.

public void finished( )
Called on the event dispatching thread (not on the worker thread) after the
construct method has returned.

public Object get( )
Return the value created by the construct method. Returns null if either the
constructing thread or the current thread was interrupted before a value was
produced.
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public void interrupt( )
A new method that interrupts the worker thread. Call this method to force the
worker to stop what it’s doing.

public void start( )
Start the worker thread.

B.4 Package gauss.control

B.4.1 Package Contents

Classes
DesktopTheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
GUI theme for desktop mode.
GaussDataTreeNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Tree node for displaying GaussData in the GaussSymbolTableTree.
GaussMenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Pre-build menu for accessing the GaussSymbolTableTree and other stan-
dard tools.
GaussSymbolTableTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Visual representation of all GaussSymbolTables within an application.
PresentationTheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
GUI theme for presentation mode.
ShowSymbolControlFrameAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Predefined action for showing the frame that contains the application
wide GaussSymbolTableTree.
ShowSymbolControlFrameMenuItem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Predefined menu item for showing the frame that contains the applica-
tion wide GaussSymbolTableTree.
SymbolControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Container component for navigating through all application wide Gauss-
DataTables.
SymbolDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Class for displaying the symbol description in a specialized JDialog.
SymbolTableTreeCellRenderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
CellRenderer for the GaussSymbolTableTree.
SymbolTableTreeNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Definition of nodes in the SymbolTableTree.
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B.4.2 Classes

Class DesktopTheme

GUI theme for desktop mode.

Declaration

public class DesktopTheme
extends javax.swing.plaf.metal.DefaultMetalTheme

Constructors

public DesktopTheme( )

Methods

public FontUIResource getControlTextFont( )

public FontUIResource getMenuTextFont( )

public FontUIResource getSubTextFont( )

public FontUIResource getSystemTextFont( )

public FontUIResource getUserTextFont( )

public FontUIResource getWindowTextFont( )

public FontUIResource getWindowTitleFont( )

Class GaussDataTreeNode

Tree node for displaying GaussData in the GaussSymbolTableTree.

Declaration

public class GaussDataTreeNode
extends javax.swing.tree.DefaultMutableTreeNode

Constructors

public GaussDataTreeNode (gauss.GaussData gaussData)

public GaussDataTreeNode (gauss.GaussData gaussData,
gauss.GaussSymbolTable newSymbolTable)
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Methods

public String getDescription( )

Class GaussMenu

Pre-build menu for accessing the GaussSymbolTableTree and other standard tools.

Declaration

public class GaussMenu extends javax.swing.JMenu
implements java.awt.event.ActionListener

Constructors

public GaussMenu( )

Methods

public void actionPerformed (java.awt.event.ActionEvent e)

Class GaussSymbolTableTree

Visual representation of all GaussSymbolTables within an application. This object
provides the ability to navigate through all GaussSymbolTables and even manipulate
the GaussData objects stored in them.

Declaration

public class GaussSymbolTableTree extends javax.swing.JTree

Constructors

public GaussSymbolTableTree( )

Methods

public static void addGaussSymbolTableTreeNode
(java.lang.Object node)
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public String convertValueToText (java.lang.Object value,
boolean selected,
boolean expanded,
boolean leaf,
int row,
boolean hasFocus)

public static void removeGaussSymbolTableTreeNode
(java.lang.Object node)

Class PresentationTheme

GUI theme for presentation mode. This is especially useful when using the Java
application in classes.

Declaration

public class PresentationTheme
extends javax.swing.plaf.metal.DefaultMetalTheme

Constructors

public PresentationTheme( )

Methods

public FontUIResource getControlTextFont( )

public FontUIResource getMenuTextFont( )

public FontUIResource getSubTextFont( )

public FontUIResource getSystemTextFont( )

public FontUIResource getUserTextFont( )

public FontUIResource getWindowTextFont( )

public FontUIResource getWindowTitleFont( )

Class ShowSymbolControlFrameAction

Predefined action for showing the frame that contains the application wide
GaussSymbolTableTree.
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Declaration

public class ShowSymbolControlFrameAction
extends javax.swing.AbstractAction

Constructors

public ShowSymbolControlFrameAction( )

Methods

public void actionPerformed (java.awt.event.ActionEvent arg1)

Class ShowSymbolControlFrameMenuItem

Predefined menu item for showing the frame that contains the application wide
GaussSymbolTableTree.

Declaration

public class ShowSymbolControlFrameMenuItem
extends javax.swing.JMenuItem

Constructors

public ShowSymbolControlFrameMenuItem( )

Class SymbolControl

Container component for navigating through all application wide GaussDataTables.
This component contains a GaussSymbolTableTree and components for displaying
and manipulating the GaussData objects.

Declaration

public class SymbolControl extends gauss.GaussPanel

Constructors

public SymbolControl( )
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Methods

public static void addGaussLocalSymbolRoot
(gauss.GaussLocalSymbolRoot arg)

public static void addSymbolTable
(gauss.GaussSymbolTable gaussSymbolTable)

public void setGauss (gauss.Gauss g)

public void setParent (java.awt.Frame newParent)

Class SymbolDescription

Class for displaying the symbol description in a specialized JDialog.

Declaration

public class SymbolDescription extends javax.swing.JDialog

Constructors

public SymbolDescription( )

public SymbolDescription (java.awt.Frame owner,
java.lang.String title,
boolean modal)

Methods

public void setDescription (java.lang.String description)

Class SymbolTableTreeCellRenderer

CellRenderer for the GaussSymbolTableTree.

Declaration

public class SymbolTableTreeCellRenderer
extends javax.swing.tree.DefaultTreeCellRenderer

Constructors

public SymbolTableTreeCellRenderer( )
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Methods

public Component getTreeCellRendererComponent
(javax.swing.JTree tree,
java.lang.Object value,
boolean sel,
boolean expanded,
boolean leaf,
int row,
boolean hasFocus)

Class SymbolTableTreeNode

Definition of nodes in the SymbolTableTree. A node in the SymbolTableTree is
defined to be a component that holds a GaussSymbolTable physically, i.e. instances
of the classes GaussFrame, GaussInternalFrame, or LocalGaussPanel.

Declaration

public class SymbolTableTreeNode
extends javax.swing.tree.DefaultMutableTreeNode
implements java.beans.PropertyChangeListener,

javax.swing.event.TreeWillExpandListener

Constructors

public SymbolTableTreeNode (gauss.GaussFrame gaussFrame)

public SymbolTableTreeNode
(gauss.GaussInternalFrame internalFrame)

public SymbolTableTreeNode (gauss.GaussLocalSymbolRoot local)

public SymbolTableTreeNode (gauss.LocalGaussPanel localGaussPanel)

Methods

public String getTitleOfComponent( )

public void propertyChange (java.beans.PropertyChangeEvent evt)

public void sortChilds( )

public void treeWillCollapse (javax.swing.event.TreeExpansionEvent e)

public void treeWillExpand (javax.swing.event.TreeExpansionEvent e)



APPENDIX B. THE JAVA LIBRARY JStatCom 163

B.5 Package gauss

B.5.1 Package Contents

Interfaces
GaussEngineRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

All visual objects (coming from java.awt.Component or one of its sub
classes) working with the GAUSS program or doing data manipulation
should implement this interface.
GaussLocalSymbolRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Components implementing this interface should provide reference to a
local GaussSymbolTable.
GaussSymbolRoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Components implementing this interface should provide reference to a
non-local GaussSymbolTable.
GaussThreadListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Listener interface for GaussThread events.

Classes
ElementChangeEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Event to signal the change of a single element in the data of a Gauss-
Data object.
Gauss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Links to an instance of the software package Gauss.
GaussData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Representation of Gauss software data symbols (matrix, string, and
string array).
GaussDataLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Displays elements of a GaussData object.
GaussDataOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
Collection of often used operators.
GaussDataTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Displays the contents of a GaussData object.
GaussDataTableCellRenderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
Support class for GaussDataTable.
GaussDataTableScrollPane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188
Use this class to view a potentially large GaussDataTable in a poten-
tially small place.
GaussDataTableScrollPaneLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Layout manager for GaussDataTableScrollPane.
GaussDataTextField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Editor component for GaussData objects.
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GaussFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
The top level GaussGUI component in the Gauss GUI hierarchy.
GaussInternalFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
JInternalFrame with a GaussSymbolTable object.
GaussObjectLinker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Provides static methods for finding contextual correct
GaussSymbolTable- and Gauss- objects at run time.
GaussPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
This class is the superclass for all Gauss user interfaces.
GaussProcedureCall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Class for defining Gauss computations as a new thread that runs in
addition to other Java threads.
GaussSymbolTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
A GaussSymbolTable serves as a stack for GaussData objects that are
shared among objects.
GaussThread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Class for defining Gauss computations.
LocalGaussPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A GaussPanel that references a local GaussSymbolTable.
Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Collection of matrix (two dimensional array) manipulation operations.
StructureChangeEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Event that nofifies about changes in GaussData objects.
SymbolObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Provides logical structure of symbol names and a GaussSymbolTable.
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B.5.2 Interfaces

Interface GaussEngineRoot

All visual objects (coming from java.awt.Component or one of its sub classes) work-
ing with the GAUSS program or doing data manipulation should implement this
interface.

Declaration

public interface GaussEngineRoot

Methods

public Gauss getGauss( )
The implementation should return reference to the Gauss-object that keeps
contact with the Gauss program.

Interface GaussLocalSymbolRoot

Components implementing this interface should provide reference to a local
GaussSymbolTable.

Declaration

public interface GaussLocalSymbolRoot

Methods

public GaussSymbolTable getLocalGaussSymbolTable( )
Components implementing this interface are defined to be the top level com-
ponent for local GaussData requests. Every get/setLocalGaussData request
of child components added to this component refer to the GaussSymbolTable
returned by this method.

Interface GaussSymbolRoot

Components implementing this interface should provide reference to a non-local
GaussSymbolTable.

Declaration

public interface GaussSymbolRoot



APPENDIX B. THE JAVA LIBRARY JStatCom 166

Methods

public GaussSymbolTable getGaussSymbolTable( )
This method should return the contextual right GaussSymbolTable.

Interface GaussThreadListener

Listener interface for GaussThread events.

Declaration

public interface GaussThreadListener implements java.util.EventListener

Methods

public void gaussThreadFinished( )
Gets executed whenever a GaussThread finishes.

public void gaussThreadFinished (int actionType)
Gets executed whenever a GaussThread finishes with a certain action.

public void gaussThreadFinished (int actionType,
java.lang.Object[] param)

Gets executed whenever a GaussThread finishes with a certain action and out-
put parameters.

B.5.3 Classes

Class ElementChangeEvent

Event to signal the change of a single element in the data of a GaussData object.
An ElementChangeEvent gets delivered from a GaussData object whenever some
interested object is registered as a PropertyChangeListener or VetoableChangeLis-
tener. This is advantageous since it first delivers the old value to the listener object
and second the listener object may veto the change before the GaussData object
changes.

Declaration

public class ElementChangeEvent extends java.beans.PropertyChangeEvent
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Constructors

public ElementChangeEvent (javax.swing.table.TableModel source,
double oldValue,
double newValue,
int row,
int column)

Constructs an ElementChangeEvent object for numeric data. The primi-
tive type double is wrapped to a Double-object. The getNewValue() and
getOldValue() methods return Objects of type java.lang.Double if the event is
constructed this way. getPropertyName() returns GaussData.MATRIX CHANGE

public ElementChangeEvent (javax.swing.table.TableModel source,
java.lang.String newValue,
int row,
int column)

Constructs an ElementChangeEvent object for string data.
The getNewValue() and getOldValue() methods return Objects of type
java.lang.String if the event is constructed this way. getPropertyName() re-
turns GaussData.STRING CHANGE

Methods

public int getColumn( )
Returns the column index of the changed element. The column index has a
range from 0,...,cols(x)-1.

public int getRow( )
Returns the row index of the changed element. The row index has a range from
0,...,rows(x)-1.

Class Gauss

Links to an instance of the software package Gauss. This object performs the whole
communication with Gauss and has total control over Gauss, i.e. it starts, com-
mands, and ends Gauss.

Declaration

public class Gauss extends java.lang.Object

Fields

public static boolean isDesignTime
Flags design time. Set to false by default. If set to true this object will not
try to load the native code and to start Gauss.
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public static String compileCFG
Name of the configuration file for compiling Gauss sourcen.

public boolean debug

Constructors

public Gauss( )
Constructs Gauss object without starting Gauss.

Methods

public void addPropertyChangeListener
(java.beans.PropertyChangeListener l)

public synchronized void addPropertyChangeListener
(java.lang.String propertyName,
java.beans.PropertyChangeListener listener)

public boolean checkForMissingValues (gauss.GaussData arg)
Checks whether the argument contains any missig values.

public boolean executeCommand (java.lang.String command)
Preferred method to execute a Gauss command. This method blocks until
Gauss finished the command execution and returns the success of the
execution. A command is executed successfully if no error is reported to the
Gauss errorlog file.

public void firePropertyChange (java.lang.String propertyName,
java.lang.Object oldValue,
java.lang.Object newValue)

public String getCurrentThreadName( )
Returns the name of the currently executing GaussThread or
GaussProcedureCall or null if Gauss is idle (waits for jobs).

public String getDLibraryList (java.lang.String dlibrary)
Returns a list of the DLLs currently loaded by Gauss.

public String getGcgName( )
Returns the file name that contains the compiled source code.

public String getInstanceName( )
Returns the instance name of the associateted GAUSS program.

public String getInstanceTempDir( )
Returns the temporary directory used by the running Gauss instance. That
directory is used to place the configuration, errorlog, and graphic files of the
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running Gauss program.

public String getInstanceTempDirDoubleBackSlash( )
Returns the temporary directory used by the running Gauss instance with two
backslashes instead of one. This is particular useful in Gauss program code.

public boolean getIsWorking( )
Gets the isWorking property (boolean) value.

public String getJmPath( )
Returns the root directory.

public String getJmPathDoubleBackSlash( )
Returns the root directory with two backslashes instead of one. This is
particular useful in Gauss program code.

public String getLibraryList (java.lang.String library)
Returns a list of Gauss libraries loaded by Gauss with the library command.
Returns null if not run in debug-mode.

public String getTempPath( )
Returns the temp root path.

public synchronized boolean hasListeners
(java.lang.String propertyName)

public native boolean isExecuting( )
Checks the status of the connected Gauss program.

public boolean loadDlibrary (java.lang.String library)
This method loads a new DLL to Gauss. The DLL is added to the already
loaded DLLs. If run in designTime-mode nothing is done and the method
returns false by default.

public void loadLibrary (java.lang.String library)
This method loads a Gauss library if run in debug-mode.

public GaussData readGaussData (java.lang.String arg)
Returns a symbol from Gauss. Only strings, string arrays, and matrices can
be accessed. If the symbol does not exist in Gauss or is not of type matrix,
string, or string array a message is displayed and null returned. This method
blocks until all data is written from Gauss to Java, i.e. when this method
returns non-null the return object can savely be accessed.

public GaussData readGaussDataArray (java.lang.String[] arg)
Returns one or more symbols from Gauss at the same time. Only strings,
string arrays, and matrices can be accessed. If the symbol does not exist in
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Gauss or is not of type matrix, string, or string array the corresponding
element in the return array contains null. When reading N>1 symbols from
Gauss it is advantageous to use this method instead of calling N times
readGaussData() in terms of performance. This method blocks until all data
is written from Gauss to Java, i.e. when this method returns all non-null
elements of the return object can savely be accessed.

public void register (gauss.GaussProcedureCall gpc)
Registers a GaussProcedureCall. If isWorking() returns true the argument is
added to the thread list and gets started when all threads registered before
finished. Otherwise the argument is executed immediately.

public void register (gauss.GaussThread t)
Registers a GaussThread. If isWorking() returns true the argument is added
to the thread list and gets started when all threads registered before finished.
Otherwise the argument is executed immediately.

public boolean remove (java.lang.Thread t)
Removes the specified thread either from Gauss (i.e. stops the argument if
running) or form the list of unprocessed threads.

public void removePropertyChangeListener
(java.beans.PropertyChangeListener l)

public synchronized void removePropertyChangeListener
(java.lang.String propertyName,
java.beans.PropertyChangeListener listener)

public void setCurrentThreadName
(java.lang.String newCurrentThreadName)

Sets the name of the currently executing thread.

public void setGcgName (java.lang.String newGcgName)
Sets the name of the file that contains the compiled source code.

public void setOwnerComponent
(java.awt.Component newOwnerComponent)

Sets the component that initiated a Gauss job.

public void startGauss( )
Method to start Gauss.
This is the preferred method to start Gauss. A new instance of the Gauss
program is started and attach to this object.

public void stopExecution( )
Preferred method to stop current program execution. The next Gauss job
from the queue (if there is one) is started.
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public boolean terminateGauss( )
Preferred termination method. Gauss is finished without confirmation if there
are no running gauss programs and no waiting gauss jobs. Otherwise a
confirmation dialog pops up.

public boolean writeGaussData (gauss.GaussData arg)
Preferred method to write a GaussData object to Gauss. When this method
succeeds the data of the argument object is assigned to a global symbol in
Gauss with the name arg.getSymbolName()
This method blocks until all data is written to Gauss, i.e. when this method
returns true the next operation in Gauss can rely on a global symbol named
arg.getSymbolName()
The GaussData argument can be uninitialized (in Gauss: y={}).

public boolean writeGaussDataArray (gauss.GaussData[] arg)
Preferred method to write more than one GaussData objects to Gauss. When
this method succeeds the data of the argument objects are assigned to global
symbols in Gauss with the name arg[i].getSymbolName()
This method blocks until all data is written to Gauss, i.e. when this method
returns true the next operation in Gauss can rely on the global symbols
named arg[i].getSymbolName()
The GaussData arguments can be uninitialized (in Gauss: y={}).

Class GaussData

Representation of Gauss software data symbols (matrix, string, and string array).
It also can be used as a table model.
At construction time the name of the GaussData object is specified. It cannot be
changed later. In the following the term data is used for the numbers or strings that
can be stored in this object.
On some UI-component GaussData objects can be conveniently displayed with

• GaussDataTable,

• GaussDataTextField, and

• GaussDataLabel objects.

All centrally accessable GaussData objects are administered by a GaussSymbolTable

object.

Declaration

public class GaussData extends javax.swing.table.AbstractTableModel
implements java.lang.Cloneable



APPENDIX B. THE JAVA LIBRARY JStatCom 172

Fields

public static final String MATRIX CHANGE
public static final String STRING CHANGE
public static final String STRUCTURE CHANGE
public static final int NOT INITIALIZED

Return value of getType() if this object contains no data.
public static final int MATRIX

Return value of getType() if this object contains numeric data.
public static final int STRING

Return value of getType() if this object contains a string.
public static final int STRING ARRAY

Return value of getType() if this object contains a two dimensional array
of strings.

public static final int MISSING VALUE
Input value for constructors in order to construct missing values GaussData.
The value stored is a NaN (Not a Number).

public static final int ONES
Input value for constructors in order to construct a matrix of ones.

public static final int ZEROS
Input value for constructors in order to construct a matrix of zeros.

public static final int EMPTY
Identifier for empty GaussData objects.

Constructors

public GaussData (double[][] data,
java.lang.String name)

Constructs a 2-dimensional matrix if the data argument is not empty or null.

public GaussData (double[] data,
java.lang.String symbolName)

Constructs a row vector if the data argument is not empty or null.

public GaussData (double data,
java.lang.String symbolName)

Constructs a scalar.

public GaussData (int[][] data,
java.lang.String name)

Constructs a 2-dimensional matrix if the data argument is not empty or null.
The integers are internally converted to doubles.

public GaussData (java.lang.String symbolName)
Constructs a uninitialized GaussData object.
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public GaussData (java.lang.String[][] data,
java.lang.String name)

Constructs a 2-dimensional array of strings if the data argument is not empty
or null.

public GaussData (java.lang.String[] value,
java.lang.String name)

Constructs a row vector of strings if the data argument is not empty or null.

public GaussData (java.lang.String value,
java.lang.String symbolName)

Constructs a string object if the data argument is not null.

Methods

public synchronized void addPropertyChangeListener
(java.beans.PropertyChangeListener l)

public synchronized void addPropertyChangeListener
(java.lang.String propertyName,
java.beans.PropertyChangeListener l)

public synchronized void addVetoableChangeListener
(java.beans.VetoableChangeListener l)

public void appendColumn (double d)
Appends a column to the end of the data. In Gauss one would code x=x y;
To make sure that the data manipulation is done when this method returns,
call this method from the event dispatching thread. If this method is not
called from the event dispatching thread it is called again with
SwingUtilities.invokeLater(). In this case returning from this method is
no guarantee that the operation is finished.

public void appendColumn (double[] xx)
Appends a column to the end of the data. In Gauss one would code x=x y;
To make sure that the data manipulation is done when this method returns,
call this method from the event dispatching thread. If this method is not
called from the event dispatching thread it is called again with
SwingUtilities.invokeLater(). In this case returning from this method is
no guarantee that the operation is finished.

public void appendColumn (java.lang.String string)
Appends a column to the end of the data. In Gauss one would code x=x$ y;
To make sure that the data manipulation is done when this method returns,
call this method from the event dispatching thread. If this method is not
called from the event dispatching thread it is called again with
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SwingUtilities.invokeLater(). In this case returning from this method is
no guarantee that the operation is finished.

public void appendColumns (double[][] x)
Appends a column to the end of the data. In Gauss one would code x=x y;
To make sure that the data manipulation is done when this method returns,
call this method from the event dispatching thread. If this method is not
called from the event dispatching thread it is called again with
SwingUtilities.invokeLater(). In this case returning from this method is
no guarantee that the operation is finished.

public void appendColumns (gauss.GaussData gaussData)
Appends a column to the end of the data. In Gauss one would code x=x y;
To make sure that the data manipulation is done when this method returns,
call this method from the event dispatching thread. If this method is not
called from the event dispatching thread it is called again with
SwingUtilities.invokeLater(). In this case returning from this method is
no guarantee that the operation is finished.

public void appendColumns (java.lang.String[][] x)
Appends a column to the end of the data. In Gauss one would code x=x$ y;
To make sure that the data manipulation is done when this method returns,
call this method from the event dispatching thread. If this method is not
called from the event dispatching thread it is called again with
SwingUtilities.invokeLater(). In this case returning from this method is
no guarantee that the operation is finished.

public void appendRow (double d)
Appends a row to the end of the data. In Gauss one would code x=x|y; To
make sure that the data manipulation is done when this method returns, call
this method from the event dispatching thread. If this method is not called
from the event dispatching thread it is redirected to it. In this case returning
from this method is no guarantee that the operation is finished.

public void appendRow (java.lang.String newElement)
Appends a row to the end of the data. In Gauss one would code x=x$|y; To
make sure that the data manipulation is done when this method returns, call
this method from the event dispatching thread. If this method is not called
from the event dispatching thread it is redirected to it. In this case returning
from this method is no guarantee that the operation is finished.

public void appendRows (double[][] rows)
Appends rows to the end of the data. In Gauss one would code x=x|y; To
make sure that the data manipulation is done when this method returns, call
this method from the event dispatching thread. If this method is not called
from the event dispatching thread it is redirected to it. In this case returning
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from this method is no guarantee that the operation is finished.

public void appendRows (gauss.GaussData gaussData)
Appends rows to the end of the data. In Gauss one would code x=x|y; To
make sure that the data manipulation is done when this method returns, call
this method from the event dispatching thread. If this method is not called
from the event dispatching thread it is redirected to it. In this case returning
from this method is no guarantee that the operation is finished.

public void appendRows (java.lang.String[][] rows)
Appends rows to the end of the data. In Gauss one would code x=x$|y; To
make sure that the data manipulation is done when this method returns, call
this method from the event dispatching thread. If this method is not called
from the event dispatching thread it is redirected to it. In this case returning
from this method is no guarantee that the operation is finished.

public Object clone( )
Returns a new GaussData object with a the same symbol name and the same
data but leaves behind the listeners.

public GaussData clone (java.lang.String newName)
Returns a new GaussData object with a new symbol name. It contains the
same data as in this object but leaves behind the listeners.

public void fireTableChanged (javax.swing.event.TableModelEvent e)
Forward the given notification event to all TableModelListeners that
registered themselves as listeners for this table model.

public int getCols( )
Returns the number of columns.

public Object getColumnAt (int c)
Returns a column at the specified index. The type of the return object is
either double[] or String[]

public int getColumnCount( )
Returns the number of columns.

public double getDoubleValueAt (int row,
int column)

Returns the double-element at index [row,column].

public int getIndexOfElement (double d)
Returns the index of the first ocurrence of the argument in GaussData.
The search is conducted row-wise, i.e. the first row is searched, then the
second, etc. If the search algorithm finds a matrix element such that
m[i][j]==d, the indices i and j are returned as an array of integers with first
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the row index (i) and then the column index (j). Note that indices start at 0
and end at getRows()-1 / getCols()-1. If the search fails or the GaussData
object represents a string array, int[] {-1,-1} is returned.
This method should be called from the event dispatching thread.

public int getIndexOfElement (double d,
int startRowIndex,
int startColumnIndex)

Returns the index of the first occurrence of the argument in this GaussData
object, starting the search at the specified row and column index.
The search is conducted row-wise, i.e. the row at startRowIndex is searched
first, then the row at startRowIndex + 1, etc. If the search algorithm finds a
matrix element such that m[i][j]==d, the indices i and j are returned as an
array of integers with first the row index (i) and then the column index (j).
Note that indices start at 0 and end at getRows()-1 / getCols()-1. If the
search fails or the GaussData object represents a string array, int[] {-1,-1} is
returned.
This method should be called from the event dispatching thread. See
javax.swing.SwingUtilities.invokeLater().

public int getIndexOfElement (java.lang.String string)
Returns the index of the first occurrence of the argument in GaussData.
The search is conducted row-wise, i.e. the first row is searched, then the
second, etc. If the search algorithm finds a matrix element such that
m[i][j]==string, the indices i and j are returned as an array of integers with
first the row index (i) and then the column index (j). Note that indices start
at 0 and end at getRows()-1 / getCols()-1. If the search fails or the
GaussData object represents a matrix, int[] {-1,-1} is returned.
This method should be called from the event dispatching thread. See
javax.swing.SwingUtilities.invokeLater().

public int getIndexOfElement (java.lang.String arg,
int startRowIndex,
int startColumnIndex)

Returns the index of the first ocurrence of the argument in this GaussData
object, starting the search at the specified row and column index.
The search is conducted row-wise, i.e. the row at startRowIndex is searched
first, then the row at startRowIndex + 1, etc. If the search algorithm finds a
matrix element such that m[i][j]==d, the indices i and j are returned as an
array of integers with first the row index (i) and then the column index (j).
Note that indices start at 0 and end at getRows()-1 / getCols()-1. If the
search fails or the GaussData object represents a matrix, int[] {-1,-1} is
returned.
This method should be called from the event dispatching thread. See
javax.swing.SwingUtilities.invokeLater().
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public int getIntValueAt (int row,
int column)

Returns the double-element at index [row,column] truncated to an integer.

public String getName( )
Returns the symbol name of this GaussData object. The symbol name is
immutable.

public int getRowCount( )
Returns number of rows.

public int getRows( )
Returns number of rows.

public String getStringValueAt (int row,
int column)

Returns the String-element at index [row,column].

public TableModelListener getTableModelListener( )
Returns all registered TableModelListeners. The returned array has length 0
if no listeners are registered.

public int getType( )
Returns the data type of a GaussData object.
The result equals the GAUSS command type(X);

public Object getValueAt (int row,
int column)

Returns an attribute value for the cell at index [row,column].
row must be in the range 0,...,getRows()-1, column in the range
0,...,getCols()-1.

Note that the primitive type double is wrapped by java.lang.Double. If
isMatrix() returns true, it is more efficient to call getDoubleValueAt() or
getIntValueAt()

public Object getValues( )
Returns data Object of this GaussData-Object. The return value has format
double[][] in case of MATRIX and String[][] in case of STRING and
STRING ARRAY, or null in case of NOT INITIALIZED.

public boolean isCellEditable (int r,
int c)

Returns isEditable().

public boolean isEditable( )
Returns whether the data can be changed or not.
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public boolean isMatrix( )
Indicates whether GaussData is of type MATRIX.

public boolean isString( )
Indicates whether GaussData is of type STRING or STRING ARRAY

public boolean isThreadSafe( )
Short for SwingUtilities.isEventDispatchThread()

public static boolean isValidName (java.lang.String name)
Helper method to see whether the string argument is a valid symbol name in
Gauss. This method does not check whether the argument string is a Gauss
command or procedure or function name.

public static double makeDoubleMatrix (int rows,
int cols,
int type)

Creates a 2-dimensional array of missing values, zeros, or ones.

public void print( )
Prints this GaussData object to System.out

public void print (java.io.PrintStream p)
Prints this GaussData object to the argument print stream.

public void print (java.io.PrintStream p,
int width,
int precision,
boolean transposed)

Prints this GaussData object to the argument print stream, with minimum
field width, and precision. Output can be made transposed.

public void removeColumns (int index0,
int index1)

Removes all columns from index0 to index1.

public void removePropertyChangeListener
(java.beans.PropertyChangeListener l)

public void removePropertyChangeListener
(java.lang.String propertyName,
java.beans.PropertyChangeListener l)

public void removeRows (int index0,
int index1)

Removes all rows from index0 to index1.

public void removeVetoableChangeListener
(java.beans.VetoableChangeListener l)
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public void setDoubleValueAt (double newValue,
int row,
int col)

Changes the element at index [row,col] to newValue. To make sure that the
data manipulation is done when this method returns, call this method from
the event dispatching thread. If this method is not called from the event
dispatching thread it is called again with SwingUtilities.invokeLater().
In this case returning from this method is no guarantee that the operation is
finished.

public void setIntValueAt (int intValue,
int row,
int col)

Changes the element at index [row,col] to intValue. To make sure that the
data manipulation is done when this method returns, call this method from
the event dispatching thread. If this method is not called from the event
dispatching thread it is called again with SwingUtilities.invokeLater().
In this case returning from this method is no guarantee that the operation is
finished.

public void setStringValueAt (java.lang.String value,
int row,
int col)

Changes the element at index [row,col] to the specified string value. To
make sure that the data manipulation is done when this method returns, call
this method from the event dispatching thread. If this method is not called
from the event dispatching thread it is called again with
SwingUtilities.invokeLater(). In this case returning from this method is
no guarantee that the operation is finished.

public void setValueAt (java.lang.Object value,
int row,
int col)

Changes the element at index [row,col] to the value object. To make sure
that the data manipulation is done when this method returns, call this
method from the event dispatching thread. If this method is not called from
the event dispatching thread it is called again with
SwingUtilities.invokeLater(). In this case returning from this method is
no guarantee that the operation is finished.

public void setValues (double[][] newValues)
Changes data to newValues. To make sure that the data manipulation is done
when this method returns, call this method from the event dispatching
thread. If this method is not called from the event dispatching thread it is
called again with SwingUtilities.invokeLater(). In this case returning
from this method is no guarantee that the operation is finished.

public void setValues (gauss.GaussData values)
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Changes data to GaussData values. To make sure that the data manipulation
is done when this method returns, call this method from the event
dispatching thread. If this method is not called from the event dispatching
thread it is called again with SwingUtilities.invokeLater(). In this case
returning from this method is no guarantee that the operation is finished.

public void setValues (java.lang.String[][] newValues)
Changes data to new string values. To make sure that the data manipulation
is done when this method returns, call this method from the event
dispatching thread. If this method is not called from the event dispatching
thread it is called again with SwingUtilities.invokeLater(). In this case
returning from this method is no guarantee that the operation is finished.

public void syncDimension (int newRows,
int newCols,
double fillValueDouble,
java.lang.String fillValueString)

Fits data field to new dimension.

public String toString( )
Returns an informative string representation for this GaussData object.

Class GaussDataLabel

Displays elements of a GaussData object.
Objects of this class can display up to two elements of GaussData object(s). The
elements are referred to as firstArg and secondArg. They are displayed using a
C-style sprinf() formatString.

Declaration

public class GaussDataLabel extends javax.swing.JLabel
implements javax.swing.event.TableModelListener

Constructors

public GaussDataLabel( )
GaussDataLabel constructor.

Methods

public int getFirstArgCol( )

public int getFirstArgRow( )
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public String getFirstArgSymbolName( )

public String getFormatString( )

public int getSecondArgCol( )

public int getSecondArgRow( )

public String getSecondArgSymbolName( )

public boolean isLocalGaussData( )

public void paint (java.awt.Graphics g)

public void setFirstArgCol (int newFirstArgCol)

public void setFirstArgRow (int newFirstArgRow)

public void setFirstArgSymbolName
(java.lang.String newFirstArgSymbolName)

public void setFormatString (java.lang.String newFormatString)

public void setLocalGaussData (boolean newLocalGaussData)

public void setSecondArgCol (int newSecondArgCol)

public void setSecondArgRow (int newSecondArgRow)

public void setSecondArgSymbolName
(java.lang.String newSecondArgSymbolName)

public void tableChanged (javax.swing.event.TableModelEvent e)

Class GaussDataOperators

Collection of often used operators.
The operators can be applied on GaussData objects.

Declaration

public class GaussDataOperators extends java.lang.Object

Constructors

public GaussDataOperators( )
GaussDataOperators constructor.
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Methods

public static void concatenateArg (gauss.GaussData arg,
java.lang.String appendix)

public static void concatenateArg (java.lang.String prefix,
gauss.GaussData arg)

public static GaussData deleteRow (gauss.GaussData arg1,
int arg2)

public static void deleteRowArg (gauss.GaussData arg1,
int arg2)

public static GaussData deleteRowsIf (gauss.GaussData arg1,
double[][] arg2)

public static GaussData indexSelection (gauss.GaussData arg,
gauss.GaussData rowIdx,
gauss.GaussData colIdx)

public static GaussData setDifference (gauss.GaussData arg1,
gauss.GaussData arg2)

Class GaussDataTable

Displays the contents of a GaussData object.
It is recommended to use GaussDataView objects for displaying Gauss data.
Support classes are

• GaussDataTableDoubleEditor

• GaussDataTableStringEditor

• GaussDataTableDoubleRenderer

• GaussDataTableStringRenderer

Declaration

public class GaussDataTable extends util.component.BorderTable
implements java.awt.event.ActionListener

Fields

public static final String ENTER
ENTER - command

public static final String CANCEL
CANCEL - command
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public boolean columnHeader
public int rowSelectionModus

Constructors

public GaussDataTable( )

public GaussDataTable (javax.swing.table.TableModel dm)

public GaussDataTable (javax.swing.table.TableModel dm,
boolean link)

public GaussDataTable (javax.swing.table.TableModel dm,
javax.swing.table.TableColumnModel cm)

public GaussDataTable (javax.swing.table.TableModel dm,
javax.swing.table.TableColumnModel cm,
boolean link)

Methods

public void actionPerformed (java.awt.event.ActionEvent e)

public void addNotify( )

public void addTableModelListener
(javax.swing.event.TableModelListener l)

This method adds a model listener to the current GaussData object. When
the model changes (setModel()) the model listeners registered with this
method are removed from the old GaussData object and added to the new
GaussData object. The model listeners stick to the GaussDataTable rather
then to the GaussData.

public void createDefaultColumnsFromModel( )
This method will create default columns for the table from the data model
using the getColumnCount() and getColumnClass() methods defined in the
TableModel interface.
This method will clear any exsiting columns before creating the new columns
based on information from the model.

public JTableHeader createDefaultTableHeader( )
Returns the default table header object which is a JTableHeader. Subclass
can override this method to return a different table header object

public boolean editCellAt (int row,
int column,
java.util.EventObject e)
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Programmatically starts editing the cell at row and column, if the cell is
editable. To prevent the JTable from editing a particular table, column or cell
value, return false from the isCellEditable() method in the TableModel
interface.

public TableCellRenderer getCellRenderer( )

public TableCellEditor getDefaultEditor (java.lang.Class columnClass)
Returns the editor to be used when no editor has been set in a TableColumn.
During the editing of cells the editor is fetched from a Hashtable of entries
according to the class of the cells in the column. If there is no entry for this
columnClass the method returns the entry for the most specific superclass.
The JTable installs entries for Object, Number and Boolean all which can be
modified or replaced.

public TableCellRenderer getDefaultRenderer
(java.lang.Class columnClass)

New implementation because field ’defaultRenderersByColumnClass’ is not
initialized in this subclass and this method is used by the maxCellWidth
methods

public double getDoubleValueAt (int row,
int column)

public boolean getEditable( )
Returns the property editable.

public TableCellEditor getEditor( )

public JScrollPane getEnclosingScrollPane( )

public Gauss getGauss( )
Implementation of interface function from interface GaussObject.
Returns null by default.

public GaussData getGaussDataSelectedRows (java.lang.String name)

public GaussSymbolTable getGaussSymbolTable( )
Implementation of interface function from interface GaussObject.
Returns current GaussSymbolTable.

public int getPrecision( )
If table displays numeric data, this method returns number of digits right of
decimal point.

public int getRowSelectionModus( )



APPENDIX B. THE JAVA LIBRARY JStatCom 185

public int getScrollableBlockIncrement (java.awt.Rectangle visibleRect,
int orientation,
int direction)

Returns The visibleRect.height or visibleRect.width, depending on the table’s
orientation.

public final boolean getScrollableTracksViewportHeight( )
Returns false to indicate that the height of the viewport does not determine
the height of the table.
This implementation is assumed by GaussDataView and its implementing
LayoutManager GDVScrollPaneLayout.

public final boolean getScrollableTracksViewportWidth( )
Returns false to indicate that the width of the viewport does not determine
the width of the table.
This implementation is assumed by GaussDataView and its implementing
LayoutManager GDVScrollPaneLayout.

public int getScrollableUnitIncrement (java.awt.Rectangle visibleRect,
int orientation,
int direction)

Returns the scroll increment that completely exposes one new row or column
(depending on the orientation).
This method is called each time the user requests a unit scroll.
End points of scrollbar clicked.

public String getStringValueAt (int row,
int column)

public String getSymbolName indexSelectedRows( )

public String getSymbolName lowerBound( )

public String getSymbolName selectedRows( )

public String getSymbolName upperBound( )

public String getSymbolName( )
Returns the symbol name of the displayed data.

public int getType( )
Returns the type of the displayed data.

public Verifier getVerifier( )
Returns the verifier object of this table.

public boolean isCellEditable (int row,
int col)
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New implementation of JTable.isCellEditable() method.

public boolean isEditable( )

public boolean isLocalGaussData( )

public Component prepareRenderer
(javax.swing.table.TableCellRenderer renderer,
int row,
int column)

public void setAutoResizeMode (int mode)

public void setCellRenderer
(javax.swing.table.TableCellRenderer newCellRenderer)

public void setColumnHeader (boolean newColumnHeader)

public void setEditable (boolean editable)
Enable or disable editable property of this GaussDataTable

public void setEditor (javax.swing.table.TableCellEditor arg)

public void setGauss (gauss.Gauss g)
Implementation of interface method from interface GaussObject.
Empty method body.

public void setGaussSymbolTable (gauss.GaussSymbolTable t)
Implementation of interface method from interface GaussObject.
Sets new GaussSymbolTable.

public void setInitialValues (double[][] values)

public void setInitialValues (java.lang.String[][] values)

public void setLocalGaussData (boolean newLocalGaussData)

public void setModel (javax.swing.table.TableModel newTableModel)
Reimplements JTable.setModel() method.
JTable already implemented TableModelListener and registeres/ unregisters
itself to new/ old TableModels. All desired operations at a model change
must therefore coded in the method tableChanged().
This method checks for a null TableModel argument and returns
immediately if this is present.

public void setPrecision (int precision)
If table displays numeric data, this method sets number of digits right of
decimal point.
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public void setRowSelectionModus (int newRowSelectionModus)

public void setSymbolName indexSelectedRows (java.lang.String arg)

public void setSymbolName lowerBound
(java.lang.String newSymbolName lowerBound)

public void setSymbolName selectedRows
(java.lang.String newSymbolName selectedRows)

public void setSymbolName upperBound
(java.lang.String newSymbolName upperBound)

public void setSymbolName (java.lang.String name)
Sets symbol name of new GaussData object that is displayed by this table.

public void setSymbolName
(java.lang.String name,
gauss.GaussSymbolTable localSymbolTable)

public void setSymbolNameForColumnHeader (java.lang.String name)

public void setVerifier (util.component.Verifier newVerifier)
Sets a new verifier object for this table.

public void tableChanged (javax.swing.event.TableModelEvent e)

public void updateUI( )

public void valueChanged (javax.swing.event.ListSelectionEvent e)
Invoked when row selection changes.
The data object selected rows (symbolName selectedRows) is updated.

Class GaussDataTableCellRenderer

Support class for GaussDataTable.

Renderer component for gauss.GaussDataTable when cell value is java.lang.Double

Declaration

public class GaussDataTableCellRenderer extends javax.swing.JLabel
implements javax.swing.table.TableCellRenderer
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Constructors

public GaussDataTableCellRenderer( )

Methods

public int getPrecision( )

public Component getTableCellRendererComponent
(javax.swing.JTable table,
java.lang.Object value,
boolean isSelected,
boolean hasFocus,
int row,
int column)

public Color getUnselectedBackground( )

public Color getUnselectedForeground( )

public void setPrecision (int precision)

public void setUnselectedBackground
(java.awt.Color newUnselectedBackground)

public void setUnselectedForeground
(java.awt.Color newUnselectedForeground)

Class GaussDataTableScrollPane

Use this class to view a potentially large GaussDataTable in a potentially small
place.
Potentially because the view can encompass the entire GaussDataTable or just a
piece of it. In the latter case one can scroll through the whole GaussDataTable.
A GaussDataView that becomes scrollbars if more data than displayed columns/
rows become available.
This object is preferred to the simple GaussDataView!! The FixedScrollPane is an
extended JScrollPane that allows to set column header and row header policies. For
laying out the scroll pane components it uses either the FixedScrollPaneLayout or
the TightScrollPaneLayout. Both layout managers preserve space for scrollbars and
row/ column headers if there is a theoretical chance for them to appear (i.e their
policy variable is not set to some kind of NEVER).
minimumVisibleRows = no less than ’minimumVisibleRows’ are displayed if there
is not enough data to display, space is reserved. maximumVisibleRows = no more
than ’maximumVisibleRows’ are displayed if there is not enough space, display as
much rows as possible.
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Declaration

public class GaussDataTableScrollPane extends javax.swing.JScrollPane

Constructors

public GaussDataTableScrollPane( )

public GaussDataTableScrollPane (gauss.GaussDataTable gdt)

Methods

public int getColumnHeaderAlignment( )

public TableCellRenderer getColumnHeaderCellRenderer( )

public int getColumnHeaderDataFromModel( )

public GaussData getColumnHeaderGaussData( )

public GaussDataTable getColumnHeaderGaussDataTable( )

public int getColumnHeaderPolicy( )

public TableCellRenderer getColumnHeaderRenderer( )

public String getColumnHeaderStringData( )

public String getColumnHeaderSymbolName( )

public int getMaximumVisibleColumns( )

public int getMaximumVisibleRows( )

public int getMinimumVisibleColumns( )

public int getMinimumVisibleRows( )

public int getRowHeaderAlignment( )

public TableCellRenderer getRowHeaderCellRenderer( )

public int getRowHeaderDataFromModel( )

public GaussData getRowHeaderGaussData( )

public int getRowHeaderPolicy( )
Returns row header policy.
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public String getRowHeaderSymbolName( )

public boolean isColumnHeaderDefaultData( )

public boolean isLocalGaussData( )

public boolean isRowHeaderDefaultData( )

public void setBorder (javax.swing.border.Border border)

public void setColumnHeaderAlignment
(int newColumnHeaderAlignment)

public void setColumnHeaderCellRenderer
(javax.swing.table.TableCellRenderer newColumnHeaderCellRenderer)

public void setColumnHeaderDataFromModel
(int newColumnHeaderDataFromModel)

public void setColumnHeaderDefaultData
(boolean newColumnHeaderDefaultData)

public void setColumnHeaderGaussData
(gauss.GaussData newColumnHeaderGaussData)

public void setColumnHeaderPolicy (int policy)
Determines when the column header appears in the scrollpane. The options
are:
• JScrollPane.HORIZONTAL SCROLLBAR AS NEEDED
• JScrollPane.HORIZONTAL SCROLLBAR NEVER
• JScrollPane.HORIZONTAL SCROLLBAR ALWAYS

public void setColumnHeaderStringData
(java.lang.String[] newColumnHeaderStringData)

public void setColumnHeaderSymbolName
(java.lang.String newColumnHeaderSymbolName)

public void setLocalGaussData (boolean newLocalGaussData)

public void setMaximumVisibleColumns
(int newMaximumVisibleColumns)

public void setMaximumVisibleRows (int newMaximumVisibleRows)

public void setMinimumVisibleColumns
(int newMinimumVisibleColumns)
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public void setMinimumVisibleRows (int newMinimumVisibleRows)

public void setRowHeaderAlignment (int newRowHeaderAlignment)

public void setRowHeaderCellRenderer
(javax.swing.table.TableCellRenderer newRowHeaderCellRenderer)

public void setRowHeaderDataFromModel
(int newRowHeaderDataFromModel)

public void setRowHeaderDefaultData
(boolean newRowHeaderDefaultData)

public void setRowHeaderGaussData
(gauss.GaussData newRowHeaderGaussData)

public void setRowHeaderPolicy (int policy)

public void setRowHeaderSymbolName
(java.lang.String newRowHeaderSymbolName)

public void setRowHeaderWidth (int width)
Sets a new row header width.

public void setViewportView (java.awt.Component view)

Class GaussDataTableScrollPaneLayout

Layout manager for GaussDataTableScrollPane.

Declaration

public class GaussDataTableScrollPaneLayout
extends javax.swing.ScrollPaneLayout

Constructors

public GaussDataTableScrollPaneLayout( )

Methods

public void layoutContainer (java.awt.Container parent)

public Dimension minimumLayoutSize (java.awt.Container parent)
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The minimum size of a ScrollPane is the size of the insets plus minimum size
of the viewport, plus the scrollpane’s viewportBorder insets, plus the mini-
mum size of the visible headers, plus the minimum size of the scrollbars whose
displayPolicy isn’t NEVER.

public Dimension preferredLayoutSize (java.awt.Container parent)
The preferred size of a ScrollPane is the size of the insets, plus the preferred
size of the viewport, plus the preferred size of the headers, plus the preferred
size of the scrollbars that will appear given the current view and the current
scrollbar displayPolicies.

public void syncWithScrollPane (javax.swing.JScrollPane sp)

Class GaussDataTextField

Editor component for GaussData objects.
This is basically a JTextField that is connected to a GaussData object.

Declaration

public class GaussDataTextField extends util.component.ModalTextField
implements javax.swing.event.TableModelListener

Constructors

public GaussDataTextField( )

public GaussDataTextField (int columns)

Methods

public void addNotify( )

public int getCol( )
Returns the column number of the referenced GaussData object. Default is 1.

public double getInitialNumber( )
Returns the initial number.

public String getInitialString( )
Returns the initial string.

public Dimension getMaximumSize( )
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If fixedSize() == true return the preferredSize, otherwise return the maxi-
mumSize.

public Dimension getMinimumSize( )
If fixedSize() == true return the preferredSize, otherwise return the mini-
mumSize.

public int getRow( )
Returns the row number of the referenced GaussData object. Default is 1.

public String getSymbolName lowerBound( )
Returns the symbol name of the referenced lower bound GaussData object.

public String getSymbolName upperBound( )
Returns the symbol name of the referenced upper bound GaussData object.

public String getSymbolName( )
Returns the symbol name of the referenced GaussData object.

public boolean isFixedSize( )
Return the fixed size property. If this method returns true, getMinimumSize()
and getMaximumSize() return the components preferred size.

public boolean isLocalGaussData( )
Return the local data property.

public void message( )
Pops up a message dialog. Called by the validation mechanism if the event
queue processes an event that shifts input focus permanently away from this
component and the input text did not pass the verifier.

public void paint (java.awt.Graphics g)

public void setCol (int newCol)
Set the column number of the referenced GaussData object.

public void setFixedSize (boolean newFixedSize)
Set the fixed size property. If newFixedSize is true, getMinimumSize() and
getMaximumSize() return the components preferred size. This behaviour can
be advantegous for efficient layout management.

public void setInitialNumber (double newInitialNumber)
Set a new initial number. This number will be stored in the GaussSymbolTable
when this component is added to the component hierarchy.

public void setInitialString (java.lang.String newInitialString)
Set a new initial string. This string will be stored in the GaussSymbolTable
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when this component is added to the component hierarchy.

public void setLocalGaussData (boolean newLocalGaussData)
Set the local data property. If set to true, the component tries to get the
GaussDataObject from a local GaussDataTable.

public void setRow (int newRow)
Set the row number of the referenced GaussData object.

public void setSymbolName lowerBound
(java.lang.String newSymbolName lowerBound)

Sets the symbol name of the referenced lower bound GaussData object.

public void setSymbolName upperBound
(java.lang.String newSymbolName upperBound)

Sets the symbol name of the referenced upper bound GaussData object.

public void setSymbolName (java.lang.String newSymbolName)
Sets the symbol name of the referenced GaussData object.

public void tableChanged (javax.swing.event.TableModelEvent e)
Calls updateText()

public boolean validateInput( )
Checks whether lower and upper bound GaussData object(s) are referenced
and then calls super method.

Class GaussFrame

The top level GaussGUI component in the Gauss GUI hierarchy.
It is characterized with two properties Gauss, and GaussSymbolTable. These
properties can be accessed by all lower level GaussGUI components in the hierarchy
with getXxxx() methods.

When creating a GaussFrame object the constructor tries to start an instance of the
Gauss program that runs in the background as a number cruncher slave.

Declaration

public class GaussFrame extends javax.swing.JFrame
implements GaussEngineRoot,

GaussSymbolRoot

Constructors

public GaussFrame( )
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public GaussFrame (java.lang.String title)

Methods

public void addNotify( )

public void closeGaussFrame( )

public Gauss getGauss( )
Returns reference to object that keeps communication with the Gauss program.

public GaussSymbolTable getGaussSymbolTable( )
Returns symbol table of this gui layer.

public boolean isConfirmClosingOperation( )
Returns true if closing operation of this frame must be confirmed by the user.

public boolean isSystemExitWhenClosing( )
Returns true, if closing operation means the termination of the complete Java
application.

public void setConfirmClosingOperation
(boolean newConfirmClosingOperation)

Specify whether closing request of this frame must be confirmed by the user.

public void setSystemExitWhenClosing
(boolean newSystemExitWhenClosing)

Specify whether closing request of this frame equals to complete program
termination.

Class GaussInternalFrame

JInternalFrame with a GaussSymbolTable object.
This class has the special property that it holds an own GaussSymbolTable object
that can be accessed by its childs. This is necessary for not mixing up data of differ-
ent internal frame instances that access the GaussSymbolTable of the GaussFrame.
setDefaultCloseOperation() with arguments DO NOTHING ON CLOSE or
DISPOSE ON CLOSE will bring up a confirm dialog that asks for disposing confir-
mation when the internal frame is closed by the user. The HIDE ON CLOSE option
closes and removes the internal frame without asking for permission (default set-
ting). Note that in all cases the internal frame is <strong>removed</strong>from
the desktop pane. For repeatedly showing this frame a external reference on this
object must be kept. See remark.
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<strong>Remark:</strong>In Java 1.2 JInternalFrame has bug 4138031. This
class provides a workaround for it. (It seems to be fixed in Java 1.3)

Declaration

public class GaussInternalFrame extends javax.swing.JInternalFrame
implements GaussSymbolRoot

Constructors

public GaussInternalFrame( )

public GaussInternalFrame (java.lang.String title)

public GaussInternalFrame (java.lang.String title,
boolean resizable)

public GaussInternalFrame (java.lang.String title,
boolean resizable,
boolean closable)

public GaussInternalFrame (java.lang.String title,
boolean resizable,
boolean closable,
boolean maximizable)

public GaussInternalFrame (java.lang.String title,
boolean resizable,
boolean closable,
boolean maximizable,
boolean iconifiable)

Methods

public void addNotify( )
Links this instance to the tree of GaussSymbolTables.

public GaussSymbolTable getGaussSymbolTable( )
Returns symbol table of this gui layer.

Class GaussObjectLinker

Provides static methods for finding contextual correct GaussSymbolTable- and
Gauss- objects at run time.
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Declaration

public class GaussObjectLinker extends java.lang.Object

Methods

public static Gauss findGauss (java.awt.Component c)
Returns Gauss object at run time by walking up the component hierarcy.

public static GaussSymbolTable findGaussSymbolTable
(java.awt.Component c)

Returns contextual right GaussSymbolTable object at run time by walking up
the component hierarcy.

public static GaussSymbolTable findGaussSymbolTable
(java.awt.Component c,
boolean local)

Returns contextual right local GaussSymbolTable object at run time by
walking up the component hierarcy.

Class GaussPanel

This class is the superclass for all Gauss user interfaces. It can be seen as a convenient
container class that allows to implement computation in Gauss easily.

Declaration

public class GaussPanel extends util.component.CardChangePanel
implements util.ProcedureCallListener,

util.ProcedureCallConstants,
GaussThreadListener,
java.beans.PropertyChangeListener,
java.beans.VetoableChangeListener

Constructors

public GaussPanel( )

public GaussPanel (boolean isDoubleBuffered)

public GaussPanel (java.awt.LayoutManager layout)

public GaussPanel (java.awt.LayoutManager layout,
boolean isDoubleBuffered)
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Methods

public void addNotify( )
Notification to this component that it now has a parent component. When this
method is invoked, the chain of parent components is set up with Keyboard-
Action event listeners.

public void fireVetoableChange (java.lang.String name,
boolean oldValue,
boolean newValue)

public void gaussExec (java.lang.String command)
NOT THREAD SAVE!!

Execute Gauss command line from this GaussPanel.

public void gaussLoadLibrary (java.lang.String library)
Execute Gauss command line from this GaussPanel.

public void gaussRead (java.lang.String symbolName)
NOT THREAD SAVE!!

Read variable from Gauss to this GaussPanel.

public void gaussReadArray (java.lang.String[] symbolNames)
NOT THREAD SAVE!!

Read variable from Gauss to this GaussPanel.

public void gaussReadArray (java.util.Vector vec)
NOT THREAD SAVE!!

Read variable from Gauss to this GaussPanel.

public void gaussReadArrayLocal (java.lang.String[] symbolNames,
gauss.GaussSymbolTable symbolTable)

Read variable from Gauss to this GaussPanel.

public void gaussReadArrayLocal (java.util.Vector vec,
gauss.GaussSymbolTable symbolTable)

Read variable from Gauss to this GaussPanel.

public void gaussReadLocal (java.lang.String symbolName,
gauss.GaussSymbolTable symbolTable)

Read variable from Gauss to this GaussPanel.

public void gaussRun( )
NOT THREAD SAVE!!
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Final method. Registers all previous gauss*-methods in a GaussThread.

public void gaussRun (int actionType)
NOT THREAD SAVE!!

Final method. Registers all previous gauss*-methods in a GaussThread.

public void gaussRun (int actionType,
java.lang.Object[] param)

NOT THREAD SAVE!!

Final method. Registers all previous gauss*-methods in a GaussThread.

public void gaussShow (java.lang.String symbolName,
gauss.GaussDataTable target)

Shows symbolName on target GaussDataView.

public void gaussStart (java.lang.String stackName)
NOT THREAD SAVE!!

Starts new Gauss thread.

public void gaussStart (java.lang.String stackName,
boolean allowForMissingValues)

NOT THREAD SAVE!!

Starts new Gauss thread.

public void gaussThreadFinished( )
Implementation of GaussThreadListener interface method.

public void gaussThreadFinished (int actionType)
Implementation of GaussThreadListener interface method.

public void gaussThreadFinished (int actionType,
java.lang.Object[] param)

Implementation of GaussThreadListener interface method.

public void gaussWrite (java.lang.String symbolName)
NOT THREAD SAVE!!

Write GaussData object from this GaussPanel to Gauss.

public void gaussWriteArray (java.lang.String[] symbolName)
NOT THREAD SAVE!!

Write GaussData object from this GaussPanel to Gauss.
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public void gaussWriteArray (java.util.Vector vec)
NOT THREAD SAVE!!

Write GaussData object from this GaussPanel to Gauss.

public void gaussWriteArrayLocal (gauss.GaussData[] d)
NOT THREAD SAVE!!

Write GaussData object from this GaussPanel to Gauss.

public void gaussWriteArrayLocal (java.util.Vector vec)
NOT THREAD SAVE!!

Write GaussData object from this GaussPanel to Gauss.

public void gaussWriteLocal (gauss.GaussData newData)
NOT THREAD SAVE!!

Write GaussData object from this GaussPanel to Gauss.

public final Gauss getGauss( )
Returns reference to attached gauss.Gauss Object or null

public GaussData getGaussData (java.lang.String name)
Returns GaussData from the contextual correct GaussSymbolTable

public final GaussSymbolTable getGaussSymbolTable( )
Returns reference to gauss.GaussSymbolTable this GaussPanel. is attached to
or null

public void loadDLibrary (java.lang.String dlibrary)
Loads Dll to Gauss

public void procedureCallFinished (util.ProcedureCallEvent e)
Implementation of interface ProcedureCallListener.

public void procedureCallProgress (util.ProcedureCallEvent e)
Implementation of interface ProcedureCallListener.

public void procedureCallRegistered (util.ProcedureCallEvent e)
Implementation of interface ProcedureCallListener.

public void procedureCallStarted (util.ProcedureCallEvent e)
Implementation of interface ProcedureCallListener.

public void propertyChange (java.beans.PropertyChangeEvent evt)
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public void removeGaussData (java.lang.String data)
Removes GaussData from the contextual correct GaussSymbolTable

public void setGauss (gauss.Gauss g)

public void setGaussData (gauss.GaussData symbol)

public final void setGaussSymbolTable (gauss.GaussSymbolTable t)

public void setVisible (boolean aFlag)

public void storeData (double[][] data,
java.lang.String name)

public void storeData (double[] data,
java.lang.String name)

public void storeData (double data,
java.lang.String name)

public void storeData (int[][] data,
java.lang.String name)

public void storeData (int[] data,
java.lang.String name)

public void storeData (int data,
java.lang.String name)

public void storeData (java.lang.String[][] data,
java.lang.String name)

public void storeData (java.lang.String[] data,
java.lang.String name)

public void storeData (java.lang.String data,
java.lang.String name)

public void vetoableChange (java.beans.PropertyChangeEvent evt)

Class GaussProcedureCall

Class for defining Gauss computations as a new thread that runs in addition to other
Java threads.

Declaration

public abstract class GaussProcedureCall extends util.ProcedureCall
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Constructors

public GaussProcedureCall( )

Methods

public final void setAllowForMissingValues
(boolean newAllowForMissingValues)

This property sets the behaviour of communication missing values to Gauss.

public void setGauss (gauss.Gauss gauss)
Set the Gauss instance for executing the defined task.

Class GaussSymbolTable

A GaussSymbolTable serves as a stack for GaussData objects that are shared among
objects.
There are the following data access methods:

1. defineGaussData(),

2. getGaussData(),

3. removeGaussData(),

4. setGaussData()

If the argument is not already a key in the HashMap defineGaussData() calls get-
GaussData() in order to put a new entry in the HashMap. As in GAUSS, GaussData-
names defined to be case insensitive.
The getGaussData() method returns the GaussData object mapped to the argument.
If no GaussData object is mapped it creates a new (uninitialized) GaussData object,
maps, and returns it. If if the argument is null, null is returned.
The setGaussData() methods do not insert new GaussData objects in the map vari-
able. They call either a more general setGaussData() method or the getGaussData()
method.

Declaration

public class GaussSymbolTable extends java.lang.Object

Constructors

public GaussSymbolTable( )
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Methods

public void addPropertyChangeListener
(java.beans.PropertyChangeListener l)

Add a property change listener to this object.

public void addPropertyChangeListener
(java.lang.String symbolName,
java.beans.PropertyChangeListener l)

Add a property change listener to a specific gauss symbol in the variable set.

public boolean containsSymbol (java.lang.String arg)
Returns true if argument name is already contained in this
GaussSymbolTable. GaussData-names defined to be case insensitive.

public String getDescription (java.lang.String name)
Returns description to specified GaussData. GaussData-names defined to be
case insensitive.

public GaussData getGaussData (java.lang.String name)
Returns reference to GaussData object specified by the name argument.
If the argument is a valid gauss symbol name this method guaranties to
return a non null value. GaussData-names defined to be case insensitive.

public String getName( )
Returns name of this SymbolTable.

public String getSymbolNames( )
Returns all symbol names of this GaussSymbolTable.

public void removeGaussData (java.lang.String symbolName)
Removes GaussData from this SymbolTable. GaussData-names defined to be
case insensitive.

public void removePropertyChangeListener
(java.beans.PropertyChangeListener l)

Method to remove a property change listener.

public void removePropertyChangeListener
(java.lang.String symbolName,
java.beans.PropertyChangeListener l)

Remove property change listener for a specific gauss symbol.

public void resetGaussData (java.lang.String symbolName)
Clears GaussData.

public void setDescription (java.lang.String description,
java.lang.String name)
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Sets description to specified GaussData.

public void setGaussData (double[][] data,
java.lang.String name)

public void setGaussData (double[] data,
java.lang.String name)

public void setGaussData (double data,
java.lang.String name)

public void setGaussData (gauss.GaussData newGaussData)
This is the method to store GaussData in the GaussSymbolTable.

public void setGaussData (gauss.GaussData[] newGaussData)
This is the method to store GaussData in the GaussSymbolTable.

public void setGaussData (gauss.GaussData newGaussData,
java.lang.String name)

public void setGaussData (int[][] data,
java.lang.String name)

public void setGaussData (int[] data,
java.lang.String name)

public void setGaussData (int data,
java.lang.String name)

public void setGaussData (java.lang.String[][] data,
java.lang.String name)

public void setGaussData (java.lang.String[] data,
java.lang.String name)

public void setGaussData (java.lang.String data,
java.lang.String name)

public void setGaussDataArray (gauss.GaussData[] newGaussData,
java.lang.String[] name)

public void setName (java.lang.String newName)
Sets name to this GaussSymbolTable.

Class GaussThread

Class for defining Gauss computations.
Used by GaussPanel.
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Declaration

public class GaussThread extends java.lang.Thread

Constructors

public GaussThread (java.lang.String name,
gauss.GaussSymbolTable gaussSymbolTable,
java.util.Vector commandStack)

Methods

public void addGaussThreadListener (gauss.GaussThreadListener l)
Add a listener to the list that’s notified each the GaussThread makes noteable
stuff.

public void fireGaussThreadFinished( )
Forward the given notification event to all GaussThreadListeners that regis-
tered themselves as listeners for a GaussThreadEvent.

public int getActionType( )

public Object getParam( )

public void removeGaussThreadListener (gauss.GaussThreadListener l)
Remove a listener from the list that’s notified each time a notable event in the
GaussThread happens.

public void run( )
This method works off the command stack. If a particular command was not
successfully executed the thread is terminated immediately leaving the remain-
ing commands from the stack unexecuted. A notice appears in a separate
window.

public void setActionType (int newActionType)

public void setGauss (gauss.Gauss gauss)
Provide the GaussThread with reference of a GAUSS program.

public void setParam (java.lang.Object[] newParam)

public void start( )
Before calling the super.start() method a check on null assignments is done.

Class LocalGaussPanel
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A GaussPanel that references a local GaussSymbolTable.

Declaration

public class LocalGaussPanel extends gauss.GaussPanel
implements GaussLocalSymbolRoot

Constructors

public LocalGaussPanel( )

public LocalGaussPanel (boolean isDoubleBuffered)

public LocalGaussPanel (java.awt.LayoutManager layout)

public LocalGaussPanel (java.awt.LayoutManager layout,
boolean isDoubleBuffered)

Methods

public void addNotify( )
Links this instance to the tree of GaussSymbolTables.

public GaussData getLocalGaussData (java.lang.String name)

public GaussSymbolTable getLocalGaussSymbolTable( )

public void setLocalGaussData (gauss.GaussData symbol)

public void storeLocalData (double data,
java.lang.String name)

public void storeLocalData (int data,
java.lang.String name)

public void storeLocalData (java.lang.String data,
java.lang.String name)

Class Matrix

Collection of matrix (two dimensional array) manipulation operations.

Declaration

public class Matrix extends java.lang.Object
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Methods

public static double add (double[][] arg1,
double arg2)

public static double add (gauss.GaussData arg1,
double arg2)

public static double add (gauss.GaussData arg1,
gauss.GaussData arg2)

public static String append (java.lang.String string,
double[][] idx)

public static String append (java.lang.String string,
java.lang.String[][] arg)

public static double appendColumn (double[][] target,
double[] source)

public static double appendDoubleColumns (double[][] target,
double[][] source)

public static double appendDoubleRows (double[][] target,
double[][] source)

public static String appendRow (java.lang.String[][] target,
java.lang.String[] source)

public static String appendRows (java.lang.String[][] target,
java.lang.String[][] source)

public static String appendStringColumns (java.lang.String[][] target,
java.lang.String[][] source)

public static String appendStringRows (java.lang.String[][] target,
java.lang.String[][] source)

public static double cloneDoubleArray (double[][] x)

public static double cloneIntArray (int[][] x)

public static String cloneStringArray (java.lang.String[][] x)

public static void compareDoubleArrayArg (double[][] arg1,
double arg2)

public static boolean compareDoubleArrays (double[][] arg1,
double[][] arg2)

public static boolean compareDoubleArrays1D (double[] arg1,
double[] arg2)
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public static boolean compareIntArrays1D (int[] arg1,
int[] arg2)

public static boolean compareStringArrays (java.lang.String[][] arg1,
java.lang.String[][] arg2)

public static String concatenate (java.lang.String[][] arg,
java.lang.String string)

public static String concatenate (java.lang.String string,
java.lang.String[][] arg)

public static double diag (double[][] arg1,
double[] arg2)

Inserts arg2 as diagonal into arg1 and returns result.

public static double doubleColumnToMatrix (double[] v)

public static int doubleToIntArray (double[] dA)
Converts an one dimensional array of integers to a one dimensional array of
doubles.

public static double extractDoubleCol (double[][] matrix,
int index)

public static double extractDoubleCols (double[][] matrix,
int startIndex,
int endIndex)

public static double extractDoubleRow (double[][] matrix,
int index)

public static double extractDoubleRows (double[][] matrix,
int startIndex,
int endIndex)

public static String extractStringRow (java.lang.String[][] matrix,
int index)

public static String extractStringRows (java.lang.String[][] matrix,
int startIndex,
int endIndex)

public static double eye (int r)
Returns r-dimensional identity matrix.

public static double getDoubleColumn (double[][] matrix,
int index)
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public static double getDoubleColumns (double[][] matrix,
int startIndex,
int endIndex)

public static double getDoubleRowsArg (double[][] matrix,
int startIndex,
int endIndex)

public static int getIndexOfElement (java.lang.String what,
java.lang.String[][] where,
int startRowIndex,
int startColumnIndex)

Returns the index of the first ocurrence of the argument in this GaussData
object, starting the search at the specified row and column index.
The search is conducted row-wise, i.e. the row at startRowIndex is searched
first, then the row at startRowIndex + 1, etc. If the search algorithm finds
a matrix element such that m[i][j]==d, the indices i and j are returned as an
array of integers with first the row index (i) and then the column index (j).
Note that indices start at 0 and end at getRows()-1 / getCols()-1. If the search
fails or the GaussData object represents a matrix, int[] {-1,-1} is returned.
This method should be called from the event dispatching thread. See
javax.swing.SwingUtilities.invokeLater().

public static String getStringColumn (java.lang.String[][] matrix,
int index)

public static double intColumnToMatrix (int[] v)

public static double intToDoubleArray (int[] iA)
Converts an one dimensional array of integers to a one dimensional array of
doubles.

public static double intToDoubleArray (int[][] iA)
Converts an two dimensional array of integers to a two dimensional array of
doubles.

public static void multiplyArg (double[][] arg1,
double arg2)

public static double ones (int r,
int c)

Returns a (r,c)-matrix filled with ones.

public static double reshapeDoubleArray (double[][] arg,
int newRow,
int newCol)

public static double rndu (int r,
int c)
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Returns a (r,c)-matrix filled with uniform[0,1) random numbers.

public static double seqa (int start,
int increment,
int n)

Returns a (n,1)-matrix filled with a additive sequence starting with start and
increment increment.

public static String stringColumnToMatrix (java.lang.String[] arg)

public static String stringRowToMatrix (java.lang.String[] arg)

public static double subtract (gauss.GaussData arg1,
gauss.GaussData arg2)

public static double toDoubleMatrix (double[] v)
Transfers the n elements of the input argument into a (n,1)-array.

public static String toStringMatrix (java.lang.String[] s)
Transfers the n elements of the input argument into a (n,1)-array.

public static double zeros (int r,
int c)

Returns a (r,c)-matrix filled with zeros.

Class StructureChangeEvent

Event that nofifies about changes in GaussData objects.

Declaration

public class StructureChangeEvent
extends java.beans.PropertyChangeEvent

Constructors

public StructureChangeEvent (javax.swing.table.TableModel source,
gauss.GaussData oldValue,
gauss.GaussData newValue)

Class SymbolObject

Provides logical structure of symbol names and a GaussSymbolTable.

Author: Markus Krätzig
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Declaration

public class SymbolObject extends java.lang.Object

Constructors

public SymbolObject( )

public SymbolObject (java.lang.String[] symbolNames,
gauss.GaussSymbolTable symbolTable)

public SymbolObject (java.lang.String symbolName,
gauss.GaussSymbolTable symbolTable)

Methods

public String getName( )

public String getNameArray( )

public GaussSymbolTable getTable( )

B.6 Package util.component

B.6.1 Package Contents

Interfaces
CardChange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Defines convenience methods for managing the succession of compo-
nents in a CardChangePanel.
CardChangeInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Defines convenience methods for managing the succession of compo-
nents in a CardPanel.
SplashScreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Implementators are recognized by the splash screen manager.

Classes
AngularBrackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Matrix-like border for BorderTables and GaussDataTables.
BorderTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
A subclass of JTable that respects borders.
BorderTableBorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Most inner border for BorderTables.
BorderTableUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
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UI implementation for BorderTables when running with Java 1.2.
CardChangeInputPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Convenience class for use with CardChange.
CardChangePanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Convenience class for use with CardChange.
CardPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
A simpler alternative to a JPanel with a CardLayout.
CardPanelAction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Default implementation for task of showing a ”card”component in a
CardSuccessionPanel.
CardSuccessionPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
A simpler alternative to a JPanel with a CardLayout.
InputValidatingTextField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Performs input validation before input focus is permanently moved
away.
MatrixBorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Matrix-like border for BorderTables and GaussDataTables.
ModalTextField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
An implementation of the InputValidatingTextField.
MultiLineLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Covenience label class that can display text with more than one line.
MultiLineLabelUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Author: Zafir Anjum http://codeguru.earthweb.com/java/articles/198.shtml
Use multi-line text in a JLabel.
SplashScreenManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
A collection of static methods that can be called for performing typical
tasks with the splash screen.
Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
”Filter”object that can be used for checks whether input data matches
certain requirements.
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B.6.2 Interfaces

Interface CardChange

Defines convenience methods for managing the succession of components in a Card-
ChangePanel.
The CardChangePanel informs the currently displayed component when switching
to a new component if the current component implements this interface. The im-
plementator component may veto this switch which interrupts the change of the
displayed components.

Declaration

public interface CardChange

Methods

public void setNextCard (java.awt.Component nextCard)
The implementator can veto in this method that the argument component is
displayed as a top level component. The shifts must be managed by a Card-
ChangePanel.

Interface CardChangeInput

Defines convenience methods for managing the succession of components in a Card-
Panel.
The CardChangePanel informs the component displayed just before it is made visible
by calling the method initialSelection(). This gives the implementator compo-
nent the chance to synchronize its status with some data base. When made invisible
(e.g. the CardChangePanel switches to another component) the evaluateInput()

method is called which gives the chance to set the input, selections etc. to some
data base.

Declaration

public interface CardChangeInput

Methods

public void evaluateInput( )
Called by CardChangePanel when the implementator component is made in-
visible.
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public void initialSelection( )
Called by CardChangePanel just befor the implementator component is made
visible.

Interface SplashScreen

Implementators are recognized by the splash screen manager. The splash screen
manager controls typical tasks a splash screen usually does.

Declaration

public interface SplashScreen

Methods

public void addMessageText (java.lang.String text)
Add a text increment to an existing message text. (E.g. ”. ”)

public void dispose( )
Remove the component from the computer screen. Windows and frames should
be disposed when calling this method.

public void setMessageText (java.lang.String text)
Set some message text.

B.6.3 Classes

Class AngularBrackets

Matrix-like border for BorderTables and GaussDataTables. Setting this border to a
GaussDataTable creates a matrix like object on the screen.
Do not set this border on a JTable (Bug 4222732).

Declaration

public class AngularBrackets extends javax.swing.border.AbstractBorder

Constructors

public AngularBrackets( )
Creates a AngularBrackets-border instance.
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Methods

public Insets getBorderInsets (java.awt.Component c)
Returns the value of getBorderMargins. Overrides super method.

public Insets getBorderInsets (java.awt.Component c,
java.awt.Insets insets)

Reinitialize the insets parameter with this Border’s current Insets. Overrides
super method.

public boolean isBorderOpaque( )
This default implementation returns false. Overrides super method.

public void paintBorder (java.awt.Component c,
java.awt.Graphics g,
int x,
int y,
int width,
int height)

Called by Swing to paint border. Overrides super method.

Class BorderTable

A subclass of JTable that respects borders. JTables do not respect borders at all.
This results in Bug 4222732. This BorderTable is a workaround for Java 1.2 and 1.3
In addition to respecting borders the BorderTable can also deal with dynamic column
width, e.g. it is possible to configure a BorderTable object such that it automatically
adjusts the column width when the data displayed changes. These adjustments can
be limited to a minimum and maximum width.
The property highlightingSelectedCell can be set to true or false in order to
switch on/ off the frame that appears around a selected table cell. Use the accessor
methods setHighlightingSelectedCell() to do so.

Implementation remarks:

When resizing columns:

The delta which is computed in sizeColumnsToFit(int) must be corrected for in-
sets.left and insets.right. We cannot do this in sizeColumnsToFit(int) since it calls
accomodateDelta() which is private. We therefore do it in accomodateDelta().
This implies to exactly redefine (copy) the private interfaces Resizable2 and Resiz-
able3, the private methods adjustSizes(long, Resizable2, boolean), adjustSizes(long,
Resizable3, boolean), and setWidthFromPreferredWidths(boolean).

Adding a BorderTable to a scroll pane
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If a border is set to BorderTable and it is added to a scroll pane this border is trans-
fered from the BorderTable to the scroll pane. This happens in the addNotify()
method of this class. The reverse is not implemented.
This table draws grid lines before the first row and the first column. For that it
needs 1 pixel each direction.

Declaration

public class BorderTable extends javax.swing.JTable

Constructors

public BorderTable( )

public BorderTable (int numRows,
int numColumns)

public BorderTable (java.lang.Object[][] rowData,
java.lang.Object[] columnNames)

public BorderTable (javax.swing.table.TableModel dm)

public BorderTable (javax.swing.table.TableModel dm,
javax.swing.table.TableColumnModel cm)

public BorderTable (javax.swing.table.TableModel dm,
javax.swing.table.TableColumnModel cm,
javax.swing.ListSelectionModel sm)

public BorderTable (java.util.Vector rowData,
java.util.Vector columnNames)

Methods

public int columnAtPoint (java.awt.Point point)
Reimplements super method such that it considers the border now.

public void createDefaultColumnsFromModel( )
Reimplements super method. It regards possible individual column width now.

public Rectangle getCellRect (int row,
int column,
boolean includeSpacing)

Reimplements super method such that it considers the border now.

public int getColumnWidth( )
Returns current column width. The width is not computed when calling this
method.
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public int getMaximumColumnWidth( )
Returns maximum column width property.

public Dimension getMaximumSize( )
Returns the value of a getPreferredSize() method call.

public int getMinimumColumnWidth( )
Returns minimum column width property.

public Dimension getMinimumSize( )
Returns the value of a getPreferredSize() method call.

public Dimension getPreferredSize( )
Reimplements super method such that it considers the border now.

public String getUIClassID( )
Returns the name of the L&F class that renders this component. The name
depends on the version of the JVM running. For Java 1.2 it is BorderTableUI
otherwise it is the return value of the super method.

public boolean isDynamicColumnWidth( )
Return true if the BorderTable’s column width (and the BorderTable’s width)
depends on the data displayed.

public boolean isHighlightingSelectedCell( )
Return true if the selected cell is highlighted (the default for JTable)

public int maxCellLength( )
Computes the maximum length of all cells. This means that this method eval-
uates the whole data model. This can be time consuming.

public Component prepareRenderer
(javax.swing.table.TableCellRenderer renderer,
int row,
int column)

Reimplements super method such that it considers
isHighlightingSelectedCell() now.

public int rowAtPoint (java.awt.Point point)
Reimplements super method such that it considers the border now.

public void setBorder (javax.swing.border.Border border)
Reimplements super method such that the borderTableBorder is always set
as the most inner border.

public void setColumnWidth (int newValue)
This method sets the column width of the BorderTable to newValue. If
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newValue exceeds the minimum or maximum width, it’s adjusted to the
appropriate limiting value. Posts a vetoable property change notification with
the name ”columnWidth”.

public void setDynamicColumnWidth
(boolean newDynamicColumnWidth)

Set if the BorderTable’s column width should adjust when the data displayed.
change. The adjustment takes place within the minimum and maximum
width.

public void setHighlightingSelectedCell
(boolean newHighlightingSelectedCell)

Selected cell highlighting method.

public void setIntercellSpacing (java.awt.Dimension newSpacing)
Sets the width and height between cells to newSpacing and redisplays the
receiver. Posts a vetoable property change notification with the name
”intercellSpacing”.

public void setMaximumColumnWidth
(int newMaximumColumnWidth)

Sets the BorderTable’s maximum column width to
newMaximumColumnWidth.

public void setMinimumColumnWidth
(int newMinimumColumnWidth)

Sets the BorderTable’s minimu column width to newMinimumColumnWidth.

public final void sizeColumnsToFit (int c)
Empty method. Since sizing of BorderTables is determinied by the column
width there is no need to fit the columns to set bounds.

public void tableChanged (javax.swing.event.TableModelEvent e)
Calls super method and determines and sets new maximum column width if
isDynamicColumnWidth() returns true.

Class BorderTableBorder

Most inner border for BorderTables. A BorderTable always has an instance of this
border set. Event when setting a new border it effectively creates a combined border
with an instance of this border as the inner border.
This class is not made public since it is intended to be used solely by the Bor-
derTable.
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Declaration

public class BorderTableBorder extends javax.swing.border.AbstractBorder

Constructors

public BorderTableBorder( )

Methods

public Insets getBorderInsets (java.awt.Component c)

public Insets getBorderInsets (java.awt.Component c,
java.awt.Insets insets)

public boolean isBorderOpaque( )

public void paintBorder (java.awt.Component c,
java.awt.Graphics g,
int x,
int y,
int width,
int height)

Class BorderTableUI

UI implementation for BorderTables when running with Java 1.2.
The paint method of this component ui is modified such that painting the component
does not conflict with painting the border of the component.

Declaration

public class BorderTableUI extends javax.swing.plaf.basic.BasicTableUI

Constructors

public BorderTableUI( )

Methods

public static ComponentUI createUI (javax.swing.JComponent c)

public void paint (java.awt.Graphics g,
javax.swing.JComponent c)

Reimplements super method such that it considers the border now.
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Class CardChangeInputPanel

Convenience class for use with CardChange.

Declaration

public class CardChangeInputPanel
extends util.component.CardChangePanel
implements CardChangeInput

Constructors

public CardChangeInputPanel( )

public CardChangeInputPanel (boolean isDoubleBuffered)

public CardChangeInputPanel (java.awt.LayoutManager layout)

public CardChangeInputPanel (java.awt.LayoutManager layout,
boolean isDoubleBuffered)

Methods

public void evaluateInput( )
The standard implementation calls this method on child components that im-
plement the CardChangeInput interface

public void initialSelection( )
The standard implementation calls this method on child components that im-
plement the CardChangeInput interface

Class CardChangePanel

Convenience class for use with CardChange.

Declaration

public class CardChangePanel extends javax.swing.JPanel
implements CardChange

Constructors

public CardChangePanel( )

public CardChangePanel (boolean isDoubleBuffered)
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public CardChangePanel (java.awt.LayoutManager layout)

public CardChangePanel (java.awt.LayoutManager layout,
boolean isDoubleBuffered)

Methods

public Dimension getMaximumSize( )

public Component getNextCard( )

public boolean isFirstTimeShown( )

public boolean isMaximumSize X Axis( )

public boolean isMaximumSize Y Axis( )

public void setFirstTimeShown (boolean newFirstTimeShown)

public void setLayout (java.awt.LayoutManager mgr)
Sets the layout manager for this container.

public void setMaximumSize X Axis
(boolean newMaximumSize X Axis)

public void setMaximumSize Y Axis
(boolean newMaximumSize Y Axis)

public void setNextCard (java.awt.Component nextCard)

Class CardPanel

A simpler alternative to a JPanel with a CardLayout. The AWT CardLayout layout
manager can be inconvenient to use because the special ”stack of cards”operations it
supports require a cast to use. For example to show the card named ”myCard”given
a JPanel with a CardLayout one would write:
((CardLayout)(myJPanel.getLayout())).show(myJPanel, "myCard");

This doesn’t work well with Swing - all of the CardLayout display operations,
like show call validate directly. Swing supports automatic validation (see JCom-
ponent.revalidate()); this direct call to validate is inefficient.
The CardPane JPanel subclass is intended to support a layout with a modest number
of cards, on the order of 100 or less. A cards name is it’s component name, as in
java.awt.Component.getName(), which is set when the component is added to the
CardPanel:
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myCardPanel.add(myChild, "MyChildName");
myChild.getName() "MyChildName"

As with CardLayout, the first child added to a CardPanel is made visible and there’s
only one child visible at a time. The showCard method accepts either a childs name
or the child itself:
myCardPanel.show("MyChildName");
myCardPanel.show(myChild);

The CardPanel class doesn’t support the vgap/hgap CardLayout properties since
one can add a Border, see JComponent.setBorder().
Originallly the getVisibleChild() method was private. I changed it to protected.
Alexander Benkwitz Feb 2002.
Source: http://java.sun.com/products/jfc/tsc/articles/cardpanel/

Declaration

public class CardPanel extends javax.swing.JPanel

Constructors

public CardPanel( )
Creates a CardPanel. Children, called ”cards”in this API, should be added
with add(). The first child we be made visible, subsequent children will be
hidden. To show a card, use one of the show*Card methods.

Methods

public void showCard (java.awt.Component card)
Hide the currently visible child ”card”and show the specified card. If the spec-
ified card isn’t a child of the CardPanel then we add it here.

public void showCard (java.lang.String name)
Show the card with the specified name.

public void showFirstCard( )
Show the first card that was added to this CardPanel.

public void showLastCard( )
Show the last card that was added to this CardPanel.

public void showNextCard( )
Show the card that was added to this CardPanel after the currently visible
card. If the currently visible card was added last, then show the first card.

public void showPreviousCard( )
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Show the card that was added to this CardPanel before the currently visible
card. If the currently visible card was added first, then show the last card.

Class CardPanelAction

Default implementation for task of showing a ”card”component in a CardSucces-
sionPanel.
The ”card”component is constructed when getComponent() is called the first time.
This shifts possibly time consuming gui construction work from constructing the
action object to executing this action.

Declaration

public class CardPanelAction extends javax.swing.AbstractAction

Constructors

public CardPanelAction (javax.swing.JComponent what,
util.component.CardSuccessionPanel where)

public CardPanelAction (javax.swing.JComponent what,
util.component.CardSuccessionPanel where,
boolean enabled)

public CardPanelAction (javax.swing.JComponent what,
util.component.CardSuccessionPanel where,
boolean enabled,
java.lang.String name)

public CardPanelAction (javax.swing.JComponent what,
util.component.CardSuccessionPanel where,
boolean enabled,
java.lang.String name,
javax.swing.Icon icon)

public CardPanelAction (javax.swing.JComponent what,
util.component.CardSuccessionPanel where,
java.lang.String name)

public CardPanelAction (javax.swing.JComponent what,
util.component.CardSuccessionPanel where,
java.lang.String name,
javax.swing.Icon icon)

public CardPanelAction (java.lang.String className,
util.component.CardSuccessionPanel where,
boolean enabled,
java.lang.String name,
javax.swing.Icon icon)
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public CardPanelAction (java.lang.String className,
util.component.CardSuccessionPanel where,
java.lang.String name)

Methods

public void actionPerformed (java.awt.event.ActionEvent arg1)

public void addComponentToHierarchy( )
Add the component to the CardPanel but does not bring it to the front.

public JComponent getComponent( )
Returns the ”card”component. This may be just created when this method is
the first time called.

public boolean isComponentInHierarchy( )
Returns true if the ”card”component is already in the component hierarchy,
otherwise false. The implication of returning true is that the ”card”component
is already constructed and any operations can be executed on it.

Class CardSuccessionPanel

A simpler alternative to a JPanel with a CardLayout.
The behaviour of this class is identical to the superclass but the process of mak-
ing cards visible and invisible is safeguarded by firering various vetoable property
changes. Therefore, the process of hiding the current card and/ or showing a new
card can be vetoed by the cards themselfs when certain conditions are not met (not
all inputs complete) or a succession is not allowed (i.e. go from A to C over B, but
not from A to C directly).

Declaration

public class CardSuccessionPanel extends util.component.CardPanel

Fields

public static final String CARD DISPLAYED

Constructors

public CardSuccessionPanel( )
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Methods

public Component getCurrentCard( )
Returns the currently visible child ”card”. The return value can be null.

public void showCard (java.awt.Component card)
Reimplements the super method. The behaviour is basically the same but the
process of making cards visible and invisible is safeguarded by firering various
vetoable property changes. Therefore, the process of hiding the current card
and/ or showing a new card can be vetoed by the cards themselfs when certain
conditions are not met (not all inputs complete) or a succession is not allowed
(i.e. go from A to C over B, but not from A to C directly).

Class InputValidatingTextField

Performs input validation before input focus is permanently moved away.

Declaration

public abstract class InputValidatingTextField
extends javax.swing.JTextField

Constructors

public InputValidatingTextField( )

public InputValidatingTextField (javax.swing.text.Document doc,
java.lang.String text,
int columns)

public InputValidatingTextField (int columns)

public InputValidatingTextField (java.lang.String text)

public InputValidatingTextField (java.lang.String text,
int columns)

Methods

public abstract void message( )
Called by the validation mechanism if an event is suitable to move input focus
away from this component BUT validateInput() returns false. Subclasses
must provide an implementation for this method (e.g. beeping, flashing, show-
ing Dialogs, Popups etc.).

public void setDocument (javax.swing.text.Document doc)
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public abstract boolean validateInput( )
Should contain the algorithm for input validation. Subclasses must provide an
implementation for this method.

Class MatrixBorder

Matrix-like border for BorderTables and GaussDataTables. Setting this border to a
GaussDataTable creates a matrix like object on the screen.
Do not set this border on a JTable (Bug 4222732).

Declaration

public class MatrixBorder extends javax.swing.border.AbstractBorder

Constructors

public MatrixBorder( )

Methods

public Insets getBorderInsets (java.awt.Component c)

public Insets getBorderInsets (java.awt.Component c,
java.awt.Insets insets)

public boolean isBorderOpaque( )

public void paintBorder (java.awt.Component c,
java.awt.Graphics g,
int x,
int y,
int width,
int height)

Class ModalTextField

An implementation of the InputValidatingTextField. This class provides a general
validation mechanism. Wrong input is reported by a modal dialog with an informa-
tive message. This message explains what is wrong with the input.

Declaration

public class ModalTextField
extends util.component.InputValidatingTextField
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Constructors

public ModalTextField( )
Creates a ModalTextField with precision = 0 and right alignment for the text.

Methods

public int getDataType( )
Returns data type property or 0 if no data type verification is conducted.

public double getDoubleValue( )
Tries to parse input text to a double. Throws an exception if the text cannot
be parsed.

public int getIntervalType( )
Returns interval type property or 0 if no interval type is set.

public int getIntValue( )
Tries to parse input text to an integer. Possible double values are truncated.
Throws an exception if the text cannot be parsed.

public double getLowerBound( )
Returns lower bound property. This is Double.NEGATIVE INFINITY if no lower
bound is set.

public int getPrecision( )
Returns precision property for numeric data. The precision is the number of
digits right of decimal point.

public String getResetValue( )
Returns the reset value. Also for numeric data the reset value is specified as a
string.

public double getUpperBound( )
Returns upper bound property. This is Double.POSITIVE INFINITY if no upper
bound is set.

public Verifier getVerifier( )
Returns the object that conducts verification.

public void message( )
Pops up a message dialog. Called by the validation mechanism if the event
queue processes an event that shifts input focus permanently away from this
component and the input text did not pass the verifier.

public void setDataType (int dataType)
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Sets data type property. This can be one of Verifier.LETTER STRING,
Verifier.STRING, Verifier.DOUBLE, or Verifier.INTEGER.

public void setEnabled (boolean b)
Calls super method and setEditable(b) and repaints the component.

public void setIntervalType (int newIntervalType)
Sets interval type property. This can be one of Verifier.CLOSED for
I=[a,b], Verifier.OPEN for I=(a,b), Verifier.LEFT OPEN for I=(a,b], or
Verifier.RIGHT OPEN for I=[a,b) intervals

public void setLowerBound (double newLowerBound)
Sets lower bound property.

public void setPrecision (int precision)
Sets number of digits that should appear right of decimal point.

public void setResetValue (java.lang.String newResetValue)
Set a new reset value. This text is inserted if a escape key event is processed.

public void setUpperBound (double newUpperBound)
Sets upper bound property.

public void setVerifier (util.component.Verifier newVerifier)
Sets a new object that does the verification task.

public boolean validateInput( )
Verifies the input text and sets the errorString field to some message if veri-
fication fails.

Class MultiLineLabel

Covenience label class that can display text with more than one line.
A multi line label text is set with the usual setText() method. The lines are
separated by \n, e.g. new MultiLineLabel("line1\nline2\nline3").

Declaration

public class MultiLineLabel extends javax.swing.JLabel

Constructors

public MultiLineLabel( )

public MultiLineLabel (javax.swing.Icon image)
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public MultiLineLabel (javax.swing.Icon image,
int horizontalAlignment)

public MultiLineLabel (java.lang.String text)

public MultiLineLabel (java.lang.String text,
javax.swing.Icon icon,
int horizontalAlignment)

public MultiLineLabel (java.lang.String text,
int horizontalAlignment)

Methods

public String getUIClassID( )
Returns MultiLineLabelUI.

Class MultiLineLabelUI

Author: Zafir Anjum http://codeguru.earthweb.com/java/articles/198.shtml
Use multi-line text in a JLabel. To enable multi-line in a JLabel we have to specify
our own LabelUI class that will render the multiple lines. Although the code shown
below seems quite long, most of it is actually Swing code being reused.

Declaration

public class MultiLineLabelUI extends javax.swing.plaf.basic.BasicLabelUI

Constructors

public MultiLineLabelUI( )

Methods

public static Dimension computeMultiLineDimension
(java.awt.FontMetrics fm,
java.lang.String[] strs)
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public static String layoutCompoundLabel (java.awt.FontMetrics fm,
java.lang.String[] text,
javax.swing.Icon icon,
int verticalAlignment,
int horizontalAlignment,
int verticalTextPosition,
int horizontalTextPosition,
java.awt.Rectangle viewR,
java.awt.Rectangle iconR,
java.awt.Rectangle textR,
int textIconGap)

Compute and return the location of the icons origin, the location of origin of
the text baseline, and a possibly clipped version of the compound labels
string. Locations are computed relative to the viewR rectangle. This
layoutCompoundLabel() does not know how to handle
LEADING/TRAILING values in horizontalTextPosition (they will default to
RIGHT) and in horizontalAlignment (they will default to CENTER). Use the
other version of layoutCompoundLabel() instead.

public static String layoutCompoundLabel (javax.swing.JComponent c,
java.awt.FontMetrics fm,
java.lang.String[] text,
javax.swing.Icon icon,
int verticalAlignment,
int horizontalAlignment,
int verticalTextPosition,
int horizontalTextPosition,
java.awt.Rectangle viewR,
java.awt.Rectangle iconR,
java.awt.Rectangle textR,
int textIconGap)

Compute and return the location of the icons origin, the location of origin of
the text baseline, and a possibly clipped version of the compound labels
string. Locations are computed relative to the viewR rectangle. The
JComponents orientation (LEADING/TRAILING) will also be taken into
account and translated into LEFT/RIGHT values accordingly.

public String splitStringByLines (java.lang.String str)

Class SplashScreenManager

A collection of static methods that can be called for performing typical tasks with
the splash screen.

Declaration

public class SplashScreenManager extends java.lang.Object



APPENDIX B. THE JAVA LIBRARY JStatCom 231

Methods

public static void addSplashScreenMessage (java.lang.String text)
Adds the argument to the message text of the current splash screen.

public static void disposeSplashScreen (int millis)
Waits millis/1000 seconds and then disposes the splash screen.

public static void setMainFrame (javax.swing.JFrame newMainFrame)
The splash screen is always displayed in front of the argument frame.

public static void setSplashScreen
(util.component.SplashScreen newSplashScreen)

Sets a new splash screen, disposes old splash screen, shows new splash screen.
The new splash screen can be null (e.g. for calling dispose() on the current
splash screen).

public static void setSplashScreenMessage (java.lang.String text)
Set a new message text to the current splash screen.

Class Verifier

”Filter”object that can be used for checks whether input data matches certain re-
quirements. The most obvious usage is to filter out invalid inputs.
If one wants to verify numeric input data valid types are InputFilter.DOUBLE and
InputFilter.INTEGER and valid classes for the upper and lower bounds are null
java.lang.Double gauss.GaussData (of type GaussData.MATRIX).
In case of verifying literal data valid types are InputFilter.LETTER STRING and
InputFilter.STRING and valid classes for the upper and lower bounds are null
If input data is numeric an interval can be specified additionally. This can be one
of CLOSED, OPEN, LEFT OPEN, and RIGTH OPEN.

If the input data is not numeric the interval type property is not considered when
passing arguments through this filter.
If the upper (lower) bound is null no bound checking is performed for the upper
(lower) bound.

If the upper (lower) bound is non null AND not one of the specified class (see
VALID CLASSES FOR BOUNDS) no bound checking is performed for the upper
(lower) bound and a gauss.BoundException thrown.

Declaration

public class Verifier extends java.lang.Object
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Fields

public static final int CLOSED
This field stores the identifier of a closed interval. Let x1 be the lower bound,
and x2 be the upper bound of the interval. Using the identifier CLOSED means
to define the interval [x1,x2].

public static final int OPEN
This field stores the identifier of an open interval. Let x1 be the lower bound,
and x2 be the upper bound of the interval. Using the identifier OPEN means
to define the interval (x1,x2).

public static final int LEFT OPEN
This field stores the identifier of a left open interval. Let x1 be the lower
bound, and x2 be the upper bound of the interval. Using the identifier
LEFT OPEN means to define the interval (x1,x2].

public static final int RIGHT OPEN
This field stores the identifier of a right open interval. Let x1 be the lower
bound, and x2 be the upper bound of the interval. Using the identifier
RIGHT OPEN means to define the interval [x1,x2).

public static final int LETTER STRING
Identifier for string input value. This string must start with a letter (’a’,..’Z’
or ’ ’.

public static final int STRING
Identifier for general string input value.

public static final int DOUBLE
Identifier for double value.

public static final int INTEGER
Identifier for integer value.

Constructors

public Verifier( )
Constructs default Verifier.
Accept only INTEGER, no bound checking performed.

public Verifier (double lowerBound,
double upperBound,
int dataType,
int intervalType)

Constructs Verifier and defining the acceptance set by a lower bound, upper
bound, data type, and interval type.

public Verifier (int dataType,
int intervalType)

Constructs Verifier and defining the acceptance set by data type, and interval
type.
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public Verifier (java.lang.Object lowerBound,
java.lang.Object upperBound,
int dataType,
int intervalType)

Constructs Verifier and defining the acceptance set by a lower bound, up-
per bound, data type, and interval type. For the bound objects instances
of java.lang.Number or gauss.GaussData are recognized.

Methods

public boolean contains (java.lang.String text)
Method to check whether text goes through this input filter.
If this filter should accept only numeric values the argument must not contain
a FloatTypeSuffix. (See §3.10.2 of the Java Language Specification.) This is
more restrictive than the lexical rule of a FloatValue which is

Sign(opt) FloatingPointLiteral

where Sign and FloatingPointLiteral are defined in §3.10.2 of the Java Language
Specification. FloatingPointLiteral may contain FloatTypeSuffix which is one of
{f, F, d, D}.
This method throws a gauss.BoundException if the upper or lower bound
objects can not be interpreted in a meaningful manner.

public int getDataType( )
Returns current data type.
This can be one of DOUBLE, INTEGER, STRING, or LETTER STRING.

public String getDetailsAcceptanceSet( )
Forms string representation about the acceptable values.

public String getDetailsInputValue( )
Forms string representation about the input value.

public int getIntervalType( )
Returns current interval type.
This can be one of CLOSED, OPEN, LEFT OPEN, or RIGHT OPEN.

public String getLastMessage( )
Calling this method <strong>after</strong>contains(String text) re-
turned false gives more detailed information why acceptance was rejected.

public Object getLowerBound( )
Returns the lower bound of this interval.

public Object getUpperBound( )



APPENDIX B. THE JAVA LIBRARY JStatCom 234

Returns the upper bound of this interval.

public void setDataType (int newDataType)
Sets a new data type.
If the argument is invalid the current data type stays unchanged.

public void setIntervalType (int newIntervalType)
Sets new interval type.
If the argument is invalid the current interval type stays unchanged

public void setLowerBound (java.lang.Object lowerBound)
Sets the lower bound of this interval.

public void setUpperBound (java.lang.Object upperBound)
Sets the upper bound of this interval.

public String toString( )
This method returns a string representation of this interval object.



Appendix C

Gauss Control: A software

which connects to Gauss for

Windows

The software Gauss Control (GC) can be used to control Gauss automatically.

Development of GC was motivated by the need to run Gauss royalty free as a

statistical engine. The tasks solved by GC include the start and termination of

Gauss; make function calls to, run programs in, and stop running programs in

Gauss as well as to write data to, and read data from Gauss. This appendix

documents structure and usage of GC. The copyright and the disclaimer of

Appendix A apply to the software Gauss Control.

GC has been tested on Windows 95, 98, 2000 and NT 4.0. with Gauss for

Windows 3.2, 3.5 and 3.6. It is developed by the author (for Gauss 3.2) and

by Markus Krätzig (for Gauss 3.5 and higher). An archive file containing the

binary files and the Gauss source code can be downloaded at http://www.

jstatcom.com/download
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C.1 Set up and configuration

Gauss Control consists of two communication libraries. One is loaded by the

application (in the following the mother process) that wants to run Gauss as

a computing engine. It is written in C and compiled to the dynamic library

(DLL) xlm.dll. The other is the Gauss-library xlm which is loaded together

with the DLL glm.dll (also written in C) by Gauss. The Gauss-library

must be built using the Gauss lib function before running GC. Each library

represents one side of the communication channel.

C.1.1 File structure

GC consists of the following files:

gauss32.cfg Template configuration file for Gauss 3.2,

gauss35.cfg Template configuration file for Gauss 3.5 or higher,

pqgrun.cfg Template configuration file for Gauss graphics library,

xlm.cfg Configuration file for Gauss Control,

xlm.src Source files for Gauss library xlm,

glm.dll DLL-functions used by Gauss,

vdlg.dll Version dialog library,

xlm.dll DLL-functions used by the mother process.

The configuration files gauss32.cfg, gauss35.cfg, and pqgrun.cfg can be

customized or replaced by other valid configuration files. The configuration

file xlm.cfg contains the configuration variables for GC (see next subsection).

C.1.2 Configuration

In the following it is assumed that the mother process is executed from some

directory (working directory) and loads the DLL xlm.dll. This working di-

rectory is denoted as %WD% in the following. In order to execute the functions
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of xlm.dll the following configuration is assumed.

The configuration file xlm.cfg is read in from the XLM directory (see below)

when xlm.dll is loaded by the mother process. It contains the following

configuration variables:

Variable Purpose Default

GAUSSEXE Full path and name of the Gauss

executable

C:\gauss\gauss.exe

GAUSSVERSION Version of Gauss

SHAREDMEMSIZE Size (in bytes) of shared memory 800000

TEMPPATH Path in which the temporary di-

rectory xlmgauss is created

C:\temp

The configuration file must be customized before starting GC the first time.

For that it is necessary to know the name and the full path of the Gauss

executable (GAUSSEXE). The variable GAUSSVERSION can take either the value

3.2 for Gauss 3.2 or the value 3.5 for Gauss 3.5 and higher. If this variable

stays empty the user is prompted with a dialog to make a selection the first

time GC runs. SHAREDMEMSIZE can be increased or decreased depending on

the size of data communicated with GC and system resources. The size of the

shared memory determines the maximum size of the data matrices (strings

and numbers) that can be transferred from the mother process to Gauss and

vice versa. The default of 800,000 bytes is equivalent to a matrix with 100,000

numbers. The transfer of a matrix with more numbers will display an error

message. This error is not critical, i.e. the transfer terminates and GC resumes

its communication duties. In this case the default should be increased for the

future. TEMPPATH must be set to an existing directory with read and write

access if no TEMP or TMP environment variables are set. See below how GC

finds and uses the temporary directory.

Beside the above configuration variables the software uses environment vari-
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ables if they are defined on the local computer system. They are used to

determine the following two directories:

XLM directory: The directory containing the files gauss32.cfg, gauss35.cfg,

pqgrun.cfg, xlm.cfg, xlm.src, and glm.dll.

1. Environment variable XLM PATH

2. Assume default value %WD%\xlm

Temporary directory: The directory where GC creates the (temporary) sub

directory xlmgauss.

1. Configuration variable TEMPPATH

2. Environment variable TEMP

3. Environment variable TMP

In the following abbreviated as %TEMPDIR%.

C.1.3 Temporary files

In general, data is exchanged with shared memory. Beside that, Gauss and

GC use log and temporary files (e.g. for error files or graphic output). In

order to use these files exclusively for a specific Gauss program running they

are stored in a special named and created directory. Before Gauss is started

by GC a new temporary directory is created. It is placed in the temporary

directory %TEMPDIR%\xlmgauss\ (e.g. %TEMPDIR%\xlmgauss\s5l \). Usually

it is deleted when Gauss is finished by GC. If it is not deleted automatically

the directory %TEMPDIR%\xlmgauss and all subsequent subdirectories can be

deleted if GC is not running.
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C.2 The mother process

In order to use Gauss as a statistical engine the mother process must load the

DLL xlm.dll. A full documentation of the exported functions can be found

in Section C.6.

First, the mother process should execute the function

startGauss.

When this function returns true a new instance of Gauss has been started

and is ready to work for the mother process.

Then, the mother process can call any of the following self explaining functions

in order to perform computation in Gauss:

executeCommand,

executeCommands,

executeProgram,

writeMatrix,

writeString,

readDataMatrix.

It is guaranteed that these functions do not return before the requested task

on the Gauss side has been finished. Finishing means that the task has been

executed with or without success and Gauss is ready to receive the next

command. GC is fully synchronized with respect to the thread in the mother

process that executes one of the above functions and Gauss. However, if the

mother process is a multi threaded application it must make sure that multiple

Gauss jobs (represented by different threads) do not interfere with each other.

If a computation request fails, a more detailed error message is obtained

with

getLastError.

In order to load dynamic link libraries in Gauss it is advisable to use

loadDlibrary
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instead of the respective Gauss function.

The name of the special created temporary directory is returned by the func-

tion

getTempPath.

It can be used as a default for storing temporary results.

The mother process can test whether Gauss executes a program or procedure

call and can stop that execution. This is done by calling the function

isExecuting and

stopExecution.

If the running instance of GAUSS should be terminated the mother process

must execute

terminateGauss.

If the mother process terminates but wants to leave Gauss running it should

execute

unlinkGauss

before it terminates itself. Unlinking Gauss unsets its the communication

abilities.

C.3 The Gauss side

Gauss is started by the mother process with the instruction to load the

Gauss-library xlm and the DLL glm.dll. This library provides a set of com-

munication functions that are used by the mother process for communication

with Gauss. The functions are documented in Section C.6. They should not

be used directly in Gauss code (exception: showLastGraphic). Gauss does

not actively write data to the mother process. If data is communicated from

Gauss to the mother process, Gauss is instructed to do so using the functions

and procedures defined in xlm.
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When Gauss finished loading the libraries xlm and glm.dll the set up of the

interprocess communication is finished. Gauss is now completely controlled by

the mother process. All function calls and requests to run a Gauss program

come from the mother process now. Data transfer is also initiated by the

mother process. There are no functions that allow Gauss to actively write or

read data to or from the mother process.

Figure C.1: Warning message at program start when Gauss 3.2 was quit from

a minimized window.

There is a known Gauss 3.2 warning message that may block the start of the

mother process. This bug is related to the inability of Gauss 3.2 to re–start

correctly when it was terminated from a minimized window. In this case the

mother process can stop initialization and the error message as shown in Figure

C.1 appears. The mother process will resume initialization after clicking the

OK–button.

In order to avoid this error with future JMulTi starts, it is advisable to exit

JMulTi, start only Gauss and close it when the Gauss–application window

is not minimized. In general, one should always finish Gauss from a window

that is not minimized.
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C.4 Example and test software

The Windows console program TestXLM is a software that tests and demon-

strates GC. The following menu is displayed after startup of TestXLM:

Menu:
------------------------
Quit = 0
Write matrix = 1
Write string = 2
Read symbol = 3
Run test = 4
Set desktop mode = 5
Set linked mode = 6

This menu = 9

The menu provides access to some functionality of GC that can be selected and

executed. The option Run test = 4 demonstrates the speed of GC. Matrices

or string arrays are created from random data and written to Gauss, reread

again and then compared with the original data.

C.5 Application with JMulTi

GC is used by the Java library JStatCom (see Appendix B), and thus by

JMulTi (see Chapter 3) in order to use Gauss as a statistical engine for any

Java application and for JMulTi. In this case the DLL jxlm.dll is loaded

by the Java application (instead of xlm.dll). jxlm.dll contains all so called

native methods used by the Java program.
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C.6 Documentation of exported functions in

xlm.dll

C.6.1 Data structure

The data structure GAUSS SYMBOL is defined as

struct GAUSS_SYMBOL {

void *pMatrix; // points to beginning of matrix array

int rows; // number of rows

int cols; // number of columns

int type; // type identification

char *error; // points to possible error message

};

Data of this type is returned by the function readDataMatrix.

C.6.2 Functions

executeCommand . . . . . . . . . . . . . . . . . . . . . . . . . . 244

executeCommands . . . . . . . . . . . . . . . . . . . . . . . . . 245

executeProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

getLastError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

getTempPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

isExecuting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

loadDlibrary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

readDataMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

startGauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

stopExecution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

terminateGauss . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

unlinkGauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

writeMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

writeString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
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executeCommand

Purpose

Executes a command line in Gauss.

Format

char* executeCommand(char* command)

Input

char* command The command line, null terminated string.

Output

char* Null if Gauss executed the command line successfully, other-

wise some error message (null terminated string).

Remarks

The argument command line does not need to end with ’;’. The function

is fully synchronized, i.e. it returns when Gauss finished the execution

of all command lines or if execution is interrupted by some error.

See

executeCommands

Source

xlm.cpp, xlmx.h
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executeCommands

Purpose

Executes n command lines in Gauss.

Format

char* executeCommands(char** command, int n)

Input

char** command Pointer to first (of n) command line (null terminated

string).

int n Number of strings in the first argument.

Output

char* Null if Gauss executed the command lines successfully, other-

wise some error message (null terminated string).

Remarks

The n command lines do not need to end with ’;’. The function is fully

synchronized, i.e. it returns when Gauss finished the execution of all

command lines or if execution is interrupted by some error.

See

executeCommand

Source

xlm.cpp, xlmx.h
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executeProgram

Purpose

Executes a Gauss program file.

Format

char* executeProgram(char* fileName)

Input

char* fileName Null terminated string containing the name of the

program file to be executed. Gauss must be able

to find the program file, i.e. it must name the full

path or must be located in one of the Gauss search

paths.

Output

char* Null if Gauss executed the program file successfully, otherwise

some error message (null terminated string).

Remarks

The function is fully synchronized, i.e. it returns when Gauss finished

the execution of the argument program file or if execution is interrupted

by some error.

Source

xlm.cpp, xlmx.h
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getLastError

Purpose

Returns last error buffer.

Format

char* getLastError()

Output

char* Null if error buffer is empty, otherwise last error message (null

terminated string).

Remarks

The function should be called if startGauss, terminateGauss, or

unlinkGauss return false. In these cases the last error buffer is filled

with information about the cause of the failure.

Source

xlm.cpp, xlmx.h
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getTempPath

Purpose

Returns the temporary directory used by Gauss started with

startGauss.

Format

char* getTempPath()

Output

char* Full name of the temporary directory, or ‘‘null’’ if it could

not be found.

Source

xlm.cpp, xlmx.h
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isExecuting

Purpose

Checks whether Gauss currently executes some command or program

file.

Format

bool isExecuting()

Output

bool true if Gauss is busy, otherwise false.

Source

xlm.cpp, xlmx.h
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loadDlibrary

Purpose

Loads a set of DLLs in Gauss.

Format

char* loadDlibrary(char* dlibraryString)

Input

char* dlibraryString A comma separated list of DLL names

that are loaded by Gauss (null terminated

string).

Output

char* Null if Gauss could load all DLLs successfully, otherwise some

error message (null terminated string).

Remarks

The function is fully synchronized, i.e. it returns when Gauss finished

loading the DLLs or if execution is terminated by some error.

Source

xlm.cpp, xlmx.h
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readDataMatrix

Purpose

Reads a global symbol from Gauss.

Format

GAUSS SYMBOL readDataMatrix(char* name)

Input

char* name Symbol name of the global symbol in Gauss.

Output

GAUSS SYMBOL Data structure of type GAUSS SYMBOL.

Remarks
GAUSS SYMBOL is defined as:
struct GAUSS SYMBOL {

void* pMatrix; // points to beginning of matrix array
int rows; // number of rows
int cols; // number of columns
int type; // type identification
char* error; // points to possible error message

};
If the function fails (i.e. it fails to read the global symbol name from

Gauss), GAUSS SYMBOL.error is set to an error message, otherwise this

element is null.

If data was successfully read from Gauss GAUSS SYMBOL.type specifies

how to interpret GAUSS SYMBOL.pMatrix. If GAUSS SYMBOL.type=6 it

must be interpreted as double**. If GAUSS SYMBOL.type=13 (or 15) it

must be interpreted as char***.

The function is fully synchronized, i.e. it is guaranteed that all data is

communicated from Gauss if the function returns successfully.

See

writeMatrix
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writeString

Source

xlm.cpp, xlmx.h
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startGauss

Purpose

Starts a new instance of Gauss.

Format

bool startGauss()

Output

bool true if Gauss could be started and configured as a statistical

engine, otherwise false.

Remarks

If this function returns false call getLastError() to get detailed infor-

mation about the error.

See

getLastError

terminateGauss

Source

xlm.cpp, xlmx.h
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stopExecution

Purpose

Stops current execution of any Gauss code.

Format

stopExecution()

Remarks

It is valid to call this function even if isExecuting returns false.

See

isExecuting

Source

xlm.cpp, xlmx.h
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terminateGauss

Purpose

Terminates Gauss that was started with startGauss.

Format

bool terminateGauss()

Output

bool true if Gauss was terminated successfully, otherwise false.

Remarks

If this function returns false call getLastError() to get detailed infor-

mation about the error.

See

getLastError

startGauss

Source

xlm.cpp, xlmx.h
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unlinkGauss

Purpose

Disconnects the application that called startGauss from Gauss.

Format

bool unlinkGauss()

Output

bool true if Gauss was disconnected successfully, otherwise false.

Remarks

If Gauss is unlinked it continues to run in the so called desktop mode,

i.e. such as it was started from the desktop. If this function returns

false call getLastError() to get detailed information about the error.

See

getLastError

startGauss

Source

xlm.cpp, xlmx.h
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writeMatrix

Purpose

Write array of numeric data to Gauss.

Format

char*

writeMatrix(char* name, int rows, int cols, double*

data[])

Input

char* name Symbol name of matrix, null terminated string.

int rows Row number of matrix.

int cols Column number of matrix.

double* data[] Array of pointers, each representing a row of the data

matrix.

Output

char* Null if the whole matrix was written to Gauss, otherwise some

error message (null terminated string).

Remarks

The numeric data is assigned to the global symbol with the name name.

If name already exists in Gauss it is overwritten otherwise it is created.

The function is fully synchronized, i.e. it is guaranteed that all data is

communicated to Gauss if the function returns null.

See

readDataMatrix

writeString

Source
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xlm.cpp, xlmx.h
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writeString

Purpose

Write array of strings to Gauss.

Format

char*

writeString(char* name, int rows, int cols, char*** data)

Input

char* name Symbol name of string array, null terminated string.

int rows Row number of string array.

int cols Column number of string array.

char*** Pointer to a structure of row×col null terminated

strings, representing the string array.

Output

char* Null if the whole string array was written to Gauss, otherwise

some error message (null terminated string).

Remarks

The string array is assigned to the global symbol with the name name.

If name already exists in Gauss it is overwritten otherwise it is created.

The function is fully synchronized, i.e. it is guaranteed that all data is

communicated to Gauss if the function returns null.

See

readDataMatrix

writeMatrix

Source
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xlm.cpp, xlmx.h
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C.7 Documentation of Gauss-library xlm

The software GC defines two modes in which Gauss can run: the desktop

mode and the linked mode. Gauss appears in desktop mode if it is started as

a normal Windows application. If it is linked to a mother process and serves as

a statistical engine it is assumed to run in the linked mode. The Gauss-library

xlm defines functions for switching between these modes.

C.7.1 Global variables

The Gauss library xlm defines the following global variables. They must not

be used by any other Gauss procedure or function call and must not be used

as input or output parameters in procedure or function calls (see below).

variable name variable type

__xlm_r matrix

__xlm_c matrix

__xlm_s matrix

__xlm_t matrix

__xlm_swap_file string

__xlm_swap_var matrix

C.7.2 Procedures

desktopMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

linkedMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

quitGauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

readMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

readString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

readStringArray . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

showLastGraphic . . . . . . . . . . . . . . . . . . . . . . . . . . 268

symbolTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

writeMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

writeString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

writeStringArray . . . . . . . . . . . . . . . . . . . . . . . . . . 272

__xlm_r
__xlm_c
__xlm_s
__xlm_t
__xlm_swap_file
__xlm_swap_var
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desktopMode

Purpose

Switches Gauss from linked mode to desktop mode.

Format

dllcall desktopMode;

Remarks

Called when Gauss is unlinked from the mother application.

Source

glm.cpp
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linkedMode

Purpose

Switches Gauss from desktop mode to linked mode.

Format

dllcall linkedMode;

Remarks

Used when Gauss is started by the mother application with startGauss.

Source

glm.cpp
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quitGauss

Purpose

Terminates Gauss programmatically.

Format

dllcall quitGauss;

Remarks

Gauss is terminated without confirmation. It can be called in linked

and desktop mode.

Source

glm.cpp
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readMatrix

Purpose

Reads a matrix from the shared memory.

Format

dllcall readMatrix(mat, r, c);

Input

mat (r,c) matrix Variable that gets filled with the data
r (1,1) matrix Number of rows
c (1,1) matrix Number of columns

Remarks

Before reading a matrix from the shared memory the memory needed

in Gauss for storing the matrix must be provided with e.g. mat =

zeros(r,c);.

See

writeMatrix

Source

glm.cpp
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readString

Purpose

Reads a string from the shared memory.

Format

dllcall readString(str, l);

Input

str (1,1) string String of length size. It gets filled with the data.
l (1,1) matrix Length of str

Remarks

Before reading a string from the shared memory the memory needed

in Gauss for storing the string must be provided with e.g. str =

chrs(zeros(l,1);.

Used by readStringArray.

See

readString

readStringArray

Source

glm.cpp
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readStringArray

Purpose

Reads a string array from the mother application.

Format

strArray = readStringArray(buffer, s, r, c);

Input

buffer (1,1) string must have size s

s (1,1) matrix buffer size
r (1,1) matrix number of rows
c (1,1) matrix number of cols

Output

strArray (r,c) string array String array containing the data.

Source

xlm.src



APPENDIX C. THE SOFTWARE GAUSS CONTROL 268

showLastGraphic

Purpose

Displays the last generated Gauss graphic in front of any other applica-

tion window.

Format

dllcall showLastGraphic;

Remarks

This function should be called whenever some graphic output is gener-

ated by a Gauss procedure. Calling this function ensures that the last

graphic window comes to front. It thus notifies the user about compu-

tational progress.

If Gauss 3.5 or higher is used an external viewer is started.

Source

glm.cpp
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symbolTable

Purpose

Returns a list of all global symbols of type matrix, string, and string

array.

Format

strArray = symbolTable();

Output

strArray (r,4) string array String array containing information

about the global symbols. Column 1

= symbol name, Column 2 = rows,

Column 3 = columns, Column 4 =

data type.

Source

xlm.src
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writeMatrix

Purpose

Writes a matrix to the shared memory.

Format

dllcall writeMatrix(mat, r, c);

Input

mat (r,c) matrix Variable that is written to the shared memory
r (1,1) matrix Number of rows of mat
c (1,1) matrix Number of columns of mat

See

readMatrix

Source

glm.cpp
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writeString

Purpose

Writes a string to the shared memory.

Format

dllcall writeString(str, l);

Input

str (1,1) string String of length l that is written to the shared

memory
l (1,1) matrix Lenghth of str

See

readString

Source

glm.cpp
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writeStringArray

Purpose

Writes a string array to the mother application.

Format

writeStringArray(s);

Input

s (M,N) string array Data that is written.

Remarks

Possible errors (a) symbol s is not of type string or string array, (b) the

dllcall returns with error. The error message is written to the errorlog

file.

Source

xlm.src
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C.8 Suggestions for future extensions

The following improvements could be considered in a future version of this

software:

1. No size restrictions for data transfer. In general it is possible to transfer

matrices of any size (of course subject to system resources) with a fixed

sized shared memory by implementing some synchronization mechanism.

In this case the shared memory would be repeatedly filled and read in

one transfer operation.

2. Writing data actively from Gauss to the mother process, e.g. for receiv-

ing information about computational progress in Gauss.



Appendix D

Documentation of the Gauss

library var

The library var is a set of procedures for analysing VAR and VEC models.

The strengths of this library are the various bootstrap confidence intervals

provided with the impulse response analysis. This Appendix documents the

implementation in Gauss and all procedures of var.

The following files belong to the Gauss library var:

var.dec var 3sls.src var V4I.src

var boot.src var est.src var est1.src

var est2.src var est3.src var gls.src

var init.src var ira.src var irap.src

var irbo.src var irc1.src var irc2.src

var irc3.src var joh.src var ls.src

var mx.src var new.src var ols.src

var rest.src var show.src var tool.src

var var.src var spec.src var subs.src

All source files can be found in the src-subdirectory of the JMulTi installation

274
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directory, for example in c:\jmulti\src.

Each procedure starts with a documentation section. It contains purpose, syn-

tax, input arguments, output arguments, remarks, and cross references to other

procedures. Only few specialized auxillary procedures are not documented.

D.1 Implementation in Gauss

This section outlines how the task of writing a library for bootstrapping im-

pulse responses was solved. It can be skipped if the reader is mainly interested

in applying this library to an econometric problem.

The main problems faced were: (a) The duplication of model variables when

performing the bootstrap (e.g. a model parameter is mirrored by its bootstrap

analogon), (b) The work with more than one model simultaneously (e.g. esti-

mating the underlying model and its bootstrap version), and (c) The admission

of very general models.

This was solved by viewing a model as a collection of various data (observa-

tions, variable names, estimation methods, restrictions, . . . ). On those entities

were procedures applied (e.g. computing bootstrap confidence intervals for im-

pulse responses). This is advantageous for at least two reasons. Data that

belong together are stored together and cannot be confused with other model

data by accident. Analysing simple models stays simple since the user is not

confronted with a bunch of input arguments that are not used for simple mod-

els.

A collection of model data is simply a Gauss data buffer. A Gauss data buffer

is stored in a variable. Data is added to an existing data buffer with the

Gauss command dbufNew = vput(dbuf,someData,aName). The argument

someData is now an element of the data buffer dbufNew with the element

name aName. The element name uniquely identifies an element. Many proce-
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dures take a data buffer as an argument or return a data buffer. The can be

viewed and manipulated at any time. They have of course special meanings

which are explained in the subsequent section of this chapter.

The advantage is that only one argument (the data buffer dbuf) is supplied to

functions. The software keeps well structured and is easy to maintain although

complex models and complex operations are implemented. The disadvantage

is the overhead associated with reading elements out of the data buffer and

storing elements in the data buffer. Experience showed that the loss of speed

is relatively small compared to the gain in structure.

The functions defined later will pull out all data they need to perform certain

tasks and put in the results. Elements of var will be referenced by the point–

operator: var.x. Note that this is invalid Gauss syntax.

D.2 Analyzing VAR Models

In addition to the vector autoregressive part the analysed VAR may contain

a deterministic term, an exogenous term, and a term that contains a multi-

plicative combination of deterministic and endogenous or exogenous variables

(mixed term). The variable types reflect the different parts of the underlying

VAR model:

• Current endogenous variables (yt)

• Lagged endogenous variables (yt−i)

• Exogenous variables (xt)

• Deterministic variables (dt)

• Mixed variables (zt)
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D.2.1 Reduced form model

The K dimensional VAR(p) model in reduced form is

yt = AYt−1 + BXt + Cdt + FZt + ut (D.1)

where

yt is the K dimensional endogenous variable,

AYt−1 = A1yt−1 + . . . + Apyt−p is the lagged endogenous term,

BXt = B0xt + B1xt−1 + . . . + Bqxt−q is the exogenous term,

Cdt is the deterministic term, and

FZt is the mixed term.

The following dimensions are assumed in the following

yt (K, 1)

A (K, Kp)

xt (L, 1)

Xt (L(q + 1), 1)

B (K, L(q + 1))

dt (M, 1)

C (K, M)

Zt (N, 1)

Ft (K, N)

The procedure for defining a VAR(p) is vml InitVar(). See the documenta-

tion and the examples at the end of this Chapter of how to use it.
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D.2.2 Structural form model

The structural VAR model is

Ã0yt = ÃYt−1 + B̃Xt + C̃dt + F̃Zt + ut (D.2)

where the setup is as in model (D.1) but with a parameter matrix Ã0 modelling

the contemporaneous effects and structural form parameter matrices Ã, B̃, C̃,

and F̃ . Structural models are defined from reduced form models by adding

a subset restriction matrix for Ã0. See Section D.2.4 for specifying subset

restrictions.

D.2.3 Defining mixed variables

The library var allows to combine deterministic variables (vt) and stochastic

variables (wt) multiplicatively:

zt = vtwt.

It is required that wt is contained in the endogenous or exogenous variables.

The advantage over adding the variable zt directly to the model is that the

impulse response analysis and the bootstrap can process that information.

The variable zt is coded using two matrices. The deterministic part is defined

in a (T, M) matrix V . The rule is defined in a (N, 4) matrix V W where the

Z(.,i) is defined as

V W(i,1) specifies the variable type. The following variable types are valid:

coding

endogenous enl (level) end (differenced)

exogenous ex

EC-term ec

determin de
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V W(i,2) the (column) index of the variable,

V W(i,3) the lag, and

V W(i,4) the (column) index of the deterministic variable V , or V W(i,4) = 0

if zt = wt.

Mixed variables are defined with the procedure call

vml SetModelExtensions(). This operation adds the elements var.mx c,

var.Z and optionally var.mx tf to the var databuffer.

D.2.4 Linear restrictions

General linear restrictions:

Linear restrictions can be specified for each parameter matrix of a variable

type in the form

gi = vec(Gi) = Riγi + ri, (D.3)

where Gi is the parameter matrix of the variable type i. The matrix Gi is thus

one of the parameter matrices of model (D.1) or (D.2). It is not possible to

set restrictions across different variable types.

Subset restrictions:

A subset restriction excludes an arbitrary variable from an equation. The

associated parameter is set to zero. A subset restriction matrix has the same

dimension as its associated parameter matrix. A zero element indicates that

the respective parameter is set to zero. Subset restriction matrices can be

specified for all parameter matrices of model D.1 or D.2. If a subset restriction

matrix for Ã0 is specified the software assumes to deal with a structural model.

Restrictions can be added with the vml SetRestrictions() procedure to an

existing VAR model. The table shows the keys the program uses to identify

the different restriction matricies:
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type Ri ri Si

endogenous R A0 R A0 C S A0

lagged endogenous R A R A C S A

exogenous R B R B C S B

deterministic R C R C C S C

mixed R F R F C S F

If for a coefficient matrix new linear restrictions are specified the old restrictions

are replaced. General linear restrictions and subset restrictions are mutually

exclusive. Specifying one restriction type for a coefficient matrix automtically

removes the other restriction type if previously entered.

D.2.5 Estimation

The defined VAR model is estimated subject to the optional parameter con-

straints and optional estimation method. If no parameter constraints were

specified a full VAR is estimated. If the etsimation procedure is not forced to

apply a certain estimation method the estimation method is choosen accord-

ing to the model set up. In this case the program selects on of the following

methods:

OLS Ordinary least squares. Reduced form (full) VARs.

GLS Generalized least squares, or seemingly unrelated regression (SUR). Re-

duced form VARs with linear restrictions.

3SLS Three stages least squares. Structural VARs.

After estimation (see vml EstimateModel() the data buffer defining the VAR

model (var) contains the applied estimation method (var.em sys x), esti-

mates for the model coefficients (var.A0, var.A, . . . ); their covariance ma-
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trix (var.cv coeff); estimates for the residuals (var.u), and for the residual

covariance matrix (var.cv u). In addition it is possible to compute stan-

dard error, t-values and p-values of the model coefficients by the procedure

vml ComputeModelStatistics().

OLS Estimation

The ordinary least–squares (OLS) estimator is given by

β̂OLS = (X ′X)−1X ′Y.

The OLS estimator does not take into account the correlation structure of the

disturbances accross equations. It neglegts information. It is therefore gener-

ally less efficient than the GLS estimator. However, there are two exceptions:

The case of zero correlation between equations and the case of same regressors

in each equation.

Although for efficiency reasons the OLS estimator should only be used on

full VAR models it is provided here also for VAR models with parameter

constraints.

GLS Estimation

The GLS estimator minimizes the generalized sum of squared errors uΣ/−1
u u′.

Usually Σ/u is unknown but can be estimated. The estimation is controlled by

the global variable var gls cvu:

var gls cvu = 0 Σ/u estimated by unrestricted OLS (fastest), default,

var gls cvu = -1 Σ/u estimated by restricted OLS,

var gls cvu = C where C is a (K, K) matrix: Σ/u = C.

The residual covariance matrix estimator Σ̂/u is

Σ̂/u = c−1
T∑

i=1

ûi ∗ û′i
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The divisor c is controlled by var div:

var div = 0 c = T , default,

var div = 1 c = T − (M/K), where M is the number of estimated

parameters in the restricted model and K is the number

of equations.

GLS estimation can be performed itertively. The estimate for Σ/u in the i-th step

is taken for parameter estimation in the (i + 1)-th step. The number of itera-

tions is controlled by two global variables var iter and var tol. var iter

determines the maximum number of iterations. Default is 1 which means that

GLS estimation is performed only once. var tol determines a convergence

value for Σ/u. The estimation procedure stops if either the maximum number

of iterations is reached or

var tol ≥
∣∣∣∣∣ log(det(Σ̂/(i+1)

u ))− log(det(Σ̂/(i)
u ))

log(det(Σ̂/
(i)
u ))

∣∣∣∣∣ .
The default for the tolerance is var tol= 10−4.

3SLS Estimation

It is well known (e.g. Dhrymes Ch.4) that the OLS estimator of structural

parameters is biased and inconsistent. Consistent methods are the two-stage

least squares estimator and the three-stage least square estimator.

D.2.6 Impulse response analysis

The impulse response analysis provides estimates for the forecast error and

orthogonal impulse responses. Forecast error impulse responses are recursively

computed as

Φi =
i∑

j=1

Φi−jAj, i = 1, 2, . . .
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with Φ0 = IK and Aj = 0 for j > p. Orthogonal impulse responses take into

account the correlation structure of the residuals. They are computed as

Θi = PΦi,

where P ′P = Σ/u. One can see that Φi = Θi if Σ/u = IK . If a model is specified

in structural form only forecast error impulse responses are computed.

In addition to the point estimates Φ̂i and Θ̂i the following bootstrap confidence

intervals can be computed:

• Efron’s percentile (CIEP )

• Hall’s percentile (CIHP )

• Studentized (CISH)

• Iterated (CIIT )

Bootstrap confidence intervals

Before computing bootstrap confidence intervals one should have gone through

a sufficient model specification. Some violations of model assumtions can cause

the algorithm to break down due to uninvertability of some moment matrices.

Apart from econometric reasons one should avoid for the sake of computation-

ality heavy model underfitting. Poor model specification can lead to explosive

bootstrapped time series which in turn is the reason for the mentioned prob-

lems with matrix inversion. On the other hand model overfitting does not

harm the algorithm but may lead to results that leave no space for qualitative

interpretation.

Bootstrap methods are computer intensive methods. The computation time

depends on the size of the VAR–model (number of parameters), the estimation

method, the number of bootstrap drawings, and the bootstrap method. In gen-

eral CIEP and CIHP take less time than CISH and CIIT . All procedures have
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a progress notification mechanism which informs about the approximate time

to finish. The global variable var time is set to the minimum time between

two progress notification messages (in seconds). The default is 5 (seconds). If

the time to finish exceeds ones patience one can stop the computation, repa-

rameterize the problem (usually take less bootstrap drawings) and restart the

program.

The intervals CIEP and CIHP are computed in one procedure call. The iter-

ation procedure iterates one of the mentioned intervals. This means that one

can compute an iterated CIEP and iterated CIHP , an iterated CISH , and an

iterated CIIT .

Plotting impulse responses

There are various procedures for plotting impulse responses. The main

plot procedure (and most complex in terms of input arguments) is

vml IRA plotIR4CI4(). All other plot procedures have a reduced number

of input arguments and call internally the main plot routine.

The user can control main title, plot color, line type, and labeling. A combi-

nation of impulse and response variables can also be selected.

D.3 Analyzing VECMs

The library var can analyse K dimensional VECMs of the very general form

Γ̃0∆yt = α̃(βyt−1 + β(d)d
(ec)
t )

+Γ̃∆Yt−1 + B̃Xt + C̃d
(sys)
t + F̃Zt + ut. (D.4)

It is possible to analyse reduced form VECMs (Γ̃0 = IK) and structural

VECMs. The cointegration relation (ect−1 = βyt−1 + β(d)d
(ec)
t ) can be mod-

elled with deterministic variables d
(ec)
t . Beside the lagged endogenous term
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(Γ̃∆Yt−1), the model may contain a term of current and lagged exogenous

variables (B̃Xt), of deterministic variables (C̃d
(sys)
t ), and time varying param-

eters that are partly summarized in the term F̃Zt.

Linear parameter constraints can be imposed on all parameter matrices of

equation (D.4): Γ̃0, α̃, β, β(d), Γ̃, B̃, C̃, and F̃ .

D.3.1 Reduced form model

The basic reduced form VECM is

∆yt = αβyt−1 + Γ∆Yt−1 + BXt + Cdt + ut (D.5)

where

Γ∆Yt−1 = Γ1∆yt−1 + . . . + Γp−1∆yt−p+1

is the term of lagged endogenous variables,

BXt = B0xt + B1xt−1 + . . . + Bt−qxt−q+1

is the term of current and lagged exogenous variables and

Cdt

is the term of deterministic variables.

Programatically equation (D.5) is set up by defining a VAR(p) model, imposing

a cointegration rank r or setting r cointegration relations.

See vml InitVAR()

vml SetCointRank()

vml SetCointRelation()
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D.3.2 Structural VECM

The structural VECM is of the form

Γ̃0∆yt = α̃βyt−1 + Γ̃∆Yt−1 + B̃Xt + C̃dt + ut. (D.6)

A structural VECM is set up by defining a reduced form VECM and by im-

posing parameter constraints on the structural coefficient matrix Γ̃0.

See vml SetRestrictions()

D.3.3 Modelling time dependent parameters

A time dependent parameter ξ (ξ can be any off–diagonal element of Γ̃0, or

any element of α̃, Γ̃, or B̃) for the associated variable wt (hence any element of

∆yt, ect−1, dYt−1, Xt) is modelled as ξ = ξ1 + ξ2vt where vt is a deterministic

variable:

ξwt = ξ1wt + ξ2zt with zt = vtwt

ξ1wt is already contained in D.6, vt is added as a new explanatory variable to

the system with parameter matrix ξ2.

For the VECM model wt can be yi,t−j, dyi,t−j, eci,t−1, or xi,t−j. The indices i

and j must run in the valid range. The zt are collected in Zt and are introduced

with parameter matrix F to model (D.5) or (D.6).

With time dependent coefficients equation (D.6) extends to

Γ̃0∆yt = α̃βyt−1 + Γ̃∆Yt−1 + B̃Xt + C̃dt + F̃Zt + ut.

The variable Zt is coded with two matrices. The deterministic part is defined

in a (T,M) matrix V . The variable type of wt, the indices i and j, and the

index of the deterministic variable vt in V are defined in a (N, 4) matrix V W :

V W(l,1) specifies the variable type of wt The following variable types are valid:
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wt variable V W(l,1)

yt−j endogenous (in levels) enl

dyt−j endogenous (in differences) end

xt−j exogenous ex

ect−1 EC-term ec

dt deterministic de

V W(l,2) specifies the element in yt, dyt, xt, or ect−1;

V W(l,3) is the lag, j;

V W(l,4) specifies the (column) index of the deterministic variable V , or

V W(l,4) = 0 if zt = wt.

See vml SetModelExtensions()

vecm.mx c

vecm.mx tf

vecm.Z

D.3.4 Restrictions

Cointegration rank

The cointegration rank r is either directly imposed to the model or indirectly

imposed by adding r cointegration relations to the model.

If r is directly imposed to (D.4) it is required that 0 ≤ r ≤ K. For r = 0 a

VAR(p − 1) of the differenced yt is estimated. For r = K a VAR(p) in levels

is estimated.

If r cointegration relations are set to (D.4) it is required that 0 < r < K. In

this case a (r, K) matrix β and (r, M1) matrix β(ec) are specified and imposed
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to the model. The cointegration rank results in this case from the number of

cointegration relations.

See vml SetCointRank()

vml SetCointRelation()

vml AddCointRelation()

vecm.r

vecm.beta

vecm.beta d

Restrict deterministic variables to cointegration relation

By default the error correction term is modelled as

ect = βyt

such that the VECM looks like

∆yt = αβyt−1 + Γ∆Yt−1 + BXt + Cdt + ut

It is possible to constrain some (or all) variables of dt to ect such that

ect = βyt + β(d)d
(ec)
t .

In this case the VECM becomes

∆yt = α(βyt−1 + β(d)d
(ec)
t ) + Γ∆Yt−1 + BXt + Cd

(sys)
t + ut

When restricting deterministic variables to ect the variables in dt are split to

d
(ec)
t and d

(sys)
t . Note the index t of d

(ec)
t although the endogenous variables

yt−1 enter with time index t − 1. For an arbitrary element di,t of dt one can

write

di,t = di,t − di,t−1 + di,t−1

∆di,t + di,t−1
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and add di,t−1 to ect−1 and leave ∆di,t at the i–th position of dt. This makes

sense if di,t is a step dummy but makes problems if di,t is a constant or trend

variable. In order to circumvent the problems the above explained solution is

used.

See vml RestrictDetsToCoint()

vecm.mx d2ci

Parameter constraints

Parameter constraints on (D.5) or (D.6) are imposed in the same manner as

in Section D.2.4. Constraints on A0 and A have no effect.

Parameter constraints are imposed by adding Ri and ri, or Si matrices to the

already defined VECM. Restriction matrices are associated with the following

keys to the respective parameter matrices:

i Ri ri Si

Γ0 R G0 RC G0 S G0

Γ R G RC G S G

B R B RC B S B

C R C RC C S C

F R F RC F S F

α R alpha RC alpha S alpha

See vml SetRestrictions()

vecm.R xxx

vecm.RC xxx

vecm.S xxx
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D.3.5 Estimation

The VECM can be estimated with the Johansen procedure or with a two stage

procedure. Which estimation method is applied by the estimation procedure

depends on the estimation method set before estimating the VECM. If no

estimation method is set the two stage procedure is choosen automatically.

If the Johansen procedure is desired one must set the estimation method to

‘‘JOH’’. If it is set to a method explained for the VAR case this method is

applied in the second stage (by OLS, GLS, 3SLS).

For the two stage procedure one can also define the method for estimating

the cointegration relation. Possible methods are the Johansen procedure and

a single equation error correction regression. The first stage runs a regression

for the cointegration relation, the second step plugs in the results of the first

regression and estimates the system. How the cointegration relation is esti-

mated is controlled with the data buffer element vecm.em cr. If vecm.em cr

= ‘‘JOH’’ the cointegration vectors are estimated by the Johansen procedure.

If vecm.em cr = ‘‘s&w’’ the cointegration vectors are estimated by a single

equation error correction model. In all other cases it is assumed that vecm

already knows β and β(d).

See vml SetEstimationMethod()

vml SetEstimationMethodCIR()

vml EstimateModel()

vecm.em sys

vecm.em cir

Johansen procedure

The Johansen procedure is implemented in this library such that no structural

VECM is valid, exogenous variables are skipped, and no parameter constraints
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are regarded. The only restriction regarded are the cointegration rank and the

deterministic variables that are restricted to the cointegration relation.

Two stage procedure

The two stage procedure determines in the first step the cointegration relation

and estimates the VECM in the second step.

Specifying the cointegration vector from extern source:

The knowledge of the cointegration relation may come from economic theory,

or some extern pre–analysis. Therefore one can add cointegration relations

directly to the already defined VECM model. The general form of the error

correction term is given in (??). Setting or adding β and β(d) to a already

defined VECM implies that the error correction variable ect is recomputed

and if necessary the mixed variables involving ect are updated (in Z). It is

also possible to estimate r1 cointegration relations from the data set at hand

and to set r2 cointegration relations by hand. In this case always the first

r1 cointegration vectors are set by the software and the next r2 cointegration

vectors stay unchanged.

See vml SetCointRelation()

vml AddCointRelation()

vecm.beta

vecm.beta d

Estimating the cointegration vector from the data:

Estimation of the cointegration vector(s) can be done with a single equation

error correction regression or with the Johansen approach. For that one has

to set explicitly the method for estimating the cointegration relation either to

“JOH” for the Johansen approach or to “s&w” for the single equation error
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correction regression. If no method is set it is assumed that the cointegration

vectors were already specified. Estimating the cointegration relation with the

Johansen approach is subject to the restrictions lined out in the paragraph

describing this implementation. It still might be advantageous since one can

also estimate more than one cointegration relation. The single equation error

correction regression only allows to estimate only one cointegration relation.

Here one effectively estimates one equation of (D.5). The first equation is

taken by default. All parameter constraints are adopted to the single equation

regression. The resulting estimates β̂ and β̂(d) are normed by the first element

of β̂. It is also possible to specify a different equation and a different norming

coefficient. It is also possible to define a completely new problem for the single

equation regression with its own set of exogenous and deterministic variables

or with completely different parameter constraints.
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See vml SetEstimationMethodCIR()

vml SetEquationIndexCIR()

vml SetNormingIndexCIR()

vml InitCIR()

vml SetRestrictionCIR()

vml SetCIRModel()

vml EstimateCIR()

vecm.em cir

vecm.beta

vecm.beta d

vecm.cir

vecm.cirEqIdx

vecm.cirNoIdx

Estimating the System:

The system can be estimated with OLS, GLS, or 3SLS.

VAR representation

After estimating the VECM it is automatically rewritten as a VAR. Since this

is a algebraic reformulation of the terms that include endogenous variables the

exogenous variables and deterministic variables are omitted in the next lines:

Γ̃0∆yt = Π̃yt−1 + Γ̃∆Yt−1 + ut

Γ̃0(yt − yt−1) = Π̃yt−1 + Γ̃1(yt−1 − yt−2) + . . . + Γ̃p−1(yt−p+1 − yt−p) + ut

Γ̃0yt = (Π̃ + Γ̃0 + Γ̃1)yt−1 + (Γ̃1 − Γ̃2)yt−2 + . . . + (−Γ̃p−1)yt−p + ut

Ã0yt = Ã1yt−1 + Ã2yt−2 + . . . + Ãpyt−p + ut
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with Π̃ = α̃β, Ã0 = Γ̃0, Ã1 = Π̃ + Γ̃0 + Γ̃1, Ãi = Γ̃i − Γ̃i−1 (i = 2, . . . , p − 1),

and Ãp = −Γ̃p−1.

Special attention is given the mixed variables that include (differenced) endoge-

nous variables and error correction variables. Depending on the form of ect

this can have an effect on the deterministic variables and the mixed variables

itself.

See vecm.mx c ec

vecm.mx c ar

D.3.6 Screen output

The screen output procedures print the input data and estimation results in a

clear way to the output screen.

See vml ShowInput()

vml ShowEstimationResults()

D.3.7 Impulse response analysis

Since model (D.5) has a VAR–representation which is also returned by the

the estimation procedure one can right away apply the tools for the impulse

response analysis introduced in Section D.2.6.

For the bootstrap methods one should be aware that the bootstrap time series

y∗t also updates ect. If a two stage procedure is choosen the cointegration

relation is reestimated in every bootstrap drawing if the estimation method

for the cointegration relation is not set to ‘‘none’’
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D.3.8 Data buffer elements in the VECM analysis

variable dimension explanation

vecm.r (1, 1) cointegration rank r

vecm.ec (p + T, r) error correction term (ec−p+1, . . . , ecT )′

D.3.9 Gauss procedures
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APPENDIX D. THE Gauss LIBRARY VAR 298

commutationMatrix

Purpose
Generates commutation matrix for a (M, N)-matrix.

Format
y = commutationMatrix(M, N);

Input

M (1,1) Number of rows

N (1,1) Number of columns

Output

y (M*N,M*N) Commutation matrix for any (M,N)-matrix

Remarks
See Lütkepohl (1993a) Chapter A.12.2 for the definition of this special
purpose matrix.

Source
var tool.src
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duplicationMatrix

Purpose
Generates duplication matrix for a K-dimensional symmetric matrix.

Format
y = duplicationMatrix(K);

Input

K (1,1) Dimension of symmetric matrix

Output

y (K*K,0.5*K*(K+1)) Duplication matrix for vectorized lower trian-
gular symmetric matrix

Remarks
See Lütkepohl (1993a) Chapter A.12.2 for the definition and usage of
this special matrix.

Source
var tool.src
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eliminationMatrix

Purpose
Generates elemination matrix for a K-dimensional square matrix.

Format
y = eliminationMatrix(K);

Input

K (1,1) Dimension of square matrix

Output

y (0.5*K*(K+1),K*K) Elemination matrix for vectorized K-
dimensional square matrix

Remarks
See Lütkepohl (1993a) Chapter A.12.2 for the definition of this special
matrix.

Source
var tool.src
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smakewin

Purpose
Configures plot window such that a main title appears.

Format
smakewin(numrows, numcols, shift, wintype, );

Remarks
Procedure developed by Sune Karlsson.

Source
var irap.src



APPENDIX D. THE Gauss LIBRARY VAR 302

smwintit

Purpose
Configures plot window such that a main title appears.

Format
titwin = SMWINTIT(ROWS, COLS, TITLE, TYPE, );

Remarks
Procedure developed by Sune Karlsson.

Source
var irap.src
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var EstimateVECModel

Purpose
Estimates VECM.

Format
modelHat = var EstimateVECModel(model);

Input

model (Y,1) data buffer Data buffer: defined VEC.

Output

modelHat (Z,1) data buffer Estimated VEC model as data buffer.

Remarks
This procedure simply estimates the data buffer model and returns and
it with the estimated parameter matrices.
Changes in data buffer: + beta, alpha, G0, G, A0, A, B, C, F

See
var EstimateModel

Source
var est2.src
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var IRA

Purpose
Computes impulse responses.

Format
{feir, orir} = var IRA(model, irmax);

Input

model (N,1) data buffer Estimated VAR model.

irmax (1,1) matrix Time horizon for computing impulse re-
sponses.

Output

feir (1+ir max,K*K) matrix Forecast error impulse responses

orir (1+ir max,K*K) matrix Orthogonalized impulse responses

(0,0) matrix If model is in structural form.

Remarks
Impulse responses are computed for the model

A0yt = A1yt−1 + . . . + Apyt−p

with A = [A1 : A2 : . . . : Ap]
This procedure distinguishes between reduced form models and struc-
tural form models. Reduced form models are identified if the argument
A0 = IK , or A0 = {}.
Impulse responses for reduced form models are computed by

Φi =
i∑

j=1

Φi−jAj, i = 1, 2, . . .

(see Lütkepohl (1993a)) with Φ0 = IK . When impulse response for
structural form models are computed the coefficient matrices are first
transformed to reduced form coefficient matrices and then the recursion
above is used using Φ0 = A−1

0 . This procedure fails if A0 is not invertible.
If the matrix A0 is specified no orthogonal impulse responses are com-
puted.
The impulse response functions are ordered row-wise, i.e. the first K
columns in row i + 1 in the output argument feir take the quantities of
the first row of Φi and so forth.

Source
var ira.src
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var IRA CI HEP

Purpose
Computes Hall and Efron percentile bootstrap confidence intervals for
impulse responses of a given VAR-model.

Format
{irf ferr hat, ferr ep lower, ferr ep upper, ferr hp lower,

ferr hp upper, irf orth hat, orth ep lower, orth ep upper,

orth hp lower, orth hp upper, newSeed} =

var IRA CI HEP(var, nob, seed, ir max, coverage);

Input

var (N,1) matrix Data buffer with model information

nob (1,1) matrix Number of bootstrap replications

seed (1,1) matrix Seed for drawing residuals (seed=0 for using
no seed)

ir max (1,1) matrix Maximum number impulse responses to com-
pute

coverage (1,1) matrix Coverage of confidence intervals, in (0,1)

Output

irf ferr hat (1+ir max,K*K) matrix Point estimates forecast er-
ror impulse responses

ferr ep lower (1+ir max,K*K) matrix Lower bound for percentile
confidence interval (Efron)
of forecast error impulse re-
sponses

ferr ep upper (1+ir max,K*K) matrix Upper bound for percentile
confidence interval (Efron)
of forecast error impulse re-
sponses

ferr hp lower (1+ir max,K*K) matrix Lower bound for percentile
confidence interval (Hall) of
forecast error impulse re-
sponses

ferr hp upper (1+ir max,K*K) matrix Upper bound for percentile
confidence interval (Hall) of
forecast error impulse re-
sponses

irf orth hat (1+ir max,K*K) matrix Point estimates orthogonal
impulse responses
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orth ep lower (1+ir max,K*K) matrix Lower bound for percentile
confidence interval (Efron) of
orthogonal impulse responses

orth ep upper (1+ir max,K*K) matrix Upper bound for percentile
confidence interval (Efron) of
orthogonal impulse responses

orth hp lower (1+ir max,K*K) matrix Lower bound for percentile
confidence interval (Hall) of
orthogonal impulse responses

orth hp upper (1+ir max,K*K) matrix Upper bound for percentile
confidence interval (Hall) of
orthogonal impulse responses

newSeed (1,1) matrix updated seed

Remarks
Computes Hall and Efron percentile bootstrap confidence intervals. As-
sumes that model is already estimated and in VAR-form.
The impulse response functions (and the confidence bounds matrices)
are ordered row-wise, i.e. the first K columns in row i + 1 in the output
argument irf ferr hat take the quantities of the first row of Φi and so
forth.

Globals
var Note StartTime

Source
var irc1.src
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var IRA CI IT

Purpose
Computes iterated bootstrap confidence intervals for impulse responses
of a given VAR-model.

Format
{irfeHat, irfe ci1 lo, irfe ci1 up, irfe ci2 lo, irfe ci2 up,

irorHat, iror ci1 lo, iror ci1 up, iror ci2 lo, iror ci2 up,

seed, seed sd, seed it} =

var IRA CI IT(var, nob, nob sd, nob it, seed, seed sd,

seed it, ir max, coverage, ciType,

tuneType);

Input

var (N,1) matrix Data buffer with model information

nob (1,1) matrix Number of bootstrap replications

nob sd (1,1) matrix Number of bootstrap replications when esti-
mating the standard deviation.

nob it (1,1) matrix Number of bootstrap replications in the iter-
ation stage.

seed (1,1) matrix Seed for drawing residuals. (seed=0 for using
no seed)

seed sd (1,1) matrix Seed for drawing residuals when estimating
the standard deviation. (seed=0 for using no
seed)

seed it (1,1) matrix Seed for drawing residuals in the iteration
stage. (seed=0 for using no seed)

ir max (1,1) matrix maximum number impulse responses to com-
pute

coverage (1,1) matrix Coverage of confidence intervals, in (0,1)

ciType (1,1) proc Procedure pointer, defines procedure for
computing confidence intervals. Valid
procedures are var IRA CI HEP and
var IRA CI ST.

tuneType (1,1) proc Procedure pointer, for computing tuning pa-
rameter. only var IRA CI IT tune1 is al-
lowed at the moment.

Output

irf ferr hat (1+ir max,K*K) matrix Point estimates forecast er-
ror impulse responses
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ferr ep lower (1+ir max,K*K) matrix Lower bound for iterated
percentile confidence interval
(Efron) of forecast error im-
pulse responses

ferr ep upper (1+ir max,K*K) matrix Upper bound for iterated
percentile confidence interval
(Efron) of forecast error im-
pulse responses

ferr hp lower (1+ir max,K*K) matrix Lower bound for iterated
percentile confidence interval
(Hall) of forecast error im-
pulse responses

ferr hp upper (1+ir max,K*K) matrix Upper bound for iterated
percentile confidence interval
(Hall) of forecast error im-
pulse responses

irf orth hat (1+ir max,K*K) matrix Point estimates orthogonal
impulse responses

orth ep lower (1+ir max,K*K) matrix Lower bound for iterated
percentile confidence inter-
val (Efron) of orthogonal im-
pulse responses

orth ep upper (1+ir max,K*K) matrix Upper bound for iterated
percentile confidence inter-
val (Efron) of orthogonal im-
pulse responses

orth hp lower (1+ir max,K*K) matrix Lower bound for iterated
percentile confidence interval
(Hall) of orthogonal impulse
responses

orth hp upper (1+ir max,K*K) matrix Upper bound for iterated
percentile confidence interval
(Hall) of orthogonal impulse
responses

seed (1,1) matrix updated seed

seed sd (1,1) matrix updated seed

seed it (1,1) matrix updated seed

Remarks
Computes Hall and Efron iterated percentile bootstrap confidence inter-
vals. Assumes that model is already estimated and in VAR-form.
The impulse response functions (and the confidence bounds matrices)
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are ordered row-wise, i.e. the first K columns in row i + 1 in the output
argument irf ferr hat take the quantities of the first row of Φi and so
forth.

Globals
var Note StartTime

See
var time

var IRA CI IT tune1
var IRA CI HEP
var IRA CI ST

Source
var irc3.src
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var IRA CI IT in

Purpose
Helper method for iteration procedure.

Format
y = var IRA CI IT in(ci, value);

Input

ci (N x 2) matrix Set of confidence intervals

value (1 x 1) matrix Parameter that should be covered by ci

Output

y (3 x 1) matrix Absolute counts that value is in one of the three
areas that are defined by ci

Remarks
This procedure returns the frequency that the number value is (a) below
lower bound, (b) between lower and upper bound, or (c) above upper
bound. The column sum of y is N, the number of rows of ci.

Globals
var Note StartTime

See
var IRA CI IT

Source
var irc3.src
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var IRA CI IT tune1

Purpose
Find a tuning parameter for the iterated bootstrap that adds to the
confidence interval endpoints with the same length.

Format
t = var IRA CI IT tune1(Lc, theta, alpha);

Input

Lc (N x 2) matrix set of confidence intervals

theta (1 x 1) matrix true parameter

alpha (1 x 1) matrix nominal coverage

Output

t (1 x 1) matrix tuning parameter

Remarks
The returned tuning parameter is computed such that if it is added to
both sides of the input confidence intervals, the real coverage is exactly
the nominal coverage.

Globals
var Note StartTime

See
var IRA CI IT

Source
var irc3.src
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var IRA CI ST

Purpose
Computes studentized bootstrap confidence intervals for impulse re-
sponses of a given VAR-model.

Format
{irf ferr hat, ferr st lower, ferr st upper, irf orth hat,

orth st lower, orth st upper, seed, seed sd} =

var IRA CI ST(var, nob, nob sd, seed, seed sd, ir max,

coverage);

Input

var (N,1) matrix Data buffer with model information

nob (1,1) matrix Number of bootstrap replications

nob sd (1,1) matrix Number of bootstrap replications for estimat-
ing the standard deviation

seed (1,1) matrix Seed for drawing residuals (seed=0 for using
no seed)

seed sd (1,1) matrix Seed for drawing residuals when computing
standard deviation (seed=0 for using no seed)

ir max (1,1) matrix Maximum number impulse responses to com-
pute

coverage (1,1) matrix Coverage of confidence intervals, in (0,1)

Output

irf ferr hat (1+ir max,K*K) matrix Point estimates of forecast
error impulse responses

ferr st lower (1+ir max,K*K) matrix Lower bounds for studen-
tized confidence interval of
forecast error impulse re-
sponses

ferr st upper (1+ir max,K*K) matrix Upper bounds for studen-
tized confidence interval of
forecast error impulse re-
sponses

irf orth hat (1+ir max,K*K) matrix Point estimates of orthogonal
impulse responses

orth st lower (1+ir max,K*K) matrix Lower bounds for studen-
tized confidence interval of
orthogonal impulse responses
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orth st upper (1+ir max,K*K) matrix Upper bounds for studen-
tized confidence interval of
orthogonal impulse responses

newSeed (1,1) matrix updated seed

newSeed sd (1,1) matrix updated seed

Remarks
The impulse response functions (and the confidence bounds matrices)
are ordered row-wise, i.e. the first K columns in row i + 1 in the output
argument irf ferr hat take the quantities of the first row of Φi and so
forth.

Globals
var Note StartTime

See
var Note StartTime

vml InitVAR

Source
var irc2.src



APPENDIX D. THE Gauss LIBRARY VAR 314

var johansenApproach CPLX

Purpose
Checks for complex results.

Format
y = var johansenApproach CPLX(x, name);

Input

x (N,M) Some matrix, estimation result.

name (1,1) Name string

Output

y (N,M) The x-matrix, without imaginary term if neglectible.

Remarks
Procedure checks for complex input matrices. Depending on the algo-
rithm the Johansen procedure might result with complex numbers with
no or neglectible term. Used by vml johansenApproach

Globals
var Note StartTime

See
vml johansenApproach

Source
var joh.src
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var MakeHeadAndWindows

Purpose
Tiles graphic window in head window and a matrix of sub windows.

Format
shift = var MakeHeadAndWindows(nrows, ncols, tit);

Input

nrows (1,1) matrix Number of rows for sub window matrix.

ncols (1,1) matrix Number of columns for sub window matrix.

tit (1,1) string Main title.

Remarks
This procedure observes pdate and displays the date in the head win-
dow. This procedure is a modified smwintit() proc by Sune Karlsson.

Globals
var Note StartTime

See
smwintit

Source
var irap.src
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var numberOfEquations

Purpose
Helper method for estimation procedures.

Format
noEq = var numberOfEquations(model);

Input

model (M,1) data buffer Defined VAR or VEC model

Output

noEq (1,1) matrix number of equations.

Globals
var Note StartTime

See
vml InitVAR

Source
var ls.src
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var resetPlotControls

Purpose
Resets global graphics controls from this library to default values.

Format
call var resetPlotControls();

Globals
var Note StartTime

See
var show legend
var show main title
var show plot title
var show date
var height legend
var height axis
var height numbers
var height plot title
var height main title
var line type
var line color
var line width
var legend x
var legend y
var legend strings

Source
var irap.src
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var showCoefficients

Purpose
Helper Method for some other show-methods.

Format

call var showCoefficients(c, sd, tv, pv, sr, Nv, Neq,

label);

Input

c (K,L*px) Coefficients

(0,0) if empty no screen output

sd (K,L*px) Standard deviation of coefficients

tv (K,L*px) t-Statistik for coefficients

pv (K,L*px) p-values for coefficients

sr (K,L*px) Matrix of subset restrictions (matrix of zeros and ones
where a zero indicates that the respective variable was
excluded from the model)

Nx (L,1) Variable names

Neq (K,1) Equation names

label (1,1) Caption

Output

Screen output

Remarks
The procedure returns without screen output if x={}.

Globals
var Note StartTime

See
var showPrecision
var showWidth

var showVAR Coefficients
var showVEC Coefficients

Source
var show.src
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var showEC Coefficients

Purpose
Prints estimation results of error correction term to the screen.

Format
call var showEC Coefficients(model);

Input

model (M,1) data buffer Estimated VEC model

Output

Screen output

Globals
var Note StartTime

Source
var show.src
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var showLegend

Purpose
Prints legend to the screen.

Format
call var showLegend();

Input

eqNames (M,1) string array Names of equations or variables

Output

Screen output

Remarks
Mainly by other procedures used.

Globals
var Note StartTime

See
var showVAR Coefficients
var showVEC Coefficients
var showEC Coefficients

Source
var show.src
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var showVAR Coefficients

Purpose
Prints VAR representation to the screen.

Format
call var showVAR Coefficients(model);

Input

model (M,1) data buffer Estimated VEC or VAR model

Output

Screen output

Globals
var Note StartTime

Source
var show.src
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var showVEC Coefficients

Purpose
Prints VEC representation to the screen.

Format
call var showVEC Coefficients(model);

Input

model (M,1) data buffer Estimated VEC model

Output

Screen output

Globals
var Note StartTime

Source
var show.src
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var specifyRSSdivisor

Purpose
Automates the rule for choosing the devisor of the residual sum of squares
when computing residual covariance matrix.

Format
var specifyRSSdivisor(model);

Input

model (M,1) data buffer Defined VAR or VEC model

Output

none.

Remarks
Manipulates the global var div.

Globals
var Note StartTime
var div

Source
var ls.src
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var splitDeterministics

Purpose
Split deterministic observations to a part entering the cointegration re-
lation and a part entering the VEC-System.

Format
{d vec, d ec} = var splitDeterministics(d, idx c, idx l);

Input

d (T,M) matrix Deterministic variables, can be empty

idx c (N,1) matrix Indizes of deterministic variables that enter the
cointegration relation unlagged (with current val-
ues), can be empty

idx l (O,1) matrix Indizes of deterministic variables that enter the
cointegration relation with lagged values: The
current difference is kept in the system block of
deterministic variables, can be empty

Output

d vec (T,M-N) matrix Deterministic variables, that enter system es-
timation

d ec (T,N+O) matrix Deterministic variables restricted to cointegra-
tion relation

Remarks
idx c and idx l must be mutually exclusive!
The variables referenced by idx l are written as

yt = yt − yt−1 + yt−1 = ∆yt + yt−1

where ∆yt is kept in the block of deterministic variables for system esti-
mation and yt−1 goes to the block of deterministic variables for estimating
the cointegration relation.

Globals
var Note StartTime
var div

See
var splitDeterministicsNames

Source
var ls.src
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var splitDeterministicsNames

Purpose
Creates names for deterministic variables according to the restriction
rule.

Format
{Nd vec, Nd ec} =

var splitDeterministicsNames(Nd, idx c, idx l);

Input

Nd (M,1) character matrix Names for deterministic variables,

or string array can be empty

idx c (N,1) matrix Indizes of deterministic variables
that enter the cointegration relation
unlagged (with current values), can
be empty

idx l (O,1) matrix Indizes of deterministic variables
that enter the cointegration relation
with lagged values: The current dif-
ference is kept in the system block of
deterministic variables, can be empty

Output

Nd vec (M-N,1) string array Names of deterministic variables that
enter system estimation

Nd ec (N+O,1) string array Names of deterministic variables re-
stricted to cointegration relation

Remarks
idx c and idx l must be mutually exclusive!

Globals
var Note StartTime
var div

See
var splitDeterministics

Source
var ls.src
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var ComputeModelStatistics

Purpose
Computes various statistics from the estimated model.

Format
y = var ComputeModelStatistics(model);

Input

model (Y,1) data buffer Estimated VAR or VEC.

Output

y (Z,1) data buffer Estimated VAR or VEC with additional statis-
tics.

Remarks
This procedure should be applied after calling vml EstimateModel()

Computes

• Matrix of standard deviation (sd ...),

• Matrix of t-values (tv ...),

• Matrix of p-values (pv ...).

Changes in data buffer: sd XXX, tv XXX, pv XXX

Globals
var Note StartTime
var div

See
vml InitVAR
var EstimateModel

Source
var est.src
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var eigenvalues

Purpose
Returns the modulus of the eigenvalues of the characteristic polynomial.

Format
Eig = var eigenvalues(Ay);

Input

Ay (K,K*p) Coefficient matrix

Output

Eig (K*p,1) Modulus of the eigenvalues of the characteristic polyno-
mial of Ay

Globals
var Note StartTime
var div

Source
var var.src



APPENDIX D. THE Gauss LIBRARY VAR 328

var EstimateECModel

Purpose
Estimates Error Correction Model.

Format
modelHat = var EstimateECModel(model);

Input

model (Y,1) data buffer Data buffer defined a VAR or VEC.

Output

modelHat (Z,1) data buffer Estimated equation from VAR model
that holds the error correction term.

Remarks
This procedure estimates a cointegration relation from a previously de-
fined VAR or VEC model. The equation from which the error correction
relation is derived must be defined before.
Changes in data buffer: + beta, alpha, G0, G, A0, A, B, C, F

Globals
var Note StartTime
var div

See
var initCIR

Source
var est3.src
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var EstimateModel

Purpose
Estimates VAR or VEC model.

Format
y = var EstimateModel(model);

Input

model (Y,1) data buffer Data buffer defining a VAR or VEC.

Output

y (Z,1) data buffer Estimated VAR or VEC as data buffer.

Remarks
This procedure estimates the data buffer model and returns it with the
estimated parameter matrices.
The procedure checks first if a cointegration rank r is defined. If r = 0
∆yt has a stable VAR(p − 1) representation. For r = K yt is a stable
VAR(p). This is considered in the estimation procedure.
Changes in data buffer: beta, alpha, G0, G, A0, A, B, C, F

Globals
var Note StartTime
var div

See
vml InitVAR
var EstimateModel

Source
var est.src
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var impulseResponses

Purpose
Computes impulse responses.

Format
{feir, orir} =

var impulseResponses(A0, A, cvu, ir max, outFmt);

Input

A0 (K,K) matrix Parameter matrix of endogenous vari-
ables

(0,0) A0=

A (K,p*K) matrix Parameter matrix of p lagged endogenous

variables

cvu (K,K) matrix Residual covariance matrix

ir max (1,1) matrix Time horizon for computing impulse re-
sponses.

outFmt (1,1) matrix outFmt=1: output as (1+ir max,K*K)-
matrices

outFmt=0: output as
(1,K*K*(1+ir max))-matrices

Output

feir (1+ir max,K*K) matrix Forecast error impulse responses,
if outFmt=1

(1,K*K*(1+ir max)) matrix if outFmt=0

orir (1+ir max,K*K) matrix Orthogonalized impulse responses,
if outFmt=1

(1,K*K*(1+ir max)) matrix if outFmt=0

(0,0) matrix If A0 6= IK

Remarks
Impulse responses are computed for the model

A0yt = A1yt−1 + . . . + Apyt−p

This procedure distinguishes between reduced form models and struc-
tural form models. Reduced form models are identified if the argument
A0 = IK , or A0 = {}.
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Impulse responses for reduced form models are computed by

Φi =
i∑

j=1

Φi−jAj, i = 1, 2, . . .

(see Lütkepohl (1993a)) with Φ0 = IK . When impulse response for
structural form models are computed the coefficient matrices are first
transformed to reduced form coefficient matrices and then the recursion
above is used using Φ0 = A−1

0 . This procedure fails if A0 is not invertible.
If the matrix A0 is specified no orthogonal impulse responses are com-
puted.
The impulse response functions are ordered row-wise, i.e. the first K
columns in row i + 1 in the output argument feir take the quantities
of the first row of Φi and so forth, if outFmt=1. In case of outFmt=0 the
just described output is vectorized and transposed.

Globals
var Note StartTime
var div

Source
var ira.src
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var indcv

Purpose
Checks one character vector against another and returns the indices of
the elements of the first vector in the second vector.

Format
z = var indcv(what, where);

Input

what (N,1) character matrix Contains the elements to be found in
vector where

where (M,1) character matrix Vector to be searched for matches to
the elements of what

Output

z (N,1) matrix Vector of integers containing the indices of the corre-
sponding element of what in where

Remarks
This function is comparable to the Gauss function indcv but fills the
elements of what with blanks.

Globals
var Note StartTime
var div

Source
var tool.src
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var initCIR

Purpose
Defines a data buffer for estimating the cointegration relation from one
equation of a VAR-model.

Format
var =

var InitCIR(y, py, Ny, x, px, Nx, d, Nd, idx equa,

idx norm);

Input

y (py+T,K) matrix Time series of endogenous vari-
ables

py (1,1) matrix Number of lagged endogenous
variables (:= p)

Ny (K,1) string array Names of endogenous variables

(0,0) Ny={}
x (px+T,L) matrix Time series of exogenous variables

(0,0) x={} if no exogenous variables are
defined in the system

px (1,1) matrix Number of lagged exogenous vari-
ables (ignored if x={}) (:= q)

Nx (L,1) string array Names of exogenous variables

(0,0) Nx={}
d (py+T,M) matrix Time series of deterministic vari-

ables

(0,0) d={} if no deterministic variables
are defined in the system

Nd (M,1) string array Names of deterministic variables

(0,0) Nd={}
idx equa (1,1) matrix Index of equation that is used for

estimating the cointegration rela-
tion.

idx norm (1,1) matrix Index of normalizing variable, i.e.
the coefficient of this variable in
the cointegration relation in 1.

Output

var (N,1) data buffer Model for estimating the cointegration rela-
tion.
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Remarks
This procedure generates the following fields [optional fields] in the re-
turned data buffer: y, py, idx equa, idx norm [,Ny, x, px, Nx,

d, Nd]

Globals
var Note StartTime
var div

See
vml InitVAR

Source
var init.src
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var plotIR

Purpose
Plots one impulse response function.

Format
var plotIR(irf);

Input

irf (R,K*K) Impulse response series.

Output

Graphics

Globals
var Note StartTime
var div

See
var plotIR4CI4

Source
var irap.src
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var plotIR4CI4

Purpose
Generates plot of up to four impulse response functions and their confi-
dence intervals.

Format

var plotIR4CI4(irf1, irf2, irf3, irf4, ci1 l, ci1 u,

ci2 l, ci2 u, ci3 l, ci3 u, ci4 l, ci4 u,

mainTitle, impulseNames, responseNames,

row sel, col sel);

Input

irf1 (R,K*K) impulse response series 1

irf2 (R,K*K) impulse response series 2

or (0,0) ={} for none.

irf3 (R,K*K) impulse response series 3

or (0,0) ={} for none.

irf4 (R,K*K) impulse response series 4

or (0,0) ={} for none.

ci1 l (R,K*K) lower bound for impulse response series 1

or (0,0) ={} for none.

ci1 u (R,K*K) upper bound for impulse response series 1

or (0,0) ={} for none.

ci2 l (R,K*K) lower bound for impulse response series 2

or (0,0) ={} for none.

ci2 u (R,K*K) upper bound for impulse response series 2

or (0,0) ={} for none.

ci3 l (R,K*K) lower bound for impulse response series 3

or (0,0) ={} for none.

ci3 u (R,K*K) upper bound for impulse response series 3

or (0,0) ={} for none.

ci4 l (R,K*K) lower bound for impulse response series 4

or (0,0) ={} for none.

ci4 u (R,K*K) upper bound for impulse response series 4

or (0,0) ={} for none.

mainTitle (1,1) main title (””for none)

impulseNames (K,1) names of impulse variables
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responseNames(K,1) names of response variables

row sel (N,1) indices for rows to plot (N<=K)

or (1,1) 0 for plotting all rows

col sel (M,1) indices for columns to plot (M<=K)

or (1,1) 0 for plotting all columns

Output

Graphics

Remarks
The impulse response functions (and the confidence bounds matrices)
must be ordered row-wise, i.e. the first K columns in row i + 1 in the
input argument irf1 take the quantities of the first row of Φi and so
forth.
Some ideas coming from graphic procedures of Sune Karlsson are used
to display the main title.

Globals
var Note StartTime
var div

Source
var irap.src
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var plotIR4CI4NoSelection

Purpose
Generates plot of up to four impulse response functions and their confi-
dence intervals.

Format

call var plotIR4CI4NoSelection(irf1, irf2, irf3, irf4,

ci1 l, ci1 u, ci2 l, ci2 u,

ci3 l, ci3 u, ci4 l,

ci4 u, impulseNames,

responseNames, mainTitle);

Input

irf1 (R,K*K) impulse response series 1

irf2 (R,K*K) impulse response series 2

or (0,0) ={} for none.

irf3 (R,K*K) impulse response series 3

or (0,0) ={} for none.

irf4 (R,K*K) impulse response series 4

or (0,0) ={} for none.

ci1 l (R,K*K) lower bound for impulse response series 1

or (0,0) ={} for none.

ci1 u (R,K*K) upper bound for impulse response series 1

or (0,0) ={} for none.

ci2 l (R,K*K) lower bound for impulse response series 2

or (0,0) ={} for none.

ci2 u (R,K*K) upper bound for impulse response series 2

or (0,0) ={} for none.

ci3 l (R,K*K) lower bound for impulse response series 3

or (0,0) ={} for none.

ci3 u (R,K*K) upper bound for impulse response series 3

or (0,0) ={} for none.

ci4 l (R,K*K) lower bound for impulse response series 4

or (0,0) ={} for none.

ci4 u (R,K*K) upper bound for impulse response series 4

or (0,0) ={} for none.

mainTitle (1,1) main title (””for none)
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impulseNames (K,1) names of impulse variables

responseNames(K,1) names of response variables

Output

Graphics

Remarks
Sune Karlsson procedures are used to display the main title.

Globals
var Note StartTime
var div

See
var plotIR4CI4

Source
var irap.src
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var plotIRCI

Purpose
Plots impulse response functions with confidence intervals.

Format
var plotIRCI(irf, ci l, ci u);

Input

irf (R,K*K) Impulse response function.

ci l (R,K*K) Lower bound for confidence interval.

(1,1) 0 for none.

ci u (R,K*K) Upper bound for confidence interval.

(1,1) 0 for none.

Output

Graphics

Globals
var Note StartTime
var div

See
var plotIR4CI4

Source
var irap.src
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var plotIRCI Title

Purpose
Plots impulse response functions with confidence intervals and a main
title.

Format
var plotIRCI Title(irf, ci l, ci u, titleString);

Input

irf (R,K*K) Impulse response function.

ci l (R,K*K) Lower bound for confidence interval.

(1,1) 0 for none.

ci u (R,K*K) Upper bound for confidence interval.

(1,1) 0 for none.

titleString (1,1) Title string.

Output

Graphics

Globals
var Note StartTime
var div

See
var plotIR4CI4

Source
var irap.src



APPENDIX D. THE Gauss LIBRARY VAR 342

var SetEstimationMethod

Purpose
Set estimation method for system estimation.

Format
y = var SetEstimationMethod(model, method);

Input

model (Y,1) data buffer VAR or VEC

method (1,1) string Key for estimation method. Valid keys
are none, OLS, GLS, 3SLS, SEQ, JOH.

Output

y (Z,1) data buffer VAR or VEC model with information about
system estimation.

Remarks
Change in data buffer: em sys

Globals
var Note StartTime
var div

See
vml InitVAR
var EstimateModel

Source
var est.src
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vml bootstrapIR

Purpose
Computes bootstrap impulse responses a given VAR-model.

Format
{irfe hat, irfe star, irfe star sd, iror hat, iror star,

iror star sd, new seed star, new seed star sd} =

vml bootstrapIR(var, nob, seed, nob sd, seed sd,

compute sd, ir max);

Input

var (N,1) matrix data buffer with model information

nob (1,1) matrix number of bootstrap replications

seed (1,1) matrix seed for drawing residuals (seed=0 for us-
ing no seed)

nob sd (1,1) matrix number of bootstrap replications for esti-
mating the standard deviation

seed sd (1,1) matrix seed for drawing residuals when comput-
ing standard deviation (seed=0 for using
no seed)

compute sd (1,1) matrix 0:= do not compute bootstrap standard
deviation. otherwise compute bootstrap
standard deviation.

ir max (1,1) matrix maximum number impulse responses to
compute

Output

irfe hat (1,(1+ir max)*K*K) matrix estimated forecast
error impulse re-
sponses

irfe star (nob,(1+ir max)*K*K) matrix bootstrapped
forecast error
impulse responses

irfe star sd (nob,(1+ir max)*K*K) matrix bootstrapp stan-
dard deviation for
irfe star

iror hat (1,(1+ir max)*K*K) matrix estimated orthog-
onal impulse re-
sponses
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iror star (nob,(1+ir max)*K*K) matrix bootstrapped or-
thogonal impulse
responses

iror star sd (nob,(1+ir max)*K*K) matrix bootstrapp stan-
dard deviation for
iror star

new seed star (1,1) matrix updated seed

new seed star sd (1,1) matrix updated seed

Globals
var Note StartTime
var div
var Note StartTime

Source
var irbo.src
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vml bootstrapIRCheckInputs

Purpose
Not specified yet.

Format
Not specified yet.

Globals
var Note StartTime
var div
var Note StartTime

Source
var irbo.src
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vml createDeterministicNames

Purpose
Creates default names for deterministic variables.

Format
names = vml createDeterministicNames(n);

Input

n (1,1) Number of variables

Output

names (n,1) char array Default names.

Globals
var Note StartTime
var div
var Note StartTime

Source
var new.src
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vml createEndogenousNames

Purpose
Creates default names for endogenous variables.

Format
names = vml createEndogenousNames(n);

Input

n (1,1) Number of variables

Output

names (n,1) char array Default names.

Globals
var Note StartTime
var div
var Note StartTime

Source
var new.src
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vml createErrorCorrectionNames

Purpose
Creates default names for variables in the cointegration relation.

Format
names = vml createErrorCorrectionNames(n);

Input

n (1,1) Number of variables

Output

names (n,1) char array Default names.

Globals
var Note StartTime
var div
var Note StartTime

Source
var new.src
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vml createExogenousNames

Purpose
Creates default names for exogenous variables.

Format
names = vml createExogenousNames(n);

Input

n (1,1) Number of variables

Output

names (n,1) char array Default names.

Globals
var Note StartTime
var div
var Note StartTime

Source
var new.src
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vml createMixedNames

Purpose
Creates default names for variables of time varying coefficients.

Format
names = vml createMixedNames(n);

Input

n (1,1) Number of variables

Output

names (n,1) char array Default names.

Globals
var Note StartTime
var div
var Note StartTime

Source
var new.src
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vml createNamesVector

Purpose
Generates names vectors with lag structure on the fly.

Format
laggedNames = vml createNamesVector(eqNames, pmin, pmax);

Input

eqNames (M,1) string array Names of equations or variables

pmin (1,1) matrix Minimum lag

pmax (1,1) matrix Maximum lag

Output

laggedNames (M*((pmax-pmin)+1),1) string array Variable
names

(0,0) matrix (empty)

Remarks
Mainly by other procedures used.

Globals
var Note StartTime
var div
var Note StartTime

Source
var show.src
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vml divCVU

Purpose
Computes divisor for residual covariance matrix estimation.

Format
n = vml divCVU(T, K, nu, nr);

Input

T (1,1) matrix Number of observations

K (1,1) matrix Number of equations

nu (1,1) matrix Number of parameters in unrestricted model

nr (1,1) matrix Number of parameters in restricted model

Output

n (1,1) matrix Devisor, depending on the global setting.

Remarks
If var div= 0 then n = T ; if var div= 1 then n = T − nr/K.

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var ls.src
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vml EstimateVARModel

Purpose
Estimates VAR model.

Format
y = vml EstimateVARModel(model);

Input

model (Y,1) data buffer Defined VAR.

Output

y (Z,1) data buffer Estimated VAR.

Remarks
This procedure interprets the input argument as a VAR(p) model.
Changes in data buffer: + A0, A, B, C, F

Globals
var Note StartTime
var div
var Note StartTime
var div

See
var EstimateModel

Source
var est1.src
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vml extractRowOfGLR

Purpose
Extracts from a linear restriction matrix the linear restrictions for a
specified equation.

Format
Rnew = vml extractRowOfGLR(Rold, idx, rType);

Input

Rold (M,N) matrix Restriction matrix

idx (1,1) matrix equation index

rType (1,1) matrix Determines type of restriction: 0: Rold=r, oth-
erwise Rold=R

Output

Rnew (Q,R) matrix Restriction matrix for the specified equation.

Remarks
Helper method for var EstimateVECModel.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
var EstimateVECModel

Source
var est2.src
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vml getRegMatrix

Purpose
Generates regression matrix from endogenous, exogenous and determin-
istic variables.

Format
Z = vml getRegMatrix(y, x, d, py, px);

Input

y (py+T,K) matrix Observations for endogenous variables

x (px+T,M) matrix Observations for predetermined variables that
enter the model with lags (see px)

d (T,N) matrix Observations for predetermined variables that do
not enter the model with lags

py (1,1) matrix Number of presample values in y and lag number
for endogenous variables

px (1,1) matrix Number of presample values in x and lag number
for this variable

Output

Z (T,py*K+(px+1)*M+N) matrix Regression matrix with specified lag
structure

Remarks
It can be the case that Z = {}.

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var ls.src
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vml gls lr

Purpose
GLS estimation with linear constraints.

Format
{parY, parX, parD, u, cv par, cvu, msg} =

vml gls lr(y, x, d, py, px, Ry, Ry c, Rx, Rx c, Rd, Rd c);

Input

y (py+T,K) Observations for endogenous variables

x (px+T,L) Observations for predetermined variables that
enter the model with lags (see px)

(0,0) if model does not include such variables x={}
d (T,M) Observations for predetermined variables that

do not enter the model with lags

(0,0) if model does not include such variables d={}
py (1,1) Number of presample values in y and lag num-

ber for endogenous variables

px (1,1) Number of presample values in x and lag num-
ber for this variable

Ry (K*K*py,M) R-matrix for endogenous variables

(0,0) if none

Ry c (K*K*py,1) r-matrix for endogenous variables

(0,0) if none

Rx (L*K*(px+1),N) R-matrix for exogenous variables

(0,0) if none

Rx c (L*K*(px+1),1) r-matrix for exogenous variables

(0,0) if none

Rd (M*K,O) R-matrix for deterministic variables

(0,0) if none

Rd c (M*K,1) r-matrix for deterministic variables

(0,0) if none

Output

parY (K,K*py) Coefficient matrices for endogenous variables

parX (K,L*(px+1)) Coefficient matrices for exogenous variables

parD (K,M) Coefficient matrices for deterministic variables

u (T,K) Estimated residuals
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cv par (W,W) Covariance matrix of all coefficeints

cv u (K,K) Covariance matrix of residuals

msg (1,1) Message string

Remarks
General linear restrictions are specified as

g = vec(G) = Rγ + r,

where G is the parameter matrix of the endogenous, exogenous, or de-
terministic variable. It is not possible to set restrictions across different
variable types.
cv par is the estimated asymptotic covariance ma-
trix of vec(parY|parX|parD) and has dimension
(K*(K*py+L*(px+1)+M),K*(K*py+L*(px+1)+M)) For better perfor-
mance use vml gls sr() in case of simple subset restrictions.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml gls sr

Source
var gls.src
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vml gls sr

Purpose
GLS estimation with subset restrictions.

Format
{parY, parX, parD, u, cv par, cvu, msg} =

vml gls sr(y, x, d, py, px, sr y, sr x, sr d);

Input

y (py+T,K) Observations for endogenous variables

x (px+T,L) Observations for predetermined variables that en-
ter the model with lags (see px)

(0,0) If model does not include such variables x={}
d (T,M) Observations for predetermined variables that do

not enter the model with lags

(0,0) If model does not include such variables d={}
py (1,1) Number of presample values in y and lag number

for endogenous variables

px (1,1) Number of presample values in x and lag number
for this variable

sr y (K,py*K) Subset restriction matrix

(1,1) = 1 or = 0 as shortcut for matrix of ones and
zeros.

(0,0) Empty matrix as shortcut for = 1

sr x (K,(px+1)*L) Subset restriction matrix

(1,1) = 1 or = 0 as shortcut for matrix of ones and
zeros.

(0,0) Empty matrix as shortcut for = 1

sr d (K,M) Subset restriction matrix

(1,1) = 1 or = 0 as shortcut for matrix of ones and
zeros.

(0,0) Empty matrix as shortcut for = 1

Output

parY (K,K*py) Coefficient matrices for endogenous variables

parX (K,L*(px+1)) Coefficient matrices for exogenous variables

parD (K,M) Coefficient matrices for deterministic variables

u (T,K) Estimated residuals
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cv par (W,W) Covariance matrix of all coefficeints

cv u (K,K) Covariance matrix of residuals

msg (1,1) Message string

Remarks
The subset restrictions are specified such that a 1 indicates the inclusion
of the respective variable (and estimation of the coefficient), and a 0 in-
dicates to exclude the respective variable from the estimation algorithm.
For more information on output parameters see also remarks in
vml gls lr.
This procedure traps problems while matrix inversion. The first returned
argument should be checked against scalerr to see whether problems
occurred during calling this procedure.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml gls lr

Source
var gls.src
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vml johansenApproach

Purpose
Estimates VEC-model with the Johansen approach.

Format
{alpha, beta, beta d, G, C, u, cvu, cv P, cv alpha, cv G} =

vml johansenApproach(y, pdy, d ec, d vec, r);

Input

y (pdy+T,K) Observations for endogenous variables

pdy (1,1) Number of presample values in y and

d ec (pdy+T,N) Observations for deterministic variables that enter
the cointegration relation

d vec (T,M) Observations for exogenous variables

r (1,1) Cointegration rank

Output

alpha (K,r) Loading matrix

beta (r,K) Normalized cointegration vectors cointegra-
tion relation.

beta d (r,N) Coefficient matrix for deterministic variables
in the cointegration relation.

G (K,(pdy-1)*K) Coefficient matrix for endogenous variables
(differences)

C (K,M) Coefficient matrix for exogenous variables

u (T,K) Residuals

cvu (K,K) Residual covariance matrix. See Equation
(6.12) of Johansen (1995)

cv P (K,K) Covariance matrix of alpha*beta-matrix.
See Theorem 13.7 of Johansen (1995)

cv alpha (K,r) Covariance matrix of alpha-matrix. See
Theorem 13.3 of Johansen (1995)

cv G (K,(pdy-1)*K) Covariance matrix of G matrix. See Theo-
rem 13.5 of Johansen (1995)

Remarks
Procedure implements is oriented on the theory laid out in Johansen
(1995).
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Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var joh.src
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vml lagNames

Purpose
Adds literal that indicates a lag to the name array.

Format
Not specified yet.

Input

n (M,N) string array Name array

lag (1,1) matrix The lag to be added

Output

r (M,N) string array Name array with lag indication. No lag literal
is added, if lag=0.

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var new.src
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vml lagObservations

Purpose
Helper method for estimation procedures.

Format
y = vml lagObservations(x, px, startLag, endLag);

Input

x (px+T,K) matrix Observation matrix

px (1,1) matrix Number of presample values

startLag (1,1) matrix First lag for lag structure

endLag (1,1) matrix Last lag for lag structure

Output

y (T,(endLag-startLag+1)*K) matrix Observation matrix with lag-
structure

Remarks
If

Y =


y1−p

y2−p

...

yT


is the matrix of observations, the i-th row of the output matrix has the
structure [

yi, yi−1, . . . , yi−(endLag−startLag+1)

]
Globals

var Note StartTime
var div
var Note StartTime
var div

Source
var ls.src
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vml mergeRConstraints

Purpose
Merges general linear constraints of two variable groups.

Format
{R, R c} =

vml mergeRConstraints(ny, nx, Ry, Ry c, Rx, Rx c);

Input

ny (1,1) number of parameters in unrestricted model for that vari-
able

nx (1,1) number of parameters in unrestricted model for that vari-
able

Ry (ny,M) R-matrix for variable group y

(0,0) if none

Ry c (ny,1) r-matrix for variable group y

(0,0) if none

Rx (nx,N) R-matrix for variable group x

(0,0) if none

Rx c (nx,1) r-matrix for variable group x

(0,0) if none

Output

R (ny+nx,M+N) R-matrix for variable group [y—x]

R c (ny+nx,1) r-matrix for variable group [y—x]

Remarks
General linear restrictions are specified as

g = vec(G) = Rγ + r,

where G is the parameter matrix of the endogenous, exogenous, or de-
terministic variable. It is not possible to set restrictions across different
variable types.

Globals
var Note StartTime
var div
var Note StartTime
var div
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See
vml ols
vml gls

Source
var ls.src
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vml ols lr

Purpose
OLS estimation with general linear constraints.

Format
{parY, parX, parD, u, cv par, cvu} =

vml ols lr(y, x, d, py, px, Ry, Ry c, Rx, Rx c, Rd, Rd c);

Input

y (py+T,K) Observations for endogenous variables

x (px+T,L) Observations for predetermined variables that
enter the model with lags (see px)

d (T,M) Observations for predetermined variables that
do not enter the model with lags

py (1,1) Number of presample values in y and lag num-
ber for endogenous variables

px (1,1) Number of presample values in x and lag num-
ber for this variable

Ry (K*K*py,M) R-matrix for endogenous variables

(0,0) if none

Ry c (K*K*py,1) r-matrix for endogenous variables

(0,0) if none

Rx (L*K*(px+1),N) R-matrix for exogenous variables

(0,0) if none

Rx c (L*K*(px+1),1) r-matrix for exogenous variables

(0,0) if none

Rd (M*K,O) R-matrix for deterministic variables

(0,0) if none

Rd c (M*K,1) r-matrix for deterministic variables

(0,0) if none

Output

b hat (K,N) Estimated coefficient matrices

or scalmiss

cv b hat (K*N,K*N) Estimated asymptotic covariance matrix

or scalmiss

u hat (T,K) Estimated residuals

cv u hat (K,K) Estimated covariance matrix of residuals
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Remarks
This procedure takes three different variable types:

y Endogenous variables

x Exogenous variables (lagged)

d Exogenous variables (unlagged).

The regression model is
yt = A1yt−1 + . . . + Apyt−p

+B0xt + B1xt−1 + . . . + Bqxt−q

+Cdt + ut

subject to general linear constraints in the form of

g = vec(G) = Rγ + r,

where G is the parameter matrix of the endogenous, exogenous, or de-
terministic variable. It is not possible to set restrictions across different
variable types.
The estimated coefficient matrix b hat is organized such that b hat=
[Â1 : . . . : Âp : B̂0 : B̂1 : . . . : B̂q : Ĉ], where ·̂ is the OLS estimate of the
respective quantity.
cv b hat is the estimated asymptotic covariance matrix of vec(b hat).
For better performance use vml ols sr() in case of simple subset re-
strictions.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml ols sr

Source
var ols.src
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vml ols sr

Purpose
OLS estimation with subset restrictions.

Format
{parY, parX, parD, u, cv par, cvu} =

vml ols sr(y, x, d, py, px, sr y, sr x, sr d);

Input

y (py+T,K) observations for endogenous variables

x (px+T,L) observations for predetermined variables that en-
ter the model with lags (see px)

(0,0) if model does not include such variables x={}
d (T,M) observations for predetermined variables that do

not enter the model with lags

(0,0) if model does not include such variables d={}
py (1,1) number of presample values in y and lag number

for endogenous variables

px (1,1) number of presample values in x and lag number
for this variable

sr y (K,py*K) Subset restriction matrix

(1,1) = 1 or = 0 as shortcut for matrix of ones and
zeros.

(0,0) Empty matrix as shortcut for = 1

sr x (K,(px+1)*L) Subset restriction matrix

(1,1) = 1 or = 0 as shortcut for matrix of ones and
zeros.

(0,0) Empty matrix as shortcut for = 1

sr d (K,M) Subset restriction matrix

(1,1) = 1 or = 0 as shortcut for matrix of ones and
zeros.

(0,0) Empty matrix as shortcut for = 1

Output

parY (K,py*K) Estimated coefficient matrices of endogenous
variables

parX (K,(px+1)*L) Estimated coefficient matrices of exogenous
variables
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parD (K,M) Estimated coefficient matrices of deterministic
variables

u (T,K) Estimated residuals

cv par (K*N,K*N) Estimated asymptotic covariance matrix of
vec(parY : parX : parD)

cvu (K,K) Estimated covariance matrix of residuals

Remarks
For general linear constraints use vml ols lr instead.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml ols lr

Source
var ols.src
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vml prepareLS

Purpose
Prepare OLS or GLS estimation.

Format
{y, x, R, R c} =

vml prepareLS(y, x, d, py, px, Ry, Ry c, Rx, Rx c, Rd,

Rd c);

Input

y (py+T,K) Observations for endogenous variables

x (px+T,L) Observations for predetermined variables that
enter the model with lags (see px)

(0,0) if model does not include such variables x={}
d (T,M) Observations for predetermined variables that

do not enter the model with lags

(0,0) if model does not include such variables d={}
py (1,1) Number of presample values in y and lag num-

ber for endogenous variables

px (1,1) Number of presample values in x and lag num-
ber for this variable

Ry (K*K*py,M) R-matrix for endogenous variables

(0,0) if none

Ry c (K*K*py,1) r-matrix for endogenous variables

(0,0) if none

Rx (L*K*(px+1),N) R-matrix for exogenous variables

(0,0) if none

Rx c (L*K*(px+1),1) r-matrix for exogenous variables

(0,0) if none

Rd (M*K,O) R-matrix for deterministic variables

(0,0) if none

Rd c (M*K,1) r-matrix for deterministic variables

(0,0) if none

Output

y (T,K) The lhs observations (regressand)
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x (T,K*py+L*(px+1)+M) The regressor matrix. This matrix
might be empty (x={}) if the specifica-
tion excludes predetermined variables.

R (K*(K*py+L*(px+1)+M),N) R-matrix for the rewritten estimation
problem

R c (K*(K*py+L*(px+1)+M),K) r-matrix for the rewritten estimation
problem

Remarks
General linear restrictions are specified as

g = vec(G) = Rγ + r,

where G is the parameter matrix of the endogenous, exogenous, or de-
terministic variable. It is not possible to set restrictions across different
variable types.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml ols
vml gls

Source
var ls.src
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vml quantiles

Purpose
Computes symmetric quantiles from given discrete distribution function
and coverage probability.

Format
{t1, t2} = vml quantiles(L, c);

Input

L B x M matrix Discrete distribution functions of M random variables

c 1 x 1 matrix Coverage, 0<c<1

Output

t1 1 x M matrix lower confidence bound

t2 1 x M matrix upper confidence bound

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var boot.src
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vml recserVAR

Purpose
Computes a multivariate autoregressive recursive series.

Format
y =

vml recserVAR(A0, A, B, C, F, mx c, mx tf, y0, u, x, d,

z);

Input

A0 (K,K) matrix Left hand side structural coefficient matrix

A (K,K*p) matrix Right hand side structural coefficient ma-
trix

B (K,L*(q+1) matrix Coefficient matrix of exogenous variables

C (K,M) matrix Coefficient matrix of deterministic vari-
ables

F (K,N) matrix Coefficient matrix of deterministic vari-
ables

mx c (N,4) matrix Rule for mixed variables

mx tf (T,0) matrix Time function for mixed variables

y0 (p,K) matrix Start values

u (T,K) matrix Residuals

x (q+T,L) matrix Exogenous variables

d (T,M) matrix Deterministic variables

z (T,N) matrix Mixed variables

Output

y (py+T,K) matrix Multivariate autoregressive recursive series

Remarks
This procedure considers variables that were constructed from endoge-
nous and deterministic variables (mixed or time varying parameters).
The VAR model behind is defined in Equation (D.2):

Ã0yt = ÃYt−1 + B̃Xt + C̃dt + F̃Zt + ut

See Section D.2.2 for more details.

Globals
var Note StartTime
var div
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var Note StartTime
var div

Source
var boot.src
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vml subsetToGeneralRestriction

Purpose
Transforms subset restriction matrix to general linear restriction matrix.

Format
y = vml subsetToGeneralRestriction(x);

Input

x (K,L) matrix subset restriction matrix

Output

y (K*L,M) matrix General linear restriction matrix.

Remarks
A subset restriction matrix is defined as a matrix of ones and zeros.
It has the same dimension as the associated parameter matrix A. A
zero element in the subset restriction matrix indicates that the respec-
tive parameter in the parameter matrix is set to zero in the estimation
procedure (the respective variable drops out of the regression model).
A general linear restriction matrix R is defined in the equation

vec(A) = Rγ + r

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var rest.src
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vml syncSRMatrix

Purpose
Synchronizes subset restriction matrix with respect to dimension.

Format
y = vml syncSRMatrix(x, K, n);

Input

x (K,n) matrix Proposed subsetrestriction matrix

(1,1) matrix x=0 or x=1

(0,0) matrix Equal to x=1

K (1,1) matrix Number of equations

n (1,1) matrix Number of variables in each equation

Output

x (K,n) matrix subset restriction matrix

Remarks
It is guaranteed that the returned matrix has the correct dimension.

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var ls.src
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vml timeVaryingParameter

Purpose
Computes time variying coefficient at a specified date.

Format
AA = vml timeVaryingParameter(A, Atf, tf, c, idx);

Input

A (M,N) matrix Basis coefficient matrix

Atf (M,L) matrix Time variying coefficient matrix

tf (T,L) matrix Time function

c (1,L) matrix Indices between 1 and N, specifies the variable

idx (1,1) matrix Time index (runs from 1 to T)

Output

AA (M,N) matrix Combination of A, Atf and tf, the time varying co-
efficient matrix at the specified time.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml recserVAR

Source
var boot.src
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vml ComputeBootstrapDraw

Purpose
Generates a bootstrap time series for a VAR model.

Format
{y, s1} = vml ComputeBootstrapDraw(varHat, seed);

Input

varHat (N,1) data buffer Estimated VAR model

seed (1,1) matrix Seeding value, 0 < seed < (231)− 1, oth-
erwise it is ignored

Output

y (py+T,K) matrix Bootstrap time series

s1 (1,1) matrix Updated seed

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml residualBootstrap
vml InitVAR
var EstimateModel

Source
var boot.src
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vml GetCointRank

Purpose
Returns the cointegration rank of the model.

Format
r = vml GetCointRank(model);

Input

model (M,1) data buffer VAR or VECM model

Output

r (1,1) matrix cointegration rank

Remarks
The input argument model defines a K-dimensional VAR(p) model. This
procedure searches for some indication that a cointegration rank r has
been set. This could have been done with vml SetCointRelation().
Note that if r = 0 ∆yt has a stable VAR(p − 1) representation and
for r = K yt is a stable VAR(p). This is considered in the estimation
procedure.
It is guaranteed that 0 ≤ r ≤ K. If for some reason this condition is not
satisfied the procedure terminates with an errorlog. This means that it
is not necessary to check the returned value for plausibility.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml InitVAR
vml SetCointRelation

Source
var rest.src
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vml infrv

Purpose
Return a matrix with all infinities (-/+) set to a given value.

Format
y = vml infrv(x, a);

Input

x (M,N) matrix Argument matrix

a (1,1) matrix Value to be set instead of all -infinite or +infinite
found in x

Output

y (M,N) matrix It is guaranteed that y does not contain any +/-
infinite values

Remarks
Calls vml setINF

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml setINF

Source
var tool.src
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vml InitVAR

Purpose
Defines a VAR model.

Format
var = vml InitVAR(y, py, Ny, x, px, Nx, d, Nd);

Input

y (py+T,K) matrix Time series of endogenous variables

py (1,1) matrix Number of lagged endogenous variables
(:= p)

Ny (K,1) string array Names of endogenous variables

(0,0) Ny={}
x (px+T,L) matrix Time series of exogenous variables

(0,0) x={} if no exogenous variables are defined
in the system

px (1,1) matrix Number of lagged exogenous variables
(ignored if x={}) (:= q)

Nx (L,1) string array Names of exogenous variables

(0,0) Nx={}
d (py+T,M) matrix Time series of deterministic variables

(0,0) d={} if no deterministic variables are de-
fined in the system

Nd (M,1) string array Names of deterministic variables

(0,0) Nd={}

Output

var (N,1) data buffer VAR model.

Remarks
This procedure collects all observations necessary to estimate the follow-
ing VAR model

yt = A1yt−1 + . . . + Apyt−p

+B0xt + B1xt−1 + . . . + Bqxt−q

+Cdt + ut t = 1, . . . , T
It is not necessary to provide the variable names. Default names are
generated in this case.
This procedure generates the following fields [optional fields] in the re-
turned data buffer: y, py [,Ny, x, px, Nx, d, Nd]
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Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var init.src
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vml print ndpchk

Purpose
Examines exceptions have been generated by the numeric data processor
and prints some contextual message.

Format
call vml print ndpchk(msg);

Input

msg (1,1) string Contextual string message

Output

Message on screen

Remarks
See Gauss function ndpchk for more details.

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var tool.src
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vml regroup

Purpose
Row vector to matrix representation.

Format
y = vml regroup(x, N);

Input

x (1xm) matrix The row vector with m=N*k

N (1x1) matrix Number of rows in the target matrix

Output

y (N,k) matrix Transformed matrix.

Remarks
This procedure is the reverse to the vec operator given the information
about the dimension of the original matrix. The elements of x are stored
column wise in y.

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var boot.src
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vml residualBootstrap

Purpose
Generates a bootstrap time series for a VAR model.

Format
{y, s1} =

vml residualBootstrap(A0, A, B, C, F, mx c, mx tf, y0, u,

x, d, z, seed);

Input

A0 (K,K) matrix Left hand side structural coefficient matrix

A (K,K*p) matrix Right hand side structural coefficient ma-
trix

B (K,L*(q+1) matrix Coefficient matrix of exogenous variables

C (K,M) matrix Coefficient matrix of deterministic vari-
ables

F (K,N) matrix Coefficient matrix of deterministic vari-
ables

mx c (N,4) matrix Rule for mixed variables

mx tf (T,0) matrix Time function for mixed variables

y0 (p,K) matrix Start values

u (T,K) matrix Residuals

x (q+T,L) matrix Exogenous variables

d (T,M) matrix Deterministic variables

z (T,N) matrix Mixed variables

seed (1,1) matrix Seeding value, 0 < seed < (231)− 1, other-
wise it is ignored

Output

y (p+T,K) matrix Bootstrap time series

s1 (1,1) matrix Updated seed

Remarks
See Section D.2.3 for defining mixed variables.

Globals
var Note StartTime
var div
var Note StartTime
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var div

See
vml ComputeBootstrapDraw

Source
var boot.src
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vml residualBootstrap prepare

Purpose
Extracts data for other procedures.

Format
{A0, A, B, C, F, mx cr, mx tf, y0, u, x, d, z} =

vml residualBootstrap prepare(varHat);

Input

varHat (N,1) data buffer Estimated VAR model

Output

A0 (K,K) matrix Left hand side structural coefficient matrix

A (K,K*p) matrix Right hand side structural coefficient ma-
trix

B (K,L*(q+1) matrix Coefficient matrix of exogenous variables

C (K,M) matrix Coefficient matrix of deterministic vari-
ables

F (K,N) matrix Coefficient matrix of deterministic vari-
ables

mx c (N,4) matrix Rule for mixed variables

mx tf (T,0) matrix Time function for mixed variables

y0 (p,K) matrix Start values

u (T,K) matrix Residuals

x (q+T,L) matrix Exogenous variables

d (T,M) matrix Deterministic variables

z (T,N) matrix Mixed variables

Remarks
Helper method to prepare the input arguments for
vml residualBootstrap().

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml residualBootstrap
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Source
var boot.src
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vml SetCointRelation

Purpose
Sets r cointegration relation(s) and implicitly the cointegration rank.

Format
var = vml SetCointRelation(var, beta, beta d);

Input

model (N,1) data buffer Defined VEC or VAR model

beta (r,K) matrix Cointegration vector(s)

beta d (r,M) matrix Parameters for deterministic variables en-
tering β

Remarks
Changes in data buffer:
+beta x[, beta d x]

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var rest.src
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vml SetEndogenousVariables

Purpose
Updates observations for endogenous variables.

Format
var1 = vml SetEndogenousVariables(var0, y1);

Input

var0 (1xm) data buffer The defined VAR or VECM.

y1 (p+TxK) matrix The new observations.

Output

var1 (Z,1) data buffer The updated VAR.

Remarks
All data buffer elements depending on the endogenous variables are re-
computed, estimation results deleted.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml bootstrapIR

Source
var boot.src
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vml setINF

Purpose
Return a matrix with all infinities (-/+) set to a given value.

Format
y = vml setINF(x, a);

Input

x (M,N) matrix Argument matrix

a (1,1) matrix Value to be set instead of all -infinite or +infinite
found in x

Output

y (M,N) matrix It is guaranteed that y does not contain any +/-
infinite values

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var tool.src
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vml SetModelExtensions

Purpose
Adds time dependent variables to the model.

Format
y = vml SetModelExtensions(model, mx c, mx tf);

Input

model (M,1) data buffer Defined VAR or VEC model

mx c (O,4) matrix where mx c[.,1] specifies the variable
type (see Remark) mx c[.,2] specifies the
variable index mx c[.,3] specifies the lag
mx c[.,4] specifies the column index of
the time function in mx tf (mx c[.,4]<1
if no time function is needed)

mx tf (T,P) matrix P<=T. If mx c[i,3]<1 for all i, mx tf :=
{}

Output

model (N,1) data buffer Extended model.

Remarks
This procedure allows to combine deterministic variables (vt) and
stochastic variables (wt) multiplicatively:

zt = vtwt.
It is required that wt is contained in the endogenous or exogenous vari-
ables. The advantage over adding the variable zt directly to the model
is that the impulse response analysis and the bootstrap can process that
information.
The following variable types are valid:

coding

endogenous enl (level) end (differenced)

exogenous ex

EC-term ec

determin de

Changes in data buffer:
+ mx c[, mx tf], Z

Globals
var Note StartTime
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var div
var Note StartTime
var div

See
vml InitVAR

Source
var mx.src
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vml SetRestrictions

Purpose
Imposes linear restrictions on model parameters.

Format
modelR = vml SetRestrictions(model, rx, name);

Input

model (Z,1) data buffer A VAR or VEC model

rx (M,N) matrix Restriction matrix

name (1,1) matrix name for restriction matrix

(1,1) string name for restriction matrix

Output

modelR (U,1) data buffer A VAR or VEC model with the given lin-
ear constraint.

Remarks
Call this procedure after vml InitVAR().
It is possible to impose general linear restrictions of the form β = Rγ+r.
Additionally, one can impose subset restrictions by specifying a matrix
of ones and zeros for the respective parameter matrix (1=estimate the
respective coefficient, 0=restrict this coefficient to zero). See Section
D.2.4 for more details. Change in data buffer:
For linear restrictions +R XX[, R XX C],
and for subset restrictions +S XX

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml InitVAR

Source
var rest.src
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vml ShowData

Purpose
Prints information about model to the screen.

Format
call vml ShowData(model, showGraphs);

Input

model (M,1) data buffer VEC or VAR model specified for estima-
tion or already estimated

Output

Screen output

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var show.src
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vml showDim

Purpose
Prints dimension of argument on screen.

Format
call vml showDim(x);

Input

x (M,N) matrix, string [array] Argument

Output

Screen output

Example
The code
y=ones(13,2);

call vml showDim(y);

returns
Dimension: [13,2]

to the screen.

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var tool.src
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vml ShowEstimationResults

Purpose
Prints estimation results to the screen.

Format
call vml ShowEstimationResults(model);

Input

model (M,1) data buffer Estimated VEC or VAR model

Output

Screen output

Globals
var Note StartTime
var div
var Note StartTime
var div

Source
var show.src
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vml VAR For IRA

Purpose
Transforms a VAR model for the impulse response analysis.

Format
newVAR = vml VAR For IRA(model);

Input

model (N,1) data buffer Estimated VAR model.

Output

newVAR (M,1) data buffer Transformed VAR model.

Remarks
The current implementation does nothing with the argument VAR
model.
Redefine this procedure if you want to compute impulse responses from
a VAR model which is based on a transformed version, for example you
might want to include identities before conducting the structural analy-
sis. This procedure is called in all bootstrap confidence interval routines.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml InitVAR

Source
var V4I.src
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vml vdel

Purpose
Modified vdel(dbuf, xname). Also deletes string array elements (if
added with vml vput()).

Format
x = vml vdel(model, keyList);

Input

dbuf (Kx1) matrix databuffer constructed with vput

xname (1x1) string name of variable

Output

x (M,N) matrix or string array data

Remarks
In order to delete an element of type string array it must have been
putted using vml vput().

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml vput

Source
var tool.src
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vml VeRead

Purpose
Modified vread(dbuf, name). Checks existence of name before return-
ing.

Format
x = vml VeRead(dbuf, name);

Input

dbuf (Kx1) matrix databuffer constructed with vput

name (1x1) string name of variable

Output

x (M,N) string or matrix if name is in dbuf

(0,0) if name is not in dbuf

Remarks
If the element name is not found in dbuf an empty symbol is returned.
In such a case vread() simply brings out an error message.

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml vread
vml vput

Source
var tool.src



APPENDIX D. THE Gauss LIBRARY VAR 401

vml vput

Purpose
Modified vput(dbuf, x, xname). Also works for string array argu-
ments. Empty symbols (rows==0) are not written to the data buffer.

Format
dbufNew = vml vput(dbuf, x, xname);

Input

dbuf (Kx1) matrix databuffer constructed with
vput

x (M,N) matrix or string array data

xname (1x1) string name of variable

Output

dbufNew (L,1) matrix new data buffer

Remarks
In order to read the string array from the data buffer one must use
vml vread().

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml vread
vml VeRead

Source
var tool.src
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vml vread

Purpose
Modified vread(dbuf, xname). Also reads string array elements (if
added with vml vput()).

Format
x = vml vread(dbuf, xname);

Input

dbuf (Kx1) matrix databuffer constructed with vput

xname (1x1) string name of variable

Output

x (M,N) matrix or string array data

Remarks
In order to return an element of type string array it must have been
putted using vml vput().

Globals
var Note StartTime
var div
var Note StartTime
var div

See
vml vput
vml VeRead

Source
var tool.src
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xxx 3sls

Purpose
Computes three-stage-least-squares estimates.

Format
{coeff, cv coeff, u, cv u, msg} = xxx 3sls(yx, sr);

Input

yx (T,K+M) matrix observations

sr (K,K+M) matrix subset restrictions

Output

coeff (K,K+M) matrix Model coefficients.

cv coeff (K*(K+M),K*(K+M)) matrix Covariance matrix of model co-
efficients.

u (T,K) matrix Model residuals.

cv u (K,K) matrix Covariance matrix of model
residuals.

msg (1,1) string Message about estimation de-
tails.

Remarks
The model contains K equations and M predetermined variables. The sr

matrix contains 1s and 0s only, a 1 indicates to include the respective
variable. The K diagonal elements of sr are ignored.

Globals
var Note StartTime
var div
var Note StartTime
var div
var iter

See
xxx i3sls

Source
var 3sls.src
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xxx i3sls

Purpose
Computes iterated three-stage-least-squares estimates.

Format
{coeff, cv coeff, u, cv u, msg} = xxx i3sls(obs, mod, noi);

Input

obs (T,K+M) matrix Endogenous and predetermined variables

mod (K+M,K) matrix endogenous and predetermined variables

noi (1,1) scalar number of iterations 0,1,2,...

Output

coeff (K,K+M) matrix Model coefficients.

cv coeff (K*(K+M),K*(K+M)) matrix Covariance matrix of model co-
efficients.

u (T,K) matrix Model residuals.

cv u (K,K) matrix Covariance matrix of model
residuals.

msg (1,1) string Message about estimation de-
tails.

Remarks
cols(mod)=number of equations rows(obs)=number of observations
The (K + i)-th row of mod may be filled with zeros. This means that
the i-th predetermined variable is not included in ANY of the K equa-
tions. Therefore the i-th variable is removed before doing the estimation
(removing K + i-th column of obs and K + i-th row of mod).
The j-th column of mod may be filled with zeros. This means that the
j-th equation contains no estimateable parameters. Therefore the j-
th equation is removed before doing the estimation (removing the j-th
column of obs and the j-th row and column of mod).

Globals
var Note StartTime
var div
var Note StartTime
var div
var iter

Source
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var 3sls.src
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xxx i3sls cv

Purpose
Computes model residuals and covariance matrix of model residuals.

Format
{u, cv u} = xxx i3sls cv(obs, mod h, mod);

Input

obs (T,K+M) matrix Endogenous and predetermined variables.

mod h (K+M,K) matrix Model coefficients.

mod (K+M,K) matrix Matrix of subset restrictions.

Output

u (T,K) matrix Model residuals.

cv u (K,K) matrix Covariance matrix of model residuals.

Globals
var Note StartTime
var div
var Note StartTime
var div
var iter

See
vml divCVU

Source
var 3sls.src
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