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ABSTRACT

The numerous technical applications in deposit metal plaiéh new materials like:C and
TiC has an advantage to overcome the leaking corrosive beh@awibhave additional a good
electrical behavior. Here we present an application of agp®media to model a homogenized
deposition with a parallel plate PE-CVD apparatus. Spemalnetries of parallel Anodes and
cathodes helps to obtain at least a laminar flow field. By thg tlva delicate arrangement of
the anode and cathode has to be simulated. The flux of therpoesiare important to simulate
to the porous media given as the plasma background. Herem@ptianize the transport to the
delicate geometry respecting the flux field in the permeadters. To derive a mathematical
model, we deal with a model for the transport and kinetichefdifferent species. Underlying
physical experiments help to approximate the parametdheafumerical model. We introduce
a multi regression method to approximate the physical tonthéhematical parameters. We
present results of some numerical simulations and helpéséa some effects to find on optimal

deposition process.

Keywords: numerical methods, CVD processes, regression methodfiderprocess, opti-
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1 INTRODUCTION

We motivate our studying on simulating a thin film depositmmocess that can be done with
plasma enhanced chemical vapor deposition (PECVD) preseds the last years, due to the
research in producing high temperature films by depositinigw pressure, processes have
increased. The interest on standard applicationSitd and 7C' are immense but delicate
to model and optimize a homogene deposition rate, which @ormant to achieve a stable
nanolayer.

We present a model for the transport and kinetic processimqfrecursor gases in a low tem-
perature and low pressure plasma. We take into accountdheport and kinetics of CVD
processes in the reactor and the retardation of molecul@shvare treated by the underlying
process plasma.

The model is discussed as a transport-reaction model wittesys of coupled partial and ordi-
nary differential equations.

The paper is outlined as follows.

In section 2 and 3 we present the physical and mathematicdehamd a possible reduced
model for the further approximations. In section 4 we préska underlying discretization
methods and analysis of the coupled model equations. Th®xpyation to the physical pa-
rameters are discussed in Section 5. The numerical expetsraee given in Section 6. In the

contents, that is given in Section 7, we summarize our result

2 PHYSICAL MODEL AND EXPERIMENTS TO SIC AND TIC

The base of the experimental setup is the plasma reactorberash a NISTGEC reference
cell. The spiral antenna of a hybrid ICP/CCP-RF plasma sourceepdaced by a double spiral
antenna (Kadetov 2004). This reduces the asymmetry of tih@etia field due to the superposi-

tion of the induced fields of both antennas. Also, the powapting to the plasma increases and
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enhances the efficiency of the source. A set of MKS mass flawrolbers allow any defined
mixture of gaseous precursors. Even the flows of liquid pisans with high vapor pressure is
controlled by this system. All other liquid and all solid puesors will be directly transported to
the chamber by a controlled carrier gas flow. Besides thaipsecflow, the density can also be
changed by varying the pressure inside the recipient. ©lingy the pressure is achieved with
a valve between the recipient and vacuum pumps. In addaitveated and insulated substrate
holder was mounted. Thus, a temperature upOtiyC' and a bias voltage can be applied to the
substrate. While the pressure and RF power determine thiesaotetl particle energy (plasma
temperature), the bias voltage adds, only to the chargdatlear energy directed at the sub-
strate. Apart from the pressure and RF power control, theegegf ionization and number as

well as size of molecular fractions can be controlled.

For the precursor o§iC' is given via Tetramethyl-silane and have the following tescmech-

anism:
Si(CH3), — -CHs+ -Si(CHs)s (1)
.CHy+ Hy — CH,+ -H (2)
.CHs + Si(CHs)y — CH,+ (CH;)3SiCH, (3)
Si(CHy)s + Hy — HSi(CHy)s + H (4)
2.Si(CHs); — Si(CHs)y+ Si(CHs), (5)
Si(CHs)y+ Hy — HSi(CHs)s+ CH, (6)
HSi(CHs); — Si(CHs)y+ CH, (7)
Si(CHs)y — SiH,CH, (8)

The last reaction ends up in the deposition of SiC.



For the precursor df'iC' is given via Tetraethyl-titanium and we have the followingekics:

TZ(CHQCH3)4 — TZ(CHQCH3)3+CHQCH3 (9)
Ti(CHy,CHs)s — Ti(CHyCHs)y+ -CHyCHs (10)
Ti(CH,CHs3); — -TiCH,CHs+ -CHyCHs (11)

Additionally we can use a titanium precursor shown in FiglireHere we can step by step

separate the”' H; groups.

CH5

HsC CH,

H5C CH

HiC—Ti—CHs

CH5

Figure 1: Cp*TiMe3 or (Trimethyl)pentamethylcyclopenigayltitanium(1V)

3 MATHEMATICAL MODEL

In the following the models are discussed in two directioifgefield and near-field problems:

1. Reaction-diffusion equations, see (Gobbert and Rirggt98) (far-field problems);
2. Boltzmann-Lattice equations, see (Senega and Brinkid@06) (near-field problems).

3. Reaction equations, see (Geiser and Arab 2008) (kinegldgms).

The modeling of the far- and near-field problems are consitlby the Knudsen number (Kn)
which is the ratio of the mean free pathover the typical domain sizé. For small Knud-

sen numbergn ~ 0.01 — 1.0 we apply the convection-diffusion equation, whereas fayda
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Knudsen number&n > 1.0 we deal with a Boltzmann equation, see (Ohring 2002). For the
kinetic problems we only consider the chemical reactionveen the species, see (Geiser and

Arab 2008).

The geometry of fare field apparatus is given as:

Apparatus geometrie (Fare field)

Homogeneous
Inflow Electrical Field

ofthe | /7\/
gases ( [ Deposition area
(Brush) N (Near field)

Outflow of the gases

Figure 2: Fare field of the parallel PECVD apparatus.

The geometry of the near field apparatus is given as:
Apparatus geometrie (Near field)
Near field (Deposition of the wires)

Inflow of the gases
Ano<3|e Cathode

i e N B e I

Wire to deposite

Outflow of the gases

Figure 3: near field of the deposition area.

3.1 Model for Small Knudsen Numbers (Far-field Model)

When gas transport is physically more complex due to contbitmevs in three dimensions,
the fundamental equations of fluid dynamics become thearsggobint of the analysis. For our
models with small Knudsen numbers we can assume a continowmfthe fluid equations can

be treated with a Navier-Stokes or especially with a conwaetiffusion equation.
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Three basic equations describe the conservation of magsentam and energy that are suffi-

cient to describe the gas transport in the reactors, seéen@2002).

1.

Continuity - the conservation of mass requires the net oAtmass accumulation in a

region to be equal to the difference between the inflow anflovutates.

Navier-Stokes - momentum conservation requires theatedbf momentum accumulation
in a region to be equal to the difference between the in- atdata of the momentum,

plus the sum of the forces acting on the system.

Energy - the rate of accumulation of internal and kinetiergy in a region is equal to
the net rate of internal and kinetic energy by convectiouns phe net rate of heat flow by

conduction, minus the rate of work done by the fluid.

We will concentrate on the conservation of mass and assuatetiergy and momentum are

conserved, see (Gobbert and Ringhofer 1998) and (Geisé).Z0Rerefore the continuum flow

can be described as a convection-diffusion equation gisen a

¢atci +V- (VCi - De(i)vci) = —\¢pc; + Z Akper + Qz‘, (12)

k=k(i)

where we have the following parameters

(7

effective porosity|—|,

concentration of théth species, e.g5%, T, C'
phase{mol /mm®

Velocity in the underlying plasma atmosphénen/s|,
element specific diffusions-dispersions tensom? /s],
decay constant of thih speciesl/s],

source term of théth speciegmol /(m?s)],
6



withi=1,..., M andM denotes the number of species.

The effective porosity is denoted lgyand declares the portion of the porosities of the aquifer
(air), that is filled with the ionized plasma. The transpertt is indicated by the velocity, that
presents the direction and the absolute value of the plasmanfthe apparatus. The velocity
field is divergence-free. The kinetic constant of ittespecies is denoted by. Thereby does
k(i) denote the indices of the successor species. The initiaévalgiven ag;  and we assume

a Dirichlet boundary with the function ; (z, t) sufficiently smooth.

3.2 Model for Large Knudsen Numbers (Near-field Model)

The model assumes that the heavy particles can be descritfied wynamical fluid model,
where the elastic collisions define the dynamics and fewastal collisions are, among other

reasons, responsible for the chemical reactions.

To describe the individual mass densities as well as theagjlabmentum and the global energy
as dynamic conservation quantities of the system corre@pgrconservation equations are

derived from Boltzmann equations.

The individual character of each species is considered ®sroanservation equations and the

so-called difference equations.

The Boltzmann equation for heavy particles (ions and neeteanents) is given as:

3} 0

— _- . — 0B

il + o (nsu + ngcs) = Q)7 (13)
gpu + 9 . (puu +nTl — T*) = EN qsn <E> (24)
ot or = = — AT

0

* a * * *

N
- Z qsMs (u + CS) ) <E> - Q:(fe,i)nelv (15)
s=1

wherep denotes the mass densityijs the velocity, and" the temperature of the ion&;; is the
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total energy of the heavy patrticles, is the particle density of heavy particles specipg* is
the heat flux of the heavy particle system;is the viscous stress of the heavy particle system;

FE is the electric field and)¢ is the energy conservation.
Further, the production terms a@éf) = Y Gsignka,nan, With rate coefficients,, .

We have drift diffusion for heavy particles in the followifigxes. The dissipative fluxes of the

impulse and energy balance are linear combinations of géped forces:

0 Al 10
* I U, (ays) = ¥
q Ap(E) AT ;;/\n gy (16)
. d o \' 2/0
L= —77(@7“*(@7“) ‘§<a7‘“)i>’ 4
N
Eoi = Y _1/2p.c2+1/2pu* +3/2nT. (18)

s=1

where \ is the thermal diffusion transport coefficiert is the temperature; is the particle

density.

Diffusions of the species are underlying to the given plaanhare described by the following

eguations:
Ing+ 2 - (nyu + nyey) = 98 (19)
¢ = p(E) — dp) 5T — SN DI Lo, (20)

The density of the species is of dynamical values and theegiéansport and mass transport

are subject to the following constraint conditions:

ZS msngs = p, (21)

Yo nsmses = 0. (22)



wherem, is the mass of the heavy particle, is the density of the heavy particle, andis the

difference-velocity of the heavy patrticle.

Field Model

The plasma transport equations are Maxwell equations andaampled with a field. They are

given as:
1 ~
%V X den = —eNUe + Joxp (23)
V . den - 07 (24)
0
VxFE = —adena (25)

whereB is the magnetic field and is the electric field.

3.3 Simplified Model for Large Knudsen Numbers (Near-field Malel)

For the numerical analysis and for the computational reswié reduce the complex model and

derive a system of coupled Boltzmann and diffusion equation

We need the following assumptions:

. 0

¢ = AT (26)

=0, (27)

Eor = 3/2nT, (28)
Qgi)nel = const (29)



and obtain a system of equations:

0 0

e =
gpu + 9 . (puu+nTI) = EN qsn <E> (32)
ot or - = sEATE

9, 0 9,
a3/2nT + o (3/2nTu + )\ET + nTu)

N
= Z gsns (u+¢,) - (E) — Q(gfi)nel . (32)
s=1

Remark 1 We obtain three coupled equations for density, velocity tamperature of the

plasma. The equations are strong-coupled and decompogiio be done in discretized form.

4 NUMERICAL METHODS: DISCRETIZATION OF THE CONVECTION-DIF  FUSION
EQUATION

For the space-discretization we use finite-volume methodsfar the time-discretization we
apply explicit or implicit Euler methods. In the next secisowve introduce the notation for the

space-discretization and describe the discretizatiotivoas for each equation-part.

4.1 Notation

The time-steps for the calculation in the time-intervaks(&t, t" ') c (0,T),forn =0,1,.. ..
The computational cells are given@s C Q with j = 1,..., I. The unknowr is the number

of the nodes.

For the application of finite-volumes we have to constructial adnesh for the triangulatiof
, for the domairt. First the finite-elements for the domdinare given byl“,e = 1,..., E.

The polygonal computational celi3; are related to the verticas of the triangulation.

The notation for the relation between the neighbor cellsthedtoncerned volume of each cell
is given in the following notation.

LetV; = |€2;] and the sef\; denote the neighbor-point, to the pointz;. The boundary of the
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cell j andk is denoted a§ ;.

We define the flux over the boundary; as

vjk:/ n-vds. (33)
ij

The inflow-flux is given a;;, < 0, and the outflow-flux is;;, > 0. The antisymmetry of the

fluxes is denoted as;, = —vy;. The total outflow-flux is given as

Vj: Z Ujk- (34)

keout(y)

The idea of the finite-volumes is to construct an algebrastesy of equation to express the
unknowns} ~ c(x;,t"). The initial values are given b;? The expression of the interpolation
schemes can be given naturally in two ways: the first pogsikslgiven with the primary mesh

of the finite-elements
I
"= Z cio;(x) (35)
j=1

whereg, are the standard globally-finite element basis functiomslkBvic and Geiser 2003).

The second possibility is given with the dual mesh of thedintlumes with,

= Z cji(r) (36)

j=1

whereyp; are piecewise constant discontinuous functions defined;by) = 1 for z € ; and

¢;(z) = 0 otherwise.
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4.2 Discretization of the advection equation

If no reactions are considered in (12), the remaining admecatquation takes the following

form:
Oic+ V- (ve)=0. (37)

The initial conditions are given by (12), arct, ) is explicitly given for¢ > 0 at the inflow

boundaryy € 9"Q by (12).

The exact solution of (37) can be directly defined by use oéthealledorward trackingform
of characteristic curves. If the solution of (37) is knowrsatne time point, > 0 and some
pointy € QUI™Q, thenu remains constant far> t, along the characteristic curvé = X (¢),
i.e.u(t,X(t)) = u(ty,y) and

t
X(6) = X(tit0.9) =y + [ 0(X(5)ds. (39)
to
The characteristic curv& (¢) starts at the time = ¢, in the pointy, i.e. X(t;t0,y) = v,
and it is tracked forward in time far > ¢,. Of course, we can obtain thai(t) ¢ (, i.e. the

characteristic curve can leave the dom@ithroughd?“ .

Consequently, we have thatt, X (t;to,y)) = U(to, y), where the functio/ (0, y) is given for
to = 0 andy € Q by initial conditions (12) and fot, > 0 andy € 9" by the inflow boundary

conditions (12).

The solutionc(t, ) of (37) can also be expressed in a backward tracking formchwisi more
suitable for a direct formulation of the discretizationasotes. Concretely, for any characteristic
curve X = X (t) = X(¢;s,Y), that is defined in a forward manner, i.&.(s;s,Y) = Y and
t > s, we obtain the curv@” = Y (s) = Y(s;t, z) that is defined in a backward manner, i.e.

Y (t;t,X) = X ands < t. If we express” as function of, for ¢, < ¢, we obtain from (38):

Y(ty) = Y(to;t,z) =2 — /’U(X(s)) ds, (39)
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and we have(t, x) = c(to, Y (o))

To simplify our treatment of inflow boundary conditions, weppose that/ (¢, v) = Un+1/2 =
const for v € 9™Q andt € [t",¢"™'). Moreover, we define formally for any € 9 and

to € [t "] thatY (s;tg, v) = Y (to; to, ) for t* < s < t.

In (Frolkovic 2002a), the so-calleffux-based (modified) method of characteristieas de-
scribed. This method can be deemed to be an extension ofahésst finite volume methods

(FVMs)). The standard FVM for differential equations (3@lkées the form:

tn+1

2l =10 = 3 [ [ vt) et vt (40)
k tn Fk
The idea of a flux-based method of characteristics is to aplygubstitution

c(t,y) = c(t™, Y (t";t,7)) on (40).

In particular, for the integration variable € (¢",¢"!') and for each pointy € 9°“/Q);, the
characteristic curve¥ (s) are tracked backward, startinginat s = ¢ and ending ins = ¢".
We must reach a poirt = Y (¢"), such thay” € 9"Q orY € Q. In the first caseg(t",Y) is

given by the inflow concentratioki(t",Y") = U™, in the latter bye(t",Y").

The integral on the right-hand side of (40) can be solvedtéxéar the one-dimensional case
with general initial and boundary conditions (Roach 1992)r the general 2D or 3D case, a

numerical approximation aof(t,, Y (o)), respectively ol (¢,), will be used (Leveque 2002).

4.3 Discretization method for the convection-reaction eqgation based on embedded one-

dimensional analytical solutions

We apply Godunov’s method for the discretization method, (teveque 2002), and extend
the formulation with analytical solution of convectioraation equations. We reduce the multi-
dimensional equation to one-dimensional equations ane ®zch equation exactly. The one-
dimensional solution is multiplied by the underlying volarand we get the mass-formulation.
The one-dimensional mass is embedded into the multi-dimeasmass-formulation and we

obtain the discretization of the multi-dimensional eqoiati
13



The algorithm is given in the following manner

&g c + V- Vi C = _)\l c + )\1_1 Cl—1,

withl=1,...,m.

The velocity vectow is divided by R;. The initial conditions are given by} = ¢;(z,0) , or

& =0forl=2,...,mand the boundary conditions are trivig= 0 for i = 1,...,m.

We first calculate the maximal time-step for cgthind concentrationwith the use of the total

outflow fluxes

_ Vil _
Ti,j = y Vj = Ujk .

Vi
keout(j)

We get the restricted time-step with the local time-stepsetis and their components

We calculate the analytical solution of the mass, cf. (G26€3) and we get

n _ n
mi,jk,out — mi,out<a7 b7 T 7vl,j7 cee 7Ui,j7 R17 tety Ri7 )\17 cety )\Z) )

n o n n
mi,j,rest — 7’7’?%7‘7 (T ,/Ul’j7 e 7/Ui’j,R1, . .7Ri7)\17 . '7)\i) 3

wherea = V;R;(c} ), — ¢ ) » b= ViRic}, andmi; = Vi R;c;. Furtherc?,,, is the concen-

tration at the inflow- and, is the concentration at the outflow-boundary of the gell
14



The discretization with the embedded analytical mass mutated by

Vjk vy
n+1 n _ J J
My = My ey = — E . Misjk.out + E —, Thidg.out

keout(j) 7 l€in(j)

where% is the re-transformation for the total mass ;x ... in the partial mass.; j; . In the
next time-step the mass is given7a$7;rl =V c;”j;.“ and in the old time-step it is the rest mass
for the concentration The proofis provided in (Geiser 2003). In the next secti@derive an
analytical solution for the benchmark problem, cf. (Higaahd Pigford 1980), (Jury and Roth
1990).

4.4 Discretization of the reaction-equation

The reaction-equation is an ordinary-differential equais given as follows:
ORic; = —N\iRici + N1 Ri_qci (41)

wherei = 1,...,m and we denote, = 0. The decay-factors are > 0.0 and the retardation-
factors areR; > 0.0. The initial-conditions are;(z,t°) = ¢y andc¢;(z,t°) = 0 with ¢ =

2,...,m.

We can derive the solutions for these equations, cf. (Batel®40), as
R | «
Ci = Co1 E A; ;Aj,i eXP(_)\j t) ) (42)

where: = 1,...,m. The solutions are defined for the case# )\, with j # kandj, k €
1,...,M.

15



The factors\; andA;; are given as

1
AZ:HAJ», Aj,i:HAk_Aj. (43)

For wise equal reaction-factors we have derived the salftBeiser 2003).

In the next subsection we introduce the discretization efdiffusion-dispersion-equation.
4.5 Discretization of the source-terms
The source terms are part of the convection-diffusion egustand are given as follows:

Oci(x,t) —v-Ve; + VDV = gi(x,t) | (44)

wherei = 1,...,m, v is the velocity,D is the diffusion tensor ang;(z,¢) are the source

functions, which can be point wise, linear in the domain.

The point wise sources are given as :

Loop<T,
ai(t) = with / ai(t)dt = g (45)
0 t>T, T

whereg, ; is the concentration of speciésit source point y,..; € €2 over the whole time-

interval.

The line and area sources are given as :

%7 t<T andx € Qsource,i7
qi<x7 t) — source,t Y (46)

t>1T,

0,
With/ /qz-(x,t)dtdw = s,i
Qsource,i T
16



whereg; ; is the source concentration of species the line or area of the source over the whole

time-interval.
For the finite-volume discretization we have to compute :

/ gi(z,t) doe = / n- (ve; — DV¢;) dy , 47)
Qsource,i,j r

source,i,j

wherel's,,,c.i,; IS the boundary of the finite-volume cél,,,,.. ; ; which is a source area. We
haveU; Qource.ij = Qsource,i WNEIrej € Isource, Wherel,,, .. is the set of the finite-volume cells

that includes the area of the source.
The right-hand side of (47) is also called the flux of the sesrErolkovic 2002b).

In the next subsection we introduce the discretization efdiffusion-dispersion-equation.

4.6 Discretization of the diffusion-dispersion-equation

We discretize the diffusion-dispersion-equation with liciptime-discretization and the finite-

volume method for the following equation
ORc—V-(DVe)=0, (48)

wherec = ¢(z,t) with z € Q andt > 0. The diffusions-dispersions-tensbr = D(z,v)
is given by the Scheidegger-approach (Scheidegger 1961¢. v&locity is given asr. The

retardation-factor ig2 > 0.0.

The boundary-values are denotedibyD V¢(x,t) = 0, wherex € I'is the boundary’ = 012,
(Frolkovi€ 2002a). The initial conditions are given &it, 0) = ¢o(x).

We integrate the equation (48) over space and time and derive

tn+l tn+l

Oy R(c) dt dx = V- (DVec) dt dx . (49)
/Qj /t" /Qj /2;"
17



The time-integration is done by the backward-Euler methutithe diffusion-dispersion term

is lumped, (Geiser 2003)

/Q (R(c™™) — R(c™)) dw = " /Q V- (DV) dx (50)

J

The equation (50) is discretized over the space with Grden'aula.

/ (R(c"t) — R(c™)) dx = 7" / Dn -Vt dy, (51)
Q Ly

J

wherel'; is the boundary of the finite-volume cell;. We use the approximation in space

(Geiser 2003).

The spatial-integration for (51) is done by the mid-poirderaver the finite boundaries and is

given as

VjR(C?H) =" Z Z T k‘njkz kvce s ) (52)

ech; kGAe

where|I', | is the length of the boundary-elemdrit,. The gradients are calculated with the

piecewise finite-element-functiaf), cf. (35) and we obtain

Vet =Y gt Ve (xS - (53)

leAe

With the difference-notation we get for the neighbor-pqgiaind/ (Frolkovi¢ and De Schepper

2001) and get the discretized equation

ViR(e;™) = ViR(e)) = (54)
3N (XD T DTk ) (=t
eeh; leNe\{j}  keAS

18



wherej =1,...,m.

5 REGRESSION AND APPROXIMATION OF THE PARAMETERS

We apply regression analysis to includes the techniquesnfteling and analyzing several

variables.

We have the dependent variables (physical parameters)enana more independent variables

(mathematical parameters).

Therefore we understand how the typical value of the depena@eiable changes when any one
of the independent variables is varied, while the otherpeaeent variables are held fixed. It
is also of interest to characterize the variation of the ddpat variable around the regression

function, which can be described by a probability distritwt

The regression models involve the following variables:

e The unknown parameters denotedsashis may be a scalar or a vector of length
e The independent variables, X.

e The dependent variable, Y.

A regression model relatés to a function ofX andp.

Y ~ f(X,3). (55)

The approximation is usually formalized B¢Y' | X') = f(X, ). To carry out regression analysis,

the form of the function f must be specified.
We concentrate on linear regression:
1.) We exactlyN = k data points are observed, and the function f is linear, s@tjuation

Y = f(X,) can be solved exactly rather than approximately. This reslit@ solving a set oV
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equations withV unknowns (the elements @, which has a unique solution as long as the

are linearly independent.

2.) We haveV > k data points. In this case, there is enough information ird#te to estimate
a unigue value fop that best fits the data in some sense, and the regression wioglekbpplied

to the data can be viewed as an overdetermined systeim in
Method:

Finding a solution for unknown parametessthat will, for example, minimize the distance
between the measured and predicted values of the deperat&tile}” (also known as method

of least squares).

Means we have at least to compute the funcfion

V= XF, (56)
Y;‘eg = XnewF7 (57)
Y —-Y = Err, (58)

whereY is the exact value anil the approximated values; is the regression function.
Algorithm:

We apply the multi-physics equation with mass transpot aisystem of convection-diffusion-

reaction equations with embedded sorption equations.

For all the experiments we approximate the physical expartrwith a mathematical experi-
ment and obtain parameter for the simulation models. Lateapply by regression new pa-
rameters in the physical experiment to have some tendersgegGeiser and Arab 2010). A
superposition of the single regression functions is appitederive the new regression func-

tions.

In the next section, we discuss the numerical experiments.
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6 NUMERICAL EXPERIMENTS

In the following, we present the numerical experiments,chhare compared with physical
experiments. We apply the physical results of the depaositades and approximate to our

model equations with respect to the reaction and retantagoameters.

Based on this parameters, we could approximate to diffgr@rameters in the simulations and

achieve numerical deposition rates, which could be used pveview of physical experiments.

For all the experiments we have the following parametersiefmodel, the discretization and

solver methods.

We apply interpolation and regression methods to couplelysical parameters to the mathe-

matical parameters, see Figure 4 and Table 1.

Physical Experiments
Physical parameters

Interpolation or Regression

Mathematical Experiments
Mathematical parameters

Figure 4: Coupling of physical and mathematical paramegiacs.

Physical parameter Mathematical parameter
Temperature,pressure,powevelocity, Diffusion,Reactior
T,p, W V,D, A\

Table 1: Physical and mathematical parameters.

In the following Figure 5 the underlying geometry of the afgas is given. The inflow of the

precursor gases are at left and right the top of the appanahike the outflows are at the left
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and right bottom. The measure poiiB0, 70) is in the middle of the deposition area and the

deposition rates could be measured.

(0,200) (180,200)  550,200)
(180,130)
(70,70
(130,70)
(250,0)
(0,0 (70.0) (180,0)

Figure 5: The geometry of the apparatus with the measurggoin

6.1 Parameters of the model equations

In the following all parameters of the model equations (I2)agven in Table 3.

density p=10
mobile porosity ¢ =0.333
immobile porosity 0.333
Diffusion D =0.0
longitudinal Dispersion arp = 0.0
transversal Dispersion ar = 0.00
Retardation factor R =10.0e — 4 (Henry rate).
Velocity field v =(0.0,—-4.0 1078)%.
Decay rate of the species of 1st EX Aap = 110768,

Decay rate of the species of 2nd EX A\ 45 = 2 1078, Agyn = 1 107,
Decay rate of the species of 3rd EX\ 45 = 0.25 1078, A\cp = 0.5 1078,
Geometry (2d domain) 2 = [0,100] x [0, 100].

Boundary Neumann boundary at
top, left and right boundaries.
Outflow boundary
at the bottom boundary

Table 2: Model-Parameters.

The discretization and solver method are given as:

For the spatial discretization method, we apply Finite wodumethods of 2nd order, with the

following parameters in Table 3.
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spatial step size AZpin = 1.56, ATpee = 2.21

refined levels 6
Limiter Slope limiter
Test functions linear test function

reconstructed with neighbor gradients

Table 3: Spatial discretization parameters.

For the time discretization method, we apply Crank-Nicolsoeethod (2nd order), with the

following parameters in Table 4.

Initial time-step Atiniy = 5 107
controlled time-step| At = 1.298 107, At,in = 1.158 107
Number of time-steps 100, 80, 30, 25
Time-step control time steps are controlled with
the Courant-Number CEJ,, = 1

Table 4: Time discretization parameters.

For the discretised equations are solved with the followireghods, see the description in Table

5.
Solver BiCGstab (Bi conjugate gradient methof)
Preconditioner geometric Multi-grid method
Smoother Gauss-Seidel method as smoothers for
the Multi-grid method
Basic level 0
Initial grid Uniform grid with 2 elements
Maximum Level 6
Finest grid Uniform grid with8192 elements

Table 5: Solver methods and their parameters.

For the numerical experiments, we discuss the approxim&itheS:C' andTiC' experiments.

The underlying software tool is3t, which was developed to solve discretised partial diffeaén

equations. We use the tool to solve transport-reactiont@msa see (Fein 2004).

6.2 Test Experiment with SiC deposition (Near Field)

For theS:C', we obtain a different setup for the physical experimemiuding the Bias voltage

of the electric field, which is simulated as retardation ®species.
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For simplification of the reactive process, we consider #is¢ kinetic process, given as:

98iC + 4H — SiC + CH, + Si, (59)

Here we have the physical experiments and approximate tethgerature parameters’bf=

400, 600, 800. For the physical experiment we have the following paransete

W | T Povar Rg; R Physical | Numerical
ratio(Si:C) | ratio(Si:C)
100| 700 | 9.7e-02| 4e-04 2e-04 0.569 0.568
300| 700 | 9.7e-02| 2.3e-04| 2e-04 0.744 0.740
900 | 700 | 9.7e-02| 1.35e-04| 2e-04 0.919 0.9
100| 400| 1e-01 | 2e-04 | 0.7e-04 0.617 0.6103
500 400| 1e-01 | 2e-04 | 1.6e-04 0.757 0.745

500| 400| 1e-01 | 2e-04 | 1.3e-04 0.704 0.691
900| 400| 1e-01 | 2e-04 | 3.48e-04| 1.010 1.017
900|400 | 1e-01 | 2e-04 | 3.4e-04 1.0 1.0

100 | 400 | 4.5e-02| 4.7e-04 | 0.1e-04 0.342 0.342

Table 6: Approximated Deposition rates and comparison y@ighl experiments.

In the following numerical experiment, we apply the depositarea (near field), see Figure 4.

Here we assume to have a constant velocity field and startthtspecies':C' and H, which

are given as point and line sources, see Table 8.

81 point sources afiC' at the position X =10,11,12,...,90,Y =20
Line source offf at the position x € [5,95],y € [20, 25]
Amount of the permanent source concentratia®C,,,,.. = 0.4, 0.7,0.8,0.85,0.84,0.82,0|8
,0.6,0.4,0.2,0.0Hypce = 0.12
Number of time steps 200

Table 7: Parameter of the source concentration.

We take here the concentration®fC' as a point sources, and the concentratio®/as a line

source.

In Figure 6, we present the concentration afi@ and200 time-steps.
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Figure 6: Experiment with moving point sources, wh&ié€'experiment afte200 time-steps.

Figure 7: Experiment with moving point sources, whgié'experiment afte200 time-steps.

In Figure 8, we show the deposition rates of the 81 point ssuexperiment.

1.4e+07 T
SIC at point 50 18 ——
CH4 at point 50 18 -~
H at point 50 18 -------
SiCatpoint502 —+
CH4 at point 50 2
H at point 50 2

1.2e+07

1e+07 i

8e+06

6e+06

4e+06

2e+06

. = . I ————
0 5e+08 1le+09 1.5e+09 2e+09 2.5e+09

Figure 8: Deposition rates in case of 81 point sources exjaari.

Remark 2 The numerical experiments can be fitted in the near field tgpthesical experi-

ments. In different situations, the best deposition rasudbtained with at least homogeneous
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RATE

Csource,max . SiCtarget,maz

8.7.10°:8.7.10° = 1.

Table 8: Rate of the concentration.

concentrations below the deposition area. The near fieldiksitions obtain an optimum at low
temperaturet00[°C] and high plasma power abo@00[I¥/]. Such results are also obtained in

our physical studies, see (Geiser and Arab 2010).

6.3 Test Experiment with7iC' deposition (Fare field)

For theTiC, we obtain a different setup for the physical experimermuding the Bias voltage
of the electric field, which is simulated as retardation ®species. In the following numerical
experiment, we apply the deposition area (fare field), sgarEi4. Such a contrast to the near

field allows to specify the situation in the whole apparatus.

For the physical experiment we have the following paranseter

Pressure in the chamberp = 9.81072 — 2[mbar]
Precursor temperature  Tpccursor = 71.5[°C]
Velocity (argon gas) v = 30.0[cm?/min)]

Inflow velocity of the

precursor gas Vinflow = 0.60[cm? /min]

Table 9: Physical parameters.

Based on the approximation scheme, we apply the simulatittnrespect to derive the mathe-

matical parameters.

For different physical situations, we could achieve théofeing mathematical parameters, see

Table 10.

In the following Figure 9 and 10, we present an example of thecentration of two inflow
sourceser;, yri = (35,190) andxy;, yr; = (215,190). The velocity is given perpendicular to

the apparatus.
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| Power [W]| Bias [V] | Rc at material 1| Ry; at material 2] Ratio(C:Ti) (numerical)|

300 0 0.110°* 20 101 5.5:1.5=3.6
600 0 1.0107* 201074 44:15=2093
900 0 1.5107* 20 10~* 3.8:1.5=253
300 -10 2.8107% 20 10~* 3.1:1.5 =2.066
600 -10 1.010°% 20 10~* 5.7:1.5=3.8
900 -10 1.010° 60 101 5.7:05=11.4

Table 10: Computed and experimental fitted parameters watsichulations.

Figure 9: Two inflow sourcesy;, yr; = (35,190) andxr;, yr; = (215, 190) with perpendicular

velocity and100 time-steps with ratio betweeti and7; equal to3.6.

Figure 10: Two inflow sourcesy;, yr; = (35, 190) andx;, yr; = (215, 190) with perpendicu-

lar velocity andl50 time-steps with ratio betweeti and7"; equal t03.6.

In Figure 11, we show the deposition rates of two inflow sositeg, y7; = (35,190) and

x7i, yri = (215,190) with perpendicular velocity and aftés0 time-steps.
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Ti

Figure 11: Deposition rates in case of two point source85,215.y=190.with perpendicular

velocity and150 time-steps with ratio betweeti and7; equal to3.6.

Remark 3 The numerical experiments can also be fitted in the fare feelthé physical ex-
periments. By the way the situations are more delicate. Hs¢ deposition result is obtained
with at least different flow regimes in the left and right imflsources, means the mixture in the
deposition area is optimal. The fare field simulations abt@n optimum at lower temperature
300[°C] and a high bias voltage about10[V/]. Such prognostic results are also obtained in

our physical studies.

7 CONCLUSION

We have presented a model for the chemical vapor depositmrepses. The approximations
are done to a realistic apparatus with transport-reacfidme equations are discretized by the
finite volume method and the complex material functions arbexlded in this method. The ap-
proximation methods to the numerical parameters are pieded/e present numerical results
for the stoichiometry forS:C andTiC' depositions. Near and fare field simulations can derive
an optimal parameter setting and prognostic results tadutdperiments. Such simulations
help to reduce physical experiments and gave tendenciegumefexpensive physical experi-
ments. In our future work, we concentrate on further impletagons and numerical methods
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for a full growth model.
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