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Abstract

On the background of a careful analysis of linear DAEs� linearizations of nonlinear index�
� systems are considered� Finding appropriate function spaces and their topologies allows
to apply the standard Implicit Function Theorem again� Both� solvability statements as
well as the local convergence of the Newton�Kantorovich method �quasilinearization� result
immediately� In particular� this applies also to fully implicit index � systems whose leading
nullspace is allowed to vary with all its arguments�
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Introduction

Linearization plays an important standard role in the analysis and numerical treatment of regular
di�erential equations� It is a very nice tool for proving solvability statements� showing asymp�
totic behaviour� describing the sensitivity with respect to parameters etc� Moreover� iterative
linearization methods like the standard Newton�Kantorovich method� which is also well�known
as quasilinearization of Bellmann and Kalaba� further damped and regularized versions of that
method have proved their value in solving regular boundary value problems for a long time �e�g�
Roberts and Shipman �����	� Miele and Iyer �����	� Aktas and Stetter �����		�
For index � di�erential algebraic equations whose leading nullspace depends on time only� the
corresponding linearizations are considered e�g� in M
arz ���������
	� Griepentrog and M
arz
����
	 and Tischendorf �����	� For index � DAEs positive results concerning the local solvability
of initial value problems and Lyapunov stability via linearizations at consistent values resp�
stationary solutions are obtained in M
arz �����	�
The present paper mainly deals with linearizations of index � DAEs along given functions that are
not necessarily supposed to solve the DAE� Solvability statements for index � DAEs are given
under low smoothness demands� Further� the local convergence of the Newton�Kantorovich
method is proved�
Note that even for the Newton�Kantorovich process we are interested in linearizations along
functions not solving the DAE itself and not necessarily satisfying the �rst and second order
constraint� In this context� the geometric approach of transferring the DAE locally to a vector
�eld on the last order constraint manifold will fail to be such a useful tool� as it has been proved
on di�erent occasions�

Our main tool is the proposing of appropriate function spaces and operator notions of the
DAE problems to obtain Fr�echet derivatives that represents homeomorphisms again� Further�
standard arguments apply�

The paper is organized as follows�
x � collects some general preliminaries� In x � linear index � and index � results are prepared
for being used below� The respective nonlinear index � DAEs are shortly mentioned in x �� x �
contains the new part for general index � DAEs on the background of the explanations in the
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linear section� Moreover� the index � results are speci�ed in x � for application to fully implicit
index � DAEs whose leading nullspace is allowed to vary with all its arguments�

� Preliminaries

Given the DAE

f�x��t	� x�t	� t	 � �� ����	

where f � IRm � D � J � IRm is continuous and has continuous partial Jacobians
f �x� � f

�
x � IRm � D � J �� L�IRm	� D � IRm open� J an interval�

The nullspace of the leading Jacobian f �x��y� x� t	 is assumed to be invariant of y� x� that is

ker f �x��y� x� t	 � N�t	� �y� x� t	 � IRm � D � J� ����	

Moreover� let N�t	 vary smoothly with t� This means� N is spanned by a base n�� � � � �
nm�r � C��J� IRm	� N�t	 � spanfn��t	� � � � � nm�r�t	g� Then� Q �� K�KTK	��KT has the
properties

Q � C��J� L�IRm		� Q�t	� � Q�t	� im Q�t	 � N�t	� t � J� ����	

where K�t	 �� �n��t	� � � � � nm�r�t	� � L�IRm�r � IRm	� that is� Q represents a C� projector func�
tion onto N �
On the other hand� if there is any projector function Q having the properties ����	� the IVPs n� �
Q�n� n�t�	 � n�j � j � �� � � � � m�r� generate an appropriate C� base� supposed n��� � � � � n

�
m�r � IRm

form a base of N�t�	 �cf� Griepentrog and M
arz �����		� Hence� the existence of a C� base and
a C� projector function� respectively� are equivalent�
In the following� we denote by Q any C� projector function with ����	� further P �� I �Q�

Assumption ����	 simply implies

f�y� x� t	� f�P �t	y� x� t	 �

�Z
�

f �x��sy � ��� s	P �t	y� x� t	Q�t	yds � �

for �y� x� t	 � IRm �D � J � and further

f�x��t	� x�t	� t	 � f�P �t	x��t	� x�t	� t	 � f��Px	��t	� P ��t	x�t	� x�t	� t	

for functions x � C�� This makes clear that the derivative �Qx	� does not appear in ����	� in
fact� The function space

C�
N �� fx � C � Px � C�g ����	

suggests itself as the very natural one for the solutions of ����	� We should ask for C�
N solutions�

but not for C� solutions in general�
In particular� for semi�explicit equations

x���t	 � ��x��t	� x��t	� t	 � �

��x��t	� x��t	� t	 � �

��
� ����	

we have simply P � diag�I� �	� C�
N �� fx � C � x� � C�g�
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Higher smoothness of the solution corresponds to higher smoothness demands for the given data�
but in most applications one is interested even in lower smoothness�
On this background� ����	 should be written precisely as

f��Px	��t	� P ��t	x�t	� x�t	� t	 � ��

However� for shortness� we continue to use ����	 and interpret P �t	x��t	 as an abbreviation of
P �t	��Px	��t	� P ��t	x�t		 there�

Next� given a C�
N function x� whose trajectory proceeds in D� For di�erent reasons we might

be interested in the linearization of ����	 along x�� that is� in the linear equation

A�t	z��t	 �B�t	z�t	 � q�t	� ���
	

the continuous coe�cients of which are given by

A�t	 �� f �x��y��t	� x��t	� t	�

B�t	 �� f �x�y��t	� x��t	� t	�

y��t	 �� �Px�	
��t	� P ��t	x��t	�

Here� x� is often supposed to be a solution �stationary or nonstationary	 of the DAE ����	� With
x � x� � z� equation ����	 itself may be described approximately by

A�t	z��t	 �B�t	z�t	 � �f�y��t	� x��t	� t	� ����	

supposed z is small enough �in C�
N	 for the Taylor expansion remainder term to be neglected� In

particular� starting with a solution x� and a small perturbation z we arrive at a linear equation
���
	 with a small right�hand side q caused by the small remainder term only� The corresponding
equation ����	 is the homogeneous one�
However� the whole nice game of linearization is to know the opposite� Solving ���
	 for small or
vanishing q we should like to have information on how the solutions neighbouring to x� behave�
However� for that the resulting solution z should be small enough in C�

N �

It seems very natural to measure the size of q in the max�norm k � k� of the continuous function
space C� On this background� linearizations are shown to work well for the index � case �M
arz
�����	� ����
		� Unfortunately� for higher index DAEs ���
	� the relations kqk� � �� z�t�	 � �
do not necessarily imply kzkC�

N

� �� or at least kzk� � � �e�g� Griepentrog and M
arz ����
	�

p� ��	� Thus� from this point of view� it is rather doubtful whether linearization can work well
in the index � case�
By considering both DAEs ����	 and ���
	 in further detail� we try to learn more about how to
measure the size of q for maintaining the comfort of linearization also in the index � case� And�
surprisingly� we will succeed�

At this place it should be mentioned that freezing the time t at� say� t� � J and considering the
resulting constant coe�cient equation

A�t�	z
��t	 � B�t�	z�t	 � q�t	 ����	

instead of ���
	 does not make sense in the higher index case in general� This is shown in x �����
of Griepentrog and M
arz ����
	 by di�erent examples� In particular� ����	 may have index ��
but ���
	 does not� and the opposite may also happen� From this point of view� linearizing the
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DAE ����	 at a given point �y�� x�� t�	 � IRm � D � J seems to be rather useless in the higher
index case�
Fortunately� the situation becomes much easier if we start with a certain autonomous DAE ����	
and linearize at a stationary solution� Then� the linearized equation has constant coe�cients
arising in a somewhat more natural way� and� in fact� it provides information on how the solu�
tions of ����	 behave asymptotically �cf� M
arz �����	� Tischendorf �����		� As a consequence�
straightforward generalizations of Lyapunov�Theorems result�

Next� turn to boundary value problems �BVPs	 for ����	� As usually we state the boundary
condition by means of a C� function r � IRm � IRm � IRm to be

r�x�t�	� x�T 		 � �� ����	

Let r�� and r
�
� denote the partial derivatives of r with respect to the �rst and second components�

respectively� The range of the matrix �r���z�� z�	� r
�
��z�� z�	� is supposed to be constant� This

matrix has full rank m in case of regular ODEs� However� for DAEs there should be a lower
number of independent boundary conditions�
The standard Newton�Kantorovich method �or quasilinearization	 and its modi�cations are ap�
proved to work well for BVPs in regular ODEs �e�g� Aktas and Stetter �����		� But what about
the DAE case� Apply the standard Newton�Kantorovich algorithm to our BVP ����	� ����	�
Starting with an appropriate initial guess function x� from C�

N we try to form the iterations

xj�� � xj � zj��� j � �� �����	

where zj�� � C�
N is determined to solve the BVP linearized along xj � i�e�

A�j��t	z
�
j���t	 � B�j��t	zj���t	 � �f�x�j�t	� xj�t	� t	� �����	

r���xj�t�	� xj�T 		zj���t�	 � r���xj�t�	� xj�T 		zj���T 	 � �r�xj�t�	� xj�T 		� �����	

where

A�j��t	 �� f �x��x
�
j�t	� xj�t	� t	� t � �t�� T ��

B�j��t	 �� f �x�x
�
j�t	� xj�t	� t	� t � �t�� T ��

This gives rise to the following questions� Does the linear DAE have the same index as the
nonlinear one has� Does the linear BVP �����	� �����	 uniquely determine the correction zj�� �
C�
N� Further� does xj converge to a solution of the nonlinear BVP ����	� ����	� If it does so� in

what sense�

In M
arz �����	� BVPs in index � DAEs with properly stated boundary conditions are consid�
ered� If x� � C�

N denotes the BVP solution to be approximated� we may realize the Newton�
Kantorovich iteration process with any initial guess x� being close enough to x� in C�

N � Then�
xj � x� �j � �	 in C�

N i�e� kxj � x�k� � kPxj � Px�k� � � �j � �	� becomes true� It
should be stressed that there is no need for x� to satisfy any further constraint�
Below we will show a similar result for the index � case� Again the iterations can be realized
with an initial guess function x�� which does not satisfy neither the �rst nor the second order
constraint� It seems that this will turn out to be a very special advantage of quasilinearizations
applied to DAEs�
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� Linear index � and index � equations

Consider the linear equation

A�t	x��t	 �B�t	x�t	 � q�t	� t � J� ����	

with continuous matrix coe�cients� Introduce the basic subspaces

N�t	 �� kerA�t	 � IRm�

S�t	 �� fz � IRm � B�t	z � imA�t	g

and assume N�t	 to vary smoothly with t� Obviously� S�t	 is the subspace where the homoge�
neous equation solutions proceed�
Again� let Q � C��J� L�IRm		 denote a projector function such that

Q�t	� � Q�t	� imQ�t	 � N�t	� t � J�

further P �t	 �� I � Q�t	�

De�nition �Griepentrog and M
arz ����
		� The DAE ����	 is said to be index � �or transferable	
on J if

N�t		 S�t	 � IRm� t � J� ����	

becomes true�

Condition ����	 implies the matrices

A��t	 �� A�t	 � �B�t	 �A�t	P ��t		Q�t	� t � J� ����	

to be nonsingular� The matrices

G��t	 �� A�t	 �B�t	Q�t	� t � J� ����	

are nonsingular simultaneously and� further� A� � G��I � PP �Q	�
Multiplying ����	 by PA��� and QA��� we decouple this equation into the system

�Px	� � P �Px� PA��� BPx � PA��� q

Qx� QA��� BPx � QA��� q

��
� � ����	

Now� a solution expression results immediately� In fact we have

x � Px� Qx � �I �QA��� B	u �QA��� q � C�
N �

where u � C� solves the inherent regular ODE

u� � P �u� PA��� Bu � PA��� q

and starts at u�t�	 � im P �t�	 for some t� � J � The matrix

I �Q�t	A��t	
��B�t	 �� Pcan�t	 ���
	

may easily be shown to represent the projector onto S�t	 along N�t	� This is why it is called
the canonical projector for the index � case�
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Geometrically� the index � case means that the subspace S�t	 � im Pcan�t	 is �lled by the
solutions of the homogeneous equation� More precisely� for each given t� � J � x� � S�t�	� there
is exactly one solution of the homogeneous DAE� passing through x� at time t��
Obviously� the DAE ����	 is solvable for each q � C� and the solution is given on the whole
interval J � Moreover� the solution depends continuously on the inhomogeneity�
Recall further that ����	 is equivalent for the matrix pencils fA�t	� B�t	g and fA�t	� B�t	 �
A�t	P ��t	g� t � J � to be regular with index ��

For higher index DAEs� in particular for those having index �� the situation becomes more
distinct� Geometrically� only a certain subspace of S�t	 is �lled by the homogeneous DAE
solutions� The inhomogeneous DAE is no more solvable for all continuous q� but only for those
q having certain smoother components additionally� In the consequence� kqk� � � does not
imply kxk� � � for the DAE solution satisfying homogeneous initial conditions� that is� the
DAE solution does not depend continuously of the source q �in the given topologies	� Moreover�
the local matrix pencil fA�t	� B�t	g makes no sense for the DAE in general�

To be more precise� we have to deal with certain additional subspaces� Introduce

N��t	 �� kerA��t	 � IRm

S��t	 �� fz � IRm � B�t	P �t	z � imA��t	g�

The nullspace N��t	 has the same dimension as N�t	
 S�t	�

De�nition �M
arz �����		� The DAE ����	 is said to be index�� tractable �shortly index �	 on
J if the conditions

dimN��t	 � const � ��

N��t		 S��t	 � IRm� t � J�

��
� ����	

are valid�

Supposing that ����	 has index � we introduce the projector Q��t	 onto N��t	 along S��t	�
P��t	 �� I �Q��t	� t � J � Now� the matrix

G��t	 �� A��t	 � B�t	P �t	Q��t	� t � J�

is known to be nonsingular� Further� for the projector Q��t	� the relations

Q��t	 � Q��t	G��t	
��B�t	P �t	� Q��t	Q�t	 � � ����	

become true�
If� additionally� Q� belongs to the class C�� we form

A� �� A� �B�Q�� B� �� �B � A��PP�	
�	P�

A� � G��I � P��PP�	
�PQ�	�

Obviously� A��t	 is nonsingular since G��t	 is so� Further� we have

Q� � Q�G
��
� BP � Q�A

��
� BP � Q�A

��
� B��






Next we decompose the unknown solution into x � Qx�Px � Qx�PP�x�PQ�x �� w�u�Pv
and multiply ����	 by PP�A

��
� � QP�A

��
� and Q�A

��
� � respectively� After carrying out a few

technical computations we obtain the decoupled system

u� � �PP�	
�u� PP�A

��
� Bu � PP�A

��
� q� ����	

��Qv	� � �QQ�	��u� Pv	 � w � QP�A
��
� Bu � QP�A

��
� q� �����	

v � Q�A
��
� q� �����	

where u�t�	 � im P �t�	P��t�	 at some t� � J implies u � PP�u�

In particular� in case q�t	 vanishes identically� the solution component Q��t	x�t	 � v�t	 does so�
too� Hence� the homogeneous equation solution is given by

x � u� w � �I � �QQ�	
� � QP�A

��
� B	u � �I � �QQ�	

� � QP�A
��
� B	PP�u� �����	

Denote �can �� �I � �QQ�	� �QP�A
��
� B	PP�� It may be checked immediately that

PP��can � PP�� ��can � �can� ker �can�t	 � kerP �t	P��t	 � N�t		N��t	

hold true� The next assertion makes clear why �can is said to be the canonical projector for
the index � case� At this point it should be noticed that� in the constant coe�cient case� �can
represents nothing else but the spectral projection onto the �relative	 �nite eigenspace of the
matrix pencil fA�Bg along the in�nite one �cf� Lewis ����
	� M
arz �����		� Hence� �can�t	 may
be understood as the spectral projector for the timevarying case�
Obviously� the canonical projector �can�t	 is much more complicate than the projector P �t	P��t	�
Fortunately� a lot of things can already be achieved by using the easier projection only� However�
we should always keep in mind the strongly close relationship of both projectors�

Theorem ��� Let ����	 be an index � DAE with continuously di�erentiable Q�� Then the

subspace im �can�t	 � S�t	 describes the homogeneous equation solution space� i�e� through each

given t� � J� x� � im �can�t�	� there passes exactly one solution�

Theorem ��� as well as the next one are derived immediately by considering ����	 � �����	� While
S�t	 is related to the �rst order constraint� im �can�t	 describes the second order one�

Theorem ��� Let ����	 be an index � DAE with continuously di�erentiable Q��

�i	 Then the DAE ����	 is solvable on C�
N for all q � C�

��� �� fq � C � Q�A
��
� q � C�g�

�ii	 For the linear map L � C�
N � C� Lx �� A�Px	�� �B �AP �	x� x � C�

N � the image space is

C�
���� i�e� im L � C�

��� � C�

�iii	 The initial value problems

Lx � q� P �t�	P��t�	�x�t�	� x�	 � � �����	

are uniquely solvable on C�
N for any given t� � J� x� � IRm� q � C�

����

�iv	 Relating the max�norm to any compact interval J� � J� t� � J�� the inequality

kxk �� kxk� � k�Px	�k� � K�J�	�kqk� � k�Q�A
��
� q	�k� � jP �t�	P��t�	x

�j	 �����	

is satis�ed by the IVP solution�
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Corollary ��� Let M��� �� im P �t�	P��t�	� Then� the IVP map L � C�
N � C�

��� � M��� �
C � IRm�

Lx �� �Lx� P �t�	P��t�	x�t�		� x � C�
N �

acts bijectively from C�
N onto C�

��� �M����

Next� for a �xed compact interval J� � J � we equip the function spaces C�J�� IR
m	 and

C�
N�J�� IR

m	 with their natural norms kxk� �� maxfjx�t	j � t � J�g� x � C�J�� IR
m	� and

kxk �� kxk� � k�Px	�k�� x � C�
N�J�� IR

m	� respectively� Clearly� by doing so� both C�J�� IR
m	

and C�
N�J�� IR

m	 become Banach spaces and the linear map L � C�
N�J�� IR

m	� C�J�� IR
m	�M���

is bounded� Furthermore� C�
����J�� IR

m	 � C�J�� IRm	 is a proper but nonclosed subset� which

causes the inverse L�� to become an unbounded map in the given natural topologies�
However� equipping C�

����J�� IR
m	 with the stronger norm

kwk��� �� kwk� � k�Q�A
��
� w	�k�� w � C�

����J�� IR
m	�

we obtain again a Banach space� and may then turn to considering the map
L � C�

N�J�� IR
m	 � C�

����J�� IR
m	 � M���� Due to the inequality �����	� L�� is bounded in

this new setting�
Additionally� the inequalities

kLxk� � K��kxk� � k�Px	�k�	�

kQ�A
��
� Lxk� � kQ�xk� � K�kxk�� x � C�

N�J�� IR
m	�

are valid� hence

kLxk��� � Kkxk� x � C�
N�J�� IR

m	�

that is� L and further L are bounded also with respect to the new norm k � k���� So� we obtain
the next assertion� which will prove its value in x ��

Corollary ��� Relate C�
N � k � k and C�

���� k � k��� to a compact interval J� � J� Then L is a

homeomorphism of C�
N onto C�

����M��� in these new topologies�

Let us �nish this section by discussing the so�called Hessenberg form index � equations in detail�
i�e�

x�� � B��x� � B��x� � q�

B��x� � q�

��
� � �����	

where B���t	B���t	 is supposed to be nonsingular on the given interval J � In our context this
corresponds to

A �

�
I �
� �

�
� B �

�
B�� B��

B�� �

�
� Q �

�
� �
� I

�
�

A� � G� � A �BQ �

�
I B��

� �

�
�

S�t	 � S��t	 � f�zT� � z
T
� 	

T � IRm � B���t	z� � �g�

Obviously� z � S��t	 
N��t	 implies z � �� hence �����	 is index � tractable� indeed�
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The block H�t	 �� B���t	�B���t	B���t		
��B���t	 describes the projector onto im B���t	 along

ker B���t	� Further� the projector function Q� now reads

Q� �

�
H �
�F �

�
�

where F �t	 �� �B���t	B���t		
��B���t	� This leads to simple projector functions

PP� �

�
I �H �

� �

�
� PQ� �

�
H �
� �

�
�

However� the canonical projector �can looks a bit more complex� namely

�can �

�
I �H �

�FB���I �H	 � F ��I �H	 �

�
�

Recall that �can�t	 describes the subspace where the homogeneous equation solution proceeds�
We have im �can�t	 � S�t	� t � J � The larger subspace S�t	 relates to the �rst order constraint�
im �can�t	 relates to the second order constraint�

� Nonlinear index � equations

In this section we return to the nonlinear equation

f�x��t	� x�t	� t	 � � ����	

as it is described in the beginning of x �� Besides the nullspace N�t	 we introduce the subspace

S�y� x� t	 �� fz � IRm � f �x�y� x� t	z � im f �x��y� x� t	g

and� moreover� the matrix

G��y� x� t	 �� f �x��y� x� t	 � f �x�y� x� t	Q�t	�

De�nition� The DAE ����	 is said to be index � on the open set G � IRm � D � J if

N�t		 S�y� x� t	 � IRm� �y� x� t	 � G� ����	

is valid�

Condition ����	 is well�known to be equivalent for the matrix G��y� x� t	 to be nonsingular� and
further for the pencil ff �x��y� x� t	� f

�
x�y� x� t	g to be regular with index ��

What about linearizing an index � DAE ����	 along a given C�
N function x�� It may be checked

immediately that the resulting linear equation ���
	 has always index �� too� In particular� we
have precisely

S�t	 � fz � IRm � B�t	z � im A�t	g � S�y��t	� x��t	� t	�

On the other hand� if we do not know what the index of ����	 is� but if we are sure about ���
	
to have index �� we can conclude that ����	 has index � also in a neighbourhood of the graph
of x� in IRm � D � J � since the matrix G��y� x� t	 depends continuously on its argument and
G��y��t	� x��t	� t	 is nonsingular�

�



Theorem ��� Let x� � C�
N��t�� T �� IR

m	 be a solution of the BVP ����	� ����	� and let the

linearized equation ���
	 be index �� Furthermore� let for the matrix

S �� r���x��t�	� x��T 		X�t�	 � r���x��t�	� x��T 		X�T 	

the conditions

kerS � N�t�	�

im S � im�r���x��t�	� x��T 		� r
�
��x��t�	� x��T 		 �� M���

be valid� where the fundamental solution matrix X of ���
	 is uniquely determined by AX ��BX �
�� P �t�	�X�t�	� I	 � ��
Then� the following assertions become true�

�i	 The perturbed BVPs

f�x��t	� x�t	� t	 � q�t	� t � �t�� T �

r�x�t�	� x�T 		 � d�

q � C��t�� T �� IR
m	� d �M���� kqk�� jdj su�ciently small� are uniquely solvable on

C�
N��t�� T �� IR

m	� For the BVP solution x��� q� d	 the inequality

kx��� q� d	� x�k � K�kqk� � jdj	

with a constant K � � is valid�

�ii	 For su�ciently small kx� � x�k� the Newton�Kantorovich method �����	 � �����	 with

the initial guess x� provides an uniquely determined sequence fxjgj�� which converges in

C�
N��t�� T �� IR

m	 to x�� If� additionally� the partial Jacobians f �x� � f
�
x are locally Lipschitz�

xj tends to x� quadratically�

For the proof see M
arz �����	�

In particular� if x� is any solution of the DAE ����	 on the interval �t�� T � �� J�� the initial value
problems for ����	 with the initial condition

P �t�	x�t�	 � P �t�	x
�� x� � IRm� jP �t�	x

�j small�

are uniquely solvable at least on that interval J�� To realize this� we simply choose r�u� v	 �
P �t�	u and apply Theorem ����i	�
It should be emphasized once more that there is no need for the initial guess function x� in
�ii	 to satisfy the constraint� that is� the derivative free part of ����	� In particular� for the
semi�explicit system ����	� we may choose x� � C�

N � which does not satisfy the second equation
of ����	�

� Nonlinear index � equations

Continue to discuss equation

f�x��t	� x�t	� t	 � �� ����	

��



but now supposing G��y� x� t	 to be singular everywhere� At the same time also the matrix
function

A��y� x� t	 � G��y� x� t	� f �x��y� x� t	P
��t	Q�t	

becomes singular for all �y� x� t	 � IRm �D � J � Introduce the subspaces

N��y� x� t	 �� kerA��y� x� t	� IRm

S��y� x� t	 �� fz � IRm � f �x�y� x� t	P �t	z � imA��y� x� t	g�

De�nition� The DAE ����	 is said to be index�� tractable on the open set G � IRm �D � J if
the conditions

dimN��y� x� t	 � const � ��

N��y� x� t	
 S��y� x� t	 � f�g� �y� x� t	 � G

��
� ����	

are satis�ed�

For index � DAEs� the matrix

G��y� x� t	 �� A��y� x� t	 � f �x�y� x� t	P �t	Q��y� x� t	

is everywhere nonsingular� Thereby� Q��y� x� t	 denotes the projector onto N��y� x� t	 along
S��y� x� t	� Further� let P��y� x� t	 �� I �Q��y� x� t	�
The projector P �y� x� t	P��y� x� t	 is closely related to the state manifold of the DAE� Roughly
speaking� its counterpart �can�y� x� t	 �cf� x � for the linear case	 describes the tangent space of
that manifold�

Our notion of index�� tractability is a straightforward generalization of the corresponding de��
nition for the linear case� which� in its turn� represents a generalization of the Kronecker index�
On the other hand� also nonlinear index�� Hessenberg systems are known to be index�� tractable
�cf� also ����	 below	�

Let us turn to a linearization ���
	 taken along a �xed function x� � C�
N whose trajectory

remains in D� Now we �nd the relations

A��t	 � A��y��t	� x��t	� t	� G��t	 � G��y��t	� x��t	� t	�

S��t	 � S��y��t	� x��t	� t	� N��t	 � N��y��t	� x��t	� t	�

which obviously imply the linearized DAE ���
	 to be index�� tractable�
The opposite is not true in general� The index�� tractability of a linearized at x� � C�

N DAE
does not necessarily spread out onto a neighbourhood of f�y��t	� x��t	� t	 � t � J�	 � IRm�D�J
�cf� M
arz and Tischendorf �����	 for an example	� However� by means of certain structural
restrictions of ����	 we may guarantee that property� For this purpose� let D be constituted so
that x � D implies fP �t	x � t � Jg � D�

Lemma ��� Given x� � C�
N�J�� IR

m	� J� � J� x��t	 � D for t � J�� Let the linearized DAE

���
	 be index�� tractable on J�� and let the structural condition

Q��t	G��t	
��ff�y� x� t	� f��� P �t	x� t	g� �� �y� x� t	 � N ����	

be given on a neighbourhood N of the graph

T �� f�y��t	� x��t	� t	 � t � J�g � IRm �D � J�

Then� the DAE ����	 is index�� tractable on a neighbourhood N� � N of T �

��



Proof� Condition ����	 implies Q��t	G��t	
��f �x��y� x� t	 � �� further Q��t	G��t	

��f �x�y� x� t	 �
Q��t	G��t	��f �x��� P �t	x� t	P �t	� and consequently Q��t	G��t	A��y� x� t	�� for all �y� x� t	�N �
Since the nullspace of Q��t	 is precisely S��t	� it follows that

im G��t	
��A��y� x� t	 � S��t	�

thus rankG��t	
��A��y� x� t	 � � �� dim S��t	 � rank P��t	� On the other hand� due to

G��t	
��A��y��t	� x��t	� t	 � G��t	

��A��t	 � P��t	

the matrix A��y� x� t	 is of constant rank � in a neighbourhood N� � N of T �
Now� the orthoprojectorQ�� �y� x� t	 ontoN��y� x� t	 depends continuously on its arguments there�
since A��y� x� t	 does so� It follows further that the matrix

G�� �y� x� t	 �� A��y� x� t	 � f �x�y� x� t	P �t	Q
�
� �y� x� t	

is also continuous with respect to �y� x� t	� Due to Lemma A�� in M
arz and Tischendorf
G�� �y� x� t	 is nonsingular for �y� x� t	 � T � but for reasons of continuity for �y� x� t	 � N� � N��
N� � T � too� Applying that Lemma A�� once more� we conclude that
N��y� x� t	
 S��y� x� t	 � f�g holds for all �y� x� t	 � N�� �

Condition ����	 seems to be more transparent and easier to be checked in its equivalent form

S�t	ff�y� x� t	� f��� P �t	x� t	g � im S�t	B�t	Q�t	� ����	

where S�t	 �� I �A�t	A�t	�� The equivalence is given by means of the relation

kerQ��t	G��t	
�� � fz � IRm � S�t	z � im S�t	B�t	Q�t	g

�e�g� M
arz and Tischendorf �����	� Lemma ���	� In particular� the relation ����	 is satis�ed
trivially for all linear DAEs� where f�y� x� t	 � A�t	y � B�t	x� q�t	� thus

S�t	ff�y� x� t	� f��� P �t	x� t	g � S�t	B�t	Q�t	x�

Most authors discussing index�� DAEs restrict their interest to so�called Hesssenberg form sys�
tems from the very beginning� that is� to systems

x�� � ��x�� x�� t	 � �
��x�� t	 � �

�
� ����	

where ��x��x�� x�� t	�
�
x�
�x�� t	 is supposed to be nonsingular� For this kind of special DAEs we

derive

A � P �

�
I �
� �

�
� A� �

�
I ��x�
� �

�
�

N��y� x� t	 � fz � IRm � z� � ��x��x�� x�� t	z� � �g

and

S��y� x� t	 � fz � IRm � ��x��x�� x�� t	z� � �g�

Now� index�� tractability becomes obvious to be equivalent with the above nonsingularity con�
dition� Furthermore� the structural condition ����	 is satis�ed because the nullspace component
x� does not appear at all in the second equation of ����	� Namely� in this case we simply have

S�t	ff�y� x�� x�� t	� f��� x�� �� t	g �

�
� �
� I

��
y� � ��x�� x�� t	� ��x�� �� t	

�

�
�

�
�

�

�
�

��



We have seen that condition ����	 covers both the linear equations and the Hessenberg form
ones� However� also more general equations may be considered� In particular� when transforming
quasilinear index�� DAEs whose leading nullspace varies with x and t into its enlarged form we
typically obtain a system

x�� � ��x�� x�� t	 � �
��x�� t	 � ��x�� t	x� � �

�
���
	

which has index � and satis�es the structural condition ����	� supposed the range of ��x�� t	
does not vary with x�� We will discuss this case in x � in more detail�

Lemma ��� Let the structural condition ����	 be satis�ed for ����	� Then it is also valid for

the enlarged systems

�i	 f�x��t	� x�t	� t	 � �

g�z�t	� x�t	� P �t	x��t	� t	 � �

��
� �

where g�z is supposed to be nonsingular� and

�ii	 f�x��t	� x�t	� t	 � �

h�w��t	� w�t	� P �t	x��t	� x�t	� t	 � �

��
� �

where h�w� is supposed to be nonsingular�

Proof� �i	 We put the enlarged system back into the form �f��x��t	� �x�t	� t	 � � with �x �
�x
z

	
�

Then we compute

�f ��x� �

�
f �x� �
g�x� �

�
� �f ��x �

�
f �x �
g�x g�z

�
� �Q �

�
Q �
� I

�
�

�A� �

�
A� �

g�z

�
� �� g�x� � �g�x � g�x�P

�	Q�

�S� �


�
u

v

�
� f �xPu � imA�

�
�


�
u

v

�
� u � S�

�
�

�Q� �

�
Q� �
Q� �

�
� where �� �g�z

�� Q��

further

�G� �

�
G� �
� g�xPQ� g�z

�
� �Q�

�G��� �

�
Q�G

��
� �

Q�G
��
� �

�
�

Now it becomes obvious that

�Q�
�G��� f �f��y� �x� t	� �f��� �P �t	�x� t	g � �

is valid if and only if it holds that

Q�G
��
� ff�y� x� t	� f��� P �t	x� t	g � ��

��



�ii	 Letting �x �
�x
w

	
we proceed analogously as in the �rst part� Now we have

�f ��x� �

�
f �x� �
h�x� h�w�

�
� �f ��x �

�
f �x �
h�x h�w

�
� �Q �

�
Q �
� �

�
�

�A� �

�
A� �

h�w�

�
� �� h�x� � �h�x � h�x�P

�	Q�

�S� �


�
u

v

�
� f �xPu � imA�

�
�


�
u

v

�
� u � S�

�
�

�Q� �

�
Q� �
�h�w�

�� Q� �

�
�

�G� �

�
G� �

h�w�

�
� �Q�

�G��� �

�
Q�G

��
� �

�h�w�

�� Q�G
��
� �

�
�

Again we obtain

�Q�
�G��� f �f��y� �x� t	� �f��� �P �t	�x� t	g � �

if and if Q�G
��
� ff�y� x� t	� f��� P �t	x� t	g� �� �

Due to Lemma ��� we may add certain further index � and index � equations to the original
index � DAE satisfying the structural condition ����	� The resulting enlarged DAE has index ��
too� and ful�ls condition ����	 again�

Next we try to reformulate our DAE into an appropriate operator equation to make use of
well�known standard arguments for those equations like the Implicit Function Theorem and the
Newton�Kantorovich method�
Let x� � C�

N�J�� IR
m	 be �xed as before� J� � J � Introduce the map

F � �x�� �	 � C�
N �� C

by means of

�Fx	�t	 �� f��Px	��t	� P ��t	x�t	� x�t	� t	� t � J�� x � �x�� �	�

Thereby� �x�� �	 denotes an open ball in C�
N � and � � � is assumed to be small enough to keep

the trajectories of all functions x � �x�� �	 within the region D we started with�
It is well�known �M
arz ���
� cf� also x �	 that F is not Fredholm in the given natural topologies�
However� Corollary ��� causes discussions whether we should turn from C� k � k� to C�

���� k � k���
also in the nonlinear case� If F is continuously di�erentiable and F ��x�	 maps C�

N surjectively
onto C�

��� in that new image space topology� the resulting linearized boundary value problem

map F ��x�	is a homeomorphism� Then standard argument apply if F itself maps into C�
���� too�

Unfortunately� now the space C�
��� may depend on x��

However the structural condition ����	 proves its value once more in this context� Namely�
supposed N is large enough �resp� � � � is small enough	 so that the graphs corresponding to
x � �x�� �	 proceed in N � we have

Q��t	G��t	
��f��Px	��t	� P ��t	x�t	� x�t	� t	 �

� Q��t	G��t	
��f��� P �t	x�t	� t	 for t � J�� x � �x�� �	� ����	

Due to that property� we may easily realize that x � �x�� �	 implies Fx � C�
����

��



Lemma ��� Let the linearized at x� � C�
N�J�� IR

m	 DAE be index�� tractable� J� � J be com�

pact� and ����	 be valid�
Let �g�x� t	 �� Q��t	G��t	

��f��� P �t	x� t	� x � D� t � J�� as well as its partial derivatives �g�t�x� t	�
�g�x�x� t	� �g

��
xx�x� t	� �g

��
xt�x� t	 depend continuously on �x� t	�

Then� F maps �x�� �	 � C�
N�J�� IR

m	 into C�
����J�� IR

m	� and it is continuously �Fr�echet	 dif�
ferentiable�

Proof� First of all it is worth mentioning that

Q��t	 � Q��t	G��t	
��B�t	 � �g�x�P �t	x��t	� t	

depends continuously di�erentiably on t�
For given x � �x�� �	� we obtain Fx � C�

��� immediately by means of relation ����	� It remains

to check the di�erentiability� As usually� we calculate for x � �x�� �	� z � C
�
N

lim
���

�

	
�F �x� 	z	� F �x		 �� F ��x	z

and show F ��x	 � C�
N � C�

��� to be a linear� bounded map� After that we prove F ��x	 to depend
continuously on x�
First of all we compute

F ��x	z � Ax�Pz	
� � �Bx �AxP

�	z�

where Ax�t	 �� f �x���Px	
��t	�P ��t	x�t	� x�t	� t	� Bx�t	 �� f �x��Px	

��t	�P ��t	x�t	� x�t	� t	� t � J��
The inequality

kF ��x	zk� � K��x	kzk

results immediately with K��x	 � IR��
Further� ����	 yields for all ��y� �x� t	 � N

Q��t	G��t	
��f �x���y� �x� t	 � �

Q��t	G��t	
��f �x��y� �x� t	 � Q��t	G��t	

��f �x��� P �t	�x� t	P �t	�

Therefore�

Q��t	G��t	
���F ��x	z	�t	 � �g�x�P �t	x� t	P �t	z�t	� t � J��

represents a C� function with respect to t� Consequently� F ��x	z � C�
��� is actually true�

Now� the inequality

��� d
dt
Q��t	G��t	

���F ��x	z	�t	
��� � K��x	kzk� t � J��

follows� thus kF ��x	zk��� � K��x	kzk� i�e� F ��x	 � C�
N � C�

��� is a bounded linear map as
expected�
It remains to show that F ��x	 is continuous with x�
For x� �x � �x�� �	� z � C�

N � we derive on the one hand

k�F ��x	� F ���x		zk� � max
t�J�

fjAx�t	�A�x�t	j jI�P
��t	j� jBx�t	�B�x�t	jgkzk�

��



On the other hand� we also compute

��� d
dt
Q��t	G��t	

����F ��x	� F ���x		z	�t	
��� �

� max
t�J�

fj�g�x�P �t	x�t	� t	� �g�x�P �t	�x�t	� t	j� j�g��xt�P �t	x�t	� t	� �g��xt�P �t	�x�t	� t	j�

�j�g��xx�P �t	x�t	� t	�Px	
��t	� �g��xx�P �t	�x�t	� t	�P �x	��t	jgkzk

This shows that k�x� xk � � implies kF ���x	� F ��x	k��� � �� in fact� �

Now we are ready to state solvability of perturbed nonlinear index � IVPs locally around a given
solution x�� Intending e�g� to approximate x� by numerical integration� we should be aware
even of those solvability results� Roughly speaking� the next theorem says how to catch� locally
around x�� the implicitly given but practically unknown � hidden 	 second order constraint or
state manifold� where the neighbouring solutions proceed� It also describes in which sense the
solutions depend on the perturbations� Notice also that Theorem ��� represents the nonlinear
version of Theorem ����iii	�

Theorem ��� Given a solution x� � C�
N�J�� IR

m	 of the DAE ����	� J� � J compact� Let the

linearized at x� DAE ���
	 be index�� tractable� Let ����	 be valid� Moreover� let �g be continuous
together with its partial derivatives �g�x� �g

�
t� �g

��
xx� �g

��
xt�

Then� for t� � J� and su�ciently small 
 � �� 	 � �� the perturbed initial value problem

f�x��t	� x�t	� t	 � q�t	� t � J��

P �t�	P��t�	�x�t�	� x�	 � �� x� � IRm�

jP �t�	P��t�	�x
� � x�t�		j � 	�

q � C�
����J�� IR

m	� kqk� � k�Q�G
��
� q	�k� � 
�

is uniquely solvable on C�
N�J�� IR

m	� Its solution x��� x�� q	 depends continuously on

�x�� q	 � IRm � C�
���� where C

�
��� is equipped with k � k����

Proof� De�ne Fx �� �Fx� P �t�	P��t�	�x�t�	 � x��t�			� x � B�x�� �	� F maps �x�� �	 into
C�
��� �M���� where M��� �� im P �t�	P��t�	�

Obviously� F is as smooth as F � By construction� we have Fx� � �� Due to Corollary ���� F ��x�	
is a homeomorphism from C�

N onto C�
����M���� Hence� our assertion is a direct consequence of the

Implicit Function Theorem �e�g� Krasnosel!ski et al� ���
�	� p� ��	
�

�




Remarks�

�� In particular� the inequality

kx��� x�� q	� x�kC�

N

� KfjP �t�	P��t�	�x
��x��t�		j� kqk� � k�Q�G

��
� q	�k�g

results by Theorem ���� what shows the so�called perturbation index also to be � �cf� Hairer
and Wanner �����		�

�� The solution x�t� x�	 of the initial value problem f�x��t	� x�t	� t	 � ��
P �t�	P��t�	�x�t�	 � x�	 � �� jP �t�	P��t�	�x��t�	 � x�	j � 	 � depends continuously di�er�

entiably on x�� but the partial derivative X�t	 ��
�

�x�
x�t� x�	 satis�es the �rst variation

equation

Ax�PX	� � �Bx � AxP
�	X � �� P �t�	P��t�	�X�t�	� I	 � ��

�� A similar result may be obtained for parameter dependent DAEs f�x��t	� x�t	� t� p	 � ��
where x� solves this equation for a given parameter value p�� and the structural condition
����	 is satis�ed uniformly for all parameter values to be considered�

�� Recall once more that the relations x�t�� x
�	 � x� or P �t�	x�t�� x

�	 � P �t�	x
� cannot be

expected at all� Even if x� was close to x��t�	 but x
� �� imP �t�	P��t�	� the initial condition

x�t�	 � x� would yield a non�solvable initial value problem� If x� is a consistent initial value�
the solution exists a priori� However� there is no easy way for describing the manifold of
consistent initial values at all�

�� For the special case of quasilinear DAEs the assertion given by Theorem ��� is also proved
in M
arz and Tischendorf �����	� where the nonlinear equation itself is decoupled via its
linear part� Moreover� the backward di�erentiation formula is shown to work well in this
context so that we are able to integrate those IVPs numerically�

Next we turn to BVPs� What about the Newton�Kantorovich method applied to index � DAEs�
Recall that� as usually� neither the initial guess x� � C�

N nor the approximations provided are
expected to satisfy the original DAE ����	 itself�
In the following� we will show that quasilinearization should work well also in the index � case�
supposed the structural condition ����	 is valid� In this context� denote again by

S �� r���x��t�	� x��T 		X�t�	 � r���x��t�	� x��T 		X�T 	� ����	

the solvability matrix of the boundary value problem ����	� ����	� where now the fundamental
solution matrix X is uniquely determined by

A�PX	� � �B � AP �	X � �� P �t�	P��t�	�X�t�	� I	 � ��

Theorem ��� Let all the assumptions of Theorem ��� be satis�ed� and let x� solve the BVP

����	� ����	� J� � �t�� T �� Let the boundary condition ����	 be stated properly� i�e�

kerS � kerP �t�	P��t�	� ����	

im S � im�r���x��t�	� x��T 		� r
�
��x��t�	� x��T 			� �����	

Then� for su�ciently accurate initial guess x� � C�
N � kx� � x�k small enough� the Newton�

Kantorovich method �����	 � �����	 provides a uniquely determined sequence

fxjgj�� � �x�� �	� and

kxj � x�k �� � �j ��	�

��



Proof� Form the boundary value problem map
�F � �x�� �	 � C�

��� �
�M��� by �Fx �� �Fx� r�x�t�	� x�T 			� x � �x�� �	� �M��� �� im�D�� D�	�

Di �� r�i�x��t�	� x��T 		� i � �� �� Again� �F is as smooth as F �
Further� it holds that �Fx� � �� and �F ��x�	z � �q� d	 represents the linearized at x� BVP

A�Pz	� � �B �AP �	z � q� D�z�t�	 �D�z�T 	 � d� �����	

which is uniquely solvable for each q � C�
���� d � im�D�� D�	 �cf� M
arz �����		�

Again� Corollary ��� implies �F ��x�	 to be a homeomorphism from C�
N onto C�

��� �
�M���� Now�

applying standard arguments on the Newton�Kantorovich method �Krasnosel!skij et al� ���
�	�
x ��	 we are done� �

Remark� Supposed all involved partial derivatives of f and �g are Lipschitzian� the resulting
approximations xj converge quadratically to x��

Stress again that the initial guess x� may be chosen not to satisfy the �rst and second order
constraint� In particular� in case of the Hessenberg system ����	 there is no need for x� to satisfy
the second equation ��x�� t	 � �� but also the hidden constraint ��x��x�� t	��x�� x�� t	��

�
t�x�� t	 �

��

� Quasilinear index � DAEs whose leading nullspace varies

with x and t

In this section we specify results of x � for enlarged systems resulting from index � DAEs
whose leading nullspace depends also on x� Note that the index � theory described in x � �cf�
Griepentrog and M
arz ����
		 does not apply to those equations since the nullspace condition
����	 is no more valid� Consider the following equation

A�x�t	� t	x��t	 � g�x�t	� t	 � �� ����	

where the leading Jacobian A�x� t	 has constant rank r 
 m� Form the basic subspaces to be

N�x� t	 �� fz � IRm � A�x� t	z � �g�

S�y� x� t	 �� fz � IRm � B�y� x� t	z � im A�x� t	g�

B�y� x� t	 �� g�x�x� t	 �A�x�x� t	y� �y� x� t	 � IRm �D � J�

De�nition� Equation ����	 is said to be an index � DAE on the open set G � IRm � D � J if
the condition

N�x� t	
 S�y� x� t	 � f�g� �y� x� t	 � G�

is ful�lled�

Since the previous index � results apply only for those DAEs having N�x� t	 invariant of x� we
turn to the enlarged system

x��t	� y�t	 � �

A�x�t	� t	y�t	 � g�x�t	� t	 � �

��
� � ����	

which has a constant leading nullspace� But the price for the nicer form of ����	 is a higher
index� as the next lemma will show�

��



Lemma ��� The enlarged system ����	 is index�� tractable if and only if ����	 itself has index ��

Proof� Put the enlarged system ����	 into the form

�f��x��t	� �x�t	� t	 � �� �x ��

�
x

y

�
�

Compute the partial Jacobians

�f�x���y� �x� t	 �

�
I �
� �

�
� �f�x��y� �x� t	 �

�
� �I

B�y� x� t	 A�x� t	

�
�

further

�Q �

�
�

I

�
� �A���y� �x� t	 �

�
I �I
� A�x� t	

�
�

Obviously� �A���y� �x� t	 is singular since A�x� t	 is so� Moreover� we have

�N���y� �x� t	 � fz � IRm � IRm � z� � z�� A�x� t	z� � �g�
�S���y� �x� t	 � fz � IRm � IRm � B�y� x� t	z� � im A�x� t	g�

Evidently� z � �N���y� �x� t	
 �S���y� �x� t	 is equivalent with z��z��N�x� t	
 S�y� x� t	� �

It was Lubich �����	 who discovered that a di�erentiation index � DAE the leading nullspace of
which rotates with varying x behaves rather than an index � DAE� This was one of the reasons
for introducing the perturbation index� Recall Lubich!s example of a di�erentiation index � but
perturbation index � problem in more detail�

Example� m � ��

x�� � x�x
�
� � x�x

�
� � g� � �
x� � g� � �
x� � g� � �

���
�� � ����	

We are interested in solving the IVP for ����	 with the initial condition x���	 � � on ��� ����
letting

g��t	 � �� g��t	 �
�

n
sinnkt� g��t	 �

�

n
cosnkt� n� k � IN�

The solution is

x��t	 � nk��t� x��t	 � g��t	� x��t	 � g��t	�

For �xed k � �� we have kgk� � � �n� �	� but kxk� � � �n � �	� although the solution
of ����	 vanishes identically if g does so� Obviously� this behaviour con�rms once again the
understanding to consider this problem rather as a higher index one�
Linearizing ����	 at a �xed x� � C� gives the coe�cients for ���
	

A�t	 �



B� � �x���t	 x���t	

� � �
� � �

�
CA � B�t	 �



B� � x����t	 �x����t	

� � �
� � �

�
CA �

which clearly form an index�� tractable equation �cf� x �	� A possible nullspace projector is

Q�t	 �



B� � x���t	 �x���t	

� � �
� � �

�
CA � �

��



Lemma ��� Let Q�y� x� t	 denote the projector onto N�x� t	 along S�y� x� t	� Then

�Q���x� t	 ��

�
Q�y� x� t	 �
Q�y� x� t	 �

�

represents the projector onto �N���y� �x� t	 along �S���y� �x� t	� which is invariant of �y�

Proof� For z � �N���y� �x� t	� it holds that z� � z�� z� � Q�y� x� t	z�� further

�Q���x� t	z �

�
Q�y� x� t	z�
Q�y� x� t	z�

�
� z�

On the other hand� z � �S���y� �x� t	 implies z� � S�y� x� t	� that is Q�y� x� t	z� � �� thus �Q���x� t	z �
�� �

Next� for given x� � C��J�� IR
m	� y� �� x�� we may consider both the linearization of ����	 at x�

and that of the enlarged system ����	 at �x�� y�	 � C�
�N
�� f�x� y	 � x � C�� y � Cg� The �rst

linearization leads to

A�t	z��t	 �B�t	z�t	 � q�t	 ����	

with

A�t	 �� A�x��t	� t	� B�t	 �� B�y��t	� x��t	� t	� t � J��

but linearizing ����	 yields

�A�t	�z��t	 � �B�t	�z�t	 � �q�t	� ����	

�A�t	 ��

�
I

�

�
� �B�t	 ��

�
� �I

B�t	 A�t	

�
�

Clearly� ����	 represents the enlarged system of the linear equation ����	 simultaneously� In this
sense� enlarging the system and linearizing commute�
Due to Lemma ���� the DAE ����	 has index � if and only if ����	 is an index � DAE�

Lemma ��� Let A and g belong to the class C� and g have continuous partial derivatives g��xx�
g��xt� Let imA�x� t	 be invariant of x� i�e�

im A�x� t	 � R�t	� x � D� t � J� ���
	

Moreover� let the linearized at x� � C� equation ����	 be index ��
Then� the DAE ����	 is index � tractable with a C� projector function �Q�� Further� the structural

condition ����	 is valid for the enlarged system ����	�

Proof� A�t	 � A�x��t	� t	 depends continuously di�erentiably on t and has constant rank r�
Consequently� the orthoprojector Q��t	 ontoN�t	 �� kerA�t	 is also continuously di�erentiable�
Moreover� condition ���
	 implies im�A�x�x� t	y	 � R�t	 which simpli�es� in its turn� the subspace
S�t	 �� S�y��t	� x��t	� t	 to S�t	 � fz � IRm � g�x�x��t	� t	z � imA�t	g� Next�

Q��t	�A�t	 � g�x�x��t	� t	Q
��t		��g�x�x��t	� t	 �� Q�t	 ����	

��



represents the canonical projector onto N�t	 along S�t	� Due to our smoothness assumptions�
Q becomes a C� projector function� Applying Lemma ��� to the linear DAEs ����	 and ����	�
we arrive at the C� projector function

�Q��t	 �

�
Q�t	 �
Q�t	 �

�

for ����	�
It remains to check the condition ����	 to be ful�lled for ����	� For that� compute

�G��t	 �

�
I �I

B�t	Q�t	 A�t	

�
� �G��t	

�� �

�
P �t	 G��t	��

�Q�t	 G��t	
��

�
�

�Q��t	 �G��t	
�� �

�
� Q�t	G��t	

��

� Q�t	G��t	
��

�
�

and then� for �y � IRm � IRm� �x � D � IRm� t � J��

�Q��t	 �G��t	
��f �f��y� �x� t	� �f��� �P �x� t	g �

�
Q�t	G��t	

��A�x� t	y	
Q�t	G��t	��A�x� t	y	

�
� ��

Thereby� G� �� A�BQ remains nonsingular� and the last relation is a consequence of assumption
���
	 and the property QG��� A � �� �

Now we are well�prepared to specify Theorem ��� for ����	�

Theorem ��� Given a solution x� � C
��J�� IR

m	 of ����	� J� � J compact� and let all assump�

tions of Lemma ��� be satis�ed� Let Q�t	 denote the projector onto N�t	 �� kerA�x��t	� t	 along
the subspace

S�t	 �� fz � IRm � g�x�x��t	� t	z � R�t	g�
�G��t	 �� A�t	 � g�x�x��t	� t	Q�t	�

�i	 Then� for t� � J� and su�ciently small 
 � �� 	 � �� the IVP

A�x�t	� t	x��t	 � g�x�t	� t	 � q�t	� t � J��

P �t�	�x�t�	� x�	 � �� x� � IRm�

jP �t�	�x
� � x��t�		j � 	�

q � C� Q �G��� q � C�� kqk� � k�Q �G��� q	�k� � 


is uniquely solvable on C��J�� IR
m	�

�ii	 The IVP solution depends continuously di�erentiably on x��

�iii	 The IVP solution satis�es the inequality

kx��� x�� q	� x�kC� � KfjP �t�	�x
� � x��t�		j� kqk� � k�Q �G��� q	�k�g�

Proof� First of all� with the denotations used when proving Lemma ���� we have QG��� � Q �G��� �
Next we turn to the enlarged form of the DAE to be considered in �i	� that is�

x��t	� y�t	 � �

A�x�t	� t	y�t	 � g�x�t	� t	 � q�t	

���
�� � ����	

��



Due to Lemma ���� Theorem ��� applies immediately to that system� It holds that

�Q�
�G���

�
�

q

�
�

�
� QG���
� QG���

��
�

q

�
�

�
Q �G��� q

Q �G��� q

�

and

�P �P��t�	 �

�
P �t�	 �
� �

�
�

thus

�P �P��t�	��x�t�	� �x�	 �

�
P �t�	�x�t�	� x�	

�

�
� �

Remarks�

�� It should be emphasized once more that now P �t�	 may depend on x��t�	�

�� Theorem ����iii	 says that the perturbation index of ����	 is not greater than two� As Lubich
�����	 has shown� a solution�depending leading nullspace may force the perturbation index
to become two in fact� On the other hand� comparing with standard results� which apply
in case the nullspace condition ����	 holds true� we know the perturbation index to be one
then�

�� Supposed kerA�x� t	 does not vary with x� i�e� condition ����	 is valid� we can do with
lower smoothness to obtain solvability on the function space C�

N � In particular� we can do
without demanding QG��� q � C�� but q � C will su�ce� However� Theorem ��� provides
C� solutions� For that� the additional smoothness� e�g� QG��� q � C�� is necessary�

�� The partial derivative X�t	 �� �
�x�

x�t� x�	 satis�es the �rst variation equation

A�x�t� x�	� t	X ��t	 �B�x��t� x�	� x�t� x�	� t	X�t	 � �

P �t�	�X�t�	� I	 � ��

�� Condition ����	 is not even restrictive� It may be achieved by corresponding scalings�

Now� let us specify the Newton�Kantorovich method for the boundary value problem

A�x�t	� t	x��t	 � g�x�t	� t	 � �

r�x�t�	� x�T 		 � �

���
�� � ����	

Given an initial guess x� � C���t�� T �� IRm	 we put y� �� x�� and apply method �����	 � �����	
to the enlarged system ����	� This yields yj � x�j for all j � � so that we are able to describe
the whole iteration process in terms of the original system as follows�
For j � �� we solve the linear BVP

A�xj�t	� t	z
�
j���t	 �B�x�j�t	� xj�t	t	zj���t	�

�A�xj�t	� t	x�j�t	 � g�xj�t	� t	 � �

r���xj�t�	� xj�T 		zj���t�	 � r���xj�t�	� xj�T 		zj���T 	 �

� �r�xj�t�	� xj�T 		

���������
��������

�����	

��



and put xj�� � xj � zj�� then�
Obviously� �����	 looks like the iteration directly applied to ����	� What is only left to do is
checking the unique solvability of the linear BVPs to be solved�
Given a BVP solution x� � C���t�� T �� IRm	 we de�ne the matrix

S �� r���x��t�	� x��T 		X�t�	 � r���x��t�	� x��T 		X�T 	

as usually� where the fundamental solution matrix X is given by

AX � � BX � �� P �t�	�X�t�	� I	 � ��

Comparing with ����	� �����	 applied to the enlarged system and taking into account the repre�
sentation �P �P��t�	 � diag�P �t�	� �	� we derive the conditions

kerS � kerP �t�	

im S � im�r���x��t�	� x��T 		� r
�
��x��t�	� x��T 			

���
�� �����	

to be the relevant ones for the proper statement of the boundary conditions� Emphasize that�
formally� �����	 are the same conditions as those used in Theorem ���� But now kerP �t�	 �
N�x��t�	� t�	 may depend on the solution�
On this background� Theorem ��� applied to the BVP ����	 simpli�es as given below�

Theorem ��� Given a solution x� of the BVP ����	� and let the boundary conditions be stated

properly� i�e� �����	 be ful�lled� Let the assumptions of Lemma ��� be satis�ed�

Then� for any su�ciently good initial guess x� � C���t�� T �� IR
m	� kx��x�kC� small enough� the

Newton�Kantorovich process �����	 provides uniquely determined xj� j � �� and kxj�x�kC� � �
�j ��	�

Note again� all linear BVPs to be solved for zj are uniquely solvable� But now� all of them have
perturbation index one� This fact can be considered as a further advantage of the linearization�

The statements given in the present section for equation ����	 may be immediately generalized
for fully implicit DAEs ����	� supposed the partial Jacobian f �x��y� x� t	 has constant rank and its
range is invariant of �y� x	� i�e� im f �x��y� x� t	 � R�t	� �y� x� t	 � IRm � D � J � But additionally�

in this case we have either to assume the resulting projector function �Q� �cf� Lemma ���	 to
belong to the class C� or to require the respectively higher smoothness of the two functions f
and x� for obtaining that property via the lines of Lemma ����

Finally� return brie"y to the example of Lubich mentioned above� Complete the DAE ����	 by
the boundary resp� initial condition with r�z�� z�	 �� z���� z�� z� � IRm� such that r���z�� z�	 

diag��� �� �	� r���z�� z�	 
 �� Denote by x� � C� the solution of the resulting IVP� that is

x�i � gi� i � �� ��

x��� � g� � g�g
�
� � g�g

�
�� x����	 � ��

The solution matrix

S �

�
�� �

�
�

�
��
�
�� � �x����	 x����	

� � �
� � �

�
�� � P ��	

��



satis�es the conditions �����	 trivially� Also Lemma ��� applies immediately� Compute further

�G� �



B� � �x�� x��

� � �
� � �

�
CA � Q �G��� �



B� � x�� �x��

� � �
� � �

�
CA �

Moreover� the Newton�Kantorovich method �����	 yields exact second and third components
xj���i � gi� i � �� �� after the �rst iteration� i�e� for j � �� independently of the choice of the
initial guess x�� After the second iteration step� i�e� for j � �� also the �rst component becomes
exact� i�e� x�j���� � g� � g�g

�
� � g�g

�
�� xj������	 � � is satis�ed� Hence� due to the very simple

structure of this special example the exact IVP solution is obtained after the second iteration
step� independently of the chosen initial guess we started with�
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