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Abstract� We consider the problem of constructing mean�risk models which are consistent with
the second degree stochastic dominance relation� By exploiting duality relations of convex analysis
we develop the quantile model of stochastic dominance for general distributions� This allows us to
show that several models using quantiles and tail characteristics of the distribution are in harmony
with the stochastic dominance relation� We also provide stochastic linear programming formulations
of these models�
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�� Introduction� The relation of stochastic dominance is one of the fundamen�
tal concepts of the decision theory �cf� ���� ���	� It introduces a partial order in
the space of real random variables� The 
rst degree relation carries over to expecta�
tions of monotone utility functions� and the second degree relation�to expectations
of concave nondecreasing utility functions� While theoretically attractive� stochastic
dominance order is computationally very di�cult� as a multiobjective model with a
continuum of objectives�

The practice of decision making under uncertainty frequently resorts to mean�
risk models �cf� ��
�	� The mean�risk approach uses only two criteria� the mean�
representing the expected outcome� and the risk � a scalar measure of the variability
of outcomes� This allows a simple trade�o� analysis� analytical or geometrical� How�
ever� for typical dispersion statistics used as risk measures� the mean�risk approach
may lead to inferior conclusions� that is� some e�cient �in the mean�risk sense	 so�
lutions may be stochastically dominated by other feasible solutions� It is of primary
importance to construct mean�risk models which are in harmony with stochastic
dominance relations�

The classical Markowitz ���� model uses the variance as the risk measure in the
mean�risk analysis� Since then many authors have pointed out that the mean�variance
model is� in general� not consistent with stochastic dominance rules� In our preced�
ing paper ���� we have proved that the standard semideviation �square root of the
semivariance	 or the mean absolute deviation �from the mean	 as the risk measures
make the corresponding mean�risk models consistent with the second degree stochas�
tic dominance� provided that the trade�o� coe�cient is bounded by a certain constant�
These results were further generalized in ��� ��� where it was shown that mean�risk
models using higher order central semideviations as risk measures are in harmony
with the stochastic dominance relations of the corresponding degree�

When applied to portfolio selection or similar optimization problems with poly�
hedral feasible sets� the mean�variance approach results in a quadratic programming
problem� Following Sharpe�s ��
� work on linear programming �LP	 approximation to
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the mean�variance model� many attempts have been made to linearize the portfolio
optimization problem� This resulted in the consideration of various risk measures
which were LP computable in the case of 
nite discrete random variables� Yitzhaki
���� introduced the mean�risk model using the Gini�s mean �absolute	 di�erence as a
risk measure� Konno and Yamazaki ���� analyzed the model where risk is measured
by the �mean	 absolute deviation� Young ���� considered the minimax approach �the
worst case performances	 to measure the risk� If the rates of return are multivariate
normally distributed� then most of these models are equivalent to the Markowitz�
mean�variance model� However� they do not require any speci
c type of return distri�
butions and� opposite to the mean�variance approach� they can be applied to general
�possibly non�symmetric	 random variables� In the case of 
nite discrete random vari�
ables all these mean�risk models have LP formulations and are special cases of the
multiple criteria LP model ���� based on the majorization theory ��� and Lorenz type
orders ����

In this paper we analyze a dual model of the stochastic dominance by exploiting
duality relations of convex analysis �see� e�g�� ����	� These transformations allow us
to show consistency with stochastic dominance of mean�risk models using quantiles
and tail characteristics of the distribution as risk measures� We also show that these
models are equivalent to certain stochastic linear programming problems� thus opening
a new area of applications of stochastic programming�

The paper is organized as follows� In x� we formally de
ne stochastic dominance
relations and the concept of consistency of mean�risk models with these relations�
Section � introduces dual formulations of stochastic dominance and exploits Fenchel
duality to characterize dominance in terms of quantile performance functions� In
x� we consider several risk measures based on quantiles and tail characteristics of
the distribution and we analyse their relation to stochastic dominance� Section 

is devoted to the analysis of mean�risk models using these risk measures� In x� we
present stochastic linear programming formulations of these models� Finally� we have
a conclusions section�

We use ���B�P	 to denote an abstract probability space� For a random variable
X � � � R we denote by P

X
the measure induced by it on the real line� For a

convex function F � R � �R we denote by F � its convex conjugate ����� F ��p	 �
sup�fp� � F ��	g�

�� Stochastic Dominance and Mean�Risk Models� Stochastic dominance
is based on an axiomatic model of risk�averse preferences �
�� It originated in the
majorization theory ��� for the discrete case and was later extended to general dis�
tributions ��� ���� Since that time it has been widely used in economics and 
nance
�see ��� ��� for numerous references	� Detailed and comprehensive discussion of a
stochastic dominance and its relation to downside risk measures is given in ���� ����

In the stochastic dominance approach random variables are compared by point�
wise comparison of some performance functions constructed from their distribution
functions� For a real random variable X � its 
rst performance function F ���

X
� R �

��� �� is de
ned as the right�continuous cumulative distribution function itself�

F ���
X

��	 � F
X
��	 � PfX � �g for � � R�

In the de
nition below� and elsewhere in this paper� we assume that larger outcomes
are preferred to smaller�

The weak relation of the �rst degree stochastic dominance �FSD	 is de
ned as
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follows

X �
FSD

Y � F
X
��	 � F

Y
��	 for all � � R�

The second performance function F ���
X

� R � R� is given by areas below the distri�
bution function F

X
�

F ���
X

��	 �

Z �

��

F
X
��	 d� for � � R� ����	

and de
nes the weak relation of the second degree stochastic dominance �SSD	�

X �
SSD

Y � F ���
X

��	 � F ���
Y

��	 for all � � R� ����	

The corresponding strict dominance relations �
FSD

and �
SSD

are de
ned by the
standard rule

X � Y � X � Y and Y �� X� ����	

Thus� we say that X dominates Y under the FSD rules �X �
FSD

Y 	� if F
X
��	 � F

Y
��	

for all � � R� where at least one strict inequality holds� Similarly� we say that X
dominates Y under the SSD rules �X �

SSD
Y 	� if F ���

X
��	 � F ���

Y
��	 for all � � R�

with at least one inequality strict�
For a set Q of random variables� a variable X � Q is called SSD�e�cient �or

FSD�e�cient	 in Q if there is no Y � Q such that Y �
SSD

X �or Y �
FSD

X	�
The SSD relation is crucial for decision making under risk� If X �

SSD
Y � then X

is preferred to Y within all risk�averse preference models that prefer larger outcomes�
The function F ���

X
can also be expressed as the expected shortfall ����� for each target

value � we have

F ���
X

��	 �

Z �

��

�� � �	 P
X
�d�	

� E fmax�� �X� �	g � PfX � �g Ef� �X jX � �g� ����	

�

�

��
X

�
�
�
�
�
�
�
�
�
��

� � �
X

F
���
X 
��

Fig� ���� The O�R diagram

The function F ���
X

is continuous� convex� nonnegative and nondecreasing� Its
graph� referred to as the Outcome�Risk �O�R	 diagram and illustrated in Figure ����
has two asymptotes which intersect at the point ��

X
� �	� the horizontal axis� and

the line � � �
X
� In the case of a deterministic outcome �X � �

X
	� the graph of



� W� OGRYCZAK AND A� RUSZCZY�NSKI

F ���
X

coincides with the asymptotes� whereas any uncertain outcome with the same
expected value �

X
yields a graph above �precisely� not below	 the asymptotes� Hence�

the space between the curve ��� F ���
X

��		� � � R� and its asymptotes represents the
dispersion �and thereby the riskiness	 ofX in comparison to the deterministic outcome
of �

X
� It is refered to as the dispersion space�

It is convenient to introduce also the distance to the right asymptote�

F
���

X
��	 � F ���

X
��	� �� � �

X
	� ���
	

which can be rewritten as

F
���

X
��	 �

Z �

�

�� � �	 P
X
�d�	

� E fmax�X � �� �	g � PfX � �g EfX � �jX � �g ����	

thus expressing the expected surplus for each target outcome � �see ����	� The vertical
diameter of the dispersion space at a point � is given as�

d
X
��	 � min�F ���

X
��	� F

���

X
��		 ����	

While SSD is a sound theoretical concept� its application to real world decision
problems is di�cult� because it requires a pairwise comparison of all possible outcome
distributions� We would prefer to use simple mean�risk models� and deduce from
them whether a particular outcome distribution is dominated or not�

In general� considering a mean�risk model with the risk of a random outcome X
measured by some functional r

X
� we can introduce the following de
nition�

Definition ���� We say that the mean�risk model ��
X
� r
X
	 is consistent with

SSD� if the following relation holds

X �
SSD

Y 	 �
X
� �

Y
and r

X
� r

Y
�

It is well known that the 
rst inequality at the right hand side is true� X �
SSD

Y 	 �
X
� �

Y
�see ����	� The inequality for the risk term� though� is not true

for some popular risk measures� like the variance or absolute deviation�
Directly from ����	 we see that the mean�risk model with the risk functional

de
ned as the expected shortfall below some 
xed target t�

rt
X
� Efmax�t�X� �	g�

is consistent with the SSD� Integrating the inequality rt
X
� rt

Y
with respect to some

probability measure P
T
we conclude that the expected shortfall from a random target

T distributed according to P
T
�

r
X
�

Z
Efmax�t�X� �	g P

T
�dt	 � Efmax�T �X� �	g� ����	

is consistent with the SSD�
While the use of consistent mean�risk models is quite straightforward� there are

some reasonable risk measures which do not enjoy the consistency property of De
�
nition ���� Therefore� following ����� we relax it a little�
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Definition ���� We say that the mean�risk model ��
X
� r
X
	 is ��consistent with

SSD� where � � �� if the following relation is true

X �
SSD

Y 	 �
X
� �r

X
� �

Y
� �r

Y
�

It is clear that ��consistency implies ��consistency for all � � � � ��
The concept of ��consistency turned out to be fruitful� In ���� we have proved

that the mean�risk model in which the risk is de
ned as the absolute semideviation�

��
X
� Efmax��

X
�X� �	g �

Z �
X

��

��
X
� �	 P

X
�d�	 ����	

is ��consistent with SSD� An identical result �under the condition of 
nite second
moments	 has been obtained in ���� for the standard semideviation�

�	
X
�
�
Ef�max��

X
�X� �		�g

����
�
�Z �

X

��

��
X
� �	� P

X
�d�	

����
� �����	

These results have been further extended in ���� to central semideviations of higher
orders and stochastic dominance relations of higher degrees�

Remark �� In ��� a class of coherent risk measures has been de
ned by means
of several axioms� In our terms� these measures correspond to composite objectives
of form 
�X	 � ��

X
� �r

X
�note the sign change	� where � � �� The axioms are�

translation invariance� positive homogeneity� subadditivity� �monotonicity� �X � Y
a�s� 	 
�X	 � 
�Y 		� and �relevance� �X � �� X �� �	 
�X	 � �	�

Both ��
X
and �	

X
� as seminorms in L� and L�� are convex and positively homoge�

neous� Therefore the composite objectives ��
X
����

X
and ��

X
���	

X
do satisfy the


rst three axioms �contrary to the statement in ��� Rem� �����	� For � � ��� ��� owing
to the consistency with stochastic dominance in the sense of De
nition ���� they also
satisfy �monotonicity� and �relevance�� because X � Y a�s� 	 X �

SSD
Y �

Our objective is to analyze the consistency with stochastic dominance of risk
measures using the quantiles of the distribution of X �

�� Quantile Dominance and the Lorenz Curve� Let us consider the quantile
model of stochastic dominance ����� The 
rst quantile function F ����

X
� ��� �� � R

corresponding to a real random variable X is de
ned as the left�continuous inverse of
the cumulative distribution function F

X
����

F ����
X

�p	 � inf f� � F
X
��	 � pg for � � p � ��

Given p � ��� ��� the number q
X
�p	 is called a p�quantile of the random variable X if

PfX � q
X
�p	g � p � PfX � q

X
�p	g�

For p � ��� �	 the set of such p�quantiles is a closed interval and F ����
X

�p	 represents
its left end ����

Directly from the de
nition of FSD we see that

X �
FSD

Y � F ����
X

�p	 � F ����
Y

�p	 for all � � p � ��

Thus� the function F ���� can be considered as a continuum�dimensional safety mea�
sure �negative of a risk measure	 within the FSD� using any speci
c �left	 p�quantile
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as a scalar safety measure is consistent with the FSD� It is not� however� consistent
with the SSD� because it may happen that X �

SSD
Y � but F ����

X
�p	 � F ����

Y
�p	 for

some p�
Remark �� Value�at�Risk �VaR	 de
ned as the maximum loss at a speci
ed

con
dence level p is a widely used quantile risk measure ����� It corresponds to
the right p�quantile of the random variable X representing gains ��� whereas our
dual stochastic dominance model uses the left p�quantile� Nevertheless� the FSD
consistency results can be also shown for the right quantile qr

X
�p	 � sup f� � F

X
��	 �

pg �where p � ��� �		� thus justifying the VaR measures�
To obtain quantile measures consistent with the SSD we introduce the second

quantile function F ����
X

� R � �R� de
ned as

F ����
X

�p	 �

Z p

�

F ����
X

��	d� for � � p � �� ����	

F ����
X

��	 � �� For completeness� we also set F ����
X

�p	 � �
 for p �� ��� ���

Similarly to F ���
X

� the function F ����
X

is well de
ned for any random variable X

satisfying the condition E jX j �
� By construction� it is convex� The graph of F ����
X

is called the absolute Lorenz curve or ALC diagram for short�
Remark �� The Lorenz curves are used for inequality ordering ��� �� ��� of

positive random variables� relative to their �positive	 expectations� Such a Lorenz
curve� L

X
�p	 � F ����

X
�p	��

X
� is convex and increasing� The absolute Lorenz curves�

though� are not monotone� when negative outcomes occur�
There is an intriguing duality relation between the second quantile function F ����

X

and the second performance function F ���
X

�
Theorem ���� For every random variable X with E jX j �
 we have

�i	 F ����
X

� �F ���
X

��� and

�ii	 F ���
X

� �F ����
X

���
Proof� By the de
nition of the conjugate function� for every p � ��� ���

�F ���
X

���p	 � sup
�
f�p� F ���

X
��	g� ����	

Thus� by ����	 and ����	� �F ���
X

����	 � � and �F ���
X

����	 � �X � For p � ��� �	 the

supremum in ����	 is attained at any � for which p � 
F ���
X

��	� Recalling the de
nition

����	 we see that � is a p�quantile of X � and we can choose � � F ����
X

�p	� Therefore�
by ���� Thm����
�iv	��

F ����
X

�p	 � 
�F ���
X

���p	�

This yields the representation

�F ���
X

���p	 �

Z p

�

F ����
X

��	 d� for p � ��� ���

If p � �� ����	 yields �� and for p �� ��� �� we obtain �
� as can be seen from Figure ����
This proves �i	� Assertion �ii	 is the consequence of the closedness of F ���

X
and ����

Thm�������
While the above result can also be obtained from the Young inequality ����� and

later generalizations	� we hope that connections to the convex analysis may prove
fruitful�
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It follows from Theorem ��� that we may fully characterize the SSD relation by
using the conjugate function F ����

X
�

Theorem ���� X �
SSD

Y � F ����
X

�p	 � F ����
Y

�p	 for all � � p � ��

Therefore� the properties of F ���� are of profound importance for stochastic domi�
nance relations�

Corollary ���� The following statements are equivalent�
�i	 � is a p�quantile of X�
�ii	 sup���p� F ���

X
��		 is attained at ��

�iii	 sup����� F ����
X

��		 is attained at p�
�iv	 F ����

X
�p	 � F ���

X
��	 � p��

Proof� Directly from the de
nitions ����	 and ����	� assertion �i	 is equivalent to
�v	 p � 
F ���

X
��	� and �vi	 � � 
F ����

X
�p	� The equivalence of �ii	��vi	 follows from

Theorem ��� and ���� Thm����
��
We can now provide another representation of the second quantile function� Let

p � ��� �	 and suppose that � is such that P f X � �g � p� Then by Corollary ����iv	
and ����	�

F ����
X

�p	 � p� � F ���
X

��	
� p� � p E fX � �jX � �g � p E fX jX � �g�

����	

It facilitates the understanding of the nature of the second quantile function� but
cannot serve as a de
nition because � such that P f X � �g � p need not exist� ����	
and Theorem ����i	 are precise descriptions�

�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

�

F
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X 
p��

X

p
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Fig� ���� The absolute Lorenz curve and the dual dispersion space

Graphical interpretation provides an additional insight into the properties of the
second quantile function� For any uncertain outcome X � its absolute Lorenz curve
F ����
X

is a continuous convex curve connecting points ��� �	 and ��� �
X
	� whereas a

deterministic outcome with the same expected value �
X

corresponds to the chord
connecting these points� Hence� the space between the curve �p� F ����

X
�p		� � � p � ��

and its chord is related to the riskiness of X in comparison to the deterministic
outcome of �

X
�Fig� ���	� We shall call it the dual dispersion space�

Both size and shape of the dual dispersion space are important for complete
description of the riskiness of X � Nevertheless� it is quite natural to consider some
size parameters as summary characteristics of riskiness�
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Let us start from the vertical diameter of the dual dispersion space de
ned as

h
X
�p	 � �

X
p� F ����

X
�p	� ����	

Lemma ���� For every p � ��� �	

h
X
�p	 � min

��R
E fmax�p�X � �	� ��� p	�� �X		g� ���
	

and the minimum in the expression above is attained at any p�quantile�
Proof� By Theorem ����i	�

h
X
�p	 � inf

�
���

X
� �	p� F ���

X
��		�

Subdi�erentiating with respect to p and using ����	� we see that the in
mum is at�
tained at any p�quantile� From ���
	 we obtain

h
X
�p	 � min

�
�pF

���

X
��	 � ��� p	F ���

X
��		�

With a view to ����	 and ����	�

h
X
�p	 � min

�
�p Efmax��� X � �	g� ��� p	 Efmax��� � �X	g	�

which completes the proof�
The above result reveals a close relation between the vertical dimension of the

dual dispersion space and the absolute deviation from the median�

�
X
� E

���X � F ����
X

� �� 	
����

Corollary ���� h
X
� �� 	 �

�
��X

�

�

��
�
�
�
�
�
�
�
�
�
�
�
�
�

�

F
����
X 
p��

X

p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

�

�
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X

�
�
�
X

�

Fig� ���� The absolute Lorenz curve and risk measures

The maximum vertical diameter of the dual dispersion space �which exists by
compactness and continuity	 turns out to be the absolute semideviation of X �
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Lemma ���� max
p������

h
X
�p	 � ��

X

and the maximum is attained at any p
X
for which PfX � �

X
g � p

X
� PfX � �

X
g�

Proof� By Theorem ����ii	�

max
p������

h
X
�p	 � max

p������
��

X
p� F ����

X
�p		 � F ���

X
��

X
	

and the the 
rst assertion follows from ����	 and ����	� By Corollary ���� �
X

is a
p
X
�quantile�
It is known that the doubled area of the dual dispersion space�

�
X
� �

Z �

�

��
X
p� F ����

X
�p		 dp ����	

is equal to the Gini�s mean di�erence �����

�
X
�

�

�

ZZ
j� � �j P

X
�d�	 P

X
�d�	� ����	

The equality can be veri
ed by calculating the integral in ����	 over � � � �by sym�
metry	 as follows�

�
X
�

ZZ
���

� P
X
�d�	 P

X
�d�	 �

ZZ
���

� P
X
�d�	 P

X
�d�	 � �

�Z
��

�F ��	 P
X
�d�	� �

X

� �

�Z
�

pF �����p	 dp� �
X
� ��

�Z
�

F �����p	 dp� �
X
�

where in the last transformation we employed the integration by parts�
The Gini�s mean di�erence ����	 may be also expressed as the integral of F ���

X

with respect to the probability measure P
X

�
X
�

ZZ
���

�� � �	 P
X
�d�	 P

X
�d�	 �

Z
Efmax�� �X� �	g P

X
�d�	�

Thus� similar to ����	� it represents the expected shortfall from a random target
distributed according to P

X
but this distribution is a function of X � Therefore� the

corresponding SSD�consistency results �cf� ����		 cannot be applied directly to the
Gini�s mean di�erence� Alternatively� �

X
can be expressed with the integral of the

vertical diameter of the dispersion space d
X

����	 with respect to the probability
measure P

X

�
X
� ��

X
�

Z
d
X
��	 P

X
�d�	�

Both � and �� are well de
ned size characteristics of the dual dispersion space
�Fig� ���	� However� the absolute semideviation is a rather rough measure compared
to the Gini�s mean di�erence� Note that ��

X
�� may be also interpreted in the ALC dia�

gram as the area of the triangle given by vertices� ��� �	� ��� �
X
	 and �p

X
� F ����

X
�p
X
		�

where PfX � �
X
g � p

X
� PfX � �

X
g �see Lemma ���	� In fact� ��

X
is the Gini�s
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F
���
X 
��

���� TVaR
X

p�

�F
����
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X

p�

Fig� ���� Dual quantities in the O�R diagram

mean di�erence of a two�point distribution approximating X in such a way that �
X

and �
X
remain unchanged�

Dual risk characteristics can also be presented in the �primal	 O�R diagram
�Fig� ���	� Recall that F ���� is the conjugate function of F ��� and therefore� F ����

describes the a�ne functions majorized by F ��� ����� For any p � ����	� the line with
slope p supports the graph of F ��� at every p�quantile �Corollary ����i	��ii		� It is
given analytically as

Sp
X
��	 � p�� � q

X
�p		 � F ���

X
�q
X
�p		�

where q
X
�p	 denotes a p�quantile of X �

From Corollary ����iv	 it follows that F ����
X

�p	 � �Sp
X
��	� so the value of the

absolute Lorenz curve is given by the intersection of the tangent line Sp
X

with the
vertical �risk	 axis� For any p � ��� �	� the tangent line intersects both asymptotes of
F ���� It intersects the outcome axis �the left asymptote	 at the point � � F ����

X
�p	�p �

�
X
� h

X
�p	�p �see ����		� In Fig� ��� this point is marked as TVaR

X
�p	 due to its

interpretation discussed in the next section� The intersection with the right asymptote
takes place at � � �

X
� h

X
�p	���� p	 �by simple geometry	�

Fig� ��� provides also an interesting interpretation of Lemma ���� By elementary
geometry� the tangent line Sp

X
intersects the vertical line at � � �

X
at the value

Sp
X
��

X
	 � h

X
�p	 thus de
ning the vertical diameter of the dual dispersion space at p�

This justi
es ��
X
� F �����

X
	 as the maximum vertical diameter of the dual dispersion

space�
It might be worth noting that the segment of the line Sp

X
restricted to the area

between the asymptotes� together with the asymptotes themselves� represents an O�R
diagram �the function F ���

Y
	 for a random variable Y which has a two�point distri�

bution� the same mean as X � and dominates X in the sense of the SSD� It has the
largest variance among such variables �with probabilities p and �� p 
xed	�

�� Dual Risk Measures� From the ALC diagram one can easily derive the
following� commonly known� necessary condition for the SSD relation �cf� ����	�

X �
SSD

Y 	 �
X
� �

Y
� ����	

But we can get much more�
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�
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Fig� ���� X �
SSD

Y � p
X
�
X
� ��

X
� p

X
�
Y
� ��

Y
� where p

X
� PfX � �

X
g � �

Consider two random variables X and Y in the common ALC diagram �Fig� ���	�
Since ��

Y
represents the maximal vertical diameter of the dual dispersion space for the

variable Y � its absolute Lorenz curve F ����
Y

�p	 is bounded from below by the straight
line �

Y
p� ��

Y
� At the point p

X
� PfX � �

X
g at which h

X
�p
X
	 � ��

X
�cf� Lemma ���	

one gets�

�
X
p
X
� ��

X
� F ����

X
�p
X
	 � F ����

Y
�p
X
	 � �

Y
p
X
� ��

Y
�

This simple analysis of the ALC diagram allows us to derive the following necessary
condition for the second degree stochastic dominance�

Proposition ���� If X �
SSD

Y � then �
X
� �

Y
and �

X
� ��

X
� �

Y
� ��

Y
� where

the second inequality is strict whenever �
X
� �

Y
�

Proposition ��� was 
rst shown in ���� with the use of the O�R diagram� Here�
by placing the considerations within the �dual	 ALC diagram we make it transparent
that the result is based on the comparison of the absolute Lorenz curves at only one
point� p

X
� For symmetric random variables we have p

X
� ��� and the coe�cient in

front of �� in Proposition ��� can be increased to ��
The main application of the ALC diagram� though� is the analysis of risk and

safety measures using quantiles of the distribution of the random outcome�

Tail Value�at�Risk

The relation in Theorem ��� can be rewritten in the form

X �
SSD

Y � F ����
X

�p	�p � F ����
Y

�p	�p for all � � p � �� ����	

thus justifying the safety measure

TVaR
X
�p	 � F ����

X
�p	�p� ����	

From Theorem ��� we immediately obtain the following observation�
Proposition ���� The mean�risk model ��

X
��TVaR

X
	 is consistent with the

second degree stochastic dominance relation�
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With a view to ����	� the quantity TVaR
X
�p	 may be interpreted the expected

�or tail	 VaR measure �see ��� Def� 
��� and ����	

TVaR
X
�F

X
��		 � E fX jX � �g�

By the convexity of F ����� the function TVaR
X
� ��� �� � R is nondecreasing� con�

tinuous� and TVaR
X
��	 � �

X
� In the case of a random variable with lower bounded

support� the value of TVaR
X
�p	 tends to the minimum outcome when p� ��� Hence�

the max�min selection rule of ���� is a limiting case of the ��
X
��TVaR

X
	 model�

It follows from Lemma ��� that for every p � ��� �	 the corresponding value
TVaR

X
�p	 can be computed as

TVaR
X
�p	 � E fXg �min

��R
E fmax�X � ��

�� p

p
�� �X		g� ����	

This formula may be transformed into

TVaR
X
�p	 � max

��R
�� �

�

p
E fmax��� � �X	g	� ���
	

which corresponds to the direct representation of F ���� as the conjugate function to
F ��� �c�f� ����		� By Corollary ���� the maximum above is attained at any p�quantile�
Interestingly� ���
	 appears also in ���� in so�called Conditional VaR models� our
analysis puts them into the context of stochastic dominance�

Mean absolute deviation from a quantile

Proposition ��� allows us to identify an interesting ��consistent risk measure fol�
lowing from the dual characterization of the SSD� Recalling the vertical diameter
h
X
�p	 of the dual dispersion space we have the following result�
Proposition ���� For any p � ��� �	� the mean�risk model ��

X
� h

X
�p	�p	 is

��consistent with the second degree stochastic dominance relation�
Proof� By Proposition ��� and ����	 we have

X �
SSD

Y 	 �
X
� �

Y
and �

X
� h

X
�p	�p � �

Y
� h

Y
�p	�p�

as required�
Owing to Lemma ��� we may interpret the risk measure h

X
�p	�p as the weighted

mean absolute deviation from the p�quantile�
For p � ���� recalling Corollary ��
� we obtain the following observation �illus�

trated graphically in Fig� ���	�
Corollary ���� For any p � ��� �	� the mean�risk model ��

X
��

X
	 is ��consistent

with the second degree stochastic dominance relation�
Comparing this to Proposition ��� we see that we are able to cover both the

general and the symmetric case with a higher weight put on the risk term� Indeed� in
the symmetric case one has �

X
� ���

X
�

Tail Gini	s mean di
erence

Let us now pass to risk measures based on area characteristics of the dual disper�
sion space� Consider two random variables X and Y in the common ALC diagram
�Fig� ���	� If X �

SSD
Y � then� due to Theorem ���� F ����

X
is bounded from below
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SSD

Y � �
�

�
X
��

X
� � �

�

�
Y
��

Y
�

by F ����
Y

� and �
X
� �

Y
from ����	� Thus the area of the dual dispersion space for

X is �upper	 bounded by the area of the dual dispersion space for Y plus the area
of the triangle between the chords �with vertices� ��� �	� ��� �

X
	 and ��� �

Y
		� Hence�

�
��X � �

��Y � �
� ��X � �

Y
	 and� due to the continuity of the Lorenz curves� this in�

equality becomes strict whenever X �
SSD

Y � This allows us to derive the following
necessary conditions for the second degree stochastic dominance�
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Fig� ���� X �
SSD

Y � �
�
�
X
� �

�
�
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�

�
X
� �

Y
�

Proposition ���� For integrable random variables X and Y the following im�
plications hold�

X �
SSD

Y 	 �
X
� �

X
� �

Y
� �

Y
� ����	

X �
SSD

Y 	 �
X
� �

X
� �

Y
� �

Y
� ����	

Condition ����	 was 
rst shown by Yitzhaki ���� for bounded distributions�
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Similarly� for p � ��� �� one may consider the tail Gini	s measure�

G
X
�p	 �

�

p�

pZ
�

��
X
�� F ����

X
��		d�� ����	

The next result is an obvious extension of Proposition ��
�

Proposition ���� For every p � ��� ���

X �
SSD

Y 	 �
X
�G

X
�p	 � �

Y
�G

Y
�p	� ����	

In other words� the mean�risk model ��
X
� G

X
�p		 is ��consistent with the SSD�

By convexity� G
X
�p	 � h

X
�p	�p for all p � ��� ��� so Proposition ��� is stronger

than Proposition ����

The coe�cient � in front of G
X
�p	 �and G

Y
�p		 cannot be increased for general

distributions� but it can be doubled in the case of symmetric random variables �and
p � �	� Indeed� for a symmetric random variable X one has h

X
�p	 � h

X
�� � p	� so

G
X
� �� 	 � ��

X
� which leads to the following result�

Proposition ���� For symmetric random variables X and Y the following im�
plications hold�

X �
SSD

Y 	 �
X
� ��

X
� �

Y
� ��

Y
�

X �
SSD

Y 	 �
X
� ��

X
� �

Y
� ��

Y
�

�� Mean�Risk Models with Dual Risk Measures� Given a certain set Q of
integrable random variables X � let us analyze in more detail the mean�risk optimiza�
tion problems of form

max
X�Q

��
X
� �r

X
	� �
��	

with � � � and with the risk functional r
X

de
ned as one of our dual �quantile	
measures� We assume that the set Q is convex� closed and bounded in Lq for some
q � ��

The 
rst issue that needs to be clari
ed is the convexity of problem �
��	� This
will help to establish the existence of solutions and to formulate computationally
tractable models�

Lemma ���� For every p � ��� �� the functional X � h
X
�p	 given by ���
� is

convex and positively homogeneous on L��

Proof� Let � � ��� �	� X�Y � Q� and let m
X
and m

Y
be the p�quantiles of X and

Y � By Lemma ����

h
�X������Y

�p	 � min
t
E max

n
p��X � ��� �	Y � t	� ��� p	�t� �X � ��� �	Y 	

o
� E max

n
p���X�m

X
	�����	�Y �m

Y
		� ���p	���m

X
�X	�����	�m

Y
�Y 		

o
�

Using the inequality max�a� b� c� d	 � max�a� c	 � max�b� d	 and Lemma ��� again
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we obtain

h
�X������Y

�p	 � �E max
n
p�X �m

X
	� ��� p	�m

X
�X	

o
� ��� �	E max

n
p�Y �m

Y
	� ��� p	�m

Y
� Y 	

o
� �h

X
�p	 � ��� �	h

Y
�p	�

because m
X
and m

Y
are p�quantiles� This proves the convexity� The positive homo�

geneity follows directly from ���
	�
For the tail Gini�s mean di�erence used as a risk measure we have a similar result�
Lemma ���� For every p � ��� �� the functional X � G

X
�p	 given by �
��� is

convex and positively homogeneous on L��
Proof� We have

G
X
�p	 �

�

p�

pZ
�

h
X
��	 d��

and the result follows from Lemma 
���
Remark �� Again� the composite objectives of form 
�X	 � ��

X
� �r

X
� where

� � ��� �� and r
X

is de
ned as h
X
�p	�p or G

X
�p	� satisfy all axioms of so�called

coherent risk measures discussed in ��� �cf� Remark �	� The convexity and the pos�
itive homogeneity have just been proved� the translation invariance is trivial� and
the monotonicity follows from Propositions ��� and ���� respectively� Indeed� as in
Remark �� X � Y a�s� 	 X �

SSD
Y � and these propositions apply�

Having established the convexity� we can pass now to the analysis of the SSD�
e�ciency of the solutions to problem �
��	� We start from the case of Gini�s mean
di�erence �

X
� G

X
��	�

Theorem ���� Assume that the set Q is convex� bounded and closed in Lq for
some q � �� and r

X
� �

X
� Then for every � � ��� ��� the set of optimal solutions of

����� is nonempty and each its element is SSD�e�cient in Q�
Proof� Let us show that the optimal set of �
��	 is nonempty� By Lemma 
�� the

objective functional is concave� In the re exive Banach space Lq � the set Q is weakly
compact �as convex� bounded and closed ���� Thm� �� p� ����	� and the functional
�
X
� ��

X
is weakly upper semicontinuous �as concave and bounded	� Therefore the

set of optimal solutions of �
��	 is nonempty�
Let X � Q be an optimal solution and suppose that X is not SSD�e�cient� Then

there exists Z � Q such that Z �
SSD

X � From ����	 and ����	 we obtain

�
Z
� �

X
and �

Z
� �

Z
� �

X
� �

X
�

Adding these inequalities multiplied by �� � �	 and �� respectively� we obtain the
sharp �� � �	 inequality �

Z
� ��

Z
� �

X
� ��

X
� This contradicts the maximality of

�
X
� ��

X
�

Let us now consider the risk measure r
X
� h

X
�p	�p� Recall that� owing to ����	

and ����	� the objective in �
��	 can be equivalently expressed as

�
X
� �h

X
�p	�p � ��� �	�

X
� �TVaR

X
�p	�

Theorem ���� Assume that the set Q is convex� bounded and closed in Lq for
some q � �� and r

X
� h

X
�p	�p with p � ��� �	 � Then for every � � ��� ��� the set Q�
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of optimal solutions of ����� is nonempty and for each X � Q� there exists a point
X� � Q� which is SSD�e�cient in Q and with �

X�
� �

X
and h

X�
�p	 � h

X
�p	�

Proof� The proof that the optimal set Q� of �
��	 is nonempty is the same as
in Theorem 
��� By the convexity of the set Q and the concavity of the objective
functional� the set Q� is convex� closed� and bounded�

Suppose that X � Q� is not SSD�e�cient� Then there exists Z � Q such that
Z �

SSD
X � From ����	 and Proposition ��� we obtain

�
Z
� �

X
and �

Z
� h

Z
�p	�p � �

X
� h

X
�p	�p�

Adding these inequalities multiplied by ��� �	 and �� respectively� we obtain

�
Z
� �h

Z
�p	�p � �

X
� �h

X
�p	�p�

Since Z � Q we must have Z � Q� and an equality above� Thus �
Z
� �

X
and

h
Z
�p	 � h

X
�p	�

De
ne the set Q��X	 � fZ � Q� � �
Z
� �

X
g� and consider the problem

min
Z�Q��X�

�
Z
� �
��	

The set Q��X	 is convex� closed and bounded� and �
��	 is equivalent to maximizing
�
Z
���

Z
� By Theorem 
��� a solutionX� of �
��	 exists and is SSD�e�cient in Q��X	�

It is also SSD�e�cient in Q� because we have proved in the preceding paragraph that
it cannot be dominated by a point Z � Q nQ��X	� By construction� �

X�
� �

X
and

h
X�

�p	 � h
X
�p	� as required�

Let us now consider the risk measure in the form of the tail Gini�s mean di�erence�
Analogously to Theorem 
�� we obtain the following result�

Theorem ���� Assume that the set Q is convex� bounded and closed in Lq for
some q � �� and let r

X
� G

X
�p	 with p � ��� �	� Then for every � � ��� ��� the set

Q� of optimal solutions of ����� is nonempty and for each X � Q� there exists an
SSD�e�cient point X� � Q� with �

X�
� �

X
and G

X�
�p	 � G

X
�p	�

Remark �� For symmetric random variables and p � ���� since h
X
�p	 � h

X
���

p	� all optimal solutions are SSD�e�cient� as follows from Theorem 
��� Also� since
G
X
� �� 	 � ��

X
� the coe�cient � in �
��	 can be chosen from ��� ���

�� Stochastic Programming Formulations� Let us formulate a more explicit
convex optimization problem which is equivalent to �
��	 with r

X
� h

X
�p	�p�

max E X �
�

p
E V ����a	

subject to V ��	 � p�X��	� t	� a�s� ����b	

V ��	 � ��� p	�t�X��		� a�s� ����c	

X � Q� V � L���	� t � R� ����d	

The next result follows from Lemma ����
Proposition ���� Problem ����� is equivalent to problem ����� with r

X
�

h
X
�p	�p in the following sense�

�i	 for every solution !X of ������ the triple�

!X� !t � F ����
�X

�p	� !V ��	 � max�p� !X��	� !t	� ��� p	�!t� !X��			

is an optimal solution of ������
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�ii	 for every optimal solution � !X� !t� !V 	 of ������ !X is an optimal solution of ������ !t
is a p�quantile of !X� and E !V ��	 � h

�X
�p	�

In particular� if

Q �
n nX

i��

diXi � �d�� � � � � dn	 � D
o
� ����	

where D is a convex closed polyhedron in R
n and X�� � � � � Xn are integrable random

variables� we recognize a linear two�stage problem of stochastic programming� In this
problem d � D and t � R are 
rst stage variables� while V is the second stage variable�
In the case of 
nitely many realizations �xj�� � � � � x

j
n	� j � �� � � � � N � of �X�� � � � � Xn	�

attained with probabilities ��� � � � � �N we obtain the problem�

max

NX
j��

�j

� nX
i��

dix
j
i �

�

p
vj
�

subject to vj � p
� nX
i��

dix
j
i � t

�
� j � �� � � � � N�

vj � ��� p	
�
t�

nX
i��

dix
j
i

�
� j � �� � � � � N�

d � D� v � R
N � t � R�

Representing
Pn

i�� dix
j
i � t as a di�erence of its positive part uj and its negative

part wj and eliminating the expectation from the objective� we can transform the last
problem to a simple recourse formulation�

max

�
t�

NX
j��

�j

�
��� �	uj � ��� ��

�

p
	wj

��

subject to

nX
i��

dix
j
i � t � uj � wj � j � �� � � � � N�

d � D� u � R
N
� � w � R

N
� � t � R�

Let us now formulate a stochastic programming problem which is equivalent to
�
��	 with r

X
� G

X
�p	�

max E X �
��

p�

pZ
�

Z
V ��� �	 P�d�	 d� ����a	

subject to V ��� �	 � ��X��	� t��		� a�s� in ��� p���� ����b	

V ��� �	 � ��� �	�t��	 �X��		� a�s� in ��� p���� ����c	

X � Q� V � L����� p�� �	� t � L����� p�	� ����d	

The product space ��� p��� is assumed to be equipped with the product measure of
the Lebesgue measure and P�

Proposition ���� Problem ����� is equivalent to problem ����� with r
X
� G

X
�p	

in the following sense�
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�i	 for every solution !X of ������ the triple�

!X� !t��	 � F ����
�X

��	� !V ��� �	 � max��� !X��	� !t��		� ��� �	�!t��	� !X��			

is an optimal solution of ������

�ii	 for every optimal solution � !X� !t� !V 	 of ������ !X is an optimal solution of ������
!t��	 is an ��quantile of !X for almost all � � ��� p�� and E !V ��� �	 � h

�X
��	 for

almost all � � ��� p��

Proof� For X � Q the quantile F ����
X

��	 is integrable in ��� p�� so restricting t to
L����� p�	 is allowed� The rest of the proof follows from Lemma ���� as in Proposi�
tion ����

In particular� if Q is de
ned by ����	 and �X�� � � � � Xn	 is a discrete random vector
with N equally probable realizations �xj�� � � � � x

j
n	� j � �� � � � � N � we can further simplify

this problem� We notice 
rst that h
X
��	 is a piecewice linear concave function with

break points at k�N � k � �� � � � � N � Thus the inequalities ����b	�����c	 need to be
enforced only at the break points� Moreover� the integral in the objective of ����	
can be calculated exactly by using the values at the break points� by the method of
trapezoids�

To be more speci
c� let m be the smallest integer for which m�N � p and let
�k � k�N � k � �� � � � �m � �� �m � p� We obtain the following two�stage stochastic
program�

max

NX
j��

�j

� nX
i��

dix
j
i �

�

p�

mX
k��

��k�� � �k	�v
j
k�� � vjk	

�

subject to vjk � �k

� nX
i��

dix
j
i � tk

�
� j � �� � � � � N� k � �� � � � �m�

vjk � ��� �k	
�
tk �

nX
i��

dix
j
i

�
� j � �� � � � � N� k � �� � � � �m�

d � D� v � R
N � R

m�� � t � R
m�� �

In the above problem vjk represents the value of V ��k	 in the jth realization� and
tk � t��k	� Similarly to problem ����	� the last problem can also be transformed to a
simple recourse formulation�

If the probabilities �j of realizations of �X�� � � � � Xn	 are not equal� though� the
break points may depend on our decisions� and the reduction to the 
nite dimensional
case is harder� One possibility is to introduce such a grid that contains all possible
break points� but it may be unnecessarily numerous� Another possibility is to resort
to an approximation with some reasonably chosen grid �k� k � �� � � � �m� It will be a
relaxation because h��	 is a concave function�

For p � � all these complications disappear� because the alternative de
ni�



DUAL STOCHASTIC DOMINANCE ��

tion ����	 of �
X
has an obvious linear programming representation�

max

�
NX
j��

�j

nX
i��

dix
j
i � �

NX
j��

NX
l�j��

�j�lv
jl

�

subject to vjl �

nX
i��

di�x
j
i � xli	� j � �� � � � � N� l � j � �� � � � � N�

vjl �
nX
i��

di�x
l
i � xji 	� j � �� � � � � N� l � j � �� � � � � N�

d � D� v � R
N�N����� �

It has a much larger number of variables and constraints� though�
All 
nite dimensional stochastic programing models of this section can be solved

by specialized decomposition methods �����

�� Conclusions� We have de
ned dual relations of stochastic dominance for
arbitrary random variables with 
nite expectations� The second degree stochastic
dominance can be expressed as a relation of conjugate functions to second order
performance functions�

By using concepts and methods of convex analysis and optimization theory� we
have identi
ed several security and risk measures� which can be employed in mean�risk
decision models� tail Value�at�Risk�

TVaR
X
�p	 � q

X
�p	�

�

p
E fmax��� q

X
�p	�X	g�

where q
X
�p	 is a p�quantile� weighted mean deviation from a quantile�

h
X
�p	 � E fmax�p�X � q

X
�p		� ��� p	�q

X
�p	�X		g�

and tail Gini	s mean di
erence�

G
X
�p	 �

�

p�

pZ
�

h
X
��	 d��

We have shown that the mean�risk models using these measures� ��
X
��TVaR

X
�p		�

��
X
� h

X
�p		� and ��

X
� G

X
�p		 are consistent with the second degree stochastic domi�

nance relation �in the sense of De
nition ��� for TVaR
X
�p	 and De
nition ��� for the

other two measures	� In particular� the optimal solutions of the corresponding mean�
risk models� if unique� are e�cient under the second degree stochastic dominance
relation�

Finally� we have found stochastic linear programming formulations of these mod�
els� This opens a new area of applications of the theory and methods of stochastic
programming�
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