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and Tibshirani ������� although reconsidering certain aspects of their work�
Apart from GAM� vector GAM �VGAM�� alternating conditional expecta�
tions �ACE�� and additivity and variance stabilization �AVAS� are discussed�
Last but not least there are software hints for all these models�

yThe �rst author revised this paper during a research visit at Sonderforschungsbereich ���

at the Humboldt�University Berlin� He likes to thank Stefan Sperlich for providing the

marginal integration algorithm and for valuable discussions� An extended version will be

published in the book Smoothing and Regression� Approaches� Computation and Applica�

tion edited by M� G� Schimek� Wiley� New York� �����

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127592251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


��� INTRODUCTION

This paper discusses multivariate regression problems evaluated in a nonpara�
metric fashion where the aim is to study the structural relationship between
the response variable Y and the vector of d covariates X 	 �X�� � � � � Xd�

T via

m�x� 	 E�Y j X 	 x�

with x 	 �x�� � � � � xd�T and m�x� 	 m�x�� � � � � xd��
In the multiple linear regression model one assumption is that the condi�

tional mean relationship between the response and each of the predictors is
linear� i�e� that m�x� is linear and additive in the predictors� To gain more

exibility one can drop the linearity assumption but retain additivity� The
result is an additive model in which each explanatory variable can be related
to the dependent variable via an individual functional form� As long as these
functions obey certain smoothness assumptions they can be estimated by scat�
terplot smoothers in a nonparametric fashion� The case of additive models
will be studied in Section ���� where we consider penalized least squares and
marginal integration methods�

In the parametric class of Generalized Linear Models �GLMs� McCullagh
and Nelder� ���� the unknown regression function m�x� is modelled linearly
via a known link function G� An important example is the logistic regression
model for binary responses� There� the logit of the regression function is
represented linearly� Again we can gain more 
exibility by replacing the linear
function with some smooth function in a nonparametric setting� Such models
have been introduced by Hastie and Tibshirani and summarized in their ����
monograph� The nonparametric alternative to GLMs is called Generalized
Additive Models �GAMs�� They allow the conditional mean of the response
variable to depend via a �xed link function on a sum of univariate functions�
each function having one component of the vector of explanatory variables
as argument� The generalized additive case will be discussed in length in
Section ���� where the emphasis is again on the penalized least squares and
the marginal integration methods�

Section ����� describes Vector Generalized Additive Models �VGAMs��
which were recently introduced by Yee and Wild ������� VGAMs handle
multivariate �vector� regression problems�

Two further methods respectively algorithms named Alternating Condi�
tional Expectations �ACE� and Additivity and Variance Stabilization �AVAS�
are discussed brie
y in Section ��� since they are �computationally� closely
related to GAMs although they are based on a di�erent working model�

For all models introduced in this paper we provide the numerical back�
ground �also pointing out alternative estimation concepts�� algorithms and
software hints�

Let us now give some motivation for the use of additive models� The most

exible models one could think of do not have any assumptions about the form
of the d�variate function m�x�� The problem is to �t a d�dimensional surface



to the observed data fxTi � Yig with i 	 ��� � � � � n�� where xi 	 �xi�� � � � � xid�
T �

What comes �rst to our mind is generalizing the univariate smoothing tech�
niques to this multivariate situation� But there is a severe problem� it is
necessary to de�ne neighbourhoods in the d�dimensional space� however un�
der the curse of dimensionality we understand that neighborhoods with a
�xed number of points become less local as the dimensions increase �Bellman�
������

In the spline world the generalization is restricted to certain cases such as
thin plate splines� Other problems and thus restrictions arise in the domain
of kernel smoothers� The additive model approach is an elegant way around
these problems because high�dimensionality is tackled via an additive approx�
imation of simple univariate smooth functions such as cubic smoothing splines
or kernel smoothers�

What also remains unsolved is the problem whether the degree of smooth�
ing should be the same in each dimension� This is related to the question
whether the variation in the surface is comparable with respect to all covari�
ates �see Scott� ����� Chapter �� for further reading�� As will be demon�
strated in this paper the above problems become less severe when an additive
approach is taken� although related questions will emerge� Smoothing pa�
rameter respectively bandwidth choice remains a weak point in this class of
models� The reason is both a lack of theory and adequate algorithms� In
Sections ��� and ��� we shall discuss the problem of selecting smoothing pa�
rameter�s� in �generalized� additive models and conclude with a discussion of
model diagnostics� another �eld still open to research�

��� THE ADDITIVE MODEL

Consider the general multiple regression model

Y 	 m�X� � e� �����

where we assume that the error e is independent of the vector of explanatory
variables X� E�e� 	 �� and V�e� 	 ��� Di�erent from linear regression� now
only the additivity property of m is required in the following� The dependent
variable Y is approximated by the additive model

m�X� � g�X� 	 g� �
dX

j��

gj�Xj�� �����

where g� is a constant and the gjs are univariate smooth functions� To avoid
free constants in the functions gj we usually require that E �gj�Xj�� 	 � for
� � j � d �centering�� These identi�ability conditions imply that E�Y � 	 g��

In the following we shall restrict our interest to linear scatterplot smoothers
with a n � n smoother matrix S� Buja et al� ����� p� ���� give the fol�
lowing de�nition for a linear scatterplot smoother� The function estimate



�y 	 ��y�� � � � � �yn�
T can be written as �y 	 Sy� where y 	 �y�� � � � � yn�

T � and
S does not depend on y� Important examples of linear smoothers are kernel
smoothers and smoothing splines� Not all scatterplot smoothers have this
property�

Under identi�ability� if the additive model is correct �not just an approxi�
mation�� we have

E

�
�Y � g� �

X
j ��k

gj�Xj� j Xk

�
� 	 gk�Xk�

for k 	 �� � � � � d� This relationship suggests to adopt an iterative procedure
for the estimation of the univariate functions g�� � � � � gd corresponding to the
explanatory variables� For a known constant g� and given functions gj� j �	 k�
the function gk can be estimated by an univariate regression �t based on the
measurements �Xik� Yi� for i 	 �� � � � � n �n observations�� Applying a linear
smoother Sj � the centered version of the estimator �gj of gj is

�g�j 	 �gj � n��
nX
i��

�gj�Xij��

This is the motivation for an iterative scheme that is now known as back�tting�
It was introduced and analyzed by Friedman and Stuetzle ����� and Breiman
and Friedman ����� in the context of projection pursuit regression � the
additive model is a special case of the projection pursuit model � and can be
described as follows�

Additive Model Algorithm

�� Initialize� �g� 	 n��
Pn

i�� Yi� �gj 	 g�j � j 	 �� � � � � d

�� Find new transformations� For j 	 �� � � � � d

�gj 	 Sj

h
Y � �g� �

P
j ��k �gj�Xj� j Xk

i
�

�g� 	 �g� � n��
Pn

i�� �gj�Xij��
and �g�j 	 �gj � n��

Pn
i�� �gj�Xij�

�� Cycle step � until convergence

The idea behind this algorithm is to carry out a �t� calculate partial residuals
from that �t and re�t again� That is why the iteration scheme is called back�
�tting� The starting functions g��� � � � � g

�
d can be obtained in various ways� e�g�

from a linear regression �t of Y on the predictors Xk� Technical matters con�
cerning the algorithm such as numerical features� convergence and statistical
implications will be discussed later in this paper�



����� The normal equations and linear scatterplot smoothing

In order to justify smoothing in the additive model we take the L� function
space view of Hastie and Tibshirani ������� Let Hj� for j 	 �� � � � � d� de�
note the Hilbert spaces of measurable functions �j�Xj� with E�j�Xj� 	 ��
E��j�Xj� � �� and inner product h�j�Xj �� ��j�Xj�i 	 E�j�Xj ���j�Xj�� Fur�
thermore�H is assumed to be the space of arbitrary centered� square integrable
functions of X�� � � � � Xd� We consider the Hj as subspaces of H in a canonical
way� Hadd � H describes a closed linear subspace of the additive functions
H� � � � ��Hd� These are all subspaces of HYX � the space of centered square
integrable functions of Y and X�� � � � � Xd�

The additive model in a population setting amounts to minimizing

E �Y � g�X��� �����

over

g�X� 	
dX

j��

gj�Xj� � H
add�

Without the additivity assumption we would simply obtain E�Y j X�� Our
goal is to �nd the closest additive approximation to this function� By the
de�nition of Hadd the above minimum exists and is unique� This is not true
for the individual functions gj�Xj��

Let Pj denote the conditional expectation operator E�� j Xj� �Pj is the
orthogonal projection onto Hj�� The minimizer g�X� of ����� can be rep�
resented by residuals Y � g�X� which are orthogonal to the space of �ts
Y � g�X� 	 Hadd� Since Hadd is generated by Hj � we have equivalently
Y � g�X� 	 Hj for all j or Pj�Y � g�X�� 	 � for all j� Considering a single
component this can be written as

gk�Xk� 	 Pk

�
��Y �

dX
j��

j ��k

gj�Xj�

�
�� 	 E

�
��Y �

dX
j��

j ��k

gj�Xj� j Xk

�
�� �

The following system of estimating equations is necessary and su�cient for
g 	 �g�� � � � � gd� to minimize ������

�
BBB�

I P� P� � � � P�

P� I P� � � � P�

���
���

���
� � �

���
Pd Pd Pd � � � I

�
CCCA

�
BBB�

g��X��
g��X��

���
gd�Xd�

�
CCCA 	

�
BBB�

P�Y
P�Y
���

PdY

�
CCCA �����

or
Pg 	 QY�



where P and Q are a matrix and a vector� respectively� of operators� A
numerical solution for the additive approximation cannot be obtained from
����� since the matrix on the left consists of conditional expectation operators
�not real numbers�� But the conditional expectations in our population setting
are connected to the sample data setting via smoothing�

Let us now take a more formal look at linear scatterplot smoothers in
additive models� We assume to compute the �t at design points xi� in which
case we can write a linear smoother as a linear map S � Rn 
� Rn de�ned
by �y 	 Sy� Applying a linear smoothing algorithm we can produce the
corresponding smoother matrix S by smoothing unit basis vectors� Smoothing
the ith unit vector results in the ith column of S� This cannot be done for a
nonlinear smoother such as LO�W�ESS since the estimates depend on y in a
nonlinear fashion�

A linear smoother can be written as a smoother matrix S times the re�
sponse vector y� i�e� �g 	 Sy� As pointed out earlier the most prominent
linear smoothers are splines and kernel smoothers� Now we can replace the
conditional expectation operator Pj by such a smoother with smoother ma�
trix Sj �

Finally a numerical solution for the additive approximation to the regres�
sion curves gj forming a �nd��dimensional vector g� can be obtained from
the data version of the estimating equations ������ which forms a �nd�� �nd�
system

�
BBB�

I S� S� � � � S�
S� I S� � � � S�
���

���
���

� � �
���

Sd Sd Sd � � � I

�
CCCA

�
BBB�

g�
g�
���
gd

�
CCCA 	

�
BBB�

S�y
S�y
���

Sdy

�
CCCA �

�����

In short form we can write
Ag 	 By�

where A and B are block matrices consisting of identity matrices I and linear
smoothing operators Sj � This system of equations is known as the normal
equations of the additive regression model�

The above system can be adapted to handle tied observations� an impor�
tant modi�cation for applied data analysis� Schimek et al� ������ proposed
a weighting scheme �based on permutation and reduction matrix operators�
which does not change the structural features of the system matrix �below
this approach is discussed in detail for smoothing splines��

����� Penalized least squares

In this section we shall concentrate on smoothing splines which have the ad�
ditional property �not shared� for instance� by kernel smoothers� that the



smoothing matrix S is symmetric� As a direct consequence of this symmetry
and that splines can reproduce straight lines we have

HSy 	 �STHT �Ty 	 �SH�Ty 	 HTy 	 Hy�

where H is the so�called hat matrix �often written �H� for linear least squares
regression� This property will prove useful when studying the formal structure
of the back�tting algorithm� Due to symmetry is also the fact that the eigen�
vectors of the smoother matrix S of a spline resemble those of polynomials
of increasing degree �Eubank� ����� The �rst two eigenvalues are one and
correspond to linear functions of the design variable x� The eigendecomposi�
tion of S allows us to analyse the smoother� analogously to linear stochastic
processes for time series� by means of the spectrum�

For convenience let us study the popular case of cubic smoothing splines�
We have to minimize with respect to g the penalized least squares criterion

nX
i��

�yi � g�xi��
� � �

Z ��

��

�g���z���dz� �����

where � �� � �� is a �xed smoothing parameter� The solution �g is a cubic
Reinsch spline �Reinsch� ����� with knots at each distinct xi�

Following Green and Yandell ����� p� ��� we introduce hi 	 xi�� � xi
for i 	 �� �� � � � � n � �� a tridiagonal �n � �� � n matrix � with �ii 	 ��hi�
�i�i�� 	 ����hi � ��hi���� �i�i�� 	 ��hi��� and a symmetric tridiagonal
�n � �� � �n � �� matrix C with ci���i 	 ci�i�� 	 hi��� cii 	 �hi � hi������
Then the minimization problem in ����� can be equivalently expressed by

ky � gk� � �gTKg� min� �����

where K denotes a quadratic penalty matrix with

K 	 �TC����

The solution is now

�g 	 Sy�

where the linear smoother matrix S is given by

S 	 �I � �K���� ����

The concept of penalized least squares can be also applied to the additive
model itself when smoothing splines are used as scatterplot smoothers� Fur�
ther� it provides another motivation apart from that of function spaces for the
application of smoothing in additive models�

Above we introduced the cubic smoothing spline as the minimizer of the
penalized least squares criterion ����� over all twice continuously di�erentiable



functions g� In order to extend this idea to the additive model� we generalize
the criterion ����� in a straightforward manner� We seek to minimize

nX
i��

�yi �
dX

j��

g�xij��
� �

dX
j��

�j

Z ��

��

�g��j �z��
�dz� �����

over all twice continuously di�erentiable functions gj� Each function in �����
is penalized by a separate �xed smoothing parameter �j� This in turn deter�
mines the smoothness of that function in the solution� There are two extreme
cases� if all the �js take the value zero the solution to ����� is any interpolat�

ing set of functions satisfying yi 	
Pd

j�� g�xij� for i 	 �� �� � � �� n� The other
extreme is that each �j goes to in�nity� resulting in a penalty term which
itself goes to in�nity unless g��j �z� 	 � for all j �i�e� each gj is linear as in
linear least squares regression��

The solution of ����� is a cubic smoothing spline in each of the predictors�
Evaluation at all n observations leads to

�y �
dX

j��

gj�
T �y �

dX
j��

gj� �
dX

j��

�jg
T
j Kjgj� ������

where the Kjs are penalty matrices for each predictor as in the univariate
setting of ������ Di�erentiating ������ with respect to the function gk yields

�gk 	 Sk�y �
X
j ��k

�gj� ������

where Sk is a smoother matrix given by �compare with �����

Sk 	 �I � �kKk�
�� ������

and Kk� the individual penalty matrices� Writing equation ������ for k 	
�� �� � � � � d produces the same �nd� � �nd� system of normal equations as ob�
tained from the function space considerations� Again we end up with�

BBB�
I S� S� � � � S�
S� I S� � � � S�
���

���
���

� � �
���

Sd Sd Sd � � � I

�
CCCA

�
BBB�

g�
g�
���
gd

�
CCCA 	

�
BBB�

S�y
S�y
���

Sdy

�
CCCA ������

with d di�erent cubic spline smoother matrices Sj � According to Hastie and
Tibshirani ������ p� ���� we can interpret the penalty terms in ������ as a
down�weighting of each of the components of gj� the down�weighting deter�
mined by the corresponding eigenvalue of that component and �j �

Next we have to cope with the technical problem of tied predictor values�
mentioned in Hastie and Tibshirani ������ p� ���� There is almost no practical



situation in multivariate regression where the data within one variable are all
di�erent from each other�

The problem of tied observations in additive models is twofold� �i� the
predictor variables may require di�erent orderings �relevant for instance when
smoothing splines are adopted�� and �ii� in each predictor variable values may
occur with frequency greater than one �tied values�� Schimek et al� ������
put forward a computationally e�cient modi�cation of the normal equations
in ������ which accommodates for problems �i� and �ii� at the same time�

We apply again the penalized least squares criterion for cubic smoothing
splines as well as for the additive model� Let us de�ne xi 	 �xi�� � � � � xid�T as
the design points �i�e� explanatory observations� for i 	 �� � � � � n�

The estimation of model ����� requires to determine the gjs for each coor�
dinate of the design points xij� For the distinct design points we consider the
minimization problem �with respect to gj�

�y �
dX

j��

gj�
T �y �

dX
j��

gj� �
dX

j��

�jg
�l�T
j Kjg

�l�
j ������

where the Kj are penalty matrices and the �j ��j � �� smoothing parameters
of the individual cubic smoothing splines as before�

The vectors g
�l�
j are of equal or smaller �hence notation ��l��� dimension

than the original g vectors of estimators �i�e� nj � n� can be obtained as

follows� Let Oj be a permutation operator such that x
�

ij 	 Ojxij is ordered
ascending� j 	 �� � � � � d� and Rj be a reduction operator de�ned by a nj � n
matrix with elements rts� where nj 	 �fx�j� � � � � xnjg� rts �	 � for s 	

�� � � � � n and t 	 t�s� 	 �fx
�

�j� � � � � x
�

sjg� rts �	 � elsewhere� Let Dj �	 RjR
T
j

and g
�l�
j �	 D��

j RjOjgj� The g�l�j s consist of those remaining values gij

corresponding to the distinct and ordered design points x
�

ij� i 	 �� � � � � nj�
Hence we can write

gj 	 O��
j RT

j g
�l�
j �

The least squares term in ������ is equivalently expressed as the square of

Ory � �RT
r g

�l�
r �

X
j ��r

OrO
��
j RT

j g
�l�
j �� ������

for r 	 �� � � � � d� Di�erentiation of ������ using ������ with respect to g
�l�
r

yields

�rKrg
�l�
r � RrOry �RrR

T
r g

�l�
r �

X
j ��r

RrOrO
��
j RT

j g
�l�
j 	 ��

Tj�l �	 SjRjOjO
��
l RT

l � where Sj 	 �Dj � �jKj�
�� describes a modi�ed

smoother matrix and zj �	 SjRjOjy for j 	 �� � � � � d� Then the normal



equations can be expressed by

�
BBBBB�

I� T��� � � � T��d�� T��d
T��� I� � � � T��d�� T��d
���

���
� � �

���
���

Td���� Td���� � � � Id�� Td���d

Td�� Td�� � � � Td�d�� Id

�
CCCCCA

�
BBBBBB�

g
�l�
�

g
�l�
�
���

g
�l�
d��

g
�l�
d

�
CCCCCCA

	

�
BBBBB�

z�
z�
���

zd��

zd

�
CCCCCA �

������

where Ij is the nj�nj identity matrix� The g
�l�
j are the new estimators of the

additive model in ������ The system in ������ can be solved in the same way as
the usual normal equations� In the next section we learn about the problems
and numerical techniques associated with the solution of such systems of the
additive model�

����� Solution of the normal equations

������� Statistical considerations First we consider consistency of the
normal equations in ������ Consistency requires that By � R�A� for arbitrary
data y � Rn �R is the range�� For the d�dimensional smoother case the
following results are known for linear scatterplot smoothers with smoother
matrices Sj �
Theorem �� If each Sj is symmetric with eigenvalues in ��� ��� the normal

equations are consistent for every y �for the proof see Buja et al�� ���� p� ����
Further� for symmetric smoothers with eigenvalues in ��� �� closed formulas

for the solutions can be given�
Proposition �� If the Sj are symmetric with eigenvalues in ��� ��� the

solutions of the normal equations can be written as gj 	 Aj�I � A���y�
where Aj 	 �I � Sj���Sj and A 	

P
j Aj �for the proof see Breiman and

Friedman� �����
Less stringent necessary and su�cient conditions on Sj for consistency

could be derived by Buja et al� ����� p� ��f� solely for the case of two
smoothers which is of limited practical value�

Next we discuss reasons for degeneracy of the normal equations which re�
sults in non�unique solutions� The �rst reason is collinearity or concurvity�
Collinearity is well�known from linear regression and describes a situation in
which predictors are linearly dependent� If non�linear dependencies are con�
cerned� the term �concurvity� has been established� Both collinearity and
concurvity have the same e�ect on the additive model� degeneracy of the nor�
mal equations� In practice exact singularity of the system matrix is unlikely�
however� some degeneration is quite common� There is a second reason for
degeneracy of the normal equations� Linear scatterplot smoothers impose cer�
tain weighting schemes on the data which can cause near�singularity in some
instances� especially in combination with concurvity�

For smoother�based normal equations� exact singularity �concurvity� is de�



�ned as the existence of a non�zero solution of the corresponding homogeneous
equations

Ag� 	 ��

If such a g� exists� and if g is a solution to Ag 	 By� then so is g � �g� for
arbitrary �� Hence there are in�nitely many solutions�
Theorem �� If the smoothers Sj are all symmetric with eigenvalues in

��� ��� then a vector g �	 � with g � R�Sj� represents a concurvity �Ag� 	 ��
i� one of the following conditions is satis�ed� Bg� 	 �� i�e� g minimizes B
or g�j � M��Sj� for j 	 �� �� � � � � d� and g�� 	 �� M� denotes the eigenspace
corresponding to eigenvalue one and g�� 	

P
j g

�
j �for the proof see Buja et

al�� ���� p� ����
The last condition implies that exact concurvity is exact collinearity if� for

instance� all smoothers are of the cubic spline type� Approximate concurvity�
however� can be characterized by approximate minimizers of B�g��� which
leads to approximate nonlinear additive relationships beween the predictors�
Another aspect of interest is the following� If the Sj � j 	 �� �� � � � � d� are
symmetric with eigenvalues in ��� ��� then A is non�singular� This remark is
of practical relevance as the constant term is usually separated in the additive
model and a zero�mean adjustment made for each of the smooth terms� As a
matter of fact doing this we rede�ne our smoother matrices S to S� with an
eigenvalue of zero for the constant�

Finally we consider the asymptotic rate of convergence of the nonpara�
metric additive model� Stone ����� derived the interesting result that the
d�dimensional additive model can be estimated with the optimal rate of con�
vergence of one�dimensional smoothing� Under a number of technical condi�
tions and the following de�nitions� i�e� g� is the best additive approximation
to the true response function g� o is the assumed measure of smoothness of g��
�gn is the additive �spline� estimator� �gn�� � � � ��gnd are the component functions
of �gn� and r 	 o

�o�� � we have�

Theorem �� E�k�gnj � g
�k�j jX�� � � � � Xn� 	 Op�n

��r� for � � j � d�
For the technical aspects and the proof see Stone ����� p� ������ In a corol�
lary he showed that the rate of convergence does not depend on the num�
ber of dimensions d� another surprising result which means that the curse
of dimensionality does not e�ect the asymptotic convergence rate� These re�
sults hold for projection smoothers �e�g� regression splines� and smoothing
splines but not for general linear smoothers� Opsomer and Ruppert ������
and Opsomer ������ derived similar results for local linear regression� a non�
projection smoother� under rather strong conditions on the smoothing matri�
ces�

������� Numerical procedures The normal equations in ����� are a lin�
ear system of the form

Ag 	 b



where b 	 By� Let the elements of the matrix A be aij and of the vector b be
bi� Because of the size of the equation system it is usually solved by iterative
numerical techniques�

Here we relate back�tting to standard iterative procedures� i�e� Jacobi and
Gauss�Seidel� developed for solving linear equation systems with non�singular
system matrices� After a brief overview we discuss their shortcomings in
the context of �tting additive regression models nonparametrically by linear
scatterplot smoothers� As pointed out ealier in this paper� concurvity is a
main source of concern� causing ill�posed system matrices� However� standard
iterative procedures are not designed to cope with degeneracy�
Back�tting

Let us �rst de�ne the so�called Jacobi procedure

v
�m�
i 	 �bi �

NX
j��

j ��i

aijv
�m���
j ��aii�

with iterative solutions v
�m�
i � i 	 �� � � � � N � an iteration counter m and starting

values v���i �usually v���i 	 ��� On the other hand� the Gauss�Seidel procedure
is de�ned by

v
�m�
i 	 �bi �

i��X
j��

aijv
�m�
j �

NX
j�i��

aijv
�m���
j ��aii�

How do they di�er numerically� Jacobi is a complete step and Gauss�Seidel
a single step procedure� This can be best seen� when the information update
is studied� It describes the way how currently available results �estimates
v�m���� are used to obtain the successive results �estimates v�m��� The Jacobi
algorithm computes the estimates in iteration m only on the basis of estimates
from iteration m��� All estimates from step m are stored and remain unused
within this step� The information update takes place when moving from step
m to m � �� Thus the information 
ow is low� By way of contrast� Gauss�
Seidel makes use of all the information currently available� no matter where
it comes from �m or m � ��� There is permanent information update and
maximal information 
ow again�

Back�tting was developed in the context of nonparametric multidimen�
sional regression �Friedman and Stuetzle� ���� Hastie and Tibshirani� �����
To serve that purpose it was built upon the idea of determining estimates
for the covariates in a successive manner� taking advantage of the speci�c
structural features of the estimation problem�

It uses the currently available information from all covariates� except the
covariate of which estimates are just computed� This leads to a splitting of the
system matrix into d blocks Pj of size N�d�N � where each block corresponds
to one of the predictor variables Xj � j 	 �� � � � � d� Then an iterative procedure

has to be applied to these blocks resulting in d vectors v
�l�
j �l denoting the last

iteration�� each of length N�d� The common choice is Gauss�Seidel iterations�



Information update takes place within the iterations� but with a certain lag�
Therefore the information 
ow is higher compared to the Jacobi procedure and
lower than in the Gauss�Seidel procedure� As a consequence� given the block
structure imposed by the additive or generalized additive model� back�tting
is a special case of the Gauss�Seidel algorithm� Moreover� back�tting is most
e�ective in combination with Reinsch splines� because then we can avoid the
explicit calculation of the Sk in equation ������ �see Green and Silverman�
����� p� ��� for details�� This explains why many software implementers
resort to back�tting and the Reinsch algorithm�

Convergence results for the above mentioned iterative procedures found in
the numerical literature were obtained under the assumption of a non�singular
system matrix A� Convergence depends on the eigenvalues �i of the iteration
matrix �for details see H ammerlin and Ho�mann� ����� p� ��� and p� �����
Acceleration techniques were developed to improve the speed of convergence�
We can write the iterative �Jacobi� scheme as

v�m� 	 �I �A�v�m��� � b 	 v�m��� �D�m���� ������

where D�m��� 	 Av�m����b is the de�ciency of step m��� Equation ������
reveals that the procedure may be viewed in the light of correcting the m�th
estimate for de�ciency� A relaxation parameter 	 can be introduced which
allows us to control the amount of correction� i�e�

v�m� 	 v�m��� � 	D�m���� �����

For relaxed Gauss�Seidel iteration the term successive overrelaxation �SOR�
is established �Golub and van Loan� ���� p� ����� After rewriting ������ the

following relationship between the relaxed v
�m�
rel and unrelaxed v�m� holds�

v
�m�
rel 	 ��� 	�v�m��� � 	v�m�� ������

For 	 � � we have underrelaxationq� for 	 � � we have overrelaxation�
and for 	 	 � we obtain the unrelaxed algorithm� Theoretical results about
the admissible range of 	 on one hand and the optimal choice of 	 on the
other are available in the numerical literature� Under non�singularity the
optimal choice of 	 is as follows� �i� Assuming the Jacobi procedure converges�
we have convergence for � � 	 � �� The optimal parameter is given by
	� 	 ���� � �� � �n� with ��� � 	� � �� �ii� Assuming the Gauss�Seidel
procedure converges� convergence for SOR iteration can only be achieved with
� � 	 � �� There is evidence that this result holds at least for special matrices
e�g� symmetric positive de�nite matrices �see Gander and Golub� ���� p� �����
However� the optimal choice 	� is not known�

For more details we refer to Schimek et al� ������� We should not close
this discussion without mentioning that relaxation concepts have not found
their way into commercial software such as S�Plus or XploRe� One obstacle is
certainly the need for interaction between the user and the program �activa�
tion and selection of a relaxation parameter�� Recently� numerical alternatives
have been studied�



Such an alternative to back�tting and related procedures is a technique
based on relaxed iterative projections� proposed by Schimek ������� Espe�
cially in cases where back�tting fails totally to provide appropriate estimation
results in an additive or generalized additive model �e�g� when the covariates
are substantially correlated�� a numerical approach which accommodates for
degeneracy of the normal equations is desirable� In the following this new
technique is described in essence�
Relaxed iterative projections

Again� let us consider the linear equation systems Ax 	 b �with x 	 g and
b 	 By in the additive model�� Further let us have a square n � n system
matrix A �usually large and sparse� and n�dimensional vectors x and b� In
contrast to standard iterative procedures which are equation�oriented� the
iterative projection method is column�oriented�

We assume the matrix A 	 �a�� a�� � � � � an� to consist of column vectors ai
for i 	 �� �� � � � � n� Let us have a linear space sp�A� generated by the columns
of A and

b � sp�A��

We de�ne two real sequences� one is �
j� with	
b�

jX
i��


iai� aj



	 �� j 	 �� � � � � �

where ai are the column vectors of A as de�ned above� The other sequence
is �sik� de�ned by

sik 	
X
j


j � j 	 i � nk� k 	 �� �� � � � ������

In the j�th iteration step 
j is determined by the orthogonal �perpendicular�
projection of the previous �unexplained� residual component uj�� onto the
dimension aj� This means that the coe�cients 
j can be calculated by dot
�inner� products� Hence


j 	
�uj��� aj�

�aj � aj�
������

where

uj�� 	 b�

j��X
i��


iai�

which makes the geometric interpretation clear� The norm �length� of 
 is
usually shrinking and convergence can be expected� Because the sik from
equation ������ tend to the xi for k � � each element xi of the solution
vector x 	 �x�� x�� � � � � xn� can be calculated by �for k su�ciently large�

xi 	
X
j


j � j 	 i� nk� k 	 �� �� � � �



The necessary condition is that the residual components uj tend to zero� which
is always true� Indeed convergence does not depend on special features of the
system matrix A� such as positive de�niteness or diagonal dominance� Even
for singular systems a solution can be obtained �for the details see Schimek�
����� and the references therein�� Hence we can cope with ill�conditioned
systems which cannot be ruled out in additive models�

However� the iterative projection method converges slower than does back�
�tting� This drawback can be compensated through relaxation �Schimek�
����� p� ����� For that purpose a relaxation parameter 	 is introduced in
equation ������� leading to


�j 	
�	uj��� aj�

�aj � aj�

where

uj�� 	 b�

j��X
i��


iai�

As a matter of fact one can show that the relaxed version of the iterative
projection method maintains all its desirable characteristics� In addition there
is some theory as well as evidence from simulations concerning the choice of
the relaxation parameter 	�

First numerical experiences for non�singular as well as near�singular system
matrices are quite promising� The computational burden can be signi�cantly
reduced by relaxation in all instances� Degeneracy requires larger 	 values� As
pointed out earlier� ill�posed linear equation systems should not be solved with
classical techniques as regularity of the system matrix is required throughout�
The relaxed iterative projection algorithm has the potential to bridge this
gap in numerical methodology� But there is always a price to be paid� the
explicit calculation of the Sk when applied to the system of normal equations
in �������
Some �nal remarks on iterative solutions

When an additive model is evaluated via an iterative numerical procedure in
the sample world of scatterplot smoothers some questions still remain open�
Obviously small sample behaviour is di�erent from asymptotic behaviour� But
apart from that� the convergence behaviour is not even fully understood for
back�tting� although being a well established technique� Statistical consid�
erations in these iterative schemes become really tedious� It is only recently
that �ndings were published for certain smoother types�

Until recently the only �ndings for back�tting with arbitrary linear scat�
terplot smoothers have been limited to the case of two dimensions� Buja et
al� ����� p� ���� and Hastie and Tibshirani ������ p� ���� showed that
both the convergence of the back�tting algorithm and the uniqueness of its
solution depend on the behaviour of the product of the two smoother matrices
S� and S�� which have to be symmetric and shrinking� We call a smoother
matrix S shrinking if kSyk � kyk for all y �Euclidean or any other matrix



norm�� This will be the case if all its singular values are less or equal one�
Smoothers ful�lling this requirement are projection smoothers �expressed in
parametric terms such as regression splines� and smoothing splines� Opsomer
������ could extend the above result to more than two dimensions� He de�
rived recursive expressions for the back�tting estimator� Also for d � � the
existence and the uniqueness of this estimator depend on the characteristics
of the pairwise products of the smoother matrices� A d�variate additive model
with smoother matrices S�� � � � � Sd will converge to an unique solution� if

max
�����d�

k
���X
j��

S�Sjk � � ������

for some matrix normwhere � denotes the �s block consisting of a n�n identity
matrix and zero elements otherwise in a matrix E�� so that �g� 	 E�A

��By
�provided the inverse of A for equation system ����� exists� for more details
see Opsomer� ������ Thus the index � corresponds to the �!s block of the
solution vector �g� One can prove that the system matrix A is invertible when
the spectral radius of T� 	 k

P���
j�� S

�
�S

�
j k is less than one for all � � ��� d��

Because of the fact that the ordering of the predictor functions is arbitrary� it
is su�cient to show that the condition ������ holds for one particular ordering�

Ansley and Kohn ������ studied the statistical features of d�dimensional
back�tting for the special case of smoothing splines� Opsomer and Ruppert
������ analysed back�tting for the bivariate additive model and Opsomer
������ for the d�variate additive model when local polynomial regression is
applied� Linton� Mammen and Nielsen ������ derived the asymptotic prop�
erties of a back�tting projection algorithm under weaker conditions for the
local linear and a special Nadaraya�Watson estimator in an additive model
of dimension d� Even more research is desirable as far as the convergence
behaviour of these and other scatterplot smoothers is concerned� This is spe�
cially true for the iterative projection algorithm�

Recently there has been considerable e�ort to avoid iterative techniques in
the evaluation of additive models� These developments are introduced in the
next section�

����� The marginal integration method

Here we discuss a direct method� introduced independently by Newey �������
Tj"stheim and Auestad ������� and Linton and Nielsen ������� labelled
marginal integration� It is based on the fact that up to a constant� gj�xj�
is equal to

Efm�X�� � � � � Xj��� xj� Xj��� � � � � Xd�g�

where m�x� 	 E�Y jX 	 x�� The estimate of gj is obtained by marginal
integration of an estimate of m� Therefore no iterations are necessary� The
explicit de�nition of the estimation procedure allows a detailed asymptotic
analysis which is easier to carry out compared to the back�tting algorithm�



Linton and Nielsen ������ studied the additive regression model

g�x�� x�� 	 g��x�� � g��x���

where g�x�� x�� is a bivariate regression function� Let Q be a deterministic
�continuous or discrete� weight function with dQ�x�� 	 �� Assume a density
q of Q with respect to either a Lebesgue or a counting measure� The contrast

�Q�x�� 	

Z
g�x�� x��dQ�x�� ������

is considered� where �Q�x�� 	 g��x�� � c� with c� 	
R
g��x��dQ�x��� Thus

�Q�x�� is identi�able up to a constant� the univariate component of the ad�
ditive structure we are interested in�

Let us have observed data fx�i� x�i� yig for i 	 �� � � � � n� Linton and Nielsen
������ propose for the additive �t a local linear smoother with product kernels�
Thus �g�x�� x�� 	

P
wj�x�� x��yj �the wj denoting some weights� is the �rst

element of

�DTKD���DTKy�

where y 	 �y�� � � � � yn�
T and D 	 �d�� � � � � dn�

T with dj 	 ��� x�j � x�� x�j �
x��

T � while K is a diagonal n � n matrix with typical diagonal elements
kb��x�j � x��kb��x�j � x��� The b� and b� are scalar bandwidths� and kb��� 	
b��k�b��� for any b� k denotes a univariate di�erentiable density function�
symmetric about zero� Then �Q�x�� is estimated by the sample version of
������� i�e�

��Q�x�� 	

Z
�g�x�� x��dQ�x�� 	

nX
j��

wQj�x��yj �

where wQj�x�� 	
R
wj�x�� x��dQ�x���

We already know from Stone ����� that both g� and g� can be estimated
with the one�dimensional convergence rate n��	� Under the usual assump�
tions such as independent� identically distributed observations� a joint density
f�x�� x��� marginals fx��x�� and fx��x�� with marginal cumulative distribu�
tion functions Fx��x�� and Fx��x��� Linton and Nielsen ������ p� ��� proved
the following theorem�
Theorem �� Assume that g possesses two continuous partial derivatives
in each direction� while f is continuously di�erentiable� Suppose also that
b�� b� � � and nb�b

�
� ��� Then conditional on fx�i� x�ig

n
i���

�nb��
������Q�x��� Ef��Q�x��g�� N ��� s��x����

in distribution� where s��x�� 	 v�k���
R
f���x�� x��q��x��dx�� with v�k� 	R

k�t��dt� while

E ���Q�x���� �Q�x�� 	 fb����x�� � b����x��g�� � o�����



where

��x�� 	

�k�

�

Z
��g

�x��
�x�� x��dQ�x��� ��x�� 	


�k�

�

Z
��g

�x��
�x�� x��dQ�x���

with 
�k� 	
R
t�k�t�dt� Hence� when b�� b� 	 O�n���	�� then ��Q�x�� of the

marginal integration method converges at n��	� the optimal rate�
Further Q has to be chosen� Linton and Nielsen ������ recommend an

empirical distribution function as an approximation of Q which is integrated
mean squared error optimal� Although in general there is a dependence on
both f and g� If g is exactly additive and b� 	 o�n���	�� the bias does not
depend on Q�

A main disadvantage compared to the iterative back�tting procedure is
the fact that the marginal integration method as outlined above does not
hold true for dimensions �explanatory variables� d � �� Theorem � cannot
be extended to cope with higher dimensions� Moreover� the local linear pilot
estimator is a non�optimal choice� There have been several yet unpublished
attempts to introduce a marginal integration estimator for d � �� Among
those I would like to mention Severance�Lossin and Sperlich ������� who also
propose a methodology to estimate the derivatives for additive separable mod�
els� important for certain applications in economics and biology� They also
suggest the application of a local polynomial pilot estimator restricted to the
direction of interest� with the e�ect that more information remains in the
constant� This leads to a faster algorithm with little loss in optimality�

In the marginal integration method the scatterplot smoothers are restricted
to local polynomial and kernel �ts� In the following we sketch the marginal
integration algorithm for local polynomials with kernel weights�

The algorithm is represented in the GAUSS language� The input param�
eters are� x the �n x d� matrix of the explanatory variables� y the response
variable� xg the design points� respectively the grid �ng�d� on which we want
to estimate the additive components� and the bandwidths h� hs � IRd for the
directions of interest� respectively not of interest� The result is written in fh�

Marginal Integration Algorithm

fh � zeros�ng�d��

p � �� � degree of local polynomial �

pick � ��zeros���p�� � pick function estimate �

j � ��

do until �j�d��

i � ��

do until �i�ng�� � for dimension of interest �

hv � g�

hv	j�
� � h�

xest � x�

xest	
�j� � xg	i�j�
�ones�n����



weight � zeros���n��

Z � ones�rows�x�����

k � p�

do while �k�� � create polynomial design �

Z � ones�n�����Z���x	
�j�xest	i�j����

k � k��

endo�

l � ��

do until �l�n�� � kernel weights �

dx � kernel��xxest	l�
��
��hv����

zw � Z�
�dx��

weight � pick�inv�zw�Z��zw�weight�

l � l���

endo�

fh	i�j� � �weight
�n��y� � result �

i � i���

endo�

j � j���

endo�

Fan et al� ������ extend the marginal integration method to the esti�
mation of semiparametric additive partial linear models �for an overview of
semiparametric regression models see Schimek� ������ A problem in practice
is certainly the necessary O�n
� algorithm� Sperlich� Tj"stheim and Yang
����� propose a concept which not only allows for interaction in additive
models� but also estimating and testing such interactions�

Finally let us make some comments about the marginal integration method
compared to back�tting� For the case of two explanatory variables with
smoother matrices S� and S�� respectively� the back�tting procedure con�
verges to the n�dimensional vectors

�g�� 	 �I � �I � S�S��
���I � S���y

and
�g�� 	 �I � �I � S�S��

���I � S���y

provided kS�S�k � � �see Hastie and Tibshirani� ����� p� ��f�� These ex�
pressions are quite intractable for general linear smoothers � although their
linearity can be exploited to construct pointwise con�dence bounds� etc� �
and as a consequence the bias and variance cannot be derived apart from
special cases �see the �nal remarks on iterative solutions�� This is certainly a
drawback compared to marginal integration with its result of Theorem ��

It is also a well�known fact that the marginal integration method can be
very ine�cient with respect to the regression function m� Let us study the
marginal integration approach in terms of L� function space� As in Sec�
tion ����� assume Hj � for j 	 �� � � � � d� denoting the Hilbert spaces of measur�



able functions �j�Xj� with E�j�Xj� 	 �� E��j�Xj� � �� and inner product

h�j�Xj���j �Xj�i 	 E�j�Xj���j �Xj�� Moreover let Hadd 	
Pd

j Hj and all Hj

be subspaces of H� the space of measurable functions of X�� � � � � Xd� We re�
member that solving the normal equations means �nding that member ofHadd

which is closest to the regression function m � H� corresponding to equation
������

The empirical marginal integration map � � H �Hadd is of the form

��g��x� 	

Z
g�x�� x��fx��x��dx� �

Z
g�x�� x��fx��x��dx�

�

Z
g�x�f�x�� x��dx�

where

g�x� 	 g� �
�X

j��

gj�Xj�� ������

The additive functions are �xed points of �� That is the reason why the
marginal integration method consistently estimates g in equation ������� hence
� is idempotent� It is also linear� i�e� for any a� b � H� ��a � b� 	 ��a� �
��b�� However� � is not self�adjoined and thus not an orthogonal projection
�Linton� ����� p� ����� This explains why E �m�X�� � Hadd in solving the
normal equations� provides a better mean squared error approximation to the
regression function m� This also means that the marginal integration method
is not that e�cient in estimating g� respectively its components�

To overcome this drawback of the marginal integration method Linton
������ suggested to calculate starting values via marginal integration and then
to apply a single�step back�tting iteration� He could prove e�ciency of this
technique in the sense of being equivalent to a procedure based on knowing
the other components of the regression function� The interpretation of these
estimation results is not clear� especially when the additivity assumption is
violated� Another yet unpublished proposal to improve e�ciency� also from
a computational point of view� is due to Hengartner ������� He tackles the
problem of pilot estimator choice� favouring a so�called internalized estimator�

Apart from the fact that there is no agreement about appropriate algo�
rithms for marginal integration there are only two studies �one published�
comparing it with the back�tting procedure� The one is Nielsen and Lin�
ton ������ and the other Sperlich� Linton and H ardle ������� According
to Nielsen and Linton ����� both marginal integration and back�tting can
be seen with respect to minimizing an integrated mean squared error crite�
rion� Marginal integration optimizes the criterion with weighting given by an
independent product measure� This is correct independently of whether addi�
tivity holds or not� Back�tting achieves the same goal with weighting given a
joint empirical measure �joint density�� The latter makes sense without prior
knowledge of the situation the data come from� The de�nite advantage of
the marginal integration estimator is that it is explicitly de�ned� However�



there is a loss of e�ciency for non�independent designs� In conclusion Nielsen
and Linton ����� p����� write �Perhaps the more signi�cant disadvantage of
integration� which is speci�c to this nonparametric setting� is that the curse
of dimensionality is completely eliminated� Thus we must use bias reduction
arguments to achieve the optimal rate in high dimensions and we might expect
poor small sample performance relative to the asymptotics��

Sperlich� Linton and H ardle ������ have undertaken the most extensive
simulation study till now� in which they tried to trace down performance
di�erences between the iterative back�tting procedure and the direct marginal
integration method for small samples and d 	 �� and in one instance d 	 ��
They applied local polynomial �tting and Nadaraya�Watson kernel smoothing
to a number of simple additive functions� The error assumptions were uniform
and Normal with constant variance and correlation � 	 f���� ���� ��g between
the covariates �case d 	 ��� The bandwidth was chosen by a rule of thumb due
to Linton and Nielsen ������ and by the plug�in method of Severance�Lossin
and Sperlich �������

The results can be summed up as follows� There are many similarities be�
tween the back�tting algorithm and the marginal integration algorithm with
respect to their statistical performance� Both algorithms run into severe prob�
lems in designs with increasing correlation �see remarks on ill�posed systems in
��������� although back�tting does perform slightly better� At least for d 	 �
asymptotics hold empirically� The adopted smoothing method does generally
not matter much� Back�tting works better at boundary points and under
data sparseness while the integration method is more capable of estimating
the components as opposed to the function itself �marginal in
uences�� This
is specially true for d 	 �� i�e� higher dimensions� The obtained results are
not conclusive in that sense of generally favouring one method�

Implementations of the marginal integration procedure are rare� more
or less of prototype nature� Publically available is solely the macro
intest in XploRe ��� �for Windows ��� Windows NT and UNIX� sim�
ilar to the algorithm presented above� XploRe can be downloaded at
http���www
xplorestat
de��

Finally we should mention that bandwidth and smoothing parameter choice
�see later in this paper� remain troublesome issues in the context of additive
models� whatever the method of estimation is� and are likely to hamper the
interpretation of comparative simulation studies �controlled for in the exper�
iment described above��

��� GENERALIZED ADDITIVE MODELS

In this section we extend the additive model to the class of Generalized Addi�
tive Models �GAMs�� GAMs were introduced in a series of papers by Hastie
and Tibshirani ����� ���a� ���b� and Stone ������ They are described in
detail in Hastie and Tibshirani �������



Their purpose is to allow for even more 
exibility than in additive models�
On the other hand they retain an important feature of GLMs� additivity of
the predictors� However� the predictor e�ects are generally nonlinear due to
arbitrary functions gj�

A special case occurs if only one predictor function� say g��x��� is evaluated
nonparametrically� while the remaining explanatory variables still enter as a
linear combination� say #XT  	 x�� � � � � � xdd� Such semi�parametric
models were �rst considered by Green and Yandell ������ New developments
in this area are reviewed in Schimek �������

Our generalization of the additive model becomes

E �Y jX 	 x� 	 G

�
�g� � dX

j��

gj�xj�

�
A �

where G��� is a �xed link function and the distribution of Y is assumed to
belong to the exponential family as in GLMs� The assumptions concerning
identi�ability of the functions gj remain the same �see Section �����

The �tting of a GAM consists of two parts� Estimating the additive predic�
tor and linking it to the function G��� in an iterative manner� The �rst part
requires solving the system of normal equations as already discussed� For the
second part the so�called local scoring algorithm is applied�

The local scoring algorithm is practically identical with the Fisher scoring
algorithm used in GLMs� except that the least squares step is replaced by the
solution step of the normal equations� In GLMs the least squares step is used
to update the estimate � for the linear predictor XT � Here we apply the
back�tting or iterative projection algorithm to update the estimates for g�
and the gjs�

In Section ����� smoothing in the additive model was motivated in L�

function space� In Section ����� the Hilbert space interpretation was used to
interpret its estimation through marginal integration� This view also helps to
understand GAMs �Hastie and Tibshirani� ����� p� ��f��

Given X 	 �X�� � � � � Xd�� the response Y has conditional density h�y� ���
where � 	 ��X� is the true regression parameter ful�lling � � H� The cor�
responding log�likelihood for a single observation is denoted by l� For ��X�
we try to obtain the best approximation by maximizing the expected log�
likelihood

E l���X�� Y � ������

over ��X� 	
Pd

j gj�Xj� � Hadd� Stone ����� gave conditions for the exis�
tence and uniqueness of the best additive approximation� The maximum of
equation ������ is characterized by a score function �l��� orthogonal to the
space of �ts� or equivalently

E

�
�l

��
j Xj

�
	 �



for all j� A solution for these nonlinear equations in � and gj can be found
by a linearization about an approximate ��� The �nal result is

gj�Xj� 	
E
h
W��X�

n
Z� �

P
k ��j gk�Xk�

o
j Xj

i
E �W��X j Xj �

� ������

where
Z� 	 �� � ��l�����������

�l��������

and
W��X� 	 ����l��������

The two operators E in equation ������ are weighted conditional expectations
which can be evaluated by scatterplot smoothers�

����� Penalized least squares

Let us consider again the penalized least squares concept introduced in Sec�
tion ������ which results in cubic smoothing splines� The estimation of the
additive model �representing regression with a continuous� usually Gaussian
response� was based on equation ������� Now� for the generalized case �repre�
senting regression with a non�continuous response variable� we can apply the
penalized log�likelihood criterion �Hastie and Tibshirani� ���� Fahrmeir and
Tutz� �����

PL�g�� � � � � gd� 	
nX
i��

li�yi� �i��
�

�

dX
j��

�jg
T
j Kjgj �

where l denotes the log�likelihood �as in GLMs�� �i the additive predictor
values

�i 	
dX

j��

gj�xij��

and gj 	 �gj�x�j�� � � � � gj�xnj��
T � gj � Hj � j 	 �� � � � � d� the vector of

smooth spline functions� The penalty matrices Kj for each predictor Xj are
de�ned as in equation ������ for the additive model�

The Fisher scoring algorithm was originally designed to maximize a �pe�
nalized� log�likelihood criterion �see McCullagh and Nelder� ��� for details��
Here we study the Fisher scoring algorithm �rst and modify it later to what
is now known as local scoring procedure in nonparametric regression�

������� Fisher scoring and local scoring Let � be the n�dimensional
vector of additive predictor values �i� Di�erentiation of �PL��gj for j 	
�� � � � � d� yields the likelihood equations

s� 	 ��K�g�� � � � � sd 	 �dKdgd�



where the derivative s 	 �s�� � � � � sn� of the log�likelihood is given by

si 	
Di

��i
�yi � 
i��

with Di 	 �G���i as the �rst derivative of the response function and ��i the
variance function evaluated at 
i 	 G��i��

Let W 	 diag�w�� � � � � wn� with wi 	 D�
i ��

�
i be the expected information

matrix� Then the Fisher scoring iterations are given by�
BBB�

W �k� � ��K� W �k� � � � W �k�

W �k� W �k� � ��K� � � � W �k�

���
���

� � �
���

W �k� W �k� � � � W �k� � �dKd

�
CCCA

�
BBBB�

g
�k���
� � g�k��

g
�k���
� � g

�k�
�

���

g
�k���
d � g�k�d

�
CCCCA

	

�
BBBB�

s�k� � ��K�g
�k�
�

s�k� � ��K�g
�k�
�

���

s�k� � �pKdg
�k�
d

�
CCCCA �

where W �k� and s�k� are W and s evaluated at ��k� 	 ��g
�k�
� � � � � �g

�k�
d �� De�n�

ing the working observation vector

#y�k� 	 ��k� � �W �k����s�k�

and the smoother matrices

S
�k�
j 	 �W �k� � �jKj�

��W �k�

the iterations can be expressed in the form�
BBBB�

I S
�k�
� � � � S

�k�
�

S
�k�
� I � � � S

�k�
�

���
���

� � �
���
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�k�
d S

�k�
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�
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�
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�
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S
�k�
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S
�k�
� #y�k�

���

S
�k�
d #y�k�

�
CCCCA � ������

This is a �n�d��dimensional linear system comparable to the normal equations
in ������ For the same reasons as pointed out there a direct solution is not
feasible� apart from special instances� to obtain the next iterate g�k��� 	

�g
�k���
� � � � � �g

�k���
d �� Instead ������ is rewritten as�
BBBB�

g
�k���
�

g
�k���
�
���

g
�k���
d

�
CCCCA 	

�
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S��#y
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P
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j �

S��#y
�k� �

P
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�k���
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P

j ��d g
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j �

�
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and solved iteratively by the back�tting or iterative projection algorithm in
the inner loop of the local scoring algorithm� As mentioned earlier� solving
the linear system in the core of Fisher scoring iteratively� produces a new
algorithm� known as local scoring� It can be characterized as follows�

Generalized Additive Model Algorithm

�� Initialization of outer loop� g
���
� 	 F


n��

Pn
i�� yi

�
�g

���
� 	 � � �	 g

���
d 	 �� F 	

G��

�� Scoring steps� For k 	 �� �� �� � � ��
Compute the current working observations

#y
�k�
i 	 �

�k�
i �

yi �G

��k�

�
D

�k�
i

and the weights w
�k�
i 	

�
D

�k�
i ��

�k�
i

��
with �

�k�
i 	 g

�k�
� �

Pd
j�� g

�k�
j �xij��

i 	 �� � � � � n

�� Back�tting or iterative projection steps� Solve ������ for g�k���

�a� Initialization of inner loop�

g
�k�
� 	 n��

nX
i��

#y
�k�
i �g�j �	 g

�k�
j � j� p� c 	 �� � � � � d

�b� Compute updates g�j � g�j � j 	 �� � � � � d in each back�tting iter�
ation �index p for �previous� and c for �current��

gj 	 S�
j

�
�#y � g� �X

c�j

g�c �
X
p�j

g�p

�
�

and apply weighted cubic spline �ts to the �working residuals�
#y � g� �

P
c�j g

�
c �

P
p�j g

�
p

Set g�j �	 g�j for j 	 �� � � � � d after each iteration

�c� Stop back�tting or iterative projections when kg�j � g�jk for j 	
�� � � � � d is very small

Set g
�k���
j �	 g�j after the �nal iterate

�� Iterate steps � and � until some termination criterion is met

As termination criterion one could use for instancePd
j�� kg

�k���
j � g

�k�
j kPd

j�� kg
�k�
j k

� ��



Finally we should point out again that the constant g� was introduced for
the purpose of identi�ability of the additive approximation� Hence the local
scoring algorithm is applied to centered working observations� i�e� #y is centered
to have mean zero which ensures that throughout the iterations the gjs have
mean zero�

As far as convergence is concerned� the local scoring algorithm does not
require special attention� Local scoring iterations correspond to Newton�
Raphson steps� Convergence results and ways of step optimization� usually
not needed for the estimation of GAMs� are considered in Ortega and Rhein�
boldt ������� Crucial in the �tting of GAMs is the inner loop providing the
solution of the normal equations� not the outer loop carrying out the local
scoring iterations�

In this section we emphasized cubic smoothing splines because of their
numerical practicability and software availability� Alternatively any other
symmetric linear smoother could be applied� Such smoothers can also be
represented by matrices S�� � � � � Sd of similar shape as those of smoothing
splines� The only di�erence is that one has to de�ne the penalty matrices
K�� � � � �Kd in the penalized log�likelihood criterion by

Kj 	 S�j � I�

where S�j is any generalized inverse of Sj �see Golub and van Loan� ���� for
generalized inverses�� Weighted cubic spline smoothing in the inner loop of the
algorithm is then substituted by a corresponding symmetric linear smoother�
for instance a running line smoother�

Further we have to remark that the local scoring algorithm is not limited to
the use of back�tting or iterative projections� Any iterative procedure which
solves a linear system would serve this purpose�

GAM can be �tted in the statistical environment S�Plus for UNIX and
DOS �Windows �� or NT� platforms� Alternative sofware is XploRe �H ardle
et al�� ����� for both UNIX and DOS �Windows �� or NT� computers� Fur�
thermore there is a function addreg in Douglas Nychka!s FUNFITS software�
available at http���www
stat
ncsu
edu��nychka�funfits�index
html for
UNIX platforms with a S�Plus environment �S$S�Plus functions are required
to execute FUNFITS�� The most widely used implementation is actually that
of S�Plus� It is based on back�tting in combination with local scoring as de�
scribed above� Very useful for GAM �tting in S�Plus is Chambers and Hastie
������ especially Chapter �� but also Venables and Ripley ������ Chapter ����
apart from the manual �MathSoft� ����� Chapter ��

Finally we would like to mention that the additive �tting concept can also
be applied to the estimation of autoregressive time series �beyond the scope of
this paper�� H ardle and Chen ������ p� ����� discuss the so�called Nonlinear
Additive AR models �NAAR��

Let us now switch from spline smoothing in combination with back�tting
and local scoring to kernel smoothing� There we discuss recent developments
in the marginal integration method which make it possible to apply it to



GAMs�

����� The marginal integration method for generalized additive

models

marginal integration� for generalized additive models
In Section ����� we described a marginal integration method for the evalu�

ation of additive models� introduced by Linton and Nielsen ������� Now this
direct method �no iterations� is based on the fact that up to a constant� gj�xj�
is equal to

Ef��X�� � � � � Xj��� xj� Xj��� � � � � Xd�g�

where ��x� 	 E�Y jX 	 x�� The estimate of gj is obtained by marginal
integration of an estimate of �� Linton and H ardle ������ extended this idea
to the estimation of

Gf��x�g 	 g� �
dX

j��

gj�xj�� �����

where G is a known link function� They di�erentiate between a full and a
partial model speci�cation� Here we are interested in the �rst kind of speci��
cation which represents generalized additive models with errors following an
exponential family distribution� This means that the variance is functionally
related to the mean� In the partial model speci�cation the variance function
is unrestricted� When G is the identity function we have exactly the situation
examined in Section ������

Let us assume a partition X 	 �X�� X��� where X� is the one�dimensional
direction of interest and X� a �d � ���dimensional nuisance direction �d � �
predictors�� Further let x 	 �x�� x��� For any predictor function � and link
function G� a functional

���x�� 	

Z
Gf��x�� x��gp��x��dx� ������

is de�ned� where p��x�� is the joint density of x�� Because of the additive
structure of ����� �� is g� up to a constant g�� Linton and H ardle ������
proposed to replace both � and p� in ������ by estimates� For that purpose
they use the Nadaraya�Watson kernel estimator

���x�� x�� �	
n��

Pn
i��Kh�x� �X�i�Ll�x� �X�i�Yi

n��
Pn

i��Kh�x� �X�i�Ll�x� �X�i�
�

where K and L are compactly supported Lipschitz continuous kernels inte�
grating to one� We have Kh��� 	 h��K�h���� and Ll��� 	 l��d���L�l���� and
take K to be a second�order kernel and L to be product of univariate kernels
of order q� i�e�

R
L�u�ukdu 	 � for k 	 �� � � � � q��� For high dimensions d it is

necessary to reduce the bias in the nuisance directions to achieve the optimal
one�dimensional rate of convergence for the direction of interest�



The functional ���x�� can be estimated by the sample version of �������
that is

#���x�� �	
nX
i��

Gf��x�� X�i�g�

Apart from the case where G is the identity function� #���x�� is a non�linear
function of yi� For the estimation of the regression surface the above procedure
is applied to each direction by rede�ning in turn the jth covariate to be X�

and the remainder to be X�� Estimates are obtained for each �j at all the
design points� Finally ��x� is reestimated by

#��x� �	 F

��
�

dX
j��

#gj�xj� � #g�

��
� �

where F 	 G���

#g� 	 d��n��
dX

j��

nX
i��

#�j�Xji�

and #g��x�� 	 #���x��� #g��
In practice it is often a problem to identify relevant covariates with respect

to a response variable� Related work in an unpublished research report by
H ardle and Korostelev ������ addresses the problem of searching for signi��
cant variables�

Di�erent from the estimation concept for GAMs worked out in the previous
section� the marginal integration method allows for asymptotic considerations�
Linton and H ardle ������ p� ����� proved the following theorem�
Theorem �� Let the order q of L satisfy q � d � �� Let h 	 n���	�
Assume that n��	lq � �� that n��	ld�� � �� that F is twice continuously
di�erentiable� and that the additivity assumption holds� Then

n��	f#��x�� ��x�g � Nfb�x�� v�x�g

in distribution� where

b�x� 	 F �

��
�

dX
j��

gj�xj� � g�

��
�

dX
j��

bj�xj�

and

v�x� 	 F �

��
�

dX
j��

gj�xj� � g�

��
�

dX
j��

vj�xj��

The main consequence is that the rate of convergence of #� is not in
uenced by
the curse of dimensionality� The obtained rate of n��	 is still that derived by
Stone ����� for one�dimensional regression functions� This is a remarkable
result�



Despite asymptotic optimality one has to be cautious with respect to the
algorithm� especially for dimensions d � �� In practice covariates are more
or less correlated� data sparse and sample sizes small� Extensive simulations
for variable sample sizes and di�erent combinations of regression and link
functions are necessary before any conclusions can be drawn� Another problem
is the lack of software apart from the macro gintest in XploRe ���� available
at http���www
xplorestat
de� based on a prototype algorithm�

In conclusion� the marginal integration method for generalized additive
models is certainly interesting from a theoretical point of view but too new�
to comment its value for real data analysis�

����� Vector generalized additive models

Yee and Wild ������ extended the class of GAMs to handle multivariate
�vector� regression problems� Vector Generalized Additive Models �VGAMs�
enhance the idea of vector GLMs �not explicitly dealt with in McCullagh and
Nelder� �����

Suppose that for each measurement unit under study a q�dimensional re�
sponse vector y 	 �y�� � � � � yq�T and a d�dimensional covariate vector x 	
�x�� � � � � xd�T are observed� A VGAM is any model for which the conditional
distribution of y given x is of the form

f�y j x� 	 f��y� ���x�� � � � � �M�x��

for some function f�� where �for j 	 �� � � � �M �

�j�x� 	 g�j�� � g�j���x�� � � � �� g�j�d�xd��

For the evaluation of a VGAM simultaneous smoothing is required� This
can be achieved by an interesting generalization of cubic smoothing splines
due to Fessler ������� His vector spline technique has some nice features�
also from a numerical point of view� As a matter of fact it can be seen as a
generalization of univariate Reinsch splines which are computationally highly
e�cient� It should be pointed out that the underlying system matrix of such
a VGAM is very large� Another feature of vector splines is that they allow
for correlated errors �i as long as their covariance matrix %i is known and the
errors are independent between samples�

We suppose to have a vector response yi of dimension M at each value of
a scalar xi� assumed to be a realization from the vector measurement model
in RM

yi 	 g�xi� � �i

for i 	 �� � � � � n with error assumptions E��i� 	 � and E��i�
T
i � 	 �ij%i� where

the %i are known symmetric and positive de�nite error covariances� The
smooth vector function g�x� 	 �g��x�� � � � � gM�x��T can be estimated by min�



imizing a penalized least squares criterion

nX
i��

�yi � g�xi��
T%��

i �yi � g�xi�� �
MX
j��

�j

Z bj

aj

�g��j �t��
�dt� ������

The roughness penalty term penalizes for lack of smoothness in the component
functions� Each component demands independent smoothing� not necessarily
of the same degree �measured on arbitrary scales�� Hence M �xed smoothing
parameters �j � � are required� We refer to Fessler ������ p� ��� for the
choice of the �j in practice� which is non�trivial�

In the special case of a covariance matrix 	 	 I the minimization prob�
lem of equation ������ is reduced to the unweighted version of an univariate
�scalar� spline evaluation�

The solution �g can be obtained similarly to that of univariate cubic smooth�
ing splines �see Section ����� For ordered design values x� � x� � � � � � xn
and �block� vectors y 	 �yT� � � � � �y

T
n �

T �

g 	 �f��x��� � � � � fM �x��� � � � � f��xn�� � � � � fM �xn��
T �

and 	 	 diag�%�� � � � �%n� the penalized least squares criterion in ������ is
equivalent to

�y � g�T	���y � g� � gTKg

for a matrix K of the same structure �not depending on y� as in Section 

�
To be correct� there is one di�erence� here the smoothing parameters � are
part of K� The quadratic in g is minimized when

�g 	 S���y

with the smoother matrix

S��� 	 �I �	K����

As a result the vector spline is a linear smoother� In combinationwith VGAMs
all the �ndings for additive models due to Buja et al� ����� hold�

The estimation procedure for VGAMs can be developed in the same way
as was demonstrated in the section about Fisher and local scoring for GAMs�
The starting point is again a penalized likelihood criterion� Let us consider
solely the kth covariate� Then the minimization problem is

nX
i��

�zi � gk�xik��
TWi�zi � gk�xik�� �

MX
j��

��j�k

Z b

a

g���j�k�t�
�dt� ������

where theM �dimensional vector zi represents the adjusted dependent variable
�Yee and Wild� ����� p� ���� give a detailed study for the identity link�
subject to smoothing� gk�xik� 	 �g���k�xik�� � � � � g�M�k�xik��

T � and a M �M
matrix Wi with elements

�wi�jk 	 ����li�����j��k��



where li is the likelihood of the ith measurement unit� The solution of ������ is
a vector spline with %��

i 	 Wi� For the regression problem with d predictors
we have to apply the back�tting or the iterative projection algorithm to zi
with vector spline smoothing� The obtained results are for the vector additive
model

E�yi� 	 g� �
dX

j��

gj�xij��

which is �tted to the vector response y� The back�tting algorithm adapted
for vector smoothing is given in Yee and Wild ������ p� ���� The underlying
large linear �block matrix� equation system would in fact be better solved by
the relaxed iterative projection algorithm �Schimek� ������ VGAMs are an
application where ill�posed estimation problems� depending primarily on the
features of the covariance structure and the vector smoothing operator� are
likely� The slow convergence of back�tting iterations in such applications is
indicative of these problems�

It should be pointed out that �generalized� in VGAMs is not used in the
sense of directly evaluating arbitrary link functions G �within the exponential
family distribution framework�� That is why they do not have to develop an
alternative to Fisher scoring �see the previous section on GAMs for compari�
son�� A generalization� apart from the important concept of vector variables�
can be seen in the fact that Yee and Wild ������ introduced constraints with
respect to the covariates� They not only allow for di�erent sets of predictors
to be used for each predictor function but also constraints on how they act
�for details see Yee and Wild� ����� p� �����

Several types of VGAM models have been implemented in the program
vgam� an S�Plus$ANSI�C implementation written by Thomas Yee� The soft�
ware is available at http���www
stat
auckland
ac
nz�yee�

Important models that can be �tted with the vgam software are the vector
additive model �including seemingly unrelated regression�� the proportional
odds model� bivariate logistic models� and multinomial logit models�

��� ALTERNATING CONDITIONAL EXPECTATIONS�

ADDITIVITY AND VARIANCE STABILIZATION

There are two other methods that we wish to discuss in this paper� the Al�
ternating Conditional Expectation algorithm �ACE� Breiman and Friedman�
���� and the Additivity and Variance Stabilization algorithm �AVAS� Tibshi�
rani� ���� Although these methods are based on a di�erent working model
than �generalized� additive models� the estimation process is very similar�
Speci�cally� the working model for these two algorithms is

��Y � 	 ��
dX

j��

�j�Xj� � e� ������



where e has mean zero and is independent of the Xjs and ����� �j���� j 	
�� � � � � d are unknown �smooth� functions with E ��j�Xj�� 	 � for identi�ability
reasons�

Note that now we assume that the conditional expectation of a transfor�
mation of the Y �variable is given by an additive model of the X�variables� By
way of contrast� in a GAM� see Section ���� we assume that a transformation
of the conditional expectation of Y is given by an additive approximation of
the X�variables� Hence� models of the form ������ are also know as trans�
formation models or transform both sides models �TBS� see� among others�
Carroll and Ruppert� ��� Nychka and Ruppert� ������

����� Alternating Conditional Expectations

We assumed in ������ that E ��j�Xj �� 	 � for j 	 �� � � � � d� From this it follows
that E ���Y �� 	 � and hence� without loss of generality� we can incorporate
the constant � into the function ���� and assume also that E ���Y �� 	 �� Our
working model is now

��Y � 	
dX

j��

�j�Xj� � e�

The ACE algorithm estimates ���� and �j���� j 	 �� � � � � d by minimizing

E

�
���Y ��

dX
j��

�j�Xj�

�
�
�

�

Obviously� this criterion is trivially minimized by choosing ����  �j���  ��
Hence� a further normalization is needed� e�g� V���Y �� 	 �� Note� that if
������ holds we have similarly to the additive model in �����

E

�
���Y ��

dX
j ��k

�j�Xj� j Xk

�
� 	 �k�Xk�

and

E

�
� dX
j��

�j�Xj� j Y

�
� 	 ��Y ��

This suggests to estimate ���� and �j���� j 	 �� � � � � d by calculating alterna�
tively these conditional expectations� Hence� using a univariate scatterplot
smoother to approximate these conditional expectations leads to the basic
ACE algorithm�

ACE Algorithm

�� Initialize� Set ����� 	

� � &Y

�
���Y where Y 	 n��

P
Yi and ��Y 	

n��
P

�Yi � &Y ��



�� Find new transformations of Xs� Fit an additive model to ����� to obtain

new estimates ��j���� j 	 �� � � � � d �see page iv�

�� Find new transformation of Y � Obtain a new estimate ����� by smooth�

ing
P

j
���Xj� against Y and standardize such that

P
i
���Yi� 	 � andP

i
���Yi�

� 	 �

�� Alternate between step � and � until convergence is reached

It can be shown �see Breiman and Friedman� ���� that the solutions of
the ACE algorithm are closely related to the solutions of minimizing the
correlation between ��Y � and

P
j �j�Xj� under the condition that V���Y �� 	

V�
P

j �j�Xj��� This implies that ACE is more suitable as a correlation tool
than a regression tool� Indeed� if viewed as a regression tool ACE has several
disturbing features �see the discussion of Breiman!s and Friedman!s article or
Hastie and Tibshirani� ����� p� ����� One of these features is that even if
������ holds� the ACE algorithm may not reconstruct the functions ���� and
���� since the optimal transformations �that minimize the above criterion�
depend on the joint distribution of the Xs and e� In the next section we shall
describe a modi�cation that tries to overcome these anomalies�

On the other hand� the original FORTRAN�� implementation of the
ACE algorithm of Breiman and Friedman �available from the archive
lib
stat
cmu
edu� allows the user to specify that some of the transforma�
tions should have certain features like� e�g� being monotone or linear �the same
is true for the ace function in S�Plus�� Indeed� by restricting ���� to be linear�
the ACE algorithm can be used as an e�ective exploratory tool �see Raftery
and Richardon� ����� and the references therein��

����� Additivity and Variance Stabilization

Tibshirani ���� proposed a modi�cation of the ACE algorithm to make it
more suitable as a regression tool� Essentially he proposed that instead of
calculating alternatively conditional expectations to identify the transforma�
tions ���� and �j���� j 	 �� � � � � d� a variance stabilizing transformation should
be used to estimate ����� Speci�cally� we try �nd transformation such that

E ���Y � j X�� � � � � Xd� 	
dX

j��

�j�Xj�

and

V

�
���Y � j

dX
j��

�j�Xj�

�
� 	 c�

where c is an arbitrary constant� Here� we assume additionally that ���� is
strictly monotone and without loss of generality we may assume that ���� is
strictly increasing�



Now� if a random variable Z has mean 
 and variance V�
� then the vari�
ance stabilizing transformation for Z is given by �see� Ser
ing� ���� p� ���f�
Sen and Singer� ����� p� ���f��

h�t� 	

Z t

�

�p
V�u�

du�

That is� h�Z� has approximately constant variance� The proposed algorithm
is now as follows�

AVAS Algorithm

�� Initialize� Set ����� 	

� � &Y

�
���Y where &Y 	 n��

P
Yi and ��Y 	

n��
P

�Yi � &Y ���

�� Find new transformations of Xs� Fit an additive model to ����� to obtain

new functions ��j���� j 	 �� � � � � d �see page iv��

�� Find new transformation of Y � Set m�X� 	
Pd

j�� �j�Xj� and compute
the variance function V �u� 	 V���Y � j m�X� 	 u�� Then calculate the
variance stabilizing transformation

h�t� 	

Z t

�

�p
V �u�

du�

and de�ne the new ����� as the transformation h������� of the old estimate

for ����� Finally� renormalize ����� such that E ���Y � 	 �� and V���Y �� 	 ��

�� Alternate step � and � until convergence is reached�

When implementing this algorithm� the variance stabilizing transformation
has to be calculated by numerical quadrature and V �u� is calculated via an
appropriate smoothing operation� FORTRAN�� and RATFOR code imple�
menting this algorithm was submitted by Robert Tibshirani to the archive at
lib
stat
cmu
edu and is available from there� S�Plus has an implementation
of this algorithm too� called avas�

Banks et al� ������ compare several methods for �high�dimensional� non�
parametric regression including ACE and AVAS� Their results seem to indicate
that both methods perform similarly and that ACE is often slightly better in
mean integrated squared error sense� This is somewhat surprising since AVAS
was designed to be a regression tool whereas ACE is rather a correlation tool�
Although some theoretical results regarding AVAS are available� several ques�
tions remain unsolved� e�g� its global convergence has not been established
yet�



��� SMOOTHING PARAMETER AND BANDWIDTH

DETERMINATION FOR GAMS

All the estimation methods for additive models and GAMs discussed so far
solely work when smoothing parameter or bandwidth values are chosen for
each dimension beforehand� Although univariate in nature the choice of the
degree of smoothing remains a multivariate problem� As a result of that� the
usual generalized cross�validation criterion cannot be applied any more� How�
ever� a data�driven choice of the degree of smoothing� i�e� for �� 	 ����� � � � � ��d�
based on generalized cross�validation is possible in principle� For additive
models the criterion is

GCVadd��� 	
�

n

nX
i��

�
�yi � �
i����i
�� tr�R���n

��

�

where R� is the smoother �hat� matrix that generates the additive predic�
tor �� 	 R�#y in the last iteration step� R� can be interpreted as a weighted
additive �t operator� However� optimization of the criterion would require
e�cient computation of tr�R�� in each step of a multidimensional search al�
gorithm� Further it would be very di�cult to �nd a global minimum in this
multidimensional setting� For the generalized case the problem gets even more
complicated because the link function also plays a role in the search for the
optimal degree of smoothing� Taking into account popular link functions� Bur�
man ������ made a proposal which works for B�splines with equispaced knots�
His proposal addresses the question of choosing the correct number of knots
using cross�validation as criterion� For a pure additive spline model there is
an O�n
� algorithm available �Gu and Wahba� ���� Using the marginal
integration method instead of iterative procedures does not circumvent this
messy and computational expensive situation� The standard choice are sim�
ple plug�in techniques for bandwidth selection �e�g� in Severance�Lossin and
Sperlich� ������ There is also a proposal for a plug�in technique for the back�
�tting procedure when local linear �tting is applied �Opsomer and Ruppert�
����� All these proposals are limited because there is neither theoretical
justi�cation� when the predictors are correlated� nor for dimensions d � ��

We know from univariate function �tting that the degrees of freedom df are
simply df 	 tr�S�� where S is a linear smoother matrix� As a matter of fact df
amounts to be the sum of eigenvalues of S� indicating the extent of smoothing�
Moreover� tr�S� is easy to compute because only the diagonal elements of S
are required� For certain linear smoothers there are O�n� algorithms �e�g�
Hutchinson and de Hoog� ���� for smoothing splines��

Just like in univariate function �tting� the overall degrees of freedom are
df 	 tr�R�� in the additive model �Hastie and Tibshirani� ����� p� ��f��
The problem is that tr�R�� is not exactly the sum the individual R�j for
j 	 �� � � � � d� Buja et al� ����� p� ���f�� provided some evidence that under
the assumptions of not too small smoothing parameters �j and not too heavily



correlated predictors xj� adding up the individual degrees of freedom forms an
upper bound for the overall degree of freedom of R�� The degrees of freedom
obtained in this way are sometimes called the equivalent degrees of freedom
�Hastie� ����� p� ����� Their prespeci�cation is often used to determine the
amount of smoothing in an additive model or GAM� Apart from the fact
that a prior guess can be wrong� it is implicitly assumed that the necessary
amount of smoothing in each dimension is the same� But this is not true in
many instances�

A di�erent approach is feasible based on an improved �correcting for the
tendency to undersmooth� Akaike information criterion due to Hurvich� Si�
mono� and Tsai ������ Their proposal is for univariate smoothing problems
but the idea could be extended to multivariate situations �e�g� for the additive
model�� Its advantage is that unlike plug�in techniques there is less limitation
with respect to the type of linear smoothers�

In summary we cannot help saying that smoothing parameter or bandwidth
choice remains a week point in any kind of additive model discussed so far�
It seems that additional research is required for the data�driven selection of
the necessary amount of smoothing�

��� MODEL DIAGNOSTICS FOR GAMS

At convergence of an additive �t we can express �gj as R�jy for some matrix
R�j of dimension n� n because the �gj results from a linear mapping applied
to y� Suppose errors are independent and identically distributed� then the
covariance of the estimator is

C��gj� 	 R�jR
T
�j�

��

where �� 	 V�Yi�� If the system matrix A of the normal equations Ag 	 By
has singular values close to zero� i�e� highly correlated covariates� then C��gj�
will be large�

The direct computation of R�j is very expensive� Hastie and Tibshirani
������ p� ���f� propose an O�kn�� back�tting procedure� where k 	 dMc
with d the number of covariates� M the number of back�tting iterations� and
c a linear smoother�speci�c constant�

Hastie and Tibshirani ������ p� �� and p� ���f� also discuss the con�
struction of con�dence bands for the estimator� Today it is believed that
resampling techniques are the better choice�

As in GLMs the analysis of deviance plays an important role for inference
in GAMs� The deviance or likelihood�statistic for a �tted model represented
by �� is de�ned by

D�y� ��� 	 � fl��max� y� � l���� y�g �

where �max is the parameter value that maximizes the log�likelihood l��� y�



over all � �the saturated model�� The deviance replaces the residual sum of
squares RSS 	 yT �I �R��T �I �R��y used in the simple additive model�

For GLMs there is an asymptotic distribution theory� Consider two lin�
ear models� �� and ��� with �� nested within ��� If �� is correct and some
regularity conditions are ful�lled� then D���� ��� 	 D�y� ��� � D�y� ��� has
an asymptotic ���distribution with degrees of freedom equal to the di�erence
in the dimensions of the models� The result is usually summarized in an
analysis of deviance table� For GAMs the deviance remains a sensible means
of model assessment� The problem is that it is not even asymptotically ���
distributed� although empirical evidence due to Hastie and Tibshirani ������
p� ���f� supports the use of the ���distribution�

Finally we consider the degrees of freedom for error dferr� In the additive
model dferr is derived in terms of the expected value of the residual sum of
squares RSS� and de�ned by

dferr 	 n� tr��R� �R�R
T
� ��

The analogous quantity to RSS in the additive model is the deviance D in
the GAM� Starting from an asymptotic approximation to the deviance

D�y� �� � �#y � ���T #W �#y � ����

we end up with degrees of freedom for error

dferr 	 n� tr��R� � RT
�
#WR�

#W���

for the GAM obtained from local scoring in ������� For the use of dferr see
Hastie and Tibshirani ������ p� ���f� and Hastie ������ p� ���f��

In conclusion one must say that since the publication of Hastie!s and Tib�
shirani!s ���� monograph� there have not been substantial new developments
in the �eld of model critique for additive models or GAMs �for testing in
nonparametric models see also Bowman and Azzalini� ����� Chapter ��� The
same is true for model selection� Current research emphasizes the application
of resampling techniques�

Other most recent developments address the estimation of additive models
via Markov chain Monte Carlo techniques� This is truly a change of paradigm
away from solving the normal equation system or equivalent concepts� Wong
and Kohn ������ not only present a promising Bayesian estimation technique
but can at the same time handle the tedious problem of smoothing parameter
selection �for the special case of regression splines�� This Bayesian approach
also facilitates the estimation of diagnostic quantities�
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