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Abstract. We consider the problem of constructing mean—risk models which are consistent with
the second degree stochastic dominance relation. By exploiting duality relations of convex analysis
we develop the quantile model of stochastic dominance for general distributions. This allows us to
show that several models using quantiles and tail characteristics of the distribution are in harmony
with the stochastic dominance relation. We also provide stochastic linear programming formulations
of these models.
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1. Introduction. The relation of stochastic dominance is one of the fundamen-
tal concepts of the decision theory (cf. [26, 12]). It introduces a partial order in
the space of real random variables. The first degree relation carries over to expecta-
tions of monotone utility functions, and the second degree relation—to expectations
of concave nondecreasing utility functions. While theoretically attractive, stochastic
dominance order is computationally very difficult, as a multiobjective model with a
continuum of objectives.

The practice of decision making under uncertainty frequently resorts to mean—
risk models (cf. [15]). The mean-risk approach uses only two criteria: the mean,
representing the expected outcome, and the risk: a scalar measure of the variability
of outcomes. This allows a simple trade-off analysis, analytical or geometrical. How-
ever, for typical dispersion statistics used as risk measures, the mean-risk approach
may lead to inferior conclusions, that is, some efficient (in the mean-risk sense) so-
lutions may be stochastically dominated by other feasible solutions. It is of primary
importance to construct mean-risk models which are in harmony with stochastic
dominance relations.

The classical Markowitz [14] model uses the variance as the risk measure in the
mean-risk analysis. Since then many authors have pointed out that the mean—variance
model is, in general, not consistent with stochastic dominance rules. In our preced-
ing paper [18] we have proved that the standard semideviation (square root of the
semivariance) or the mean absolute deviation (from the mean) as the risk measures
make the corresponding mean-risk models consistent with the second degree stochas-
tic dominance, provided that the trade-off coefficient is bounded by a certain constant.
These results were further generalized in [7, 19] where it was shown that mean-risk
models using higher order central semideviations as risk measures are in harmony
with the stochastic dominance relations of the corresponding degree.

When applied to portfolio selection or similar optimization problems with poly-
hedral feasible sets, the mean—variance approach results in a quadratic programming
problem. Following Sharpe’s [25] work on linear programming (LP) approximation to
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the mean—variance model, many attempts have been made to linearize the portfolio
optimization problem. This resulted in the consideration of various risk measures
which were LP computable in the case of finite discrete random variables. Yitzhaki
[27] introduced the mean-risk model using the Gini’s mean (absolute) difference as a
risk measure. Konno and Yamazaki [11] analyzed the model where risk is measured
by the (mean) absolute deviation. Young [28] considered the minimax approach (the
worst case performances) to measure the risk. If the rates of return are multivariate
normally distributed, then most of these models are equivalent to the Markowitz’
mean—variance model. However, they do not require any specific type of return distri-
butions and, opposite to the mean—variance approach, they can be applied to general
(possibly non-symmetric) random variables. In the case of finite discrete random vari-
ables all these mean-risk models have LP formulations and are special cases of the
multiple criteria LP model [17] based on the majorization theory [9] and Lorenz type
orders [1].

In this paper we analyze a dual model of the stochastic dominance by exploiting
duality relations of convex analysis (see, e.g., [21]). These transformations allow us
to show consistency with stochastic dominance of mean—risk models using quantiles
and tail characteristics of the distribution as risk measures. We also show that these
models are equivalent to certain stochastic linear programming problems, thus opening
a new area of applications of stochastic programming,.

The paper is organized as follows. In §2 we formally define stochastic dominance
relations and the concept of consistency of mean-risk models with these relations.
Section 3 introduces dual formulations of stochastic dominance and exploits Fenchel
duality to characterize dominance in terms of quantile performance functions. In
84 we consider several risk measures based on quantiles and tail characteristics of
the distribution and we analyse their relation to stochastic dominance. Section 5
is devoted to the analysis of mean-risk models using these risk measures. In §6 we
present stochastic linear programming formulations of these models. Finally, we have
a conclusions section.

We use (2, B,P) to denote an abstract probability space. For a random variable
X : Q@ = R we denote by P, the measure induced by it on the real line. For a
convex function F : R — R we denote by F* its convex conjugate [21], F*(p) =

supg {pé — F(£)}.

2. Stochastic Dominance and Mean—Risk Models. Stochastic dominance
is based on an axiomatic model of risk-averse preferences [5]. It originated in the
majorization theory [9] for the discrete case and was later extended to general dis-
tributions [8, 23]. Since that time it has been widely used in economics and finance
(see [3, 12] for numerous references). Detailed and comprehensive discussion of a
stochastic dominance and its relation to downside risk measures is given in [18, 19].

In the stochastic dominance approach random variables are compared by point-
wise comparison of some performance functions constructed from their distribution
functions. For a real random variable X, its first performance function F)((l) :R —
[0,1] is defined as the right-continuous cumulative distribution function itself:

FM(m)=F () =P{X <n} fornek

In the definition below, and elsewhere in this paper, we assume that larger outcomes
are preferred to smaller.
The weak relation of the first degree stochastic dominance (FSD) is defined as
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follows

X =

—FSD

Y & F,(n) <F,(n) forallnelR

The second performance function F)(f) : R — R, is given by areas below the distri-
bution function F,

n
FO () = / Fo(6) de forn € R, (2.1)

—00
and defines the weak relation of the second degree stochastic dominance (SSD):

X =

—SSD

Y & FO@n) <F®@n) foralneR (2.2)

The corresponding strict dominance relations >,., and .., are defined by the
standard rule

X-Y & X»YV and Y ¥X. (2.3)

Thus, we say that X dominates Y under the FSD rules (X »,., Y),if F (n) < F, (n)
for all n € R, where at least one strict inequality holds. Similarly, we say that X
dominates Y under the SSD rules (X >, V), if FP(n) < FP)(n) for all n € R,
with at least one inequality strict.

For a set () of random variables, a variable X € @ is called SSD-efficient (or
FSD-efficient) in @ if thereisno Y € @ such that Y >, X (or ¥V »=.., X).

The SSD relation is crucial for decision making under risk. If X >_., Y, then X
is preferred to Y within all risk-averse preference models that prefer larger outcomes.
The function F)(f) can also be expressed as the expected shortfall [18]: for each target
value 1 we have

FP(n) = / " -6 P, (de)

— 00

= E{max(n — X,0)} = P{X <n}E{n - X|X <n}. (2.4)

nfﬂx

F& ()

My n
Fic. 2.1. The O-R diagram

The function F)(f) is continuous, convex, nonnegative and nondecreasing. Its
graph, referred to as the Outcome-Risk (O-R) diagram and illustrated in Figure 2.1,
has two asymptotes which intersect at the point (u,,0): the horizontal axis, and
the line n — p,. In the case of a deterministic outcome (X = u,), the graph of
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F)(f) coincides with the asymptotes, whereas any uncertain outcome with the same
expected value p, yields a graph above (precisely, not below) the asymptotes. Hence,
the space between the curve (n,F)(f) (7)), n € R, and its asymptotes represents the
dispersion (and thereby the riskiness) of X in comparison to the deterministic outcome
of u,. It is refered to as the dispersion space.

It is convenient to introduce also the distance to the right asymptote,

F2 ) = FO () - (n - ), (2.5)

which can be rewritten as

o= | T(e—n) Py (de)
— E {max(X — 7,0)} = P{X > g} E{X —n|X >} (2.6)

thus expressing the expected surplus for each target outcome n (see [18]). The vertical
diameter of the dispersion space at a point 7 is given as:

dy (n) = min(FO (), T (n)) (2.7)

While SSD is a sound theoretical concept, its application to real world decision
problems is difficult, because it requires a pairwise comparison of all possible outcome
distributions. We would prefer to use simple mean-risk models, and deduce from
them whether a particular outcome distribution is dominated or not.

In general, considering a mean-risk model with the risk of a random outcome X
measured by some functional r, , we can introduce the following definition.

DEFINITION 2.1. We say that the mean—risk model (pu, ,r,) is consistent with
SSD, if the following relation holds

X=.pY = py>p, andr, <r,.

It is well known that the first inequality at the right hand side is true: X >,
Y = pu, >p, (see [12]). The inequality for the risk term, though, is not true
for some popular risk measures, like the variance or absolute deviation.

Directly from (2.4) we see that the mean-risk model with the risk functional
defined as the expected shortfall below some fixed target t,

rt = E{max(t — X,0)},

is consistent with the SSD. Integrating the inequality r’, < r! with respect to some
probability measure P, we conclude that the expected shortfall from a random target
T distributed according to P,

T, = /E{max(t - X,0)} P,(dt) = E{max(T — X,0)}, (2.8)

is consistent with the SSD.

While the use of consistent mean-risk models is quite straightforward, there are
some reasonable risk measures which do not enjoy the consistency property of Defi-
nition 2.1. Therefore, following [19], we relax it a little.
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DEFINITION 2.2. We say that the mean—risk model (u,ry ) is a-consistent with
SSD, where a > 0, if the following relation is true

X Zssp vy = Px —QTy 2 by —QTy.

It is clear that a-consistency implies A-consistency for all 0 < A < a.
The concept of a-consistency turned out to be fruitful. In [18] we have proved
that the mean-risk model in which the risk is defined as the absolute semideviation,

"

S = Efmax(y = X,0) = [ (e - ©) Po(a) (2.9)

— 00

is 1-consistent with SSD. An identical result (under the condition of finite second
moments) has been obtained in [18] for the standard semideviation,

Hx

70 = (Efmax(u, - x.00%) " = ([ w02 Po@0) " @)

— 00

These results have been further extended in [19] to central semideviations of higher
orders and stochastic dominance relations of higher degrees.

REMARK 1. In [2] a class of coherent risk measures has been defined by means
of several axioms. In our terms, these measures correspond to composite objectives
of form p(X) = —pu, + ar, (note the sign change), where @ > 0. The axioms are:
translation invariance, positive homogeneity, subadditivity, ‘monotonicity’ (X > YV
a.s. = p(X) < p(Y)), and ‘relevance’ (X <0,X # 0= p(X) <0).

Both 6, and 7, as seminorms in £; and L, are convex and positively homoge-
neous. Therefore the composite objectives —pu, +ad, and —u, +ad, do satisfy the
first three axioms (contrary to the statement in [2, Rem. 2.10]). For a € (0, 1], owing
to the consistency with stochastic dominance in the sense of Definition 2.2, they also
satisfy ‘monotonicity’ and ‘relevance’, because X >Y as. = X > . Y.

Our objective is to analyze the consistency with stochastic dominance of risk
measures using the quantiles of the distribution of X.

3. Quantile Dominance and the Lorenz Curve. Let us consider the quantile
model of stochastic dominance [13]. The first quantile function F(=1) : (0,1] —» R
corresponding to a real random variable X is defined as the left-continuous inverse of
the cumulative distribution function F, [6]:

F(p) =inf {n: Fy(n) >p} for0<p<1.
Given p € [0, 1], the number ¢, (p) is called a p-quantile of the random variable X if

P{X < g, (p)} <p <P{X < gy (0)}-

For p € (0,1) the set of such p-quantiles is a closed interval and F)((’l)(p) represents
its left end [4].
Directly from the definition of FSD we see that
X >

—FSD

vV & FY@p)>F () forall0o<p<l.

Thus, the function F(-1) can be considered as a continuum-dimensional safety mea-
sure (negative of a risk measure) within the FSD; using any specific (left) p-quantile
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as a scalar safety measure is consistent with the FSD. It is not, however, consistent
with the SSD, because it may happen that X > Y, but F)((_l)(p) < Fé_l)(p) for
some p.

REMARK 2. Value-at-Risk (VaR) defined as the maximum loss at a specified
confidence level p is a widely used quantile risk measure [20]. It corresponds to
the right p-quantile of the random variable X representing gains [2] whereas our
dual stochastic dominance model uses the left p-quantile. Nevertheless, the FSD
consistency results can be also shown for the right quantile ¢’ (p) = sup {n: Fy (n) <
p} (where p € [0, 1)), thus justifying the VaR measures.

To obtain quantile measures consistent with the SSD we introduce the second
quantile function F)((_Q) :R — R, defined as

SSD

P
Fo0) = [ P @)da for 0<p<1, )

F(=2)(0) = 0. For completeness, we also set F(~2)(p) = +oo0 for p ¢ [0, 1].

Similarly to F(?, the function F(~?) is well defined for any random variable X
satisfying the condition E|X| < co. By construction, it is convex. The graph of F)((_Q)
is called the absolute Lorenz curve or ALC diagram for short.

REMARK 3. The Lorenz curves are used for inequality ordering [1, 6, 16] of
positive random variables, relative to their (positive) expectations. Such a Lorenz
curve, L, (p) = F{"?(p)/py, is convex and increasing. The absolute Lorenz curves,
though, are not monotone, when negative outcomes occur.

There is an intriguing duality relation between the second quantile function F)((_Q)
and the second performance function F)(f).

THEOREM 3.1. For every random variable X with E|X| < oo we have

(i) FI72 = [FP]*; and

p.e
(i) F® = [FU2]"
Proof. By the definition of the conjugate function, for every p € [0, 1],

[FOT*(p) = s%p{np - F@ ()} (3.2)

Thus, by (2.4) and (2.6), [F?]*(0) = 0 and [FP]*(1) = px. For p € (0,1) the
supremum in (3.2) is attained at any 7 for which p € F(?(n). Recalling the definition
(2.1) we see that 1 is a p-quantile of X, and we can choose n = F)((’l)(p). Therefore,

by [21, Thm.23.5(iv)],
F{Y(p) € O[FP]* ().

X

This yields the representation
P
[FP)*(p) :/ F(=Y(a) da for pe(0,1].
0

If p=0, (3.2) yields 0, and for p & [0, 1] we obtain 400, as can be seen from Figure 2.1.
This proves (i). Assertion (ii) is the consequence of the closedness of F)(f) and [21,
Thm.12.2]. O

While the above result can also be obtained from the Young inequality ([29] and
later generalizations), we hope that connections to the convex analysis may prove
fruitful.
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It follows from Theorem 3.1 that we may fully characterize the SSD relation by
using the conjugate function F{~2).

THEOREM 3.2. X =, YV & F2(p) > FY(p) forall0 < p < 1.
Therefore, the properties of F(~2) are of profound importance for stochastic domi-
nance relations.

COROLLARY 3.3. The following statements are equivalent:

(i) n is a p-quantile of X;

(ii) sup¢(ép — F)(f) (&) is attained at n;
(iii) sup, (na — F 2 (a)) is attained at p;
(iv) FC2)(p) + FO () = pr.

Proof. Directly from the definitions (2.4) and (3.1), assertion (i) is equivalent to
(v) p € OF 3 (n), and (vi) n € OF~?(p). The equivalence of (ii)-(vi) follows from
Theorem 3.1 and [21, Thm.23.5]. O

We can now provide another representation of the second quantile function. Let
p € (0,1) and suppose that 7 is such that P{ X < n} = p. Then by Corollary 3.3(iv)
and (2.4),

Fp) = pn—FP () (3.3)
= pn+pE{X —n|X <n} =pE{X|X <n}.

It facilitates the understanding of the nature of the second quantile function, but
cannot serve as a definition because n such that P{ X < n} = p need not exist; (3.1)
and Theorem 3.1(i) are precise descriptions.

7 F)((_Q) (p)

~= i .
Fic. 3.1. The absolute Lorenz curve and the dual dispersion space

Graphical interpretation provides an additional insight into the properties of the
second quantile function. For any uncertain outcome X, its absolute Lorenz curve
F(=2) is a continuous convex curve connecting points (0,0) and (1, u, ), whereas a
deterministic outcome with the same expected value p, corresponds to the chord
connecting these points. Hence, the space between the curve (p, F)(:2) (p),0<p<1,
and its chord is related to the riskiness of X in comparison to the deterministic
outcome of p, (Fig. 3.1). We shall call it the dual dispersion space.

Both size and shape of the dual dispersion space are important for complete
description of the riskiness of X. Nevertheless, it is quite natural to consider some
size parameters as summary characteristics of riskiness.
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Let us start from the vertical diameter of the dual dispersion space defined as
hy(p) = pyp — F2) (). (3.4)
LEMMA 3.4. For every p € (0,1)

iy (p) = min B {max(p(X = ), (1 = p)(€ = X))}, (3.5)

and the minimum in the expression above is attained at any p-quantile.
Proof. By Theorem 3.1(i),

e (p) = inf((nx = Ep + FP(€)).

Subdifferentiating with respect to p and using (2.1), we see that the infimum is at-
tained at any p-quantile. From (2.5) we obtain

by (p) = min(pF ) (€) + (1= p) FP (€)).

With a view to (2.4) and (2.6),

hy(p) = Hgn(p]E{maX(OaX -} + (1 - p) E{max(0,§ - X)}),

which completes the proof. O
The above result reveals a close relation between the vertical dimension of the
dual dispersion space and the absolute deviation from the median,

A, =E|X - FD (D).

COROLLARY 3.5. h, (1) = 3A,.

L F)((_Q) (p)

M

gl
o]

0 1 p
Fic. 3.2. The absolute Lorenz curve and risk measures

The maximum vertical diameter of the dual dispersion space (which exists by
compactness and continuity) turns out to be the absolute semideviation of X.
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LEMMA 3.6. max h,(p) =6,
p€(0,1]

and the maximum is attained at any py for which P{X < u,} <p, <P{X < pu,}.
Proof. By Theorem 3.1(ii),

h — — (2 — 2
Jnax b (p) = max (uep = F 2 () = FP ()

and the the first assertion follows from (2.4) and (2.9). By Corollary 3.3, pu, is a
Py -quantile. a
It is known that the doubled area of the dual dispersion space,

1
Lo=2 [ (uep=FL20) dy (3.6)
0
is equal to the Gini’s mean difference [16]:
1
Oo=5 [[ n-6 Pog) P, (37)

The equality can be verified by calculating the integral in (3.7) over £ < 5 (by sym-
metry) as follows:

O = [[ 0 Petde) Petdn - [[ € Pt potan) =2 70 nF(n) Py (dn) — iy
£<n £<n —00

= 2/pF(‘1)(p) dp — py = —Q/F(_Q)(p) dp + pu,
0 0

where in the last transformation we employed the integration by parts.
The Gini’s mean difference (3.7) may be also expressed as the integral of F)(f)
with respect to the probability measure P,

r, = / / (n— &) P (d€) Py (dn) = / E{max(n — X,0)} Py (dn).

§<n

Thus, similar to (2.8), it represents the expected shortfall from a random target
distributed according to P, but this distribution is a function of X. Therefore, the
corresponding SSD-consistency results (cf. (2.8)) cannot be applied directly to the
Gini’s mean difference. Alternatively, I'y can be expressed with the integral of the
vertical diameter of the dispersion space d, (2.7) with respect to the probability
measure P,

ro=5, + / d.. (1) P (dn).

Both T' and & are well defined size characteristics of the dual dispersion space
(Fig. 3.2). However, the absolute semideviation is a rather rough measure compared
to the Gini’s mean difference. Note that J, /2 may be also interpreted in the ALC dia-
gram as the area of the triangle given by vertices: (0,0), (1, ) and (py, FC2(py)),
where P{X < p,} < py <P{X < u,} (see Lemma 3.6). In fact, o, is the Gini’s
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& ()

slope 1

slope p

—FU () LR (0)  ax () i K

Fic. 3.3. Dual quantities in the O-R diagram

mean difference of a two-point distribution approximating X in such a way that u,
and 0, remain unchanged.

Dual risk characteristics can also be presented in the (primal) O-R diagram
(Fig. 3.3). Recall that F(~2) is the conjugate function of F(*) and therefore, F(=2)
describes the affine functions majorized by F(* [21]. For any p € (0.1), the line with
slope p supports the graph of F(®) at every p-quantile (Corollary 3.3(i),(ii)). It is
given analytically as

S () = p(n — ax (p) + F (g, (p)),

where ¢, (p) denotes a p-quantile of X.

From Corollary 3.3(iv) it follows that F(~2)(p) = —SP(0), so the value of the
absolute Lorenz curve is given by the intersection of the tangent line S¥ with the
vertical (risk) axis. For any p € (0,1), the tangent line intersects both asymptotes of
F®). Tt intersects the outcome axis (the left asymptote) at the point n = F(=2)(p)/p =
iy — hy(p)/p (see (3.4)). In Fig. 3.3 this point is marked as TVaR, (p) due to its
interpretation discussed in the next section. The intersection with the right asymptote
takes place at 7 = u, + hy (p)/(1 — p) (by simple geometry).

Fig. 3.3 provides also an interesting interpretation of Lemma 3.6. By elementary
geometry, the tangent line S¥ intersects the vertical line at n = p, at the value
SP () = hy (p) thus defining the vertical diameter of the dual dispersion space at p.
This justifies §, = F(®(u,.) as the mazimum vertical diameter of the dual dispersion
space.

It might be worth noting that the segment of the line S? restricted to the area
between the asymptotes, together with the asymptotes themselves, represents an O—-R,
diagram (the function F(?) for a random variable ¥ which has a two-point distri-
bution, the same mean as X, and dominates X in the sense of the SSD. It has the
largest variance among such variables (with probabilities p and 1 — p fixed).

4. Dual Risk Measures. From the ALC diagram one can easily derive the
following, commonly known, necessary condition for the SSD relation (cf. [12]):

Xresn Y = iy 2 pye (4.1)

But we can get much more.
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Hx 7 (p)
Px M- P (p)
< KUy P — SY
Pxbx —0x7
Py by — 0y
0 Px 1 p

FIG. 4.1. X =gsp Y = Dylby —0x > Dxhly — 0y, wherepy =P{X <p,} <1

Consider two random variables X and Y in the common ALC diagram (Fig. 4.1).
Since d, represents the maximal vertical diameter of the dual dispersion space for the
variable V', its absolute Lorenz curve Féﬁ) (p) is bounded from below by the straight
line p, p— 90, . At the point p, = P{X < p, } at which h, (p,) =0, (cf. Lemma 3.6)
one gets:

HxPx — SX = F)((_Q)(px) Z F)(,_Q)(px) Z HyPx — 6)/'

This simple analysis of the ALC diagram allows us to derive the following necessary
condition for the second degree stochastic dominance.

PROPOSITION 4.1. If X =, Y, then uy > p, and p, — 6, > p, — 6
the second inequality is strict whenever p, > p, .

Proposition 4.1 was first shown in [18] with the use of the O-R diagram. Here,
by placing the considerations within the (dual) ALC diagram we make it transparent
that the result is based on the comparison of the absolute Lorenz curves at only one
point, p, . For symmetric random variables we have p, < 1/2 and the coefficient in
front of ¢ in Proposition 4.1 can be increased to 2.

The main application of the ALC diagram, though, is the analysis of risk and
safety measures using quantiles of the distribution of the random outcome.

v, where

Tail Value-at-Risk

The relation in Theorem 3.2 can be rewritten in the form
XropY & FUP0p)/p>F P (p)/p forall0<p<l, (4.2)
thus justifying the safety measure
TVaR, (p) = FL 2 (0)/p. (4.3)

From Theorem 3.2 we immediately obtain the following observation.
PROPOSITION 4.2. The mean-risk model (1, ,—TVaR,) is consistent with the
second degree stochastic dominance relation.
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With a view to (3.3), the quantity TVaR, (p) may be interpreted the expected
(or tail) VaR measure (see [2, Def. 5.1] and [22])

TVaR, (Fy (1) = E{X[X <n}.

By the convexity of F(=2), the function TVaR, : (0,1] — R is nondecreasing, con-
tinuous, and TVaR, (1) = u,. In the case of a random variable with lower bounded
support, the value of TVaR , (p) tends to the minimum outcome when p — 0. Hence,
the max—min selection rule of [28] is a limiting case of the (u,, —TVaR, ) model.

It follows from Lemma 3.4 that for every p € (0,1) the corresponding value
TVaR, (p) can be computed as

]_ —
TVaR, (p) = E{X} ~ min E {max(X - ¢, T”(f - X))}. (4.4)
This formula may be transformed into

TVaR, () = max(€ - 2 E{max(0,¢ - X)) (45)

which corresponds to the direct representation of F(=2) as the conjugate function to
F® (cf. (3.2)). By Corollary 3.3, the maximum above is attained at any p-quantile.
Interestingly, (4.5) appears also in [22] in so-called Conditional VaR models; our
analysis puts them into the context of stochastic dominance.

Mean absolute deviation from a quantile

Proposition 4.2 allows us to identify an interesting a-consistent risk measure fol-
lowing from the dual characterization of the SSD. Recalling the vertical diameter
h (p) of the dual dispersion space we have the following result.

PROPOSITION 4.3. For any p € (0,1), the mean—risk model (. ,hy (p)/p) is
1-consistent with the second degree stochastic dominance relation.

Proof. By Proposition 4.2 and (3.4) we have

X=ssp Y = py>p, and py —hy(p)/p>p, —h,(p)/p

as required. d

Owing to Lemma 3.4 we may interpret the risk measure h, (p)/p as the weighted
mean absolute deviation from the p-quantile.

For p = 1/2, recalling Corollary 3.5, we obtain the following observation (illus-
trated graphically in Fig. 4.2).

COROLLARY 4.4. For anyp € (0,1), the mean—risk model (1, , A ) is 1-consistent
with the second degree stochastic dominance relation.

Comparing this to Proposition 4.1 we see that we are able to cover both the
general and the symmetric case with a higher weight put on the risk term. Indeed, in
the symmetric case one has A, = 26,..

Tail Gini’s mean difference
Let us now pass to risk measures based on area characteristics of the dual disper-

sion space. Consider two random variables X and Y in the common ALC diagram
(Fig. 4.3). If X »,,, Y, then, due to Theorem 3.2, F{~2) is bounded from below
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By e Hx D
Bl feeeeemrreeeee el Iy D
Lo Ao L F2(p)
z(ﬂx x)  L'x p
Ly = Ao e A L P (p)
0 p

F1G. 4.2. Median case: X > 4o, Y = %(ux —Ag) > %(“Y —-Ay)

by Fé‘Q), and g, > p, from (4.1). Thus the area of the dual dispersion space for
X is (upper) bounded by the area of the dual dispersion space for Y plus the area
of the triangle between the chords (with vertices: (0,0), (1, u, ) and (1, y,)). Hence,
T < i, + $(uy — py) and, due to the continuity of the Lorenz curves, this in-
equality becomes strict whenever X >.. Y. This allows us to derive the following
necessary conditions for the second degree stochastic dominance.

-2
[,LX_ ........................................ F)(( )(p)
-2
[,LY_ ........................... AR AR F)(, )(p)
al'x
1
3Ty
0 1 p
FIc. 4.3, X »oep Y = 20 <20, + L(uy —py)

PROPOSITION 4.5. For integrable random variables X and Y the following im-

plications hold:

X =

—SSD

Y = Bx — FX > Hy — Fya (46)

X " ssD Y = Bx — FX >y — FY‘ (4-7)

Condition (4.6) was first shown by Yitzhaki [27] for bounded distributions.
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Similarly, for p € (0,1] one may consider the tail Gini’s measure:

Golp) = pﬁ / (1 & — F) () dov (48)
0

The next result is an obvious extension of Proposition 4.5.
PROPOSITION 4.6. For every p € (0,1],
X ESSD Y = Hx — GX (p) > Ky — Gy (p) (4-9)

In other words, the mean-risk model (u,, G (p)) is 1-consistent with the SSD.

By convexity, G, (p) > h,(p)/p for all p € (0,1], so Proposition 4.6 is stronger
than Proposition 4.3.

The coefficient 1 in front of G, (p) (and G, (p)) cannot be increased for general
distributions, but it can be doubled in the case of symmetric random variables (and
p = 1). Indeed, for a symmetric random variable X one has h, (p) = h, (1 — p), so
G, (%) = 2T, which leads to the following result.

PROPOSITION 4.7. For symmetric random variables X and Y the following im-
plications hold:

X tssp Yy = Kx _2Fx Zp‘y _2Fy7
XY = p, -2 >p, —2T,.

5. Mean—Risk Models with Dual Risk Measures. Given a certain set ) of
integrable random variables X, let us analyze in more detail the mean-risk optimiza-
tion problems of form

glgg (MX - /\Tx)a (51)

with A > 0 and with the risk functional r, defined as one of our dual (quantile)
measures. We assume that the set () is convex, closed and bounded in £, for some
qg>1.

The first issue that needs to be clarified is the convexity of problem (5.1). This
will help to establish the existence of solutions and to formulate computationally
tractable models.

LEMMA 5.1. For every p € [0,1] the functional X — h(p) given by (3.4) is
convez and positively homogeneous on L.

Proof. Let 8 € (0,1), X,Y € @, and let m, and m,. be the p-quantiles of X and
Y. By Lemma 3.4,

hﬁX—}—(l—ﬁ)Y (p) = mtinE max {p(ﬂX + (1 - ﬂ)Y - t)7 (1 —p)(t - ﬁX - (1 - ﬁ)Y)}

< B max {p(B(X —m )+ (1=B)(Y =m,)), (1=p) (Blm — X)+(1-B)(m, —¥)) }.

Using the inequality max(a + b, ¢ + d) < max(a, c) + max(b,d) and Lemma 3.4 again
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we obtain
B yaa (P) < BE max {p(X —m,), (1 = p)(m, — X)}
+ (1= AE max {p(Y = m, ), (1 = p)(m, —Y)}
= ﬂhx (p) + (1 - ﬂ)hy (p)a

because m, and m, are p-quantiles. This proves the convexity. The positive homo-
geneity follows directly from (3.5). O

For the tail Gini’s mean difference used as a risk measure we have a similar result.

LEMMA 5.2. For every p € (0,1] the functional X — G (p) given by (4.8) is
convez and positively homogeneous on L.

Proof. We have

p

Gop) = pi / h(a) da,

0

and the result follows from Lemma 5.1. O

REMARK 4. Again, the composite objectives of form p(X) = —u, + ar,, where
a € (0,1] and r, is defined as h, (p)/p or G (p), satisfy all axioms of so-called
coherent risk measures discussed in [2] (cf. Remark 1). The convexity and the pos-
itive homogeneity have just been proved, the translation invariance is trivial, and
the monotonicity follows from Propositions 4.3 and 4.6, respectively. Indeed, as in
Remark 1, X >Y as. = X »_.., Y, and these propositions apply.

Having established the convexity, we can pass now to the analysis of the SSD-
efficiency of the solutions to problem (5.1). We start from the case of Gini’s mean
difference I', = G (1).

THEOREM 5.3. Assume that the set Q is convex, bounded and closed in L, for
some g > 1, and r, =T ,. Then for every A € (0,1], the set of optimal solutions of
(5.1) is nonempty and each its element is SSD-efficient in Q.

Proof. Let us show that the optimal set of (5.1) is nonempty. By Lemma 5.2 the
objective functional is concave. In the reflexive Banach space £,, the set ) is weakly
compact (as convex, bounded and closed [10, Thm. 6, p. 179]), and the functional
iy — Al is weakly upper semicontinuous (as concave and bounded). Therefore the
set of optimal solutions of (5.1) is nonempty.

Let X € @ be an optimal solution and suppose that X is not SSD-efficient. Then
there exists Z € @ such that Z >, X. From (4.1) and (4.7) we obtain

MZZIJ’X and IJ’Z_FZ>IJ’X_FX'

Adding these inequalities multiplied by (1 — A) and A, respectively, we obtain the
sharp (A > 0) inequality u, — A, > u, — A'y. This contradicts the maximality of
py — AL O

Let us now consider the risk measure r, = h, (p)/p. Recall that, owing to (3.4)
and (4.3), the objective in (5.1) can be equivalently expressed as

ty — Ay (p)/p= (1= Npy + ATVaR  (p).

THEOREM 5.4. Assume that the set () is convez, bounded and closed in L, for
some ¢ > 1, and r, = h, (p)/p with p € (0,1) . Then for every X € (0, 1], the set Q*
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of optimal solutions of (5.1) is nonempty and for each X € Q* there exists a point
X* € Q* which is SSD-efficient in Q and with p,.. = py and h.(p) = hy(p).
Proof. The proof that the optimal set @* of (5.1) is nonempty is the same as
in Theorem 5.3. By the convexity of the set @) and the concavity of the objective
functional, the set Q* is convex, closed, and bounded.
Suppose that X € Q* is not SSD-efficient. Then there exists Z € () such that
Z > 4ep X. From (4.1) and Proposition 4.3 we obtain

SSD

Ky > M and Ky — hz(p)/p > My — hx (p)/p

Adding these inequalities multiplied by (1 — A) and ), respectively, we obtain

th, — A, (p)/p > iy — My (p)/p-

Since Z € @ we must have Z € @* and an equality above. Thus u, = p, and

h, (p) = hy (D).
Define the set Q*(X) ={Z € Q* : u, = p }, and consider the problem

Zerg}}%x) r,. (5.2)
The set Q*(X) is convex, closed and bounded, and (5.2) is equivalent to maximizing
w, —A',. By Theorem 5.3, a solution X* of (5.2) exists and is SSD-efficient in Q*(X).
It is also SSD-efficient in @, because we have proved in the preceding paragraph that
it cannot be dominated by a point Z € @ \ Q*(X). By construction, .. = p, and
h.(p) = h,(p), as required. O

Let us now consider the risk measure in the form of the tail Gini’s mean difference.
Analogously to Theorem 5.4 we obtain the following result.

THEOREM 5.5. Assume that the set () is convez, bounded and closed in L, for
some ¢ > 1, and let r, = G (p) with p € (0,1). Then for every A € (0,1], the set
Q* of optimal solutions of (5.1) is nonempty and for each X € Q* there exists an
SSD-efficient point X* € Q* with p,.. = p, and G . (p) =G, (p).

REMARK 5. For symmetric random variables and p > 1/2, since h, (p) = h, (1 —
p), all optimal solutions are SSD-efficient, as follows from Theorem 5.3. Also, since
G, (3) = 2T, the coefficient A in (5.1) can be chosen from (0, 2].

6. Stochastic Programming Formulations. Let us formulate a more explicit
convex optimization problem which is equivalent to (5.1) with . = h, (p)/p:

A

max EX — E]EV (6.1a)
subject to  V(w) > p(X (w) — t), a.s. (6.1b)
Vw)> 1 -p)(t—X(w)), as. (6.1c)

Xe@, Veli(), tekR (6.1d)

The next result follows from Lemma 3.4.

PROPOSITION 6.1. Problem (6.1) is equivalent to problem (5.1) with r, =
hy (p)/p in the following sense:
(i) for every solution X of (5.1), the triple:

X, t=F"V(p), V(w)=max(p(X(w)-#),(1-p)t - X(w)))

is an optimal solution of (6.1);
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(ii) for every optimal solution ( &, V) of (6.1), X is an optimal solution of (5.1), t

is a p-quantile ofX and EV (w)=nh ( ).
In particular, if

n
:{Zdix,» : (dl,...,dn)eD}, (6.2)
i=1
where D is a convex closed polyhedron in R” and Xj,..., X, are integrable random

variables, we recognize a linear two-stage problem of stochastic programming. In this
problem d € D and ¢t € R are first stage variables, while V' is the second stage variable.

In the case of finitely many realizations (x{, con@l), j=1,....N, of (X1,...,X,),
attained with probabilities 7y, ..., 7n we obtain the problem.
N n ] by
max Zﬂ'j ( Z dizl — —v])
j=1 i=1 p
n .
subject to vJZp(Zdimf—t), j=1,...,N,

vl > ( (t—de) j=1,...,N,
deD, veRY, teR

Representing >, dla:Z —t as a difference of its positive part u; and its negative
part w; and eliminating the expectation from the objective, we can transform the last
problem to a simple recourse formulation:

N

A
t+ Zﬂ'j ((1 —Nuj —(IL=X+ E)w])]

j=1

max

n

subject to Zdixg—t:uj—wj, j=1,...,N,
i=1
deD, ueRY, weR), teR

Let us now formulate a stochastic programming problem which is equivalent to
(5.1) with r, = G, (p):

max EX — —//V (a,w) P(dw) de (6.3a)
subject to  V(a,w) > a(X(w) —t(a)), a.s. in [0, p] x Q, (6.3b)
V(a,w) > (1 —a)(t(a) — X(w)), as.in [0,p] x Q, (6.3c)

XeQ, VeL(0,p xQ), teLi(0,p]). (6.3d)

The product space [0, p] x © is assumed to be equipped with the product measure of
the Lebesgue measure and P.

PROPOSITION 6.2. Problem (6.3) is equivalent to problem (5.1) withr, = G, (p)
in the following sense:
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(i) for every solution X of (5.1), the triple:

s
€
|
pag
£
=
|
2
=
e
|
N
€

X, ft(a)= F}(Jl)(a), V (e, w) = max (e

is an optimal solution of (6.3);

(i) for every optimal solution (X,E,V) of (6.8), X is an optimal solution of (5.1),
i(a) is an a-quantile of X for almost all o € (0,p], and BV (o, w) = h(a) for
almost all o € (0, p].

Proof. For X € () the quantile F)((_l)(-) is integrable in (0, p|, so restricting ¢ to
L1(]0,p]) is allowed. The rest of the proof follows from Lemma 3.4, as in Proposi-
tion 6.1. o

In particular, if @ is defined by (6.2) and (X1,..., X,) is a discrete random vector
with N equally probable realizations (z7,...,z), j = 1,..., N, we can further simplify
this problem. We notice first that h, (a) is a piecewice hnear concave function with
break points at k/N, k = 0,...,N. Thus the inequalities (6.3b)—(6.3c) need to be
enforced only at the break points. Moreover, the integral in the objective of (6.3)
can be calculated exactly by using the values at the break points, by the method of

trapezoids.

To be more specific, let m be the smallest integer for which m/N > p and let
ar, =k/N,k=0,...,m —1, ay, = p. We obtain the following two-stage stochastic
program:

n

N m
Z (de —piz a1 — ag)( vk+1+vk))

subject to Ui Zak(ZdixZ —tk), j=1,...,N, k=0,...,m,
i=1

UiZ(l—ak)(tk—ZdixZ), j=1...,N, k=0,...,m,

i=1
de D, veRN xR™! teR™,

In the above problem vi represents the value of V(«y) in the jth realization, and
tr = t(ag). Similarly to problem (6.1), the last problem can also be transformed to a
simple recourse formulation.

If the probabilities 7; of realizations of (X1,...,X,) are not equal, though, the
break points may depend on our decisions, and the reduction to the finite dimensional
case is harder. One possibility is to introduce such a grid that contains all possible
break points, but it may be unnecessarily numerous. Another possibility is to resort
to an approximation with some reasonably chosen grid ag, £k =1,...,m. It will be a
relaxation because h(-) is a concave function.

For p = 1 all these complications disappear, because the alternative defini-
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tion (3.7) of I', has an obvious linear programming representation:

N n

N N
max Zﬂ'j Z dizd — X E Z mjmul!
i=1

j=1 = j=11=j+1

n
subject to vleZdi(mg—mé), j=1,...,N, l=4+1,...,N,
i=1

v >N di(ah —2l), j=1,...,N, I=j+1,...,N,
i=1
de D, veRVWN-D/2

It has a much larger number of variables and constraints, though.
All finite dimensional stochastic programing models of this section can be solved
by specialized decomposition methods [24].

7. Conclusions. We have defined dual relations of stochastic dominance for
arbitrary random variables with finite expectations. The second degree stochastic
dominance can be expressed as a relation of conjugate functions to second order
performance functions.

By using concepts and methods of convex analysis and optimization theory, we
have identified several security and risk measures, which can be employed in mean-risk
decision models: tail Value-at-Risk,

1W@RX@>=qX@>—%E{mmqqu@>—XvL

where ¢, (p) is a p-quantile, weighted mean deviation from a quantile,

hy (p) = E{max(p(X — g4 (p)), (1 = p)(ax (p) — X))},

and tail Gini’s mean difference,

p

Gp) =2 [ hy(@) da.

0

We have shown that the mean-risk models using these measures: (u,,—TVaR, (p)),
(ty,hy(p), and (uy, G, (p)) are consistent with the second degree stochastic domi-
nance relation (in the sense of Definition 2.1 for TVaR, (p) and Definition 2.2 for the
other two measures). In particular, the optimal solutions of the corresponding mean—
risk models, if unique, are efficient under the second degree stochastic dominance
relation.

Finally, we have found stochastic linear programming formulations of these mod-
els. This opens a new area of applications of the theory and methods of stochastic
programming.
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