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Abstract

International electricity trading in the European Union (EU) is the result of a liberalized

energy market. Having access to inter-regional and international energy markets grants

electric power producers and industrial consumers the possibility to hedge against diverse

financial and non-financial risks. Therefore, a precise forecast of the energy demand be-

comes imminent to improve the risk management process of the electricity market players.

A local adaptive multiplicative error model (MEM) is used to analyze and forecast Ger-

man electricity demand traded at the European Power Exchange (EPEX SPOT). In order to

assess the adaptive forecasts’ performance, we compare them against ad hoc fixed window

forecasts. We find that in the relatively short-term both methods perform equally, while in

the long-term the local adaptive forecasts outperform the ad hoc fixed window forecasts.

Keywords: Multiplicative error model, local adaptive modeling, trading volume, electric-

ity load, forecasting

JEL classification: C51, C53 ,G12, Q47
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Zusammenfassung

Der liberalisierte Energiemarkt stellt die Voraussetzung für den internationalen Strom-

handel in der Europäischen Union (EU) dar. Erst der Zugang zu interregionalen und inter-

nationalen Energiemärkten eröffnet den Stromerzeugern und den industriellen Stromabneh-

mern die Möglichkeit sich gegen die verschiedenen finanziellen und nicht-finanziellen Risi-

ken abzusichern. Für die optimale Prozessgestaltung des Risikomanagement der Marktteil-

nehmer ist eine möglichst präzise Prognose des zukünftigen Energiebedarfs entscheidend.

Zur Analyse und Vorhersage des deutschen Strombedarfs, der an der European Power Ex-

change (EPEX SPOT) gehandelt wird, soll hier ein local adaptive multiplicative error model

(MEM) angewandt werden. Dabei werden die adaptive forecasts’ performance (adaptive

Prognose Performance) zur Einschätzung einem ad hoc fixed window forecasts gegenüber-

gestellt und verglichen. Als Ergebnis ist festzustellen, dass beide Modelle bei einem rela-

tiv kurzen (zeitlichen) Intervall gleiche Resultate. Bei einem (zeitlich) längeren Intervall

hingegen, übertreffen die Werte des local adaptive forecasts die des ad hoc fixed window

forecasts.

Schlagwörter: Multiplicative error model, adaptive Schätzverfahren, Energiebedarfs, Vor-

hersage

JEL Klassifikation: C51, C53 ,G12, Q47
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1 Introduction

Electricity flows nowadays across regional and international borders, but it was until the Euro-

pean energy market liberalization that electricity first became a tradable commodity. With the

energy market liberalization, the European Union aimed to achieve an integrated energy mar-

ket that would boost competition and enhance efficiency. As a result, electricity trading is now

possible at national and international energy exchanges.

The possibility of accessing inter-regional and international energy exchanges provides a set of

hedging advantages for electricity producers and consumers. EGL (2010) explains that elec-

tricity producers and bulk consumers can protect themselves against production disruptions due

to geographic and economic limitations as well from price fluctuations derived from weather

conditions and changes in fuel prices. In addition, energy exchanges offer a regulated trading

process that ensures a transparent and fair price. Nevertheless, the only way to fully take ad-

vantage of the liberalized electricity market is through an accurate forecast of the electricity

demand.

Electricity demand (load) is essential to the whole power industry for several reasons. First of

all, the costs of generating electricity have soared due to the increasing fuel prices and the high

costs of nuclear, hydro and wind power generation. Second, since electricity is our main energy

source, a small change in electricity production can cause significant price changes. Third,

accurate electricity demand forecasts lead to efficient management of power generation in the

short, mid and long term, and it ensures the availability of sufficient resources to meet future

demand. In general, precise electricity forecasts can help improve exisiting risk management

strategies for electricity producers and industrial consumers.

The start point in successfully forecasting the German electricity demand is understanding its

dynamics. For instance, it is well known that electricity demand - as many other economic

or financial variables - possess a seasonal component that has to be taken into account in the

model estimation. Another important issue regarding model estimation, is the selected time

interval to compute the model parameters. In econometrics, it is common to assume large time

intervals to increase the efficiency of the model estimates. Nevertheless, this time-homogeneity

assumption is rather restrictive and might smooth away the microstructure components of the

data set. Therefore, in order to see whether a local homogeneity assumption is appropriate, we

explore the dynamics over time of the electricity demand.
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1 Introduction

We use a multiplicative error model (MEM), proposed by Engle (2002), that is able to analyze

serially dependent high frequency data with non-negative values. This model has been already

successfully applied to other financial time series such as such as trading volumes, asset volatil-

ity and trade durations. However, in order to capture the microstructure components within the

data set over the sample period, we implement the local parametric approach (LPA) proposed

by Spokoiny (1998). We apply a local multiplicative error model (MEM) to analyze and fore-

cast the German electricity load traded at the European Power Exchange (EPEX SPOT). The

advantage of locally estimating a model stems from the fact that it allows model parameters to

vary over time and it identifies possible structural breaks within the data set.

In chapter 2 we analyze the dynamics of the German electricity demand and the seasonal ad-

justment procedure that we followed in order to apply the MEM to the data set. In chapter 3

we discuss the statistical properties of the MEM and its estimation method. In chapter 4 we

study the LPA set up to locally estimate the MEM. Finally, in chapter 5 we forecast the elec-

tricity demand based on the LPA estimates and we compared them to standard fixed-window

forecasts.
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2 Data

We analyze the electricity load 1 time series for the German market traded at the European

Power Exchange 2 (EPEX SPOT). The data consists of 2904 hourly observations, ranging from

January 1 to April 30, 2012 (121 trading days with continuous trading activity). Each trading

day is composed of 24 observations representing each hour from 01:00 to 24:00. Descriptive

statistics of hourly cumulated trading volume of the German electricity load are shown in Table

2.1.

German Electricity Load (MW)

Minimum 2.98

25%-quantile 745.00

Median 1147.00

75%-quantile 1600.50

Maximum 5093.00

Mean 1258.50

Standard deviation 714.84

LB(10) 5059.47

Table 2.1: Descriptive statistics and Ljung-Box statistics based on intra-day traded electricity

load (in Megawatts) in Germany at EPEX SPOT from January 1 to April 30, 2012

(121 trading days, 2904 observations). Descriptive

From Table 2.1 we can see that the average demanded electricity load in 2012’s first quarter

amounts to 1258.50 Megawatts (MW), while 50% of the trades demanded more than 1147

MW. Furthermore, we observe a right-skewed distribution and a high dispersion level. The null

hypothesis of no autocorrelations within the first 10 lags is rejected given the Ljung-Box (LB)

test statistic and any pertinent significance level.

Modeling the electricity demand is a daunting task. First of all, as Nowicka-Zagrajek and

Weron (2002) pointed out, electricity demand is driven by many exogenous variables such as

weather conditions and economic factors. Second, electricity demand time series is composed

of a deterministic (seasonal) and stochastic component at different time scales that has to be

1Electricity load in this context is defined as the current electricity demand
2The EPEX SPOT is a trading platform for the German, French, Austrian and Swiss Intraday and Day Ahead power

spot markets. EPEX SPOT publishes prices and traded electricity volumes ine/MWh (Euro per Megawatt-Hour)

and MW (Megawatt) respectively for each segment on www.epexspot.com, giving transparent and reliable

information regarding short-term electricity prices for the Intraday and Day Ahead trading.
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2 Data

removed before a model can be applied to the data.

Following Engle and Russell (1998), we assume that the intraday seasonal component acts in a

multiplicative way on the electricity demand (load) y̆i,

yi = y̆isi
−1, (2.1)

where si = si−24 for i > 24 represents the intraday periodicity component from the twenty-four

hours prior to point i, and yi indicates the seasonally adjusted load volumes. As Härdle et al.

(2012) explain, by using exclusively previous observations to compute the intraday seasonal

factor, we avoid introducing forward-looking biases into the forecasting procedure. We follow

Engle and Rangel (2008) and Härdle et al. (2012) rolling windows technique to capture the

slowly moving components of a given high-frequency time series and compute a 16-days rolling

windows average electricity load. In the spirit of Veredas et al. (2002), the intraday seasonal

factor is then obtained by fitting a cubic spline with three nodes to the 16-days rolling windows

mean electricity demand.

The estimated seasonal components correspond to 105 days (2520 observations), ranging from

January 17 to April 29, 2012. Figure 2.1 shows the typical behaviour of the electricity load

intraday pattern and it corresponds to the eleventh week of 2012 (March 12 - 18, 2012). We

observe a stable seasonal component shape from Monday to Sunday and an inverted U-shaped

pattern. It is evident from Figure 2.1 that a lower amount of electricity load is demanded for the

first 7 hours of the day, while from 8:00 AM on, the demanded electricity load starts to rise -

reaching its highest level at 15:00 hours. From then on, the demand slowly declines until 20:00

hours - when it starts to rise again but not as much as during day time.

It is particularly interesting to see how seasonal patterns change across financial markets. For

instance, trading volumes in the stock market exhibit a U-shaped seasonal pattern that explains

the high volumes at the opening and closing of the market. In the case of the electricity load

it is the opposite effect. The electricity demand seasonal component clearly shows a higher

load (MW) after mid-day and at night. Additionally, we can cannot observe any significant

difference between week days and weekend days.
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Figure 2.1: Estimated intraday seasonal component for the electricity demand load (in

Megawatts) from 20120312-20120318. Seasonality_Graph
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3 Multiplicative Error Model (MEM)

Engle and Russell (1998) proposed the autoregressive conditional duration (ACD) model to an-

alyze the the expected durations of financial transaction data. The motivation behind this model

was to investigate high frequency data that arrive at irregularly-spaced time intervals - a charac-

teristic that is common in time series of financial markets. Zhang et al. (2001) pointed out that

the conditional duration mean described in Engle and Russell (1998), may not be necessarily

linear and propose a threshold ACD (TACD) model that was able to identify structural breaks

in trade durations. Although the TACD model was an improvement of the original model of

Engle and Russell (1998), it did not efficiently addressed the issue of modeling non-negative

time series. Therefore, Engle (2002) proposed the Multiplicative Error Model (MEM), with

the advantage of modeling any non-negative time series - such as trading volumes, financial

durations, bid-ask spreads and asset volatility. Since the MEM has its background on the ACD

model, it has the additional advantage of modeling non-negative high frequency data without

introducing heteroscedasticity into the data by assuming a short estimation time interval, or by

smoothing the microstructure characteristics of the data set over long estimation intervals.

3.1 Model Structure

The MEM(p,q) specifies

yi = µiεi, (3.1)

where y = {yi}
n
i=1 is a non-negative process and µi represents its conditional mean. The error

term is defined as E [εi |Fi−1 ] = 1, where Fi−1 is the information set up to observation i. The

conditional mean process of order (p,q) follows an ARMA specification

µi = ω +
p

∑
j=1

α jyi− j +
q

∑
j=1

β jµi− j, (3.2)

with parameter θ = (ω,α,β )⊤, such that α = (α1, . . . ,αp)
⊤ and β = (β1, . . . ,βq)

⊤.
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3 Multiplicative Error Model (MEM)

The estimation of the model described by equations 3.1 and 3.2 can be done by quasi-maximum

likelihood estimation (QMLE) once a distribution with positive support has been selected for the

error term over a fixed interval I = [i0−n, i0] of (n+1) observations at observation i0. There are

several distribution choices with non-negative support. Nevertheless, we focus on the (standard)

Exponential and the Weibull distribution.

If the error term follows an exponential distribution, y = {yi}
n
i=1 represents a realization of

the EACD(p,q) model and its vector parameter θE = (ω,α,β )⊤ can be estimated using the

exponential log likelihood function:

LI (y;θE) =
n

∑
i=max(p,q)+1

(
− log µi −

yi

µi

)
I{i ∈ I} (3.3)

If the error term follows the Weibull distribution, y = {yi}
n
i=1 represents a realization of the

WACD(p,q) model and its vector parameter θW = (ω,α,β ,s)⊤ can be estimated using the

Weibull log likelihood function:

LI (y;θW ) = ∑
i∈I

[
log

s

yi

+ s log
Γ(1+1/s)yi

µi

−

{
Γ(1+1/s)yi

µi

}s]
I{i ∈ I} (3.4)

Finally, the quasi maximum likelihood estimates (QMLEs) of θE and θW over the data interval

I are given by

θ̃ I = arg max
θ∈Θ

LI (y;θ) (3.5)

3.2 Local Parametric Dynamics

Most econometric models in financial time series analysis are based on the assumption of pa-

rameter homogeneity. Such an assumption becomes restrictive when the time interval used to

estimate the model is large and the structural changes caused by market changes cannot be iden-

tified. An alternative technique is the Local Parametric Approach (LPA), which assumes that

for every point in our series, there exists an interval of homogeneity in which our model can be

locally approximated by a constant parametric specification.

The LPA adaptively selects the interval of homogeneity by estimating our model at each point

in time, using a sequential testing procedure. The procedure starts with the smallest candidate

interval and looks for the longest possible interval in which the local approximation statistically

8



3.2 Local Parametric Dynamics
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Figure 3.1: The panel shows the estimated parameters based on the seasonally adjusted elec-

tricity demand at each hour for the EACD(1,1) model. The left panel shows the

’Daily’ estimated parameters, while the right panel displays the ’Weekly’ esti-

mated parameters. We can see that the estimated parameters not only vary with

respect to time, but also with respect to the selected estimation window length.

EACD_Parameter_Dynamics

holds. This technique has two advantages. First, it gives the model parameters the flexibility to

vary over time, and second, it identifies structural changes in the data set.

To further investigate the parameter dynamics of our model based on the electricity demand

for the first quarter of the year, we estimate an EACD(1,1) and a WACD(1,1) model over four

different window lengths: (i) 1 day (24 observations); (ii) 7 days (168 observations); (iii) 15

days (360 observations); and (iv) 30 days (720 observations). Figure 3.1 shows the dynamics

of the EACD parameters using a daily and weekly window (interval) length. From the plot we

can observe that the estimated parameters (ω̃ ,α̃ and β̃ ) and the persistence levels (α̃ + β̃ ) vary

not only over time, but also vary upon the estimation window length. For shorter intervals,

the parameters appear to be more volatile than those estimated with larger intervals. Härdle

et al. (2012) attribute this behavior to a loss of estimation efficiency when using a shorter data

window (less observations) or to the possibility that local variations are being smoothed away

if data windows become relatively large.
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3 Multiplicative Error Model (MEM)

3.3 Estimation Quality

Spokoiny (2009) and Čížek et al. (2009) provide a non-asymptotic risk bound to assess the qual-

ity of estimating the true process of equation 3.2 - which describes the observed yi - through a

parametric specification with vector parameter θ̃I , given any I interval. The accuracy of esti-

mating the true vector parameter θ ∗ is given by

Eθ ∗

∣∣∣LI(θ̃ I)−LI(θ
∗)
∣∣∣
r

≤ Rr (θ
∗) (3.6)

where LI(θ̃ I)−LI(θ
∗) is the deviation of the fitted likelihood function with parameter θ̃I from

the fitted likelihood function with true parameter θ ∗. The log likelihood expressions can be

decribed either by equation 3.3 or 3.4. Hence, the left side of equation 3.6 represents the loss

function to the r-th power of estimating the true vector parameter θ ∗ via the QMLE θ̃I . Rr (θ
∗)

is a risk bound restricting the loss function, and it depends on r -the risk level or tightness of the

risk bound- and θ ∗.

Using the parametric risk bound defined in equation 3.6 we can construct non-asymptotc con-

fidence sets and test the accuracy of a local parametric model by simulating a set of critical

values to test the local homogeneity assumption required in the LPA. As Härdle et al. (2012)

explain, different values of r lead to different risk bounds, critical values and model estimates.

By choosing a high risk level r, it is expected that the LPA selects longer intervals of homogene-

ity. Hence, the QMLE would become more efficient but at the cost of increasing the modeling

bias. We follow Čížek et al. (2009) and Härdle et al. (2012) and choose r = 0.50 and r = 1,

considered to be a modest and conservative risk level respectively.

10



4 Local Parametric Approach

The Local Parametric Approach (LPA) presents an innovative approach to model non-stationary

time series based on an adaptive selection of the so-called interval of homogeneity. The LPA

assumes that at each point in time there exists a historical interval over which equation 3.1 can

be well approximated by a local parametric model. Therefore, at each point in time we estimate

the model and we obtain a new set of model parameters based on a time-homogeneous interval.

The LPA was proposed by Spokoiny (1998) and since then many useful financial applications

have been found, see, e.g., Mercurio and Spokoiny (2004) for an application on daily exchange

rates, Čížek et al. (2009) for an adaptation to variant-coefficient parametric models such as

GARCH, Chen et al. (2010) for realized volatility modeling, and more recently, Härdle et al.

(2012) for localizing multiplicative error models.

4.1 Test of Homogeneity

The selection of the interval of homogeneity over which yi is well approximated by a constant

parametric model is done by considering a set of K + 1 nested intervals with starting point i0,

e.g I0 ⊂ I1 ⊂ . . . ⊂ IK , Ik = [i0 −nk, i0] with 0 < nk < i0. The lengths of the candidate intervals

are assumed to geometrically increase with initial length n0 and a multiplier c > 1, nk = [n0ck].

We choose a scheme with K = 13, c = 1.25 and n0 = 60 (observations), such that the interval

lengths (in days) are the following: n0 = 2.5, n1 = 3, n2 = 4, n3 = 5, n4 = 6, n5 = 8, n6 = 10,

n7 = 12, n8 = 15, n9 = 19, n10 = 24, n11 = 29, n12 = 37 and n13 = 75.

Our aim is to test the assumption of local homogeneity at each point in time for every Ik interval,

until a change point is detected, or until data is exhausted. We use the likelihood ratio (LR) test

statistic to test the null hypothesis of parameter homogeneity against the alternative of a change

point at an unknown location τ within Ik. The LR test statistic is specified by

TIk,Jk
= sup

τ∈Jk

{
LAk,τ

(
θ̃Ak,τ

)
+LBk,τ

(
θ̃Bk,τ

)
−LIk+1

(
θ̃Ik+1

)}
(4.1)

where Jk = Ik\Ik−1, Ak,τ = [i0 − nk+1,τ], and Bk,τ = (τ, i0]. The testing procedure consists in

adding the likelihood ratios of the estimated parameters in intervals Ak,τ and Bk,τ , and then sub-

stracting the likelihood over interval Ik+1. Since the location of the change point τ is unknown,

11



4 Local Parametric Approach

− + − τ −
−

+ −

+

Figure 4.1: Illustration of how data intervals are constructed to test the assumption of local

homogeneity within interval Ik with length nk = |Ik| ending at fixed data point i0. A

local change point is indicated by τ , and depending on its position, splits interval

Ik+1 into two subintervals: Ak,τ (red) and Bk,τ (blue). The sequential testing searchs

within interval Jk = Ik\Ik−1 for a possible change point τ . Figure taken from Härdle

et al. (2012).

we consider the supremum of the LR statistics TIk,Jk
.

For a better description of the data-driven intervals involved in the change point detection test,

please refer to figure 4.1. We assume that I0 is homogeneous, and afterwards we test at each step

k whether the null can be or not rejected. The unknown location of the change point τ divides

interval Ik+1 into two subintervals: interval Ak,τ = [i0 −nk+1,τ] and interval Bk,τ = (τ, i0], with

parameters θ̃Ak,τ and θ̃Bk,τ respectively. The assumption of local homogeneity means that our

QMLE parameters θ̃Ak,τ and θ̃Bk,τ are statistically homogeneous. Otherwise, if θ̃Ak,τ 6= θ̃Bk,τ ,

it means that a change point has been detected and the underlying interval is no longer time

homogeneous.

Given the test statistic TIk,Jk
, we select the longest time homogeneous interval that satisfies

TIk,Jk
≤ zk (4.2)

and TIk+1,Jk+1
> zk+1, where zk and zk+1 denote the critical values used to assess whether the null

is accepted or not. If an interval Ik fulfills equation 4.2, it means that we have found the longest

time-homogeneous interval. In the next section we discuss an adaptive algorithm that optimally

selects the longest interval of homogeneity.

4.2 Adaptive Estimation

It is clear by now that the selection of the interval of homogeneity plays an important role in the

LPA. The goal is to search for this interval with the help of an adaptive estimation procedure that

was originally proposed by Spokoiny (1998) to estimate a given function with discontinuities

12



4.3 Choice of Critical Values

through a local polynomial estimator. The adaptive estimation algorithm basically tests every

point i ∈ Ik against a possible change point τ . The procedure compares the log-likelihood test

statistic versus its respective critical value at step k in order to decide whether the tested interval

is time-homogeneous. As long as the null is not rejected, the algorithm will extend the search

to the next largest interval Ik+1 and proceed with the local change point detection. On the other

hand, if a change point is detected at step k, we set our local homogeneous interval to Îk = Ik−1

and its respective adaptive estimate as θ̂ = θ̃Ik−1
.

Čížek et al. (2009) describe this adaptive procedure in three steps: (1) Change Point Detection

Test; (2) Adaptive Estimation; and (3) Selection of the Interval of Homogeneity.

1. Change Point Detection Test: At each step k of the procedure, the interval Ik is tested

against a local change point. Interval Ik is homogeneous if it fulfills the relation described

in equation 4.2. Therefore, if the alternative hypothesis is not accepted, we proceed to

step 2. Otherwise, we jump to step 3.

2. Iteration of the Algorithm: The adaptive procedure will sequentially search for the time-

homogeneous interval throughout the K candidate intervals. If the adaptive procedures

finds the interval of homogeneity, it will set the adaptive QML estimate as θ̂ = θ̃Ik
and

it will continue to step 3. Otherwise, the algorithn will re-set k to k = k+1 and proceed

with the modeling and the local change point detection.

3. Selection of the Interval of Homogeneity: Being at this step means that the null hypoth-

esis within interval Ik has been rejected, and therefore, we have found a change point.

Hence, we define the last accepted interval as Î = Ik−1 and the adaptive estimate becomes

θ̂ = θ̃Î .

4.3 Choice of Critical Values

In the LPA hypothesis testing framework, the performance of a statistical model is measured

by the probability of committing two types of errors during the estimation of the model. The

first one is referred as a false alarm of rejecting the null before the ideal (oracle) interval of

homogeneity Ik∗ has been found. Hence, the algorithm would select an adaptive estimate θ̂Ik

with a larger variation than θ̂Ik∗
. The second type of error occurs when the adaptive estimation

algorithm incorrectly selects the interval of homogeneity at a larger stage k̂ > k∗.

As a result, we need to select a set of critical values that jointly considers both type of errors

and allows us to measure the performance of the LPA under the null hypothesis. Spokoiny

(2009) presents a propagation condition - similar to equation 3.6 - that is imposed at every step

of the adaptive procedure, and takes into account both, the occurrence of a false alarm and the

distance between the underlying model parameters with respect to the adaptive estimate. The

13



4 Local Parametric Approach

propagation condition is defined as

Eθ ∗ |LIk
(θ̃Ik

, θ̂Ik
)|r ≤ ρkRr(θ

∗) (4.3)

where Rr is the parametric risk bound. The selection of the critical values will depend on the

global parameters ρ and r. The role of ρk at each step k is similar to the level of significance in

hypothesis testing theory, and r represents the power of the loss function. For this reason, the

propagation condition will ensure that at each k step we select the minimal critical values that

guarantee a small probability of a false alarm. If for example, we take a large r and small ρk

values, we would increase the value of the critical values and therefore we would improve the

performance of the adaptive estimation algorithm. However, by doing this, we would incur in a

loss of sensitivity with respect to parameter changes.

Spokoiny (2009) shows that if the critical values are computed by zk =C+D log(nk), with C and

D constant parameters and k = 1, . . . ,K, then equation 4.3 is satisfied. The constant parameters

C and D have to be computed via Monte Carlo simulations based on the assumption of parameter

homogeneity within {Ik}
K
k=1, and on the vector parameter of equation 3.2. Our critical values

for the EACD(1,1) and WACD(1,1) models were provided by Härdle et al. (2012). These sets of

critical values were computed based on an estimation window consisting of 1800 observations

and on quartiles of persistence α̃ + β̃ and ratio β̃/(α̃ + β̃ ) levels. They describe nine groups

of parameter constellations that are used to simulate {zk}
K
k=1 for the sequential homogeneity

testing.

Given the quartiles of estimated persistence and ratio levels - see, e.g. Härdle et al. (2012) - we

can select the set of critical values that are appropriate for the sequential test procedure. The

first step in selecting the adequate set of critical values consists of computing the persistence

level α̃ + β̃ of our QMLE and classify them according to the persistence levels quartiles. Based

on the persistence level we can classify the QMLE into three levels: low, moderate and high.

The low persistence level is associated to the first quartile (25% quantile), while the moderate

and high persistence level are associated to the second (50% quantile) and third quartile (75%

quantile). Then, within each persistence level, we compute the ratio β̃/(α̃ + β̃ ) to further clas-

sify each persistence level into low, medium and high. We end up with 9 groups of parameter

constellations, for each significance and risk level.

Figure 4.2 displays the critical values for the EACD(1,1) model for K = 13, r = 0.5 (’moderate

risk level’) and ρ = 0.25. As Härdle et al. (2012) pointed out, the critical values seem to be

invariant with respect θ ∗ across the nine parameter constellations. Furthermore, the largest

differences of the critical values across the nine parameter constellations seem to to appear for

interval lengths of 3 or 4 days.

For our LPA applications, we use the set of critical values for the EACD(1,1) and WACD(1,1)
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4.3 Choice of Critical Values
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Figure 4.2: Set of simulated critical values of an EACD(1,1) model for the ’moderate risk case’

(ρ = 0.25 and r = 0.50), K = 13 and chosen parameter constellations according to

persistence and ratio levels. The low (blue), moderate (green) and high (red) curves

are associated to the ratio level. Critical_Values

with values r ∈ {0.5,1} and ρ ∈ {0.25,0.50}. In figure 4.3 and 4.4 we can see the resulting

adaptive choice of intervals of homogeneity during the month of April 2012 for the moderate

and conservative risk. Although the adaptive choice of intervals of homogeneity for both models

were also computed for r ∈ {0.50,1} and ρ = 0.50, we do not display them here since they

present similar a similar pattern as the conservative risk.

Nonetheless, we can say that the adaptive estimated length of intervals of homogeneity can

give us a better insight on what is the optimal estimation local window. For instance, we can

see that the largest candidate interval (K = 13 with 1800 observations) is never selected. Thus,

such a large estimation window is not appropriate and we should rather select shorter estimation

windows that capture the dynamics of high frequency data.

Moreover, the lengths of the intervals of homogeneity vary over time and depend on the model.

For instance, in figure 4.3 the estimated length of intervals of homogeneity n
k̂

for the conserva-

tive risk level in the EACD(1,1) ranges from 8 to 10 days, whereas for the moderate risk level

it ranges from 6 to 8 days. On the other hand, in figure 4.4 we observe that for the WACD(1,1)

the length of the intervals of homogenenity ranges from 2.5 to 6 days in the modest risk case

and 6 10 days for the conservative risk case. We can see that for both models, choosing a con-

servative risk level selects larger intervals with smaller variability but at the cost of increasing

the modeling bias.
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4 Local Parametric Approach
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Figure 4.3: Estimated length of intervals of homogeneity n
k̂

given the conservative r = 1 (red)

and modest r = 0.50 (blue) risk case for April 2012 using the EACD model with

ρ = 0.25. EACD_k_hat_Graphs_c
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Figure 4.4: Estimated length of intervals of homogeneity n
k̂

given the conservative r = 1 (red)

and modest r = 0.50 (blue) risk case for April 2012 using the WACD model with

ρ = 0.25. WACD_k_hat_Graphs_c
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5 Forecasting the Electricity Demand

Accurate forecasts of the electricity demand can have an impact on the risk management strate-

gies of the power market players. Deng and Oren (2006) point out that with a liberalized and

competitive electricity market, power companies, load serving entities (LSEs) and power mar-

keters, seek certainty in their costs and revenues through hedging practices and active trading.

In the end, all they want is to maximize the company’s value by mitigating the market risks. In

this chapter, we briefly discuss the usefulness of incorporating precise forecasting techniques

into reducing the risk exposure that power generators bear.

In Germany, the biggest five electricity producers are E.ON, RWE, EnBW, Vattenfall Europe and

EWE AG. For these companies, balancing their exposure to financial and non-financial risks is

crucial to their risk management strategy. Vattenfall (2011) gives a closer insight on this mat-

ter and describes the most common risks faced by power companies, electricity suppliers and

industrial consumers, and remarks the importance of precise electricity demand predictions.

Vattenfall classifies these risks in six different categories: Market & Financial, Technology,

Infrastructure, Politics & Society, Laws & Regulations and Personnel & Organization. Never-

theless, we briefly discuss two specific Market & Financial risks that can be directly related to

the electricity demand: Volume risk and Price risk.

Volume risk, in terms of electricity load (MW), is defined as the deviation of the forecast with

respect to the actual observed volume. On the other hand, price risk (e/MWh) refers to all the

exogenous factors that influence the electricity price. And since the price for electricity is the

main source of earnings for a power generator and LSEs, all factors that have an impact on

electricity prices - such as water levels, generation capacity, electricity demand, and weather

and economic conditions - have to be accurately forecasted in order to mitigate the price risk.

Therefore, by developing better forecast, the electricity market players can estimate a precise

electricity consumption prediction that would reduce the volume risk and price risks.

Deng and Oren (2006) gives a good example that illustrates the importance of electricity demand

and its relation to price risk and volume risk. Deng and Oren (2006) supposes that an electricity

supplier, agrees on a full-requirement contract with an industrial consumer, like Siemens. It

is natural to think, that Siemens would be more interested in having a flexible electricity load

contract at a fixed rate per unit of energy regardless if its electricity consumption is high or

low. In order to reduce this risk, the power supplier would use future contracts to secure a
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5 Forecasting the Electricity Demand

fixed amount of electricity supply at a fixed cost for hedging the expected electricity demand

of Siemens. Nevertheless, the electricity supplier is then at the risk of either under- or over-

hedging, as the electricity demand of Siemens will for sure deviate from the amount hedged by

futures contracts.

If the electricity spot price is high, the total electricity demand is likely to be high as well.

Thus, if the electricity price is higher than the fixed contract rate for serving electricity, there is

a possibility that Siemen’s electricity demand is significantly higher than the hedged quantity.

This would mean that the LSE is under-hedged with respect to the load it has to deliver and

must buy electricity in the spot market at a loss due to the fact that the spot price might exceed

the contracted price paid by Siemens. In the case of a lower spot price, the LSE bears the risk of

being over-hedged, which means it has to sell the electricity surplus in the market at a probably

lower price than that of the settled in the full load contract. This is a clear example of the

financial risks that a LSE or a power company bear due to the volume and price risk, and to the

positive correlation between price and electricity demand.

Hence, the challenge is to develop better forecast techniques in order to efficiently manage

electricity financial risks. Our forecast set up predicts the German electricity demand traded at

the EPEX SPOT over all h = 1,2, . . . ,24 hours from April 1, to April 29, 2012. We apply two

forecasting methods. The first one, based on the standard fixed estimation window - in which we

compute the forecasts on a 3-months (i.e., 1800 observations) window basis. And the second,

based on a multi-step ahead forecasting technique that uses the resulting MEM parameters of

an adaptively-selected local window for r ∈ {0.5,1} and ρ ∈ {0.25,0.50}.

Let us denote the adaptive h-step forecast by ŷi+h and the resulting forecast error as ε̂i+h = y̆i+h−

ŷi+h, where y̆i+h is the observed electricity load. Conversely, we denote the 3-months forecast as

ỹi+h and the prediction error ε̃i+h = y̆i+h − ỹi+h. To account for the intraday periodicity effects

explained in Chapter 2, we multiply the corresponding forecasts by the estimated seasonal factor

associated with the previous 24 hours.

We evaluate both forecasting methods by means of the root mean square prediction error (RM-

SPE) in terms of Megawatts and percentages. We define

RMSPEi+h = {n−1
n

∑
i=1

(y̆i+h − ŷi+h)
2}1/2 (5.1)

for the adaptive forecast and RMSPEh = {n−1 ∑
n
i=1(y̆i+h− ỹi+h)

2}1/2 for the fixed-window fore-

cast respectively. The RMSPE in percentages is calculated by dividing the RMSPE value at each

point by the data sample mean.

Table 5.1 compares the overall RMSPE results obtained for the two forecasting techniques.

We observe that for both, the EACD(1,1) and the WACD(1,1) model, the LPA forecasts have
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Figure 5.1: Estimated RMSPEs for the(local) EACD(1,1) model for the four possible scenarios.

The graphs plot the LPA RMSPEs (red) against the fixed-window RMSPEs (blue)

over the sample from April 1 to April 29, 2012. The upper pannel shows the results

in terms of Megawatts. The lower pannel shows the RMSPE in percentage terms.
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Figure 5.2: Estimated RMSPEs for the(local) WACD(1,1) model for the four possible scenarios.

The graphs plot the LPA RMSPEs (red) against the fixed-window RMSPEs (blue)

over the sample from April 1 to April 29, 2012. The upper pannel shows the results

in terms of Megawatts. The lower pannel shows the RMSPE in percentage terms.
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5 Forecasting the Electricity Demand

Overall RMSPE (%) EACD(1,1) WACD(1,1)

Standard Approach 34.72% 35.18%

LCP Scenario 1, ρ = 0.25 & r = 0.50 33.93% 34.12%

LCP Scenario 2, ρ = 0.50 & r = 0.50 33.98% 34.11%

LCP Scenario 3, ρ = 0.25 & r = 1 34.11% 34.24%

LCP Scenario 4, ρ = 0.50 & r = 1 34.15% 34.26%

Table 5.1: Comparison of the overall root mean square prediction error (ORMSPE) in per-

centage terms for the EACD and WACD models for the LPA and fixed-window

forecasts. LCP_Forecasting& Standard_Forecasting

a lower coefficient of variation with respect to the sample mean and there are no significant

differences across risk and significance levels. A graphical illustration of these results, is shown

in figure 5.1 for the EACD(1,1)model and in figure 5.2 for the WACD(1,1) model. For both

models, we can see that for the first hours in of the forecast horizon, the two methods perform

similarly. However, after the fourth hour, the LPA forecasts outperforms the standard fixed-

window forecasts.

In general, by analyzing the RMSPE graphs for the EACD(1,1) and the WACD(1,1) models

we can conclude that for up to 4 hours, both forecasting methods perform equally. Hence, the

LPA can be safely used to forecast relatively short time horizons. However, after 4 hours, the

LPA outperforms the standard fixed-window forecasting approach. Therefore, in the relatively

long run, the LPA becomes a better forecast estimate. Moreover, we observe that the forecast-

ing results are robust with respect of the tuning parameters and across the four different LPA

scenarios.
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6 Conclusion

The German electricity demand traded at EPEX SPOT exhibits an inverted U-shape intraday

seasonal component - unlike the typical U-shape observed in stock’s seasonal component. This

shape is explained by the fact that electricity demand is relatively low in the morning, then it

slowly increases around midday, decreases during the evening and finally, it rises in the night.

Moreover, we applied a local multiplicative error model (MEM) to analyze and forecast the

German electricity load. By doing this, we observed that model parameters vary not only with

respect to time, but also with respect to the selected estimation window. For instance, longer

estimation windows yield less variable model parameters than those estimated over short inter-

vals. The LPA is a more flexible procedure that allows parameters to vary with time and at the

same time detects possible structural breaks. Therefore, LPA estimates become more precise

and helpful in forecasting procedures.

For each model, EACD(1,1) and the WACD(1,1), the local parametric approach yielded differ-

ent estimated lengths of intervals of homogeneity. The average length of intervals of homo-

geneity for the EACD(1,1) ranges from 6 to 8 days in the modest risk case, whereas for the

conservative risk this range lies between 8 and 10 days. For the WACD(1,1) these intervals of

homogeneity range from 2.5 to 6 days for the modest risk case and from 6 to 10 days. Hence, we

can say that we obtain rebust results concerning the tuning parameters, risk levels and signifi-

cance levels over the four different LPA scenarios. In addition, by observing the RMSPE results

and the ORMSPE table, we can conclude that for up to 4 hours, both forecasting methods per-

form equally. This means that the LPA procedure can be safely used to estimate and forecast

time series over a relatively short time horizon. For this reason, the LPA provides better forecast

estimates that will help to further improve - through a precise electricity demand estimation -

better risk management techniques in the Energy Market.
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