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Abstract

We introduce a long memory autoregressive conditional Poisson (LMACP) model

to model highly persistent time series of counts. The model is applied to forecast

quoted bid-ask spreads, a key parameter in stock trading operations. It is shown

that the LMACP nicely captures salient features of bid-ask spreads like the strong

autocorrelation and discreteness of observations. We discuss theoretical properties

of LMACP models and evaluate rolling window forecasts of quoted bid-ask spreads

for stocks traded at NYSE and NASDAQ. We show that Poisson time series mod-

els significantly outperform forecasts from ARMA, ARFIMA, ACD and FIACD

models. The economic significance of our results is supported by the evaluation of

a trade schedule. Scheduling trades according to spread forecasts we realize cost

savings of up to 13 % of spread transaction costs.
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1 Introduction

Bid-ask spreads reflect the fundamental costs of immediate trading, i.e., the cost of

constantly guaranteeing a counterparty for trades to market participants. They are

an important determinant of liquidity on stock markets and thus play a dominant role

in the literature on market microstructure and stock trading. Theoretical models on

market making along the lines of Copeland and Galai (1983), Kyle (1985), Glosten

and Milgrom (1985) and Easley and O’Hara (1992) emphasize the adverse selection

component in bid-ask spreads indicating information asymmetry among market par-

ticipants. Based on game-theoretical dynamic models, Foucault (1999) and Foucault

et al. (2005) argue that the bid-ask spread is the dominant parameter for the decision

between different order types on stock markets. Traders can either be patient and

submit limit orders or cross the spread and pay the bid-ask spread. Empirical studies

confirm that limit and market order submission strategies indeed depend strongly on

quoted spreads, see Biais et al. (1995), Harris and Hasbrouck (1996), Ranaldo (2004),

Anand et al. (2005), Hall and Hautsch (2006) and Pascual and Veredas (2009).

Despite the importance of bid-ask spreads in trading applications and the relevance

of spread predictions for the reduction of transaction costs, the question of how to sta-

tistically model bid-ask spreads has not been systematically addressed yet. Our paper

is the first contribution establishing a concise econometric methodology for modeling

and forecasting bid-ask spreads on a high frequency.

Due to the discreteness of prices, bid-ask spreads are multiples of minimum price

changes and hence form a time series of count variables. We observe that spreads reveal

a pronounced seasonality pattern and are strongly serially dependent. Geweke and

Porter-Hudak (1983) (GPH) tests indicate that the bid-ask spread time series exhibit

long range dependence. To capture these empirical properties we introduce a novel

count data model - the long memory autoregressive conditional Poisson (LMACP)

model. Discussing empirical and theoretical properties we show that the model is

suitable for the analysis and prediction of strongly persistent discrete time series.

Traditional approaches, such as Glosten and Harris (1988), George et al. (1991),
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Huang and Stoll (1997) and Bollen et al. (2004), decompose bid-ask spreads into their

adverse selection, inventory holding and transaction components but are silent regard-

ing their dynamic properties. Conversely, more recent time series approaches typically

model bid-ask spreads implicitly in models for bid-ask quotes. Engle and Patton (2004)

and Hautsch and Huang (2010), for instance, estimate error correction models for bid

and ask quotes with the bid-ask spread serving as cointegration relation. Hasbrouck

(2000) models the dynamics of bid- and ask quotes separately but does not explicitly

focus on the spread. Based on a vector autoregression framework, Taylor (2002) is the

only approach deriving spread forecasts.

Our study contributes to the recent literature on high frequency liquidity forecast-

ing. See, e.g., Brownlees et al. (2010) on volume forecasts and Härdle et al. (2009) on

forecasts of limit order book curves. Furthermore, the proposed LMACP model con-

tributes to the literature on dynamic count data models as in Rydberg and Shephard

(1999), Heinen (2003), Fokianos et al. (2009) and Ferland et al. (2006) among others.

Finally, our study is related to count data predictions as in Sutradahar (2008), Jung

et al. (2006) and Freeland and McCabe (2004).

Our forecast study is carried out based on representative stocks from the mid cap

sector of the US Russell 3000 universe. We report rolling-window forecasts for quoted

spreads on a 30 second frequency. The forecast evaluation of point and direction fore-

casts shows that LMACP models outperform competitors such as autoregressive moving

average (ARMA), autoregressive fractionally integrated moving average (ARFIMA),

autoregressive conditional duration (ACD) and fractionally integrated autoregressive

conditional duration (FIACD) models. Four main results emerge from the analysis.

First, we show the importance of explicitly addressing the discrete nature of bid-ask

spreads. In particular, approaches based on continuous distributions are outperformed

by Poisson models in terms of point, density and direction forecasts. Second, long mem-

ory specifications widely perform better than their short memory counterparts in terms

of the root mean squared error and the directional accuracy. Third, additional predic-

tors motivated from market microstructure theory, such as trading volume, volatility,

first level depth and order imbalance improve forecasts. Fourth, an economic evalua-

tion of a simple trading scheme reveals significant cost savings of up to 13 % when the

trading schedules take bid-ask spread forecasts into account.
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The remainder of the paper is organized as follows. Section 2 gives descriptive

statistics. In Section 3, we outline the econometric model. Section 4 describes the

forecasting setup and corresponding evaluation criteria. In Section 5, the forecasting

results are presented. Finally, Section 6 concludes.

2 Properties of Bid-Ask Spreads

2.1 The Bid-Ask Spread as a Liquidity Measure

Trading on financial markets requires the presence of a counterparty for trades. Ac-

cording to theoretical models along the lines of Copeland and Galai (1983) and Glosten

and Milgrom (1985), liquidity suppliers like market makers, dealers or participants

submitting limit orders act as intermediaries and mitigate the search costs by offering

immediate trade execution.1 Empirical studies like Glosten (1987), Glosten and Harris

(1988) and Huang and Stoll (1997) suggest that quoted bid-ask spreads are measures of

the costs of order processing, inventory holding and adverse selection incurred by these

liquidity providers. Liquidity suppliers recoup their own costs in time t by purchasing

at the bid price Bt and selling at a higher ask price At. As a measure of immediate

trading and hence liquidity costs, the quoted bid-ask spread St in t is thus given by

St := At−Bt, where the quotes At and Bt are given as multiples of 0.01 (price ticks). A

closely related measure is the effective spread, given as SBt := Pt−Bt for buyer-initiated

trades and SAt := At − Pt for seller-initiated trades, where Pt is the transaction price

(in multiples of 0.01).

The importance of bid-ask spreads as liquidity measures for practitioners is reflected

in limit order submission strategies employed by market participants to reduce trading

costs. Limit and market order submission strategies depend strongly on quoted spreads

and quoted depth as outlined in Biais et al. (1995), Harris and Hasbrouck (1996),

Griffiths et al. (2000), Anand et al. (2005), Parlour (1998), Ranaldo (2004) and Pascual

and Veredas (2009).

1See Bessembinder and Venkataraman (2010) for an overview on spread-related trading costs.
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Figure 1: Evolution of the average quoted and average effective bid-ask spreads for 30 big-cap
stocks and 80 mid-, small- and micro-cap stocks of the Russell 3000 as well as average quoted
spreads of the S&P 500 for 2010. Smoothed via kernel regression

2.2 Empirical Properties

Histograms of spread distributions substantially vary over the Russell 3000 cross-section

of the market at NYSE and NASDAQ. We show histograms for a large cross-section

for January to February 2008 in the web appendix to the paper, http://amor.cms.

hu-berlin.de/~grosskla/index.html. In our empirical analysis, we exclude stocks

revealing ”trivial” spread distributions with spreads being virtually constant to one tick.

Rather, we focus on stocks with an average spread of more than two ticks revealing more

dispersed distributions. The latter still cover a large fraction of the Russell 3000 index.

Figure 1 shows that the average quoted spread for the constituents of the S&P 500 in

2010 is above 2. Moreover, as shown in Figure 1, average bid-ask spreads significantly

vary over time. Particularly during the peak of the financial crisis in fall 2008, average

spreads nearly doubled compared to the level before.

We employ national best bid and offer (NBBO) quotes and transaction data from
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Figure 2: Histogram and typical pattern of the 30s bid-ask spreads for the four selected
mid-cap stocks (histogram for Jan. and Feb. 2008)

the Trade and Quote (TAQ) database of the NYSE.2 Bid-ask spreads are computed

as end-point spreads based on a 30 second frequency. We omit the first and last ten

minutes of the trading day to reduce the impact of trading starts and stops.

In the paper, we present results for four stocks from the mid-cap sector of the

Russell index for January and February 2008 (GXP.N, EMN.N (traded at NYSE) and

XRAY.OQ, EQIX.OQ (traded at NASDAQ)). The stocks are chosen to be representa-

tive for stocks below the big-cap sector of the Russell as well as for stocks of the big-cap

sector with an average spread above two ticks. Figure 2 shows the distributions and

snapshots of the time series evolution. Additional and robustifying results for a wide

cross-section of stocks are provided in the web appendix.

Due to the discreteness of price ticks (as multiples of 0.01), a time-ordered sequence

of quoted bid-ask spreads multiplied by 100 forms a time series of count variables. Table

1 gives descriptive statistics for the 30 second spread time series of the selected stocks.

We observe that spread distributions can be both over- and underdispersed, i.e., have

2According to the US Securities and Exchange Comission Regulation brokers are required to guarantee
customers the best quoted prices across US-based exchanges.

6



GXP.N XRAY.OQ EMN.N EQIX.OQ

Mean 2.369 2.719 6.081 11.554
Variance 1.742 1.822 7.022 51.438
Max 28.000 23.000 36.000 89.000
Min 1.000 1.000 1.000 1.000
Median 2.000 3.000 6.000 10.000
10% Quantile 1.000 1.000 3.000 4.000
90% Quantile 4.000 4.000 9.000 20.000
LB20 79853.9 71367.0 43658.7 46874.1
Average Mid-Quote 27.632 42.117 63.809 77.500
Relative Spread in % 8.6 6.5 9.5 14.9

Table 1: Descriptive Statistics of the 30s quoted spread in ticks. LB20 denotes the Ljung-Box
statistic for 20 lags. The relative spread is the spread fraction of the mid-quote price. Sample
period: Jan.-Feb. 2008

variance above or below the means. As shown in Figure 3, the autocorrelation functions

(ACFs) of bid-ask spread series decay very slowly and indicate long range dependence.

In light of the bid-ask spread as a cointegration relation between ask and bid quotes

(see Engle and Patton (2004) and Hautsch and Huang (2010)), these results mean that

deviations from equilibria are very persistent.

A time series formally is long range dependent if

lim
j→∞

ρj/(cj
−α) = 1, (1)

where α ∈ (0, 1), c > 0 and ρj denotes the jth order autocorrelation, see, e.g., Be-

ran (1998). An immediate consequence is that autocorrelations are not absolutely

summable. Long range dependence is often found in financial market data (see, among

many others, Ding and Granger (1996), Andersen et al. (2003) and Corsi (2009) for

volatility data, Lux and Kaizoji (2007) for traded volumes and Deo et al. (2010) for

trade durations) as well as in macroeconomic time series (see Bhardwaj and Swanson

(2006) for an overview). The presence of long range dependence in spreads is supported

by Figure 4 showing a convergence rate of the mean slower than
√
n for two of the four

stocks. More formally, we conduct the Geweke and Porter-Hudak (1983) (GPH) test

for long memory, which is is based on the spectral regression

ln(I(ωλ)) = a+ b ln
(

4 sin2
(ωλ

2

))
+ nλ, λ = 1, .., v, (2)
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EQIX.OQ: ACF spread

Figure 3: Autocorrelation functions of the 30s spreads for the mid-cap stocks (1-200 lags)
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Figure 4: Log-log of variance of mean vs. sample size. The dotted line has slope −1. The
thick line is the regression line through the variance of the mean per sample size
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Figure 5: Intraday Periodicities for the 30s bid-ask spread series in January and February
2008 for the mid-cap stocks. Smoothed via kernel regression

GXP.N XRAY.OQ EMN.N EQIX.OQ

Estimate 0.455 0.439 0.470 0.303
T-Stat 8.868 8.559 9.148 5.901
P-Value 0.000 0.000 0.000 0.000

Table 2: GPH Test of the spread series

where I(ωλ) is the periodogram of the time series with sample size T at the frequencies

ωλ = 2πλ
T . Following Diebold and Rudebusch (1989) we select v =

√
T . Table 2

shows that the estimates of the long memory parameter b are significant and in the

range (0, 0.5). This indicates that the series is covariance stationary but long range

dependent.

As reflected by Figure 5, we observe pronounced intraday periodicities in line with

Chan et al. (1995) as well as Chung et al. (1999). Bid-ask spreads are increased in

the beginning of a trading day and decline in the course of the trading session. Such

a pattern is explained by a higher adverse selection component in spreads due to the

processing of overnight information in the morning.
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3 An Econometric Model for Bid-Ask Spread Dynamics

Traditional approaches for time series of count variables are parameter-driven models

based on Zeger (1988), Bayesian count data models in the spirit of Harvey and Fer-

nandez (1989), Hidden Markov models (see MacDonald and Zucchini (1997)) or integer

autoregressive moving average (INARMA) models (see McKenzie (2003)). Though con-

ceptually elegant, these approaches suffer from tedious estimation procedures which

makes them intractable in extensive high-frequency applications. As an alternative,

the more recent literature focusses rather on observation-driven models, such as the

autoregressive conditional Poisson (ACP) model as introduced by Rydberg and Shep-

hard (1999) and put forward by Heinen (2003), Fokianos et al. (2009) and Ferland et al.

(2006). In contrast to the aforementioned models, ACP models are straightforward to

estimate and tractable even for a large number of observations. Moreover, in contrast

to Hidden Markov Models or the Autoregressive Multinomial Model proposed by Engle

and Russell (2005), the ACP does not require to specify the states of the dependent

variable prior to the estimation.

3.1 The Autoregressive Conditional Poisson model

Since bid-ask spreads are strictly positive but the Poisson distributions (and extensions

thereof) are defined on N ∪ {0}, we follow Rydberg and Shephard (2003) and shift the

spread distributions without loss of generality by one tick to the left. Accordingly, the

spread process is re-defined as St := {(spread in number of ticks)− 1}.

Let P(λt) denote the Poisson distribution with mean λt and let Ft denote the

information available in t. Moreover, let two polynomials α and β be given as α(B) :=

α1B+α2B
2 + ...+αqB

q and β(B) := β1B+β2B
2 + ...+βpB

p, where B is the backshift

operator and αi > 0, i = 1, .., q, as well as βi > 0, i = 1, .., p. Then, the autoregressive

conditional Poisson process {St}t∈Z is given by

St|Ft−1 ∼ P(λt), ∀ t ∈ Z,

λt = c+ α(B)St + β(B)λt,
(3)

where c > 0. Under (3) the conditional probability mass function of St = s, s = 0, 1, 2, ..

10



is

P(St = s|λt) =
λst
s!
e−λt . (4)

As shown by Ferland et al. (2006), the series {St} is covariance stationary as well as

strictly stationary if
∑q

i=1 αi+
∑p

j=1 βj < 1. Fokianos et al. (2009) derive the ergodicity

conditions for a covariance stationary ACP process in the case q = p = 1.

Rearranging (3), the ACP mean equation can be rewritten as an ARMA(max{p, q}, p)

specification of the form

(1− φ(B))

(
St −

c

(1− φ(1))

)
= (1− β(B))νt, (5)

with φ(B) := α(B)+β(B) and νt := St−λt being a martingale difference sequence. As

discussed by Ferland et al. (2006), the autocorrelation functions of the representations

(5) and (3) are identical which makes it appropriate to interpret (3) as a conditional

mean rather than a conditional variance model3.

While the mean and variance of the ACP process (3) are assumed to be condition-

ally equal, the variance of the ACP process is unconditionally greater or equal to the

unconditional mean. As shown by Heinen (2003), in case of q = p = 1 we have

E[St] =
c

1− (α1 + β1)
, Var[St] =

E[St](1− (α1 + β1)2 + α2
1)

1− (α1 + β1)2
≥ E[St]. (6)

Hence, the ACP specification can generate unconditional overdispersion and the marginal

distribution of St is no longer Poisson.

To account for the possibility of both conditional as well as unconditional overdis-

persion and underdispersion, Heinen and Rengifo (2007) propose using the Double

Poisson distribution proposed by Efron (1986) and defined by

P(St = s|λt, γ) = c(γ, λt) · γ1/2e−γλt
(
e−sss

s!

)(
eλt
s

)γs
, s=0,1,2,..., (7)

where the constants c(γ, λt) can be numerically approximated by

1

c(γ, λt)
= 1 +

1− γ
12λtγ

(
1 +

1

λtγ

)
. (8)

3Recall, that under the Poisson assumption λt equals both the conditional mean and the conditional
variance.
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The Double Poisson distribution nests the Poisson for γ = 1.

Accordingly, a so-called Autoregressive Conditional Double Poisson (ACDP) model

is given by

St|Ft−1 ∼ DP(λt, γ), ∀t ∈ Z, (9)

where DP denotes the Double Poisson distribution and λt is parameterized as in (3).

The conditional variance of the ACDP model is given by Var[St|Ft−1] = λt/γ with γ > 1

(γ < 1) reflecting conditional underdispersion (overdispersion). As shown by Heinen

(2003), the Double Poisson assumption can overcompensate the overdispersion gener-

ated by the dynamic mean specification resulting in unconditional underdispersion. In

particular, in the case p = q = 1, the ACDP generates unconditional underdispersion

if γ > 1−(α1+β1)2+α1

1−(α1+β1) .4

Explanatory variables are easily included in the given setting using an exponential

link function. Let xt denote a k-dimensional vector of covariates without a constant

and let γ denote the corresponding parameter vector. Then, the the conditional mean

is re-defined as E[St|Ft−1] := λt exp(x′tγ), with λt given by (3).

AC(D)P models are straightforwardly estimated by maximum likelihood. In case

of an ACDP specification the log likelihood function is given by

lnL(·, γ) =
T∑
t=1

(
1

2
ln(γ)− γλt + St(ln(St)− 1)− ln(St!) + γSt

(
1 + ln

(
λt
St

)))
,

(10)

where the constants c(γ, λt) are omitted.

3.2 Long Memory Autoregressive Conditional Poisson Models

To account for long range dependence in spread series, we propose two types of long

memory autoregressive conditional Poisson models. Both specifications capture hyper-

bolically decaying autocorrelation functions and are motivated by recent advances in

long memory volatility models.

A building block of a long memory model is the fractional differencing operator (1−

B)d (see Hosking (1981)) which is a polynomial defined in terms of the hypergeometric

4An alternative generalization of the Poisson distribution is the Negative Binomial distribution. How-
ever, as it can only account for overdispersion in the data, it is less flexible.
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function F and can be serially expanded according to

(1−B)d = F (−d, 1, 1;B) =
∞∑
j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
Bj . (11)

The two types of models considered below differ in the way how (1−B)d enters the con-

ditional mean specification which has strong implications for the existence of first and

second unconditional moments. Practically they differ by providing different forecasts

which is analyzed in depth in Section 5.

1) LMACP Type I

The so-called Long Memory ACP (LMACP) type I specification is obtained by aug-

menting the ARMA representation (5) by (1−B)d resulting in

(1−B)d(1− φ(B))(St − ω) = (1− β(B))νt, (12)

where ω ∈ R+
0 . The polynomials φ and β are defined as in (5) with the roots of

(1 − φ(B)) and (1 − β(B)) lying outside the unit circle. In the GARCH case, a cor-

responding specification has been proposed by Karanasos et al. (2004) based on an

ARMA representation of GARCH processes and is closely related to the models by

Zaffaroni (2004), Koulikov (2003) and Giraitis et al. (2004).

Expressing (12) in terms of λt, a LMACP type I process is obtained by

St|Ft−1 ∼ P(λt), ∀t ∈ Z,

λt =
(1− φ(B))(1−B)d

(1− β(B))
ω + Ψ(B)St = Ψ(B)St,

(13)

where the polynomial Ψ is given as

Ψ(B) := 1− (1− φ(B))(1−B)d

(1− β(B))
=

∞∑
i=1

ψiB
i (14)

and (1−φ(B))(1−B)d

(1−β(B)) ω = 0. Accordingly, the long memory autoregressive conditional

Double Poisson (LMACDP) model is given by St|Ft−1 ∼ DP(λt, γ), ∀t ∈ Z with

λt = Ψ(B)St and nests the Poisson case for γ = 1.
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Based on the representation

λt = ω + (Ω(B)− 1) νt, (15)

Ω(B) := (1−Ψ(B))−1 =
∞∑
i=0

ωiB
i, (16)

we observe that ω corresponds to the unconditional mean and is finite.

Conditions for the non-negativity of the conditional mean λt are identical to those

for long memory GARCH or fractionally integrated GARCH (FIGARCH) processes

(Baillie et al. (1996)). In the case 0 < β1 < 1 and p = q = 1 we have:

Proposition 1. Let fi = i−1−d
i for i = 1, 2, .. and let φ1 = α1 + β1. The conditional

mean of the LMACDP with order p = q = 1 is nonnegative a.s. if 0 < β1 < 1 and

either ψ1 ≥ 0 and φ1 ≤ f2 or for k > 2 with fk−1 < φ1 ≥ fk it holds that ψk−1 ≥ 0.

Proof. See the proof in Conrad and Haag (2006) for FIGARCH models which directly

applies to the mean specification of the long memory (Double) Poisson.

The next proposition establishes the unconditional variance Var[St]. Notably, in

contrast to the fourth moment of long memory GARCH models the second moment of

St exists without imposing additional conditions on the process St.

Proposition 2. The unconditional variance of the long memory autoregressive condi-

tional Double Poisson model type I is given by

Var[St] =
1

γ
E[λt]

∞∑
j=0

ω2
j <∞. (17)

Proof. See the appendix.

Accordingly, in the LMACP model (γ = 1), the dynamic specification induces

unconditional overdispersion since
∑∞

j=0 ω
2
j ≥ 1 and thus Var[St] = E[λt]

∑∞
j=0 ω

2
j ≥

E[λt].
5 The overdispersion due to the dynamic specification is dependent on the param-

eter d via ωj ≈ Cjd−1. However, the parameter γ of the Double Poisson distribution in

5Details on why
∑∞
j=0 ω

2
j ≥ 1 can be found in the technical appendix.
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the LMACDP model can generate underdispersion in case of γ >
∑∞

j=0 ω
2
j . Likewise

overdispersion is captured if γ <
∑∞

j=0 ω
2
j .

Finally, from the representation St = ω + Ω(B)νt we straightforwardly get the

n-order autocorrelation as

ρn(St) =

∑∞
j=0 ωjωj+n∑∞

j=0 ω
2
j

. (18)

Consequently, the LMACDP type I model is covariance stationary for 0 < d < 0.5.6

Using ωj ≈ Cjd−1 for high j we have ρn(St) ≈ C∗n2d−1 which in turn implies that

limn→∞
∑n

k=0 |ρk(St)| is divergent.

2) LMACP Type II

The LMACP type II model is motivated by the specification of a FIGARCH model for

volatility processes and the fractionally integrated autoregressive conditional duration

(FIACD) model proposed by Jasiak (1998). It builds on the following representation

of the conditional mean,

(1− φ(B))(1−B)dSt = ω + (1− β(B))νt, (19)

where ω ∈ R+
0 . Rearranging, the LMACP type II is then defined as

St|Ft−1 ∼ P(λt), ∀t ∈ Z,

λt =
ω

(1− β(B))
+ Ψ(B)St,

(20)

where Ψ is the polynomial (14). For the LMACDP type II we correspondingly change

the conditional distribution assumption to St|Ft−1 ∼ DP(λt, γ). The non-negativity

of the conditional mean is guaranteed as long as the conditions of Proposition 1 are

fulfilled (see Conrad and Haag (2006)).

The major difference to the type I specification is that the unconditional mean of

the type II model is not finite since for d < 0.5 the coefficients of the power expansion of

(1−B)−d forB = 1 are not summable. This result is analogous to the difference between

FIGARCH processes and long memory GARCH specifications proposed by Karanasos

6Note that in the case 0.5 ≤ d ≤ 1 limk→∞
∑k
i=0 ω

2
i does not converge and thus the LMACDP is no

longer covariance stationary.
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et al. (2004). Hence, the expectation E[St] = E[Γ(1)ω + Γ(B)(1− β(B))νt] = E[Γ(1)ω]

is not defined for Γ(B) := (1 − φ(B))−1(1 − B)−d. The type II model is thus not

covariance stationary and the long memory condition (1) cannot be directly verified

since second moments do not exist. 7

However, computing impulse response functions we show that the model can still

capture long range dependence. The impulse response function of the LMACDP type

II is defined in terms of the sequence δk, k = 0, 1, ..,

δk :=
∂E[St+k|Ft]

∂νt
− ∂E[St+k−1|Ft]

∂νt
. (21)

Then, the cumulative impulse response function is given by λk :=
∑k

l=0 δl, k = 0, 1, ...,

where δk can be derived from the first difference in St,

(1−B)St =
ω

(1− φ(B))(1−B)d−1
+ (1−B)Ω(B)︸ ︷︷ ︸

=:∆(B)

νt, (22)

with ∆(B) :=
∑∞

j=0 δjB
j . The impulse response weights can also be recovered from

the cumulative impulse responses by ∆(B) = (1−B)Λ(B), where Λ(B) :=
∑∞

k=0 λkB
k.

From (22) we deduce that Λ(B) = Ω(B). Thus, in the long run, shocks to the mean

die out because ∆(1) = 0, i.e.,

lim
k→∞

k∑
l=0

δl = lim
k→∞

λk = ∆(1) = 0. (23)

The shocks exhibit a slow, hyperbolic decay rate dependent on the parameter d since

λk = ωk ≈ Ckd−1 for high k. Since this behavior is present also for 0.5 ≤ d ≤ 1, we

relax the restriction implied by the type I model and require 0 < d ≤ 1 in the type II

specification.

7While Baillie et al. (1996) argue that the strict stationarity holds for FIGARCH models based on the
results by Bougerol and Picard (1992), a similar argument does not hold for the LMACDP type II
model as the conditional mean cannot be factored out from the Poisson distribution.
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4 Forecasting Bid-Ask Spreads

4.1 Computation of Forecasts

We evaluate out-of-sample forecasts based on a rolling window setup where the un-

derlying model is re-estimated every 10 minutes to quickly adapt to potential changes

in parameters. In particular, we conduct the following steps for the Jan./Feb. 2008

sample:

(i) (Estimation) Estimate the econometric model based on an estimation window

corresponding to five trading days of 30 second spread data.

(ii) (Forecasting) Using the parameter estimates from (i), derive successive one-step

ahead forecasts for the 10 minute horizon ahead of the estimation window.

(iii) (Rolling forward the windows) Move estimation and forecast window forward 10

minutes.

The models are estimated based on truncations of the (infinite) power expansion of

(1−B)d. Pre-estimation analysis shows that a truncation point of 250 observations is

sufficient to obtain reliable estimates which are widely independent of the truncation.

We evaluate point forecasts, St+1|t, and directional forecasts, Dt+1|t, defined as

St+1|t :=
[
λ̂t+1

]
, (24)

Dt+1|t := 1l {St+1|t>St} − 1l {St+1|t<St}, (25)

where λ̂t+1 is the mean forecast for t + 1 based on the conditional mean specification

and [·] rounds its argument to the nearest integer. Hence, Dt+1|t ∈ {−1, 0, 1} if spreads

increase, are constant and decrease, respectively.

4.2 Additional Predictors based on Market Microstructure Theory

Decomposing the bid-ask spread into its components, Glosten and Harris (1988), George

et al. (1991), Huang and Stoll (1997) and Bollen et al. (2004), among others, identify

adverse selection and order processing costs as the main factors driving the spread. The

adverse selection component of spreads is highly related to the amount of information
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asymmetry in the market. To capture states of high uncertainty and imbalances in

the market, we include the realized volatility, given as the sum of squared mid-quote

returns over each 30s interval and, alternatively, the absolute 30s mid-quote returns.

Moreover, we construct measures of relative trade imbalance and relative depth im-

balance to account for asymmetries in trading. The relative trade imbalance is given

as

Timbt :=
|
∑tm

τ=t1
Vτ · 1l {qτ=−1} −

∑tm
τ=t1

Vτ · 1l {qτ=1}|∑tm
τ=t1

Vτ
, (26)

where 1l {·} denotes the indicator function and V1, V2,...,Vm are the trade sizes corre-

sponding to the time points t1 to tm of a 30 second interval. The trade indicator qt

classifies trades into buys (+1) and sells (-1) according to the Lee and Ready (1991)

algorithm. The relative depth imbalance is defined as

DPimbt :=
|Adpt −Bdpt|
Adpt +Bdpt

, (27)

where Adpt denotes the best ask depth and Bdpt the best bid depth. As additional

predictors we include the overall depth, given as the sum of the order book depth at

best bid and ask level as well as the 30s cumulative trading volume serving as proxies

for possible adverse selection in the market.

Finally, intraday periodicities in spreads are captured by a flexible Fourier form as

proposed by Gallant (1981),

s(t) = δst̄+

Q∑
j=1

(δs1,j cos(t̄2πj) + δs2,j sin(t̄2πj)), (28)

where δs, δs1,j and δs2,j are parameters and t̄ ∈ [0, 1] is the normalized intraday time

defined as the time elapsed from the beginning of a trading day until observation t,

divided by the length of the trading day.

In addition to the static inclusion of covariates, we alternatively conduct the fol-

lowing adaptive selection of the covariates in each step to allow for possible structural

changes (see Blaskowitz and Herwartz (2009) for a related setup):

(i) Estimate an AR model for spreads with all covariates based on observations

within the estimation window. The AR setup is chosen here because (least

squares) estimates can be computed in closed form which significantly reduces
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the computation burden in the rolling window framework.

(ii) Discard predictors which are insignificant according to heteroscedasticity and

autocorrelation consistent standard errors and execute steps (i) to (iii) from the

scheme in 4.1 using only the remaining relevant predictors.

4.3 Forecast Benchmarks

To benchmark our approach, we compute forecasts using the following competing mod-

els:

(i) A random walk model (”näıve” forecast) given by St = St−1 + εt, where εt is

white noise.

(ii) An exponentially weighted moving average (EWMA) given by

St+1 = γ0St + γ1St−1 + γ2St−2 + · · · , (29)

where the weights are computed according to γi = α(1 − α)i, 0 < α < 1 and the

smoothing coefficient α is selected as the value minimizing the mean squared prediction

error of one-step ahead forecasts.

(iii) An ARMA(p,q) model for St, defined by the equation

(1− α(B))(St − c) = (1− β(B))εt, t ∈ Z, (30)

where α and β are lag polynomials as defined above and the errors εt are assumed to

be normally distributed.

Moreover, we consider the ARFIMA (p,d,q) model put forward by Granger and

Joyeaux (1980), Granger (1981) and Hosking (1981), given by

(1− α(B))(1−B)d(St − c) = (1− β(B))εt, t ∈ Z, c ∈ R. (31)

(iv) The autoregressive conditional duration (ACD) model introduced by Engle and

Russell (1998) and Engle (2000), which is the workhorse to capture serially dependent

positive-valued random variables, given by St = µt · εt for t ∈ Z with conditional mean

µt,

µt = ω + α(B)St + β(B)µt, ω > 0. (32)
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The errors are assumed to be Weibull distributed, εt|Ft−1 ∼ W(µt, γ), with parameter

γ.

Accordingly, the FIACD proposed by Jasiak (1998) is given by St = µt · εt with

εt|Ft−1 ∼ W(µt, γ) and

(1− φ(B))(1− L)dSt = ω + (1− β(B))νt, ω > 0, (33)

where φ(B) := α(B) + β(B) and νt := St − µt is a martingale difference.

4.4 Point Forecast and Directional Forecast Evaluation

Let εit+1|t := Sit+1|t − Sit+1 be the forecast error of model i ∈ {1, 2}. To assess the

basic forecast performance we report the root mean squared error (RMSE) of a series

of forecast errors εit+1|t, t = 1, .., T . The predictive accuracy of competing forecast

models, i = 1, 2, is tested using the test of Diebold and Mariano (1995) (DM), based

on the loss differential

dt :=
(
ε1
t+1|t

)2
−
(
ε2
t+1|t

)2
. (34)

To test for differences in forecast performances, we test the null H0 : E[dt] = 0. In

the case of one-step ahead forecasts, the DM test statistic takes the form DM :=

d̄/

√
V̂ar(d̄), where d̄ is the average of the dt.

A minor modification of the DM test is necessary if nested models are compared.

This is the case when we augment the models by additional predictors which inflate

the RMSE due to additional estimation errors. Clark and West (2007) propose a test

that explicitly accounts for the nested model structure. Let model 2 nest model 1 and

let

ā :=
1

T

T∑
t=1

(
S1
t+1|t − S

2
t+1|t

)2
. (35)

A suitable test statistic of the null is then given by

CW :=
d̄− ā√

V̂ar
(
d̄− ā

) . (36)

As the distribution of CW is non-standard, simulated critical values based on Clark

and McCracken (2001) have to be used.
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Note that Diebold-Mariano and Clark-West type tests can only compare two mod-

els. According to White (2000), a problem of such a sequential testing of competing

models is that standard p-values may become invalid because of a possible spurious

selection of the best model due to data snooping. Hansen (2005) proposes a test for

superior predictive accuracy (SPA) that can account for this problem. Let i = 1 denote

the benchmark model and let dit :=
(
ε1
t+1|t

)2
−
(
εit+1|t

)2
be the loss differential to the

rival model i ∈ {2, 3, ..,m}. The null hypothesis of the SPA test is

H0 : E[dit] ≤ 0 ∀i ∈ {2, ..,m}. (37)

Hence, H0 is rejected whenever at least one of the competing models generates signifi-

cantly better forecasts. The null can be tested based on the statistic

SPA := max

{
max
i

{
V̂ar(d̄i)−1/2d̄i

}
, 0

}
, (38)

where V̂ar(d̄i) denotes the estimated variance of d̄i. The distribution of the SPA

statistic has to be bootstrapped since the real distribution is nonstandard. Details of

the stationary bootstrap procedure can be found in Hansen (2005).

In case of directional forecasts, the tests outlined above are straightforwardly ap-

plied based on the directional forecast errors εt+1|t := Dt+1|t − Dt+1, where Dt+1 :=

1l {St+1>St}−1l {St+1<St} is the realized direction of the spread movement. In addition to

the SPA, DM and Clark-West tests for the squared directional error series, we report

the directional accuracy of the forecasts which is given as

DA :=
#{t : Dt+1 = Dt+1|t}

T
. (39)

5 Results

5.1 Estimation Results and RMSE Performance

Model selection for all models is conducted by minimizing the RMSEs for one-step

ahead forecasts of the January 2008 data. In this respect, we globally identify an

ACP(1,1), ARMA(4,2), ACD(1,1) and Double ACP(1,1) as the best performing spec-

ifications across the stocks considered. To restrict the computational burden, the
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fractionally integrated and long memory specifications are restricted to p = q = 1.

Diagnostics in terms of Probability Integral Transforms (PIT) based on probability

mass function forecasts and autocorrelation functions are given in the web appendix,

http://amor.cms.hu-berlin.de/~grosskla/index.html. The diagnostics show that

the LMACDP type II yields the best model fit in terms of capturing the spread distri-

bution and dynamics.

GXP.N XRAY.OQ EMN.N EQIX.OQ

Median of Estimates for the LMACDP(1,d,1) type I | type II models
ω 1.414 | 0.175 1.802 | 0.327 5.298 | 1.084 11.098 | 1.562
φ1 0.373 | 0.000 0.330 | 0.000 0.320 | 0.000 0.361 | 0.000
β1 0.626 | 0.000 0.669 | 0.120 0.680 | 0.000 0.638 | 0.099
d 0.455 | 0.314 0.498 | 0.260 0.500 | 0.251 0.474 | 0.293
γ 1.512 | 1.565 1.484 | 1.541 1.023 | 1.043 0.341 | 0.359

Median of Estimates for the ACDP(1,1) model
ω 0.120 0.141 0.304 1.257
φ1 0.261 0.196 0.164 0.245
β1 0.647 0.714 0.777 0.632
d 1.541 1.528 1.041 0.353

Table 3: Median parameter estimates for the ACDP and LMACDP type I (on the left in each
column) and II (on the right). The median is taken over the rolling window iterations. All
variables significant at the 10% level in 95 % of the iterations. Notation is as in section 2

Table 3 gives the median parameter estimates of the Double ACDP and LMACDP

type II models over all estimates of the rolling window setup. Figure 6 shows the

evolution of estimates for the fractional integration parameter d of the LMACDP type

II model. We observe that the persistence in bid-ask spread clearly varies over time

which makes it necessary to allow for parameter changes in a rolling window setup. The

evolution of the estimates of the additional regressor coefficients is given in Figures 8

to 13 in the appendix. The signs of the parameter estimates are in line with economic

theory. While volatility and trading volume are positively related to bid-ask spreads,

the effects of trade and depth imbalances fluctuate around zero. Moreover, depth

coefficients are widely negative, reflecting that deep markets are accompanied by low

spreads reflecting periods of high liquidity.

The upper panel of Table 4 gives the one-step ahead RMSEs and the directional

accuracy for all models without additional predictors. We observe that a Poisson-based

22

http://amor.cms.hu-berlin.de/~grosskla/index.html


0 200 400 600 800 1000 1200
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Iteration

d
-E

st
im

a
te

GXP.N: Evolution of d-estimates

0 200 400 600 800 1000 1200
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Iteration

d
-E

st
im

a
te

XRAY.OQ: Evolution of d-estimates

0 200 400 600 800 1000 1200
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Iteration

d
-E

st
im

a
te

EMN.N: Evolution of d-estimates

0 200 400 600 800 1000 1200
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Iteration

d
-E

st
im

a
te

EQIX.OQ: Evolution of d-estimates

Figure 6: Evolution of the estimates of the fractional integration parameter in the LMACDP
type II. 95 % confidence intervals dotted

model always performs best with RMSEs on average 18 % lower than those of the

random walk benchmark. Likewise, the directional accuracy of Poisson-based forecasts

improves on average by 25 % over the näıve benchmark. Overall, the LMACDP type I

and II models outperform FIACD and ARFIMA benchmarks in terms of the RMSE and

DA, with differences in the forecast performance being especially high for the directional

forecasts. These results indicate that an appropriate distribution as implied by the

Double Poisson distribution yields efficiency gains which lead to superior predictions.

Moreover, in most cases we find forecasts of LMACDP type II specifications to be

(marginally) superior compared to type I specifications.

The lower panel of Table 4 shows the RMSE and DA for the LMACDP type II

model augmented by covariates. It turns out that the inclusion of predictors improves

both point and direction forecasts. However, including all predictors (”All Predictors”)

or adaptive selections thereof (”Preselected Pred.”) do not necessarily provide better

forecasts than including only single predictors. Hence, potential forecast gains by the

inclusion of several variables are obviously offset by a higher estimation uncertainty.
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RMSE | DA GXP.N XRAY.OQ EMN.N EQIX.OQ

RMSE of Basic Models | Directional Accuracy of Basic Models

Näıve 1.2498 | 0.4756 1.3481 | 0.3740 2.9459 | 0.1950 7.1555 | 0.1444

EWMA 1.2867 | 0.5043 1.2381 | 0.5215 2.5649 | 0.5432 6.7206 | 0.5437

ARMA 1.1667 | 0.5321 1.2122 | 0.5131 2.5500 | 0.5231 6.3682 | 0.5287

ARFIMA 1.1056 | 0.3095 1.1281 | 0.3717 2.3906 | 0.4965 5.9638 | 0.5150

ACD 1.0880 | 0.3192 1.1217 | 0.3752 2.3692 | 0.4984 5.8634 | 0.5209

FIACD 1.0826 | 0.3181 1.1101 | 0.3731 2.3478 | 0.4975 5.8195 | 0.5246

ACP 1.0803 | 0.5516 1.1152 | 0.5369 2.3436 | 0.5430 5.8466 | 0.5400

ACDP 1.0803 | 0.5516 1.1153 | 0.5369 2.3436 | 0.5433 5.8466 | 0.5400

LMACDP type I 1.0805 | 0.5625 1.1153 | 0.5322 2.3440 | 0.5184 5.9553 | 0.5503

LMACDP type II 1.0720 | 0.5552 1.1086 | 0.5389 2.3448 | 0.5394 5.8026 | 0.5452

RMSE | Directional Accuracy of LMACDP type II model plus additional predictors

+All Predictors 1.0577 | 0.5534 1.1113 | 0.5411 2.3177 | 0.5458 5.7996 | 0.5489

+Preselected Pred. 1.0637 | 0.5549 1.1178 | 0.5380 2.3380 | 0.5416 5.8192 | 0.5484

+Seasonality 1.0678 | 0.5519 1.1022 | 0.5383 2.3281 | 0.5426 5.7924 | 0.5461

+Depth 1.0710 | 0.5550 1.1026 | 0.5427 2.3391 | 0.5420 5.8007 | 0.5443

+Depth Imb. 1.0727 | 0.5553 1.1086 | 0.5383 2.3431 | 0.5392 5.8034 | 0.5437

+Real. Vola 1.0800 | 0.5544 1.1203 | 0.5392 2.3369 | 0.5428 5.8038 | 0.5470

+Absolute Ret. 1.0637 | 0.5546 1.1181 | 0.5390 2.3384 | 0.5407 5.8071 | 0.5483

+Traded Vol. 1.0722 | 0.5556 1.1098 | 0.5388 2.3405 | 0.5408 5.8036 | 0.5460

+T.Vol. Imb. 1.0725 | 0.5556 1.1090 | 0.5389 2.3453 | 0.5394 5.8038 | 0.5445
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Table 4: Upper panel: RMSE and DA values of models without additional predictors. Best model in terms of RMSE and DA highlighted.
Lower panel: Models with additional predictors as defined in section 4.2. All predictors denotes inclusion of all variables. Preselected pred.
refers to the preselection scheme outlined in section 4.2. Abbreviations are Imb.for imbalance, Real. Vola. for realized volatility, Ret. for
return, Vol. for Volume and T.Vol. Imb. for Trading Volume Imbalance. Seasonality denotes the seasonality component (28) with Q = 2.
Lowest RMSE and highest DA highlighted

DM and CW statistics GXP.N XRAY.OQ EMN.N EQIX.OQ

DM test for equal forecast performance of Basic Model with lowest RMSE | highest DA

and näıve model -19.23 | -7.74 -31.36 | -15.12 -37.71 | 2.58 -31.69 | 14.66

P-Value (0.00) | (0.00) (0.00) | (0.00) (0.00) | (0.00) (0.00) | (0.00)

and 2nd best Basic model -3.57 | -3.64 -3.26 | -6.62 0.34 | 5.87 -7.55 | -12.55

P-Value (0.00) | (0.00) (0.00) | (0.00) (0.36) | (0.00) (0.00) | (0.00)

DM test for equal forecast performance of Model with additional Predictors with lowest RMSE | highest DA

and 2nd best with add. Predic. -2.57 | 0.60 -0.18 | -2.72 -2.94 | 1.28 -1.57 | 0.44

P-Value (0.01) | (0.27) (0.43) | (0.00) (0.00) | (0.10) (0.06) | (0.33)

CW test for equal forecast performance of Model with additional Predictors with lowest RMSE | highest DA

and the LMACDP type II 2.66∗ | 0.23 2.24∗ | 113.57∗ 4.81∗ | -27.61∗ 1.93∗ | 6.92∗

Table 5: Diebold Mariano and Clark-West test results for point and direction forecasts. The ∗ in the last row denotes significance at the
10% level
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% P-Values of SPA-Test GXP.N XRAY.OQ EMN.N EQIX.OQ

SPA test based on squared error series for point forecasts | direction forecasts

Näıve 0.00 | 0.00 0.00 | 0.00 0.00 | 5.25 0.00 | 0.00

EWMA 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

ARMA 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

ARFIMA 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

ACD 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

FIACD 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

ACDP 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00

LMACDP type I 0.00 | 0.75 0.00 | 31.25 0.00 | 4.50 0.00 | 0.00

LMACDP type II 4.00 | 0.00 0.00 | 18.75 0.00 | 2.50 9.00 | 0.00

LMACDP type II

+All Pred. 0.75 | 0.00 14.25 | 1.75 0.75 | 2.25 25.25 | 0.00

+preselected Pred. 1.50 | 0.00 1.50 | 15.75 0.00 | 5.25 3.50 | 0.00

+Seasonality 4.00 | 0.00 49.00 | 1.00 0.00 | 0.00 23.25 | 0.00

+Depth 7.00 | 1.25 47.25 | 27.50 0.00 | 4.00 8.25 | 0.00

+Depth Imb. 5.25 | 0.25 0.25 | 13.00 0.00 | 0.50 7.25 | 0.00

+Real Vola. 1.50 | 0.00 1.25 | 11.75 0.00 | 3.00 13.00 | 0.00

+Abs. Return 1.00 | 0.00 7.25 | 2.50 0.00 | 5.50 21.00 | 0.00

+Traded Vol. 4.00 | 0.00 0.00 | 14.75 0.00 | 1.00 8.75 | 0.00

+T.Vol. Imb. 5.75 | 0.75 0.00 | 18.25 0.00 | 0.25 10.50 | 0.00

Table 6: P-Values of the SPA test for all competing models. Highest value highlighted. Notation for the additional covariates as in Table 4
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Table 5 shows Diebold-Mariano and Clark-West tests for forecast comparisons of

the best and second best specifications in terms of the RMSE. It turns out that point

and directional forecasts of models without predictors are significantly different from

each other. Hence, the superior performance of LMACDP models in terms of the RMSE

and DA shown in Table 4 is statistically significant. The Clark-West tests indicate that

the inclusion of trading characteristics in LMACDP type II models yields a significant

improvement of the forecasting power over the basic LMACDP type II. However, among

specifications including covariates, differences between squared prediction errors are

often insignificant according to the Diebold-Mariano Test. This reflects that most

of the covariates carry similar information about the adverse selection costs driving

spreads.

To identify the overall best performing model in terms of point and direction fore-

casts we present the results of the SPA test in Table 6. In three out of the four cases

we cannot reject the null at the 10 % level that a LMACDP type II model including

covariates provides the best forecast performance. The p-values are widely in accor-

dance with the ordering of models according to the RMSE and DA results tabulated

in Table 4.

We summarize the following main findings: First, the efficiency gains implied by

(Double) Poisson modeling yield significantly superior forecast results in terms of the

RMSE and DA criterion. Second, the forecast performance of the long memory spec-

ifications compared to their short-memory counterparts indicate the importance of

accounting for the strong persistence in spreads. Third, the inclusion of predictors

significantly improves point- and direction forecasts.

5.2 A Trading Schedule based on Spread Forecasts

To evaluate the potential economic gains implied by spread forecasts, we consider

quantifying spread costs in trading schemes. The trading schedules are motivated by

the fact that transaction costs of large trades can be reduced by splitting orders into

smaller trades and are distributed over time. In such strategies, spread forecasts can

improve trading algorithms by allowing to intensify trading in periods when spreads

are expected to be small.

Suppose a benchmark trading schedule is based on trades occurring at the end
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5 min1 min 6 min4 min2 min 3 min 7 min 9 min8 min 10 min

300s fc

30s fc
60s fc

5s fc

Figure 7: The principle of the trading schedule. 5s fc, 30s fc, 60s fc and 300s fc stand for the
forecasts based on different data aggregation frequencies

of each 5 minute interval. In an alternative trading schedule the time of the trades

is flexible within each interval and can be chosen in accordance with corresponding

spread forecasts. Then, the resulting transaction costs serve as a measure of the implied

economic gains.

To obtain a fine grid of spread forecasts within each 5 minute interval, we con-

struct bid-ask spread forecasts on a 5, 30, 60 and 300 second frequency employing

the LMACDP type II specification with seasonal component. Let fcx5 , fcx30, fcx60 and

fc300 denote spread forecasts on a 5, 30, 60 and 300 second data aggregation frequency,

respectively. Moreover, let x ∈ {1, 2, 3, 4, 5} indicate the corresponding 1 minute subin-

terval withing the 5 minute interval. Then, the timing of trades in the flexible schedule

is chosen as follows.

• Starting from the left interval boundary, we search in the x successive subintervals

for the smallest forecast out of {fcx5 , fcx30, fcx60, fc300} until we arrive at the right

boundary or a minimum is found. Once a minimum is found for x ∈ {1, 2, 3, 4, 5},

we do not consider subintervals x∗ > x since these are not known by a trader

using one-step ahead forecasts on 5s, 30s, 60s and 300s frequencies. In case fcx30 or

fcx60 is a new optimum, we optimize the time of trading within the corresponding

subinterval using the forecasts on higher frequencies. Figure 7 illustrates the

procedure.

• In case of equal forecasts, min{fcx5 , fcx30, fc
x
60}=fc300, we choose the timing of
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GXP.N XRAY.OQ EMN.N EQIX.OQ
Schedule

Fast 7.74 7.47 8.17 11.60
PMF Info 11.85 10.51 10.58 12.90
Slow 14.42 8.22 10.51 11.90

Table 7: Spread cost savings as percentage of the benchmark schedule when employing fore-
casts in the schedules. Schedule names refer to the three rules in case of equal forecasts

trades according to one of the following three options.

(i) Motivated by traders’ tendency to trade as fast as possible, we choose the time

of trading to be closest to the left boundary of the interval and stop searching for

further minima. The resulting schedule is labelled ”fast”.

(ii) We choose the time of trading to be closest to the right boundary and suc-

cessively optimize the time of trading using forecasts on higher frequencies until

the time of the new minimum forecast. The resulting schedule is labelled ”slow”.

(iii) We use the information from the probability mass function and weight the

equal forecasts with the assigned forecasted probabilities f(St+1|t, λ̂t+1, γ̂), where

f denotes the Double Poisson probability mass function. Then, we choose the

most probable forecast to be the new optimal one and optimize the trading in the

subintervals until we arrive at another optimum. This schedule is labelled ”PMF

info”.

After the timing of trades is chosen we sum up the incurred transaction costs (induced

by crossings of the market) for the benchmark strategy and the three alternative sched-

ules. Table 7 reports the percentage spread cost savings over the benchmark strategy.

We find that the strategy exploiting the information from the pmfs of the Double Pois-

son assumption yields the highest average gains: spread costs reduce by 11.46% of the

costs of the benchmark schedule. The ”slow” schedule saves us 11.26% and the ”fast”

strategy still 8.74%. The better performance of the strategies ”slow” and ”PMF info”

is obviously induced by the use of more optimization steps due to the rule specification

in case of equal forecasts.
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5.3 Robustness of the Results

Several robustness checks underscore the relevance of our study. First, we can confirm

the reported RMSE results for a larger cross-section of stocks from the mid-cap segment

of the Russell 3000. Our web appendix http://amor.cms.hu-berlin.de/~grosskla/

index.html shows descriptive statistics, point forecast and trading schedule evaluations

for 46 stocks ordered according to their average spread. We find that the RMSE

improvement of the LMACDP type II over the näıve benchmark model is 19.51% on

average across stocks with average spread ticks ∈ (2, 4) and 18.90% for stocks with

mean spread ticks greater than 4. Interestingly, forecast gains are also possible in case

of nearly constant stocks: RMSE improvements over the näıve model are on average

13.55% for stocks with mean spread ticks < 2.

Second, the spread cost savings from the trading schedules tend to increase with the

size of average spreads. Moreover, the specification of a flexible probability mass func-

tion in the Poisson models becomes more and more important with increasing spread

sizes. While the ”PMF info” trading schedule does not generate higher percentage cost

savings than the alternative two schedules for stocks with spreads smaller than 4 ticks,

the opposite is true when average spreads become larger than 4 ticks. We conclude

that the flexible Double Poisson modelling is the more useful the larger the spreads

and the more dispersed the spread series.

Third, the results are not only relevant for quoted spreads but also for alternative

spread measures like, e.g., effective spreads. Effective spreads are closely related to

quoted spreads (see Figure 1) and reveal very similar time series properties.

6 Conclusions

Motivated by the relevance of bid-ask spreads in trading decisions and market mi-

crostructure modelling this study is the first one systematically analyzing forecasts of

quoted bid-ask spreads. To capture the empirical features of spread time series for

Russell 3000 mid cap stocks traded at NYSE and NASDAQ we introduce a novel long

memory autoregressive conditional Poisson (LMACP) model. The LMACP can acco-

modate highly persistent time series of count data and is thus suitable for modeling

persistent discrete time series which are often found in high-frequency data applica-
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tions.

We find that autoregressive conditional Poisson (ACP) models and their long mem-

ory extension well capture the distributional and dynamic properties of quoted bid-ask

spreads. Generallizations of the Poisson distribution, such as the Double Poisson dis-

tribution, are able to account for both under- and overdispersion found in the data

and underscore the good fit of the proposed model. Forecasting bid-ask spreads in a

rolling window out-of-sample framework shows that long memory ACP models out-

perform competing benchmarks like ARFIMA, ARMA, ACD, FIACD and exponential

moving average models in terms of the root mean squared error, directional accuracy

and density forecasts. Implementing the spread forecasts in a simple trading algorithm

we find that spread forecast can induce transaction cost savings of up to 12%.
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7 Appendix

7.1 Technical appendix

Proof of proposition 2:

Proposition 2. The unconditional variance of the long memory autoregressive condi-

tional Double Poisson model type I is given by

Var[St] =
1

γ
E[λt]

∞∑
j=0

ω2
j <∞.

Proof. We obtain an expression for the unconditional variance of the errors νt of the

Double Poisson specification from the following steps. We have

E[ν2
t ] = E[(St − λt)2] = E[S2

t ]− 2E[E[Stλt|Ft−1]] + E[λ2
t ]

= E[S2
t ]− E[λ2

t ],
(40)

since λt depends only on past values of λt and St, and

Var[St] = E[S2
t ]− E[St]

2

= E[Var[St|Ft−1]︸ ︷︷ ︸
=
λt
γ

] + Var[E[St|Ft−1]︸ ︷︷ ︸
=λt

] =
1

γ
E[λt] + E[λ2

t ]− E[λt]
2. (41)

Solving (41) for E[S2
t ] and substituting into (40) we get

E[ν2
t ] = E[St]

2 +
1

γ
E[λt]− E[λt]

2 + E[λ2
t ]− E[λ2

t ]

= E[E[St|Ft−1]︸ ︷︷ ︸
=λt

]2 +
1

γ
E[λt]− E[λt]

2 + E[λ2
t ]− E[λ2

t ] =
1

γ
E[λt].

From the infinite moving average representation

St = ω + Ω(B)νt (42)
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we obtain using Cov(νt, νt−1) = 0

Var[St] =
∞∑
j=0

ω2
jVar[νt] =

1

γ
E[λt]

∞∑
j=0

ω2
j .

Furthermore, applying Stirling’s formula we obtain ωj ≈ Cjd−1 for high j (see Hosking

(1981)), where C is a positive constant, such that limk→∞
∑k

i=0 ω
2
i converges for 0 <

d < 0.5.

The following refers to the footnote on page 15.

Footnote 5. The sum of the squared coefficients of Ω(B) is greater or equal than 1,

∞∑
j=0

ω2
j ≥ 1.

Proof. We have

(1−B)−d = 1 + δ1B + δ2B
2 + ...

(see Hosking (1981)) and

(1− α(B))−1 = 1 + a1B + a2B
2 + ...

(see, e.g., Hamilton (1994)) such that the first coefficient of Ω(B) is ω0 = 1,

Ω(B) = ω0 + ω1B + ω2B
2 + ... = (1− β(B))(1− α(B))−1(1−B)−d

= 1 + ω1B + ω2B
2 + ...

and hence

1 ≤ 1 +

∞∑
j=1

ω2
j =

∞∑
j=0

ω2
j .
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7.2 Evolution of Coefficient Estimates
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Figure 8: Evolution of the estimates of the absolute return coefficient. 95 % confidence dotted
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Figure 9: Evolution of the estimates of the Real Vola coefficient. 95 % confidence dotted
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Figure 10: Evolution of the estimates of the Depth coefficient. 95 % confidence dotted
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Figure 11: Evolution of the estimates of the Depth Imbalance coefficient. 95 % confidence
dotted
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Figure 12: Evolution of the estimates of the Traded Volume coefficient. 95 % confidence
dotted
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Figure 13: Evolution of the estimates of the Traded Volume Imbalance coefficient. 95 %
confidence dotted
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