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Abstract

On the background of a careful analysis of linear DAEs, linearizations of nonlinear index-
2 systems are considered. Finding appropriate function spaces and their topologies allows
to apply the standard Implicit Function Theorem again. Both, solvability statements as
well as the local convergence of the Newton-Kantorovich method (quasilinearization) result
immediately. In particular, this applies also to fully implicit index 1 systems whose leading
nullspace is allowed to vary with all its arguments.
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Introduction

Linearization plays an important standard role in the analysis and numerical treatment of regular
differential equations. It is a very nice tool for proving solvability statements, showing asymp-
totic behaviour, describing the sensitivity with respect to parameters etc. Moreover, iterative
linearization methods like the standard Newton-Kantorovich method, which is also well-known
as quasilinearization of Bellmann and Kalaba, further damped and regularized versions of that
method have proved their value in solving regular boundary value problems for a long time (e.g.
Roberts and Shipman (1972), Miele and Iyer (1971), Aktas and Stetter (1977)).

For index 1 differential algebraic equations whose leading nullspace depends on time only, the
corresponding linearizations are considered e.g. in Méarz (1984,1986), Griepentrog and Marz
(1986) and Tischendorf (1994). For index 2 DAEs positive results concerning the local solvability
of initial value problems and Lyapunov stability via linearizations at consistent values resp.
stationary solutions are obtained in Méarz (1992).

The present paper mainly deals with linearizations of index 2 DAEs along given functions that are
not necessarily supposed to solve the DAE. Solvability statements for index 2 DAEs are given
under low smoothness demands. Further, the local convergence of the Newton-Kantorovich
method is proved.

Note that even for the Newton-Kantorovich process we are interested in linearizations along
functions not solving the DAE itself and not necessarily satisfying the first and second order
constraint. In this context, the geometric approach of transferring the DAE locally to a vector
field on the last order constraint manifold will fail to be such a useful tool, as it has been proved
on different occasions.

Our main tool is the proposing of appropriate function spaces and operator notions of the
DAE problems to obtain Fréchet derivatives that represents homeomorphisms again. Further,
standard arguments apply.

The paper is organized as follows:

§ 1 collects some general preliminaries. In § 2 linear index 1 and index 2 results are prepared
for being used below. The respective nonlinear index 1 DAFEs are shortly mentioned in § 3. § 4
contains the new part for general index 2 DAEs on the background of the explanations in the



linear section. Moreover, the index 2 results are specified in § 5 for application to fully implicit
index 1 DAFEs whose leading nullspace is allowed to vary with all its arguments.

1 Preliminaries
Given the DAE
f($/(t),$(t),t): 07 (11)

where f: IR™ x D x J — IR™ is continuous and has continuous partial Jacobians
flo fi:R™ xDxJ—— L(IR™), D C IR™ open, J an interval.
The nullspace of the leading Jacobian f/,(y,z,t) is assumed to be invariant of y, z, that is

ker fl.(y,x,t) = N(t), (y,z,t)€ R™ x D x J. (1.2)

Moreover, let N(?) vary smoothly with ¢. This means, N is spanned by a base nq,...,
Ny € CYJ,IR™), N(t) = span{ni(t),...,npm_r(t)}. Then, @ := K(KTK)"'KT has the
properties

Q € CHJLLIR™)), Q1) =Q(t), mQ(t)=N(), e, (1.3)

where K(t) := [ny(t),....,npm_(1)] € LUR™",IR™), that is, Q represents a C'* projector func-
tion onto N.

On the other hand, if there is any projector function @ having the properties (1.3), the IVPs n’ =
Q'n,n(ty) = n?,j =1,...,m—r, generate an appropriate C'! base, supposed nJ,...,nl,_ € IR™
form a base of N(¢y) (cf. Griepentrog and Marz (1989)). Hence, the existence of a C'! base and
a C'! projector function, respectively, are equivalent.

In the following, we denote by @ any C! projector function with (1.3), further P := I — Q.

Assumption (1.2) simply implies

f(y,x,t) - f(P(t)y,$,t) = /f;,,(sy + (1 - S)P(t)yvxvt)Q(t)de =0

for (y,2,t) € IR™ x D x J, and further

J@'(),2(1), 1) = f(P(0)2"(1), (1), 1) = F(Pz) (1) = P'(t)(t), x(t), 1)

for functions € C''. This makes clear that the derivative (Qz)" does not appear in (1.1), in
fact. The function space

CNi={zecC:PreccCh}) (1.4)

suggests itself as the very natural one for the solutions of (1.1). We should ask for C'}; solutions,
but not for C'! solutions in general.
In particular, for semi-explicit equations

(1) + p(a1(1), 2a(1),1) = 0 }
P(a(t), z2(t),t) =0

we have simply P = diag([,0), CY i={z € C : 21 € C'}.



Higher smoothness of the solution corresponds to higher smoothness demands for the given data,
but in most applications one is interested even in lower smoothness.
On this background, (1.1) should be written precisely as

F((Pz)(t) = P'(t)a(t), x(t), 1) = 0.

However, for shortness, we continue to use (1.1) and interpret P(t)z'(¢) as an abbreviation of

P(t)((Px)'(t) — P'(t)x(t)) there.

Next, given a C'} function x. whose trajectory proceeds in D. For different reasons we might
be interested in the linearization of (1.1) along z., that is, in the linear equation

AW (1) + B(0)(1) = (1), (16)

the continuous coefficients of which are given by

At) = fé,(y*(t),x*(t),t),
B(t) = f;(y*(t),x*(t),t),
J(t) = (Pea)(t) - P0et).

Here, . is often supposed to be a solution (stationary or nonstationary) of the DAE (1.1). With
T = x, + 2, equation (1.1) itself may be described approximately by

A (1) + B(1)2(1) = = f(y«(1), 2(1), 1), (L.7)

supposed z is small enough (in C'}) for the Taylor expansion remainder term to be neglected. In
particular, starting with a solution z, and a small perturbation z we arrive at a linear equation
(1.6) with a small right-hand side ¢ caused by the small remainder term only. The corresponding
equation (1.7) is the homogeneous one.

However, the whole nice game of linearization is to know the opposite: Solving (1.6) for small or
vanishing ¢ we should like to have information on how the solutions neighbouring to z, behave.
However, for that the resulting solution z should be small enough in C}.

It seems very natural to measure the size of ¢ in the max-norm || - || of the continuous function
space C'. On this background, linearizations are shown to work well for the index 1 case (Mérz
(1984), (1986)). Unfortunately, for higher index DAEs (1.6), the relations ||¢|loc — 0, 2(t9) =0
do not necessarily imply HZHO}V — 0, or at least ||z||sc — 0 (e.g. Griepentrog and Marz (1986),
p. 21). Thus, from this point of view, it is rather doubtful whether linearization can work well
in the index 2 case.

By considering both DAEs (1.1) and (1.6) in further detail, we try to learn more about how to
measure the size of ¢ for maintaining the comfort of linearization also in the index 2 case. And,
surprisingly, we will succeed!

At this place it should be mentioned that freezing the time ¢ at, say, t. € J and considering the
resulting constant coefficient equation

AL () + B(t)=(1) = a(1) (18)

instead of (1.6) does not make sense in the higher index case in general. This is shown in § 1.3.1
of Griepentrog and Marz (1986) by different examples. In particular, (1.8) may have index 2,
but (1.6) does not, and the opposite may also happen. From this point of view, linearizing the



DAE (1.1) at a given point (yo,zo,%0) € IR™ X D x J seems to be rather useless in the higher
index case.

Fortunately, the situation becomes much easier if we start with a certain autonomous DAE (1.1)
and linearize at a stationary solution. Then, the linearized equation has constant coefficients
arising in a somewhat more natural way, and, in fact, it provides information on how the solu-
tions of (1.1) behave asymptotically (cf. Marz (1992), Tischendorf (1994)). As a consequence,
straightforward generalizations of Lyapunov-Theorems result.

Next, turn to boundary value problems (BVPs) for (1.1). As usually we state the boundary
condition by means of a C'! function r : IR™ x IR™ — IR™ to be

r(z(to), 2(T)) = 0. (1.9)

Let 7} and r} denote the partial derivatives of r with respect to the first and second components,
respectively. The range of the matrix [r](21, 22), 75(21, 22)] is supposed to be constant. This
matrix has full rank m in case of regular ODEs. However, for DAEs there should be a lower
number of independent boundary conditions.

The standard Newton-Kantorovich method (or quasilinearization) and its modifications are ap-
proved to work well for BVPs in regular ODEs (e.g. Aktas and Stetter (1977)). But what about
the DAE case? Apply the standard Newton-Kantorovich algorithm to our BVP (1.1), (1.9).
Starting with an appropriate initial guess function zg from C'}; we try to form the iterations

Tip1 =25+ Z4,  J 20, (1.10)

where zj11 € C}; is determined to solve the BVP linearized along x;, i.e.

A(j)(t)z;H(t) + Bijy(t)zja(t) = —f(x;(t), z;(t),1), (1.11)
ri(z(to), 2j(1T)zj41(to) + r3(z;(to), 2(T))zj41(T) = —r(2;(t0), 2;(1)), (1.12)
where
A(j)(t) = fa;’(xg(t)vxj(t)vt)v LS [tovT]v
By(t) = fu(@i(t),z;(t),1), t€ [to,T].

This gives rise to the following questions: Does the linear DAE have the same index as the
nonlinear one has? Does the linear BVP (1.11), (1.12) uniquely determine the correction z;41 €
CL? Further, does x; converge to a solution of the nonlinear BVP (1.1), (1.9). If it does so, in
what sense?

In Mérz (1984), BVPs in index 1 DAEs with properly stated boundary conditions are consid-
ered. If z, € C} denotes the BVP solution to be approximated, we may realize the Newton-
Kantorovich iteration process with any initial guess z¢ being close enough to z, in C'}. Then,
xj =z (Jj — 00)in OF ice. ||2; — 2ulloo + [|P2j — Pillco — 0 (j — 00), becomes true. It
should be stressed that there is no need for zgy to satisfy any further constraint.

Below we will show a similar result for the index 2 case. Again the iterations can be realized
with an initial guess function zg, which does not satisfy neither the first nor the second order

constraint. It seems that this will turn out to be a very special advantage of quasilinearizations
applied to DAEs.



2 Linear index 1 and index 2 equations

Consider the linear equation
A (1) + By () = q(t), 1€, (2.1)
with continuous matrix coefficients. Introduce the basic subspaces

N(t) := ker A(t)C R™,
S(t) = {z€R™:B(t)z €im A(1)}

and assume N(t) to vary smoothly with ¢. Obviously, S(¢) is the subspace where the homoge-
neous equation solutions proceed.
Again, let Q € C1(J, L(IR™)) denote a projector function such that

Q(t)z =Q(t), imQ(t)=N(t), te,
further P(?) := I — Q(%).

Definition (Griepentrog and Marz (1986)): The DAE (2.1) is said to be index 1 (or transferable)
on J if

Nt)ya Sit)y=IR", tel, (2.2)
becomes true.
Condition (2.2) implies the matrices

Ai(t) = A() + (B(t) — A(OP'(1)Q(t), teJ, (2.3)
to be nonsingular. The matrices

G1(t) := A(t)+ B(H)Q(1), teJ, (2.4)

are nonsingular simultaneously and, further, A; = Gy(I — PP'Q).
Multiplying (2.1) by PAl_l and QAl_l we decouple this equation into the system

(PzY — P'Px + PAT'BPx = PATYq } 25)

Qx + QAI_IBP$ = QAl_lq
Now, a solution expression results immediately. In fact we have
v =Pr+Qu=(I-QAT'B)u+QA'q e Cy,
where u € C'! solves the inherent regular ODE
u' — Plu+ PAT Bu= PATYq
and starts at u(tg) € im P(ty) for some ¢y € J. The matrix
I - Q)AL (1) B(t) = Pan(t) (2.6)

may easily be shown to represent the projector onto S(¢) along N(¢). This is why it is called
the canonical projector for the index 1 case.



Geometrically, the index 1 case means that the subspace S(t) = im Pe,(t) is filled by the
solutions of the homogeneous equation. More precisely, for each given tg € J, ¢ € S(tg), there
is exactly one solution of the homogeneous DAE, passing through xq at time #.

Obviously, the DAE (2.1) is solvable for each ¢ € €, and the solution is given on the whole

interval J. Moreover, the solution depends continuously on the inhomogeneity.
Recall further that (2.2) is equivalent for the matrix pencils {A(¢), B(¢t)} and {A(t), B(t) —
A(t)P'(t)}, t € J, to be regular with index 1.

For higher index DAEs, in particular for those having index 2, the situation becomes more
distinct. Geometrically, only a certain subspace of 5(¢) is filled by the homogeneous DAE
solutions. The inhomogeneous DAFE is no more solvable for all continuous ¢, but only for those
g having certain smoother components additionally. In the consequence, ||¢||oc — 0 does not
imply [|z||cc — 0 for the DAE solution satisfying homogeneous initial conditions, that is, the
DAE solution does not depend continuously of the source ¢ (in the given topologies). Moreover,
the local matrix pencil {A(t), B(t)} makes no sense for the DAFE in general.

To be more precise, we have to deal with certain additional subspaces. Introduce

Ny(t) := ker Ay(t) C IR™
Si(t) == {2z € R™:B(t)P(t)z € im Ay(t)}.

The nullspace Ny(t) has the same dimension as N(¢) N S(t).

Definition (Mérz (1989)): The DAE (2.1) is said to be index-2 tractable (shortly index 2) on
J if the conditions

dim N¢(t) = const > 0,
10 (2.7)
teJ,

Nl(t) @ Sl(t) - Rm,
are valid.

Supposing that (2.1) has index 2 we introduce the projector ()1(¢) onto Ny(t) along S5¢(t),
Pi(t):=1—-0Q(t),t € J. Now, the matrix

Ga(t) := Aa(1) + B()P(1)Qa(1), te,
is known to be nonsingular. Further, for the projector {)1(¢), the relations
Q1(t) = Q1(1)Go(1)"' B(1) P(1), Q1(H)Q(1) =0 (2.8)

become true.
If, additionally, 1 belongs to the class C'', we form

Ay = A+ Bi@Q, By := (B — A4;(PP))P,
Ay = Gl — Pi(PP)PQ,).

Obviously, A;(¢) is nonsingular since G'5(t) is so. Further, we have

1 = Qle_lBP = QlAz_lBP = QIAQ_IBI'



Next we decompose the unknown solution into x = Qx+ Pz = Qe+ PPix+ PQiz =: w+u+ Po
and multiply (2.1) by PPlAz_l, QP1A2_1 and QlAz_l, respectively. After carrying out a few
technical computations we obtain the decoupled system

u' — (PP)u+ PPLA;  Bu = PP A, (2.9)
—(Qv) +(QQ1)(u+ Pv)+ w4+ QPLA; ' Bu = QP A g, (2.10)
0= QuAz'y, (211)

where u(tg) € im P(to)Pi(to) at some tg € J implies u = PPu.

In particular, in case ¢(t) vanishes identically, the solution component Q1(¢)z(¢) = v(¢) does so,
too. Hence, the homogeneous equation solution is given by

z=ut+w=(I1-(QQ,) - QPiA;'B)u = (I — (QQ:1) — QPLA;'B)PPu. (2.12)
Denote Tean := (I — (QQ1) — QPlAQ_IB)PPl. It may be checked immediately that
PP Tean = PPy, 72, = Tcan, ker Tean(t) = ker P(¢)P1(t) = N(t) & N1(t)

hold true. The next assertion makes clear why 7., is said to be the canonical projector for
the index 2 case. At this point it should be noticed that, in the constant coefficient case, mcan
represents nothing else but the spectral projection onto the (relative) finite eigenspace of the
matrix pencil {A, B} along the infinite one (cf. Lewis (1986), Mérz (1993)). Hence, Tean(t) may
be understood as the spectral projector for the timevarying case.

Obviously, the canonical projector mcan(t) is much more complicate than the projector P(¢)Py(t).
Fortunately, a lot of things can already be achieved by using the easier projection only. However,
we should always keep in mind the strongly close relationship of both projectors.

Theorem 2.1 Let (2.1) be an index 2 DAE with continuously differentiable Q1. Then the
subspace im Tean(t) C 5(t) describes the homogeneous equation solution space, i.e. through each
given tg € J, xg € im Tean(to), there passes exactly one solution.

Theorem 2.1 as well as the next one are derived immediately by considering (2.9) — (2.11). While
S(t) is related to the first order constraint, im mean(¢) describes the second order one.

Theorem 2.2 Let (2.1) be an index 2 DAFE with continuously differentiable Q.
(i) Then the DAF (2.1) is solvable on C}; for all q € 0(12) ={qeC: Q147 '¢e C'}.
(ii) For the linear map L : C — C, La := A(Px) + (B — AP")z, v € C};, the image space is

0(12), i.e. im L = 0(12) ccC.

(iii) The initial value problems

Lz =q, P(to)Pi(to)(x(to) —2°) =0 (2.13)
are uniquely solvable on C'%, for any given tg € J, 2° € IR™, q € C(lz).

(iv) Relating the maz-norm to any compact interval Jo C J, tg € Jo, the inequality
2]l = llzllee + [1(P2) [l < K (Jo)(llalloo + Q147" q) loo + [P(t0) P1(t0)2°) (2.14)

s satisfied by the IVP solution.



Corollary 2.3 Let M) := im P(to)Pi(to). Then, the IVP map L : C§ — 0(12) X Mz C
C x IR™,

L= (L$,P(t0)P1(t0)$(t0)), T € C]l\f,
acts bijectively from C onto C(lz) X M)
Next, for a fixed compact interval Jy C J, we equip the function spaces C(Jo, IR™) and
Ck(Jo, IR™) with their natural norms ||z||s = max{|z(¢)] : t € Jo}, @ € C(Jo,IR™), and
|zl := l|#]loe + [(P2)]|oo, @ € Ck(Jo, IR™), respectively. Clearly, by doing so, both C'(Jo, IR™)
and C&(Jo, IR™) become Banach spaces and the linear map £ : CA(Jo, R™) — C(Jo, IR™) X Mg)
is bounded. Furthermore, 0(12)(J0,ﬂ%m) C C(Jo,IR™) is a proper but nonclosed subset, which

causes the inverse £7! to become an unbounded map in the given natural topologies.
However, equipping C(12)(J0, IR™) with the stronger norm

[wll2) = [[wllee + [(Q1AT w) |, w € Clyy(Jo, R™),

we obtain again a Banach space, and may then turn to considering the map
L CL(Jo, R™) — 0(12)(J0,ﬂ%m) X M3). Due to the inequality (2.14), £7! is bounded in
this new setting.

Additionally, the inequalities

L]l < Ka(([2floe + [(P2)]l0),
1Q147 " Lalloe = [|Q12 ]l < Kallzloo, @ € Cx(Jo, R™),

are valid, hence
[Le)l2) < Kllzll, @ € Cx(Jo, R™),

that is, L and further £ are bounded also with respect to the new norm || - [|(3). So, we obtain
the next assertion, which will prove its value in § 4.

Corollary 2.4 Relate %, || - || and Cl o - M2y to @ compact interval Jo C J. Then L is a
homeomorphism of C'k, onto C(z) X Mgy in these new topologies.

Let us finish this section by discussing the so-called Hessenberg form index 2 equations in detail,
i.e.

(2.15)

) + Briz1 4+ Biaza = ¢4
b
By =42

where Byq(t)B12(t) is supposed to be nonsingular on the given interval J. In our context this
corresponds to

1o [ By B 0 0
=loo] e lm ] e [0 d)
A1:G1:A—|—BQ:[I B12]

)

S(t) = S1(t) = {(+,2)" € R™ : Bnu(t) = 0}.
Obviously, z € 51(¢) N N1(t) implies z = 0, hence (2.15) is index 2 tractable, indeed.



The block H(t) := Bya(t)(Ba1(t)B12(t)) "t By () describes the projector onto im Byy() along
ker Bi(t). Further, the projector function 1 now reads

H 0
QII[_F 0]7

where F(t) := (Ba1(t)B12(t)) " B21(¢). This leads to simple projector functions

[ I—H 0 H 0
Ph = 0 0]’ PQI_[O 0]‘
However, the canonical projector wean looks a bit more complex, namely
. I—H 0
“an T —FBy(I-H)+ F'(I-H) 0

Recall that mean(?) describes the subspace where the homogeneous equation solution proceeds.
We have im mean(t) C S(t), t € J. The larger subspace 5(¢) relates to the first order constraint;
im Tean(?) relates to the second order constraint.

3 Nonlinear index 1 equations

In this section we return to the nonlinear equation
F (1), (0),8) = 0 (3.1)
as it is described in the beginning of § 1. Besides the nullspace N(t) we introduce the subspace
S(y,z,t):={z€ R™: fl(y,z,t)z € im fl(y,x,t)}

and, moreover, the matrix
Gl(yv Ly t) = falc’(yv Z, t) + falv(yv Ly t)Q(t)
Definition: The DAE (3.1) is said to be index 1 on the open set G C IR™ x D x J if

N(@) @ S(y,z,t)=IR™, (y,z,t)€QG. (3.2)

is valid.

Condition (3.2) is well-known to be equivalent for the matrix G'1(y,z,t) to be nonsingular, and
further for the pencil {f..(y,z,t), fi(y,2.,t)} to be regular with index 1.

What about linearizing an index 1 DAE (3.1) along a given C'}; function z.? It may be checked
immediately that the resulting linear equation (1.6) has always index 1, too. In particular, we
have precisely

S(t) = {z € R™ : B()z € im A1)} = S(y.(1), 2.(1), ).

On the other hand, if we do not know what the index of (3.1) is, but if we are sure about (1.6)
to have index 1, we can conclude that (3.1) has index 1 also in a neighbourhood of the graph
of z, in IR™ X D x J, since the matrix G1(y,z,t) depends continuously on its argument and
G (y«(t), 24(1), 1) is nonsingular.



Theorem 3.1 Let v. € CXN([to,T],IR™) be a solution of the BVP (1.9), (1.1), and let the
linearized equation (1.6) be index 1. Furthermore, let for the matriz

8= ri(@a(to), 2(T)) X (to) + ri(wa(to), 2(T)) X (T)
the conditions
kerS = N(tp),
im S = im(r)(2«(to), 2(T)), ri@s(to), 2£(T)) =2 My

be valid, where the fundamental solution matriz X of (1.6) is uniquely determined by AX'+BX =
0, P(to)(X(to)—1)=0.

Then, the following assertions become true.

(i) The perturbed BVPs
@), 2(t),t) = q(t), te€[to,T]
r(z(to), (1)) = d,
q € C([to, T}, IR™), d € M1y, |lqlloo, |d| sufficiently small, are uniquely solvable on
CY([to, T],IR™). For the BVP solution x(-;q,d) the inequality
(-5 4, d) = 2.f] < K([lglloc + [d])

with a constant K > 0 is valid.

(ii) For sufficiently small ||zg — z.||, the Newton-Kantorovich method (1.10) — (1.12) with
the initial guess xq provides an uniquely determined sequence {x;} ;>0 which converges in
Ch([to, T], IR™) to .. If, additionally, the partial Jacobians f!,, f. are locally Lipschitz,
x; tends to x. quadratically.

For the proof see Mérz (1984).

In particular, if z, is any solution of the DAE (1.1) on the interval [to, 7] =: J., the initial value
problems for (1.1) with the initial condition

P(ty)z(to) = P(tg)a®, 2% € IR™, |P(tp)z°| small,

are uniquely solvable at least on that interval J.. To realize this, we simply choose r(u,v) =
P(to)u and apply Theorem 3.1(i).

It should be emphasized once more that there is no need for the initial guess function zg in
(ii) to satisfy the constraint, that is, the derivative free part of (1.1). In particular, for the
semi-explicit system (1.5), we may choose zg € C'}, which does not satisfy the second equation

of (1.5).

4 Nonlinear index 2 equations

Continue to discuss equation
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but now supposing G1(y,z,t) to be singular everywhere. At the same time also the matrix
function

Ay, v, 1) = Guly, 2, 1) = [y, 2, ) P(1)Q(1)

becomes singular for all (y,z,t) € IR™ x D x J. Introduce the subspaces
Ni(y,z,t) = ker Ay(y,z,t) C IR™
Si(y,z,t) = {z€R™: fl(y,x,t)P(t)z € im Ay(y,=,1)}.

Definition: The DAE (4.1) is said to be index-2 tractable on the open set G C IR™ x D x J if
the conditions

dim Nq(y,z,t) = const > 0,
19 2,1) } (4.2)

Ni(y,z,t) N Si(y,z,t) = {0}, (y,z,t) € G

are satisfied.

For index 2 DAEs, the matrix

Galy.z,1) == Ay(y, 2. 1) + fu(y, 2, ) P()Qu(y, 2, 1)
is everywhere nonsingular. Thereby, Q1(y,x,t) denotes the projector onto Ni(y,z,t) along
S1(y, x,t). Further, let Py(y,z,t):=1— Q1(y,z,1).
The projector P(y,z,t)Pi(y,x,t) is closely related to the state manifold of the DAE. Roughly

speaking, its counterpart mean(y,z,t) (cf. § 2 for the linear case) describes the tangent space of
that manifold.

Our notion of index-2 tractability is a straightforward generalization of the corresponding defi-
nition for the linear case, which, in its turn, represents a generalization of the Kronecker index.
On the other hand, also nonlinear index-2 Hessenberg systems are known to be index-2 tractable

(cf. also (4.5) below).

Let us turn to a linearization (1.6) taken along a fixed function z. € C} whose trajectory
remains in D. Now we find the relations

Ai(t) = Ar(y«(1), (1), 1), Ga(t) = Ga(ya(t), z4(1), 1),

Si(t) = Su(ya(t), 2(1), 1), Ni(t) = Ni(y«(1), 2.(1), 1),
which obviously imply the linearized DAE (1.6) to be index-2 tractable.
The opposite is not true in general. The index-2 tractability of a linearized at ». € C} DAE
does not necessarily spread out onto a neighbourhood of {(y«(¢),z.(t),t):t € J.) € R™ xD x J
(cf. Mérz and Tischendorf (1994) for an example). However, by means of certain structural

restrictions of (4.1) we may guarantee that property. For this purpose, let D be constituted so
that € D implies {P(t)z : t € J} C D.

Lemma 4.1 Given z, € CA\(Jo, IR™), J. C J, v.(t) € D fort € J.. Let the linearized DAFE
(1.6) be index-2 tractable on J., and let the structural condition

QUG (g2 ) = FO0, Py, 0} = 0, (y,,1) € N (1.3)
be given on a neighbourhood N of the graph

T = A{(ylt),z(t),t) st € J .} CIR™ XD x J.
Then, the DAFE (4.1) is index-2 tractable on a neighbourhood N1 C N of T.
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Proof: Condition (4.3) implies Q1(¢)G2(¢)™ f.(y,x,t) = 0, further Q1(t)G2(t)"  fi(y, v, 1) =
Q1(1)Ga(t)~Lf1(0, P(t)x,t)P(t), and consequently Q1(t)G2(t)A1(y,x,t)=0 for all (y,z,t)€EN.
Since the nullspace of Q1(¢) is precisely 51(¢), it follows that

im GQ(t)_lAl(yv Ly t) - Sl(t)v
thus rank Go(t)" A1 (y, z,t) < p := dim S1(¢) = rank Pi(¢). On the other hand, due to

Gt Ay (e (0), 22(0),1) = Galt) Ay (1) = Py (1)

the matrix Aq(y,x,1) is of constant rank g in a neighbourhood Ay C N of 7.
Now, the orthoprojector Qi (y, z,t) onto Ni(y, z,t) depends continuously on its arguments there,
since A1(y,z,t) does so. It follows further that the matrix

Gy(y,w.t) = Ar(y, 2, 1)+ fi(y. 2, ) P()Q1 (y. z, 1)

is also continuous with respect to (y,z,¢). Due to Lemma A.l in Mdrz and Tischendorf
G#(y,z,t) is nonsingular for (y,z,t) € 7, but for reasons of continuity for (y,z,t) € N7 C N,
N1 D 7, too. Applying that Lemma A.1 once more, we conclude that

Ni(y,z,t)N S1(y,x,t) = {0} holds for all (y,z,t) e N;. O

Condition (4.3) seems to be more transparent and easier to be checked in its equivalent form
SOy 1) — F(0, P(t)a, 1)} € im SO BOQ(D), (4.4)
where S(¢) := I — A(t)A(t)T. The equivalence is given by means of the relation
ker Q1(1)Go(t)™ = {z € R™ : S(t)z € im S(t)B(t)Q(t)}

(e.g. Mérz and Tischendorf (1994), Lemma 3.3). In particular, the relation (4.4) is satisfied
trivially for all linear DAEs, where f(y,z,t)= A(t)y + B(t)z — ¢(t), thus

SOy, z,t) = F(0, P()z, 1)} = S(O)BO)Q(1)z.

Most authors discussing index-2 DAEs restrict their interest to so-called Hesssenberg form sys-
tems from the very beginning, that is, to systems

/ _
x1+99(9612(ij2 - (0) } (4.5)
where ¢! (21, 29,1)1), (21,1) is supposed to be nonsingular. For this kind of special DAEs we
derive
/

]

Ni(y,z,t)={2 € R™ : 1 + 99;52($1,$2,t)22 =0}
and

Sl(yvxvt) = {Z € R™: Qb;cl(xlvx?vt)zl = 0}

Now, index-2 tractability becomes obvious to be equivalent with the above nonsingularity con-
dition. Furthermore, the structural condition (4.4) is satisfied because the nullspace component
x5 does not appear at all in the second equation of (4.5). Namely, in this case we simply have

S{f(y,x1,22,t) — f(0,21,0,1)} = [ 8 (j)' ] ( (1 +99(961,$2,g) — ¢(21,0,1) ) _ (8)
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We have seen that condition (4.4) covers both the linear equations and the Hessenberg form
ones. However, also more general equations may be considered. In particular, when transforming
quasilinear index-1 DAFEs whose leading nullspace varies with z and ¢ into its enlarged form we
typically obtain a system

2y +e(ar,a9,t) = 0
Blard) +A(ons e = 0 } (16

which has index 2 and satisfies the structural condition (4.4), supposed the range of x(a1,1)
does not vary with ;. We will discuss this case in § 5 in more detail.

Lemma 4.2 Let the structural condition (4.3) be satisfied for (1.1). Then it is also valid for
the enlarged systems

) f@(te(0.0)=0
g(=(1).2(), P(0)'(1).1) =0 |
where g’ is supposed to be nonsingular, and
(ii) fa'(t),z(t),t)=0
B! (8), w(t), P(t)'(),2(1),0) =0 |
where h!, is supposed to be nonsingular.

Proof: (i) We put the enlarged system back into the form f(#/(t),#(t),t) = 0 with & = (7).
Then we compute

v | [ 0 v _ | fr 0 s | @ 0
fi” - [g;/ 0]7 fi_[gé g; 9 Q— 0 I ’
. A 0
Ay = l 1 g ] . =g+ (9 + 9 PO,
S, = {(u) :fg’L,PUEHnAl}:{(u) :uESl},
v v
further
e 0 2ol | @GR 0
G2 it [ _I_ g;;PQl g; ] 9 QIGQ - [ Q1G2—1 0 .

Now it becomes obvious that
QG {3, 2,1) — f(0, P(1)&,1)} = 0
is valid if and only if it holds that

Q1G5 {f(y,2.1) = F(0, P(D)a, 1)} = 0.
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(ii) Letting & = () we proceed analogously as in the first part. Now we have

o // 0 r é 0 A 0
fé”_ [gﬁ h//]v fézlgl h/]v Q:[Cg 0]7
A = [Al " ] = iy + (W + by P1)Q,

S, = {(:) : flPu EimAl} = {(Z) T € Sl},

S 0

Ql - [—h;,_l Ql 0]7

A Gy 0 A A Q1G7t 0
@ [ 2 h;,]’ QIGQII[—;@?—I Q67! 0]

Again we obtain

QG (§,2.1) = F(0, P(t)i, 1)} = 0
if and if Q1G53 {f(y,z,1) - f(0, P(t)z, )} =0. O

Due to Lemma 4.2 we may add certain further index 1 and index 0 equations to the original
index 2 DAE satisfying the structural condition (4.3). The resulting enlarged DAFE has index 2,
too, and fulfils condition (4.3) again.

Next we try to reformulate our DAE into an appropriate operator equation to make use of
well-known standard arguments for those equations like the Implicit Function Theorem and the
Newton-Kantorovich method.

Let z. € CL(J., IR™) be fixed as before, J, C J. Introduce the map

F: (24,0 CCh—C
by means of
(Fz)(t) := f((Pa) (1) = P'()x(1),2(1). 1), L€ Jw, x€ (2x0).

Thereby, (2., 0) denotes an open ball in C}, and p > 0 is assumed to be small enough to keep
the trajectories of all functions z € (2., ¢) within the region D we started with.

It is well-known (Méarz 1986, cf. also § 2) that F'is not Fredholm in the given natural topologies.
However, Corollary 2.4 causes discussions whether we should turn from C, || - || to C(lz), - M2y

also in the nonlinear case. If F is continuously differentiable and F’(x,) maps C'\ surjectively
onto C(lz) in that new image space topology, the resulting linearized boundary value problem

map F'(x,)is a homeomorphism. Then standard argument apply if F itself maps into C(lz), too.
Unfortunately, now the space C(lz) may depend on x,.

However the structural condition (4.3) proves its value once more in this context. Namely,
supposed N is large enough (resp. ¢ > 0 is small enough) so that the graphs corresponding to
v € (&«,0) proceed in N, we have

Q)G ((Pa) (1) = P'(t)(t),2(1),1) =
= Q1()G2(t) 1 f(0, P(t)a(t),t) for t€ J., € (2, 0). (4.7)

Due to that property, we may easily realize that z € (z.,p) implies Fa € 0(12).
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Lemma 4.3 Let the linearized at x, € C}V(J*,Rm) DAFE be index-2 tractable, J, C J be com-
pact, and (4.3) be valid.

Let g(z,t) := Q1(1)Ga(t)"Lf(0, P(t)x, 1), v € D, t € Js, as well as its partial derivatives gi(x,1),
gi(x,t), gt (z,t), g7 (z,t) depend continuously on (x,t).

Then, F maps (2.,0) C CN(J«, IR™) into C(lz)(J*,Bm), and it is continuously (Fréchet) dif-
ferentiable.

Proof: First of all it is worth mentioning that

Q1(1) = Q1()G2() ™ B(1) = go(P()x(1), 1)

depends continuously differentiably on ¢.
For given 2 € (., 0), we obtain Fz € C(lz) immediately by means of relation (4.7). It remains

to check the differentiability. As usually, we calculate for z € (z.,0), 2 € C)

lim l(F(ac +712) = F(z)) =: F'(z)2

7—=0 T

and show F'(z):C} — C(lz) to be a linear, bounded map. After that we prove F’(z) to depend
continuously on x.
First of all we compute

F'(z)z = A,(P2) + (B, — A, Pz,

where A, (1) := fL,((Px)'(t) — P'(t)z(t),x(t),t), BL(t) := fL((P2)(t) — P'(t)a(t),z(t),1),t € J..
The inequality

1 (%)l < Ka(@)]]2]]

results immediately with Ki(z) € IR*.
Y,z

Further, (4.3) yields for all (y,2,t) € N
Q)G Ly, 3,1) = 0
Q)G (7, 2.1) = Qu(t)Ga(t) ™ (0, P(1)z. ) P(t),

Therefore,
QUG (F/(2))(1) = Gl P(e ) PO)=(1), 1€ I,

represents a C'! function with respect to t. Consequently, F/(z)z € 0(12) is actually true.
Now, the inequality

d s

‘an(t)Gz(t)—l(F/(x)z)(t)‘ < Ko(a)|zl, te .,
follows, thus ||F"(2)z|2) < Ks(2)|l2]], ie. F'(z) : O — 0(12) is a bounded linear map as
expected.

It remains to show that F’(x) is continuous with x.
For z,% € (x.,0), 2z € Ck, we derive on the one hand

(7 () = F'(@))zllo0 < max{|Ax(1) = Az(0)] [+ P (O] + [Ba(t) = Ba(0)l |-
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On the other hand, we also compute

LU (F ()~ F(@)2)(0)] <
< max{|g4(P(D)a(1),1) = GL(POF0), O] + gL P(D2(1).0) = FL(POFD. 0] +
HFLPa(D),0(P2) (1) = gL (PO, (P2 (D]]]2]

This shows that || — z[| — 0 implies || F"(Z) — F'(2)||(2) — 0, in fact. O

Now we are ready to state solvability of perturbed nonlinear index 2 IVPs locally around a given
solution z,. Intending e.g. to approximate z, by numerical integration, we should be aware
even of those solvability results. Roughly speaking, the next theorem says how to catch, locally
around z,, the implicitly given but practically unknown (”hidden”) second order constraint or
state manifold, where the neighbouring solutions proceed. It also describes in which sense the
solutions depend on the perturbations. Notice also that Theorem 4.4 represents the nonlinear
version of Theorem 2.2(iii).

Theorem 4.4 Given a solution v, € C\(J., IR™) of the DAE (4.1), J. C J compact. Let the
linearized at . DAE (1.6) be index-2 tractable. Let (4.3) be valid. Moreover, let § be continuous
together with its partial derivatives g, §;, §u., 9o,

Then, for tg € J,. and sufficiently small o > 0, 7 > 0, the perturbed initial value problem

f(x’(t),ac(t),t) = q(t), te J,,
P(to)Pr(to)(z(to) — xo) =0, z'e¢R™,

| P(to) P(to)(2” — 2(t0))] < 7,

q € Cloy(Jus R™),  ldlloo + 1(@1GZ19) |00 < 0,

is uniquely solvable on CX(J., IR™).  Its solution z(-,2° q) depends continuously on
(2°,q) € R™ x C(lz), where C(lz) is equipped with || - || 2

Proof: Define Fa := (Fz, P(to)Pi(to)(z(to) — z4(t0))), © € B(zx,0). F maps (2,0) into

C(lz) X Mgy, where M,y :=1im P(to)Pi(to)-

Obviously, F is as smooth as F'. By construction, we have Fz, = 0. Due to Corollary 2.4, F'(z.)

is a homeomorphism from €'}, onto C(lz) X M(z). Hence, our assertion is a direct consequence of the

Implicit  Function Theorem (e.g. Krasnosel’ski et al. (1969), p. 23)
O
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Remarks:

1. In particular, the inequality
(-, 2% ) = alles, < E{IP(to)Pr(to) (2 =2 (to)] + llalle + (@163 0) lc}

results by Theorem 4.4, what shows the so-called perturbation index also to be 2 (cf. Hairer
and Wanner (1991)).

2. The solution z(t,2°) of the initial value problem f(a'(t),x(t),t) =0,
P(to)Pi(to)(x(to) — 2°) = 0, |P(to)P1(to)(2«(to) — 2°)| < 7, depends continuously differ-

entiably on 2%, but the partial derivative X (¢) := Wx(t,xo) satisfies the first variation
x

equation
A (PX)Y + (B, — A, P)X =0, P(to)Pr(to)(X(to) — 1) = 0.

3. A similar result may be obtained for parameter dependent DAEs f(z'(t),2(t),t,p) = 0,
where z, solves this equation for a given parameter value p,, and the structural condition
(4.3) is satisfied uniformly for all parameter values to be considered.

4. Recall once more that the relations z(tg,2°) = 2% or P(to)xz(to,2") = P(to)z° cannot be
expected at all. Even if 2° was close to .(tp) but 2° ¢ im P(to) P (o), the initial condition
z(tp) = #° would yield a non-solvable initial value problem. If z° is a consistent initial value,
the solution exists a priori. However, there is no easy way for describing the manifold of
consistent initial values at all.

5. For the special case of quasilinear DAEs the assertion given by Theorem 4.4 is also proved
in Marz and Tischendorf (1994), where the nonlinear equation itself is decoupled via its
linear part. Moreover, the backward differentiation formula is shown to work well in this
context so that we are able to integrate those IVPs numerically.

Next we turn to BVPs. What about the Newton-Kantorovich method applied to index 2 DAEs?
Recall that, as usually, neither the initial guess zo € C'}, nor the approximations provided are
expected to satisfy the original DAE (4.1) itself.

In the following, we will show that quasilinearization should work well also in the index 2 case,
supposed the structural condition (4.3) is valid. In this context, denote again by

S = 1 (2a(to), 22 (T) X (to) + rh(wa(to), (TN X (T), (4.8)

the solvability matrix of the boundary value problem (1.1), (1.9), where now the fundamental
solution matrix X is uniquely determined by

APXY +(B-APYX =0,  P(to)Py(to)(X(to) — I) = 0.

Theorem 4.5 Let all the assumptions of Theorem 4.4 be satisfied, and let z. solve the BVP
(4.1), (1.9), J. = [to,T]. Let the boundary condition (1.9) be stated properly, i.e.

ker S = ker P(to)Pi(to), (4.9)

im S = im(ri(z.(to), zT)), rh(z.(to), 2(T))). (4.10)
Then, for sufficiently accurate initial quess xg € C};, ||xo — 2.|| small enough, the Newton-
Kantorovich ~ method (1.10) — (1.12) provides a wuniquely determined sequence
{xj}jZO C (x*vg)) and

s — ol — 0 (= ).
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Proof: Form the boundary value problem map

Fi (2e0) — 0(12) X M(z) by Fa := (Fz,r(z(to),2(T))), = € (@0,0), ]\/f(z) := im(Dy, Dg),
D; = ri(a.(lo),v(T)), i = 1,2. Again, F is as smooth as F.

Further, it holds that Fz, = 0, and F'(2.)z = (g, d) represents the linearized at z. BVP

A(Pz) +(B - AP")z = q, Dyz(to) + Do22(T) = d, (4.11)
which is uniquely solvable for each ¢ € 0(12), d € im(Dy, Dy) (cf. Médrz (1992)).

Again, Corollary 2.3 implies f’(x*) to be a homeomorphism from C} onto C(lz) X M(z). Now,
applying standard arguments on the Newton-Kantorovich method (Krasnosel’skij et al. (1969),
§ 11) we are done. O

Remark: Supposed all involved partial derivatives of f and § are Lipschitzian, the resulting
approximations z; converge quadratically to ..

Stress again that the initial guess x¢ may be chosen not to satisfy the first and second order
constraint. In particular, in case of the Hessenberg system (4.5) there is no need for z¢ to satisfy
the second equation ¢ (x1,¢) = 0, but also the hidden constraint ¥/, (21,1)@(21, 22, 1)—i(21,1) =
0.

5 Quasilinear index 1 DAEs whose leading nullspace varies
with » and ¢

In this section we specify results of § 4 for enlarged systems resulting from index 1 DAEs
whose leading nullspace depends also on 2. Note that the index 1 theory described in § 3 (cf.
Griepentrog and Méarz (1986)) does not apply to those equations since the nullspace condition
(1.2) is no more valid. Consider the following equation

A(x(1),)2'(t) + g(2(t), 1) = 0, (5.1)
where the leading Jacobian A(z,t) has constant rank r < m. Form the basic subspaces to be
N(z,t) = {z€R"™: A(x,1)z =0},
S(y,z,t) = {z€IR™:B(y,x,t)z € im A(z,1)},
B(y,z,t) = gi(z,t)+ AL(z,t)y, (y,2,t)€ R xD x J.

Definition: Equation (5.1) is said to be an index 1 DAE on the open set G C IR™ x D x J if
the condition

N(xvt) N S(yvxvt) = {0}7 (vavt) €g,
is fulfilled.

Since the previous index 1 results apply only for those DAEs having N(z,t) invariant of 2, we
turn to the enlarged system

2(t) ~ y(1) = 0 } | (5.2)

A(z(1), y(t) + g(z(t),1) = 0
which has a constant leading nullspace. But the price for the nicer form of (5.2) is a higher

index, as the next lemma will show.
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Lemma 5.1 The enlarged system (5.2) is index-2 tractable if and only if (5.1) itself has index 1.

Proof: Put the enlarged system (5.2) into the form

F@'(0),3(0),6) =0, i:= (‘”)

Compute the partial Jacobians

P 10 2 0 -1
fi”(yvxvt)— [ 0 0]7 fx(vavt)— [B(y,x,t) A($,t)]’
further
A 0 P I -1
Obviously, fll(g), &,1) is singular since A(z,?) is so. Moreover, we have
Nl(g},fv,t) = {2€R" X IR™ : 2z = 2z, A(z,t)z = 0},
51(9,#,1) = {ze€ R™ X R™: B(y,z,1)z €im A(z,1)}.
Evidently, z € Ny(4,2,t) N S1(4, &,1) is equivalent with 2y =z, € N(z,t) N S(y,z,t). O
It was Lubich (1989) who discovered that a differentiation index 1 DAE the leading nullspace of
which rotates with varying  behaves rather than an index 2 DAE. This was one of the reasons

for introducing the perturbation index. Recall Lubich’s example of a differentiation index 1 but
perturbation index 2 problem in more detail.

Example: m = 3,

/ j—

@y — szl +agal— g1 =0
Ty — g2 = 0 . (53)
r3—g3=10

We are interested in solving the IVP for (5.3) with the initial condition z1(0) = 0 on [0, 2],
letting

1 1
g1(t) =0, g2(t) = —sin nkt, g3(t) = —cos n*t, n,keN.
n n
The solution is
zy(t) = 0", aa(t) = golt),  ws(t) = gs(t).
For fixed k£ > 3, we have ||g||cc — 0 (n — 0), but ||z]|cc — o (n — 00), although the solution
of (5.3) vanishes identically if ¢ does so. Obviously, this behaviour confirms once again the

understanding to consider this problem rather as a higher index one.
Linearizing (5.3) at a fixed z, € C! gives the coefficients for (1.6)

1 —ralt) 2ol 0 ala(t) —aly(0)
A= 0 o0 0 ., Bhy=|o0 1 0 ,
0 0 0 0 0 1

which clearly form an index-1 tractable equation (cf. § 2). A possible nullspace projector is

0 $*3(t) —$*2(t)
Qit)y=10 1 0 .o
0 0 1
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Lemma 5.2 Let Q(y,x,t) denote the projector onto N(x,t) along S(y,z,t). Then

Y (4 o Q( 7$7t) 0
aeo=Groh b ]

represents the projector onto Nl(g}, &,1) along gl(g}, &,1), which is invariant of 7.

Proof: Tor z € Nl(g},fv,t), it holds that z = 22, 23 = Q(y, x, 1)z, further

o= | G |-

On the other hand, z € 31(37, &,t) implies z; € S(y,2,t), thatis Q(y,2,t)z = 0, thus @1(33,15)2 =
0. O

Next, for given z, € C1(J,, IR™), y. := 2/, we may consider both the linearization of (5.1) at .
and that of the enlarged system (5.2) at (2., y.) € CJIV = {(z,y):z € Cliy € C}. The first
linearization leads to

AW)(1) + B()=(1) = o(1) (5.4)
with

A(t) := A(z.(t),1), B(t) := B(y<(t),z(t), 1), t€ Js,
but linearizing (5.2) yields

A1) + B = d(0), (5.5)
X 1 0 -1
A(t) == [ 0], (1) := lB(t) A(t)]'

Clearly, (5.5) represents the enlarged system of the linear equation (5.4) simultaneously. In this
sense, enlarging the system and linearizing commute.
Due to Lemma 5.1, the DAE (5.4) has index 1 if and only if (5.5) is an index 2 DAE.

m>

"

Lemma 5.3 Let A and g belong to the class C' and g have continuous partial derivatives g,

gl Let im A(x,t) be invariant of z, i.e.
im A(z,t) = R(t), z€D,tel (5.6)

Moreover, let the linearized at x. € C' equation (5.4) be index 1.
Then, the DAFE (5.5) is index 2 tractable with a C'* projector function Q1. Further, the structural
condition (4.3) is valid for the enlarged system (5.2).

Proof: A(t) = A(z.(t),t) depends continuously differentiably on ¢ and has constant rank r.
Consequently, the orthoprojector QL(t) onto N(t) := ker A(t) is also continuously differentiable.
Moreover, condition (5.6) implies im(A%(x,?)y) C R(¢) which simplifies, in its turn, the subspace
S(t) := S(y«(t), 2£(1), 1) to S(t) = {z € IR™ : g/ (2.(1),1)z € im A()}. Next,

QT ()(A() + gz (1), HQH (1) " gp(wa(t), 1) = Q(1) (5.7)
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represents the canonical projector onto N(¢) along S(t). Due to our smoothness assumptions,
@ becomes a C'! projector function. Applying Lemma 5.2 to the linear DAEs (5.4) and (5.5),
we arrive at the C'! projector function

o [em o
Ql(”‘l@(t) 0]

for (5.5).
It remains to check the condition (4.3) to be fulfilled for (5.2). For that, compute

) I .y oy P(t)  Gi(t)™!
Galt) = l BIHQ() A1) ] GO = l Q) Gt ] ’
Qu(1)Go(1) ™" = [
and then, for g € R™ x IR™, t € Dx IR™, t € J,,

Ll He a1y FO. Ba OG0 Alw, 1))
DGy (1)1 J&,1) — f(0,P2,1)} = Q ’ =0.
Q)G {f(9, 2, 1) = S( &,1)} ( Q()G1(1)~! Az, 1)y)
Thereby, G := A+ B remains nonsingular, and the last relation is a consequence of assumption
(5.6) and the property QGT'A=0. O
Now we are well-prepared to specify Theorem 4.4 for (5.2).

Theorem 5.4 Given a solution x, € C*(J., IR™) of (5.1), J. C J compact, and let all assump-
tions of Lemma 5.3 be satisfied. Let Q(t) denote the projector onto N(t) := ker A(z.(t),t) along
the subspace

S(t) = {z € R™: gy(aa(l), 1)z € R(1)},
Gh(t) = A1)+ gplaa(t), QD).
(i) Then, for tg € J. and sufficiently small 0 > 0, T > 0, the IVP

Az (), )2'() + g(x (), 1) = (1), t €,
P(to)(x(to) —2°) =0, 2 € R™,

[P(to)(a” — a.(to))] < 7, )

q€C, QGTa e O lalle +1QGT ) |0 < 0

is uniquely solvable on C(J., IR™).
(ii) The IVP solution depends continuously differentiably on a°.

(iii) The IVP solution satisfies the inequality

(2% q) = 2uller < K{|P(to)(2° — 2(to)| + llalloe + (QGT 0) 10}

Proof: First of all, with the denotations used when proving Lemma 5.3, we have QGl_l = Qél_l
Next we turn to the enlarged form of the DAE to be considered in (i), that is,

2'(1) — y(1) = 0
Al(t). y() + g(2(0),1) = (1)
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Due to Lemma 5.3, Theorem 4.4 applies immediately to that system. It holds that

(0 [o @art] (o) (@G
oz (o) = [0 8 | () - (G

and

PRi(to) = [ o) 0 ] ,
thus

Py (1) (i(to) — £°) = ( P(to><w<0to> ~2°) ) o
Remarks:

1. It should be emphasized once more that now P(ty) may depend on z.(%p).

2. Theorem 5.4(iii) says that the perturbation index of (5.1) is not greater than two. As Lubich
(1989) has shown, a solution-depending leading nullspace may force the perturbation index
to become two in fact. On the other hand, comparing with standard results, which apply
in case the nullspace condition (1.2) holds true, we know the perturbation index to be one
then.

3. Supposed ker A(z,t) does not vary with z, i.e. condition (1.2) is valid, we can do with
lower smoothness to obtain solvability on the function space C}.. In particular, we can do
without demanding QGl_lq € C1, but ¢ € C will suffice. However, Theorem 5.4 provides
C! solutions. For that, the additional smoothness, e.g. QGl_lq € C, is necessary.

=252(t, 2°) satisfies the first variation equation

)=
(1) + Ba'(t,2), (tw)t)X(t)zo
P(to)(X (t0) ~ T) =

5. Condition (5.5) is not even restrictive. It may be achieved by corresponding scalings.

4. The partial derivative X (¢

Ala(t,2%), )X

Now, let us specify the Newton-Kantorovich method for the boundary value problem

A(z(t), 1)a'(t) + g(x(t), 1) = 0
r(z(tg),z(1))=0

Given an initial guess xg € C'Y([to, T], IR™) we put yo := x{, and apply method (1.10) — (1.12)
to the enlarged system (5.2). This yields y; = wg for all 7 > 1 so that we are able to describe
the whole iteration process in terms of the original system as follows.

For j > 0, we solve the linear BVP

A(z;(t), t)z§+1(t) + B(w’z(t), z;(t)t
+A(z;(1), )a(1) + g(x;

ri(x(to), vi(1T))zj41(to) + ry(@;(to), 2(T))zj4(T) =
= —r(z;(to), z;(T))

(5.9)

(5.10)
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and put z;41 = x; + z;41 then.

Obviously, (5.10) looks like the iteration directly applied to (5.9). What is only left to do is
checking the unique solvability of the linear BVPs to be solved.

Given a BVP solution z. € C'([tg, T], IR™) we define the matrix

8= 1 (wa(to) 2(T)) X (to) + 15(24(t0), 2.(T)) X(T)
as usually, where the fundamental solution matrix X is given by
AX'+ BX =0, P(to)(X(to)—1I)=0.

Comparing with (4.9), (4.10) applied to the enlarged system and taking into account the repre-
sentation P Py(ty) = diag(P(ty),0), we derive the conditions

kerS = ker P(tp)
s = in(ri(eato), 2-(T)), (e (to), 2.(T)))

(5.11)

to be the relevant ones for the proper statement of the boundary conditions. Emphasize that,
formally, (5.11) are the same conditions as those used in Theorem 3.1. But now ker P(#y) =
N(z.(to),to) may depend on the solution.

On this background, Theorem 4.5 applied to the BVP (5.9) simplifies as given below.

Theorem 5.5 Given a solution . of the BVP (5.9), and let the boundary conditions be stated
properly, i.e. (5.11) be fulfilled. Let the assumptions of Lemma 5.3 be satisfied.

Then, for any sufficiently good initial guess xo € C([to, T], R™), ||zo — x«||c1 small enough, the
Newton-Kantorovich process (5.10) provides uniquely determined xz;, j > 0, and ||z; —z.||c1 — 0
(j — o).

Note again, all linear BVPs to be solved for z; are uniquely solvable. But now, all of them have
perturbation index one. This fact can be considered as a further advantage of the linearization.

The statements given in the present section for equation (5.1) may be immediately generalized
for fully implicit DAEs (1.1), supposed the partial Jacobian f/,(y,x,t) has constant rank and its
range is invariant of (y,z), i.e. im f/,(y,z,t) = R(t), (y,2,t) € R™ x D x J. But additionally,
in this case we have either to assume the resulting projector function Ql (cf. Lemma 5.3) to
belong to the class C'' or to require the respectively higher smoothness of the two functions f
and z, for obtaining that property via the lines of Lemma 5.3.

Finally, return briefly to the example of Lubich mentioned above. Complete the DAE (5.3) by
the boundary resp. initial condition with (21, 29) 1= 211, 21,22 € IR™, such that rj(z,22) =
diag(1,0,0), r(21, 22) = 0. Denote by z, € C'! the solution of the resulting IVP, that is

Tei = G, 1=2,3,

/

T, = i+ 9395 - 92957 $*1(0) =0.

The solution matrix

1 1 —2,5(0) 242(0)
5 = 0 0 0 0 | =P0)
ollo o0 0
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satisfies the conditions (5.11) trivially. Also Lemma 5.3 applies immediately. Compute further

R 1 —2.3 Zuo ~ 0 a3 —Zu2
Gi=|0 1 0 |, QGi't=1]10 1 0
0 0 1 0 0 1

Moreover, the Newton-Kantorovich method (5.10) yields exact second and third components
Tiv1: = Gi, ¢ = 2,3, after the first iteration, i.e. for j > 0, independently of the choice of the
initial guess xg. After the second iteration step, i.e. for j > 1, also the first component becomes
exact, i.e. 96;‘4—1,1 = g1 + 9395 — 9295, ©j+1.1(0) = 0 is satisfied. Hence, due to the very simple
structure of this special example the exact IVP solution is obtained after the second iteration
step, independently of the chosen initial guess we started with.
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