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Abstract

The computation of consistent initial values for differential-algebraic
equations (DAEs) is essential for staring a numerical integration. Based
on the tractability index concept a method is proposed to filter those equa-
tions of a system of index—2 DAEs, whose differentiation leads to an in-
dex reduction. The considered equation class covers Hessenberg—systems
and the equations arising from the simulation of electrical networks by
means of Modified Nodal Analysis (MNA). The index reduction provides
a method for the computation of the consistent initial values. The realized
algorithm is described and illustrated by examples.
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1 Introduction

Differential-algebraic equations (DAEs) are systems of the form

f(a'2t) =0 (L1)

with a singular matrix f,,. The singularity of f, implies that (1.1) contains

some derivative-free equations called constraints. Such systems arise in numer-
ous applications as for instance multibody systems, electric circuit simulation
and chemical kinetics.

To start up the numerical integration of DAEs consistent initial values are re-
quired. In the index-1 case, this means that we need to start from a point that
lies in the manifold M, defined by the given constraints. For the higher-index
cases, the so-called hidden constraints that result by differentiation define a
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sub-manifold of My on which all solutions must lie. Thus, in these cases the
consistent initial value has to lie in that manifold. To this end, a proper de-
scription of the hidden constraints becomes necessary.

In the literature different approaches have been presented. Among others, Pan-
telides [1] constructed an algorithm using graph theory methods to differentiate
subsets of the system. Leimkuhler [2] used the global index definition combined
with a finite difference approximation of the derivatives. Hansen [3] proposed
a method based on the tractability index with time dependent projectors only,
which applies formula manipulation methods and index reduction. Lamour [4]
used the properties of the projectors related to the tractability-index to describe
the part of the solution which we have to differentiate, while the differentiated
part was replaced by its finite differences. Amodio and Mazzia [5] considered
Hessenberg systems and realized differentiation by special finite differences.

In this article we consider index-2 DAEs fulfilling some structural properties,
which are more general than the ones of the mentioned papers. We will de-
scribe the hidden constraints by making use of the projectors related to the
tractability—index. Therefore, in Section 2 we briefly introduce this index def-
inition. To prove that the expression we will define corresponds to the hidden
constraints, we show in Section 3 that substituting some of them for a part of
the original equations gives place to an index reduction.

This index reduction method permits us to establish a relation between the hid-
den constraints of two modeling techniques in circuit simulation, the conven-
tional Modified Nodal Analysis and the charge-oriented Modified Nodal Anal-
ysis. This relation is outlined in Section 4. In Section 5 we present a possible
Ansatz to fix values for a subset of variables whose cardinality is the so—called
degree of freedom in order to set up a nonlinear system the solution of which
provides a consistent initial value.

Finally, in Section 6 we describe the numerical realization of the presented
results and some examples are given in Section 7. The programs are available
at http://www-iam.mathematik.hu-berlin.de/~lamour.

2 Spaces, Projectors, and Manifolds

Let us consider DAEs with an index at most 2 and a quasi-linear structure
fl@' x,t) == A(z, t)a’ + b(a, t) = 0. (2.1)

In the following we assume that all the appearing derivatives exist and that the
partial derivatives with respect to 2’ and x are continuous.

If the coefficient matrix A(x,t) is nonsingular, (2.1) represents an implicitly
regular ODE. But we are interested in the case when A(x,t) remains singular
and assume that

Al: N :=kerA(x,t) = const, im A(z,t) = const.



For a proper analysis of these systems we define the projectors Q onto N,
P:=1-@Q, and W along im A(z,t).

We apply the tractability index introduced by [6],[7], which is defined by con-
sidering a matrix chain based on the pencil matrices, i.e., on f.,, fi. Because
of (2.1) f!, = A(z,t) holds and for B = f we have

B(x',x,t) = [A(x, t)2'],, + U, (z,t).
Notice now that all solutions of (2.1) lie in
My(t) := {z € R" : Wpb(z,t) = 0}. (2.2)
The space S, which is closely related to the tangent space of My(¢), is given by
S(z,t) :={z € R": WoB(2',2,t)z =0} = {z € R™ : Wyb!,(z,t)z = 0}.
Definition 2.1 [6] If A(z,t) is singular, then (2.1) has index 1

<= NnS(z,t) = {0}
< Gi(2',z,t) := A(z,t) + B(z',2,t)Q is nonsingular.

In the index-1 case, there exists a solution through z for each point xo € My(t).
In this article we focus on the index—2 case. Therefore we consider the next
matrix chain elements, which are given by G1(z',x,t) and

By (z',z,t) := B(2',z,t)P.
Assume that
A2: imG(2',2,t) and kerGy(2',2,t) do not depend on a' (2.3)

and let Wy (z,t) be a projector along im G (z', z,t). The relevant spaces on this
level are

Si(z',x,t) :={z € R" : Wy(x,¢)By (2',2,t)z = 0}
and
Ni(z,t) :==kerGy(2', x,t)
and we denote by Q1 (z,t) a projector onto Ny (z,t) and Py (x,t) := [ — Q1 (z,t).

Definition 2.2 [6], [7] If (2.1) has not index 1 and dimN NS(x,t) is constant,
then (2.1) has index 2

= Ni(z,t)n Si(a',z,t) = {0}
= Gy(z',x,t) := G1 (2,2, t) + Bi(2', 2, t)Q1(,t) is nonsingular.



It seems to be important to note that the index definition introduced above
does not depend on the special choice of the different projectors.

For simplicity, in the following we will drop the arguments of A, B, Gy, S1, Ny,
Q1, P1, G5 if they are clear from the context.

In the index—2 case we choose the so—called canonical projector onto N; along
Sy, which fulfils Q; = Q1G5 By, [7]. Furthermore, it can be shown (cf.[8]) that

In this article we further suppose that there exists a constant space L such that
im Gy(2',2,t) ® L = R™.

Thus it is possible to choose a projector Wi (z,t) with im Wy (z,t) is constant.
Indeed this assumption is given for Hessenberg systems, because W is constant
itself (see Remark 3.3), and for the equations arising from Modified Nodal Anal-
ysis (cf. [9]). Note that, locally, this can always be assumed. Since im A C imGy
and thus L Nim A = {0}, we can define a constant projector W; fulfilling:

im Wy = im Wi (2,¢) and ker W) D im A, (2.4)

which will become important later on.

In contrast to the index—1 case, where My(¢) is filled by solutions, for the index-2
case the so—called hidden constraints define the manifold

M, (t) C Mo(t),

which fulfils the requirement that for each point xy € M;(t) there exists a solu-
tion through xy. These hidden constraints arise when differentiating a suitable
part of (2.1). We will see that this part can be described properly with the aid
of the projector W;.

For later considerations we need the following properties.

Lemma 2.3 : Let (A, B) be a given matriz pencil, Q a projector onto ker A,
Wo a projector along im A and Wi a projector along im G with G := A+ BQ.
The following conditions are valid

a.) WiBQ =0,
b.) Wy = Wi Wy.
Proof:

a.) With 0 = WGy = W (A + BQ) we obtain
W1G1P = WlA =0 and WlGlQ = WlBQ =0.

b.) Denote by A~ the reflexive generalized inverse of A with Wo =1 — AA~
and Q =1 — A=A (A~ is uniquely determined by these assumptions). From
WiA =0 it follows that 0 = W, AA~ =W, ([ — W()) or Wiy =W Wy.

q.e.d.



Since all the above matrices depend continuously on (z,t), it holds that if
Lemma 2.3 is valid at fixed (x4, ), then it remains valid in a sufficiently small
neighborhood of (x4, t4).

3 Index Reduction by Differentiation

3.1 Motivation

It is well known that the differentiation of a DAE or of parts of it sometimes
reduces its index. For a better understanding of this principle we give some
academic examples. Let us consider the linear index—2 DAE

1 0 0 O 0 0 0 1
, o o 0 0 0] , 1 1.0 0 o
f@' xt) = Az’ + Bx — q := 0 0 x + 010 ol*—9=
0 0 010
or, as single equations,
ity = q,
1 +x2 = @2,
T2 = (3,
r3 = (g4

Obviously, we do not require the differentiation e.g. of the fourth equation to
obtain an explicit expression for the solution z, 3, 23, x4. But the general ap-
plication of the differentiation index (see e.g. [10],[11]) requires the computation
of £ f(a',x,t). Using the given semi-explicit structure we would only differen-

0
tiate all the algebraic equations. With the projector Wy = ! 1
1
along im A we could write this in the form %(Wof(x’,x, t))!. However, if for
0
Q= 1 1 we use a projector Wi along im G; with G; = A + BQ =
1

1 0 0 1 0

01 0 O S 1 -1 .

010 ol which is given by W; = 0 , we actually differ-

0 010 0

entiate only the necessary constrains by considering %(Wl fla' xt)).
Our aim is to generalize the above Ansatz for some nonlinear DAEs. We want
to show that the approach can be adapted to obtain an index-reduction for

L Another approach to select suitable equations can be found in [12]



more general equations. At a first glance, the above example may suggest that
an index reduction is always obtained by considering the system

(= Wi f (' ,0) + Wi S W f,1)) =0, (3.1

If the projector W is constant or depends only on ¢, then (3.1) certainly has
index one (cf. [13], [14]). In [14] it was shown how to handle with the case that
the projector depends on the part of the solution that appears together with its
derivatives, i.e., Wi (Pz,t) is allowed.

In practice, we have noticed that W; may also depend on the other parts of the
solution. For instance (cf. [9]), the charge-oriented Modified Nodal Analysis
presents this property. For these systems, we have observed that the way to
obtain a reasonable index reduction consists in considering the system?

N d
(I - Wl)f(SCI,SC,t) + Wl(x7t)%(f(xlvx7t)) =0. (32)
Observe that the term (I — W1)f(z',z,t) describes the equations that are not
replaced by derived ones. The choice of such a constant projector Wi becomes
important in the nonlinear case.

The following example illustrates why the index reduction described in (3.1) is
not appropriate for nonlinear DAEs in general. For simplicity, we consider the
index-2 DAE:

Ttz = @,
T1+x223 = Q2
r2 = (3,

r3 = (4,

z;(t) € IR. For the projector @) chosen as before, the projectors Wy and Wy are
given by

0 O 0 0 0 0 0 O
01—z - o100
Mi=1y9 0 o 0 |’ Wi=19 0 0 0

0 O 0 0 0 0 0 O

Let us consider the expression corresponding to (3.1):
ritxs = qu,
oy — (z3 — qa)zh — (v2 — @3)@h + ghas + qyao + 20223 — g3 — a2 = q3,
Tr2 = (3,
r3 = (44

This equation has the differential index 1, but:

2Note that the proper smoothness assumption required for Wl(-)%f(a:’,a:, t) is discussed
later on.



of
ox'

1. The tractability index is not well applicable, because ker
x.

depends on

2. The perturbation index (cf. [15]) of this system is 2, as can be easily seen
if we consider ¢g1 = ¢2 = ¢3 = g4 = 0 and the following perturbation (cf.

[16]):
ri+xy = 0,
o) — zhrs — wowh + 2xawz = 0,
Ty = e€sin tz,
r3 = €COS 2.

Straightforward computation leads to x4 := €22t cos(2t?)+2¢>(sin t2)(cos t2),
which implies that x4 grows with the derivative of the perturbation.

Let us now consider the expression corresponding to (3.2):

ity = q,

T+ qyrs + s = g,
2 = (3,

r3 = (g4,

For this system, all indices are defined and coincide, they are 1.

Therefore, the projector W should not be differentiated itself. This is due to the
fact that W7 was defined considering the partial derivatives, not the equations
themselves. Indeed, W; provides information on how to combine the equations
we need to differentiate.

This fact motivated the introduction of the diagonal matrix Iy, defined by

Wi,i,é 0 else.

Note that Iy, is a projector and that Wi Iy, = Wj.
Hence, the system we consider for the index reduction is

(= W) 7! ,0) + Wi, 0) 5 T, Wo (' 2,1)) = 0.

3.2 The Index—1 Formulation

Let us assume that the DAE (1.1) has index—2 and that it has the quasilinear
structure (2.1) and that its solutions are continuously differentiable. Motivated
by our discussion in Section 3.1 we assume that

A3 :% {le Wof(a'(t),z(t),t) } exists



and consider the DAE

(L= W) (@' 2,0) + Wi ) (I, Wof (&' 2,0) = 0. (33)

Moreover, to guarantee the equivalence with (2.1) we need the additional con-
dition that the replaced equations are fulfilled at least in one point

W1 f(a'(to), z(to), to) = 0. (3.4)

Remark 3.1 : Using the quasilinear structure and ker Wy O im A (see (2.4))
we have the identities: .

1. (I =W f(a' 2, t) = A(z, t)x" + (I — W1)b(x,t),

2. Wof(a',z,t) = Wob(z,t).

This Ansatz suggests the following definition for the manifold
My (t) == {z € Mo(t) : Wi(z,t) [(IW1 Wob)!, (2, t)y + (Iw, Wob)i(z,t)| =0,

y = —A(z,t)b(z,1) }

Let us investigate the index of (3.3). More detailed, (3.3) looks like

Az, t)z’ + (I —Wy)b(x,t)

+ Wl(x,t){(fwlwob);(x,t)x'+(IW1WOb);(x,t)]:o. (3:5)

The pencil matrices of (3.5) are given by
A(z,t) = Az, t) + Wi(z, t)(Iw, Wob)., (2,1)
B(z',z,t) := { <A(x,t) + Wi(z, ¢) (I, Wob);(x,t))x'}l +
{(1 = W)b(a,t) + Wi (1) (Iw, Wob)i (1)}
Because of assumption A1l it holds that Wy (x,t)[A(z,t)2'], =0, and it follows
Wi (z, t)(Iw, Wob).,(z,t) = Wi (z,t)B(a', z, t).
By definition of W; we thus obtain by Lemma 2.3 a.:
A(z,t) = (A(x,t) + Wi (z,t)B(z', 2, 1)) P,
and from A(z,t) = (I — Wi (z,t))A(x,t) + Wy (x,t)B(2', 2, t) we conclude
ker A(z,t) = ker A(z,t) Nker Wy (z,t)B(2, z,t) = im Q.

At this point we want to emphasize that this implies that the space N corre-
sponding to the original index—2 DAE and the space N corresponding to the



reduced index—1 DAE coincide. This means that in both DAEs there appear
the same derivatives, which was our objective.

According to Definition 2.1, to prove that (3.5) has index 1, we have to check
the nonsingularity of

Gi(z',x,t) = Alx,t)+ B, z,t)Q
= Az, t) + Wi(z, t)(In, Wob)".(z,t)
3
!
+ H <A(;c,t) + Wi (z, t)(Iw, Wob)., (z, t))x'}
SN—— z
1
!
+ {bte = Winte.0) + Wi 0t W) | o
H/—/ z
2
To this aim we consider an arbitrary z fulfilling Gy (2, z,t)z = 0, i.e.,
0= Gilaa,0)z = (A(m) (A OPY, + t))@)z
—_— —
1 , 2
+ Wi (2, t) (I, Wob)', (2, t) Pz — {Wlb(x,t)} Q> (3.6)
‘3’ T

+{Wl(x,t)[(le Wob)! (z, )" + (In, Wob)é(x,t)]} Qz.

We split (3.6) by multiplying it by (I — Wi(x,t)). From (I — W (z,t))Wy =0
and W, = W1 W; we have
0= (I —Wy(z,t)G (', z,t)z = (A(x, t) + B(z', z,1)Q)z.
Hence, it follows that z = Q1 (z,t)z and with
Wb, (2, )QQ1 (x,t) = Wi (A(x, ) + B(a',2,)Q)Q1 (w,1) = W1G1Q1 = 0

we have

0=Gi(2",z,t)z2 = Wi(z,t)(In, Wob),(z,t)PQ12

N {[Wmm,t)[(fwlwobmx,t)x' N (lewobx(x,t)]} 00:-.

1
If we assume that

!

A4 :ker{Wl (2, 6)[ (T, Wob)', (z, )" + (Iw, Wob)L(x, t)]} C NnS(a,t),

T



then expression 4 remains identical zero and we find
0 = Wiz, t)(Iw, Wob)!(z,t) PQ1z = Wi(z,t)B(2', 2, t) PQ; 2. (3.7

For the canonical projector, i.e., for Q1 = QnglBPQl, G2Q1G;1 projects
along imG;y = kerW;. Hence, (3.7) implies 0 = G2Q,G, 'B(z',2,t)PQ1z =
G2Q1z = 0, which leads to 1z = 0. Thus we have z = 0. This means that the
matrix Gy (z',x,t) is nonsingular, i.e., the DAE (3.5) has index 1.

What about the equivalence of the equations (2.1) and (3.5)? It seems to be
clear that every solution of (2.1) remains also a solution of (3.5). Conversely,
we have to show that if we start on My, then the whole solution of (3.5) lies
there, too. Let 2, € C' be a solution of (3.5) with z,(to) € My fulfilling (3.4),
whereas My is the suitable manifold of this index-1 problem. Therefore, (3.5)
is fulfilled particularly for z,(¢). Multiplying (3.5) by W1 provides

d

Wi (. (8).8) = (I, Wob(a. (£),£)) = 0. (3.8)

Using this result and multiplying (3.5) by Wy we obtain
Wo(I — Wi)b(z,(t),t) =0, (3.9)

i.e., Wob(2,(t), ) = WoWib(z.(t),t). Further, (3.9) implies with (3.4) z.(to) €
My. With Wy = Wy (2, t)IW; this implies

d, - d .
GONba(0.0) = Wig (P (0).0)

= Wl(x*(t)7t)W1%(W1b($*(t)vt))

= W (), (Wbl (1), )

dt

= W0, 0 5 (T Wl bl (1), 1)

d J—
(3.9) Wi« (8), ) 5 (Iw, Wob(w.(8), 1) 38)

0.

TAherefore, Wlb(x*(t),t) is constant and because of z,(ty) € My it holds that
Wib(x4(t),t) = 0. This proves the following:

Theorem 3.2 Let the assumptions A1—A4 be fulfilled. Then equation (3.5)
has index—1 and the C*-solutions of the index—2 equation (2.1) and the index—1
equation (3.5) fulfilling (3.4) are equivalent.

Remark 3.3 The assumptions A1—A3 are dependence and smoothness con-
ditions only. The most interesting condition is given by A4. When does A4
become valid? Roughly speaking, we can say that A4 is fulfilled if the equation
defining My in My does not depend on variables lying in NN S(x,t) = im QQ.

10



1. It is clear that for linear (time—dependent) DAFEs A4 is fulfilled, but this
is also true for the case that Wy (z,t) = Wy (Pz,t), which was investigated
by [14]. For Hessenberg systems

l”l-l-bl(l'l,l'z,t) = 0
bz(l’l,t) =

it easily can be seen that

_ I 0 _ Bll(l’l,l’z,t) Blz(l’l,l’z,t) _ 0 0
A_(O 0)’ B_( Bai(w1,1) 0 o @=10 1
and therefore

_ (I Biz(z1,22,1) (0 0
Gl_(o 0 ’ Wi=1y 1)

Thus, A4 is fulfilled.

2. If NN S(z,t) =im QQ1 = const and the equation has the structure
AUz, t)x' +b(Uz,t) + Bt)Tx =0, (3.10)

where T denotes a projector onto the space N N S(z,t) and U :=1—T.
Thus W1 = Wi (Ux,t) holds and A4 is also valid. This case covers a
broad class of systems arising from the Modified Nodal Analysis (cf. [9]).

4 Application to Electrical Networks

We analyze in detail the systems resulting in circuit simulation by means of
Modified Nodal Analysis (MNA) in order to show how they fulfil our assump-
tions. We consider the systems generated by two commonly used modelling
techniques: the conventional approach and the charge-oriented approach of the
MNA (cf. [17], [18], [9])-

The conventional MNA leads to systems of the form:
Az, t)z" + f(x,t) =0, (4.1)
where the vector of unknowns z consists of
1. the nodal potentials
2. the currents of the voltage-controlled elements.

These systems arise from Kirchhoff’s nodal law for each node but the datum
node and the characteristic equations of the voltage-controlled elements.

11



The charge-oriented MNA provides systems of the form:

A + flz,t) = 0, (4.2)

whereas A is constant.
In this case, the vector of unknowns (¢, z) consists of

1. the vector ¢, that is introduced additionally and contains

(a) the charge of the capacitors
(b) the flux of the inductors.

2. the vector x, which remains the same it was for the conventional MNA.

The equations (4.3) correspond to the characteristic equations for charge and
flux.

Observe that both modelling techniques are closely related, because

A(z,t) = Ag.(x,t) and (4.4)

flx,t) f(z,t) + Ag)(z,t). (4.5)

The structural properties of these systems have been discussed in detail in [9]
for a large class of electric networks. We restrict our further consideration to
the class of networks described in [19]. For these networks, it follows from the
results of [9] that the assumptions A1, A2 are always satisfied. Furthermore,
assumption A4 is fulfilled because of Remark 3.3. Therefore, in the following
we only have to assume additionally that the smoothness conditions are also
given. Condition A3 will be discussed later on.

Further, it is shown in [9] that the following relations are fulfilled for a special
choice of projectors:

1. There exists a projector W; along to image of the matrix G corresponding
to the conventional MNA fulfilling

W1 is constant.

2. There exists a projector W, along to image of the matrix G4 corresponding
to the charge-oriented MNA that fulfils

Wy = e = (g T RE0), (46)
whereas the matrix H is defined in a way that particularly
Wi - H(z,t) g, (x,t) = Wi fo(x,t) = Wi fo(x,t) (4.7)

12



is fulfilled (cf. [9]). Furthermore,

R . Wy 0
im Wy (x,t) =im (01 0)

holds, whereas the second column corresponds to the equations (4.3).

Remark: For the systems arising from MNA this implies that for both for-
mulations the reduced index-1 systems are again closely related, because we
have:

1. For the conventional MNA
Az, t)x" + Wi fo(x, )2’ + (I — W) f(x,t) + Wi fi(z,t) =0.  (4.8)

2. For the charge-oriented MNA, if we set the projector fulfilling (2.4)

A Wy 0
e (0 49
and make use of the relations
SRV ACR)) B 0 0 I —gy(z,t)

4.7 0 0/’

then we obtain
ANQI + WlH(xvt)ql + (I - Wl)f(xvt)
+W, fl(x,t) — Wi H (z,t)gl(z,t) = 0, (4.10)
qg—g(x,t) = 0. (4.11)
Observe now that, by (4.5),
(I —W1)(f(z,t) + Agj(x,t))
= Agé(xvt)_‘_([_wl)f(xvt)v

(I - Wl).f(xvt)

are fulfilled and therefore (4.10) is equivalent to

Aq' + Agi(w,t) + WiH (z,t)(¢' — g;(x,1))
+([_W1)f(x7t)+W1ft’(xvt) = 0

Finally, taking into account that, due to the derivation of (4.11) and prop-
erty (4.7), the relation

WlH(xvt)(ql - g;(xvt)) = WlH(xvt)g;(xvt)xl = Wlf;(xvt)xl

13



is fulfilled, we recognize that the system (4.10)-(4.11) is again closely re-
lated to (4.8) because we may write it in the form

Aq + Agl(z,t) + Wi fl(x, )" + (I —Wy) f(x,t) + Wifl(x,t) = 0,
q—g(.ﬁC,t) =

Let us finally focus on the smoothness assumptions required for the DAEs arising
from MNA. Since W is a constant projector, for the conventional MNA we only
have to require that %(Wl f(z(t),t)) exists, instead of A3. Taking into account
that for the charge-oriented MNA the projector W1 can be chosen as described
in (4.6), in this case it suffices to assume the existence of %(Wlf(x(t)7 t)) and

4 (g — g(z,t)). Observe that the smoothness conditions coincide.

5 The Computation of Consistent Initial Values

Consider the initial value problem

f(l",l',t) = 0, (51)
PPl(l'(to),t[))(J}(t[)) - a) =0 (52)

with a given «, which is adequate for an index—2 DAE [20].

Note that the assumption ker f/,(z',x,t) = N leads to f(a',z,t) = f(Pz', z,t).
A vector zp € R™ is a consistent initial value of (1.1) if there exists a solu-
tion of (1.1) that satisfies x(ty) = xo. To compute a consistent initial value we
therefore determine the unknown values (I — PPy (x(to),to))z(to) and (Pz)'(to).

For the calculation of the consistent initial values we use the equations aris-
ing from the reduced index—1 representation and the conditions concerning the
initial values. They are given by:

(1= W) (a2 0) 4 Wi (o 1) o (I Wof (a2, 0) = 0, (5.
Wlf(x’(t[))vm(to)vto) = 0, (54)
PPy (z(to), to)(z(to) —a) = 0. (5.5)

If we consider this set of equations in the point ¢ = to with the aim to calculate
values = x(tg), y = Pa'(to), and rearrange them, we obtain the system

fly,z,t) =

PP (z,t)(z —a) =

Qy

Wl(xvt)[(‘lwlw()b);c(xvt)y + (IW1WUb)2(mvt)] =

b

’ (5.6)

)

O O O O

?

to determine the unknowns (y,z), whereas Qy = 0 is introduced to guarantee
y = Py.
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Theorem 5.1 Let the assumptions A1—A4 be valid and suppose additionally
that the implication

A5: {PPi(z,t)(z —a)},(I — PQi(x,t))2 =0 = PP (z,t)z =0 (5.7

holds. Then the system (5.6) has a full rank Jacobian matriz in a neighborhood
of a solution.

For a better understanding of A5 observe that for a constant or a time-dependent
projector PP;(t) the assumption is trivially fulfilled. Some more general cases
are discussed in Remark 5.3.

Proof: For A := f,(y,z,t) and B := f;(y,,t) the Jacobian matrix of (5.6)
reads

A B
] o {PP(x,t)(x — )},
Q 0

WiB Wi ((Iw, Wob)Ly + (Iw, Wob);) }

To prove its nonsingularity we consider a z fulfilling Jz = 0. For z = (zy, 2,)7
we obtain the first equation:

Azy + Bz, = 0.

Multiplying it by G5 ' and PPy, PQ; and Q yields

PPz, + PPG,'BPP, 2, = 0, (5.8)
—QQ1z, + (QGy'BPP, +QQ1 +Q)z, = 0. (5.10)
The other equations provide
{PPi(x —a)},ze = 0, (5.11)
Qz, = 0, (5.12)
WiBzy + {W1((Iw, Wob),y + (In, Wob)y) }p22 = 0. (5.13)

With PQ;z, =0 from (5.9) we derive from (5.11) the expression of assumption
A5 and it follows that PPz, = 0. With (5.8) it follows that PPz, = 0. From
(5.12) we obtain that @z, = 0 and thus we have z, = PQ1z, and z, = Qz,.
With (5.10) this leads to QQ1zy = Qz, and, finally, A4 and (5.13) imply
WiBPQ1zy = 0, i.e., analogously as it was concluded from (3.7), PQ1z, = 0,
which means that Qz, = 0.

Remark 5.2 Let us have a look at system (5.6). Is it really necessary to use the
second equation PPy (z—a) = 0 in this form, which does not make the theoretical
considerations easier ? In fact, if we know the projector PP (z.(t),t) = PPy (t)
on the solution, which depends only on t, we can always fix the free parameters
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corresponding to the degree of freedom correctly. This motivated the consider-
ation of PPy (x(t),t). In [2], [5] a nonlinear initial condition B(x(to)) = 0 is
required, assuming that B is chosen in such a way that the initial value problem
has a unique solution. In contrast to our condition, which has, indeed, the struc-
ture B(x) = PPi(x,t)(x — «), we already know that the initial value problem
has a unique solution (see [20]). Nevertheless if we know an easier (e.g. not
depending on x) condition, we can replace our condition by a similar one with
the same degree of freedom if the obtained Jacobian matrix becomes nonsingular.
For instance, if ker PQ1(x,t) = const (valid for the conventional Modified Nodal
Analysis), there exists a constant projector PV with ker PV = ker PQ,. As both
projectors project along the same subspace, it holds that

PQ.PV = PQ,, PVPQ, =PV.

Therefore we better describe the fizing of the free parameters corresponding to
the degree of freedom by considering

(P—PV)(x—a)=0

instead of equation (5.5)(cf. [21]). When analyzing the Jacobian then, we obtain
analogously as above PQ1z = 0 and also (P—PV)z =0, i.e. Pz =0. Of course,
this leads to PP,z = 0.

Remark 5.3 If we make use of the fact that PP, = P—PQ, then the left-hand
side of the implication A5 reads

(P — PQ;(x,t))z — {PQ1(x,t)(z — a)},,(I — PQ1(x,t))z = 0. (5.14)
Therefore, for the following cases assumption A5 is fulfilled:
1. PPy = const or only t—dependent.

2. im PQ(x,t) = const (valid for the charge—oriented Modified Nodal Analy-
sis). This means that a constant projector PV exists with the same image
as PQ1. Both projectors project onto the same subspace, it holds that

PVPQ, = PQ,, PQ,PV =PV or P(I — PQ,)PV = PP,PV =0.
Therefore the equation (5.14) is equal to
(P = PQi(x,1))z — PV{PQ:(z,t)(z — a)},(I — PQi(,1))z = 0.
Multiplying this by PPy we obtain that the assumption A5 is fulfilled be-
cause of PP, PV = 0.

3. In case of PQq(x,t) = PQ1(Px,t) (valid for the mechanical systems de-
scribed in [22]), equation (5.14) becomes

PPi(z,t)z — {PQ1(z,t)(x — )}, PPy (z,t)z = 0.

16



If we multiply this expression by PPy (z,t), we see that the nonsingularity
of (I—PPy(z,t){PQ1(z,t)(x—a)},) implies PPy(x,t)z = 0. This is valid
e.g. for the pendulum, but up to now it was not possible to prove this for
general mechanical systems.

6 Algorithmic Realization

Our aim was to implement a general purpose code which is not based on the
quasilinear structure. From (5.3) we obtain

Wi (z, t)[(Tw, Wob), (z, t)y  +  (Iw, Wob)i(2,1)] =
Wi (z, )[(A(z, D)x'); + b, )y + At (w, 1)’ + b)]
= Wiz, t)(By + fi(y,z.1)).

In our realization we choose the projector Wy by W := GzPQngl. This has
the advantage that we are able to combine all equations in two parts only (see
(6.1)), but the disadvantage is that for systems with a very simple (i.e. constant)
projector Wi we choose now a projector with difficult dependences on x.

It is easy to see that for this projector W1 G = GQPQ1G2_1G1 =GLPQ1P, =0,
which leads to

Wl(m,t)(B(y,fv,t)y+ft'(y,x,t)) - GZPQle_l(B(yvxvt)y+f1,{(y7xvt))7
= GaPQi(y+ G5 f{(y,x,1)).

If we do so, we have to solve the following nonlinear systems of equations

f(yvxvt) = 0, (61)
PP (z,t)(x —a) + PQ1(y + G5 " fi(y,x. ) + Qy = 0. '

For the solution of (6.1) we use a Newton-like method, where the used “Jaco-
bian” matrix does not take into consideration the dependence of the projectors
PP, PQ, and of G2, which leads to a “Jacobian” matrix

g A B
“\ PQ(I+G;'AY+I—-PP, PP, +PQ,G;'B" )’

where A’ := fI', and B’ := f!,, with the explicit inverse
S PP, — PQ,Z _PPY +1- PP, Gyt
“\I-PP,-QQ:(I+Z) PP +QQ:—QY 1)’

where Z := Gy ' (A" + B'(I — PPy)) and Y := G5 ' BPP, . The solution of (6.1)
is realized by the following principle algorithm:

1. i=-1
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10.
11.
12.
13.
14.

15

6.1
The

ook W

: .0 .0
input: yg, xg,to

. .0
o= xg
iitialization: i=i+1

computation of 4 := f!,(y?, 27, to)(check of singularity - ODE),
B = fl(y?,29,t0), where A and B are approximated by finite differences
or computed by an user—written subroutine

computation of the matrix chain elements and projectors:
@, G (check of singularity - index 1)

if Gy singular: @1, G2 (check of singularity - not index 2)
if G2 nonsingular:Q;, := Qle_lBP, Gss, GZ_SI,PPhPQl

computation of J~!

computation of (6.1), where f/ is approximated by the central difference
quotient or computed by an user—written subroutine

if norm(6.1) < accuracy goto finish

j=1

Jump:

Newton step, calculation of the correction Ay, Ax
calculation of ylj , xf

if norm(6.1) > accuracy
then
j=i+l1
goto jump
else ' '
Yo =yt =)
goto initialization

. finish:

The Computation of the Projectors

computation of the projectors, which we need only at the point ¢y, repre-

sents an important part of the algorithm. To this end we have carried out a
decomposition of a matrix G and the determination of its rank. For this prob-

lem

the following methods are available: The Householder decomposition or the

SVD. We prefer the first option because of the computational costs.
We are looking for the nullspace projectors @; of the matrix chain element G;
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(the given representation assumes constant projectors). The matrix chain grows
with (see [7])

Giy1:=Gi+ B;Q;, Biy1:=B;P;.

Let us assumes that we have a (e.g. Householder) decomposition of G; of the
form

_ Rin Ri12 T
U;G; = < 0 0 > PCi

with U; an orthogonal matrix, R;,, a nonsingular, triangular matrix of dimen-
sion r; and P., a column permutation matrix. Using U; we define U;B; =:
(B, B;Z)PCT Then a projector onto ker A is given (as it was used in former
papers [23], [4]) by

—1 .
Qi:Pci<8 R}HR%H)PZZ PZ'IZI—QZ',

This gives the following representation of G;41:

R;,, R oy

UiGiJrl = _El R;lllle + EZ Pg; = " j12 PCT;

. 0 : Rizz

0

Now we have to decompose R;,, and obtain U; R;,, = R%Q‘l R%Z’Q . Up-

. . I T I T
dating the matrices U;y1 := 7. U; PCi+1 = pr P;. we ob-

(2 c;

tain the relevant representation for G;y1, and the adequate representation for
Bi+1 uses U;4+1 and Pg;ﬂ.
If we start with Go = A and Uy = I we attain, in the index—k case after
k + 1 steps, the nonsingular matrix G, in a decomposed triangular form. This
makes the computation of the so—called canonical projector, which is given by

Qrs = QkAllek, relatively simple.
7 Examples
We use a first example with constant coefficient matrices, which does not meet

the assumptions from [1], to illustrate the mode of action of the method. The
system is represented by

1”1 — (1’1 + 21’2 + 31’3) = 0,
r1+ax+2x3+1 = 0,
201 +x2 +2x3 = 0.

19



The matrices A and B are given by
100 -1 -2 -3
A=]10 0 0 |, B= 1 1 1
0 00 2 1 1
0 00 100
The relevant projectorsare PPL=| 0 0 0 |,PQ:=1| 0 0 0 |,
0 00 0 00
0 00 0 0 0
Q=101 0 |andWy =W, =| 0 0 0 |. Since PP, is identical
0 0 1 0 -1 1

zero, it is not possible to prescribe any initial values, all values are determined.
The equations for the computation of the consistent initial values (5.6) are

1 0 O Y1 -1 -2 -3 X1 0
Ay+Bx=q=|0 0 O v |l +1] 1 1 1 T = -1
0 00 Y3 2 1 1 x3 0
0 00 Y1
Qu=11 0 1 0 Yo = 0
0 0 1 Y3
0 00 Y1
WiBy=1{[ 0 0 0 Y2 = 0.
1 0 0 Y3
The solution is directly visible as y = 0 from the second and the third equation
1
andx=1| -5
3

We take the next example from [11], [24]. The FORTRAN-subroutine for the
description of the problem reads

subroutine ftraj(y,x,t,fyxt,*)

c
e x(1) = H

e x(2) = xi

c x(3) = lambda

c x(4) = VR

c x(5) = gamma

c x(6) = A

c x(7) = alpha

c x(8) = beta

c

c————- o e e e e +

implicit real*8 (a-h,o-z)
real*8 mue,m,1l
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common /round/ uround

dimension y(1),x(1),fyxt(1)

cl(p)=1d-2*p

data ae,mue,ome,m,s,pi /0.209029d+8,0.1407653916d+17,

* 0.72921159d4-4,0.2890532728d+1,14d0,

* 3.14159265358979323846264338327950288d0/

if (abs(x(4)).1lt.uround) return 1

r=x(1)+ae

if (abs(r).lt.uround) return 1

g=mue/r/r

hpi=pi/18d1

hsing=sin(x(5)*hpi)

hsina=sin(x(6)*hpi)

hcosg=cos (x(5)*hpi)

hcosa=cos (x(6) *hpi)

hsinl=sin(x(3)*hpi)

hcosl=cos(x(3)*hpi)

hnl=r*hcosl

if (abs(hnl) .1t.uround) return 1

hn2=x(4)*hcosg

if (abs(hn2).1t.uround) return 1

vr2=x(4)*x(4)

hcl=cl(x(7))

rho=0.002378d0*exp (-x(1)/238d2)

1=0.5d0*rho*hcl*s*vr2

cd=0.04d0+0.1d0*hcl*hcl

d=0.5d0*rho*cd*s*vr2

ome2=ome*ome

sc=hsinl*hcosa

fyxt(1)=y(1)-x(4)*hsing

fyxt(2)=y(2)-x(4)*hcosgxhsina/hnl

fyxt (3)=y(3)-x(4)*hcosgxhcosa/r

fyxt (4)=y(4)+d/m+g*hsing+ome2*r*hcosl* (scxhcosg-hcosl*hsing)
fyxt (5)=y(5)-1*cos(x(8)*hpi) /m/x(4)-hcosg/x(4)* (vr2/r-g)-2d0*
* omexhcosl*hsina-ome2*r*hcosl/x(4)* (scxhsing+hcosl*hcosg)
fyxt(6)=y(6)-1*sin(x(8) *hpi) /m/hn2-x(4) /r*hcosg*hsina*tan(x(3) *
*  hpi)+2d0*ome* (hcosl*hcosaxtan(x(5)*hpi)-hsinl)-ome2*r*hcosl*
*  hsinl*hsina/x(4)/hcosg

fyxt (7)=x(5)+1d0+9d0*t*t/9d4

fyxt(8)=x(6)-45d0-9d1*t*t/9d4

return

end
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With

1

we discover that we have to differentiate the latter two equations to obtain the
derivatives of the P()1—components of z, where

0 0 0 O 0 0 0 0
0 0 0 O 0 0 0 0
0 0 0O 0 0 0 0
PQ, = 8 8 8 8 —;ﬁxw;cos(%) — T4y Cosé%)sin(%) 8 8
0 0 0 O 0 1 0 0
0 0 0 O 0 0 0 0
0 0 0 O 0 0 0 0

Note that the kernel of P(); is constant.

In [11] the following consistent initial value is ascertained by :
z = (100000 0 0 12000 —1 45 2.6728700742 — 0.05220958616134),

where the first six components were given by the task and the two latter were
computed analytically making use of the special structure of the problem.

For the computation of the initial values we start from the perturbed values
a=z)= (100000 0 0 12000 -1 45 2 —1)

and y§ = 0, to = 0. The result with a defect of 7.4544861723 - 10~15 is given by

—2.09428877247402130D + 02 100000
4.03943694670064170D — 04 7.39557098644698560D — 31
4.03943694670064170D — 04 1.09476442525376340D — 47

| —3.49782603527764870D + 01 _ 12000
y= 3.43346554416848270D — 95 | ¥ T -1
2.19741794826782840D — 93 45

0 2.67287004806323260D + 00

0 —5.22095857372783550D — 02

Since for the approximation of f; we used a step-size h = 1072, the accuracy is
as expected.
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The last example comes from the electrical network simulation and was ex-
tensively discussed in [8]. Here we consider the NAND-gate model containing
nonlinear capacitances. The NAND-gate circuit is represented in Figure 1.

The DAE obtained by the charge-oriented Modified Nodal Analysis from this
circuit has dimension 29, where the dimensions of the various parts are as fol-
lows: dim(im PP;) = 7,dim(im PQ1) = 3 and dim(im @) = 19. As usual in
the simulation of electrical networks (see e.g. [19]) we start with the so—called
DC-operating point (i.e. y = 0). The initial values and the solution after 2 iter-
ations with a defect of 6.6994486890D — 16 (initial defect 7.2053507612D — 10)
are given by

2.500D - 13 2.49999999999795810D — 13
—2.423D - 25 7.20937266233088540D — 25
—1.522D - 27 —9.64763467748850800D — 25

5.679D — 13 5.67931034483715540D — 13

5.679D — 13 5.67931034481278110D — 13
-3.000D — 13 —2.99999999999753350D — 13
—7.049D — 14 —7.07126793345685290D — 14

5.679D — 13 5.67931034482234760D — 13

1.818D — 13 1.81607077172520250D — 13
—7.049D — 14 —7.07126793345671350D — 14
—6.071D — 29 —1.26217744835361880D — 29

1.818D — 13 1.81607077172518920D — 13

1.031D — 13 1.03103448275862090D — 13

5.000D + 00 4.99999999997230570D + 00

o= 5.000D + 00 T = 4.99999999998838440D + 00

5.000D + 00 5.00000000004383870D + 00

5.000D + 00 5.00000000000000000D + 00

.000D + 00 —5.43200633726060640D — 52
1.175D + 00 1.17854465551473990D + 00
5.000D + 00 4.99999999999589040.D + 00
.000D + 00 6.06471004166420880D — 59

1.012D - 15 3.49073780770501550D — 11

1.175D + 00 1.17854465557611880D + 00

1.175D + 00 1.17854465554542930D + 00
—2.500D + 00 —2.50000000000000000D + 00
—5.740D — 42 —7.40659401174118060D — 05

.000D + 00 —7.83789956664430850D — 12

1.113D — 14 7.40659263235377980D — 05

—1.138D — 14 1.09597363218609600D — 11

As we expected according to [19], only z26 and xg, i.e. the currents through

V1 and Vpp, changed considerably.

24




8 Conclusion

Under weak assumptions a method has been proposed to choose suitable equa-
tions of an index—2 DAE, whose differentiation leads to an index reduction.
Based on this result, a numerical algorithm to compute consistent initial val-
ues has been developed. Conditions that guarantee its successful application
have been carefully discussed. Nevertheless, there are still a few open problems.
What are the necessary assumptions to describe the hidden constraints with the
projectors related to the tractability-index? Is there a possibility to describe
them without these projectors? Which possibility to fix values for a subset of
variables whose cardinality is the so-called degree of freedom is the “best” for a
given problem? These questions will be handled in further investigations.
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