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Abstract

The overall topic of this thesis is the valuation of power generation assets under energy
and risk constraints. Our focus is on the modeling aspect i.e. to find the right balance
between accuracy and computational feasibility. We define a new not yet investigated
unit commitment problem that introduces an energy constraint to a thermal power plant.
We define a continuous stochastic dynamic program with a nested mixed integer pro-
gram (MIP). We introduce a fast implementation approach by replacing the MIP with an
efficient matrix calculation and use principal component analysis to reduce the number
of risk factors. We also provide a fast heuristic valuation approach for comparison. As
both models can only provide lower bounds of the asset value, we investigate the the-
ory of upper bounds for a proper validation of our power plant results. We review the
primal dual algorithm for swing options by Meinshausen and Hambly and in particular
clarify their notation and implementation. Then we provide an extension for swing op-
tions with multiple exercises at the same stage that we developed together with Prof.
Bender, University of Braunschweig. We outline Prof. Bender’s proof and describe the
implementation in detail. Finally we provide a risk analysis for our thermal power plant.
In particular we investigate strategies to reduce spot price risk to which power plants are
significantly exposed. First, we focus on the measurement of spot price risk and propose
three appropriate risk figures (Forward delta as opposed to Futures delta, synthetic spot
delta and Earnings-at-Risk) and illustrate their application using a business case. Second
we suggest risk mitigation strategies for both periods, before and in delivery. The latter
tries to alter the dispatch policy i.e. pick less risky hours and accept a (desirably only
slightly) smaller return. We introduce a benchmark that weighs risk versus return and
that we will call EaR-efficient option value. We propose a mitigation strategy for this
benchmark that is based on quantile regression. It defines a price interval for executing
an individual swing right and is therefore very well suited for real world applications. In
case of an American option we are able to show EaR-efficiency of our strategy in partic-
ular for a changing risk profile of the underlying price (altering volatility). Finally, we
investigate hedging strategies before the delivery period as a function of the maximum
available energy. In particular, we look at a hedge for the spot price risk of the power
plant using a swing option. We propose a heuristic based on our synthetic spot deltas to
find the relevant parameters of the swing option (number of swing rights and swing size)
for a given upper generation amount.
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Zusammenfassung

Wir betrachten die Einsatzplanung (Unit Commitment Problem) für ein thermisches
Kraftwerk mit zusätzlicher Energienebenbedingung. Dazu definieren wir ein stochastisches
dynamisches Programm (SDP)mit stetigem Zustandsraum und integriertem gemischt-
ganzzahligem Programm (MIP). Wir stellen einen effizienten Algorithmus vor zur Lösung
des MIP über eine Matrixmultiplikation und verwenden eine Hauptkomponentenanalyse
zur Reduzierung der Dimension des Preisvektors. Außerdem liefern wir zum Vergleich
des SDP eine vereinfachte Regel zur Energieallokation. Zur Beurteilung der Güte der Er-
gebnisse betrachten wir als nächstes obere Grenzen. Für eine vereinfachte Modellierung
des Kraftwerks als Swing Option mit Mehrfachausübung auf derselben Stufe bestimmen
wir formal eine solche obere Grenze. Abschließend untersuchen wir Strategien zur Ver-
meidung des Spotpreisrisikos, dem das Kraftwerk aufgrund der Nichtspeicherbarkeit von
Strom besonders ausgesetzt ist. Zunächst konzentrieren wir uns auf die Messung des Spot-
preisrisikos und stellen drei neue Maße vor (Forward Delta, Synthetisches Spot Delta und
Earnings-at-Risk). Danach prs̈entieren wir Strategien zur Risikoreduzierung vor und wäh-
rend der Lieferperiode. Im zweiten Fall wird versucht, durch einen neuen Produktionsplan
das Risiko mehr als den Gewinn zu senken. Wir schlagen dazu einen Referenzwert vor, den
wir EaR-effizienten Optionswert nennen und in eine neue Erzeugungspolitik basierend auf
Quantil-Regression einfließt. Die Politik beschreibt ein Preisband innerhalb dessen ein be-
obachteter Preis zur Ausübung eines Swing-Rechts führt. Für den Fall der amerikanischen
Option können wir EaR-Effizienz mit dieser Strategie nachweisen. Abschließend betrach-
ten wir die Absicherung des Kraftwerks vor der Lieferung durch gezielten Verkauf einer
Swing Option. Wir stellen eine Heuristik basierend auf unserem synthetischen Spot Delta
vor, um Swinghöhe und -anzahl effizient zu finden.
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1. Introduction

The main objective of this thesis is the development of models and the implementation of
related algorithms for the valuation and risk management of thermal power plants under
energy constraints. Different to the long term valuation we are not interested in the investment
of a new power plant that would need to take into account construction costs and the long
term evolution of prices and exogenous factors like political and environmental implications or
the impact of increasing deregulation. Instead we want to focus on existing power plants and
assess their profit and loss for a regular balance sheet period i.e. a year. For this purpose we
are rather interested in the operations of a power plant and want to find the best generation
schedule that maximizes the profit, but at the same time keeps potential losses small.
We define a new not yet investigated unit commitment problem that introduces an energy

constraint to a thermal power plant. Energy constraints are well-known in context of hydro
plants where the water reservoir can be translated into an energy constraint. In the last three
to five years green energy initiatives like CO2 certificate trading and installation of large wind
mill parks implicitly impose energy constraints on thermal power plants as well. Wind en-
ergy varies heavily with weather conditions and therefore causes imbalances in the grid that
need to be compensated by so called spinning reserve energy. Power plant owners are legally
obliged to withhold this extra energy or buy it from another utility. Both, the pricing of
CO2 allowances and spinning reserve energy requires the calculation of the marginal energy
cost of a power plant and thus entail an energy constraint in related valuation models. From
a technical perspective the dispatch decision of a thermal power plant with known fuel and
electricity price is a mixed integer problem (MIP). Integer variables are required to model
different running modes (start-up, shut-down, cooling, running, ...). Integer problems, how-
ever, are computationally expensive, in particular in conjunction with a risk analysis like the
calculation of the profit and loss distribution of the generation schedule which requires multi-
ple recalculations and hence re-optimizations for different price scenarios. An energy variable
additionally expands the decision space and explains why this type of unit commitment prob-
lem was not yet investigated. We deliberately decided to use a real world power plant profile
for our investigation as we did not want to compromise on the numerical complexity.
Our basic framework is stochastic dynamic programming in conjunction with Monte-Carlo

regression by Longstaff and Schwartz (see section 2.1). This type of model was investigated
by Meinshausen and Hambly [50] in context of swing options. Swing options are the simplest
representation of a power plant with energy constraints. They are basically American options
with multiple exercises (swings) for a predefined period (delivery period) and thus their total
exercise profile resembles a dispatch schedule. We tailor the Meinshausen and Hambly model
to our power plant by first moving from an hourly to a daily energy allocation (decision stage)
reflecting more appropriately the real world information flow (the next 24 hourly prices are
usually traded on the day ahead market). We replace the original single price variable by
a vector of 24 correlated hourly price processes. Running the Longstaff-Schwarz regression
on the full price vector is numerically infeasible and requires to preprocess the price vector
first. Therefore we investigate algorithms to reduce the price dimension and in particular
apply principal component analysis (PCA). Indeed we find a compact representation of the
vector by a single factor (see Table 4.5). As a second modification to the basic model, we
introduce a nested mixed integer problem to compute the dispatch schedule within each day

1



CHAPTER 1. INTRODUCTION

for a given price vector. A fast algorithm for the MIP is crucial for the overall performance of
the asset valuation as it has to run for each price scenario separately. We are able to reduce
the MIP to a simple matrix multiplication (see section 4.3.1 and 4.4.1) which significantly
reduces the computation time (up to 25 times faster). The core idea is the separation of
the hourly dispatch schedule into its on/off sequence plus the actual volume profile on top
of it. This interpretation helps us to further simplify the stochastic program by considering
only the relevant schedule candidates for the valuation (see Table 4.6). This concept even
allows for a third and final modification of the basic model to a continuous stochastic dynamic
program despite the formal integer constraints for the on- and off-times of the power plant
(see equation 4.47). We compare our results with an upper bound calculation based on full
price information (deterministic dynamic programming) and a heuristic with a simplified
rule for the daily energy allocation that does not require any estimation of the continuation
value (see equation 4.71). The heuristic imposes a higher/less likely exercise price the smaller
the remaining available energy amount becomes. The heuristic reveals a good performance
compared to the stochastic and deterministic model (see Figure 4.21) in case of long on- and
off-times, while the stochastic model prevails for shorter on- and off-times (see Figure 4.22).
The comparison of the three option values reveals the lack of a benchmark/reference value

for a proper model validation and motivated us to investigate the theory of upper bounds.
The current literature does not provide theoretical results for real options that go beyond
American option like contracts. Therefore we reduce the complexity of our power plant
model back to a swing option i.e. our basic model by Meinshausen and Hambly for which
the two authors presented also an upper value. However, the notation in their paper is
incomplete and therefore partially misleading. For this reason, we rephrase their main result
and in particular specify their index definition more precisely which is critical to the entire
algorithm (see equation 2.30). We go through the algorithm step by step and stress potential
pitfalls (see equation 2.35 to 2.38). Next, we move one step towards our actual power plant
model. Recall that we defined daily rather than hourly decision stages. Generating power on
several hours during the same day is similar to exercising an option multiple times. For this
reason we investigate a swing option with multiple exercises at the same stage. Together with
Prof. Bender (University of Braunschweig) who provides the formal proof [8] we work out an
extension of the Meinshausen and Hambly result (see equation 2.43). This thesis focuses on
the implementation aspect and describes the algorithm in detail (see equation 2.50 to 2.53).
We show that the gap between lower and upper bounds of multiple vs. single exercises is
similar in size (see Table 2.4 and Figure 2.5).
Besides the focus on the modeling and implementation aspect of thermal power plants with

energy constraints and the investigation into their upper bounds, this thesis also contributes
new insights into the important topic of spot price risk in electricity markets. A generation
schedule with its hourly changing volume profile cannot be entirely hedged on the Future
market where only block peak and base contracts (identical hourly capacity throughout the
entire delivery period of the same price band) are traded. Individual hourly volume deviations
from the peak and base energy need to be bought and sold on the day ahead market in order
to meet the actual production/demand. This spot market, however, reveals a high volatility
and spikes due to sudden power plant outages and changes in weather. In particular the
introduction of further wind energy to the overall generation mix will increase the volatility
of the spot market. Therefore the management of the spot price risk to hedge the asset
values will draw more and more attention in the future. We start our analysis with the
construction of an hourly price Forward curve that anticipates the spot price behavior for
a longer future time period. Based on this hourly curve we propose three new spot price
risk measures: Forward delta, synthetic spot price delta and Earnings-at-Risk (see section
3.3.2, 3.3.4 and 3.54).They deliberately relate to the two most accepted and widely used risk
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measures i.e. delta (first derivative of the option value with respect to the underlying) and
Value-at-Risk (quantile of the profit and loss distribution) as we want these new figures to
be suitable for real world applications. The latter will be motivated with a business case in
section 3.3.6 where we impose a risk fee (spread) on the real option value to compensate the
potential replacement risk i.e. the cost for delivering very high prices (option seller) or the loss
by exercising low prices (option buyer). The example proposes this spread-adjusted option
premium as a reference price for an internal pricing scheme when transferring risk from/to a
trading unit within a utility company. The trading entity of a large utility corporation usually
acts as an interface between the outside world (retail and trading markets) and the internal
units (generation) and especially serves as a risk hub within the entire organization. Internal
prices are therefore important to quantify and track the risk transfer within the corporation.
In addition to the mere measurement of spot price risk we also investigate exercise strategies

that should prevent a large exposure to this type of risk. We differentiate between strate-
gies within and before the generation period. Strategies before delivery look for appropriate
hedging portfolios while strategies within delivery try to alter the dispatch policy (pick less
volatile hours). The latter will automatically entail a reduction in expected profits i.e. option
value. We therefore propose an adequate relation of risk vs. return that we call EaR-efficient
option value (see section 3.4.1). The core idea is that an efficient strategy in our sense should
overcompensate the potential loss in profit with savings in the replacement risk fee as intro-
duced in our business case. For this investigation we need to reduce the complexity of the
model and simplify our power plant model again to a swing option contract. We provide a
heuristic that meets our benchmark in case of an American option, in particular for a varying
risk profile of the underlying price where a risk sensitive policy becomes most beneficial (see
Table 3.14). Our heuristic is based on quantile regression (see equation 3.73) as it fits very
well into our Longstaff-Schwarz regression framework. We also investigate the heuristic for
swing options (see equation 3.84) and show that it meets our benchmark at least in relative
terms (see Table 3.15).
We also investigate appropriate hedging strategies before delivery where we will focus again

on the complete power plant model. In particular we look at a hedge portfolio of our power
plant and a swing option and are interested in the number of swing rights and swing size of the
swing option (see equation 4.81). We present a heuristic that is based on our synthetic spot
delta definition to approximate optimal swing option parameters (see equation 4.88). We are
able to show that the heuristic provides a hedge whose remaining risk is only slightly higher,
but is computationally less expensive than the optimal hedge that we found by enumerating
across all swing option parameters (see Table 4.12).
This thesis is organized in three main chapters. The first chapter introduces our basic

valuation framework that we use throughout the thesis and covers the upper bound theory
for the swing option. The second chapter contains our risk management analysis including the
price forward curve design, the definition of our three new risk measures, the related notion of
EaR efficiency illustrated with the aforementioned business case and the investigation of risk
adjusted exercise policies. The last and largest chapter focuses on the actual modeling of our
thermal power plant with energy constraint and the hedge analysis using swing options. Each
chapter starts with a review of relevant papers, then introduces the theoretical framework
and presents our new concepts before it focus on the numerical results. We conclude each
chapter with an outlook on further research. The Appendix provides further numerical results
and illustrations as well as a commented list of selected code sections that explain specific
implementation aspects of the individual algorithms. The complete source code can be found
on the CD attached to the hard covered version of this thesis.
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2. Upper Bounds for Swing Options

In this first chapter we want to investigate upper bounds for the value of power generation
assets as power plants are called in a real option framework. The valuation of power plants
is usually complex due to their operational constraints. Therefore most models only provide
a lower bound for the true value. For this reason we have to compromise on the technical
restrictions of a power plant and can only start with a fairly simple representation of a
generation asset as a swing option. We will give a detailed description of a swing option in
the following section, but already want to emphasize two main properties that qualify swing
options for our analysis. First, they are very similar to American options which allows us
to start our investigation from this well known option framework. Second, they are a first
approach to model operational constraints as their ability for multiple exercises throughout a
specific time period reflects the power plant’s flexibility in generating electricity for a certain
delivery period. In particular the number of exercises allows to impose an upper energy bound
and energy restrictions for thermal power plants are the overall topic of this thesis.

Table 2.1.: Select Papers for Lower Bound Valuation Models

The investigation of lower bounds for American style contingent claims has a long tradi-
tion starting from Cox’s et al. binomial lattices [20]. He suggested a solution scheme based
on stochastic dynamic programming (SDP) which is still the most popular approach to find
optimal stopping times. Kaminski [40] was one of the first who extended the idea for multiple
exercise rights creating a forest of lattices. Thus, each exercise right is represented by a sepa-
rate tree and the backward iteration moves through this forest to find the option value. Later
Jaillet et al. [37] specifically investigated electricity contracts and defined mean-reverting trees
that are more appropriate for electricity prices as we will later see in section 2.1. Especially
for underlyings with higher dimension the tree approach becomes infeasible and Monte-Carlo
simulation helps to discretize the price domain more easily. The description of the transition
probability, however, becomes more difficult. One approach is quantization. Hence, the price
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domain will be discretized into buckets with an associated bucket representative and bucket
probability usually calculated via the average and frequency of the related cash flows falling
into the specific bucket. The bucket design (grid size and number) is a trade off between
accuracy and computational cost. Bally et al. [4] develop a probabilistic method to find
the right grid size and investigate convergence of the option values with respect to the grid
structure. Glasserman and Broadie [13] investigate a mesh method to describe the transition
probabilities. Hambly et al. [32] calibrate the grid to electricity Forward prices and value
electricity swing options. By far the most popular combination of SDP’s backward iteration
with forward based MC simulation is the regression technique by Carriere [16], Tsitsiklis and
Van Roy [63], and Longstaff and Schwarz [47]. This is also the approach that we will mainly
use in this thesis and that will be described in the next section. Glasserman and Yu [30]
refer to the Longstaff-Schwarz algorithm as "Regression Later" indicating that the regression
is based on the next stage information whereas they investigate "Regression Now" that uses
the information of the current stage as an input for the regression. Tompaidis and Yang
[61] provide a good overview of relevant regression methods in context of backward dynamic
programming.
Alternatives to dynamic programming try to approximate the exercise boundary directly i.e.

the price level that indicates an option exercise when exceeded by the current price. Dahlgren
[21] looks at a continuous model and tries to find those thresholds by solving variational
inequalities in context of continuous stochastic impulse control. The method does not require
Monte Carlo simulation and therefore provides stable results. On the other hand it is not
designed for higher dimensional underlyings (Dahlgren uses a single risk factor). Ibanez [36]
investigates multidimensional options and therefore relies again on Monte-Carlo simulation.
He iteratively solves equilibrium conditions based on simulated sample points to find the
exercise boundary along the entire holding period. Kolodko and Schoenmakers [46] provide
an iterative method that they call policy improvement which is also based on Monte-Carlo
simulation. However, compared to dynamic programming fewer calculations of the conditional
expectation are required. Bender and Schoenmakers [9] extend the approach for multiple
exercise rights.

Table 2.2.: Selected Papers for Upper Bound Valuation Models

A straightforward procedure to compute upper bounds is the valuation with full informa-
tion i.e., loosely speaking, all future outcomes of the random variable are known. We will also
rely on this procedure for our more complex models in chapter 2 and 3. The reason is that the
theory of upper bounds for real options is still at an early stage mainly focusing on American
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options as the basis theory for more exotic options. Rogers [57] developed a dual approach
to find an upper value for an American option and Haugh and Kogan [33] independently de-
veloped a similar method for Bermudan options. They reformulate the maximization of the
expected cash flows in terms of a minimization problem. Rogers’ duality is called the additive
method as it relies on the Doob-Meyer decomposition that separates the cash flow process of
the Snell Envelope into a sum of two processes involving a martingale. We will describe the
idea in detail later in this chapter. Jamshidian [38] instead presents a multiplicative decom-
position that describes the cash flow in terms of a domineering numeraire. Consequently, the
maximum of a ratio rather than a sum has to be computed. Jamshidian also needs to address
specifically the issue of potential zero numeraires and therefore provides two version of his
formula for positive and semi-positive options. Joshi [39] rephrases both methods in terms of
a hedging problem where the martingale and the new numeraire respectively serve as a hedge
portfolio. We will come back to this idea later in this chapter. Glasserman and Chen [18]
examined whether the additive or multiplicative method produces better upper bounds with
no clear answer. We will focus on the additive method and in particular we will look at an
implementation algorithm by Andersen and Broadie [2] that makes use of the optimal policy
for the lower bound calculation and is therefore called the primal-dual algorithm. We will see
that the main challenge lies in the computational complexity of the algorithm as the estimator
for the martingale requires nested Monte-Carlo simulations. Broadie and Cao [12] therefore
only recently presented further improvements to the algorithm like sub optimality checking
and collecting paths. The latter allows to skip the computation for selected paths (boundary
distance grouping). Bender, Schoenmakers and Belomestny [6] show for a Bermudian option
that in case of Brownian motion for the price process the martingale can be estimated without
nested simulations. Belomestny, Milstein and Spokoiny [7] examine yet another description
of the cash flow. They use the Riesz decomposition which allows to separate an American
option into a European part plus a consumption process. In this way they can construct
iteratively a sequence of increasing lower and decreasing upper bounds. However, similar to
the primal-dual algorithm each iteration requires a rather expensive calculation.
Meinshausen and Hambly [50] extended Rogers’ dual result for the case of swing options.

Bender and Wang [10] presented another derivation of the same result that will help us to
define the upper bound for yet another extension of the swing option. We will call it swing
option with volume constraint. It allows for multiple exercises at the same stage. Before we
look at this kind of option in section 4 we review the lower bound valuation for a swing option
in section 1. In section 2 we will look at the upper bound for American options and describe
Rogers’ approach in detail. Section 3 will focus on the upper bound for the regular swing
option. Finally we provide numerical results in section 5 and will conclude this chapter in
section 6 with an outlook for further research.

2.1. Basic Model

Before we start with the upper bound models, we will first present a lower bound value for we
will later see that the lower bound is an input to the upper bound algorithm. Technically a
swing option is a generalization of an American and Bermudian option. The option holder has
the right to buy (call) or sell (put) the underlying for a predefined price (strike) at predefined
dates. The main difference to a Bermudian option is the right for multiple exercises (each at
a different date). The term swing refers to the option’s origin in the energy industry. The
swing option is an instrument to describe the generation flexibility of a power plant or storage
capability of a gas storage facility. Altering or swinging the electricity output (the underlying
of the swing option) from a low or zero level to a max level is the technical interpretation of
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an option exercise. In context of a power plant these exercise decisions have to be made on an
hourly basis resulting in a daily production schedule. Thus, the swing option is a simplified
model of a power plant. The contract is usually restricted to a certain maximum energy
production. In the simplest version the total energy production is a multiple of a single
exercise. Then, the maximum energy constraint of the power plant for a specific delivery
period translates directly to a maximum number of exercise rights.
We will look at a swing option with single exercise per hour first. We choose the valuation

model by Meinshausen and Hambly [50] and make it our basic model not only for this chapter,
but this entire thesis. This is in particular true for all variable declarations. Multiple exercise
rights are labeled with n ∈ {1, ..., N}. The exercise period is t = 0, ..., T and we calculate
the option value at t = 0 i.e. the beginning of the delivery period where the random price
X0 = x0 is known. Hence, we have T+1 possible exercise times. The payoff function Zt =
(Xt −K)+ = max(Xt −K, 0) is the classical contingent claim of a call option with strike K.
The underlying price process {Xt}t is a Markov chain with discrete time steps that generates
a filtered probability space (Ω,F , {Ft}Tt=0,P). We will write E for expectation with respect to
P and E(·|Ft) for the conditional expectation at time t. Throughout this entire thesis we will
ignore discounting. First, we describe the option value in terms of a stopping problem where
τk := τk(t, n) is the k-th stopping time in the discrete time period {t, t+ 1, ..., T}∪∞ that we
forecast with known price information up to t with n exercise rights still available. As not all
swings need to be exercised we differ between the first l swings that will be actually exercised.
If l = n or l = 0 then all respectively no swings will be taken otherwise all l + 1, ..., n swings
will not be executed and therefore we set τk := ∞ for k > l. Hence, we define the set of
admissible policies as finite sequences of stopping times πt(n)

Πt(n) =
{

(τn, ..., τ1)
∣∣∣∣∣∀k = 1, ..., l 0 < l ≤ n : τk < τk−1 < ... < τ1, τk ∈ {t, t+ 1, ..., T},

∀k = l + 1, l + 2, ..., n 0 ≤ l < n : τk :=∞

}
,

(2.1)

We additionally set Z∞ := 0. We denote with π∗t (n) = (τ∗n(t, n), ..., τ∗1 (t, n)) ∈ Πt(n) the
intermediate optimal sequence of stopping times that maximizes the expected profit over all
sequences of stopping times for the remaining exercise period [t, t+1,..,T] given the current
price Xt = xt, i.e. the solution of

C∗t (xt, n) = sup
πt(n)∈Πt(n)

E(πt(n))
[
n∑
k=1

Zτk(t,n) |Xt = xt

]
, (2.2)

where E(πt(n))[...] stands for the expectation under the Markov chain that follows the policy
πt(n)). In particular we denote with n = N and t = 0, i.e. π0(N), the sequence of stopping
times from the beginning of the exercise period with N exercise rights available. Then π∗0 =
(τ∗N (0, N), ..., τ∗1 (0, N)) ∈ Π0(N) is the optimal sequence of stopping times that maximizes
the expected profit for the entire exercise period

C∗0 (x0, N) = sup
π0(N)∈Π0(N)

E(π0(N))
[
N∑
k=1

Zτk(0,N) |X0 = x0

]
. (2.3)

Note the descending order of stopping times in terms of the exercise rights which Hambly et
al. find via a Bellman iteration. The corresponding backward iteration motivates to count
the remaining rather than the used number of exercise rights. Therefore the stopping times
are defined in the same declining order and stand for the second dimension of the state space.
The first dimension of the state space is the price Xt. The value function C∗t (x, n) is the value

8



CHAPTER 2. UPPER BOUNDS FOR SWING OPTIONS

of an option that would be newly issued at t with n remaining exercises up to T and would
observe the current price x. The value function can be calculated via the Bellman equation

C∗t (x, n) = max
a∈A(n)

{
Zt(x, a) + E

[
C∗t+1(Xt+1, n− a)|Xt = x

]}
t = 0, ..., T

,
(2.4)

where C∗T+1(XT+1, n) := 0 for n=1,...,N. The corresponding dynamic program is defined as
follows

state : (x, n) x: current price, n: remaining number of swings
action : a ∈ A(n) = {0,min(n, 1)} exercise yes (1) or no (0)

transition : {x, n} −→ {y, n− a}
marginal profit : Zt(x, a) := (x−K)+a

value function : C∗t (x, n)
continuation value : Q∗t+1(x, n) := E

[
C∗t+1(Xt+1, n)|Xt = x

]
,

(2.5)

where x, y are realizations of the random price variables Xt, Xt+1. Xt and Xt+1 are linked
by the transition law (see equation 2.7). Note that the continuation value Q∗t+1(x, n) is the
expected option value at the next stage t + 1 conditional on the current price x. For the
remaining part of this entire thesis we introduce a more compact description of the dynamic
program and rewrite the previous two equations as

C∗t (Xt, n) = max
a∈A(n)

{
Zt(Xt, a) + E

[
C∗t+1(Xt+1, n− a)|Xt

]}
t = 0, ..., T

state : (Xt, n) Xt: current price, n: remaining number of swings
action : a ∈ A(n) = {0,min(n, 1)} exercise yes (1) or no (0)

transition : {Xt, n} −→ {Xt+1, n− a}
marginal profit : Zt(Xt, a) := (Xt −K)+a

value function : C∗t (Xt, n)
continuation value : Q∗t+1(Xt, n) := E

[
C∗t+1(Xt+1, n)|Xt

]
.

(2.6)

We can derive the relevant transition probabilities required for computing the conditional
expectation of the continuation value from the dynamic of the price process. Hambly et al.
define the log price as a mean-reverting process, t=0,...,T

lnXt+1 = (1− κ)(lnXt − µ)∆t+ µ∆t+ σεt εt ∼ N(0, 1), (2.7)

where {εt}t are independent. We apply a discrete model with ∆t = 1 and receive the distri-
bution lnXt+1 given Xt as if Xt = x

lnXt+1 ∼ N
(
(1− κ)(lnXt − µ) + µ, σ2

)
. (2.8)

Formally the backward iteration of a dynamic program contradicts with the Forward iteration
of a Monte-Carlo simulation. Longstaff and Schwarz [47] address this conflict and in particular
discovered that for numerical efficiency rather than approximating the value function over
the entire domain it is sufficient to approximate the continuation value only. They do so by
relating the continuation value at time t to the corresponding accumulated cash flows (ACF)
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V ∗t (Xt, n) :=
n∑
k=1

Zτ∗
k

(t,n), (2.9)

where τ∗k (t, n) ∈ π∗t (n) (see context of equation 2.1). To be precise Longstaff and Schwarz
assume that an individual realization of the continuation value Qt+1(xit, n) is close to the
average of all ACFs V ∗t+1(xjt+1, n) with realized prices xjt+1 generated from xit according to
equation 2.71

Q∗t+1(xit, n) ≈ 1
J

J∑
j=1

V ∗t+1(xjt+1, n). (2.10)

The numerical procedure can only approximate the optimal continuation value Q∗t by Yt and
ACF V ∗t by V t (see following definitions). The continuation value will be approximated with
a linear combination of basis functions

Yt+1(Xt, n) :=
R∑
r=1

αr,n,tΨr,n(Xt) ≈ Q∗t+1(Xt, n). (2.11)

The relevant coefficients αr,n,t for the basis functions Ψr,n will be computed by regressing the
pairs (Xt, V t+1(Xt+1, n)). Note that at each stage t the regression needs to be performed N
times (for each exercise opportunity n = 1, ..., N separately). Once, we have approximated
the continuation value with a functional description Yt+1 we are able to approximate the best
action â∗(Xt, n) which we then use to update V t from V t+1

â∗ := â∗(Xt, n) := arg max
a∈A(n)

{Zt(Xt, a) + Yt+1(Xt, n− a)}

V t(Xt, n) := Zt(Xt, â
∗) + V t+1(Xt+1, n− â∗).

(2.12)

Then we can approximate the actual option value C∗0 (x0, N) with the average over i = 1, ..., I
realizations of the approximated ACF at t = 0

C0(x0, N) ≈ 1
I

I∑
i=1

vi0(N). (2.13)

Let us briefly summarize the backward algorithm for the approximation:

1. Generate i = 1, ..., I price scenarios xit with t = 1,..., T starting at x0.

2. Start at last stage T and initialize all N ACFs with the immediate payoff V T (XT , 1) =
... = V T (XT , N) = ZT = (XT −K)+.

3. For t = T-1,...,1

a) Run regressions on the pairs (Xt, V t+1(Xt+1, n)), that is one regression for each
number of exercise rights n =1,...,Nt+1 with Nt+1 = min{T−t,N} separately. This
will lead to Nt+1 function approximations of the continuation value Yt+1(Xt, n)
with n = 1,.., Nt+1. Set Yt+1(Xt, n) := Yt+1(Xt, Nt+1) for n = Nt+1 +1,...,N.

1Throughout this entire thesis we will represent realizations of random variables with small letters plus an
exponent i indicating the i-th individual scenario e.g. xit. For function values on realized random variables
we will additionally skip the random parameter e.g. vit(...) := Vt(xit, ...).
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b) Store the coefficients αr,n,t with n = 1,..., Nt+1. They implicitly define our exercise
policy for the forward iteration at step t.

c) Find the best action a according to equation 2.12 and compute the ACF of the
current stage V t(Xt, n) for n = 1,...,Nt+1+1 . Set V t(Xt, n) := V t(Xt, Nt+1 + 1)
for n =Nt+1+2,...,N.

4. Finally we receive i = 1, ..., I ACFs vi0(n) for each of the n = 1, ..., N0 exercise rights.
Averaging the scenarios for each right n according to equation 2.13 returns N swing
option values C0(x0, n).

The coefficients αr,n,t are necessary for the forward iteration. They allow us to approximate
the continuation value for any new set of prices on every stage t and any number of remaining
exercises n. We can also define the marginal continuation value

∆Q∗t+1(Xt, n) := Q∗t+1(Xt, n)−Q∗t+1(Xt, n− 1)
∆Yt+1(Xt, n) := Yt+1(Xt, n)− Yt+1(Xt, n− 1),

(2.14)

which describes the expected additional option value of the n-th exercise right in t+ 1 given
today’s price Xt. Recall that the approximated continuation value ∆Yt+1(Xt, n) is our ve-
hicle to find the next optimal exercise time τn(t + 1, n). Therefore we can use the marginal
continuation value to define an indicator function that tells us at each stage t whether to
exercise the n-th option or not

lt(Xt, n) :=
{

0 Zt(Xt, 1) < ∆Yt+1(Xt, n)
1 Zt(Xt, 1) ≥ ∆Yt+1(Xt, n).

(2.15)

As our value function is monotonous due to the structure of the Bellman iteration we can
directly derive a threshold price Xt,n if the nature of our basis functions Ψr,n allows to solve
Yt+1 for Xt

lt(Xt, n) :=
{

0 Xt < Xt,n

1 Xt ≥ Xt,n.
(2.16)

In short, the forward iteration runs as follows

1. Generate a new set of I price paths starting from x0 and ending at final exercise date
T .

2. For each path i

a) Find the earliest stage t where l(xit, N) indicates exercise. This is τ iN . Store cash
flow ziτN .

b) Continue at t := τN +1 and look for the earliest stage t where l(xit, N−1) indicates
exercise. This is τ iN−1.

c) Repeat step (2.b) until you reached T or all remaining options n = 1,..., N-2 are
exercised.

d) Sum the cash flows ziτn along each path i for all exercised options n = 1,...,N. This
is vi0(N).

3. Average all vi0(N) to retrieve C0(x0, N).
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As the forward iteration relies on the policy approximation of the backward calculation it can
only provide a lower bound. We need to accept that some of our approximated optimal actions
â∗ might be wrong (i.e. â∗ says exercise, but the true a∗ does not or vice versa) and thus
exercise at less valuable hours. Still, the forward iteration can be used to quickly compute
a new option value for a small change in the initial start price x0. Larger deviations of the
start price x0 require a new approximation of the exercise policy and hence a new run of the
backward iteration. The exact interval around x0 where the initial policy still approximately
holds true mainly dependents on the underlying price process. The investigation of this
interval in our specific situation would be a topic for further research.

2.2. Upper Bound for American options

In order to compare different valuation schemes and in particular to assess their accuracy an
upper bound as a benchmark is required. Usually the straightforward approach is to allow
for perfect foresight. Then all price scenarios are known beforehand and we can translate
the stochastic into a deterministic valuation scheme. The resulting option value is an upper
bound, but it could certainly be significantly above the true option value. Therefore we
look for models that produce tighter upper bounds. We start our investigation for American
options first and describe Rogers’ duality approach [57] with Andersen and Broadie’s [2]
specific implementation.
The pricing problem of a single exercise right is a special case of our basic model in equation

2.6. We only need to reduce the number of exercise rights to 1 and can write the initial
stopping problem

Primal: C∗0 (x0, 1) = sup
τ

E0 [Zτ ] , (2.17)

with τ := τ1(0, 1) ∈ {0, 1, ..., T} and E0[·] := E[·|X0 = x0]. Haugh and Kogan [33] and Rogers
[57] independently proposed a dual formulation of this lower bound model that at the same
time serves as an upper bound. The definition requires the introduction of a martingale
process {Mt}t

Dual: C∗0 (x0, 1) = inf
{Mt}t∈M0

{
M0 + E0

[
max
t∈T

(Zt −Mt)
]}

, (2.18)

where M0 is the set of all martingales with M0 := C∗0 (x0, 1) and T := {0, .., T}. Comparing
equation 2.17 and 2.18 we can see that a martingale process {Mt}t will be introduced within
the expectation and the order of taking the expectation and finding the supremum is switched
around. Taking the expectation of the maxima resembles a situation of perfect foresight/ full
information and provides an intuitive explanation that equation 2.18 is an upper bound. The
dual problem can be interpreted as a lookback option with the option payoff Zt being the
state variable and the martingaleMt being the floating strike. Joshi [39] interprets the primal
problem in equation 2.17 as the view of an option buyer. He needs to find the supremum
of the cash flow Zτ over all stopping times since he can choose when to exercise. The dual
problem, on the other hand, represents the hedging situation of an option seller. We explained
already that, when ignoring the martingale Mt for a moment, then the right side in equation
2.18 describes the situation of maximal foresight. This is the worst case scenario for the
option seller and would mean that the buyer happens to exercise at the highest price which
has a non-zero probability if he picks an exercise right randomly. Now, Joshi looks at Mt

to be the value of a hedge portfolio consisting of the option itself and a bond. The seller
initially buys one unit of the option to be hedged (M0 = C∗0 (x0, 1)) and follows the optimal

12
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exercise strategy. If the buyer does so too, then the hedge will perfectly offset the buyer’s
option. But if the buyer does not follow the optimal exercise strategy, then the seller is always
ahead. If the buyer exercises and the seller does not, then the option value is greater than
the exercise value and the seller makes extra money and puts this money into a bond. If the
seller exercises and the buyer does not, then the seller can buy a new unexercised option at a
lower price. Hence the hedge portfolio Mt is always larger or equal to the current cash flow
Zt which explains that equation 2.18 holds true. Haugh and Kogan provide a different access
to their equation. They show that the upper bound will exactly match the option value if Mt

is set to the martingale component of the optimal value function

C∗t (Xt, 1) = M∗t −A∗t , (2.19)

where A∗t is an increasing process following the Doob-Meyer decomposition. Then A∗0 = 0
and the optimal martingale M∗0 = C∗0 (x0, 1). Inserted into equation 2.18 we receive

C∗0 (x0, 1) ≤ C∗0 (x0, 1) + E0

[
max
t∈T

(Zt − C∗t (Xt, 1)−A∗t )
]
≤ C∗0 (x0, 1), (2.20)

where the additional inequality on the right side holds true because C∗t (Xt, 1) ≥ Zt and
A∗t ≥ 0. In practice we usually do not know the true value function process C∗t (Xt, 1).
Therefore we need to approximate M∗t via a good approximation Ĉt(Xt, 1). This leads us
back to our lower bound calculation. To clearly separate lower from upper bound values we
will use an overline, e.g. C0(x0, 1), to mark upper bound figures like we use an underline for
lower bound figures. We will use the corresponding M t of our lower bound calculation as our
best estimate for M∗t . Replacing the optimal option value C∗0 (x0, 1) with the lower bound
approximation C0(x0, 1) leads to the error D0 resulting from the approximated solution of
the dual problem

C0(x0, 1) := C0(x0, 1) + E0[max
t∈T

(Zt −M t)] = C0(x0, 1) +D0. (2.21)

Andersen and Broadie show that the martingale process {Mt}t := {M t}t can be iteratively
determined2

Mt =Mt−1 + Ct(Xt)−Qt(Xt−1)

Qt(Xt−1) :=
{
E[Ct(Xt)|Xt−1] lt−1(Xt−1) = 1
Ct−1(Xt−1) ≈ Yt(Xt−1) lt−1(Xt−1) = 0,

(2.22)

for t = 2, ..., T withM0 = C0(x0, 1) andM1 = C1(X1). Thus, the martingale is the cumulative
sum of value function differences at each stage. It is the difference between the individual value
function Ct(Xt) and the expected value function Qt(Xt−1) conditional on the previous stage.
Qt(Xt−1) has two different expressions dependent on whether the option was exercised at the
previous stage or not. If it was not (lt−1 = 0), then the value function of the previous stage
represents our expectation of the future exercise Qt(Xt−1) = Ct−1(Xt−1). If it was (lt−1 = 1),
then we need to simulate a situation where the option was not exercised at t−1 and estimate
the value of a new option that would be issued the next stage Qt := E[Ct(Xt)|Xt−1]. In
both cases we need to calculate the value function Ct(Xt) and Ct−1(Xt−1). Formally we
would need to apply the forward iteration from the previous section and would require to

2For the remaining part of this section we skip the underline for the martingale as in our context the term
martingale is always the specific martingale that relates to the lower bound approximation. We also
ignore the number of exercises as the American option by design only provides a single exercise right, i.e.
Ct(X1) := Ct(X1, 1), Yt+1(Xt) := Yt+1(Xt, 1), etc.

13
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scan the entire remaining time domain {t, ..., T} at every stage t and trajectory i until our
indicator function lt of equation 2.15 signals exercising. This is certainly too time consuming.
In particular if we consider that the calculation of the expectation in case of lt−1 = 1 can
only be approximated via a nested Monte Carlo loop starting from Xt−1. This additional
simulation at every stage and state requires a faster approximation of the lower bound value
Ct(Xt). We therefore only look at the cash flow of the current stage and compare it to our
approximated continuation value Yt+1(Xt). We interpret the latter as our best estimate for
the value of a future exercise from to to T3

cit ≈ max
{
zit, y

i
t+1

}
. (2.23)

In case of no exercise zit < yit+1, we approximate the lower bound value with the continuation
value cit−1 ≈ yit as indicated in equation 2.22. Likewise we estimate the conditional value
function E[Ct(Xt)|Xt−1]. Within a nested Monte-Carlo loop we will generate a new set of
prices x̃jt starting from xit−1 and calculate the value function as above. Then we will use the
sample mean to approximate the expectation

E[Ct(Xt)|Xt−1] ≈ 1
J

J∑
j=1

cjt . (2.24)

In this way we can reduce the nested price paths to a single time step. This certainly improves
the calculation time. In this way we can compute all martingales according to equation 2.22
and calculate the individual upper value functions ci0 whose average is our estimator for the
upper bound

ci0 = max
t∈T

(zit −mi
t)

C0(x0) ≈ 1
I

I∑
i=1

ci0.
(2.25)

In short, the algorithm for the upper bound of an American option runs as follows:

1. Generate I price paths starting from x0. For each price path i = 1, ..., I:

a) Set M0 = C0(x0) and m1 = ci1.

b) For each stage t = 2, ..., T :

i. Compute Ct(xit) = max{zit, yit+1} using our estimates αr,n,t for the continua-
tion value.

ii. If lit−1 = 0, then set qit−1 = cit−1, else

A. Generate another set of J prices X̃t starting from xit−1.

B. For each sub path x̃jt compute the value function cjt = max(zjt , y
j
t+1) by

again using our estimates αr,n,t.

C. Average these value functions to receive an estimator for E[Ct(Xt)|xit−1].

iii. Compute martingale mi
t according to equation 2.22.

c) Compute individual upper bounds ci0 = max{zit −mi
t}

3For the remaining part of this chapter we will abbreviate zit(·) := Zt(xit, ·), yit(·) := Yt(xit−1, ·) and cit(·) :=
Ct(xit, ·).
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2. Average all individual upper bounds according to equation 2.25 to receive an estimate
for the upper bound of the option value C0(x0).

Finally we should mention that due to the underlying Monte-Carlo simulation both numer-
ical procedures for the lower and upper bound cannot guarantee true lower and upper bounds
for all possible price paths. An unusual price path under the approximated optimal exercise
policy might return a supposedly lower bound that actually lies above and then consequently
the related upper bound will be below the optimal value. This is also true for all extensions
of this primal-dual method that we present in the upcoming sections.

2.3. Upper Bounds for Swing Options

So far, we looked at an upper bound for an option with a single exercise. In order to under-
stand the extension for multiple exercises we should think of the value contribution of every
extra exercise right to be similar to an additional American option value. Intuitively, we could
then apply Rogers’ duality on the marginal value of the n-th exercise right of a swing option

∆C∗t (n) := C∗t (Xt, n)− C∗t (Xt, n− 1). (2.26)

Meinshausen and Hambly [50] prove that this intuition is correct

∆C∗0 (n) = inf
π0(n−1)

inf
{Mt}t∈M0

{
M0 + E0

[
max

t∈T\{τn−1,...,τ1}
(Zt −Mt(n))

]}
, (2.27)

with T = {0, ..., T} and τk := τk(0, n − 1), k = n-1,...,1. Then {Mt(n)}t is the marginal
martingale process for the n-th exercise right. Note the definition of the domain space for
the maximization that only considers not yet exercised stages up to n-1. Accordingly, the
additionally introduced infimum is defined over all policies with n-1 exercise rights π0(n− 1)
(see also equation 2.1). Equation 2.27 does not only require the knowledge of the stopping
times τk(0, n−1), k = 1,...,n-1, but also of all marginal martingales in t = 1,...T and n = 1,...,
N. Meinshausen and Hambly derive that analogously to the American option it is again the
martingale component M∗t (n) of the optimal (marginal) value function ∆C∗t (n) that attains
the infimum. Furthermore the authors show that this martingale can be derived recursively
similar to the case of the American option. They present an extension of the Andersen and
Broadie iterative method in order to use again the lower bound approximation M t(n) and
∆Ct(n) as our best guess for M∗t and ∆C∗t (n). This leads to the duality gap ∆D0(n)

∆C0(n) := ∆C0(n) + E0[ max
t∈T\{τn−1,...,τ1}

(Zt −M t(n))] = ∆C0(n) + ∆D0(n), (2.28)

and thus to the upper bound value of the total swing option

C0(x0, N) =
N∑
n=1

∆C0(n). (2.29)

The decisive extension of the iteration in equation 2.22 is the introduction of the index k to
find the martingales Mt(n). Meinshausen and Hambly define k as the largest natural number
with t ≤ τk and 0 ≤ k < n. Recall that τk(0, n− 1) is the optimal stopping time of the k-th
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exercise right for a swing option with n− 1 (!) exercise rights available at t = 04

Mt(n) = Mt−1(n) + ∆Ct(Xt, k + 1)−∆Qt(Xt−1, k + 1)

∆Qt(Xt−1, k + 1) :=
{
E[∆Ct(Xt, k + 1)|Xt−1] lt−1(Xt−1, k + 1) = 1
∆Ct−1(Xt−1, k + 1) ≈ ∆Yt(Xt−1, k + 1) lt−1(Xt−1, k + 1) = 0

lt−1(Xt−1, k + 1) :=
{

1 Zt−1(Xt−1) ≥ ∆Yt(Xt−1, k + 1)
0 otherwise.

(2.30)

The definition of the iteration for computing the martingale process in conjunction with the
option exercise process lt is analogous to equation 2.22. It is even identical to equation 2.22
in case of n=1. Now it only applies for the marginal instead of the total figures. As the
authors do not elaborate the formulas and algorithm in detail, especially their sub indices
are not thoroughly applied and therefore cause confusion, we give a detailed description of
the method in the next paragraphs. In context of the current stage t, τk(0, n− 1) is the next
available stopping time from t onwards in the sequence of optimal stopping times according
to π0(n − 1) (see also equation 2.1). So, we do not look at the local policy πt(n − 1), but
always at the global one π0(n − 1). Also, the local maximum number of exercise rights n
during the marginal martingale calculation should not be confused with the global number
of exercise rights N of the entire swing option (see also discussion around Figure 2.4). These
martingales will then be used to calculate the expectation in equation 2.27 and henceforth
C0(x0, N). Note that Mt(n) is a random variable. Thus Mt(n) varies with every realized
path. We therefore rewrite the previous two equations in terms of realizations of the random
price variable and the approximation of the lower bound values with the help of our estimates
for the continuation value. For lt−1(Xt−1, k + 1) = 1, this is

mi
t(n) = mi

t−1(n) + cit(k + 1)− cit(k)− E[Ct(Xt, k + 1)|xit−1] + E[Ct(Xt, k)|xit−1]
≈ mi

t−1(n)

+ max
[
zit + yit+1(k), yit+1(k + 1)

]
−max

[
zit + yit+1(k − 1), yit+1(k)

]
− 1
J

J∑
1

max
[
Zt(x̃jt ) + Yt+1(x̃jt , k), Yt+1(x̃jt , k + 1)

]

+ 1
J

J∑
1

max
[
Zt(x̃jt ) + Yt+1(x̃jt , k − 1), Yt+1(x̃jt , k)

]
,

(2.31)

where x̃jt are simulated prices with start value xit−1 according to equation 2.7. And for
lt−1(Xt−1, k + 1) = 0 this is

mi
t(n) = mi

t−1(n) + cit(k + 1)− cit(k)− cit−1(k + 1) + cit−1(k)
≈ mi

t−1(n)

+ max
[
zit + yit+1(k), yit+1(k + 1)

]
−max

[
zit + yit+1(k − 1), yit+1(k)

]
− yit(k + 1) + yit(k).

(2.32)

Comparing equations 2.31 and 2.32 we see that cit−1(k + 1) and cit−1(k) will be replaced by
yit(k + 1) and yit(k) as in the latter case there was no exercise on the previous stage and

4Again we skip the underline for M t for better readability.
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hence zit−1 = 0. The two previous equations apply for t = 2, ..., T . For t = 0 and t = 1
we have mi

0(n) = 0 and mi
1(n) = ∆ci1(n). For t = T we set YT+1 := 0 and consequently

we get YT (k) = ZT for k>1. Then, for k >1 almost all terms cancel out and we receive
mi
T (n) = mi

T−1(n). For k = 0 we have Yt(0) = 0 for t = 1, ..., T and we receive the same
result as for the American option

mi
T (n) :=

{
mi
T−1(n) + ziT − yiT (1) liT−1 = 0

mi
T−1(n) + ziT − 1

J

∑J
j=1 ZT (xjT ) otherwise.

(2.33)

Once we have computed the marginal martingales for the n-th exercise right along all hours t,
we compute the individual upper bound ∆ci0(n) and approximate the expectation in equation
2.27 via averaging the individual upper bounds

∆ci0(n) = max
t∈T\{τ in−1,...,τ

i
1}

(zit −mi
t(n))

∆C0(n) ≈ 1
I

I∑
i=1

∆ci0(n).
(2.34)

The domain space for the maximization T shrinks with increasing exercise rights n as all
previous stopping times will be extracted first. Recall that the sequence of stopping points5
τ i1(0, n− 1), ..., τ in−1(0, n− 1) changes with every price scenario i. Let us illustrate the entire
calculation with an example. We assume that our swing option has a time horizon of 12

Figure 2.1.: Illustration for the computation of the marginal martingales

stages and a max number of N = 10 exercise rights. We further assume that we already ran
a backward iteration and therefore can compute an approximation for all continuation values
Yt(n) for all t = 0, .., , 12 and n = 1, .., 10. Now, we want to compute the upper bound for the
marginal option value of the 6-th exercise right for the first price trajectory ∆c1

0(6). Hence, we
use our optimal policy of the lower bound calculation to find the first five(!) stopping points
for our price scenario 1. This is π1

0(5) which is presented in Figure 2.1. From now on we skip
the index 1 indicating realizations of price path 1 (x := x1, z := z1, ...) for readability. Note
that the stopping points are always in strict descending order with respect to the remaining
exercise rights. Now, we want to present the calculation of the 6th martingale mt(6) for three
different stages t = 3, 10 and 11. At (t = 3) the largest k is still the max number of 5 exercise
rights like for any hour t ≤ 3. As l2(6) = 0 we compute

m3(6) = m2(6) + ∆c3(6)−∆y3(6)
= m2(6) + max [z3 + y4(5), y4(6)]−max [z3 + y4(4), y4(5)]− y3(6) + y3(5).

(2.35)

5We declare a stopping point τ ik(t, n) as the realization of a stopping time τk(t, n) for a specific price path i.
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At (t = 10) the largest available number of exercises is 1 with τ1 = 10. This time the exercise
of option (k + 1 = 2) occurs at the previous stage l9(2) = 1 and thus

m10(6) = m9(6) + ∆c10(2)− E [∆C10(X10, 2)|x9]
≈ m9(6) + max [z10 + y11(1), y11(2)]−max [z10, y11(1)]

− 1
J

J∑
1

max
[
Z10(x̃j10) + Y11(x̃j10, 1), Y11(x̃j10, 2)

]

+ 1
J

J∑
1

max
[
Z10(x̃j10), Y11(x̃j10, 1)

]
,

(2.36)

where x̃j10 are simulated prices with start value xi9 according to equation 2.7. At (t = 11) all
options are already exercised (k=0) and therefore the martingale value of the first (k+1=1)
exercise right will be computed. We have to take into account that the first exercise right
was executed at the previous hour l10(1) = 1

m11(6) = m10(6) + ∆c11(1)− E [∆C11(X11, 1)|x10]

= m10(6) + max [z11, y12(1)]− 1
J

J∑
1

max
[
Z11(x̃j11), Y12(x̃j11, 1)

]
,

(2.37)

where x̃j11 are simulated prices with start value xi10 according to equation 2.7. Likewise we
compute mt(6) for all other t. Next, we calculate the upper marginal value function ∆c0(6).
For n = 6 we need to ignore the stopping points τ1 to τ5 and can only look for the maximum
at the states 0,1, 2, 4, 6, 7, 11 and 12

∆c0(6) = max
t∈{0,1,2,4,6,7,11,12}

(zt −mt(6)). (2.38)

The same way we proceed with all other scenarios 2,...,I. Then we can appxorimate the
marginal upper option value according to equation 2.34. Likewise, we proceed with all other
exercise rights n = 1,...,12. Again, recall that for every price trajectory and intermediate
number of exercise rights n there will be a separate sequence of stopping points and hence a
new Figure 2.1. Let us summarize the algorithm:

1. Run a backward iteration to determine the coefficients for all approximated continuation
values αr,n,t according to equation 2.12.

2. Generate I new price paths.

3. For each exercise right n = 1,..,N:
a) For each price path xit, i = 1, ..., I:

i. Find the stopping points π∗,i0 (n− 1) = {τ in−1(0, n− 1), ..., τ i1(0, n− 1)} for all
(n-1) exercise rights in a forward iteration (set π∗,i0 (0) = {}).

ii. Set mi
1(n) = ∆ci1(n) and mi

0(n) = 0.
iii. For each stage t = 2, ..., T :

A. Find in π∗,i0 (n − 1) the highest exercise right k whose stopping point
τ ik(0, n − 1) lies within the remaining delivery period from t to T (set
k = 1 for π∗,i0 (0)).

B. Check whether the (k+1)-th option was exercised at the previous stage
(lit−1(k + 1) = 1).
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C. if it was, then generate another set of J prices x̃jt starting from xit−1 and
calculate mi(n) according to equation 2.31

D. if it was not (lit−1(k+ 1) = 0), then calculate mi(n) according to equation
2.32 without any extra loop

iv. Compute the upper value functions ∆ci0(n) according to equation 2.34, do not
forget to skip all stopping points from π∗,i0 (n− 1).

b) Average all ∆ci0(n) to retrieve an estimate for the marginal upper option values
∆C0(n).

4. Sum up all marginal option values for the total upper option value C0(x0, N).

2.4. Upper Bounds for Swing Options with Volume Constraint

So far, our swing option could be used to model a power plant with a single or no production
unit per day. In practice, however, a power plant can produce several units per day where
the max number of daily units can vary over time. An off-peak swing contract for instance
can produce 12 hours on weekdays and 24 hours on weekends. While the price actually
also changes with every extra production hour, we want to start simpler and assume a fixed
average off-peak price per unit on the same day. Then this off-peak option could produce one
12-hour block on weekdays and two 12-hour blocks on weekends. We want to call this option
a swing option with volume constraint. This new constraint translates into a regular swing
option, but with multiple exercises at the same stage.
The main difference to our basic model from section 2.1 is the extension of the action space

that allows to choose between 1 and up to Ut exercises per stage as long as the remaining
number of swings allows so. Note that Ut is deterministic, but can vary over time as required
by our off-peak swing option example. Before we look at the upper bound, let us first formally
describe the optimal stopping problem. We define the set of admissible policies as

Π0(N) := Π0(N, {Ut}0≤t≤T )

:=

(τN , ..., τ1)

∣∣∣∣∣∣∣
τN ≤ τN−1 ≤ ... ≤ τ1,∑N

k=1 It=τk ≤ Ut, t = 0, ..., T,
τk ∈ {0, ..., T} ∪∞

 , (2.39)

with τk := τk(0, N) and I being the indicator function. We look for the policy π∗0(N) ∈ Π0(N)
that will return the maximum expected cash flow

C∗0 (x0, N) = sup
π0(N)∈Π0(N)

E(π0(N))
[
N∑
k=1

Zτk |X0 = x0

]
, (2.40)

where E(π0(N))[...] stands for the expectation under the Markov chain that follows the policy
π0(N)). Furthermore we set the cash flow for τk = ∞ to Z∞ := 0. We can use a slight
modification of our stochastic dynamic program to find the right stopping times. Again,
the value function Ct(Xt, n) is the value of an option that would be newly issued at t with
current price Xt and n remaining exercise rights. Whereas the continuation value Qt+1 is the
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expected option value at the next stage t+ 1 conditional on today’s price

C∗t (Xt, n) = max
at∈At(n,Ut)

{
Zt(Xt, a) + E

[
C∗t+1(Xt+1, n− a)|Xt

]}
t = 0, ..., T

state : (Xt, n) n: remaining number of swings
action : a ∈ At(n,Ut) = {0, 1, ...,min(n,Ut)} number of exercises

transition : {Xt, n} −→ {Xt+1, n− at}
marginal profit : Zt(Xt, a) := (Xt −K)+a

value function : C∗t (Xt, n)
continuation value : Q∗t+1(Xt, n) := E

[
C∗t+1(Xt+1, n)|Xt

]
,

(2.41)

where CT+1(XT+1, n) := 0 for n =1,...,N. As a brief side note we want to remark that if the
allowed number of exercises is constant over time i.e. U1 = U2 = ... = UT = U , then the value
function at each stage is equivalent to U options that can be exercised once at a time

C∗t (Xt, n)− C∗t (n− U) = U · (C∗t (Xt, n)− C∗t (Xt, n− 1)). (2.42)

Let us now return to the upper bounds. Intuitively, the swing option with volume constraint
should only require a relaxation of the search domain for the stopping points. Recall that
in the unit constraint case the stopping points of all exercised swings will be deleted from
the domain space,i.e. T \ {τn−1, ..., τ1} with T := {0, ..., T}. The new domain definition for
finding the n-th stopping time Tn−1 instead contains, loosely speaking, all still exercisable
stages from t = 0 to T after n-1 options were already exercised under the volume constraint
Ut. Any stage t will only be entirely excluded from the domain if Ut exercises already occurred
at that very stage. This intuition is correct and we receive

∆C∗0 (n) = inf
π0(n−1)

inf
{Mt}t∈M0

{
M0 + E0

[
max
t∈Tn−1

(Zt −Mt(n))
]}

Tn = T \

ti ∈ T :
n∑
j=1

I{τj=ti} = Uti

 ,
(2.43)

with ∆C0(n) as defined in equation 2.26 and τj := τj(0, n − 1). However, the proof that
equation 2.43 actually truly holds is not straightforward. For the detailed proof we refer to
Bender [8] who will publish a detailed version in one of his upcoming papers. We only want
to present the rational behind the proof and provide first numerical results.
The core idea of the proof is to rewrite the swing option value in terms of a sum of

American options. Then we can apply the Andersen and Broadie primal-dual algorithm
for each individual American option to come up with a total upper bound for the swing
option. For a better understanding of the new calculation method let us briefly recap our
existing model. So far, we have built a stochastic dynamic program with a strict sequence of
discrete time steps t = 0, ..., T , each defined by a two dimensional state space consisting of
the continuous price Xt and the discrete number of remaining exercise rights n. During the
backward iteration we move stage by stage back from T to 0 and iteratively solve the Bellman
equation for each 2-dimensional space in order to update our value function Ct(Xt, n).
Instead, Bender remains conceptually within the framework of a stopping problem. He

thinks of a swing option as a sum of single stopping problems with the decisive difference
that the domain of decision stages Tn shrinks with every new option exercise. Let us first
look at a single exercise. We find the first stopping time τ1 := τ1(0, n) (possibly with the
help of a stochastic dynamic program) and exercise. If Uτ1 is greater than 1 then the stage
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will be valid for the next exercise as well and we will have still the entire domain available
for the second exercise right. The stopping problem is identical to the first one and hence
τ2 := τ2(0, n) = τ1. In short, we will execute at τ1 as long as Uτ1 allows to do so. After
Uτ1 exercises we will look at a new stopping problem where the new search domain will skip
τ1: Tn−Uτ1

:= Tn \ {τ1}. We will find a new first stopping time τ2 where we will exercise
the next Uτ2 options. Afterwards we update our domain again Tn−Uτ1−Uτ2

:= Tn−Uτ1
\ {τ2}

and repeat the previous steps until all N swing rights are exercised. Note that different to a
regular forward iteration we always start the search for the next stopping time again at t = 0.

The proof needs to show that this iterative solving of American options in deed leads to the
optimal swing option value. The derivation is based on induction. Finding the first stopping
time is identical to solving the standard Snell envelope

C∗0 (x0, 1) = sup
τ1

E0 [Zτ1 ] , (2.44)

with stopping time τ1 = τ1(0, N) ∈ T1 with T1 := {0, 1, .., T} ∪ ∞. For two exercise times,
Bender proves that one of the two stopping times is identical to the single stopping time
problem and that the second one can be found by solving the Snell envelope over the time
domain that ignores τ1

C∗0 (x0, 2) = sup
τ1,τ2

E0

[ 2∑
k=1

Zτk

]
= Zτ∗

1
+ sup

τ2
E0 [Zτ ] ,

(2.45)

with τ1 := τ1(0, N) ∈ T1 and τ2 := τ2(0, N) ∈ T2 with T2 := T1 \ {τ∗1 }. Bender actually does
not explicitly reduce the domain space, but works with a modified cash flow process Z [τ1]

t that
penalizes payments at invalid stages

Z
[τ1,...,τn]
t :=

{
Zt

∑n
j=k I{τk=t} < Ut

−1 otherwise,
(2.46)

with τk := τk(0, N). Finally, Bender induces from n to n+1 and proves that equation 2.45
holds true for any N exercise rights

C∗0 (x0, N) = sup
π0(N)

E0

[
N∑
k=1

Zτk

]

=
N−1∑
k=1

Zτ∗
k

+ sup
τN

E0 [Zτ ] ,
(2.47)

where τN ∈ TN with TN := TN−1 \ {τ∗N−1} and exercise policy π0(N) as defined in equation
2.40. Hence, the swing option valuation can be separated in solving a chain of individual
American style stopping problems with interdependent, but still individual search domains.
Then the proof for the upper bound is straightforward. We simply apply Roger’s duality on
all individual stopping problems and the sum delivers the upper bound for the entire swing
option. This procedure also works for the regular swing option with Ut = 1 for all t. A
direct implementation of this new valuation method is not advisable. While it is appealing
to rerun the same American-style valuation algorithm with every additional exercise right
and only change the input data i.e the cash flow process Z [τn], this procedure would not be
valid. Recall that the sequence of actual stopping points πi0(N) varies with every price path
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i. Consequently, the same hour t will be a stopping point and thus be erased for only some
scenarios dependent on individual price trajectories. Hence, each stage is not uniquely defined
any more across all scenarios. Then, the pairs of current price and next hour’s value function
relevant for the LS regression are not well-defined any more. Then, the modified cash flow
process can violate the Markov property and therefore the individual stopping times cannot
be computed with dynamic programming any longer. However, as Bender’s proof leads to
the result in equation 2.43, we can start from our algorithm of the previous section. We only
need to revise the domain space by the multiple exercise constraint Ut. Then we can use the
approximated policy of our lower bound option in equation 2.41 to compute the upper bound.
The computation of the marginal martingales and value functions follows the equations 2.30
to 2.32. The only minor adjustment is the definition of the indicator function that needs to
take into account Ut before signaling an option exercise

lt(Xt, k) :=
{

1 Zt(Xt) ≥ ∆Yt(Xt, k) ∧
∑k−1
j=1 I{τj=t} < Ut

0 otherwise.
(2.48)

Also, the computation of the marginal upper value function needs to follow the new domain
space

∆ci0(n) = max
t∈Tn−1

(zit −mi
t(n))

∆C0(n) ≈ 1
I

I∑
i=1

∆ci0(n),
(2.49)

where Tn−1 is defined as in equation 2.43. Again, let us illustrate the marginal martingale
computation. We extend our previous example by allowing 2 exercises at hour 5 and hour 9.
Figure 2.2 presents a slight modification of Figure 2.1. The graph shows us again the stopping
points of a single price path with 12 stages. This time we look at a swing option with volume
constraint and therefore it is no surprise that we observe multiple stopping points at both
hours 5 and 9. Recall that we found these stopping points using the policy π1

0(5) as we will
compute again the 6th marginal martingale. The figure shows us the stopping points. We

Figure 2.2.: Computation of the marginal martingales in case of swing option with volume
constraints

will illustrate the computation at three different stages t = 5, 9 and 12. Again, we will ignore
the index i = 1 for indicating the realization of the first price scenario. At (t = 5) the largest
k is still 5 and consequently there cannot be any previous exercise (l4(6) = 0)

m5(6) ≈m4(6) + ∆c5(6)−∆y5(x4, 6)
=m4(6) + max[z5 + y6(5), 2z5 + y6(4), y6(6)]
− y5(6) + y5(5).

(2.50)

Note, that we have to consider the second exercise right (2z5) at (t = 5) when computing
c5(5) and c5(6) for the marginal value functions ∆c5. At (t = 9) the largest available number
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of exercises is also two (U9 = 2) and this time the third swing was exercised on the previous
stage (l8(3) = 1)

m9(6) = m8(6) + ∆c9(2)− E [∆C9(X9, 2)|x8]
≈ m9(6) + max [z9 + y10(1), 2z9, y10(2)]−max [z9, y10(1)]

− 1
J

J∑
1

max
[
Z9(x̃j9) + Y10(x̃j9, 1), 2Z9(x̃j9), Y10(x̃j9, 2)

]

+ 1
J

J∑
1

max
[
Z9(x̃j9), Y10(x̃j9, 1)

]
,

(2.51)

where x̃j9 are simulated prices with start value xi8 according to equation 2.7. At (t = 12) all
options are already exercised and there was no exercise on the previous stage (l11(1) = 0).
Hence, we get

m12(6) ≈ m11(6) + ∆C12(1)−∆y12(1)
= m11(6) + z12 − y12.

(2.52)

Likewise we compute mt(6) for all other t. Next, we derive the upper marginal value function
∆c0(6). For n = 6 we need to ignore the stopping points τ1 to τ5. Compared to our previous
example there are more valid stages to consider due to the multiple exercises. To be precise
this is additionally t = 4 and t = 10

∆c0(6) = max
t∈{0,1,2,3,4,6,7,10,11,12}

(zt −mt(6)). (2.53)

As this example illustrates the algorithm for the swing option with volume constraint is
almost identical to the regular swing option. The single difference lies within the calculation
of the marginal value function ∆Ct(n) that needs to take into account all possible exercises
at on state Ct(n) and Ct(n− 1). The relevant exercise right k for the marginal martingale at
stage t is still the largest available exercise right from t onwards regardless whether there is a
single or several exercises at t as illustrated for (t = 5). Hence, the extension is fairly simple
and easier to implement than another proposal by Aleksandrov and Hambly [1]. They only
recently presented a derivation of the upper bound of a swing option with volume constraints.
They were not able to reuse the algorithm for the unit constraint case and rather extended the
initial proof by Meinshausen and Hambly resulting in a comparably complex implementation.

2.5. Numerical Examples

For our numerical example we start with the same swing option setup that Meinshausen and
Hambly [50] used for their illustrations. They investigate an in-the-money (itm) swing option
with strike K = 0 and a single exercise right per hour. They defined a delivery period of t
= 0,..,1000 hours and allowed up to N = 100 swings. By setting the mean µ to zero they
reduce their initial price process (see equation 2.7) to a discrete Ornstein-Uhlenbeck process
with parameters

σ = 0.5, κ = 0.9, µ = 0, (2.54)

and x0 = 1 (see Appendix C for sample paths). Meinshausen and Hambly rely on the Longstaff
Schwartz algorithm and run a regular linear regression with the basis functions Ψ1,n(Xt) = 1
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and Ψ2,n(Xt) = Xt

Yt+1(Xt, n) := α0,n,t + α1,n,tXt. (2.55)

In order to obtain the lower bound, they use 1000 price scenarios to pre-calculate the pa-
rameters αr,n,t necessary to approximate the optimal exercise policy. Figure 2.3 illustrates
the resulting exercise policy by plotting the indicator functions according to equation 2.16
for various marginal swing rights. The shape of the functions along the timeline resembles

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Hours

Pr
ice

Exercise Threshold for Various Swing Rights

 

 
Swing 1
Swing 5
Swing 10
Swing 50
Swing 100

Figure 2.3.: Indicator functions for different exercise rights

a concave curve and reflects the intuitive decision rule that a smaller exercise price will be
accepted the closer one gets to the final expiration. At the last delivery hour any price above
0 will be accepted for the first exercise right. The same argument explains the nested struc-
ture of the indicator functions which start at a lower price for every additional exercise right.
The more rights are still available the smaller the price threshold for the next exercise. The
indicator functions touch the timeline at that time step where the remaining number of hours
is identical to the remaining number of swings. This is a technical side-effect resulting from
the simulation (formally the threshold functions are smooth curves). Any swing right larger
than the remaining time period is automatically expired and therefore the threshold is 0. We
can also observe that the concave curve becomes smoother with increasing number of swings.
High prices are rare and differ more in size than prices around the average (since x0 = 1 and
µ = 0 the prices deviate around 1). Every swing right tries to capture the highest available
price. Thus with every additional swing the remaining prices are more and more equal in size
and therefore the jitter becomes weaker. Once the continuation values are approximated, the
indicator functions and thus the set of stopping points πi0(N) is fixed for one price scenario
i. All swing options with intermediate upper swing number n < N will be based on a subset
of πi0(N). However, their stopping sequence in declining order according to the Meinshausen
and Hambly definition (see section 2.3) varies with every n. In other words, the same exercise
hour for the same price path can be the first, second or n-th stopping point for different n.
This is the very reason why we do not compute all N stopping points once for all n iterations
of a single price path beforehand in our upper bound algorithm in section 2.3 and 2.4. Instead
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Figure 2.4.: Sequence of stopping times for two and three swing rights

we have to re-compute the new sequence of stopping points πi0(n) with every intermediate
maximum number of stopping rights n. We want to briefly illustrate the behavior with Figure
2.4. The left sub figure shows the exercise thresholds for two swing rights and the correspond-
ing price path. The swings will be exercised once the price exceeds one of the thresholds.
The marks on the trajectory indicate an exercise and the color corresponds to the threshold
line that was the trigger. In the right sub figure we see the situation for three swing rights.
Now there is an extra trigger line for the third swing right located below the other two as
explained in the previous paragraph. The new marks on the price trajectory demonstrate
that the threshold for the third marginal swing right now triggers the second stopping time.
It also underlines that the initial two stopping times still belong to the optimal policy, only
the sequence changes due to the additional swing right. In this case τ2(0, 2) = τ3(0, 4).
Let us now return to the lower bound calculation. After the approximation of the contin-

uation values Meinshausen and Hambly generate another 1000 price paths and apply their
exercise policy in a forward iteration to receive the actual lower bound C0(n) := C0(x0, n).
We follow exactly their approach. The second column of Table 2.3 shows our results for
different numbers of initial swing rights n. These lower bound values differ from the results
of Meinshausen and Hambly by less than ±0.5%. Next, we compute the corresponding upper

n C0(n) ∆D0(n) [C(99%)
0 (n), C(99%)

0 (n)]
1 4.777 0.004 [4.697 , 4.783]
2 9.029 0.022 [8.922 , 9.069]
3 13.051 0.028 [12.924 , 13.132]
4 16.842 0.024 [16.699 , 16.965]
5 20.463 0.033 [20.308 , 20.601]
10 37.346 0.023 [37.130 , 37.625]
15 52.668 0.028 [52.408 , 53.040]
20 66.981 0.022 [66.686 , 67.439]
30 93.670 0.020 [93.314 , 94.709]
40 118.452 0.015 [118.053 , 119.877]
50 141.799 0.039 [141.361 , 143.558]
60 164.044 0.012 [163.571 , 166.020]
70 185.414 0.021 [184.910 , 187.856]
80 205.983 0.036 [205.447 , 209.068]
90 225.876 0.021 [225.313 , 229.411]
100 245.154 0.032 [244.562 , 249.015]

Table 2.3.: Swing option with unit constraint

bounds for the swing option. Again we follow the setup by Meinshausen and Hambly and
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use I = 20 price scenarios for the outer loop and J = 50 trajectories for the inner simula-
tion. The third column presents the corresponding duality gaps of the marginal swing rights
i.e. the difference of the upper and lower option value for the n-th marginal swing right
∆D0(n) = ∆C0(n)−∆C0(n). Let us first look at the duality gap for the American option (n
= 1). With ∆D0(1) = 0.004 the gap is negligibly small which underlines the good approxi-
mation of the exercise policy and thus the efficiency of the Longstaff-Schwartz approximation
procedure in case of an American option. Also note that the additional noise introduced by
the nested loops does not have a significant numerical effect. However, the situation changes
when we move to the swing option (n>1). Already in case of two swings the duality gap
increases from 0.004 to 0.022. At least for any further number of swings this gap does not in-
crease any more, but varies between 0.015 and 0.039 with an average around 0.031 throughout
all swing rights. Meinshausen and Hambly present similar results. Their total duality gap for
100 swings for instance is 248.63 - 245.157 = 3.47 which breaks down to an average marginal
duality gap of 0.0347 and lies within our computed ranges. There is no relation between gap
size and number of swings. Our duality gap is rather stable around 0.025. We assume that
the gap could be narrowed even further with a more refined set of basis functions Ψr,n,t for
the Longstaff Schwartz regression. Recall that we currently only apply linear regression.
The last column in Table 2.3 shows the upper and lower bound of the swing option not

on the marginal, but on the total level. Hence, for n = 30, the marginal gap of the 30th
swing right is 0.020 and the option value for all 30 swing rights varies between 93.314 and
94.709. These intervals are based on the 1 − β = 99 % confidence level. For the purpose of
direct comparison we follow Meinshausen and Hambly’s definition of the confidence interval
[C(1−β)

0 (n), C(1−β)
0 (n)]. They apply the confidence level of a Normal distribution. The distri-

bution of our value function is not necessarily Normal and the authors do not provide any
other legitimation than the asymptotic convergence to the Normal distribution. They apply
the two variances of the value functions for the lower and upper bound calculation separately

C
(1−β)
0 (n) := C0(x0, n)− βσ(n)√

I

C
(1−β)
0 (n) := C0(x0, n) + β

σ(n)√
I

σ(n) ≈

√√√√1
I

I∑
i=1

(
vi0(n)− C0(n)

)2
σ(n) ≈

√√√√1
I

I∑
i=1

(
ci0(n)− C0(n)

)2

C0(n) ≈ 1
I

I∑
i=1

vi0(n)

C0(n) ≈ 1
I

I∑
i=1

n∑
k=1

∆ci0(k)

(2.56)

where β = Φ−1(1 − 0.01/2) is the quantile of the standard normal distribution, ∆ci0(k) is
defined in equation 2.34 and vi0(n) is the ACF of a single path (see equation 2.9). Our confi-
dence intervals are slightly larger than the ranges that Meinshausen and Hambly presented.
We could only meet their figures if we increased the number of external scenarios from 20 to
200 which narrowed the volatility.
Finally we want to produce the same figures for the case of a swing option with volume
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constraint. We return to our initial example of an off-peak swing option that allows to
exercise the off-peak price twice on weekends since there are no peak hours. We introduce the
number of maximum exercise rights Ut. Now we interpret each stage as days instead of hours
and define t = 1 as Monday. Then, we set Ut = 2 for t = 6, 7, 13, 14, ..., 992, 993, 1000 and
everywhere else Ut = 1. Again, we pre-calculate the relevant parameters αr,n,t to approximate
the exercise policy by running our dynamic program in equation 2.41 on our first set of 1000
price scenarios. With our second set of 1000 trajectories we compute the lower bound value
within a forward iteration (see second column of Table 2.4). By design, for a single right the
values are identical to the unit constraint case. The more swing rights are available the more
multiple exercises will occur and the higher the difference between unit and volume constraint
swing options (compare second column of Tables 2.3 and 2.4). For two swings we start with
a value difference of 9.15 - 9.029 = 0.121 =̂ 1.3% and end with a spread of 258.706 - 245.154
= 13.55 =̂ 5.53 % for 100 rights. However, this effect might be even stronger in reality where
weekend off-peak prices are higher than weekday off-peak prices. Then multiple exercises on
weekends would occur even more often than in our example where the average price does not
vary throughout the entire delivery period. In order to compute the marginal duality gap in

n C0(n) ∆D0(n) [C(99%)
0 (n), C(99%)

0 (n)]
1 4.777 0.004 [4.697 , 4.783]
2 9.150 0.017 [9.028 , 9.288]
3 13.290 0.029 [13.144 , 13.414]
4 17.228 0.024 [17.057 , 17.372]
5 21.035 0.009 [20.844 , 21.242]
10 38.496 0.015 [38.239 , 39.141]
15 54.541 0.019 [54.227 , 55.184]
20 69.611 0.027 [69.251 , 71.245]
30 97.633 0.021 [97.202 , 98.882]
40 123.806 0.011 [123.316 , 125.965]
50 148.550 0.030 [148.009 , 151.008]
60 172.184 0.020 [171.602 , 174.815]
70 194.879 0.023 [194.258 , 197.948]
80 216.820 0.012 [216.161 , 220.088]
90 238.070 0.026 [237.376 , 241.198]
100 258.706 0.025 [257.981 , 262.018]

Table 2.4.: Swing option with volume constraint

the third column we apply the algorithm of the previous chapter. Like for the unit constraint
swing option the duality gap does not significantly alter with more swing rights. If we compare
the figures with the unit constraint case we can observe slightly smaller gaps. The average
of the duality gap across all swing rights is still around 0.025, but the range is a bit smaller
moving between 0.017 to 0.03. Consequently, the confidence intervals are smaller too. For
100 swing rights, for instance, the difference between the upper and lower bound is 262.218
- 257.981 = 4.237 which is slightly smaller compared to the unit constraint case of 249.015 -
244.562 = 4.453. We can only explain this improvement with a better approximation of the
continuation values as less different exercise points and thus less LS regressions are necessary
to return the total option value. But the small difference could very well be only noise in the
data. We therefore take another look at the variation of the marginal duality gaps. Figure 2.5
compares the 99 % confidence level of the marginal duality gap between the unit and volume
constraint case. For consistency, we used again 200 instead of 20 external scenarios. In both
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Figure 2.5.: 99 % Marginal duality gap (99 % confidence level) across 100 exercise rights (unit
vs. volume constraint)

situations we observe a convex function as high prices will be exercised first. Not surprisingly
the marginal swing values are higher in case of multiple exercises as higher prices can be
executed more often. We can see that the lower bound of the confidence intervals are fairly
smooth, almost like a straight line. The upper bound instead deviates more frequently for
both type of swing options which we explain by the additional noise generated by the nested
Monte-Carlo loop. Even though the bandwidth of the swing option with volume constraint
seems to be slightly smaller, the deviation of the intervals across all swing rights is about the
same size for both type of swing options. As a summary, we can state that the upper bound
of the swing option with volume constraint is at least as accurate as the swing option with
single exercises per stage. This observation is also true for different strikes and drift terms
of the underlying price process (in Appendix B you will find two more examples: i) an atm
option (K=1) and ii) drift term µ = 1).

2.6. Directions for Further Research

Our results revealed that the duality gaps of a unit and volume constraint swing option
are very similar in nature and scale. In both cases we observe a larger deviation of the
upper bound value compared to the lower bound (see again Figure 2.5). The deviation is
certainly induced by the nested loop. Improving the accuracy of the inner nested Monte-
Carlo simulation would therefore be an immediate next step. First, it is worth investigating
different basis functions other than the pure linear function that Meinshausen and Hambly
suggested. In particular, the linear approach becomes problematic if the strike is non-zero.
Then the payoff function Z is not linear any more for positive prices (Xt ≥ 0). Second, one
could try to reduce the amount of nested loops. Broadie [12] recently proposed several related
adjustments to his algorithm for American options that are applicable for the swing option as
well. Third, one could replace the nested loop entirely and estimate the martingale with the
algorithm proposed by Schoenmaker [6]. His algorithm is restricted to stochastic processes
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based on Brownian motion, but it would still cover our mean-reversion price dynamics.
Our swing option with volume constraint is able to cover several extensions. An imme-

diate next step towards a swing option with 24 exercises per day would look at a baseload
swing option that can exercise twice a day. On weekdays the first swing would represent the
production during peak hours with the average peak price. The second swing would stand
for the off-peak hours with the average off-peak price. On weekends we would again allow
to exercise the average off-peak price twice for the night and day hours. The upper bound
for such a baseload option can be computed with our current model. One would only need
to split the days in 2 half days representing the peak and off-peak hours and then apply the
upper bound for the swing option with unit constraint. In a second step we could additionally
allow to vary the generation amount during peak and off-peak hours. This extension can also
be covered with our swing option with volume constraint. We would need to discretize the
production amount into multiples of a predefined minimal energy size that would represent
a single exercise. Then each half day would again allow multiple exercises of these energy
buckets.
Recall that our objective is the investigation of power generation assets. The swing option

was only meant as a first step towards a general upper bound calculation for power plants.
Several further operational constraints need to be considered for a proper real option model
of a power plant. A first important extension towards an upper bound value for a generation
asset would be the introduction of on- and off-hours to the swing option. In context of optimal
stopping times this would mean that a single stopping time would entail a subsequent row of
n stopping times where n is the minimal number of running hours. We would call it a swing
option with time constraint. The lower bound value can be computed via SDP. Compared to
our existing model in equation 2.41 we only need to add another state dimension J for the
running hours since the last start-up (see also section 4.3.2 for a detailed description of this
extra operating state). Intuitively one would assume that our upper bound algorithm works
analogously. Once we have computed the optimal lower bound policy we can define a new
indicator function lt that determines the exercise sequence for any new price path. Whenever
lt signals an exercise during the calculation of the marginal martingale, the computation of
∆Qt would as usual trigger a nested loop and we would use the continuation values of our new
SDP to quickly run the inner simulation. The trigger might become additionally dependent
on the current run-time hours. An exercise that is mandatory to meet the minimum run-time
might require a special treatment for the calculation of ∆Qt. Still, we assume that a swing
option with time constraint can rely on our existing primal-dual upper bound framework and
only requires another modification of the domain space T. A formal proof would certainly be
an interesting next research topic.
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3. Risk Management
In the previous chapter we focused on attaining the option value by maximizing the ex-
pectation of future cash flows and tried to find the corresponding optimal stopping times.
In a complete market this is the preferred approach since we can always find a replication
portfolio H that offsets the option exposure C completely: Ccom − Hcom = 0. In this way
the option value Ccom can be locked no matter how the prices are fluctuating. Therefore a
natural replication portfolio for swing options would contain the products available at the
electricity market i.e. Forwards, Futures and hourly spot contracts. However, the market
for these products is illiquid. Hourly electricity is only traded on the day ahead market and
monthly products go only half a year ahead. Furthermore the amount of energy traded on
the Futures market is increasing, but still limited. Hence, we will see that the replication
portfolio might fail to hedge the option entirely, especially for production periods with larger
time horizons (>3 years). The incompleteness of the market asks for an additional risk pre-
mium that reflects the open gap ε due to the sub optimal hedge: C incom−H incom− ε = 0. We
want to work out the nature of this gap and define means to control this risk. This chapter
is therefore divided into two parts. In the first section we analyze the origin of the market
incompleteness in detail by investigating the different components of the electricity price. We
start from the construction of an hourly price Future curve (PFC) and quantify the impact of
individual price factors on the derivative value. We will also introduce two new risk measures:
synthetic spot delta and Earnings-at-Risk. In the second part of this chapter we address to
risk controlling in incomplete markets. We will define a risk adjusted option value and suggest
appropriate exercise policies that lower the risk premium, but still achieve an adequate fair
value. Based on this concept we will define a benchmark to compare different risk mitigation
strategies. We will introduce a heuristic that delivers a strategy in favor of our benchmark
and conclude this chapter with an outlook for further research.

3.1. Introductory Example
We want to motivate the objective of this chapter with an introductory example. Let us
assume the following scenario: We are a dispatcher of a power plant on Monday, 29th June
09 and need to decide on the energy allocation for the remaining days in June i.e. for today
and tomorrow. Our power plant can produce every day up to 1 MW and we are required to
produce another 1 MW within the remaining two days. There are no marginal costs and no
runtime constraints i.e. each day’s production is only linked via the shared energy constraint.
Today’s spot price X0 = x0 is known to us. There is a Balance-of-Month June-09 Futures
contract available to us with current price G0 = g0 that stands for the market’s expectation
of the average electricity price throughout the remaining delivery period in June which in our
case is only today and tomorrow. If we buy the Future today, we commit to a margin payment
tomorrow which is the difference between today’s and tomorrow’s Futures price. Tomorrow’s
spot price X1 is not known to us. We therefore need to model future spot prices. In our
example this is a combination of the Future price G1 and a shift factor S1 with random daily
return rates rg ∼ N(0, σ2

g) and rs ∼ N(0, σ2
s). For illustration purposes we ignore correlation

and normalization (see equation 3.32). Today’s shift factor S0 happens to be identical to our
deterministic seasonal adjustment factor α0 that reflects today’s and tomorrow’s day type (see
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also discussion around equation 4.3). Usually the current (conditional) expectation of future
spot prices will be plotted on a so called hourly price Future curve (PFC) Ht := E[Xt|G0 = g0]
(see also equation 3.31). In particular we get H1 := E[X1|G0 = g0] = α0g0. Let us summarize
the parameter settings:

1. Two decision stages t = {0,1} (Monday and Tuesday)

2. Marginal cost K = 0

3. Future price
a) today’s Future price G0 = g0 is known
b) tomorrow’s Future price G1 is unknown
c) daily return rate rg = (Gt −Gt−1)/Gt−1 ∼ N(0, σ2

g)

4. Spot prices
a) today’s spot price X0 = x0 is known
b) today’s and tomorrow’s day type factors are known and identical α1 = α0

c) today’s spot price component is identical to today’s day type factor S0 := α0

d) tomorrow’s spot price is unknown X1 = S1G1 = g0α0(1 + rg)(1 + rs)
e) daily return rate rs = (St − St−1)/St−1 ∼ N(0, σ2

s)

5. Return rates are independent Cov(rs, rg) = 0

6. Mandatory remaining generation for June 09 W0 = 1 MWh.

7. Daily maximum production w0,1 = 1 MWh.

Formally we can define a dynamic program where the state space has three dimensions: the
spot price Xt, the Future price Gt and the remaining energy n (0 or 1 MWh). The marginal
profit Zt is identical to the current price Xt if 1 MWh will be produced. Otherwise it is
zero. The action set A differs between no or 1 MWh energy production. The value function
Ct(Xt, Gt, n) is the value of a real option for the production period from t to T that would be
newly issued at t given today’s prices Xt, Gt and n = 0,1 MWh remaining energy. Likewise
the continuation value Qt+1 is the expected option value given today’s observed price on
the shaped Future curve Xt := StGt and n=0 or n=1 MWh remaining energy. In order
to find the best energy allocation and thus the real option value with 1 MWh remaining
energy C0(x0, g0, 1) we can express the value function via the Bellman equation and find the
maximum of today’s versus tomorrow’s production

Ct(Xt, Gt, n) = max
a∈A(n)

{Zt(Xt, a) + E [Ct+1(Xt+1, Gt+1, n− a)|Gt]} , t = 0, 1

state : (Xt, n) n ∈ {0, 1} remaining energy, 0 or 1 MWh
action set : a ∈ A(n) = {0,min(n, 1)} generate yes (1) or no (0)
transition : {Xt, Gt, n} −→ {Xt+1, Gt+1, n− a}

marginal profit : Zt(Xt, a) := aXt value of single day production
value function : Ct(Xt, n)

continuation value : Qt+1(Gt, n) := E [Ct+1(Xt+1, Gt+1, n)|Gt] ,

(3.1)

where C2(X2, G2, n) := 0 for n=0,1. Let us review the transition law in detail. G1 is based on
g0 with distribution G1 ∼ N(g0, σg). The spot price X1 instead does not rely on the previous
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spot price x0, but on the current hourly price Future curve α0g0. Precisely speaking the
transition law from Monday’s to Tuesday’s spot price only relies on the current Future price
g0. This is why the continuation value Q∗t+1(Gt, n) is independent of Xt. From parameter
setting 4d) we know that the Tuesday price X1 is defined by a sum of normal and a product
of two normal variables with zero mean. Its distribution can still be calculated analytically
(see Springer [60]). Note that we do not use log returns. Thus, theoretically the Tuesday
spot price X1 could become negative for high volatilities σs and σg. In fact, this construction
does reflect the real market situation. The European energy exchange accepts negative spot
prices since 2008 and it occurred only recently during the Christmas holidays 2009 where wind
energy drastically exceeded the demand (thus paying for delivering power to a counterparty
can be cheaper than getting charged by the grid operator for exceeding schedule nominations).
As we assume stochastic independence between St and Gt, the expectation of the Tuesday
price is only dependent on the day type factor α0 and we can simplify the Bellman equation
to

C0(x0, g0, 1) = max{x0,E[C1(X1, G1, 1)|G0 = g0]}
= max{x0,E[X1|G0 = g0]}
= max{x0, α0g0}.

(3.2)

Hence, we will produce tomorrow if our expectation of tomorrow’s price as seen today on the
shaped PFC is larger than today’s spot price. Recall that this is the result of a merely risk
neutral policy. Next, we want to take into account the associated risk as well. Now, let us
assume that today’s spot price is too small to afford a production today (x0 < α0g0). Then
we can rewrite the option value as

C0(x0, g0, 1) := α0g0. (3.3)

For the risk analysis we are not only interested in the expected value, but individual potential
realizations of the option value. We therefore introduce the accumulated cash flow V0(x0, g0, 1)
that has realizations vi0(x0, g0, 1) for each price path {xit}t separately. x0 indicates that all
price paths start from the same price x0 and are generated for the fixed Future price g0. As
we assume no exercise today there will only be a potential cash flow tomorrow and we can
write

V0(x0, g0, 1) = V1(X1, g0, 1) := (1 + rs)α0g0. (3.4)

V1(X1, g0, 1) is the value of tomorrow’s production assuming that there is no change in Future
prices in between. Thus, this artificial value measures the impact of merely the spot price X1
on the option value. The true option value for tomorrow will rely on both, a new spot and a
new Future price X1, G1

V1(X1, G1, 1) := α0g0(1 + rg + rs + rgrs). (3.5)

Likewise we introduce

C0(x0, G1, 1) := α0g0(1 + rg) (3.6)

to be the power plant value resulting from a mere Future price change. Now, we can start
our risk analysis. First of all we can specify the total loss ` that is the difference between
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tomorrow’s potential cash flow V1(X1, G1, 1) and today’s expected cash flow C0(x0, g0, 1)

` := V1(X1, G1, 1)− C0(x0, g0, 1) = S1G1 − α0g0

= g0(1 + rg)α0(1 + rs)− α0g0

= g0α0(rg + rs + rgrs).
(3.7)

Due to the independence of rs and rg and the fact that both their means are zero, we can
compute the standard deviation as follows

σ(`) = g0α0
√
σ2
s + σ2

g + σ2
gσ

2
s . (3.8)

We want to quantify the total potential loss of the Tuesday production with the (1−β) quantile
q1−β(`)1 of the distribution of ` conditional on today’s Future price g0, i.e. Φ(`|G0 = g0).
However, we cannot conclude from the standard deviation on the quantile. Even though the
returns rs and rg are normally distributed, the change in production value is not due to the
product of rs and rg which is not normal. Again, we refer to Springer [60] for the analytical
description of the distribution. The implementation of this analytical approach is rather
cumbersome. For this reason, we will use Monte-Carlo simulation instead. This is also the
framework that we will apply throughout the remaining chapters. Thus, we calculate the tails
via simulation. The total loss q1−β(`) should not be confused with the Value-at-Risk figure
which describes the loss resulting from value changes due to price changes of the underlying
tradable products (see also related discussion in section 3.3.5). In our case the change of the
real option value

∆C0 := ∆C0(x0, G1, 1) := C0(x0, G1, 1)− C0(x0, g0, 1) (3.9)

can only result from changes in the Future price ∆G1 := G1 − g0 = g0rg

∆C0(x0, G1, 1) = α0g0(1 + rg)− α0g0 = α0g0rg. (3.10)

This time the resulting marginal distribution is normal and we can calculate the VaR via the
standard deviation

VaR1−β(`) := q1−β(∆C0) = p1−βα0g0σg, (3.11)

where p1−β is the percentile of the standard normal distribution with probability 1−β. Note,
that the VaR does not consider any second order effect as it ignores the impact of the spot
price that by definition is not tradable in advance. Next, we want to investigate the mere
spot price risk i.e. cash flow changes due to spot price changes for the fixed Future price g0

∆V0 := ∆V0(x0, g0, 1) := V0(x0, g0, 1)− C0(x0, g0, 1)
= V1(X1, g0, 1)− C0(x0, g0, 1)
= α0g0(1 + rs)− α0g0 = α0g0rs.

(3.12)

This marginal distribution Φ(∆V0|G0 = g0)2 is also normal and we use its (1 − β) quantile
q1−β to quantify the cash flow risk

q1−β(∆V0) = p1−βα0g0σs. (3.13)

1In this example we denote q1−β(x) to be the (1-β) quantile of the distribution of the random variable x.
2We denote with Φ(X) the distribution law of the random variable X.
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Note that both marginal distributions Φ(∆V0|G0 = g0) and Φ(∆C0|G0 = g0) do not cover
the second order effect in equation 3.7 resulting from the product rgrs which is only covered
in the total loss q1−β(`). Now, that we quantified the risk of our power plant we want to
investigate two hedge portfolios that are supposed to reduce this risk. We assume that we
enter into these two hedge portfolios on Monday, i.e. before delivery (t=0) where G1 is not
known yet and will look at the impact not only before, but also within delivery (t=1) i.e.
on Tuesday where G1 = g1 will be known. Both portfolios consists of our production value
C0(x0, g0, 1) and a short position into the Future contract. They only differ in the amount
to invest into the Future contract. Our first hedge portfolio will look at a so called value
hedge as it intends to fix the production value as we see it on Monday. The relevant amount
of Future contracts that we have to sell in order to offset the Tuesday production value due
to Future price shifts is given by the so called delta position ∆G. Formally, this is the first
derivative of our production value with respect to the Future price

∆G := ∂C0(x0, g0, 1)
∂g0

= α0. (3.14)

As we own (are long) the power plant position we go short (sell) α0 Future contracts. In the
situation before delivery (t=0) our (value) hedge portfolio therefore looks as follows

Hb,val := Hval
0 (x0, g0, 1) := C0(x0, g0, 1)−∆Gg0 = α0g0 − α0g0 = 0. (3.15)

Thus, the value hedge perfectly offsets the option value, i.e. the expected cash flow as seen at
t = 0. For a mere trading unit like a bank which will never let a position move into delivery
by closing the position (i.e. selling the entire Tuesday production beforehand), the Future
hedge is sufficient. Changes in the tradable part before delivery, i.e. only changes in the
Future’s price, will automatically be compensated. The bank can ignore the impact of the
spot price X1

∆Hb,val
G := Hval

1 (x0, G1, 1)−Hval
0 (x0, g0, 1)

= (C0(c0, G1, 1)− α0G1)− (C0(c0, g0, 1)− α0g0)
= α0g0(1 + rg)−∆Gg0(1 + rg)− 0
= 0.

(3.16)

Hence the VaR figure is zero

VaRb,val1−β := q1−β(∆Hb,val
G ) = 0. (3.17)

However, the actual realization of the production value V1(X1, G1, 1) will usually differ from
the expected value and we define the change in the hedge portfolio as the deviation of the
actual realization H1(X1, G1, 1) from the production value before delivery H0(x0, g0, 1)

∆Hb,val := Hval
1 (X1, G1, 1)−Hval

0 (x0, g0, 1)
= V1(X1, G1, 1)−∆GG1 − 0
= α0g0(1 + rg + rs + rsrg)− α0g0(1 + rg) = α0g0(rs + rgrs).

(3.18)

Again, the distribution of the change in the hedge portfolio is not normal. At least, we can
analyze the hedge effect via the standard deviation σ(∆Hb,val)

σ(∆Hb,val) = α0g0
√
σ2
s + σ2

gσ
2
s . (3.19)
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Obviously, the standard deviation could be reduced compared to the uncovered case in equa-
tion 3.8. Still, value changes due to spot price changes in first (rs) and second order (rsrg)
cannot be compensated with this type of hedge portfolio. In section 3.3.5 we will introduce an
appropriate measure for this remaining risk called Earnings-at-Risk i.e. the (1− β) quantile
of the distribution of cash flow changes after the Forward/Future hedge. In our example this
is exactly the quantile of the change of our hedge portfolio

EaRb,val1−β := q1−β(∆Hb,val). (3.20)

Note that β is usually larger than 50%. Then, we look at the left tail of the distribution which
is below zero. Hence, if we add the EaR number as a risk spread on top of the production
value for Tuesday, then we penalize tomorrow’s production and the Bellman equation from
equation 3.2 changes as follows

Ĉ0(x0, g0, 1) := max{x0, α0g0 + EaRb,val1−β }. (3.21)

The choice of β defines the risk appetite of the dispatcher and makes future outcomes less
valuable to him. In essence, the EaR figure is the amount of cash that can be potentially lost
by significant changes in the spot price.

Our dispatcher also needs to take care of the situation in delivery i.e. on Tuesday (we label
all corresponding figures with i). Let us still assume that our policy tells us to produce on
Tuesday and we entered into a value hedge i.e. we sold ∆G Future contracts to eliminate at
least the Value-at-Risk. On Tuesday, we will sell the Future for g0, but need to buy another
∆G MW on the spot market to meet the Future delivery. We also observe the new Future
price G1 = g1 and need to pay or receive the difference to the Monday quote. In addition we
sell our production amount of 1 MWh for the new spot price X1. Hence, the total cash flow
in delivery looks as follows

H i,val := Hval
1 (X1, g1, 1) = V1(X1, g1, 1) + ∆G(g0 −X1) + ∆G(g1 − g0)

= V1(X1, g1, 1)−∆G(X1 − g1)
= X1 −∆G(X1 − g1)
= (1−∆G)X1 + ∆Gg1.

(3.22)

The fact that the Tuesday cash flow is the production of 1 MWh priced with the Tuesday
spot price, hence , i.e. V1(X1, g1, 1) := X1 helps us to alternatively illustrate the previous
equation with the energetic position. Recall that the offsetting position in the Future contract
is ∆G = S0 = α0. This is not 1 MWh as it should not compensate the energetic position, but
the change in the generation asset value for Tuesday (we therefore called it a value hedge).
Figure 3.1 illustrates the situation for α0 > 1. Thus, we produce 1 MW with our power plant,
but sell α0 MW for the price of g1 to the market. Consequently we need to buy another
(α0−1) MW on the market to meet our volumetric obligation from the Futures contract. So,
we need to accept a negative cash flow of −(∆G−1)X1 = (1−α0)X1. Hence, the grey area is
our remaining position that is exposed to the spot price only. Then, the change in the hedge
portfolio in delivery can be described by the change of Tuesday’s spot price ∆X1. We want
to define the spot price change as the deviation from the initial expected spot price i.e. at
t = 0. In our situation the expectation of the Tuesday spot price is only dependent on the
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Figure 3.1.: Power plant and Future schedule on Tuesday for α0 > 1

Future price g0.

∆X1 := X1 − E[X1|g0]
= X1 − α0g0

= α0g0(1 + rg + rs + rgrs).
(3.23)

Note the similarity to equation 3.12. In our specific case both equations are identical. For the
general case we can at least state a close relation between the deviation of the spot price X1
around its mean, i.e. the Future price g0, and the deviation of the cash flow ∆V1(X1, g1, 1)
around its mean, i.e. the production value C0(x0, g0, 1). We will make use of this analogy in
section 3.3.2 and 3.3.4. Now, we can define the variance of the value hedge in delivery that
is defined by mere changes in the spot price ∆X1

∆H i,val := Hval
1 (∆X1, g1, 1) := (1−∆G)∆X1 + ∆Gg1

σ(∆H i,val) = |1−∆G|α0g0
√
σ2
s + σ2

g + σ2
sσ

2
g .

(3.24)

We can take the absolute term for (1 − ∆G) as we take the square root of a squared term
which stays positive. The stress factor α0 is usually between 0.5 and 2 being greater than one
during peak hours. Thus 0 ≤ |1−∆G| ≤ 1 and the standard deviation in delivery reduces to
exactly this fraction compared to the non-hedged figure before delivery (see equation 3.8).

Now, let us finally look at the second hedge portfolio that will guarantee the sale of our
entire produced energy amount and is therefore called volumetric hedge. We sell the Tuesday
production of 1 MWh on Monday for the Future price g0 independent of the spot price. To
be precise we only need to replace in equation 3.15 and 3.22 the Future delta ∆G by the
production amount, i.e. 1 MWh. Then the volumetric hedge before delivery looks as follows

Hb,vol := Hvol
0 (x0, g0, 1) := C0(x0, g0, 1)− g0 = (α0 − 1)g0

∆Hb,vol := Hvol
1 (X1, G1, 1)−Hvol

0 (x0, g0, 1)
= V1(X1, G1, 1)−G1 − (C0(x0, g0, 1)− g0)
= α0g0(rs + rg + rsrg)− g0rg

= α0g0(rs + (1− 1
α0

)rg + rsrg)

σ(∆Hb,vol) = g0α0

√
σ2
s + (1− 1

α0
)2σ2

g + σ2
gσ

2
s ,

(3.25)
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which will very likely result in a higher standard deviation and thus probably in a higher EaR
figure as well compared to the value hedge in equation 3.18 (for α0 = 1 both hedges would
match). The volume hedge will also entail a VaR figure before delivery. Again, we only look
at the value change contribution of the tradable product G, ∆Hb,vol

G

∆Hb,vol
G := Hvol

1 (x0, G1, 1)−Hvol
0 (x0, g0, 1)

= V1(x0, G1, 1)−G1 − (C0 − g0)
= (1 + rg)α0g0 − g0(1 + rg)− α0g0 + g0

= g0rg(1−
1
α0

)

(3.26)

The marginal distribution is normal and we can calculate the quantile analytically

VaRb,vol1−β := q1−β(∆Hb,vol
G ) = p1−βα0g0(1− 1

α0
)σg. (3.27)

During delivery, on the other hand, the volumetric hedge turns out to be quite efficient. Again
we just replace ∆G with 1 in equation 3.24 and observe no further spot price exposure as we
sold the entire production beforehand

H i,vol := Hvol
1 (X1, g1, 1) =: (1− 1)V1(X1, g1, 1) + 1 · g1 = g1. (3.28)

Hence, during delivery, there is no EaR as there is no spot price exposure left

∆H i,vol := Hvol
1 (∆X1, G1, 1) = 0

σ∆H i,vol = 0

EaRi,vol1−β := q1−β(∆H i,vol) = 0.
(3.29)

Table 3.1 summarizes the results. It also adds a simplified EaR calculation labeled with a tilde
( ˜EaR) that ignores the product of rg and rs in equation 3.7. Then the sum of the remaining
components is normally distributed and we can compute the quantile via the variance. The
table emphasizes the trade-off between the risk exposure before and in delivery for both
hedges. A volumetric hedge before delivery entails a higher VaR and a higher EaR compared
to the value hedge. But during delivery it allows to eliminate EaR completely. The decision
for one or the other is mainly driven by the difference of the two volatilities σs and σg. We
will therefore continue with a numerical example to illustrate the effect. The June 09 Base
contract at the EEX quoted for 33.75 EUR and we define all other parameters as follows:

g0 = 33.75 σg = 0.1 α0 = 0.7 β = 0.7 (3.30)

We choose a loss probability of (1 − β) = 30 % to indicate that we are not completely risk
averse (as would be the case for the regular VaR probabilities of 99 % or 95 %). Table 3.2
shows the corresponding risk figures for two different spot volatilities. The regular EaR figure
was calculated with 50000 trials. As expected the analytical ˜EaRβ figures are smaller in
absolute terms due to the missing second order effect. But even with a higher spot volatility
the difference is almost negligible. This might change if we introduce a correlation between the
spot and the Future price. We can also observe that both hedges have only minor influence
on the spot price risk before delivery (e.g. EaRβ(∆V0) = -2.893 EUR vs. EaRβ(∆Hb,val)
= -2.422 EUR and EaRβ(∆Hb,vol) = -2.433 EUR for σs = 0.2). Like in our example the
volatility of spot price changes is usually significantly higher than of the Future’s price and
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before delivery in delivery
σ(`) α0g0

√
σ2
s + σ2

g + σ2
sσ

2
g

VaR1−β(`) p1−βα0g0σg

q̃1−β(`) p1−βα0g0
√
σ2
g + σ2

s

q1−β(`) numerical
σ(∆Hval) α0g0

√
σ2
s + σ2

sσ
2
g |1− α0| α0g0

√
σ2
s + σ2

g + σ2
sσ

2
g

VaRval1−β 0 p1−β|1− α0| α0g0σg
˜EaRval1−β p1−βα0g0 σs p1−β|1− α0| α0g0

√
σ2
s + σ2

g

EaRval1−β numerical numerical
σ(∆Hvol) α0g0

√
σ2
s + (1− 1

α0
)2 σ2

g + σ2
sσ

2
g 0

VaRvol1−β p1−βα0g0(1− 1
α0

) σg 0
˜EaRvol1−β p1−βα0g0

√
σ2
s + (1− 1

α0
)2 σ2

g 0

EaRvol1−β numerical numerical

Table 3.1.: Risk figures before and in delivery

σs = 0.2 σs = 0.3
before del. in del. before del. in del.

σ(`) 5.304 5.304 7.504 7.504
VaR`1−β −1.239 −1.239 −1.239 −1.239
q̃`1−β −2.770 −2.770 −3.918 −3.918
q`1−β −2.893 −2.893 −4.025 −4.025

σ(∆Hval) 4.749 1.591 7.123 2.251
VaRval1−β 0.000 −0.372 0.000 −0.372

˜EaRval1−β −2.418 −0.831 −3.717 −1.175
EaRval1−β) −2.422 −0.868 −3.731 −1.207
σ(∆Hvol) 4.855 0.000 7.195 0.000
VaRvol1−β −0.531 0.000 −0.531 0.000

˜EaRval1−β −2.534 0.000 −3.704 0.000
EaRvol1−β −2.433 0.000 −3.732 0.000

Table 3.2.: Risk figures for (1− β) = 30 % before and in delivery (in EUR)
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therefore the Future fails to compensate the spot price risk no matter whether implemented
as a volume or value hedge. An indication for the small EaR difference between the value
and volume hedge before delivery is the variance. Both variances before delivery differ only
by the term (1 − 1

α0

2)σ2
g . In our example this is (1 − 1/0.7)20.12 ≈ 0.0018 which is almost

negligible compared to the dominating spot variance. Recall that the VaR figures merely
show the impact of the Future price on the Tuesday production. Therefore, as expected, they
are identical for changes in the spot price volatility. If we compare the sum of VaR and EaR
before and in delivery, we can see that the volume hedge is by |-0.53-2.433| - |-2.422| = 0.544
EUR higher before delivery, but by |0| - |-0.372 - 0.868| = -1.24 EUR smaller in delivery
compared to the value hedge. Hence, our dispatcher might favor the volume over the value
hedge. Then, according to equation 3.21 he will produce on Monday instead of Tuesday if
the current price x0 is higher than α0g0 + EaR = 0.7 · 34− 2.534 = 21.27 EUR.

This example was meant to introduce the basic notion and relation between EaR, VaR,
spot and Future price risk as well as value vs. volume hedge. It also illustrates that even in
the simplest setup of a single period, two random variables and a static cash flow definition a
proper analytical description is already beyond the straightforward calculation with normal
distributions. Proceeding with the multi-period case and dynamic dispatch rules like in the
subsequent sections the general production value and ACF become dependent on a vector
δ covering of all relevant initial technical parameters, i.e. C0(x0, g0, δ), V0(x0, g0, δ). Conse-
quently we cannot describe the change in option value ∆C0(x0, g0, δ) and ACF ∆V0(x0, g0, δ)
(see equation 3.9 and 3.12) analytically any longer, let alone their distributions. Therefore,
for the remaining chapters, we will follow the basic idea of the Taylor series framework that
describes small variations around an initial function value with a series of derivatives with
respect to its function parameters. As we do not impose any restriction on the nature of
C0(x0, g0, δ) and V0(x0, g0, δ) we cannot even be sure that their derivatives actually exist. In
our specific example, we could at least calculate the first order derivative analytically with
respect to the Future price (see equation 3.14). In section 3.3.1 we show how to calculate
this derivative numerically. Similarly we will compute the sensitivity of ∆V0(x0, g0, δ) with
respect to spot price path deviations around the fixed Future price g0 (see sections 3.3.2 and
3.3.4).

Our example showed that we are not only able to calculate the associated risk of a dispatch
decision, but are also able to let the risk impact the dispatch decision itself (see equation
3.21). The situation becomes more difficult in the multi-period setup where the current stage
price will become unknown once we iterate one step back. In other words, the Monday price
x0 in equation 3.21 should also be penalized as it will become again a random variable X0
once we iterate back to Sunday. Otherwise, we would tend to exercise right away and would
pick less profitable hours. This will certainly reduce the potential losses. But in this way the
expectation and thus the option value will shrink even more. We will investigate this conflict
in more detail in section 3.4.3.

A multi-period decision problem will also result in a more elaborated generation schedule
with on- and off-days and possibly varying volume profiles that cannot be hedged any longer
in advance with a simple block production (in our example 1 MW flat throughout the de-
livery period) which in reality, however, is the only available product on the Future market.
Consequently, a volume hedge, as efficient as it turned out to be in our example, is often
not possible and some spot price risk remains. In the following two chapters we therefore
investigate hedging strategies (sections 3.3.4 and 4.5) for this remaining spot price risk as
well. But first, we describe the electricity price curve design and define the introduced risk
figures in more detail.
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3.2. Hourly Forward Curve Engineering
Since the deregulation of electricity markets about ten years ago, electricity price modeling
became a popular research field. A profound risk management starts with the construction of
the Forward curve. Generally speaking, this curve should incorporate all factors that impact
the price. It is the foundation for any risk analysis and valuation. The price behavior can be
described from two different directions. Macroeconomics uses equilibrium and game theory
which try to explain price dynamics by the interaction of market participants and exogenous
factors. In case of energy markets these are for instance weather, political implications (clean
energy initiatives, deregulation, new pipelines, ...), etc. These models usually project trends
or forecast prices on a larger scale (usually years) and a rather meant for strategic decision
making. Our focus, however, is on trading and therefore we are rather interested in a short
to mid term horizon with fine granularity down to an hourly level. This is rather a task for
econometric models. They rely on plain time series of historic data and current prices only
and try to identify the nature of the underlying dynamics using adequate tools from stochastic
calculus. It is this characteristic of prices and in particular their underlying risk factors that
we are interested in for our further analysis.
A good overview of recent econometric models for electricity prices can be found in [58].

The main characteristics of electricity prices are

• Hourly Granularity

• Mean-Reversion

• Seasonality

• High Volatility (time dependent or stochastic)

• Spikes

Seasonality results from the load demand that changes intra-day (worktime vs. freetime
hours), intra-week (weekday, weekend) and intra-year (the four seasons) and are mainly driven
by weather conditions. Mean-reversion is directly linked to seasonality as prices deviate, but
tend to return to the seasonal shape. The deviation, though, can be very high. Due to its
non-storability electricity prices have a strong fluctuation resulting in a high volatility. In case
of shortages or oversupply prices can suddenly jump up or down from one hour to the next.
Even negative prices can occur. That is the case if a utility registered more power supply
with the grid operator than was actually used by his customers. Then the utility might be
willing to pay another market participant for taking his power so that he can balance out
his position. The grid operator’s fee for stabilizing the grid despite the oversupply could be
instead significantly higher.
Stochastic calculus provides various instruments to capture these electricity price char-

acteristics. Figure 3.2 provides the most popular tools. Basically one can differ between
jump diffusion, regime switching, autoregressive and n-factor models. Often one can find
a combination of those. In particular the spikiness of electricity prices draws a lot of aca-
demic attention since this is a unique feature compared to other time series data in financial
markets. A popular approach is to combine Merton’s jump diffusion model [51] with strong
mean-reversion in order to generate spikes. Deng investigated this approach in several papers,
see [22] and references therein. Other authors like Bierbrauer et al. [11] describe the jumps
with two mean-reverting processes that are linked via a probability transition matrix. This
matrix describes the probability to stay and to shift between the two regimes/price processes.
In fact, one can observe that a spike is often joined by a period of high volatility which in deed
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Figure 3.2.: Electricity Price Models

can be interpreted as a different price dynamics. Knittel et al. [42] approach this observation
from a different angle by introducing a stochastic volatility model. In particular they use
an EGARCH process which belongs to the family of autoregressive models. These kind of
models are adequate to describe clustering of volatility. In general they differ between a long-
and short-term volatility. This leads us to the last category of models we want to introduce
which are the so called n-factor models. These models also differentiate between a long and
a short term evolution, however, not for the volatility, but rather the price directly. In the
simplest situation (1-factor model) the long-term drift can be described deterministically and
only the short term fluctuations need a stochastic description. If the drift will be modeled as
a nested stochastic process as well, then we talk about a 2-factor model. Lucia and Schwartz
[47] investigated these two models for Nordpool electricity spot prices. Burger et al. [14]
introduce the customer demand as a third factor to the spot price dynamics. In deed, merely
looking at the correlation one can prove the strong interdependence between hourly prices
and customer demand.
Independent from the specific selection of one of the presented stochastic processes, there

is a standard approach on the general price modeling framework. It basically consists of two
steps. First, one needs to generate a forward curve from the observable monthly, quarterly
and yearly Futures prices. Then one imposes day types to create hourly shapes resulting
in the so called hourly price Future curve (PFC). This curve represents the expectation of
the hourly spot prices. Finally a spot price process will be added that describes the hourly
random behavior. This is where the different price process models make a difference. Figure

Figure 3.3.: Price Forward Curve Construction

3.3 illustrates the construction of the PFC in more detail. The first picture to the left shows
the Forward curve with its monthly seasonal shape across the year. Monthly prices are not
available for this long time period and need to be constructed from quarterly and yearly
Forward and Futures prices via non-arbitrage relations (so called bootstrapping).
Both contract types, Forwards and Futures, provide a flat delivery schedule (e.g. 1 MW

per hour) for a specific price band (usually base or peak) and delivery period (monthly,
quarterly and yearly). Futures are officially quoted by the exchange and are mainly financial
contracts with daily marking to market and margin payments. Hence, there is no discounting.
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Forward contracts are bilateral trades with physical settlement. They provide the same
delivery structure, but usually on a larger scale (e.g. the exchange only offers the next 8
months, while the OTC market offers monthly contracts for at least the next 12 months).
Forward contracts settle against the average of the historical spot prices for the relevant
delivery period. The Futures represent the expected average spot price instead. At the
European Energy Exchange (EEX) a Future contract is also traded during delivery. Within
the delivery period the Futures price is an average of the historical prices from the beginning
of the month up to today and the expected price for the rest of the month. On the last
delivery day the Futures and Forward prices match. Picture 2 illustrates their relation. It
shows two individual hourly spot price trajectories. The dotted lines represent the average
price of each trajectory. These are two realizations of the Forward price. The bold line in
between is the expectation of both Forwards i.e. the Future price.3

The hourly PFC {Ht}t describes the expected spot price at a future time t conditional
on today’s Futures prices Gj0 (with j = 0, ..., J number of Futures) by applying determin-
istic scaling factors αt to create an hourly shape that reflects the different seasonalities
(working/non-working hours, weekday/weekend, summer/winter). These factors incorporate
statistical information about historical electricity prices, but also external data like current
temperature and water levels in reservoirs. Each Future price Gj0 is only valid for a certain
future time period Tj = {tj0, ..., T j}. Note that Tj is a set of not necessarily subsequent
hours. A peak Future contract, for instance, will skip the off-peak hours between 20:00 and
8:00. We therefore set j := j(t) to automatically pick the relevant Future j for hour t, i.e.
the contract with the relevant delivery period where the current hour t falls into.The spot
price risk, however, is originated in individual hourly fluctuations. It therefore requires yet
another random factor St that stresses the PFC on an hourly basis to generate the hourly
electricity price Xt := Xt(St, Gj0) (see also the most right picture of Figure 3.3). From now
on, we address to St as the spot price component of the electricity price. It is a stress factor
with a mean of 1 and an hourly changing variance. The following equation also introduces
the normalization factor ηj that we will explain in equation 3.32

Xt(St, Gj0) = StαtG
j
0ηj

Ht(Gj0) := E[Xt|Gj0] = E[St]αtGj0ηj = αtG
j
0ηj .

(3.31)

Note that in the previous equation we implicitly assume independence between St and G(0)
0 .

Hence a shift in the Futures price ∆Gj0 = Gj0 + h for sufficiently small h acts like a change in
spot price level (the entire PFC within period Tj moves up or down). Formally each spot hour
should be treated as an own contract and hence an own risk factor since each hour is traded
individually on the day ahead market at the exchange. We will come back to this notion
in section 3.3.4. Equation 3.31 introduces the normalization factor ηj . Normalization is one
method to handle the fact that there is no unique probability measure for risk neutral pricing
in electricity markets since power is not storable and hence cash and carry arbitrage fails.
The latter assumes that the expectation of a future spot price is equal to the current spot
price compounded with the risk free interest rate r i.e. E[Xt|X0 = x0] = x0e

rt. Instead, in
electricity markets one assumes that the price of a Future Gj0 reflects the current expectation

3In reality Forward and Future do not have the straightforward relation. This standard modeling approach
ignores that the Forward price additionally incorporates the impact of discounting (monthly vs. daily
margin payments) and credit spreads (counterparty risk in bilateral trades).
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of the average future spot prices for the corresponding delivery period Tj

E

 1
|Tj |

∑
t∈Tj

Xt

∣∣∣Gj0 = gj0

 != gj0

1
|Tj |

∑
t∈Tj

αtηjg
j
0

!= gj0

⇒ ηj = 1
|Tj |

∑
t∈Tj

αt,

(3.32)

where |Tj | stands for the number of hours in set Tj . If the adjustment factors αt are already
normalized then the normalization factor ηj is 1. There is a separate normalization factor for
each Future price Gj0. Note that Xt is automatically normalized if Ht is since St has a mean
of 1. Finally, we want to describe the relation between the Forward and the Future price.
The Forward price F j0 is the average price across all hours of the associated delivery period
Tj = {tj1, ..., T j}. It is therefore also called the delivery price

F j0 = 1
|Tj |

∑
t∈Tj

Xt. (3.33)

From equation 3.32 and 3.33 we can derive the following relation

gj0 = E[F j0 |G
j
0 = gj0]. (3.34)

So we can think of the Forward price to be an individual realization of the delivery price
whereas the Future price is the expected delivery price. Figure 3.4 illustrates this mechanism.
The graph shows the first (j=0) Future G0 of the entire production period. In this example
we look at a base contract that delivers power at every hour, hence T0 consists of subsequent
hours {t00, t00 +1, ..., T 0}. In our example in chapter 4 this will be March, hence we have T0:=.
{1 March 00:00,...,31 March 23:59}. We also assume that today t=0 is the first hour of the
first day of the Future’s delivery period, hence t00 := 0. We observe the spot price x0 and the
Future price g0

0. Furthermore the graph shows two sample spot price paths {x1
t }t and {x2

t }t
starting from the known price x0. The average price of these two trajectories f0,1

0 and f0,2
0 we

declared to be two realizations of the Forward price F 0
0 . If we had only two price scenarios,

then the normalization would make sure that the average of both forward prices will be again
the Future price indicated in the graph by the similar distance of the two Forward prices
(dashed lines) from the Future price (solid line), one time below and the second time above
the current Future price. Note that we found a similar relation in section 2.1 between the
individual cash flow V ∗0 (x0, N) of a generation schedule and the corresponding expected cash
flow C∗0 (x0, N), i.e. the swing option value. We will make use of this analogy in section 3.3.2
and 3.3.4.
Now, let us illustrate the mechanism for our example of the previous chapter. For simplicity

let us assume that there is only a single Future price G0 := G0
0 with T0 := T that we observe

at the beginning of the corresponding delivery period i.e. t00 := t0 := 0. Then, let us try to
identify the factors G0, αt and St for our mean-reverting price process from equation 2.7 that
we rename to X̃t in order to prevent a potential confusion with our newly introduced price
Xt from equation 3.31. We can write our former Ornstein-Uhlenbeck process as

X̃t = X̃
(1−κ)
t−1 eσεt

εt ∼ N(0, 1),
(3.35)
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Figure 3.4.: Relation between Future, Forward and spot price.

where εt are i.i.d. If we rewrite

X̃t = X̃t

E[X̃t]
E[X̃t], (3.36)

we can express Xt from equation 3.31 in terms of X̃t

Xt = St · αt ·G0 · η0, t = 1, ...., T

Xt =
(

X̃t

E[X̃t]

)
(E[X̃t]) · 1 · η0.

(3.37)

Thus, we can set St := X̃t
E[X̃t]

and αt := E[X̃t]. Note that indeed E[St] = 1 as required. In this
simple example the Future price is G0 = 1 and the adjustment factor αt is the expectation of
each individual hourly price according to the Ornstein-Uhlenbeck process. The normalization
factor η0 becomes a function of the entire mean-reverting process {X̃t}t>0

η0 = η0({X̃t}t>0) := 1
|T|

∑
t∈T

E[X̃t]. (3.38)

So far we used 1000 time steps. Without loss of generality we now reduce the period to 720
reflecting the number of hours for a 30 day month. Furthermore we assume that there is a
tradable Futures and Forward contract for that period. The average of the 720 prices of a
single trajectory represents one possible outcome for the Forward price f i0 = 1/720

∑720
t=1 x

i
t, i =

1, ..., 1000. Usually the price process would be normalized and the average of all Forward prices
f i0 should be again 1. The price process of our previous examples was not normalized therefore
the normalization factor η0 was not applied so far. Now, we want to create arbitrage free spot
prices and compute the normalization factor according to equation 3.32. As g0 = 1 we get

η0 = 1
1

720
∑720
t=1

[
1

1000
∑1000
i=1 xit

] (3.39)

and weigh each price of our price scenarios with this factor.
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3.3. Risk Measures

In this section we want to quantify the spot price risk and propose two type of risk measures.
First, a definition of spot price sensitivity suitable for numerical valuation models (see section
3.3.2 and 3.3.4) and second a quantile defined on a specifically tailored loss distribution (see
section 3.3.5) that reflects the mere loss impact by spot price changes. In context of Taylor
series expansion a sensitivity is the first derivative on an analytical function at a fixed function
value with respect to one of the input parameters and thus describes small changes around
the fixed function value by small shifts of the function’s initial input parameters. In our
situation the fixed function value was so far the swing option value for a fixed start price
X0 = x0, i.e. C∗0 (x0, N). Recall that we could solve the underlying optimization problem
only numerically and were only able to come up with an approximation C0(x0, N). So, in
fact, we do not have a functional description of the true option value. This will be even more
true if we move from the swing option to the more complex real option value of a power
plant. The following sub sections will therefore propose appropriate sensitivity definitions
for a numerical rather than analytical valuation framework. In section 3.2 we introduced a
more general description of the price process and differed between the Future and a spot price
component. As we want to look at the spot price risk only, we generate future spot prices for
the fixed current Future price. For simplicity from now on we work with a single Future and
Forward price only F0 := F 0

0 , G0 := G0
0, but our results apply for an entire term structure of

Future prices {Gj0}j as well. Hence, our currently observed Future price is G0 = g0. Hence,
the known Future price g0 becomes another input parameter of the real option. Additionally
we introduce the parameter vector δ that covers individual technical constraints of a power
plant4. So we generalize the swing option C∗0 (x0, N) to a real option C∗0 (x0, g0, δ). Accordingly
we transform the definition of the ACF as well, i.e. we expand V ∗0 (x0, N) to V ∗0 (x0, g0, δ).
Like for the swing option we can compute the optimal real option value C∗0 (x0, g0, δ) via the
expectation of the optimal ACF V ∗0 (X0, G0, δ) conditional on the current spot price X0 = x0
and Future price G0 = g0

C∗0 (x0, g0, δ) := E[V ∗0 (X0, G0, δ)|X0 = x0.G0 = g0]. (3.40)

Now, we want to introduce ∆V ∗0 (x0, g0, δ) as the deviations of the individual cash flow real-
izations V ∗0 (x0, g0, δ) from their mean, i.e. the real option value5

∆V ∗0 (x0, g0, δ) := V ∗0 (x0, g0, δ)− C∗0 (x0, g0, δ). (3.41)

Note that ∆V ∗0 (x0, g0, δ) must not be confused with changes ∆C∗0 (x0, h, δ) of the real option
value itself i.e. changes of the expected cash flow that in our model can only result from small
changes in spot price level i.e. the Future price ∆g0 = g0 + h with h sufficiently small

∆C∗0 (x0, g0, δ) := C∗0 (x0, g0 + h, δ)− C∗0 (x0, g0, δ). (3.42)

We will explain the difference between equation 3.41 and 3.42 in more detail in the subsequent
sections. In practice, we do not know the true real option value C∗0 (x0, g0, δ) nor the related
cash flows V ∗0 (x0, g0, δ). Our numerical results therefore rely on our lower bound approxima-
tions. For this reason all our numerical examples in this chapter will work with C0(x0, g0, δ)

4See in particular section 4.5 for different implementations of vector δ.
5Recall that V ∗

0 (x0, g0, δ) is still a random number i.e. it has realizations for each price path {Xt}t separately.
x0 only indicates that all price paths start with the same price X0 = x0 and are generated from the same
Future price g0.
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and V0(x0, g0, δ) instead of C∗0 (x0, g0, δ) and V ∗0 (x0, g0, δ).6

3.3.1. Future Delta

To clarify the difference to our new sensitivity classical sensitivity definitions in section 3.3.2
and 3.3.4 we briefly recall the classical sensitivity definition, i.e.the Future delta ∆G. It
describes small changes of the real option value ∆C∗0 (x0, g0, δ) around the initial contract
value by small changes around the initial Future price ∆g0 := g0 + h

∆C∗0 (x0, g0, δ) = ∆G h+ εG, (3.43)

with ∆C∗0 (x0, g0, δ) as defined as in equation 3.42 and εG being the hedging error. Technically,
the Future delta ∆G is the first derivative of the real option value C∗0 (x0, g0, δ) with respect to
the Future price. Usually this derivative cannot be computed analytically and rather requires
a numerical approach. A commonly used method is the finite difference formula (see for
instance [34])

∆G = ∂C∗0 (x0, g0, δ)
∂g0

≈ C∗0 (x0, g0 + h, δ)− C∗0 (x0, g0 − h, δ)
2h , (3.44)

with h sufficiently small. Recall that the previous equation assumes a single Future price g0.
If the dispatch schedule covers j=0,..,J Future delivery periods then the method involves a
revaluation for each Future contract j on the PFC two more times and hence requires another
two sets of price scenarios for each Future contract. A swing option for a yearly delivery, for
instance, has exposure against 24 Future contracts (12 months base and peak) leading to a
total of 48 recalculations of the option value. Obviously, this calculation is computationally
expensive. There is a broad research for finding methods that speed up the calculation of
Monte-Carlo greeks like variance reduction schemes (control variate techniques, stratified
sampling, etc.) and quasi random sequences. A good overview can be found in Hull [34]
and Glasserman [29]. We will not focus on the different delta calculations since they are well
understood. We only want to mention one peculiarity of the delta interpretation in energy
markets. Energy traders usually do not look at the mere Future delta, but rather on the
delta-weighted volume. Since delta for a call option is between 0 and 1 being close to 0 if
out of the money (otm) and close to 1 if in the money (itm), the delta can be interpreted as
the probability of exercise. Hence, multiplying the delta by the total volume of the Future
provides an indication of the energy contribution that can be expected from this option. For
a swing option, however, where the Future price is not the true underlying of the option, this
interpretation does not hold any longer. We want to illustrate the relation between delta and
exercised energy by continuing with our example from the previous chapter.
We identified in equation 3.37 that our price scenarios from the previous chapter assume a

Future price of 1. We apply the finite difference formula and use a deviation of 1 % from the
initial Future price g0 = 1 that is h = 0.01. In equation 3.44 we can generate the new up and
down price scenarios by simply multiplying our existing spot scenarios with the new Future
price: Xu

t : Xt(St, g0 + h) = 1.01Xt, X
d
t := Xt(St, g0 − h) = 0.99Xt (recall that the change in

the Future price results in an entire shift of all spot prices). For these two new sets of prices
we compute the delta for 1, 360 and 720 swings. In our last chapter, we only investigated
itm option values since the strike K was at 0 with the price deviating around 1. Now, we
will investigate at the money (atm) (K = 1) and otm situations (K = 2.5) as well. Table 3.3

6We also skip the underline that we used in the previous chapter as from now on we will only look at lower
bounds.
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Swings K MWDelta
[MW]

Delta
[MWh]

K MWDelta
[MW]

Delta
[MWh]

K MWDelta
[MW]

Delta
[MWh]

1 0 0.0063 4.556 1 0.0064 4.6052 2.5 0.0060 4.331
360 0 0.7843 565.09 1 0.7701 554.48 2.5 0.1061 76.378
720 0 1.1358 817.81 1 0.7870 566.61 2.5 0.1061 76.378

Table 3.3.: Future delta

shows the regular option delta ("MWDelta" in MW) and the volume weighted delta ("Delta"
in MWh). The former can be interpreted as the number of Future contracts a trader needs
to buy/ sell in order to hedge his short/long position. In terms of a generation schedule it
translates to a baseload schedule delivering MWDelta at each hour. The total energy of this
schedule (delivery hours x hourly capacity) is identical to Delta (volume weighted delta) and
therefore we assign the unit MWh. If we look at the single exercise with strike K = 0 we can
see that Delta is more than four times the size of the exercisable energy amount (4.55 MWh
instead of 1 MWh). Hence, the common interpretation of the delta to be the resulting energy
of the option contract is misleading for swing options. For the itm option with full flexibility
we would have expected that it will behave like a regular Future contract. All hours are in the
money so they will all be exercised. In that situation we would expect a perfect hedge with a
Future. Instead we observe still a higher energy delta: 817 MWh instead of 720 MWh. This
is due to the fact that our price paths still follow our initial definition of the last chapter and
hence are not normalized. The situation changes if we apply factor η0 of equation 3.32. Table
3.4 presents the deltas for the normalized price scenarios. Now, we retrieve the desired result

Swings K MWDelta
[MW]

Delta
[MWh]

K MWDelta
[MW]

Delta
[MWh]

K MWDelta
[MW]

Delta
[MWh]

1 0 0.0056 4.0114 1 0.0058 4.1622 2.5 0.0051 3.6812
360 0 0.6910 497.51 1 0.5990 431.27 2.5 0.0583 41.943
720 0 1 720 1 0.5990 431.27 2.5 0.0583 41.943

Table 3.4.: Future delta (Normalized Spot Prices)

of 1 MW or 720 MWh respectively for the itm option with 720 swings. This option behaves
almost like a regular European option on a Future contract with the typical MWDelta of 1
for itm, almost 0 for otm and around 0.5 for atm. Still, for 1 and 360 swings we observe
higher deltas compared to a standard option on a Future. We will explain this behavior in
the next section (see in particular equation 3.49).

3.3.2. Forward Delta

As we have seen in section 3.3.1 the Future delta can only cover changes of the expected cash
flow by changes in the expected average spot price. However, as outlined in equation 3.41, we
are rather interested in the impact of spot price changes only i.e. changes of the ACF around
the real option value for a fixed Future price G0 = g0. We want to relate these individual cash
flow deviations to the deviations of the individual spot price paths {Xt}t from their mean, i.e.
the fixed Future prices g0 (see also equation 3.31). Theoretically we could look at all hourly
deviations ∆Xt := Xt− g0 separately, but in practice, we cannot hedge individual spot prices
since there is no hourly Future contract. Then at least we want to hedge against the deviation
of the delivery price, i.e. the average of all spot prices of the same price scenario along the
delivery period (e.g. for a 30 days month these are 720 hourly prices). The individual delivery
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price reflects the spot price behavior to a larger extend than the expected delivery price only.
We can create this hedge with a Forward contract as this type of contract exactly settles
against the delivery price for the specific delivery period.

Definition 3.3.1 (Forward Delta). The Forward delta ∆F is the slope parameter of a lin-
ear least-square regression7 to describe cash flow realizations V ∗0 (x0, g0, δ) of a real option
C∗0 (x0, g0, δ) with respect to Forward to Future price differences (F0 − g0)

V ∗0 (x0, g0, δ) = C∗0 (x0, g0, δ) + ∆F (F0 − g0) + ε∗F , (3.45)

where x0 is the current spot price, g0 and F0 are defined in equation 3.33 with j = 0, δ being
a vector of further option parameters and ε∗F is the residual.

The Forward delta measures the impact of Forward price deviations from the corresponding
fixed Future price F0 − g0 on the ACF of a real option. Let us compute the Forward delta
for our swing option example. We assume that the delivery period is covered by one Forward
contract and we work only with normalized prices as motivated in the previous section.
Table 3.5 shows the results. Like for the Future Delta we observe significantly higher energy

Swings K Option
Value

Delta
[MWh]

K Option
Value

Delta
[MWh]

K Option
Value

Delta
[MWh]

1 0 4.0114 8.7170 1 3.0142 8.4713 2.5 1.6041 8.4154
360 0 497.506 541.761 1 142.982 482.335 2.5 7.5946 66.7864
720 0 720 720 1 142.982 482.335 2.5 7.5946 66.7864

Table 3.5.: Forward Delta

deltas compared to the number of available swings. Some Forward Deltas are even higher
than the ones we computed for the Futures. This behavior can be explained if we recall
that the individual cash flows V ∗0 (x0, g0, δ) are the result of applying the optimal exercise
strategy on the associated price trajectory {Xt}t. In context of a swing option we defined the
optimal exercise strategy as π∗0(N) (see also equation 2.1) that we now want to interpret as
an electricity schedule {L∗t }t with

L∗t :=
{
L t ∈ π∗0(N)
0 otherwise.

(3.46)

where L is the fixed swing size in MW (1 MW in our example) that we apply at a stopping
point τ∗k (0, N) ∈ π∗0(N). Therefore we can interpret each cash flow to be the value of a Forward
contract with a specific load profile L∗t and a fixed negative spread K on the Forward price

V ∗0 (x0, N) =
T∑
t=0

(Xt −K)L∗t =
T∑
t=0

(XtL
∗
t )−K

T∑
t=0

(L∗t ), (3.47)

with V ∗(x0, N) defined in equation 2.9. The finite sequence {xit, l
∗,i
t }t, i fixed, describes one

possible price-schedule scenario for one realization of the Forward price f i0 = 1/T
∑T
t=0 x

i
t.

Similar to equation 3.31 we can express the spot price as a function of the Forward price by
7Throughout this entire thesis we only work with the estimator of the regression parameter that we calculated
from concrete realizations i = 1,...,I of the random value pairs (Ft − g0, V

∗
t (xt, g0, δ), i.e. of the Forward

price and ACF. Therefore, whenever we use ∆F in this thesis we actually refer to the estimator of the
regression parameter that varies with every new data set unlike the true regression parameter.
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introducing an individual shift S̃t on the Forward price Xt = S̃tF0
8. Thus, we can continue

equation 3.47 with

V ∗0 (x0, N) =
T∑
t=0

(S̃tL∗t )F0 −K
T∑
t=0

(L∗t ). (3.48)

For each price path we know the individual ACF and Forward price and therefore can calculate
for each path the derivative of the ACF with respect to the Forward price as

∂vi,∗0 (x0, N)
∂f i0

=
T∑
t=0

(S̃tL∗t ). (3.49)

This summation varies with every price trajectory and is not identical to the Forward delta
∆F , but it will help to illustrate the mechanism. If S̃t was always 1 then all hourly prices
would match the Forward price F0 and the previous equation would be at maximum the sum
of all delivery hours times the swing size L (

∑T
t=0 L

∗
t = T · L). Of course, the optimal policy

picks hours with high prices above F0 i.e. S̃t > 1 and then the sum can easily exceed the total
number of swings (recall that Figure 3.1 illustrates this effect between value and volume hedge
as well). We can see this effect most significantly for the single swing (American option). In
order to hedge 1 MWh we need to invest more than 8 MWh in the Forward contract. For
the single itm swing option the underlying is really merely one delivery hour. The fluctuation
of a single hour can only hardly be represented by the Forward price i.e. the average spot
price across the entire delivery period. The more swings are available the more the resulting
schedule resembles a Forward contract. Already for 360 swings which represent half of the
delivery period we can observe that the energy delta with 541 MWh is less than 50 % higher
than the exercisable amount of 360. For the single option it was 800 % instead. For 720
swings and strike K = 0 the option behaves like a Forward. Then the option premium is
simply the average of all Forward prices (this is 1 in our case) multiplied by the delivery hours
i.e. 720.

3.3.3. Volumetric Delta

So far, we looked at value hedges that will offset changes in the power plant cash flow or
expected cash flow. As illustrated in the introductory example in section 3.1 we do not only
need to take care about the mere monetary value, but also about the physical energy that
comes along with both the dispatch schedule and the hedging instrument. The volumetric
hedge therefore seeks for compensating the energy resulting from the generation schedule by
selling Forward contracts F0 of the same total energy amount. In section 3.3.2 we explained
that each individual cash flow V ∗0 (x0, g0, δ) is the result of a specific price-schedule scenario
(xit, lit)t. Analogously, the pairs (f i0, w∗,i) describe one possible Forward price-energy scenario
with w∗,i :=

∑T
t=0 l

∗,i
t . Note that in case of all S̃t = 1 in equation 3.49, then w∗ would

be identical to the forward delta. This specific relation makes us interpret the produced
energy amount as a sensitivity measure as well that we call volumetric delta. We therefore

8Note that S̃t 6= St for St is defined as a relative shift with respect to Ht = αtG0η0 (see also equation 3.31)
whereas S̃t is a relative shift with respect to F0.
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alternatively replace in equation 3.41 the Forward delta ∆F with the volume delta ∆w

∆w := E
[
T∑
t=0

L∗t

]
≈ 1
I

I∑
i=0

T∑
t=1

l∗,it

s.t.
V ∗(x0, g0, δ) = C∗(x0, g0, δ) + ∆w(F0 − g0) + ε∗w,

(3.50)

with εw being the hedging error. We continue our example and add the volumetric delta for
our three swing options. The volumetric delta gives a good indication how deep in-, out- or

Swings K MWDelta
[MW]

Delta
[MWh]

K MWDelta
[MW]

Delta
[MWh]

K MWDelta
[MW]

Delta
[MWh]

1 0 0.0014 1 1 0.0014 0.998 2.5 0.0013 0.94
360 0 0.5 360 1 0.4004 288.29 2.5 0.0191 13.733
720 0 1 720 1 0.4004 288.29 2.5 0.0191 13.733

Table 3.6.: Volumetric Delta

at-the-money a swing option really is. As we can see for K = 2.5, we would first think that
the option is way out of the money. But there are single spot prices within the 720 hours that
exceed the strike price nevertheless. Therefore we still expect almost the full energy amount
to be exercised (0.94 MWh) for a single swing right. However, as soon as we add more swing
rights, we quickly realize that not many spot prices can make it above K = 2.5 and therefore
in average not more than 14 swings (13.73) will ever be exercised no matter whether we have
360 or 720 swings available.

3.3.4. Synthetic Spot Delta

The sensitivities we introduced so far are not able to capture the impact of individual hourly
price fluctuations on the ACF. Even the Forward delta can only capture changes in the
average spot price. A delta calculation should usually rely on the price of a tradable product.
Then the delta tells us the amount to invest in this hedging product. Hourly spot price
products, however, are only available on the day ahead market. However, the sensitivity of
these quoted spot prices for tomorrow on the real option value of a monthly or even yearly
production period is certainly negligible. We are rather interested in a spot sensitivity that
captures an impact on the entire production period. A useful spot delta should also consider
the effect of day types which could be viewed as separate products. The latter leads to the
idea of treating hours of the same day type as one single artificial product p. We could treat,
for example, hour 9 on weekdays as one separate contract. Then we implicitly assume that
prices of hour 9 move Monday through Friday in parallel. We could also group neighboring
hours together like hour 9-11 as long as these hours are sufficiently correlated. To be precise,
we define the synthetic product price Xp as the average of the associated underlying spot
prices Xt that belong to this product

Xp({Xt}t) := 1
|Tp|

∑
t∈Tp

Xt Tp ⊂ {0, ..., T}. (3.51)
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Likewise we can define hp as the average of the corresponding hourly curve adjusted prices ht
for a fixed Future contract G0 = g0

hp({ht(g0)}t) := 1
|Tp|

∑
t∈Tp

ht(g0) Tp ⊂ {0, ..., T}. (3.52)

Now, we introduce a sensitivity measure in terms of the deviation of Xp from hp which leads
to the following definition:

Definition 3.3.2 (Synthetic Spot Delta). The synthetic spot deltas ∆p are the slope pa-
rameters of a P-dimensional linear least-square regression9 to describe cash flow realizations
V ∗0 (x0, g0, δ) of a real option value C∗0 (x0, g0, δ) with respect to spot price deviations Xp from
the fixed hourly Future price curve hp; p = 1,..,P are time buckets within the exercise period
and Xp and hp are the average price of the underlying spot prices Xt and Future prices ht in
time bucket p

V ∗0 (x0, g0, δ) = C∗0 (x0, g0, δ) +
P∑
p=1

∆p(Xp − hp) + ε∗, (3.53)

where x0 is the current spot price, g0 and F0 are defined in equation 3.33 with j = 0, Xp and
hp are defined in equations 3.51 and 3.52, δ being a vector of further option parameters and
ε∗ being the residual.

Figure 3.5.: Cash flow vs. spot price deviations approximated via the spot delta for the
synthetic product "Hour 9-11".

Figure 3.5 presents an example taken from our numerical analysis in section 4.5 where we
define P = 4 artificial products: "Hour 9-11", "Hour 12", "Hour 13-17", "Hour 18-20". The
graph plots the spot price deviations of hours 9 - 11 from the hourly PFC, i.e. (X9−11−h9−11),

9Throughout this entire thesis we only work with an estimator of the regression parameter that we calculate
from concrete realizations i = 1,...,I of the random value pairs (Xp − hp, V ∗

t (xt, g0, δ), i.e. of the synthetic
product price and ACF. Therefore, whenever we use ∆p in this thesis we actually refer to the estimator of
the regression parameter which varies with every new data set unlike the true regression parameter.
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against deviations of the ACF from the real option value ∆V0(x0, g0, δ)10 for the delivery
month of March. The cloud is based on 1000 spot price scenarios. In addition we see the
approximation of this cloud via linear approximation using the synthetic spot delta ∆9−11 as
the slope parameter. The graph illustrates the linear behavior of the cash flow deviations.
We interpret the coefficients ∆p as the spot price sensitivity of the cash flows of the real

option with respect to price shifts in the corresponding time window p. We will later call
ε∗ the open spot price exposure (see section 3.3.5). Xp is an average price of random spot
prices and therefore is random as well whereas hp is computed from the fixed (adjusted)
Future price of the relevant delivery hours and therefore is non-random. Note that for P =
1 and T1 = {0, ..., T} we receive the Forward contract such that the Forward delta ∆F is a
special case of the more general synthetic spot delta definition ∆p. As explained this artificial
product does usually not exist in the market and cannot be immediately used for hedging.
However, we will show that the spot delta figures will help us to find an appropriate swing
option to hedge power plants with different technical and energetic constraints. We refer to
section 4.5 for a more detailed numerical example where we analyze hedging instruments for
power plants.

3.3.5. Earnings-at-Risk

In the last four sections we introduced linear hedging instruments and our examples illustrated
that only in case of many exercise rights and low strikes the swing option can be efficiently
hedged with Forwards and Futures. We identified significant basis risk since our hedging
instruments only implicitly share the same underlying with the swing option. The Forward
and Futures price simply cannot capture the individual spot price fluctuations. We recognized
that the delta of our swing option did not behave like the delta of a standard European call
option on an electricity Future. Now the question is how good are our hedges really. In other
words, how should we quantify the remaining open exposure ? Precisely speaking we are
interested in the remaining exposure after applying a hedge i.e. the residual ε∗ in equation
3.41. It represents the open spot price exposure. Now, we want to introduce Earnings-at-Risk
(EaR) as an adequate risk measure for this spot price exposure. Terms like Profit-at-Risk
(PaR) or Cash-Flow-at-Risk (CFaR) are often used in the same context. They all relate to
the same concept that tries to capture the particular market risk of physical assets which is
a combination of price and quantity risk that both determine the actual future cash flows/
earnings. Our swing option model already covers the interdependence between price and
quantity by the dispatch policy. Our EaR definition goes therefore one step further and
additionally consider the hedge position:

Definition 3.3.3 (Earnings-at-Risk (EaRβ)). Earnings-at-Risk is the β−quantile qβ(ε∗)11 of
the distribution of residuals ε∗ of a linear least square regression to describe individual cash
flow deviations V0(x0, g0, δ) from the expected cash flow (real option value) C0(x0, g0, δ) with

10To be precise, the values are taken from our stochastic dynamic programming (SDP) based power plant
model LC

∗
0 (x0,W0) with total energy W0 restricted to 70 % of the maximum producible energy W 0.

11Throughout the entire thesis we only work with an estimator of the quantile qβ(ε∗). So instead of the prob-
ability distribution we rather use the frequency distribution that we generate from concrete realizations i
= 1,...,I of the random value pairs (F0 − g0, V

∗
t (xt, g0, δ)), i.e. of the Forward price and ACF. Therefore,

whenever we use qβ(ε∗) in this thesis we actually refer to the estimator of the quantile using the fre-
quency distribution which varies with every new data set unlike the true quantile based on the probability
distribution.
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respect to deviations of the Forward price F0 from the fixed Future price g0

ε∗ := V ∗0 (x0, g0, δ)− C∗0 (x0, g0, δ)−∆F (F0 − g0)
and
β = Prob(ε∗ ≤ qβ(ε∗)).

(3.54)

where x0 is the current spot price, ∆F is the Forward delta (see equation 3.45) and δ is a
vector of further option parameters.

EaR is a risk figure for delivery based physical contracts. It describes the maximal loss in
earnings of a Forward hedged dispatch schedule due to mere spot price and resulting quantity
changes. We therefore also call ε∗ the remaining open spot price exposure. Technically the
definition is identical to VaR. However the main distinction lies in the different nature of the
distributions which in return is the result of different time horizons. While the underlying
distribution for VaR reflects a change in portfolio value and is usually generated by scaling
the volatility of the portfolio’s underlying market prices according to a short holding period
(usually a day), the EaR distribution is rather shaped from cash flows that occur at different
payment dates in the future, usually a complete balancing period i.e. a year. Hence, we need
to evaluate the volatility at different future dates rather than just scaling the current one.
That makes a significant difference. Table 3.7 provides a comparison of both risk measures.

Earnings-at-Risk Value-at-Risk
EaR is a risk measure that quantifies
the uncertainty of delivery contracts
(physical positions).

VaR is a risk measure that quantifies
the risk of a trading (financial) posi-
tion.

EaR provides the max loss in profit
during delivery.

VaR provides the max loss in market
value within a specific holding period.

EaR measures risk against spot price
changes.

VaR is measuring the risk against For-
ward Curve changes.

EaR requires to evaluate the risk fac-
tor at different future payment dates
to generate the distribution.

VaR simply scales the risk factors’ cur-
rent volatility according to the holding
period.

Table 3.7.: EaR vs. VaR

Depending on whether one is the buyer or the seller of a swing option either the left or the
right tail of the distribution of ε∗ represents a loss. The option holder is interested that the
option value does not fall significantly below the initial premium that he has paid. Hence,
he looks at the left tail: qBβ := qβ(ε). The option seller instead is afraid of deep in the
money situations (V ∗0 (x0, g0, δ)� C∗0 (x0, g0, δ)) where delivering the power at a high price is
expensive. Hence, for him the negative of the upside percentile qSβ := q1−β(ε) represents a
loss.
Now, we return to our example and compute both tails before and after applying our

hedges in order to assess their effectiveness. In our example we look at three swing options
that cover a delivery period of one month. In particular we are interested in the comparison
of the volumetric hedge versus the Forward hedge. As usual we work with our lower bound
approximation V0 := V0(x0, N) and C0 := C0(x0, N). For our specific price process with a
Futures price of 1 equation 3.54 reduces to εF = V0 − C0 −∆F (F0 − 1) and εw = V0 − C0 −
∆w(F0− 1) respectively. Table 3.8 presents the comparison for the quantiles of 1% and 99%.
We added the (non-hedged) loss distribution ` = V0 − C0 as a benchmark. First, we can see
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Figure 3.6.: Earnings-at-Risk for option seller and buyer

Swings K No
hedge
q0.01(`)

Volume
hedge
q0.01(εw)

Forward
hedge
q0.01(εF )

No
hedge
q0.99(`)

Volume
hedge
q0.99(εw)

Forward
hedge
q0.99(εF )

1 0 -2.1918 -2.1782 -2.0574 2.3814 2.3600 2.3530
1 1 -2.1947 -2.1912 -2.0951 2.4160 2.4185 2.3496
1 2.5 -1.6041 -1.6140 -1.6927 2.5570 2.5401 2.3771
360 0 -29.8809 -12.4935 -8.6047 31.0914 12.6469 8.3576
360 1 -25.9426 -12.6685 -9.0097 28.1081 14.2881 9.4357
360 2.5 –5.7408 -5.4910 -5.2904 7.9799 7.5767 6.6957
720 0 -37.1670 0.0 0.0 41.8404 0.0 0.0
720 1 -25.9426 -12.6685 -9.0097 28.1081 14.2881 9.4357
720 2.5 -5.7408 -5.4910 -5.2904 7.9799 7.5767 6.6957

Table 3.8.: Earnings-at-Risk
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that the loss distribution is generally skewed to the right. The positive skewness increases
the more the option goes out of the money (for K = 0 and 360 swings the left and right tail
are almost equal in absolute terms: q0.01(`) = -29.9 and q0.99(`) = 31.1 opposed to K = 2.5
where the right quantile is larger: q0.01(`) = -5.7 and q0.99(`) ≈ 8). The swing option tries
to exercise high prices which results in a fatter right tail. Next, we can see that the Forward
hedge prevails clearly the volumetric hedge throughout all strikes and swings. The gap is
most obvious for 360 swings (q0.99(εF ) = 9.44 vs. q0.99(εw) = 14.29 for K = 1). We can
see that the quantiles are identical for 360 and 720 swings with K = 1 or K = 2.5. This is
consistent with our results in table 3.5 where we recognized identical option values for these
cases as well. Hence, the distributions are the same as in both cases less than 360 swings
will be exercised. For K = 0 and 720 swings both the volumetric and Forward hedge offset
perfectly changes in option value. This is what we expect since in this situation the swing
option acts like a Forward. The opposite situation can be identified for the lower quantile
of a single swing right with K = 2.5. The Forward hedge cannot compensate at all the few
spot prices that do still exceed the strike. With q0.01(εw) = -1.614 and q0.01(εF ) = -1.6927 vs.
q0.01(`) = -1.60, the supposed hedge even increases the risk.

3.3.6. Replacement Risk and Total Option Value

For our further analysis we want to focus on the following business case: A utility company
is usually organized into three business units that are often even separate legal entities: a
generation department, a trading unit and a retail branch (see also Figure 3.7). Before
the deregulation of electricity markets retailers directly sold the power that the generation
department delivered. With the rise of electricity exchanges and free floating electricity
prices the utilities founded separate trading units. They reside in between the two other
departments. The trading unit purchases the power from the generation unit and thus sells it
to the retail unit. In between it manages the price risk by buying and selling power from/to
the market. If it manages to sell the purchased production 1:1 then no risk resides within the
trading department. However, generation output is way too large that it can be sold entirely
to a single customer. It rather has to be sliced into smaller pieces. Often these deals are so
called wholesale contracts where the customer can take as much electricity as he wants for
a fixed price. On a smaller scale this is the classical household contract. In short, current
generation and actual retail amount usually do not match, in particular not on the hourly
level and the trading unit needs to fill the gap by buying/selling on the day ahead market.
The trading unit can enter into Forward or Futures contracts on the OTC market or the
exchange and lock the price if it does not want to be exposed entirely to the spot market. We
learned in the last section, however, that this strategy does not provide a full hedge in most
of the situations neither on the price nor on the volume. Hence, the trading unit needs to
balance the remaining risk between the retail and generation unit. Now, we want to quantify
an interval for the compensation fee for taking the price risk. This should provide a decision
support for agreeing on an internal pricing scheme between business units. We will do so by
using our swing option to model the generation as well as the retail side.
If we ignore the volume risk i.e. the fact that the demand is not only price driven but

rather a risk factor on its own, then we can interpret a wholesale contract as a swing option
that trading sells to retail. The contract allows to receive electricity for a fixed price every
hour. On the opposite side trading buys the produced electricity from generation. In a first
approach, we can interpret a power plant as an asset that has the flexibility to produce power
for a fixed fuel price (i.e. the strike) or not. The number of swings reflects an energy limit
that could be a CO2 constraint for a thermal plant as well as a limited water reservoir of a
hydro plant. In this specific setup the trading unit acts like a swing option buyer and option
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Figure 3.7.: Business Case: Trading unit as ’Man-in-the-Middle’

seller at the same time.
In the last section we introduced our definition of Earnings-at-Risk as the quantile of the

loss distribution after a Forward/Future hedge. It therefore suits very well as a reference for
the risk fee that the trading unit can ask for to finance the management of the price risk.
Throughout this section we will use again the abbreviation C0 := C0(x0, N). Equation 3.55
presents the total option value for the seller and the buyer

CBβ := C0 + qβ(ε) = C0 + qBβ (ε)
CSβ := C0 + q1−β(ε) = C0 + qSβ (ε),

(3.55)

where qβ(ε) is defined as in equation 3.54. Note that the previous equation also introduced
new labels for the quantiles qBβ (ε) := qβ(ε) and qSβ (ε) := q1−β(ε). CBβ is the total option value
that the trading unit accepts to pay to the power plant unit for the generated electricity (the
trading unit is the buyer). Table 3.9 presents actual results for our three sample options and
needs to be compared with the fair option values presented in Table 3.5. We could think
of the three different strikes as marginal production costs of three different types of power
plants. K = 0 would represent a power plant that is always itm like a nuclear plant. K = 1
represent atm power plants like a coal fired plant that needs to consider emission costs as
well. K = 2.5 is a power plant that is only profitable for high price like a gas-fired peakload
plant. The number of swings could model a shared power plant. 720 swings would represent
the maximal output of the plant. Hence, 360 swings would represent a power plant that is
shared between two owners. Especially in smaller East European countries power plants close
to the border are shared between neighboring national utilities. Now, the trading unit asks
for a discount on the fair value of the produced power to compensate for possible losses in case
prices fall below the current price level when getting into delivery. The probability β describes
the percentage of value losses that are not covered by the fee. Note that β < 0.5 and therefore
qβ(ε) is negative and consequently we get CBβ < C0. So the risk fee makes the buyer’s option
cheaper. The higher β the less risk averse the trading unit is and henceforth the smaller the
discount. We can see that a risk averse trading department would never invest in a small
energy amount of a peakload plant (1 swing, K = 2.5). As Table 3.9 indicates the trading
department would even ask for money (0.089 cents) to take over the risk of a remaining 1MW
of production. The hedge obviously fails and it is cheaper not to hedge at all. Then the loss
qβ(V0 − C0) = −C0 is identical to the fair value as the smallest 1 % of all prices will lead to
no exercise and the total option value is 0. For this reason we will later in this chapter (see
Tables 3.13 and 3.14) replace this negative total option value by 0.
CSβ is the seller option i.e. the total option value that trading sells to the retail department.

As β < 0.5, we know that q1−β is positive and thus CSβ > C0. This additional spread on
top of the fair value covers the replacement risk. This is the potential loss if the trading unit
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Swings K CB0.01 CS0.01 CB0.05 CS0.05 CB0.3 CS0.3
1 0 1.9540 6.3644 2.6389 5.4376 3.6347 4.3515
1 1 0.9190 5.3638 1.7085 4.4531 2.6329 3.3562
1 2.5 -0.0886 3.9812 0.2333 3.0918 1.1847 1.9533
360 0 488.901 505.863 491.609 503.567 495.528 499.489
360 1 133.972 152.418 136.460 149.711 140.757 145.046
360 2.5 2.304 14.2903 3.5919 12.4253 5.9958 8.9053
720 0 720 720 720 720 720 720
720 1 133.972 152.418 136.460 149.711 140.757 145.046
720 2.5 2.304 14.2903 3.5919 12.4253 5.9958 8.9053

Table 3.9.: Total Option Value (1%, 5%, 30% uncovered spot exposure)

is forced to deliver electricity in hours when spot prices exceed the fixed retail price offered
to external customers. Of course, CSβ and CBβ only define the lower and upper end of the
internal pricing spectrum. If the trading department could realize the total option value on
both sides it would receive a profit from the difference of the risk premia due to the skewness
of the distribution (qβ(ε) 6= q1−β(ε)). For instance buying half of a coal fired power plant (360
swings, K = 1) for CB0.01 = 134 and selling it for CS0.01 = 152 given a fair value of C0 = 143
(see Table 3.5) would result in a comfortable profit of 18 despite of the same 1% remaining
spot price risk. In case of a nuclear plant (720 swings, K = 0), as another example, the
trading department can pass on 1:1 of the total energy to the market by selling Forwards and
lock the value of 720 completely. Therefore there is no additional risk spread and the value
has to be identical to the Forward value (contract price of 1 times 720 hours). The retail and
generation department are aware of this entire mechanism as well. Hence, Table 3.9 might
be a good reference for discussing appropriate internal prices.

3.4. Risk Controlling

In the previous chapter we focused on risk factors that are originated in price changes of
tradable products and we gathered all further effects like second order sensitivities in the
residual ε which we quantified using our EaR measure. Now, we want to go one step further
and investigate how to manage and control this residual risk. We already explained that the
Forward and Future delta divided by the contract hours for the associated delivery period
(we called it "MWDelta") provide us with the number of Forwards to invest in for offsetting
his current open exposure. We also presented situations where this hedge will be rather
inefficient. One way to get rid off the remaining risk is to pass it on to another department
or counterparty. We introduced the business case of a generation unit that transfers the spot
exposure to the trading unit. We also suggested to ask for a risk premium to compensate
potential losses of the inherent replacement risk. However, we saw that the risk spreads can
be high and it is questionable whether these expensive fees can be achieved in reality. For this
reason we want to investigate yet another alternative. Currently the exercise policy of our
swing option model tries to pick the hours such that the expected payoff is maximized. Hours
with high prices usually are a result of high volatility. Hour 12 on weekdays for instance is
known for its frequent spikes. An optimal strategy would usually pick this hour by default.
However, choosing hour 11 instead, which still promises high prices, but is less spiky, would
result in a slightly smaller return, but also a thinner tail and thus a smaller risk premium
qβ(ε). If the smaller risk premium more than compensates the decline in fair value, then
hour 11 is the better choice. In other words, our third alternative tries to control the risk by
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imposing a less risky exercise strategy. Therefore, we will introduce a risk constraint into our
optimization procedure.
A risk measure ρ can be considered within the optimization in two ways. The first class

of models introduces ρ as the objective function and henceforth defines an entirely new op-
timization model as it replaces the objective to maximize the generation asset value. Those
models are usually minimization problems if they look merely at the risk functional. Alter-
natively the objective can balance between the maximization of payoffs Z and minimization
of risk, so called mean-risk models. This can be achieved by either introducing a risk aversion
factor γ that weights expectation vs. risk: γE[Z] − (1 − γ)ρ(Z) as proposed by Markowitz
[49] or by imposing a utility function U as introduced by the theory of von Neumann and
Morgenstern [53]. It describes the risk aversion of the investor and usually also contains a
calibration factor for the degree of risk aversion U(E[Z], ρ(Z), γ). The second class of models
integrates the risk functional ρ into an existing optimization model as a further constraint
with a predefined threshold, called probabilistic or chance constraints models. The decision on
whether to apply a risk measure as an objective or as a constraint is often dependent on the
type of risk measure itself. The individual mathematical characteristics of a specific measure
determine the type of integration into an existing optimization problem in order to ensure a
feasible solution scheme. Figure 3.8 illustrates this dependency in a matrix structure. While
the columns represent the model class, the rows list the different risk measures. We can see
that the rows are grouped by static and dynamic risk measures. The latter is a fairly new
research field and describes a situation where the risk measure evolves over time, but still
can be influenced by the decision maker. Shapiro et al. [59] provide a good overview of risk
measures and adequate optimization algorithms. We will focus on applications to electricity
markets and Figure 3.8 presents an overview of relevant papers. An evident first approach is

Figure 3.8.: Overview of risk measures with applications in electricity models

to apply the Markowitz model to power portfolio optimization. Wagner et al. [66] use the
mean-risk model to find the best hedge of retail contracts (electricity contracts to customers
with fixed price) with Forwards. Following the Markowitz model they use the variance as
their risk measure and can therefore solve the problem via quadratic programming. This is
actually only a vehicle to their original problem that tries to find a portfolio allocation which
maximizes the cash flow for a given VaR boundary. Value-at-Risk is the second risk measure
in the Figure 3.8 that we already discussed in context of section 3.54. For linear contracts
and normally distributed prices the variance is sufficient to describe the tails and hence the
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VaR. For this reason Wagner et al. could reformulate their problem in terms of the variance
which introduces a quadratic expression into the objective function. Kleindorfer [41] uses
the same approach to maximize a VaR constrained power portfolio consisting of a generation
asset (simply modeled as fixed rate power contracts), daily put and call options, Forwards
and wholesale power contracts (flexible volume at a fixed price). However, for a general dis-
tribution especially in a portfolio setting with multiple random variables and contracts the
computation of VaR relies on Monte-Carlo simulation. This circumstance in combination with
the non-subadditivity and non-convexity of VaR does not allow for using powerful and fast
linear optimization techniques. Still VaR is widely accepted, understood and implemented in
practice. Therefore one research direction started to look for similar measures that like VaR
investigate the distribution tails and at the same time provide desired features like linearity for
a feasible optimization scheme. One popular first result of this investigation is the definition
of conditional Value-at-Risk cVaRβ(Z) that is the expectation of a loss for only those cash
flows Z that exceed the VaR value cV aRβ(Z) = E[Z|Z ≥ V aRβ). Therefore cVaR is also
known as expected short-fall. This definition of an expectation like measure ensures the linear
property, a required feature for linear programming. In addition Rockafellar and Uryasev [56]
reformulated cVaR as a linear programming problem whose dual represenation leads to its
computational ease. This new approach allows for intoducing cVaR in broader optimization
problems. Thus, cVaR can be used either as an objective or as a constraint. The latter was
investigated by Unger [65] in the context of a power portfolio optimization. He maximizes
the profit of a portfolio consisting of spot positions, Futures and swing options with respect
to a cVaR threshold. Fortin et al. [27] analyzed investments in coal fired, biomass and wind
power plants by minimizing a cVaR objective.

cVaR fails to differentiate among the severity of risky outcomes beyond the quantile. The
probability mass could still be strongly bias and favor extreme events (i.e. probability mass
at the far end of the tail) which cannot be covered by the mere conditional expectation. This
shortcoming motivated a generalization of the underlying axiomatic framework. Pflug [54]
showed that cVaR belongs to the class of coherent risk measures [3] if X is a discrete random
variable. A coherent risk measure ρch is a mapping: X ρch−→ R withX := X(ω) being a random
variable on the probability space (Ω, F,P) having the mathematical desirable characteristics
of being convex, monotone, translation invariant and positive homogeneous. In particular
convexity ensures the subadditivity ρch(X + Y ) ≤ ρch(X) + ρch(Y ) meaning that controlling
the risk of subsidies X and Y via ρch and adding them up will ensure an upper estimate of
the total exposure measure in ρch. Föllmer [26] investigated a relaxation of the coherent risk
measure definition by ignoring the positive homogenity which led to the definition of convex
risk measures. Positive homogeneity assumes that risk grows proportional to the volume of
a portfolio Z. However, if price liquidity cannot be assured which is typical for electricity
markets due to the small number of producers then the exposure might grow faster than linear
in traded energy amount. Lüthi [48] defines a convex cVaR measure that he calls General
cVaR or GcV aRβ,L(Z). The generalization is achieved by introducing the parameter L in
the cV aR definition which allows for varying the measure between the regular cVaR and the
maximal loss. In other words L enables to penalize large losses and hence account for a bias
probability mass in the tail that cVaR cannot capture.

Still, GcV aR cannot overcome one more drawback of cVaR: it is only a static measure. In a
multi-stage decision process like our option valuation, however, where the filtration of the price
reveals statistical information of the future and knowledge of the past only in discrete time
steps a risk measure that is based on a single set of stochastic data is not appropriate. Instead,
a multi-period risk measure is required. Eichhorn et al. [24] suggest so called polyhedral risk
measures. They are basically an extension of cVaR for the dynamic case. Hence, they can also

60



CHAPTER 3. RISK MANAGEMENT

be expressed as optimal values of certain simple-structured stochastic minimization problems
where the decision variables are defined on polyhedral cones which give this risk measure its
name. It is rather a family of risk measures and Eichhorn presents several applications. One
example is the average of cVaR measures calculated at several (not necessarily all) stages of
the multi-period process (in Figure 3.8 denoted as AcVaR).
Returning to our initial objective of investigating risk sensitive exercise strategies a dy-

namic risk measure seems to be appropriate for our focus on swing options. A polyhedral
risk measure like AcVaR, however, that averages intermediate cVaR results is rather problem-
atic. Intermediate stages of the swing option optimization do not represent the entire option
contract, but rather separate ones on shorter delivery periods. In our example we look at
swing options for a one month delivery. Each stage of the dynamic program, however, can be
interpreted as a separate valuation of a new option whose underlying is the remaining delivery
period which grows from stage to stage. These options have different pay-offs and different
distributions, in particular from the time step onwards where the delivery period exceeds the
number of swing rights. Simply averaging the cVaR of these intermediate solutions will not
reflect the overall cVaR let alone VaR of the option that one wants to reduce. In addition,
we prefer a mere VaR based measure since it is more accepted in the market and fits better
to our EaR based risk measure. In the next section we will therefore suggest an EaR based
risk constraint for our purpose of risk controlling.

3.4.1. EaR Sensitive Control

In section 3.3.6 we introduced the total option value as the fair value plus or minus a risk
spread dependent on whether one is the option buyer or seller. We explained that this value
represents adequate lower and upper bounds for a risk adjusted swing option value. First, our
risk spread is not based on mere variance like many risk-return models that fail to describe
the behavior in the tails of non-normal distributions. This would have significantly reduced
the spectrum of price processes for our option model. At the same time we introduced with
EaR a risk measure that follows the popular concept of VaR. The option holder can express
his risk aversion by choosing his acceptable loss probability. It states that (1− β) percent of
the value fluctuations will be compensated by the extra spread either as a discount (buyer’s
option) or an extra fee (seller’s option). We think that the percentile is a more intuitive way
to capture the risk aversion of an investor compared to a utility function or a risk/return
weighting factor. For this reason we will rely our benchmark for different risk controlling
strategies on our total option value and introduce the following definition:

Definition 3.4.1 (EaR-Efficient Option Value). An option value C̃eβ := C̃eβ(x0, g0, δ) is EaR
efficient if the underlying exercise policy π̃∗0 can reduce the risk premium measured as EaR
qβ(ε̃) with fixed β < 0.5 more than the inherent deduction in option value C̃0 := C̃0(x0, g0, δ)
compared to a risk neutral valuation C0 := C0(x0, g0, δ) and qβ(ε)

C̃eβ := C̃0 + qβ(ε̃)
s.t.

C0 − C̃e0 < qβ(ε̃)− qβ(ε),
(3.56)

where x0 is the current spot price, g0 and F0 are defined in equation 3.33 with j = 0 and qβ(ε)
as described in equation 3.54.
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Translated to our buyer’s and seller’s option we can write

C0 − C̃0 < qBβ (ε̃)− qBβ (ε)
C0 − C̃0 < qSβ (ε)− qSβ (ε̃).

(3.57)

The quantiles of the seller’s option qSβ (ε) and qSβ (ε̃) are flipped as we look at the right tail
(recall from equation 3.55 that qSβ := q1−β). A risk sensitive dispatch policy π̃0 (from now
on we mark risk sensitive values with a tilde) in the sense of definition 3.4.1 should raise the
new buyer’s total option value compared to CBβ and lower the new seller’s total option value
compared to CSβ to a more attractive sales price such that the inevitable reduction of real
option value will be over-compensated by the mitigation in EaR (see equation 3.55 for the
definition of CB/Sβ ). The distribution of an EaR efficient option is tighter as shown in Figure
3.9. Let us illustrate this concept in context of our business case with our retail, trading and

Figure 3.9.: Benchmark for a risk sensitive policy

generation unit. If the generation department could offer a production strategy that would
lower the price risk and still assure an adequate return then the trading department will be
willing to accept a smaller discount on the price for the generated electricity denoted as the
new buyer’s swing option C̃Bβ . The generation department in return could achieve a higher
profit without increasing the risk for the entire organization. At the opposite side the trading
unit could sell the risk sensitive policy as a swing option with special exercise conditions.
Again, if those conditions still ensure a reasonable return and lower the risk fee at the same
time, then the new lower option price C̃Sβ becomes more attractive to an industry customer
and therefore the retail department would be willing to accept the price.
In case of our swing option with N exercise rights and initial price X0 = x0 we can write

two optimization problems, for buyer and seller separately, that finds the most EaR efficient
option value

C̃B,e0 (x0, N) = max
π̃B
{C̃0(x0, N) + qβ(ε̃)}

C̃S,e0 (x0, N) = max
π̃S
{C̃0(x0, N)− q1−β(ε̃)},

(3.58)

with C̃0 and qβ(ε̃) as defined in equations 2.3 and 3.54 respectively and π̃B/S = {τ̃B/SN (0, N),
..., τ̃B/S1 (0, N)} is a sequence of exercise times. The two equations penalize the swing option
value with the EaR figure. Recall that the buyer’s and seller’s EaR are on opposite sides of
the loss distribution which explains the change in sign. As the two equations stand for two
separate optimization problems the resulting two optimal policies π̃∗B and π̃∗S might not be
consistent. In other words, for the same hour one policy might exercise, but the other does
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not. Translated to our business case we could imagine a situation where the retail department
asks for power according to strategy π̃S0 , but the trading unit cannot provide electricity from
the generation department because it did not exercise his option according to π̃B0 . Still this
is not an issue, since the extra fee qSβ (ε̃) compensates the cost to buy the relevant power
from the market. The same is true in the opposite direction where the trading unit exercises
according to π̃B0 , but the retail department does not. Then the trading unit might need to
sell the power to a lower price to the market, but the compensation fee qBβ (ε̃) compensates
the loss.

Let us now look at lower and upper bounds for these risk adjusted option values. The
lower bound of these two optimization problems will be derived from the risk neutral policy
according to equation 3.55. For C̃B,e0 this is immediately CBβ as C0 + qβ happens to be the
definition of the buyer’s option (see equation 3.55). For the seller’s option we get C0−q1−β =
C0 − qSβ = C0 − (CSβ − C0) = 2C0 − CSβ . Thus, an EaR efficient buyer’s and seller’s option
C̃
B/S,e
β has to be above these values

C̃B,eβ

!
> CBβ

C̃S,eβ
!
> 2C0 − CSβ .

(3.59)

We can also provide an upper bound for the seller’s option. Recall that we are actually
interested in lowering the seller’s option value CSβ . Therefore an upper bound is more intuitive,
especially for our numerical analysis in section 3.4.3. C̃Sβ becomes automatically cheaper due
to the drop in fair value by C0 − C̃0. An efficient option value must be even cheaper by at
least yet another C0 − C̃0 resulting from the reduction in the quantile q1−β(ε̃). Only then we
have the desired compensation of risk vs. return

C̃S,eβ
!
< CSβ − 2(C0 − C̃0). (3.60)

We will use this benchmark in section 3.4.3. Formally, equation 3.58 introduces a quantile
based measure in our initial optimization problem. Both summands, the fair value C0 and the
quantile qβ(ε), are linked by their common distribution. Usually the first summand reduces
more relative to the second summand i.e. a mitigation in risk premium entails a declining fair
value. Furthermore, the quantile is not a linear operator as discussed in section 3.4. Standard
linear or dynamic programming are therefore not applicable. Another difficulty arises from the
fact that ε is the remaining spot exposure after a Forward hedge which can only be calculated
after the exercise strategy π̃B and π̃S is known. To illustrate the problem in context of our
example, we need to assess the impact of each hour’s dispatch decision on the Forward hedge
that covers the entire delivery period. However, we can calculate the latter only after we
know the entire schedule/option value. Thirdly, we need to compute the quantile conditional
on today’s price X0 = x0. Especially the latter motivated us to introduce a heuristic that
is based on quantile regression. The heuristic will not work with the objective function in
equation 3.58, but rather rely on a direct comparison with the risk neutral policy according
to equations 3.59 and 3.60. The heuristic will still be based on our dynamic programming
framework, but focus on a direct and permanent comparison of the expectation vs. the risk
adjusted policy during each stage of the backward iteration. Before we lay out the heuristic
in detail in section 3.4.3 we will briefly review the methodology of quantile regression and
in particular look for a proper calibration of the respective regression function to our swing
option framework.
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3.4.2. Quantile Regression

The underlying idea of quantile regression is similar to linear regression. From linear regression
we know that minimizing the sum of squared residuals provides the sample mean µ i.e. an
estimate for the unconditional expectation

E[Vt+1] ≈ arg min
µ∈R

I∑
i=1

(vit+1 − µ)2, (3.61)

where {v1
t+1, ..., v

I
t+1} are, in our context, the accumulated cash flows starting from the next

to the last delivery hour T . Replacing the scalar µ by a parametric function µ(Xt, γ) with
n-dimensional parameter vector γ allows to move from the estimate of the unconditional
expectation E[Vt+1] to the conditional expectation E[Vt+1|Xt]

E[Vt+1|Xt] ≈ µ(Xt, γ
∗) (3.62)

where γ∗ is the minimizer of

min
γ∈Rn

I∑
i=1

(
vit+1 − µ(xit, γ)

)2
. (3.63)

We can apply a similar technique for the quantile. Just as we can define the sample mean
as the solution to the problem of minimizing a sum of squared residuals, we can define an
estimate for the median as the solution to the problem of minimizing a sum of absolute
residuals

q0.5(Vt+1) ≈ arg min
P∈R

I∑
i=1
|vit+1 − P |. (3.64)

The symmetry of the absolute value yields the median which is the 50% quantile. Koenker
and Hallock [43] showed that asymmetrically weighted absolute residuals - giving different
weights to positive and negative residuals - will yield the other quantiles

qβ(Vt+1) ≈ arg min
P∈R

I∑
i=1

ρβ(vit+1 − P ), (3.65)

where ρβ(z) = (β − I(−∞,0)(z))z and I being the indicator function. Hence the weighting
function ρ has a decreasing slope of (β − 1) for negative z and an increasing slope of β for
positive z. By definition the probability β is between 0 and 1. Now, we move again from the
unconditional to the conditional quantile by introducing a parametric function P (Xt, b) with
n dimensional parameter vector b

qβt+1(Vt+1|Xt) ≈ P (Xt, b
∗) (3.66)

where vector b∗ is the minimizer of

min
b∈Rn

I∑
i=1

ρβ
(
vit+1 − P (xit, b)

)
. (3.67)

As long as this function P (xit, b) is linear in xit one can solve the previous equation with linear
programming techniques to find the parameter vector b. Otherwise Koenker and Park [45]
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developed an interior point method. Hunter and Lange [35] present a Majorize-Minimize
method and provide a thorough comparison with the method by Koenker. We will focus on
a linear approximation. Hence, our parametric function will be linear. Koenker [44] suggests
a goodness of fit test that is similar to the R2 statistic well known from linear regression to
find an adequate number of degrees for the polynomial.
The classical R2

t statistic is a value between 0 and 1. The closer the value is to 1 the better
the regression function explains the data cloud. Formally it is defined as follows

R2
t = 1− Ŝt/S̃t, (3.68)

where Ŝt is the error sum of squared residuals that remain when subtracting the projected
value µ(xit, γ∗) from the real value vi. S̃t is the error sum of the squared residuals that result
from subtracting the real value from the mean. Formally the mean can be approximated with
a simplified linear regression that only uses a single parameter, i.e. the intercept, µ(xit, γ) = γ0
as the basis function as we have seen in equation 3.61. Likewise we can define the R1

t statistic

R1
t+1(β) := 1− V̂t+1(β)/Ṽt+1(β)

V̂t+1(β) := min
b∈Rp+1

N∑
i=1

ρβ
(
vit+1 − (b0 + b1x

i
t + b2(xit)2 + ...+ bp(xit)p)

)

Ṽt+1(β) := min
b0∈R

N∑
i=1

ρβ
(
vit+1 − b0

)
.

(3.69)

As Ṽt+1 is the result of a minimization with only one parameter b0 whereas V̂t+1 can use
all p + 1 parameters, it is immediately apparent that V̂t+1(β) ≤ Ṽt+1(β), thus R1

t (β) lies
also between 0 and 1 and has the same interpretation as R2

t . Unlike R2
t , which allows to

compare the relative success of two models for the conditional mean function in terms of
residual variance, R1

t (β) can measure the relative success of two quantile regression models
for a specific quantile in terms of an appropriately weighted sum of absolute residuals. Thus
R1
t (β) constitutes a local measure of goodness of fit for a particular quantile rather than a

global measure of goodness of fit over the entire conditional distribution like R2. In order to
assess whether a set of estimated parameters bp provides a good fit for the entire distribution
one needs to compare the processes V̂t+1 and Ṽt+1 as processes of the quantile β. Koenker
[44] investigates several different statistics like likelihood ratio tests and rank tests to allow
for a formal test of hypothesis for these processes. We do not focus on these global tests since
the local tests using the R1

t (β) statistic revealed already sufficient insights for our further
analysis.
Table 3.10 presents the R1

t (β) statistic for the American option with different probabilities
β and approximated with three different polynomials: a linear and quadratic function as
well as a polynomial of third degree (p=1,2,3). We computed the R1

t statistic by running a
quantile regression at each stage t on the pairs (Xt, Vt+1). R1 in Table 3.10 is therefore the
average across all 719 intermediate R1

t statistics

R
1(β) := 1

T − 1

T−1∑
t=1

R1
t (β). (3.70)

The goodness of fit is always close to 0 and therefore rather poor. There are no significant
improvements through higher degree polynomials. This weak performance let us question a
linear approach for the quantile regression. However, the situation changes if one adds the
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K p R
1(0.01) R

1(0.05) R
1(0.3) R

1(0.7) R
1(0.95) R

1(0.99) R
2

0 1 0.007 0.003 0.001 0.001 0.003 0.010 0.001
0 2 0.012 0.005 0.002 0.002 0.005 0.016 0.001
0 3 0.016 0.007 0.002 0.002 0.008 0.022 0.001
1 1 0.014 0.006 0.002 0.002 0.007 0.024 0.003
1 2 0.024 0.012 0.004 0.004 0.014 0.039 0.003
1 3 0.034 0.017 0.006 0.006 0.020 0.053 0.003
2.5 1 0.057 0.056 0.040 0.047 0.145 0.155 0.056
2.5 2 0.123 0.122 0.088 0.097 0.249 0.260 0.056
2.5 3 0.188 0.187 0.137 0.146 0.339 0.349 0.056

Table 3.10.: Average R1 and R2 statistic for different probabilities β and strikes K (American
option).

R2
t statistic for the conditional mean as a comparison. We computed the R2 statistics of

the classical Longstaff-Schwartz (LS) regression for the continuation value of all t = 1,...,
719 iterations. The table provides again the average R2. Likewise, the results are rather
poor despite of the good lower bounds we received with the same linear LS regression in the
previous chapter. Apparently, even a coarse approximation according to the R2 statistics can
still lead to a good exercise policy. In order to assess whether this is also true for the R1

statistic and the quantile regression, we compared directly the approximated quantiles with
the ones taken from the histograms of our 1000 random realizations at each stage. Table
3.11 and Table 3.12 show that both are actually not too far off each other. Again we look at
the American option for the three different strikes and the three degrees for the polynomial.
We computed the quantiles for β = 0.01, 0.3, 0.7 and 0.99. The third and seventh column

K p q0.01 q̂
0.01

q̂
0.01
min q̂

0.01
max q0.99 q̂

0.99
q̂

0.99
min q̂

0.99
max

0 1 1.495 1.493 1.171 1.856 5.849 5.846 5.234 6.443
0 2 1.495 1.497 0.762 2.380 5.849 5.840 4.523 7.149
0 3 1.495 1.497 0.576 2.962 5.849 5.834 3.984 7.852
1 1 0.537 0.546 0.333 0.794 4.876 4.875 4.390 5.344
1 2 0.537 0.553 -0.019 1.337 4.876 4.862 3.603 5.996
1 3 0.537 0.554 -0.153 1.891 4.876 4.856 3.037 6.595
2.5 1 0.000 0.000 0.000 0.000 3.586 3.582 3.295 3.866
2.5 2 0.000 0.000 0.000 0.000 3.586 3.625 2.527 4.820
2.5 3 0.000 0.019 0.003 0.123 3.586 3.464 1.740 5.339

Table 3.11.: R1 statistic 1 % and 99 % probability.

provide the unconditional quantile qβ(Vt) with Vt := Vt(Xt, 1) as defined in equation 2.12,
i.e. we directly calculate the quantile from the ACF. To be precise qβ is the average of these
quantiles across all t = 1, ..., 719 iterations. They are the benchmark to compare the other
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columns with

qβ := 1
T − 1

T−1∑
t=1

qβ(Vt)

q̂
β := 1

(T − 1) · I

T−1∑
t=1

I∑
i=1

q̂it

q̂
β
min := 1

T − 1

T−1∑
t=1

min
i

[q̂it]

q̂
β
max := 1

T − 1

T−1∑
t=1

max
i

[q̂it]

q̂it+1 := Qβt+1(Vt+1|xit) =
N∑
n=0

bn(xit)n.

(3.71)

Obviously the quantiles qβ only change with the strike since they are computed directly from
the empirical histogram of Vt. Column 4 and 8 are the average of the conditional quantiles
across all scenarios and delivery hours q̂β. In order to assess the impact of the averaging
effect we also computed the minimum and maximum quantile across all scenarios for each
hour separately (min

i
[q̂it],max

i
[q̂it]) and added their average across all iterations q̂βmin,max in

columns 5, 6, 9 and 10. We can make two main observations in Table 3.11. First, we can see

K p q0.3 q̂
0.3

q̂
0.3
min q̂

0.3
max q0.7 q̂

0.7
q̂

0.7
min q̂

0.7
max

0 1 3.100 3.099 3.013 3.206 3.748 3.748 3.658 3.856
0 2 3.100 3.099 2.882 3.327 3.748 3.748 3.548 3.985
0 3 3.100 3.099 2.804 3.466 3.748 3.748 3.407 4.096
1 1 2.102 2.104 2.035 2.187 2.754 2.756 2.680 2.845
1 2 2.102 2.104 1.904 2.313 2.754 2.756 2.560 2.980
1 3 2.102 2.104 1.844 2.453 2.754 2.756 2.421 3.095
2.5 1 0.675 0.680 0.640 0.722 1.371 1.379 1.334 1.428
2.5 2 0.675 0.682 0.543 0.837 1.371 1.374 1.193 1.556
2.5 3 0.675 0.693 0.491 1.002 1.371 1.373 1.043 1.685

Table 3.12.: R1 statistic for 30 % and 70 % probability.

that the quantile domain [q̂βmin, q̂
β
max] increases with the degree of polynomials throughout all

strikes. For K = 0, for instance, it almost doubles the size from p = 1 to p = 3 for K = 0.
Table 3.10 reveals only a minor improvement of R1(β) with increasing degree of polynomials.
Hence, we cannot really deduce a better performance for polynomials with higher degrees.
Second, we can observe that qβ and q̂

β are close to each other for K = 0 and the distance
becomes larger the more the option gets out of the money. This is due to the fact that the LS
regression suggests to only consider (xit, vit+1) pairs where xit is in the money for only these
prices are later relevant for the decision making. Recall that our price process fluctuates
around 1. Thus, the higher K becomes, the less pairs enter the regression and hence the
less accurate the results become. This is most obvious for K = 2.5 and p = 3 where q̂0.01 is
significantly higher than 0 which it should not as the smallest 1 % of all price scenarios will
not lead to any option exercise. Comparing Table 3.11 with Table 3.12 we observe generally
better results for β = 0.3. Obviously, more data points fall into these larger intervals that
make an estimation more accurate.

67



CHAPTER 3. RISK MANAGEMENT

3.4.3. Dynamic Swing Caps

In this section we want to introduce a heuristic that provides efficient policies in sense of
equation 3.56. We want to focus on a dynamic hedging strategy within the delivery period
giving direct decision support when to exercise a swing right in light of a risk constraint (this
is different to a hedging strategy before delivery that usually focuses on buying/selling an
adequate Forward contract to offset the position, see also our introductory example in section
3.1). Our main prerequisite for our heuristic is to stay within the dynamic programming
framework. However, there is no straight-forward translation of our risk sensitive objective
function in equation 3.58 into a value function that suits the Bellman iteration. Dynamic
programming requires marginal intermediate results at each stage that sum up linearly to the
overall optimal figure. The difficulty is threefold. First, it is not obvious how to compute
the marginal quantile from one to the next stage based on the current action and price. The
price at the current stage is known and henceforth there is no uncertainty and no distribution
any longer. Second, even if we could compute intermediate quantiles, their summation would
generally lead to a significant overestimation as correlation effects tend to keep the quantile of
the overall distribution smaller than the sum of its parts. Third, we want to control the EaR
exposure and therefore need to take into account the hedging effect as well. In this section
we will propose a heuristic that will address these challenges. Let us look at the American
option first.

As discussed in detail in chapter 2 the valuation of an American option results in at max-
imum one cash event Zτ∗

1 (0,1) := (Xτ∗
1 (0,1) −K)+ per scenario (see equation 2.3 with N = 1)

and therefore there are no correlation effects for cash flows of the same path. Recall that
the optimal policy states to exercise today’s cash flow if it is above the expected value of the
option for the remaining exercise period (continuation value) regardless how far it exceeds this
value. However, exercising extremely high prices will make the right tail of the cash flow dis-
tribution Φ(Zτ∗

1 (0,1))12 grow what the option seller in our example would like to avoid. Thus,
in order to keep the distribution tight we should prevent to exercise and thus trigger a cash
flow that falls beyond the upper quantile of the overall distribution. Our best guess on how
this distribution will look like for the entire delivery period i.e. Φ(Zτ∗

1 (0,1)) = Φ(V ∗0 (x0, 1))
is its interim evolution for any t = 0,...,T-1 represented by the intermediate distributions for
the ACF from tomorrow onwards, i.e. Φ(Zτ∗

1 (t+1,1)) = Φ(V ∗t+1), with V ∗t+1 := V ∗t+1(Xt+1, 1)
defined in equation 2.9 with n=1. We are mainly interested in the quantile and we will have
a different expectation of this quantile if we observe a high instead of a low price today. To
be precise we will look at the (1 − β)-quantile conditional on the current price Xt that we
denote as q1−β(Zτ∗

1 (t+1,1), Xt) and q1−β(V ∗t+1, Xt) respectively13

β ≈ Prob
(
Zτ∗

1 (t+1,1) ≤ q1−β(Zτ∗
1 (t+1,1), Xt)|Xt

)
β ≈ Prob

(
V ∗t+1 ≤ q1−β(V ∗t+1, Xt)|Xt

)
.

(3.72)

This is where our quantile regression comes into play. From the pairs (Xt, V
∗
t+1) we relate

the current price to the quantile of the ACF of the next hour. To be precise we will apply

12We denote with Φ(X) the distribution law for the random variable X. Also recall our definition of stopping
times τk(t, n) and related policies πt(n) in section 2.1.

13As we cannot guarantee the existence of this quantile in the general case we do not state strict equality for
the probability β in the definition of the β-quantile.

68



CHAPTER 3. RISK MANAGEMENT

equation 3.66 and use a polynomial approximation P 1−β(Xt, b
∗) to describe the quantile

q1−β(V ∗t+1, Xt) ≈ P 1−β(Xt, b
∗) :=

K∑
k=0

b∗k (Xt)k , (3.73)

where vector b∗ := (b∗0...b∗K)′ is the minimizer of

min
b∈RK+1

I∑
i=1

ρ1−β
(
vit+1 − P 1−β(xit, b∗)

)
. (3.74)

I is 1000 in our numerical examples. Note that this quantile regression procedure is similar to
the approximation of the continuation value Q∗t+1(Xt, 1) (see equation 2.10 with n=1). Recall
from equation 2.11 that the approximated continuation value Yt+1(Xt, 1) allows to derive the
threshold price that triggers an exercise. Analogously to equations 2.15 and 2.16 we can
translate the approximated quantile P 1−β

t+1 from a cash flow threshold

lt(Xt, 1) =
{

0 Zt(Xt) > P 1−β(Xt, b
∗)

1 Zt(Xt) ≤ P 1−β(Xt, b
∗).

(3.75)

into an upper price threshold

lt(Xt, 1) =
{

0 Xt > Xt

1 Xt ≤ Xt.
(3.76)

So we do not allow an option exercise if the cash flow/price is above P 1−β and Xt,n, respec-
tively. Theoretically we could add this upper line to our existing lower line exercise trigger
resulting from the optimal exercise policy of the swing option (see again section 2.1). We
could define this band as the new exercise strategy. However, our investigations revealed that
this policy will not meet our benchmark in the sense of our definition 3.56 as the resulting
option value C̃∗0 (x0, 1)14 is much smaller compared to C∗0 (x0, 1) than the gain in the quan-
tile. For this reason we have to run yet another optimization problem that finds a new lower
exercise threshold given this quantile based upper bound defined by the risk neutral policy.
We will call it the risk-sensitive optimization problem and we label all related figures with a
tilde. Let us describe it in terms of a stopping problem.
Formally the new risk sensitive stopping time τ̃1 := τ̃1(0, 1) needs to be linked to the risk

neutral stopping time via the conditional quantile q1−β
τ̃ (Zτ∗

1
, Xτ̃1) such that τ∗1 := τ∗1 (τ̃1+1, 1).

Thus, our new risk sensitive optimization problem requires the calculation of the risk neutral
policies π∗t (n) with t = 0,...,T (see equation 2.1) and n = 0,1 beforehand. We therefore add
π as a left sub index to all figures that require the pre-calculation of π∗t (n). Consequently
we denote the risk adjusted American option value as πC̃∗0 (x0, 1) and can write the following
stopping problem

πC̃
∗
0 (x0, 1) := sup

τ̃1
E[πZ̃βτ̃1 |X0 = x0], (3.77)

where the cash flow πZ̃
β
τ̃1 is defined as follows

πZ̃
β
τ̃1 :=

{
Zτ̃1 if Zτ̃1 ≤ q1−β(Zτ∗

1
, Xτ̃1),

−c else,
(3.78)

14We assign a tilde for any figures related to risk adjusted policies.
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where τ̃1 := τ̃1(0, 1) and τ∗1 := τ∗1 (τ̃1 + 1, 1) and Zτ1 := (Xτ1 −K)+. We can also write the
cash flow in terms of the ACF and the approximated quantile P 1−β(Xt, b

∗)

πZ̃
β
t (Xt, ã) :=

{
ãZt if Zt ≤ P 1−β(Xt, b

∗),
−c else,

(3.79)

where Zt := (Xt −K)+. In case of an American option where the single cash flow is always
greater equal to zero, c = 1 is already sufficient. The penalty term c applies whenever the
cash flow Zτ̃1 at the stopping point τ̃1 exceeds the conditional upper quantile. Then we can
express the value function πC̃

∗
0 (x0, n) via the Bellman equation

πC̃
∗
t (Xt, n) = max

ã∈A(n)

{
πZ̃

β
t (Xt, ã) + E

[
πC̃
∗
t+1(Xt+1, n− ã)|Xt

]}
t = 0, ..., T

state : (Xt, n) Xt: current price, n=0,1: remaining number of swings
action : ã ∈ A(n) := {0,min[1, n]} exercise yes (1) or no (0)

transition : {Xt, n} −→ {Xt+1, n− ã}

marginal profit : πZ̃βt (Xt, ã)
value function : πC̃∗t (Xt, n)

continuation value : πQ̃∗t+1(Xt, n) := E
[
πC̃
∗
t+1(Xt+1, n)|Xt

]
,

(3.80)

with πC̃T+1(XT+1, n) := 0 for n = 0,1. Again, we will apply our Longstaff-Schwartz regression
based valuation model to approximate the optimal action ã∗ with ˆ̃a∗, the continuation value
πQ̃
∗
t+1(Xt, n) with πỸt+1(Xt, n) and the optimal accumulated cash flow πṼ

∗
t+1 with the lower

bound πṼt+1. These approximations also imply an estimate of the penalty term or to be
precise the conditional quantile q1−β(V ∗t+1, Xt) by P 1−β(Xt, b

∗)

ˆ̃a∗ = arg max
ã∈A(n)

{
πZ̃

β
t (Xt, n) + πỸt+1(Xt, n)

}
,

πṼt(Xt, n) = πZ̃
β
t (Xt, ˆ̃a∗) + πṼt+1(Xt, n− ˆ̃a∗)

πỸt+1(Xt, n) :=
R̃∑
r̃=0

α̃r̃,tX
r̃
t .

(3.81)

For the approximation of the conditional quantile we rely on quantile regression that we
introduced in the last section. Recall from equation 3.73 that P 1−β(Xt, b

∗) is not the quantile
of our risk adjusted ACF Ṽt+1, but is calculated from the risk neutral ACFs Vt+1 (remember
that we denote a tilde to values of the risk sensitive model). In this way we capture the
dependence of τ̃1 on τ∗1 of our stopping problem in equation 3.77. This mechanism reduces
the accumulation effect of iterative tail cutting from stage to stage on the overall distribution
of the final stage. The overall distribution and expectation would shrink drastically if each
intermediate quantile relied on a previously cut distribution. It would not only generate a
too defensive exercise policy and the loss in expected value would outnumber the gain in
the tails. Also, the quantile of the distribution at the beginning of the backward iteration
q1−β(πṼT , XT−1) would basically determine the shape of all subsequent distributions. Instead
our benchmark in definition 3.4.1 demands a high expectation with a tight distribution.
Hence, with every iteration we compute the quantile threshold from the distribution of our
risk neutral ACFs according to our basic model in equation 2.6. Only cash flows that fall into
the tail of this distribution will be rejected.
We want to point out that the new risk sensitive exercise policy π̃∗0(N) defines a threshold
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that is always below the quantile based upper bound from equation 3.76. The lower bound
is based on the continuation value and therefore relates to the mean of the ACF distribution
Φ(Ṽ ∗t+1|Xt) while the upper bound stands for the upper quantile of the ACF distribution
Φ(V ∗t+1|Xt). For small β the upper quantile q1−β usually lies above the mean for the same
distribution. In our case we even have two distributions with Ṽ ∗t+1 < V ∗t+1 in most cases. Thus,
the distribution for the lower threshold has smaller realizations than the distribution for the
upper threshold which is another indication that the policy π̃∗0(N) will return thresholds
below the quantile based upper bound following the policy π∗0(N). For this reason, the result
is indeed an exercise band.
This exercise band (see also Figure 3.11) provides a straight-forward decision support for

the option holder. Translated to our situation with the generation department and the trading
unit, the trading unit is willing to pay a higher price to the generation unit for the electricity if
both sides can agree on this exercise band as a production plan for the generation department.
The produced energy is exposed to less price fluctuation (by basically skipping hours with
high volatility) and therefore trading asks for a smaller premium for managing the price
risk. At the opposite side (see Figure 3.7) the trading unit could sell the swing option to a
retail customer and declare the imposed exercise strategy based as a barrier option or dynamic
swing cap whose upper bound varies with the remaining delivery hours and with larger market
movements. In practice these caps would be much coarser. In case of our monthly option, for
example, every week the issuer could set new exercise bands for the upcoming week. Then
the upper bound would be simplified to a step function with four steps.
Finally we want to remark that our stopping problem in equation 3.77 does not directly

approximate our EaR definition q1−β(ε) from equation 3.54. It does not look at the quantile
of the loss distribution after a Forward hedge, but on the ACF directly (V0 instead of ε). In
reality energy markets provide a so called Balance of Month contract that enables a trader
to hedge the remaining delivery period of a month. Even though this product is rarely liquid
it could be used to hedge the swing option during delivery. We ignore this hedge for we will
show in case of an American option that merely controlling the quantile of the non-hedged
position results in the desired EaR mitigation as well. Let us therefore return to our swing
option example.
In section 3.4.2 we decided to use a quadratic approximation for P 1−β(Xt, b

∗). We also
keep using the same basis functions for approximating the continuation value as in the last
chapter. So we get

R = 2 ⇒ Yt+1(Xt, 1) = α0,t + α1,tXt + α2,tX
2
t

R̃ = 2 ⇒ πỸt+1(Xt, 1) = α̃0,t + α̃1,tXt + α̃2,tX
2
t

K = 2 ⇒ P 1−β(Xt, b
∗) = b∗0,t + b∗1,tXt + b∗2,tX

2
t .

(3.82)

Table 3.13 presents the results of our heuristic for the American option. The table shows the
total option value for all three strikes and three quantiles. Column 3 and 4 present the option
values for the risk neutral (C0 := C0(x0, 1)) vs. the risk adjusted policy (C̃0 := πC̃0(x0, 1)).
As assumed the risk adjusted policy returns smaller numbers. If our heuristic works well,
then this reduction should be more than compensated by a shrinking quantile. Translated
into our total option values, the risk sensitive buyer’s option C̃Bβ should nevertheless become
more valuable than the risk neutral one CBβ where C̃B/Sβ is defined in equation 3.58, but using
our risk sensitive figures πC̃0 and ε̃, the latter calculated after applying the best Forward
hedge. Also recall that we use normalized prices according to equation 3.39. The seller’s
option on the other hand should become cheaper by more than double of the fair value
reduction C0− C̃0 (see also equation 3.60). Columns 5 and 6 present the buyer’s and column
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7 and 8 the seller’s option. Column 3, 5 and 7 are taken from Tables 3.5 and 3.9 for direct
comparison. Let us first look at the buyer’s option. C̃Bβ is equal or higher than CBβ for the

β K C0 C̃0 CBβ C̃Bβ C̃Sβ CSβ
0.01 0 4.011 3.882 1.954 1.998 5.677 6.364
0.01 1 3.014 2.899 0.919 0.919 4.969 5.364
0.01 2.5 1.604 1.490 0.000 0.000 3.549 3.981
0.05 0 4.011 3.802 2.689 2.717 4.859 5.438
0.05 1 3.014 2.812 1.749 1.761 3.866 4.453
0.05 2.5 1.604 1.407 0.233 0.260 2.462 3.092
0.3 0 4.011 3.460 3.635 3.316 3.656 4.352
0.3 1 3.014 2.459 2.633 2.309 2.658 3.356
0.3 2.5 1.604 1.060 1.185 0.903 1.264 1.953

Table 3.13.: Impact of risk adjusted policy on total option value

1 % and 5 % quantile. For K = 0 and β = 0.01 we observe a fair value of C0 = 4.0114.
The option buyer identifies a possible loss of q0.01 = (1.954 − 4.0114) = −2.057 in 1% of all
scenarios and he asks for a discount of exactly that number on the fair value. Our quantile
sensitive policy results in a fair value of 3.882. Nevertheless the option buyer is willing to
pay a higher price, namely 1.998. Obviously the new policy reduced the potential loss even
more (C0 − C̃0 = 0.129 < qBβ − q̃Bβ = 0.173). That is exactly what our EaR efficiency
according to definition 3.54 demands. Recall from the same definition that the quantile qβ(ε)
is computed from the loss distribution after a Forward/Future hedge. Our heuristic, however,
is actually only based on the non-hedged position. Still, the heuristic provides EaR efficient
buyer options. Translated to our business case we can state that the trading unit accepts
to pay a higher price, if the generation department commits to the risk sensitive production
policy. However, the performance for the buyer’s option decreases with larger probabilities
and strikes. The 0 values for K = 2.5 and β = 0.01 stand out. They do not indicate a zero
production as the option values C̃0 and C0 are above 0. In Table 3.9 we saw that the hedge
with a Future failed in this case. In 1 % of all scenarios there is simply no exercise. Then
the loss is identical to the fair value and the total option value is simply 0. The risk adjusted
policy cannot improve this situation. For β = 0.3 all risk adjusted buyer’s options fall below
the results of the regular option valuation (e.g. for K = 0 we observe C̃B0.3 = 3.316 as opposed
to CB0.3 = 3.635). A large loss probability means a small quantile in absolute terms. The
table reveals that our heuristic provides weak results for this case. Recall that our heuristic
implicitly focuses on the seller’s option by looking at the upper tail of the cash distribution.
Cash flows resulting from prices beyond the fair value plus the quantile will be penalized. If
this threshold is low due to a small quantile, then too many high prices will be ignored and
the option value decreases too quickly.
Let us turn to the seller’s option in columns 7 and 8. All risk adjusted option values C̃Sβ are

below the regular option values CSβ . The trading department can ask for less compensation of
the replacement risk and can launch a more competitive offer to retail customers. However,
the retail customer will only accept the cheaper price if less than half of the reduction will
come from a profit cut (see also equation 3.60). For K = 1 and β = 5% the risk adjusted
policy makes the total option cheaper by 4.453−3.866 = 0.587 and only 3.014−2.812 = 0.202
i.e. less than 50 % are due to a decline in fair value. So, this new option is more beneficial
for the retail customers. Like for the buyer’s option the heuristic produces EaR efficient
option values for β = 1 % and 5 %. In fact the seller’s options are more efficient than the
buyer’s option. For K = 0 and β = 5 % for instance, the excess of the quantile reduction
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over the profit cut is C̃Bβ − CBβ = 0.028 for the buyer’s option and CSβ − C̃Sβ − 2(C0 − C̃0) =
5.438 − 4.859 − 8.022 + 7.604 = 0.161 for the seller’s option. This can be explained by the
fact that our heuristic is based on the seller’s option and thus directly controls the right tail.
Again, we observe that the heuristic fails for a loss probability of 30 %. The penalty price of
our heuristic simply becomes too low for high loss probabilities.
So far, our option valuation relied on price scenarios according to equation 2.7 with constant

volatility σ = 0.5. Our heuristic should perform even better for price scenarios with changing
risk profile. Then we would expect that the risk sensitive policy identifies and picks less
risky exercise hours in order to mitigate EaR and improve the total option values. Hence, we
generate a second set of price scenarios where the underlying price process only differs from
equation 2.7 by replacing the constant volatility σ with a time-dependent σt

lnXt+1 = (1− κ) lnXt∆t+ σtεt εt ∼ N(0, 1)
σt = It∈O σ1 + (1− It∈O) σ2,

(3.83)

where εt are i.i.d, ∆t = 1 and O = {1, 3, 5, ...} is the set of all odd hours in our delivery
period and I is an indicator function. Hence, we keep all parameters the same and only
change every second hour the volatility from σ1 = 0.5 to σ2 = 0.7. We also normalized
the prices again according to equation 3.39. Table 3.14 presents the results for the 1 % loss
probability. Again, the table lists the risk-adjusted and non risk-adjusted option values in

K C0 C̃0 CBβ C̃Bβ C̃Sβ CSβ
0 5.93 5.65 1.83 2.21 9.76 11.50
1 4.94 4.64 1.09 1.40 8.43 10.69
2.5 3.53 3.18 0.00 0.00 7.53 9.19

Table 3.14.: Impact of risk adjusted policy on price scenarios with altering volatility (β = 1
%)

column 2 and 3 as well as the buyer’s and seller’s option in columns 4 to 7. In deed, our
heuristic produces more EaR-efficient option values compared to the single volatility case.
Let us compare the values for K = 0. The excess of the quantile reduction over the profit
decline for the buyer’s option is C̃Bβ − CBβ = 2.21 − 1.83 = 0.38 compared to 1.998 - 1.954
= 0.044 for the constant volatility. In relative terms this is 6 % vs. 1 % of the initial
fair value C0 and C̃0. For the seller’s option we compare the case with altering volatility
CSβ − C̃Sβ − 2(C0− C̃0) = 11.5− 9.76− 11.86 + 11.3 = 1.18 to the case with constant volatility
6.364 − 5.677 − 8.022 + 7.764 = 0.429 or in relative terms 25 % vs. 14 % of the initial fair
value C0 and C̃0. Hence, we can roughly observe an improvement in efficiency by at least
factor 2 for the itm and atm option. The fact that the EaR efficiency is higher for the seller’s
option is illustrated in Figure 3.10 which relates to Figure 3.9. We see the distribution for
the situation of altering volatility and strike of 0. The risk sensitive distribution is tighter
i.e. the gap between the right tails has more than the double size of the gap between the
expectations. Also, the left tail of the risk adjusted distribution moved more to the right than
the expectation shifted to the left. The former is relevant for the seller’s option, the latter for
the buyer’s option (see equations 3.59 and 3.60). Note that for better readability we plotted
the distributions with the same number of buckets instead of fixed bucket borders. Hence, a
higher frequency of observations does not result in taller, but more narrow bars.
We also want to visualize the risk adjusted exercise strategy that leads to this distribution.

The optimal policy of a regular American option valuation relates today’s cash flow and
continuation value to today’s price. At each stage it allows for calculating the equilibrium
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Figure 3.10.: Cash flow histogram for single exercise (risk and non-risk adjusted)

price where both the current cash flow and tomorrow’s option value coincide. Lining up these
values along all stages in a price/time diagram defines the exercise border. If we observe a
price below that border, then we should keep the option and continue until we eventually
observe a price above the border. Then, we will exercise immediately. Now, our quantile
regression framework relates today’s price to the quantile of tomorrow’s option value. In our
analysis we used a linear equation which enables us to solve immediately for the equilibrium.
We receive a new threshold that we can also chain along all stages. This new line lies above
the exercise border and therefore is an upper bound. Our risk policy states that the very first
time we observe a price between these two borders, we will exercise the option. Consequently
the former exercise region transformed to an exercise band. Figure 3.11 shows this band for
the American option we analyzed in Table 3.13. We can see that the upper border fluctuates
much stronger than the lower one which is an indication of instability of the associated risk
adjusted policy.
Now, let us move from the American option to the more general case of the swing option.

The main difficulty of the swing option is that we suddenly have multiple cash events per
single scenario V ∗0 (x0, N) =

∑N
n=1 Zτ∗

n
with τ∗n := τ∗n(0, N). Hence, we face correlation effects

within a single path between separate Zτ∗
n
and Zτ∗

m
, n 6= m. In general this will make the

impact of a single exercise on the overall distribution smaller or, the other way around, allow
for higher marginal quantiles. An evident approach is therefore to look at the marginal
distribution ∆V ∗t+1(n) := V ∗t+1(Xt+1, n)− V ∗t+1(Xt+1, n− 1) between the n-th and (n− 1)-th
option exercise. This is consistent with the regular swing option valuation where we exercise
the n-th swing if its cash flow exceeds the difference between tomorrow’s expected n-th and
(n−1)-th option value. Hence, we take the swing option definition of equation 2.3, but apply
our modified cash flow15

πC̃
∗
0 (x0, N) = sup

π̃0(N)∈Π0(N)
E(π̃0(N))

[
N∑
n=1

πZ̃τ̃n |X0 = x0

]
, (3.84)

15Note that the risk neutral and risk sensitive policy both belong to the same set of admissible policies Π0(N).
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Figure 3.11.: Upper and lower price threshold for each stage

with the new cash flow n
πZ̃τn defined as follows

πZ̃
β
τ̃n :=

{
Zτ̃n if Zτ̃n ≤ q1−β(Zτ∗

n
, Xτ̃n),

−c else,
(3.85)

where τ̃n := τ̃n(0, N), τ∗n := τ∗n(τ̃n + 1, N) and Zτ̃n := (Xτ̃n − K)+. The penalty c must
be high enough to make the sum

∑N
n=1 Zτn always negative. As our price process fluctuates

around 1 with standard deviation of 0.5 and N = 720, c= 10000 is sufficient. Note that
q1−β(Zτ∗

n
, Xτ̃n) is the quantile of the n-th exercise. In context of our ACF this translates to

the n-th conditional marginal quantile q1−β(∆V ∗t+1(, n), Xt)

β ≈ Prob
(
Zτ∗

n(t+1,1) ≤ q1−β(Zτ∗
n(t+1,1), Xt)|Xt

)
β ≈ Prob

(
∆V ∗t+1(n) ≤ q1−β(∆V ∗t+1(n), Xt)|Xt

)
.

(3.86)

For the approximation of the conditional quantile P 1−β(Xt, nb
∗) ≈ q1−β(∆V ∗t+1(n), Xt) we

use again our quantile regression approach. This time we regress on the marginal cash flow
(Xt,∆V ∗t+1(n)) in order to relate the current price to the marginal quantile of the ACF of the
next hour. Again, we apply equation 3.66

P 1−β(Xt, nb
∗) :=

K∑
k=0

nb
∗
k (Xt)k , (3.87)

where vector nb∗ := (nb∗0...nb∗K)′ is the minimizer of

min
nb∈RK+1

I∑
i=1

ρ1−β
(
∆vit+1(n)− P 1−β(xit, nb)

)
. (3.88)
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Then, we can also express the modified cash flow in terms of the ACF

n
πZ̃

β
t (Xt, ã) :=

{
ãZt if Zt ≤ P 1−β(∆V ∗t+1(n), Xt),
−c else,

(3.89)

with Zt := (Xt−K)+. Note that like for the American option we compute the approximated
quantiles from the marginal values of the risk neutral swing option model (P 1−β(∆V ∗t+1(n), Xt)
not P 1−β(∆πṼt+1(n), Xt)!). Then the dynamic program is identical to equation 3.80 except
that we replace the modified cash flow πZ̃

β
t by n

πZ̃
β
t and do not restrict n to 0,1, but n =

0,1,...,N. The solution method via Longstaff-Schwartz regression stays the same.
Let us now continue with our numerical example. The parameter settings for the swing

option are identical to our previous example for the American option (see equation 3.82).
Table 3.15 compares the swing option with different swing rights that are derived from both
policies, risk and non-risk sensitive. The table content is similar to the previous tables. This
time we only arranged the columns separately by risk and non-risk adjusted policy. Table 3.16
adds the numbers for the price scenarios with altering volatility. A direct comparison of the

Swings K C CB0.05 CS0.05 C̃ C̃B0.05 C̃S0.05
10 0.0 31.235 27.321 35.419 27.983 25.539 30.346
10 1.0 21.245 17.362 25.440 17.993 15.540 20.371
10 2.5 6.771 3.259 10.942 3.743 1.312 6.423
50 0.0 116.903 110.189 123.444 95.903 92.398 99.315
50 1.0 66.952 60.275 73.559 46.012 42.266 49.596
50 2.5 7.595 3.592 12.425 7.386 3.541 12.151
360 0.0 497.506 491.609 503.567 359.804 346.986 372.290
360 1.0 142.982 136.460 149.711 137.507 130.269 145.043
360 2.5 7.595 3.592 12.425 7.386 3.541 12.151
720 0.0 720.000 720.000 720.000 720.000 720.000 720.000
720 1.0 142.982 136.460 149.711 137.507 130.269 145.043
720 2.5 7.595 3.592 12.425 7.386 3.541 12.151

Table 3.15.: Buyer’s and seller’s total option value (risk and non-risk adjusted)

two tables shows that different to the American option example we cannot observe a stronger
impact of the risk policy if the underlying price has an altering volatility. Furthermore, both
price scenarios reveal separate, but identical values for the otm option and N = 50, 360 and
720. Obviously the otm option will exercise less than 50, but still more than 10 swings (an
in-depth analysis reveals 27 swings for our price scenarios with flat volatility and 45 swings
for the prices with flipping volatility). We have a similar situation for the atm option with
360 and 720 swing rights. A further analysis shows that the atm option exercises 323 swings
for underlying prices with flat volatility and 341 swings for underlying prices with flipping
volatility.
In general, we must observe that our heuristic does not return EaR efficient swing option

values in terms of our definition in 3.54. Our objective states that the loss in fair value should
be overcompensated by the reduction in the quantile (see also equation 3.56). In Table 3.15
we see that this comparison already fails for 10 swings. Again, we calculate the risk adjusted
buyer’s and seller’s option C̃B/Sβ from equation 3.58 and use C̃∗0 (x0, N) and residuals ε̃ instead,
the latter calculated after applying the best Forward hedge. None of the risk adjusted buyer’s
options C̃Bβ is more valuable than CBβ as we would expect. Likewise the seller’s option C̃Sβ
is only cheaper due to a loss in fair value rather than a decline in risk premium (e.g. in
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Swings K C CB0.05 CS0.05 C̃ C̃B0.05 C̃S0.05
10 0.0 41.887 35.059 50.156 35.517 31.517 39.788
10 1.0 31.905 24.951 40.582 25.624 21.625 30.037
10 2.5 17.363 10.534 25.661 11.282 7.242 15.947
50 0.0 140.698 130.486 151.454 107.391 101.940 113.189
50 1.0 90.783 80.763 101.496 57.434 52.257 62.997
50 2.5 23.909 15.302 33.982 23.403 14.677 33.448
360 0.0 522.978 516.282 529.489 359.619 342.820 376.438
360 1.0 172.313 164.338 180.541 167.145 157.716 176.206
360 2.5 23.909 15.302 33.982 23.403 14.677 33.448
720 0.0 720.000 720.000 720.000 720.000 720.000 720.000
720 1.0 172.313 164.338 180.541 167.145 157.716 176.206
720 2.5 23.909 15.302 33.982 23.403 14.677 33.448

Table 3.16.: As Table 3.15 but based on price scenarios with altering volatility

Table 3.15 for K = 0 and N = 10 we receive a loss in fair value of C − C̃ = 3.25, but a
reduction in risk premium of only CS0.05− C̃S0.05− (C0− C̃0) = 1.817 which ought to be higher
than 3.25). However, we can still argue that the reduction holds in relative terms i.e. 10
% cut in fair value entailed a 43 % reduction in EaR. Our objective significantly fails for
the otm option with a large number of swing rights (e.g. 360 swings and K = 0 in Table
3.15: fair value reduction of C0 − C̃0 = 137.70 opposed to risk increase from CSβ − C0 =
503.567 - 497.506 = 6.061 to C̃S0.05 − C̃0 = 12.486), but improves with higher strikes or less
swings (e.g. K = 2.5 and 50 swings: fair value reduction of C0 − C̃0 = 0.209 compared to
a risk mitigation of CS0.05 − C̃S0.05 − (C0 − C̃0) = 0.065). The more swing rights are available
and the more the option is in the money, the closer the swing option resembles a regular
Forward contract and the worse the performance of the risk policy gets. This is due to the
fact that the Forward hedge can cover more and more of the risk exposure. In Table 3.16,
for instance, we can compare the relative loss for K = 0 and 10 itm swings as opposed to 360
itm swings (i.e. half a Forward contract): (CS0.05 −C0)/C0 ≈ 19% reduces to 1.2%. Once the
hedging effect strongly applies it outperforms our extended risk adjusted exercise policy. In
short, our heuristic is specifically designed for incomplete markets with very limited hedging
opportunities (i.e number of swing rights is significantly smaller than number of delivery hours
or very high strikes, e.g. gas fired power plants).
An exception is the perfect hedge. This is the itm option with 720 swings. It stands out

against the rest of the rows. The fact that the total option value for the non risk policy
is identical to the fair value is not new to us. The itm option with 720 swings behaves
identically to a Forward contract and can therefore be perfectly hedged with a Forward.
Thus, there is no risk and hence no additional spread. However, we get the same result for
the risk sensitive policy which is correct, but surprising on the first glance. Recall that our
heuristic is based on the non-hedged position and should therefore consider a non-zero risk
premium during the valuation. To understand the reason for the correct result, recall from
equations 3.73 and 3.75 that the penalty term for the cash flow at stage t will be computed
from the marginal distribution of the subsequent stage P 1−β(∆Vt+1(Xt+1, n), Xt). For every
swing right beyond the remaining number of delivery hours, i.e. n>T-t, this marginal value
is zero as all swing options with more swing rights than exercise opportunities have the
same value as the swing option with as many swing rights as remaining delivery hours (n
= T-t), i.e. Vt+1(Xt+1, T ) = Vt+1(Xt+1, T − 1) = ... = Vt+1(Xt+1, T − t). In particular in
case of N = T+1 all for the penalty term relevant marginal value functions are zero, i.e.
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∆V1(T + 1) = ∆V2(T ), ...∆VT (2) = 0. Consequently in case of 720 swings and 720 delivery
hours the penalty never applies as there is no marginal distribution and we receive again the
non-risk adjusted result i.e. 720.

3.5. Directions for Further Research

In this chapter we introduced the notion of a replacement risk adjusted total option value
penalizing the fair value with the EaR figure that we defined as an adequate measure for
spot price risk in electricity markets. In particular we were interested in EaR efficient option
values. Our benchmark of compressing the distribution to a larger extent than loosing in
expectation turned out to be a difficult target. However, this is a realistic objective since
compromising on a likely (i.e. the expectation) for an unlikely result (i.e. EaR) is hard to
accept in practice. We presented a heuristic of controlling the quantile directly using quantile
regression that can generate these efficient option values in case of a single exercise right. We
observed that our heuristic failed for large loss probabilities β. Then, the quantile qβ(ε) and
thus the risk premium is small. At the same time our heuristic imposes a smaller upper bound
that forces to exercise small cash flows and reduces the fair value. A large loss probability,
however, stands for a less risk averse option holder and should rather relax the upper bound.
Obviously, using the β-quantile as the threshold can be too strict. One should therefore
investigate a new relation between the loss probability β and the quantile that defines the
upper exercise bound.
In addition the hedging aspect is not sufficiently covered in our proposed heuristic (recall

that EaR is calculated from a hedged position). Currently the quantile regression runs on
the pairs (Xt, Vt+1) i.e. current spot price and the accumulated cash flow of the next stage.
The latter represents the uncovered option value for the remaining delivery period and we
explained that the Balance-of-Month Forward contract FBOM

0 allows for hedging this remain-
ing delivery period. In a first extension one could therefore try to run the regression on
the hedged ACF (Xt, (Vt+1 −∆FFBOM0 )) with ∆F being the Forward delta (see also section
3.3.2). This would lead to a new exercise band. This modification might require a different
set of basis functions other than our polynomials as the hedge portfolio (Vt+1 − ∆FFBOM0 )
certainly features a new pay-off structure. In general, the analysis of different basis functions
in conjunction with possibly non-linear quantile regression schemes as mentioned in section
3.4.2 is another direction for further investigation. In this context one could also review the
poor performance of the R1

t statistic that did not reflect the comparably good quantile pro-
jection. An investigation of the stability of the R1

t statistic across different quantiles could be
added, too.
The observation that our risk-adjusted policy was less successful for swing options should

be addressed as well. In our opinion the reason is twofold. First, it is difficult to assess the
impact of the n-th exercise of a single path on the overall option distribution. In case of
the American option the conditional distribution of the next stage’s value function is a good
representative for the overall distribution because it reflects a similar American option that
would be issued tomorrow. This is different for the swing option. The intermediate marginal
ACFs ∆Vt(Xt, n) could be interpreted as a portfolio of linked American options where the
portfolio value would relate to the total option value V0(X0, N). Within this context the
risk analysis of the swing option could be translated into a portfolio VaR problem. In the
literature there is the notion of component VaR which decomposes the portfolio VaR into its
individual assets such that the sum of all components returns again the overall VaR. In our
case this would be the decomposition of the VaR for the total swing option into its individual
swing rights. The method requires the estimation of VaR sensitivities i.e. the change in
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overall VaR with a change in individual swings. A good overview of the method is provided
in [31]. We think that this is a promising direction for further research.
Second, we observed that the impact of a successful hedge prevails any risk sensitive exer-

cise policy. The more the number of swings approaches the total amount of delivery hours
the better a Forward hedge reduces the quantile. A further analysis should try to find the
minimum number of exercise rights that are at least necessary for a successful hedge of the
swing option with a Forward contract. This analysis should be run for different strikes (itm,
atm, otm) and underlyings (base, peak, off-peak price). Then, we know that any swing option
with less exercise rights should rather apply our proposed dynamic cap in order to prevent
large potential losses. A real world example for a peak swing option with weekly adjusted
caps could conclude the analysis of our heuristic. Recall that we based our heuristic on the
direct comparison of the risk with the non-risk adjusted policy according to equations 3.59
and 3.60. Any new solution scheme chould rather focus on the objective function in equation
3.58 directly.
In the next chapter we will also look at hedging strategies. We will move away from the

mere swing option analysis and investigate the combination of a swing option and a power
generation asset as an appropriate hedge portfolio. In this context we will return to our
synthetic spot delta definition that will help us to find the right portfolio structure.
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4. Power Generation Assets

In this chapter we want to extend our basis model of chapter 2 to value power plants, so
called power generation assets. To be precise we want to provide a short-term value of the
plant that can be reflected by the value of its generated output for the near future (usually
a year). Swing options, that we investigated so far, are one approach to price a power plant
contract. They model a power plant as an asset that can produce electricity for a fixed
fuel cost (strike) and considers an extra energy constraint via its limited number of exercise
rights. Every hour the power plant owner can decide whether to generate electricity or not.
In reality, however, especially thermal power plants cannot be turned on and off every hour.
Operational constraints limit its flexibility. The actual generation schedule is determined
by numerous technical restrictions. In particular within the context of risk management
real option models often rely on Monte-Carlo techniques to compute sensitivities and value
distributions and therefore rely on short calculation times. For this reason, a valuation model
needs to incorporate only those physical limitations that mainly define the production value.

The literature on generation asset valuation is large and therefore we only want to present
the most recent articles and cover different valuation approaches as well as different power
plant characteristics. Tables 4.1 and 4.2 provide a summary of selected papers. It is helpful
to categorize the different power plant models by fuel type as this usually drives the kind and
number of underlying prices as well as the specific technical characteristics. Consequently, we
want to differentiate between hydro and thermal power plants. Another important criteria
is the granularity of the models. The short-term valuation of a generation asset is usually
based on an optimization of the production schedule to define the future projected cash flow
and the real option is defined by the expectation of this cash flow. In practice a power plant
owner needs to send his planned production schedule to the grid operator on a quarterly hour
granularity. From a valuation point of view electricity prices are only traded on an hourly
basis, therefore the smallest decision stage should be an hour. However, for the standard time
horizon of a year this can be computationally expensive. Therefore power plant models work
with daily and weekly granularities or a mixture of both more granular for the near and less
granular for the far end of the delivery period.
Let us first look at hydro plants. The main complexity of hydro plants originates from

the water reservoir which translates to an overall energy constraint. The level of available
water determines the amount of electricity that the plant can produce over a certain demand
period. As we will later in this chapter discuss in detail, an energy constraint introduces a
new dimension to the decision domain and hence significantly increases the computational
burden. Frauendorfer and Vinarski [28] try to reduce the complexity by saving decision steps.
They apply a multistage stochastic program where they separate a production year into six
stages which they optimize separately using only a reduced set of schedule candidates. They
compromise on the technical constraints as they are mainly interested in a risk analysis. They
focus on the electricity price and use a two factor model to describe the spot and Forward
price component of the electricity price. It allows them to compute Forward deltas and a
PnL distribution. Lüthi and Doege [48] also investigate the distribution of a hydro power
plant, but additionally introduce the water inflow as a risk factor. They also go down to an
hourly granularity. Lüthi simplifies the operational constraints via weighted step functions
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that allow him to run a linear optimization. Furthermore he introduces a figure for comparing
different power plant investments that he calls value of flexibility. It is the difference between
VaR figures of two profit and loss distributions arising from different technologies. This value
should allow to evaluate the benefit of new technologies in terms of faster reaction on market
changes and hence in risk mitigation.
Different to hydro plants thermal power plant models need to capture the fuel price as

a second price component. In addition, thermal plants are less flexible due to the required
warm-up and cool off phases as well as the necessary injections for the start-up of the turbines.
Tseng and Lin [62] look at a gas fired power plant with start-up and shut-down as well as
minimal on- and off-times. Following the classical forest approach for swing options (see
Kaminiski et al. [40]) they define a stochastic dynamic program on a two dimensional tree
representing the hourly gas and electricity price. The different trees stand for the different
operational modes of the power plant. Deng and Xia [23] also look at a gas fired power plant
and value the real option via stochastic dynamic programming. Instead of a lattice they rely
on Monte-Carlo simulation and therefore use the Longstaff-Schwarz regression method to run
the backward iteration. They consider a large set of operational constraints including a max
number of start ups and a lower and upper heat rate. The latter reflects the fact that power
plants are designed for max electricity production. The heat rate goes down if the generation
runs below the max level and hence the power plant is less efficient. Due to the complex
set of technical constraints Deng and Xia compromise on the price granularity by simulating
only daily prices by price band rather than hours. They also examine hedging strategies with
power and gas Forwards. As they cannot compute the relevant sensitivities directly for their
complex power plant model, they replicate the generation asset first via a strip of spark spread
options. Ignoring any technical restrictions the spark spread option is the simplest instrument
to value a power plant (a swing option can at least cover one constraint i.e. a maximal energy
production). Barz [5] was one of the first who investigated this idea based on gas and power
Forward contracts. A spark spread option looks at the difference between the electricity and
the fuel price. In order to make both comparable the gas price will be translated in MW
via the heat rate (this is where the term spark comes from). From a cash flow perspective
a power plant in deed converts a negative fuel cash flow into a positive electricity cash flow.
The power plant will only produce if the spread is positive which motivates to use this spread
for the option’s underlying. For these spark spread options Deng and Xia can compute more
easily the power and gas Forward delta. Now, Deng and Xia use these deltas to define a
hedge portfolio consisting of gas and electricity Forward contracts and a bond. The Forward
deltas calculated from the spread options are their vehicle to dynamically find and adjust the
actual Forward positions in the hedge portfolio for their power plant. Following the spark
spread approach Castellacci, Siclari et al. [17] investigated spark spread basket options where
the contingent claim is defined on the price difference between the electricity price and a
basket of two fuel prices. In this way they want to model fuel switching power plants. Fuel
switching introduces a second fuel price as yet another risk factor. The owner of a fuel-
switching power plant can usually decide whether to produce with gas or oil. Castellacci and
Siclari use factor reduction and fast simulation techniques like stratified sampling to reduce
the valuation complexity of their basket option.
Carmona [15] goes one step further. He also investigates fuel switching options, but even

introduces technical constraints like ramping time and several cost components. Due to the
three correlated risk factors he applies Monte-Carlo simulation in conjunction with Longstaff-
Schwarz regression based backward iteration. He benchmarks his results against an alternative
numerical method called reflected backward stochastic differential equations (BSDE). Porchet
et al. [55] use this method to value a coal-fired power plant. BSDE is a continuous version of
stochastic dynamic programming. The conditional expectation within the Bellman equation is
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described as a continuous stochastic process. Then the Bellman equation becomes a stochastic
differential equation (SDE) that will be solved via variational inequalities. They consider
different operational modes of the plant like min off- and on- times via regime switching
which adds further equations to the system of BSDE’s. Porchet et al. also study the impact
of market incompleteness inherent to electricity markets (see also our discussion in section
3.54). They compensate the lack of a risk-free numeraire by looking at a utility function that
reflects the risk aversion of the power plant owner. Then, they show that the power plant
value is dependent on the risk aversion of the owner in an incomplete market.
Römisch and Eichhorn [25] also investigate the impact of risk aversion on the power plant

value. They define a mean-risk objective function to value a combined heat and power plant
(CHP) where a weighting factor between profit and risk reflects the risk aversion. They use
polyhedral risk measures as discussed in section 3.4 to value the risk component in their
objective. CHP facilities produce not only electricity, but heat as well. They are usually
obliged to fully supply the surrounding households with heat. So the optimization needs to
take into account the uncertain heat demand which also impacts the electricity production.
Römisch and Eichhorn therefore introduce heat and electricity demand as two additional risk
factors and neglect the fuel price instead. As their risk analysis requires extensive computation
time they introduce a pruning technique for scenario trees that allows to reduce the number
of price trajectories to few representative paths. In addition they look at daily decision
stages and ignore start-up and shut-down times to avoid integer constraints. In this way they
are able to translate their multistage stochastic optimization problem into linear programs.
Weber [67] also investigates a CHP facility and considers a large set of physical restrictions.
He even looks at the fuel price as well. In particular he examines a coal and gas fired CHP.
For his risk analysis, however, he is also forced to simplify his model to a combination of
spark spread options with fixed heat rate and analytical dispatch decisions that can only
consider min and max heat demand. Then, he reduces the risk dimension even further by
introducing spark spread ratios that allow to compute the fuel component directly from the
random electricity price. With this simplification he is able to compute Forward deltas and
gammas that he inserts into a Taylor series expansion. He computes a delta-gamma profit
and loss distribution to examine his Integral Earnings-at-Risk approach (see also section 3.4).
All the presented models need to compromise between accuracy and valuation time that

are mainly defined by the power plant profile. Hence, in the first section we introduce our
type of power plant with its technical characteristics that we want to value. Throughout this
chapter we will work with one basic example that we will modify step by step. Different to
the last two chapters this time we want to provide a real world business case. Consequently
we need to move from our simple price trajectories that served well for our illustrations in
the last two chapters to a set of scenarios that reflect true price fluctuations. We will stick
to our known mean-reverting price process and describe in section 2 the calibration of the
price process to actual market data. In the third section we will use those prices to value our
power plant without an energy constraint. We will also provide lower and upper bounds. In
the fourth section we will repeat this analysis with an additional energy constraint. In the
fifth section we will look at hedging strategies for our power plant and conclude this chapter
with suggestions for further research.

4.1. Power Plant Characteristics

Every day the power plant owner needs to register tomorrow’s generation schedule to the grid
operator (so called nomination) until noon. This is briefly before the energy exchange settles
the spot prices for tomorrow. Hence, we can assume that the dispatcher knows tomorrow’s
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prices almost surely when he makes his dispatching decision as prices will not deviate that
much any more after he performed his nomination. Our dispatcher runs a thermal power
plant with the following profile:

• minimal capacity Lmin (= 240 MW)

• maximal capacity Lmax (= 530 MW)

• minimal runtime ton (= 12 h)

• minimal off-time toff (= 8h)

• start-up and shut-down costs Ku,Ko (= 3000 EUR, 0 EUR)

• variable production costs K (50 EUR, 70 EUR, 90 EUR)

• (maximal energy production W0)

In parenthesis you see the actual values that we will use for our example throughout this
chapter. Min and max capacity define the electricity band for the power production per hour.
A thermal power plant cannot produce any capacity from zero level upwards. It first needs
to be warmed up such that the turbines run on a minimum spin before the power plant can
produce the first power. The start-up cost are the charge for the fuel injection to kick off
the turbines. Once they are running they cannot be stopped abruptly but rather need to
run a minimum number of ton hours. We have the opposite situation when the power plant
will be turned off. It has to cool down for at least toff hours before another start can be
performed. Variable costs are mainly yearly maintenance fees that are spread equally across
the production hours.
The maximum energy constraint is a technical feature of so called combined heat and power

plants (CHP). They do not only produce power, but also provide heating for the neighboring
cities. Electric heating can be translated into an energy constraint which would be a lower
bound in this case. Furthermore environmental obligations can lead to energy constraints as
well. Governments assign CO2 emission certificates to power plant owners. These certificates
deliberately do not last for the maximum energy production and are meant as an incentive to
improve generation efficiency. An upper energy constraint can reflect the border beyond which
the power plant needs to buy CO2 certificates on the market to cover the extra pollution which
results in higher costs. Then, the power plant owner can compare if it is more profitable to
produce at maximum level regardless of the CO2 emissions and accept the cost for additional
CO2 certificates or produce only up to the certificate free limit. Finally, an energy constraint
can help to calculate the marginal profit on produced energy which can serve as a basis to
define the merit order for options on spinning reserve energy. The merit order is a list of
price-quantity pairs that a trader sends to the auction of the exchange. It states for which
price the trader is willing to pay or sell what amount of electricity, in this particular case
spinning reserve energy. Utilities are obliged to produce a certain amount below their total
potential production. This extra energy buffer is called spinning reserve energy and is meant
for emergency to stabilize the grid in case of a sudden outage or fallout of another power
plant within the national grid. Instead of saving that amount of energy power plant owners
can buy options on spinning reserve energy from other utilities. If the dispatcher knows the
characteristic profit/energy line of his power plant then he can easily assign prices for various
energy amounts that he is willing to pay. Imposing an energy constraint will allow him to
compute this line.
In the following sections we will provide a short-term value of the power plant via the

calculation of the expected net present value of a certain production period, in our example
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this will be one month (March 08). An evaluation model for such a real option should cover
three areas. First, it should provide a fair value of the produced electricity. Second, it should
deliver a concrete schedule for the nomination of the following day. Third, it should provide
sensitivities for hedging. We will address all three objectives in the subsequent sections. But
first we will review our price process in order to generate realistic price scenarios for our
intended analysis.

4.2. Electricity Prices: A Real World Example
In section 3.2 we gave an introduction to Forward curve engineering in electricity markets.
We explained that our price process in equation 2.7 can be understood as an idealized spot
price fluctuation around a flat Forward curve with a single price equal to 1. We used this
setup to stay consistent with an example from Meinshausen et al. [50]. This time we want to
rather generate prices that resemble actual EEX (European Energy Exchange) spot prices.
We will introduce two different descriptions of the price dynamics. Both processes have in
common that instead of a single dimensional price process they treat the 24 hourly prices of
a day as individual price processes summarized in a vector Xd. The former mean-reversion
parameter is now a vector with 24 components κ ∈ R24. In this section we use small letters
with index t for vector components. The first model extends our existing mean-reverting
process by a time dependent mean, i.e. the hourly PFC. Recall from equation 3.31 that the
hourly PFC hd := hd(g0) reflects the expected hourly price conditional on the current Future
price g0. In this setup it is a vector with 24 components htd, t = 1, ..., 24. Again we look at a
discrete model, this time written with vectors

P1: lnXd = ln hd + Sd

Sd+1 = (1− κ) ∗ Sd + Σεd, εtd ∼ N(0, 1),
(4.1)

where the individual random factors εtd are i.i.d and Σ is the variance-covariance matrix of
the 24 hours and the symbol ∗ stands for the multiplication of each vector component. Note
that we obtain the same price process as in equation 2.7 if we make the former single mean
m time dependent as follows mt

d = 1
κt

∂htd
∂t +htd. The second price process P2 is a special case

of P1 with κt = 0. It models the (log) price directly instead of the log returns like in the first
model

P2: lnXd = ln hd + Sd

Sd ∼ N(0,Σ),
(4.2)

where individual vector components between days Std1
, Std2

with d1 6= d2 are independent. The
second model also uses the log in order to prevent negative prices during the price generation.
In both price models the variance-covariance matrix Σ covers the interaction between hours
as well as price spikes by higher volatility in certain hours. This is consistent with the market
view where each hour is treated as a separate product and the observation that jumps cluster
around certain hours only (e.g. hour 12). Both price processes separate strictly between
a deterministic drift hd and random variations Sd. In this way we are able to extract the
seasonality first and handle the stochastic component afterwards.
The two price processes mainly differ in their price generation. In P1 a new price still relies

on the previous one. P2 shifts the seasonal shape every day independently and thus generates
independent daily prices. Therefore it does not require any mean reversion to control the
deviation from the mean as fluctuations cannot accrue from day to day. We also want to
stress again the distinction between Sd and Xd. As explained in the previous chapter, Sd
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stands for the individual hourly random behavior (spot price component) of the overall spot
price Xd. The next two sub sections explain the parameter estimation from historical prices
and the calibration of those parameters to the current Forward curve.

4.2.1. Parameter Estimation

The seasonality of electricity prices is a complex mixture of different patterns. Yearly, weekly
and daily shapes overlap and form the underlying time dependent mean of the price dynamics.
The time series of electricity prices generally reveals large spikes, which distort the under-
lying seasonal behavior and make a proper estimation of the shapes difficult. Therefore, we
extract those outliers in a preprocess by applying repeated filtering introduced by Clewlow
and Strickland [19]. We compute the mean m and standard deviation s for the log prices of
our time series and identify all data points beyond m ± 3s and replace them by the value
of the previous day. We repeat these two steps on the filtered prices until no more outliers
can be identified. Instead of replacing an outlier by the value of the previous day one could
interpolate the neighboring values. In an unstable situation, however, jumps often occur in a
row. Then, interpolation will not erase outliers immediately. An alternative strategy replaces
an outlier by the previous price of the same hour and day type or simply by the price of the
previous hour. Once we have filtered out these outliers we obtain a clearer picture of the
seasonality which leads us to the concept of day types.
Day types reduce all 365 days of a year to a certain number of representatives. Weekdays for

instance reveal a common intra-day profile which differs from a typical weekend shape. Thus,
we could define two day types called "Weekday" and "Weekend" and assign a characteristic
behavior. A further separation would distinguish between each day of the week. This would
result in 7 day types from Monday to Sunday. Both approaches would cover the weekly
seasonality between the day types and the intra-day patterns within the day types. In order
to take into account the yearly pattern one could furthermore differentiate between the four
seasons of a year or even between each month of the year. Hence, one would have for instance
a "Monday - summer" or a "Tuesday - February" profile. Holidays could be treated accordingly
(Monday - holiday, ...).
Those day types should not be absolute price levels but rather weighting factors to the

corresponding i = 1,...,I monthly price band prices. One differs between "peak" (9h to 20h
on weekdays) and "off-peak" prices (m = 1,2). Monthly price band prices change in absolute
terms throughout the years, but the quality of the day type shapes stays the same (e.g.
higher prices in winter than in summer due to heating demand). Therefore day types (k =
1,..,K) are better represented by shaping factors rather than absolute price patterns. Since
we investigate log prices, those factors become spreads to the monthly log price band prices.
Hence, we decompose the time series in monthly price band prices with m=1,2 price bands
and i = 1,..,I months i.e. historical Future prices mGi plus day type adjustment factors αkl
also known as hourly curve adjustments

ln htd =
I∑
i=1

2∑
m=1

(lnmG
i)D(im)

t +
2∑

k=1

24∑
l=1

(lnαkl)I
(kl)
t

I
(kl)
t =

{
1, if hour t belongs to the l-th hour of the day type k
0, otherwise

D
(im)
t =

{
1, if hour t belongs to price band m of month i
0, otherwise,

(4.3)

where m = 1 stands for peak and m= 2 for off-peak, i = 1, ..., I are all months in the time
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series, k = 1, ..., 2 our two day types and l = 1, ..., 24 are the individual hours of a day type.
While we look at every price band of every month separately throughout the entire historical
time series we apply always the same day type/pattern αkl to its associated calendar month
(e.g. while we compute a separate mG

i for every January offpeak and peak price in the
time series we will still apply the same day type "Weekday-January" αkl on those months).
First, we compute mG

i by averaging the corresponding price band hours per month. Having
extracted those monthly averages we group the deseasonalized prices by hour and day type.
Applying again the sample mean for these groups separately results in αkl.
For our concrete example we will apply a monthly granularity with the simple categories of

"Weekday" and "Weekend" i.e. "Weekday March", "Weekend July", etc. We use the EEX prices
from 2003 to 2007 to estimate the shapes according to equation 4.3. Figure 4.1 illustrates the
overall fit of our seasonal shape across the entire price history. We can observe an adequate
coverage of the main price dynamics, but also need to admit the uncovered spikiness of the
prices. While positive jumps with prices beyond 200 EUR are most apparent in the first
place, it is actually the number of price drops often down to 0 that are even more frequent
(this observation would actually motivate a model using semi-absolute deviation which looks
at separate up and down volatility). Figure 4.2 presents a typical summer shape with the

Figure 4.1.: Seasonal patterns vs. actual electricity prices in 2003 to 2007

characteristic peak around noon that in reality is often a spike as indicated by the actual
historical price from July 07 that we have overlaid. Figure 4.3 compares our winter shape
with an actual price in October. The winter shape reveals the typical double peak pattern
during lunch and dinner time. Having identified the seasonal pattern we deseasonalize the
original (i.e. non-preprocessed) prices to obtain the remaining pure spot price dynamics Sd
including the spikes. So far the estimation of both price process models P1 and P2 is identical.
The first price process needs to further extract the mean reversion vector κ. From equation
4.1 we know

Sd = (1− κ) ∗ Sd−1 + Σεd, (4.4)
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Figure 4.2.: Seasonal pattern vs. historical price for a weekday in July 2007

Figure 4.3.: Seasonal pattern vs. historical price for a weekday in October 2007
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where the symbol ∗ stands for the multiplication of each vector component. Then we apply
a linear regression to extract κ for each vector component. The residuals εd are the daily
returns calibrated by the mean reversion parameter (recall that Sd is in fact a log price and
therefore Sd− (1−κ) ∗Sd−1 is a return). We assume the same mean reversion parameters for
weekdays and weekends. Table 4.3 shows the result for the vector κ. We can see a general

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
0.77 0.77 0.73 0.71 0.76 0.84 0.82 0.89 0.95 0.99 0.94 0.65
H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24
0.85 0.79 0.96 1.02 1.00 0.85 0.87 0.73 0.68 0.66 0.62 0.65

Table 4.3.: Mean-reversion vector κ

high mean reversion speed with more than 0.6 across all hours. The higher the value the
smaller the impact of the previous price and the stronger the price will be pulled back to the
mean. Then the shape stands out for that hour more clearly. Hence, it is no surprise that
hour 12 has a small value since this is the most spiky hour that tends to deviate far from the
mean whereas hour 15 to 17 are mainly driven by the seasonal pattern.
The last step of the parameter estimation focuses on the variance-covariance structure Σ of

the log returns εd (P1) and log prices Sd (P2) respectively. There are basically two approaches
for calculating the volatility. We either assume a seasonal volatility to acknowledge for differ-
ent fluctuations in winter and in summer months (heating demand introduces an additional
uncertainty and thus higher volatility on the price during winter months). Alternatively, one
could rather prefer to rely on most recent market behavior. The former would require to
group εd and Sd by month and compute the variance and correlation for these time buckets,
the latter would simply calculate the variance covariance matrix from the most recent data
(usually 60 days). In particular if one wants to investigate larger time horizons a combination
of both is advisable (a GARCH model, for instance, allows for differentiating between a short
term and long term volatility). We will focus on a delivery period for the single month of
March 2008 and will therefore compute the variance and correlation from the last 60 days in
2007. Figure 4.4 and 4.5 compare the volatilities for both price processes separately for week-
ends and weekdays. We can see that both price processes reveal almost identical volatilities.

Figure 4.4.: Volatility on weekdays from log returns (P1) vs. prices (P2)
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Figure 4.5.: Volatility on weekends from log returns (P1) vs. prices (P2)

An exception are hours 7, 8, 18 and 19 for the weekday volatilities. These hours are borders
of the off-peak to the peak price band. In reality hour 7 often flips between an off-peak and
a peak-like price which explains the high volatility. Market participants seem to regard hour
7 rather like a peak than an off-peak hour. The fact that the volatility for hour 18 and 19
is more than double for the prices compared to the log returns can be explained by huge
jumps during these hours that specifically occurred in December, a month that is usually
very volatile due to the Christmas holiday season. Jumps have an immediate impact on the
mere price based volatility (P2). Remember that our log returns, instead, are adjusted by
the mean reversion parameter κ according to equation 4.4 which compensates part of the
fluctuation and makes the final volatility result smaller. But also in terms of the log returns
hour 18 and 19 have a high volatility (even higher than hour 12). Recall from Figure 4.3
the second peak during the evening hours for winter shapes. Apparently, this second peak
does not clearly stand out and makes these hours more volatile. As expected, on weekends
the volatility is generally smaller. The higher volatility in morning hours can be explained
by large negative jumps almost down to 0 that tend to happen mainly during early morning
hours on weekends. This is where the EEX even published negative prices the first time in
2008. Figure 4.6 and Figure 4.7 present the correlation between neighboring hours. To be
precise, a correlation at hour i in the graph stands for the correlation between hour i and
i+1. Consequently we only have 23 observations. As assumed we can detect a generally high
correlation throughout weekdays and weekends that again only drops at the border between
peak and offpeak hours. By definition prices between price bands should be less correlated
than within a price band. While this is properly the case in the evening (the correlation
between hour 19 and 20 as well as hour 20 and 21 is significantly smaller) this characteristic
is shifted in the morning by one hour. The correlation between hour 7 and 8 is more than 90%
and underlines another time that hour 7 is treated like a peak hour by the market. Instead
hour 5 to 6 and 6 to 7 show the expected behavior of a weaker correlation. On weekends
where we have only off-peak hours the correlation profile is fairly stable.
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Figure 4.6.: Correlation on weekdays between neighboring prices

Figure 4.7.: Correlation on weekdays between neighboring prices
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4.2.2. Price Generation
Now that we have calculated all relevant parameters, we will generate new price scenarios. In
particular we want to calibrate the price process to the current term structure of the Forward
curve. The calibration consists of two steps. First we normalize the hourly curve adjustments
such that the average of all factors for the same price band m and month i is 1. The relevant
first normalization factor η[1]

im is

α̃t = η
[1]
im αt, t ∈ Tim

η
[1]
im =

 1
|Tim|

∑
t∈Tim

αt

−1

,
(4.5)

where Tim is the set of hours that belong to month i and price band m and |Tim| is the total
number of hours in this set (see also equation 3.32). Then we replace in equation 4.3 the
historical Future prices mGi by the current Future prices mĜi and apply α̃t instead of α. The
resulting h̃td constitutes the new PFC according to our definition from section 3.2. Then we
add the correlated random spot price component Sd that we either generate directly from the
variance covariance matrix of the prices (P2) or implicitly via the log return process ξd (P1).
The random log prices are also automatically normalized in average as the mean of lnSd is
zero. However, the actual prices are not. These N scenarios will therefore also be normalized
to make sure that the average of the random prices of the same price band and month across
all scenarios returns again the initial Forward price. This leads to the second normalization
factor η[2]

im

xtd = η
[2]
im eh̃

t
des

t
d , t ∈ Tim

η
[2]
im = mG

i

1
N

1
|Tim|

∑N
n=1

∑
t∈Tim x

n
t

.
(4.6)

The normalization requires that the price band hours do not overlap. For this reason we
work with peak and off-peak prices. In reality, the German energy exchange quotes peak and
base prices instead. However, the off-peak price can be derived directly from the other two
through the following relation

BT
i
BG

i = PT
i
PG

i + OT
i
OG

i, (4.7)

where B,P and O stand for Base, Peak and Off-Peak and .T
i are the total number of hours

that belong to the corresponding price band B,P,O and month i. Figure 4.8 illustrates how
a single trajectory contains information of both the Forward prices and the seasonality. Note
that the seasonal shape taken from historical prices reflects the market view of hour 7 being
another peak price (hour 7 alreadiy reaches the level of the Forward peak price). All examples
in this chapter will use 1000 price scenarios that are generated based on price process P2.
Appendix C provides further sample paths of this price process.

4.3. Valuation without Energy Constraints
Our first valuation approach will ignore the energy constraint W0. In practice, the power
plant owner needs to register a day schedule one day in advance and hence needs to make his
dispatching decision on a daily basis. As spot prices are traded day ahead and consequently
settle daily as well, we will apply a daily price filtration and decision process. Then, the
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Figure 4.8.: The simulated price on top of the season and Forward price

power plant owner will run his power plant to maximize the cash flow Zd for today’s given
price. This daily cash flow is the difference between the 24 hourly electricity prices of a day
d summarized in a vector Xd and the variable production cost K. Note that different to our
swing option model in the previous two chapters a negative cash flow has to be accepted in
case one of the price vector components Xt

d falls below K, but the power plant has not yet
passed the minimum runtime. Like Xd the daily schedule Ld is also a vector containing the
actual quantity profile (24 different capacities in MW) for each hour of a day. Furthermore,
we introduce the auxiliary binary vectors βod and βud that trigger the shut-down and start-up
costs Ko and Ku at each hour where the schedule switches the power plant on and off. As in
our previous chapters we ignore discounting. Then the cash flow can be written as

Zd := (Xd −KI)′Ld − (KoI)′βod − (KuI)′βud , (4.8)

with I being the unity vector. The value of the entire power plant production is the sum of
these daily cash flows that are linked by the on- and off-times. Without an energy constraint
the dispatcher only needs to make sure that the plant’s operating states will not be violated
from one day to the next. To ensure a valid new schedule for day d we only need to know the
off-line hours m or running hours k until midnight of the previous day which we declare as
the start state Ud := (U (1)

d , U
(2)
d ) := (m, k) of a day with m ∈ {0, ..., toff} and k ∈ {0, ..., ton}

with m ·k = 0 and m+k > 0. In order to simplify the notation we denote with Lon,off(Ud) all
schedules Ld at a fixed day d = 0,...,D that meet the on- and off-times ton and toff as well as
the min and max capacity Lmin, Lmax > 0 based on start state Ud. Each vector component
Ltd, 1 ≤ t ≤ 24, stands for an hourly production capacity in MW. Furthermore, we denote
Ls1,s2
d := L24+s1,s2

d−1 for s1, s2 ≤ 0, in particular I
L

24+s1
d−1

:= 0 for s1 := −U (1)
d + 1, .., 0 and

I
L

24+s2
d−1

:= 1 for s2 = −U (2)
d + 1, .., 0 with I being the indicator function. Finally we assign

Lt−1 := 0, 1 ≤ t ≤ 24, if U (1)
0 > 0 and Lt−1 := 1, 1 ≤ t ≤ 24, if U (2)

0 > 0. Then, we can write
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the feasible production schedules as

Lon,off(Ud) :=
(
Ltd

)
1≤t≤24

∣∣∣∣∣∣∣∣∣∣
∀ t = 1, .., 24 : Lmin ≤ Ltd ≤ Lmax, Ld ∈ R24,
∀ s1, s2 = −max{ton, toff}+ 2, ..., 0, 1, ..., 24 :

−1− ILs1
d
>0 + I

L
s1−1
d

>0 + ILτ
d
≤ 0, τ = s1 + 1, ...,min{s1 + toff − 1, 24},

ILs2
d
>0 − I

L
s2−1
d

>0 − ILτ
d
>0 ≤ 0, τ = s2 + 1, ...,min{s2 + ton − 1, 24},

 .
(4.9)

Thus, today’s dispatch decision Ld will define tomorrow’s start state Ud+1 and thus impact
the set of admissible schedules for tomorrow. It also automatically determines the auxiliary
vectors βod, βud that trigger the start-up and shut-down costs. Formally (Ld, βod, βud ) build the
relevant action space

A(Ud) :=

(Ld, βod, βud )

∣∣∣∣∣∣∣∣∣∣
Ld ∈ Lon,off(Ud),
∀ s = 0, 1, ..., 24 :

ILs−1
d

>0 − ILs
d
>0 − βo,sd ≤ 0, βo,sd ∈ {0, 1},

−ILs−1
d

>0 + ILs
d
>0 − βu,sd ≤ 0, βu,sd ∈ {0, 1}

 , (4.10)

with Lsd := L24
d−1 for s = 0 and Lt−1 := 0, 1 ≤ t ≤ 24, if U (1)

0 > 0 and Lt−1 := 1, 1 ≤ t ≤ 24,
if U (2)

0 > 0. Now, we investigate rules fd that pick an action out of A(Ud) for a given price
vector Xd and start operating state Ud, i.e. (Xd, Ud)

fd−→ (Ld, βod, βud ) ∈ A(Ud). We are mainly
interested in the optimal sequence of these rules denoted as the policy π∗d := {f∗d , .., f∗D} that
maximizes the expected cash flow of the entire remaining production period. In particular
we are interested in the policy starting at d = 0, i.e. π∗0 which we can find by solving

C0(x0, u0) := sup
π0∈Π0

E(π0)
[
D∑
d=0

Zd|X0 = x0, U0 = u0

]
, (4.11)

where Π0 is the set of all admissible policies starting at d = 0 and given start price X0 = x0
and start operating state U0 = u0. Again, E(π0)[...] stands for the expectation under the
Markov chain that follows the policy π0. Next, we want to express this dynamic program via
a Bellman iteration. First we simplify the action domain and define it only by the end state
Jd := (J (1)

d , J
(2)
d ) := (m′, k′) (e.g. (4,0) means shut-down after the last peak hour i.e. 20:00

hrs). It does not only determine the start state and thus the set of allowed schedule candidates
for tomorrow (in this example the power plant needs to stay off at least (toff − 4) more
hours), but we can also immediately derive the production schedule and auxiliary variables
(Ld, βod, βud ), i.e. the original action space, given today’s start state Ud and price vector Xd.
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For this purpose we first introduce a nested mixed integer problem (MIP)

Zd(Xd, Ud, Jd) = max
Ld,ξd.β

u
d
,βo
d

{
(Xd −KI)′Ld −KuI

′βud −KoI
′βod
}

subject to:
Lmin ξd − Ld ≤ 0
−Lmax ξd + Ld ≤ 0

Λξd ≤ 0
−I −Bξd ≤ 0
Eξd − βud ≤ 0
−Eξd − βod ≤ 0

Ltd ∈ {0} ∪ [Lmin, Lmax]
ξd := ξd(Ud, Jd)

ξtd, β
o,t
d , βu,td ∈ {0, 1}

t = −max{ton, toff}+ 1, ...,−1, 0, 1, ..., 24.

(4.12)

Thus, the daily schedules are linked via the operating state at the beginning Ud and end
of the day Jd. Recall that the hourly dispatch Ld is a vector with 24 capacities ltd in MW
while Zd, Ud, Lmin,Lmax, K, Ku, Ko and Jd are scalars, all other variables are vectors. The
auxiliary binary variables ξtd encode the operating state of the power plant for each hour (0
not running, 1 running). Note from equation 4.9 that the running index t goes below the
24 hours of a day. Variables ξtd with t ≤ 0 describe the last operating states of the previous
day. In addition the domain of ξd is predefined by the start and end states Ud and Jd. For
example, if Ud = (4, 0) then ξtd = 0 for t = −3, ..., 0. Likewise the hours at the end of the day
are preset by Jd

ξtd ≤ 0, −U (1)
d < t ≤ 0

1− ξtd ≤ 0, −U (2)
d < t ≤ 0

ξtd ≤ 0, 24− J (1)
d < t ≤ 24

1− ξtd ≤ 0, 24− J (2)
d < t ≤ 24.

(4.13)

The first two constraints in equation 4.12 ensure that the power plant production stays in
between the min and max capacities per hour Lmin and Lmax. An individual row t of the two
vector equations looks as follows

Lmin ξ
t
d − Ltd ≤ 0

−Lmax ξ
t
d + Ltd ≤ 0.

(4.14)

The third and fourth constraint in equation 4.12 guarantee that the sequence of on and off
hours meets the minimum shut-down and running times

ξtd − ξt−1
d − ξτd ≤ 0, τ = t+ 1, ...,min{t+ ton − 1, T},

−1− ξtd + ξt−1
d + ξτd ≤ 0, τ = t+ 1, ...,min{t+ toff − 1, T},

t = −max{ton, toff}+ 2, ..., 0, 1, ..., 24.
(4.15)

Obviously, matrix Λ contains mainly zero values and exactly (-1) twice and (+1) once per
row. Figure 4.9 shows the sub matrix of Λ for t= -10 and ton = 12. The sub matrix scans the
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11 hours after t = −10 and forces the associated ξτd to be set to 1 if the prior hour t−1 = −11
is set to 0 and the current hour t is set to 1. In this way the minimum running time of 12
hours holds true.

Figure 4.9.: Sub matrix of Λ for ton= 12 and t = -10

Matrix B has the same structure. The signs are only flipped and the left outermost 1 starts
at -7 instead of -11 as toff = 8. The last two constraints in equation 4.12 trigger the start-up
and shut-down cost whenever the running state ξtd flips from 0 to 1 (start-up) and vice versa
(shut-down)

ξtd − ξt−1
d − βu,td ≤ 0

−ξtd + ξt−1
d − βo,td ≤ 0
t = 1, ..., 24.

(4.16)

Figure 4.10 shows the structure of matrix E for our example with ton = 12 and toff = 8. It

Figure 4.10.: Matrix E

only contains 0 values and exactly one (-1,1) pair per row.

4.3.1. MIP Reformulation
Let Ns and Ne be the number of operating states at the start and the end of a day, I1 the
number of price scenarios and D the number of production days. Then we need to solve the
MIP at maximum (Ns×Ne× I ×D) times. This large amount of payoff calculations motivates
for a more efficient reformulation of the MIP. Recall from equation 4.12 that the auxiliary
vector ξ represents the running mode of the power plant and Ld is the associated volume
profile on top of it. For a given operating sequence ξ we can specify the profit maximizing
volume profile right away if no energy constraints will be imposed. Operating hours ltd that
are out of the money will certainly produce at minimum capacity Lmin whereas in the money
hours produce at maximum capacity Lmax. The start-up and shut-down costs of an individual
schedule can therefore be directly derived from M by simply counting the triggers α and β
from equation 4.16 multiplied with the corresponding single cost. If we enumerate all possible

1Do not confuse the max number of scenarios I with the unity vector I.
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operation sequences ξd as rows in a matrix M, then we can compute the payoff of each schedule
via a matrix calculation. We denote with X̂d not the single price vector Xd, but a matrix
that contains all scenarios for the same day d in its columns (X̂d has the size (24× I)). Then
X̂

(+)
d sets all negative hours to zero and X̂(−)

d sets all positive hours to zero. Consequently,
we can solve all scenarios at the same time with the following equation

Rd = M(X̂(+)
d −KI) Lmax +M(X̂(−)

d −KI) Lmin − (KuI)′α− (KoI)′β, (4.17)

where matrix M is of size (N × 24) with N being the total number of allowed schedules for
a given Ud and Jd (as explained in equation 4.13 the individual operating sequences ξd and
thus M := M(Ud, Jd) are dependent on the fixed start and end state). Hence, the resulting
matrix Rd is of size (N × I). The maximum vector component rnid of column vector Rid is the
optimal cash flow Zd(xid, uid, jid) for scenario i and we can write for every i

Zd(xid, uid, jid) = max
1≤n≤N

{rnid }. (4.18)

The corresponding row index n determines the row in matrix M that holds the associated
best schedule. Running this matrix calculation (Ns × Ne)-times for all scenarios at once
is significantly faster than performing the Simplex algorithm of a solver for every scenario
separately.

4.3.2. Bellman Iteration

Now, let us translate equation 4.11 into a Bellman iteration. The generation days d = 0, ..., D
become the decision stages of the program. The states of each stage have two dimensions: the
start operating state Ud withm off-line or k running hours until midnight of yesterday and the
known price vector Xd. The action set contains all possible end states Jd for the given start
state with m′ off-line or k′ running hours until midnight of today with m,m′ ∈ {0, .1, ..., toff}
and k,k′ ∈ {0, 1, .., ton}. Again, the value function C∗d(Xd, Ud) is the value of an option that
is newly issued at day d given today’s price Xd and the power plant start state Ud. Whereas
the continuation value Q∗d+1(Xd, Ud+1) is the expected option value at d + 1 given today’s
price Xd and tomorrow’s start state Ud+1. This expectation for the future days is important
for the dispatching decision. The dispatcher might accept a lower profit today if this enables
him to benefit more from potential profits tomorrow or vice versa to prevent losses. If he
expects for instances low prices (e.g. from Friday to the off-peak day Saturday) then today’s
generation schedule should not end up in an operating state that will force him to produce
the next day as well. The transition rule is fairly simple as tomorrow’s start state Ud+1 is
identical to today’s end state Jd. Then, the dispatcher has to find the sequence of operating
end states that will maximize his total expected profit. The set of end states Jd can depend
on the start state Ud, in particular for long on- and off-times. In our specific example with
ton = 12 and toff = 8, this is not the case. The marginal profit is today’s cash flow Zd whose
calculation we discussed in detail in the previous section. Thus, we can express the value
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function via the following Bellman iteration

C∗d(Xd, Ud) = max
Jd

{
Zd(Xd, Ud, Jd) + E

[
C∗d+1(Xd+1, Jd) |Xd )

]}
0 ≤ d ≤ D

state : (Xd, Ud) Ud := (U (1)
d , U

(2)
d ) := (m, k)

action : Jd ∈ J(Ud) = {(1, 0), ..., (m′, 0), (0, 1), ..., (0, k′)}

Jd := (J (1)
d , J

(2)
d ) := (m′, k′), m′ := m′(Ud) k′ := k′(Ud)

transition : {Xd, Ud} −→ {Xd+1, Jd} i.e. Ud+1 = Jd

marginal profit : Zd(Xd, Ud, Jd)
value function : C∗d(Xd, Ud)

continuation value : Q∗d+1(Xd, Ud+1) := E
[
C∗d+1(Xd+1, Ud+1) |Xd

]
,

(4.19)

with C∗D+1(XD+1, UD+1) := 0. In order to compute the expectation conditional on today’s
price we also need to define the transition probability. Recall from section 4.2 that our
definition of our price process consists of 24 correlated mean reverting prices

ln xtd = ln htd + std

std = (1− κt) std−1 + σtd ε, ε ∼ N(0, 1),
(4.20)

with Sd being the vector of the spot price component of the electricity price and std a single
hour within that price vector. htd is the deterministic seasonal shape for hour t at day d and κt
is the mean reversion rate for hour t. σtd is the volatility for hour t at day d with correlation
ρt,τd to all other τ ∈ {{1, ..., 24} \ t} hours in d. For this kind of price process Lucia and
Schwartz [47] showed that the random log price components follow conditionally correlated
Normal distributions

ln xtd+1 ∼ N
(

ln htd+1 + (ln xtd − ln htd)e−κ
t
,
(σtd)2

2κt
(
1− e−2κt

))
, (4.21)

with ∆t = 1. Like in our basis model for the swing option we need to approximate the
continuation value. Again, we apply the Longstaff-Schwartz regression technique and rely on
the ACFs which is the sum of all daily cash flows for a single price path following the optimal
exercise policy {J∗s }s≥d

V ∗d (Xd, Ud) :=
D∑
s=d

Zs(Xs, J
∗
s−1, J

∗
s ), (4.22)

with J∗d−1 := Ud. According to Longstaff and Schwartz an individual realization of the continu-
ation value Q∗d+1(xid, uid+1) is close to the average of all ACFs v∗,jd+1(uid+1) := V ∗d+1(xjd+1, u

i
d+1)2

with realized prices xjd+1 generated from xid according to equation 4.20

Q∗d+1(xid, uid+1) ≈ 1
J

J∑
j=1

v∗,jd+1(uid+1). (4.23)

The numerical procedure can only approximate from below the optimal continuation value
Q∗d+1(Xd, Ud+1) by Yd+1(Xd, Ud+1) and the ACF V ∗d (Xd, Ud) by Vd(Xd, Ud). The continuation

2Recall our convention from section 2.1 to use small letters with exponent i for realization of random variables.
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value will be approximated with a linear combination of basis functions

Yd+1(Xd, Jd) := Yd+1(Xd, J
(n)
d ) := Ψn,d+1(Xd)′αn,d+1, (4.24)

with n = 1, .., N valid end states J (n)
d and vectors Ψn,d+1 and αn,d+1 have length R. The

relevant coefficients αn,d+1,r for the basis functions Ψn,d+1,r with r = 1,...,R will be computed
by regressing the pairs (Xd, Vd+1(Xd+1, Ud+1)). Note that at each stage d the regression needs
to be performed N-times (i.e. for each possible end state separately). This is similar to our
swing option where we have to run the regression separately for each exercise right and day
(see equation 2.6). Once, we have approximated the continuation value with a functional
description Yd+1 we are able to approximate the best action J∗d via Ĵ∗d which we then use to
update Vd(Xd, Ud) from Vd+1(Xd+1, Ud+1)

Ĵ∗d := arg max
Jd
{Zd(Xd, Ud, Jd) + Yd+1(Xd, Jd)}

Vd(Xd, Ud) ≈ Zd(Xd, Ud, Ĵ
∗
d ) + Vd+1(Xd+1, Ĵ

∗
d ).

(4.25)

We iterate until the first stage (d=0) and then can approximate the actual option value
C∗0 (x0, u0) by C0(x0, u0) with the average over i = 1, ..., I realizations of the approximated
ACF

C0(x0, u0) ≈ 1
I
vi0(u0). (4.26)

The analysis of appropriate basis functions Ψn,d+1,r(Xd, Jd) is more complex compared to our
previous swing option model. We cannot simply set again the basis function identical to the
price, e.g. Ψn,d+1,r(Xd, Jd) = Xd, and look at polynomials of different degrees. Xd is not a
single price any more, but a price vector with 24 components. Already a quadratic approxi-
mation would result in more than 48 parameters to estimate if we used all vector components
for the regression. This is certainly not feasible and instead requires a simpler representation
of the price vector that would suit well for the regression. A popular method is the principal
component analysis (PCA) which, generally speaking, aggregates the characteristics of origi-
nal observations into artificial new factors by preserving the original information represented
by its variance-covariance structure. In the following section we will use this tool in order to
define our vector of basis functions Ψn,d+1,r.

4.3.3. Principal Component Analysis

The principal component analysis is a sub field of factor analysis whose main objective is to
reduce the dimensionality of a multi-scale data set. In our case there are price vectors with
24 components. The principal component analysis achieves the reduction by combining the
different dimensions t = 1, ..., T = 24 of the original data set via a linear combination to
new artificial factors a1, a2, ..., aM (for readability we use capital letters for vectors X, small
letters for vector components xt and small letters with a sub-index represent realizations of a
random component xit). For instance, hour t of our first realization of price vector Xd (from
now on we skip the sub index d indicating the day) would be translated to

x1
t := γ1ta

1
1 + γ2ta

1
2 + ...+ γMta

1
M . (4.27)
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The previous equation is always true for M = T . In matrix form we can also write

X := A · Γ′x
1
1 . . . x1

T
...

...
xN1 . . . xNT

 :=

a
1
1 . . . a1

T
...

...
aN1 . . . aNT

 ·
γ11 . . . γM1

...
...

γ1T . . . γMT


′

,
(4.28)

with Xt = (x1
t . . . xNt )′ being a column vector representing all realizations for component

m. A is called the factor matrix while F contains the so called factor loadings with Γm =
(γm1 . . . γmT )′ being the loading vector for hour t. Technically Γ is a rotation matrix that
twists the coordinate system such that the expansion of data points X concentrates on a
smaller number of axes (dimensions). A is then the representation of X with respect to the
new coordinate system. Finding the best rotation matrix Γ leads to an Eigenvalue calculation
which we do not want to derive here in detail. We refer to Überla [64] for a detailed derivation.
It is important to note that the information content is the same before and after the rotation
as the trace of both variance-covariance matrices for ΩX and ΩA match

trace(ΩX) = trace(ΩA)

trace( 1
N

(X − X̄)′(X − X̄)) = trace( 1
N

(A− Ā)′(A− Ā)).
(4.29)

While the diagonal of ΩX contains the volatilities of the individual hours, the diagonal of ΩA

represents the volatilities of the new synthetic factors. If the PCA is successful then trace
of ΩA will have a lot of values close to 0 that carry no more information. Hence, the best
rotation matrix will have the smallest amount of non-zero components in the diagonal to make
up the trace. These remaining volatilities represent the highest density of information and
make the remaining factors negligible. Table 4.4 provides the results for our PCA analysis.
We analyzed three different representations of our electricity price separately for weekday and

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
εd (WD) 0.45 0.64 0.82 0.87 0.89 0.91 0.93 0.94 0.95 0.96 0.97 0.98
Sd (WD) 0.51 0.74 0.82 0.88 0.91 0.93 0.95 0.96 0.97 0.97 0.98 0.98
Xd (WD) 0.74 0.92 0.95 0.97 0.98 0.99 0.99 0.99 0.99 1 1 1
εd (WE) 0.64 0.79 0.84 0.88 0.91 0.93 0.95 0.96 0.97 0.97 0.98 0.98
Sd (WE) 0.63 0.77 0.83 0.88 0.91 0.93 0.95 0.96 0.97 0.97 0.98 0.98
Xd (WE) 0.83 0.89 0.94 0.95 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99

A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24
εd (WD) 0.98 0.98 0.99 0.99 0.99 0.99 1 1 1 1 1 1
Sd (WD) 0.99 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1
Xd (WD) 1 1 1 1 1 1 1 1 1 1 1 1
εd (WE) 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1
Sd (WE) 0.99 0.99 0.99 0.99 1 1 1 1 1 1 1 1
Xd (WE) 0.99 1 1 1 1 1 1 1 1 1 1 1

Table 4.4.: Percentage of the total variance explained by the new factors.

weekend prices which make up the six rows of the table. The columns represent the synthetic
factors (the table is split after 12 factors). The first row investigates the log returns εd on
weekdays. Recall from equation 4.1 that these are the log returns after extracting the mean
reversion factor κ. The second row looks at the same matrix for the de-seasonalised (log)
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prices Sd according to equation 4.2. The third row works directly with the weekday price Xd.
The remaining three rows repeat the same analysis for weekend prices. We look at the last 60
weekdays and 30 weekends respectively as this time frame is agreed by practitioners to be an
adequate horizon for the volatility calculation. The actual table cells contain the cumulative
sum of the diagonal of matrix ΩA up to m divided by the entire trace

Am :=
∑m
t=1 σ

2
tt∑24

t=1 σ
2
tt

, (4.30)

with σ2
tt being the t-th entry of the diagonal of ΩA. Hence, the table cells show us the

percentage of the total volatility covered until factor Am. For instance, column "A1" states
that the first principal component covers between 45 % to 74% of the total variance of the
weekday price vector if we rely on either εd, Sd or Xd. In general we can state that the
first five factors cover already 90 % of the entire information. Even more surprising is the
fact that the PCA performs best on the full price Xd including the seasonality. While the
seasonal pattern is an explained deterministic deviation and therefore formally must not enter
the actual volatility calculation it obviously helps to describe the characteristic of each price
component and hence to find an alternative condensed representation. The first principal
component based on Xd covers already 74 % respectively 83 % of the entire fluctuation. An
astonishing result that we will make use of in a later section.
The PCA framework enables us to drill down even further and explain the amount of

information that the new factors Am carry of each original price component. We can repre-
sent the covariance of pairwise price dimensions by the sum of the product of appropriately
standardized factor loadings Γ̃ (so called fundamental theorem of factor analysis)

ΩX = Γ ΩA Γ′ = Γ̃Γ̃′, (4.31)

with Γ̃ = Γ
√

ΩA. The columns of Γ̃ represent the initial price components and the rows stand
for the new artificial factors. For z-transformed prices (X̃t

d = (Xt
d−X

t
d/S

t
d) with X

t
d being the

average of all price scenarios of hour t at day d and Std the associated standard deviation, the
sum of the squares along a column in Γ̃ is the variance of the corresponding price component
which by definition is 1. Hence, cutting this sum after M factors returns a number kMt

kMt :=
M∑
m=1

γ̃2
mt t = 1, .., T (4.32)

which is between 0 and 1 and can be interpreted as the percentage of the total information
of the price at hour t that is passed on to the first M principal components a1, ..., .aM .
Alternatively, we can look at the correlation rmt between a factor am and the individual price
hour xtd to assess the contribution of an individual hour to a specific principal component
(again we neglect index d)

rmt := γ̃mt :=
1
N

∑N
n=1(xnt − x̄t)(anm − ām)

σX σA
t = 1, ..., T m = 1, ...,M, (4.33)

with σX ,σA respectively, being the square root of the diagonal of the variance-covariance
matrix ΩX and ΩA. The previous equation states that the factor loadings γ̃mt for z- trans-
formed input data are identical to these correlations. Table 4.5 presents the correlations and
their squares for the first three principal components of the factor loadings that we derived
from the price Xd directly. The first six columns show the results for weekday, the last six
columns for weekend prices (ν := γ(WE)). The squared numbers allow for computing kt1 to
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H γ1t γ2t γ3t γ2
1t γ2

2t γ2
3t ν1t ν2t ν3t ν2

1t ν2
2t ν2

3t

1 0.79 -0.49 0.25 0.63 0.24 0.06 -0.76 -0.48 0.16 0.58 0.23 0.02
2 0.80 -0.52 0.12 0.64 0.27 0.02 -0.76 -0.57 0.19 0.57 0.33 0.04
3 0.74 -0.57 0.19 0.55 0.32 0.03 -0.71 -0.64 0.17 0.50 0.41 0.03
4 0.69 -0.60 0.22 0.48 0.36 0.05 -0.71 -0.64 0.17 0.50 0.41 0.03
5 0.74 -0.49 0.19 0.55 0.24 0.04 -0.76 -0.52 0.19 0.58 0.27 0.04
6 0.88 -0.29 0.03 0.78 0.09 0.00 -0.91 -0.04 0.30 0.82 0.00 0.09
7 0.85 -0.13 -0.20 0.73 0.02 0.04 -0.90 0.25 0.24 0.81 0.06 0.06
8 0.92 -0.07 -0.12 0.85 0.00 0.01 -0.88 0.36 0.21 0.78 0.13 0.04
9 0.90 -0.03 -0.26 0.82 0.00 0.07 -0.92 0.29 0.15 0.85 0.09 0.02
10 0.94 0.16 -0.15 0.88 0.03 0.02 -0.93 0.26 0.06 0.86 0.07 0.00
11 0.94 0.14 -0.11 0.88 0.02 0.01 -0.92 0.26 -0.01 0.84 0.07 0.00
12 0.92 0.17 -0.16 0.85 0.03 0.03 -0.86 0.32 -0.04 0.73 0.10 0.00
13 0.94 0.26 -0.03 0.89 0.07 0.00 -0.93 0.23 -0.10 0.86 0.05 0.01
14 0.95 0.23 -0.09 0.90 0.05 0.01 -0.91 0.28 -0.02 0.83 0.08 0.00
15 0.89 0.24 -0.20 0.80 0.06 0.04 -0.93 0.31 0.04 0.87 0.09 0.00
16 0.90 0.34 -0.16 0.82 0.12 0.03 -0.93 0.31 0.10 0.86 0.10 0.01
17 0.77 0.55 0.30 0.59 0.30 0.09 -0.93 0.27 0.06 0.87 0.07 0.00
18 0.57 0.57 0.59 0.32 0.32 0.35 -0.94 0.19 -0.03 0.89 0.03 0.00
19 0.68 0.50 0.51 0.47 0.25 0.26 -0.76 -0.04 -0.45 0.58 0.00 0.20
20 0.88 0.01 -0.26 0.78 0.00 0.07 -0.77 -0.09 -0.49 0.59 0.01 0.24
21 0.93 0.15 -0.14 0.86 0.02 0.02 -0.91 -0.07 -0.23 0.82 0.01 0.05
22 0.85 0.03 -0.16 0.72 0.00 0.02 -0.86 -0.13 -0.23 0.74 0.02 0.05
23 0.88 -0.08 0.10 0.78 0.01 0.01 -0.74 -0.39 -0.33 0.54 0.15 0.11
24 0.78 -0.22 0.12 0.60 0.05 0.01 -0.79 -0.42 -0.18 0.62 0.17 0.03

Table 4.5.: Contained information and correlation of the first three principal components with
respect to each individual hour by weekday and weekend
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kt3 according to equation 4.32. Hence, summing up columns 5 to 7 or 10 to 12 for the same
row tells us the percentage of the total information of hour t that is covered by the first up
to the third principal component. For example, we see that factor 1 covers 63 % of hour 1
of a weekday, factor 1 and 2 together explain already 87 % and factor 3 adds another 6 %
to the overall deviation of hour 1. Analyzing the entire column of γ2

1t we see that the first
component covers best hours 8 to 16 on weekdays and 6 to 18 on weekends with more than 80
% contribution. The second factor mainly describes the morning hours with more than 24 %
contribution while factor 3 captures hour 18 and 19 on weekdays (35 % and 26 %) and hour
19 and 20 on weekends (20 % and 24 %). If we move on to the correlations we observe that
the first principal component is highly positively correlated with all weekday hours and highly
negatively correlated with all weekend hours. The second component already reveals a far
less strong correlation and flips the sign during off-peak hours on weekdays and peak hours
on weekends. If we recall the relationship between base, peak and off-peak hours from equa-
tion 4.7 then we could interpret factor 1 as a base price and factor 2 as a peak, respectively
off-peak price representation.

4.3.4. Numerical Results
Now, let us continue with our Bellman iteration from section 4.3.2. We stopped at the
description of the basis functions for the Longstaff-Schwartz regression. The PCA results
allow us to replace our 24 dimensional price vector Xd with a small number of principal
components (PC) am. To be precise we use their rotation functions to define our basis
functions in vector Ψn,d(Xd, Jd). In a first step we want to find the exact number of necessary
PC for our specific power plant example from section 4.1. We run a quadratic approximation
for the first 4 principal components. Let us illustrate the approximation for the first two PC
(for readability we skip the day index d on the right side of the equations: e.g. ai1 := aid,1 and
α0,n := αd+1,0,n)

Ψ′n,d+1(Xd, Jd) = Ψ′n,d+1(Xd) = (1 a1 a2 a2
1 a1a2 a2

2)
Yd+1(Xd, Jd) = Ψ′n,d+1(Xd)αd+1

= α0,n + α1,n a1 + α2,n a2 + α11,n (a1)2 + α12,n a1a2 + α22,n (a2)2

am =
24∑
t=1

γmtX
t
d m = 1, 2

(4.34)

with Xt
d being the t-th hour of random vector Xd. We use the factor loadings γmt that

we derived directly from the prices (see Table 4.5) as they reduced the dimensionality most
efficiently. Dependent on whether d is a weekday or weekend we apply the corresponding
factor loadings γmt or νmt. Again, the sub index n of parameters α.,n stands for the currently
selected end operating state J (n)

d . We find the αd+1-parameters by regressing on the pairs
(Xd, Vd+1(Xd, J

(n)
d )) separately for each J (n)

d . Table 4.6 presents the valuation results for our
power plant with the parameter profile presented in section 4.1. Similar to our swing option
examples in the previous chapter we want to compute the real option value for an itm, atm
and otm situation. The off-peak and peak Forward price for March 08 is 50.59 EUR and
71.85 EUR respectively. Hence, we choose the strikes K = 50, 70 and 90 EUR to reflect the
three different scenarios. For each strike we run the LS quadratic approximation according to
equation 4.34 for the very first and up to the first four PC separately. Hence, every four rows
in Table 4.6 build one block where each block represents an itm, atm or otm situation. We
assume that the power plant was already running at least 12 hours at midnight on 1-Mar-08
i.e. the start state is (0,12). The first column presents the value C0 := C0(x0, u0) for the
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stochastic optimization as outlined in equation 4.11. The fact that the option values are so

C0 Cs
0 C0.95

0 Cf
0 CP F C

0 CF
0 C

(L622)
0 C

(L723)
0 C

(L024)
0

4.406 4.760 4.405

4.492 3.968 3.072 4.019 4.053 4.2514.407 4.760 4.406
4.407 4.761 4.401
4.408 4.761 4,407
1.188 1.423 1.185

1.203 0.463 0.184 1.156 1.143 0.1391.188 1.423 1.185
1.188 1.423 1.185
1.188 1.423 1.185
0.209 0.336 0.205

0.210 0 0 0.205 0.203 <00.209 0.336 0.205
0.209 0.336 0.205
0.209 0.336 0.205

Table 4.6.: Value of the Power Generation for March 08 in mio EUR.

close to each other no matter whether we use one or four PCs is remarkable. Even when
changing the strike which will change the shape of the ACF the values almost match for all
four PC settings. From Table 4.4 we know that the first PC explains 74 % of the weekday and
83 % of the weekend deviations and apparently that is sufficient for the LS regression. Recall
that the LS regression only provides a lower bound of the real option value. In order to assess
the quality of this lower bound, we provide an upper bound as well. Due to the complexity of
the real option model we cannot present a primal-dual approach as discussed in chapter 1 and
rather rely on the option value based on the full information Cf0 := Cf0 (x0, u0) i.e. all prices
are known in advance. Hence, there is no uncertainty about the future any more and we can
adjust the generation schedule such that it takes advantage of every price situation. Formally,
the continuation value will be replaced by the actual subsequent ACF for the specific price
path (path-wise optimization). Hence, the stochastic optimization becomes deterministic. In
equation 4.19 we can remove the continuation value and replace the Bellman equation with

V f
d (Xd, Ud) := max

Jd

{
Zd(Xd, Ud, Jd) + V f

d+1(Xd+1, Jd)
}
,

Cf0 (x0, u0) ≈ 1
I

I∑
i=1

vf,i0 (u0).
(4.35)

In particular, no more principal components are required. Like for C0 we compute the option
value for the operating state at the first delivery day u0 = (0, 12). Then the option value
Cf0 := Cf0 (x0, u0) is the average of the individual ACFs vf,i0 (u0) that all start from the same
initial price x0 and start state u0. The figures for Cf0 in Table 4.6 are only slightly higher
than the stochastic option values C0. The difference is almost negligible. This observation in
conjunction with our previous statement about the small impact of the number of PCs lets us
assume that our stochastic model achieves already good results with the first PC only. At least
in average Vd(Xd, Ud) and V f

d (Xd, Ud) are close to each other. We will investigate in sections
4.5 whether that is also true for the individual scenario values when we will take a closer
look at the distributions. The itm situation for K = 50 EUR can give us a first indication.
The power plant is always profitable and produces a flat schedule. Then the value fluctuation
of Vd(Xd, Ud) is only driven by the price. Recall that the price scenarios are normalized
and mean-reverting. Both effects should keep the price scenarios close to the Forward price.
If that is true then the option value should not differ much from a deterministic valuation
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with the Forward price and hourly adjusted Forward price only. We find those values in the
4th and 5th column of Table 4.6. The valuation is identical to equation 4.35 except for the
simplification that we have only one single price path, either the PFC {hd}d with its day type
patterns (see equation 4.3) or the mere Future price G0 = g0

V G
d := V G

d (g0, Ud) := max
Jd

{
Zd(g0, Ud, Jd) + V G

d+1(g0, Jd)
}

CG0 := CG0 (g0, u0) := V G
0 (g0, u0)

V PFC
d := V PFC

d (hd, Ud) := max
Jd

{
Zd(hd, Ud, Jd) + V PFC

d+1 (hd+1, Jd)
}

CPFC0 := CPFC0 (h0, u0) := V PFC
0 (h0, u0).

(4.36)

Both values CG0 and CPFC0 are deterministic and represent the intrinsic value of the option.
The difference (C0 − CPFC0 ) is therefore the time value of the real option. It is only about
10 % of the intrinsic value for the itm situation which underlines that the normalization and
mean-reversion keeps the price scenarios close to the Forward price. The time value becomes
larger for the other two strikes since the flexibility in the schedules will additionally contribute
to the option value C0. The following two figures illustrate these schedule variations. Figure
4.11 shows the production based on the Forward price g0 and the PFC {hd}d for the first
week in March 08. The off-peak price is 51.59 EUR and therefore the power plant will always

Figure 4.11.: The optimal schedules for the Future price and hourly PFC

produce for a strike of 50 EUR and indeed the grey production area shows full capacity of
530 MW for all hours. The red area shows the optimal schedule for the PFC. Recall from
Figure 4.8 that the shaped price usually goes below the off-peak price in morning hours and
thus below our strike of 50 EUR. We can see that the power plant turns off during those early
morning hours and create 7 production blocks representing the 7 days of the week. The first
two blocks stand out with their double-peak structure. 01-March 08 is a Saturday. Obviously,
there are some afternoon hours during the weekend that go below the strike. But as the power
plant is not able to turn off due to the minimal run-time it can only minimize the loss by
running on minimum capacity. The other hours over-compensate that loss which explains
why the power plant does not shut-down completely. Overall the hourly PFC returns a 30 %
higher production value than the valuation with the flat price band curve (3 mio vs. 3.9 mio
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EUR).
Figure 4.12 illustrates the impact of the power plant’s flexibility even better. We see the

optimal schedules for two selected price scenarios. The timeline is trimmed to the actual
production hours for these two price scenarios. The figure shows how itm hours trigger the

Figure 4.12.: The optimal schedules for two specific price scenarios.

production. Apparently only the double peak structure around hour 425 is long enough above
the strike to turn on the plant at least once for scenario 316. For scenario 260 this is more
often the case. Figure 4.12 also demonstrates that even though the schedules vary in their
quantity profile and thus total energy generation, single generation blocks look similar (in
this example 12 hours on-time during peak hours). They are only pieced together in various
different ways. For this reason it is no surprise that a comparison of the schedules underlying
each cash flow V0(x0, u0) reveal only a limited number of relevant actions Jd. A classical peak
schedule for instance will always pick Jd = (4, 0) i.e. shutting down after the last peak hour
20:00. So, across all D days and I scenarios we counted the number of schedules for each Ĵ∗d .
We ordered them in declining sequence and took as many J∗d until 95 % of all I ·D = 30000
schedules were covered. Equation 4.37 shows the resulting sets J0.95 for each strike. The
corresponding option values are presented in column 3 of Table 4.6. Note that C0.95

0 (x0, u0)
is still a stochastic optimization problem according to equation 4.19, but with a significantly
reduced action set

C0.95
d (Xd, Ud) := max

Jd∈J0.95(K)

{
Zd(Xd, Ud, Jd) + E[C0.95

d+1(Xd+1, Jd)|Xd]
}

J0.95(K = 50) := {(2, 0), (3, 0), (4, 0), (8, 0), (0, 6), (0, 12)}
J0.95(K = 70) := {(1, 0), (2, 0), (3, 0), (4, 0), (8, 0), (0, 12)}
J0.95(K = 90) := {(3, 0), (4, 0), (8, 0)}.

(4.37)
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For K = 50 and K = 70 J0.95 contains only 5 and 6 actions respectively, for K = 90 we even
observe only 3 relevant actions. The resulting error C0−C0.95

0 of this simplification is almost
negligible throughout all three strikes. The performance improvement on the other hand is
significant considering that the computation time increases nearly linearly with the number of
states. Hence, reducing the number of states to less than a quarter means the same reduction
in computation time.

This small approximation error motivates an even stronger simplification. If we compare
the three reduced action sets J0.95(K),K = 50, 70, 90, we recognize that they share the actions
{(3,0),(4,0),(8,0)}. Jd = (8, 0) indicates that the power plant is turned-off for at least 8 hours.
If the power plant is turned off at the latest at 16:00 then it is more than likely that the price
scenario for the entire day is otm and thus we can assume that end state (8,0) stands for
no production during the whole day. Jd = (3,0) and (4,0) represent schedules that end at
hour 20:00 or 21:00. Not surprisingly this is exactly the border between peak and off-peak.
Obviously, peak schedules (starting around 8:00 and ending around 20:00) are relevant as
well. For atm and itm situations Jd = (0,12) is also an important schedule. This end state
represents a full production day. If the plant runs for at least 12 hours until midnight, then
it is very likely that it runs already the whole day. (0,12) and (8,0), i.e. full/no production,
are especially important for weekends where there are no extra peak prices. Then, we usually
have full production if the off-peak price is above K. Otherwise there is no production at all.
If we recall from section 4.3.1 the notion of separating a schedule in its operating sequence
(0 = off, 1 = on) and volume profile then on-time during peak hours, complete shut-down
and full run-time are the most likely candidates that make up an optimal (close to optimal)
production policy. If we define a group of those schedule candidates, i.e. 0-1 row vectors with
24 components, L = {(0...01...10000), (0...01...1000), ...} that can be mutually concatenated
in all variations without violating ton and toff, then we can eliminate completely the operating
states Ud and Jd. Consequently we can simplify our MIP from Zd(Xd, Ud, Jd) to LZd(Xd).
The new optimization problem is identical to equation 4.12 except for a single change where
we replace ξd := ξd(Ud, Jd) by ξd ∈ L

LZd(Xd) = max
Ld,ξd.β

u
d
,βo
d

{
(Xd −KI)′Ld −KuI

′βud −KoI
′βod
}

subject to:
Lmin ξd − Ld ≤ 0
−Lmax ξd + Ld ≤ 0

Eξd − βud ≤ 0
−Eξd − βod ≤ 0

Ltd ∈ {0} ∪ [Lmin, Lmax]
ξd ∈ L

ξtd, β
o,t
d , βu,td ∈ {0, 1}

t = 1, ..., 24.

(4.38)

By restricting ξd to be a member of L we can skip the constraints with matrix Λ and B in
equation 4.15 that verify the on- and off-times. Likewise we can reduce the running index t to
the 24 hours of the current day. Furthermore the dynamic program including the estimation
of the continuation value will be replaced by a sequence of daily MIPs. The sum of these
local optima is the overall optimal solution for a single price path and we average all price

109



CHAPTER 4. POWER GENERATION ASSETS

paths to receive the actual real option value

LV0(x0) :=
D∑
d=0

LZd(Xd)

LC0(x0) := E[LV0(X0)|X0 = x0].
(4.39)

Column 7 to 9 of Table 4.6 provide the asset values for this approach using three different
schedule sets. The label L = L622 stands for all schedules that start at 6 in the morning and
end at the latest at 22:00 in the night. Likewise L723 contains all schedules between 7:00 and
23:00 and L024 consists of only two schedules that are full or no production. All schedules
within each of the three subsets can be combined arbitrarily since the minimum off-time of 8
hours is always guaranteed. For the itm scenario full production is certainly a frequently used
schedule. For this reason L024 returns the smallest error for K = 50 (C0(L024) = 4.2 mio
EUR vs. C0 = 4.4) mio EUR). The situation changes for K = 70 and K = 90. Once turned
on L024 forces to run the power plant the entire day i.e. also during the off-peak hours after
20:00. These hours are usually below the strike which let the other two sets prevail over L024.
Hence, making the preselection of schedule candidates dependent on the strike (using L024
for K = 50 and L622, L723 for K = 70 and K = 90) is important in order to receive good
results. Then, at least in our example, the heuristic produces only an error of less than 5 %
compared to the proper stochastic real option value C0 (for K = 70 and K = 90 it is even
only around 1 %). At the same time it is several times faster than the stochastic program as
it reduces the state space by one dimension (Jd) and allows for a local optimization. We will
therefore rely on this heuristic in the next section when we introduce an energy constraint to
our model. Finally, we want to mention the option value Cs0 which represents a swing option
with 744 hourly exercise rights, one for each delivery hour (see our basic model in section
2.6 for the exact definition). Obviously this column returns the highest asset value since it
ignores any physical constraint. The difference (Cs0 − C0 ≈ 0.36 mio EUR) represents the
financial gain through additional technical flexibility. In our example the additional value of
flexibility stands for 6 %, 16 % and 38 % of the power plant value C0 with K = 50,70 and 90
EUR. Hence, the higher the initial marginal production costs K of the power plant the more
beneficial a technical upgrade of a power plant will be and the sooner such an investment will
amortize.

4.4. Valuation with Energy Constraint

In this section we want to additionally introduce a maximum production of W0 to our power
plant model. Compared to our model in equation 4.11 we therefore introduce the constraint
Wd to our definition of the action space in equation 4.10. It stands for the remaining energy
from the current day d to the end of the production period D

A(Ud,Wd) :=

(Ld, βod, βud )

∣∣∣∣∣∣∣∣∣∣

∑D
s=d I

′Ls ≤Wd,
Ld ∈ Lon,off(Ud),

ILt−1
d

>0 − ILt
d
>0 − β

o,t
d ≤ 0, βo,td ∈ {0, 1},

−ILt−1
d

>0 + ILt
d
>0 − β

u,t
d ≤ 0, βu,td ∈ {0, 1}

 , (4.40)

with I being the unity vector, i.e. (1, 1, ...., 1)′, and I being the indicator function. We also
need to extend our state space by the energy amount Wd. Consequently our decision rule will
be extended as well to (Xd, Ud,Wd)

fd−→ (Ld, βud , βod) ∈ A(Ud,Wd). We define an admissible
policy as a sequence of valid decision rules πd := {fd, ..., fD}. Again, we look for the optimal
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policy π∗0 that maximizes the expected profit for the entire production period

C0(x0, u0,W0) = sup
π0∈Π0

E(π0)

 D∑
d=0

Zd

∣∣∣∣∣∣∣
X0 = x0,
U0 = u0,
W0 =W0

 , (4.41)

with Zd as defined in equation 4.8 and Π0 is the set of all valid policies at the beginning
of the production period. As before E(π0)[...] stands for the expectation under the Markov
chain that follows the policy π0. Again, we want to translate this dynamic program into
a Bellman iteration. In our previous model without energy constraints we were able to
reduce the action set to the end operating state Jd only and could still find the relevant daily
production schedule Ld. Now, our additional energy constraint requires to track the energy
contribution of the daily schedule as well that we denote with wd. Note that wd is the actual
day production whereasWd

3 is the maximum total available energy amount for the remaining
period d to D. Then the extended model resembles a storage optimization problem. Similar
to a storage or gold mine where the manager needs to extract the ressource according to
the fluctuating market price, our dispatcher also needs to allocate his limited energy amount
across the production days in order to maximize the overall profit. But different to a storage
problem we still have to additionally consider the intra-day production plan, i.e. the daily
schedules are still linked by the daily running end states Jd. Hence, for a given start state
Ud and price Xd we can retrieve Ld for any chosen pairs (Jd, wd). Also note that Wd is a
continuous variable. Thus wd is also continuous and the daily maximum profit becomes a
continuous function Zd as well. A straightforward approach would discretize w∗d andWd. The
domain space of Wd, however, can be large, especially for longer production periods like a
year. This would require to compromise on the grid size forWd to keep the model numerically
tractable. On the other hand this can lead to imprecise results. With EEX peak prices of
up to 100 EUR/MWh only small inaccuracies in the generation amount can already lead to
significant changes in the production value. Therefore we rather decide to keep the energy
amount continuous and approximate the continuous function. We still calculate Zd at fixed
energy grid points wr, r = 1,...,R, but fit those points to a polynomial continuous function.

This is where we want to reuse our MIP from equation 4.12. Formally, we need to extend
the search domain of our MIP in equation 4.12 by another dimension for the energy amount
which we denote with w, i.e. Zd(Xd, Ud, Jd, w). As we want w∗d to be the optimal actual
energy usage we could define w to be a mandatory energy production. However, this can lead
to less profitable cash flows. For instance we could force to produce during otm hours only for
meeting the fixed energy production. Instead, we want to focus on the maximum cash flow.
For this reason we define w only as the upper daily energy constraint. At the same time we
reduce again the search domain by eliminating the start and end operating state Ud and Jd.
As we have seen in the previous section, a baseload power plant like the one in our example in
combination with the general peak/ off-peak price pattern does not vary its (0,1)-operating
states that often. In fact, Table 4.6 illustrated that a set of schedule candidates L specifically
adjusted for a concrete market environment (otm/atm/itm) leads to a close approximation
of the actual optimal cash flow. Recall that all schedules in this set can be linked together
without violating the on- and off-times. In equation 4.38 we introduced the corresponding
modified MIP that we now extend by the upper energy constraint I ′Ld ≤ w at the top of the

3This definition is an exception to our general convention of large letters for random variables and small ones
for their realizations.
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constraint list

LZd(Xd, w) = max
Ld,ξd.β

u
d
,βo
d

{
(Xd −KI)′Ld −KuI

′βud −KoI
′βod
}

subject to:
I ′Ld ≤ w

Lmin ξd − Ld ≤ 0
−Lmax ξd + Ld ≤ 0

Eξd − βud ≤ 0
−Eξd − βod ≤ 0

Ltd ∈ {0} ∪ [Lmin, Lmax]
ξd ∈ L

ξtd, β
o,t
d , βu,td ∈ {0, 1}

t = 1, ..., 24.

(4.42)

Hence, we use this new MIP to calculate the optimal cash flow for all relevant grid points by
setting w := wr. The valid grid points fall into the interval [wmin, wmax] where wmin, wmax are
the the minimum and maximum possible energy production per day defined by the schedule
with the shortest and longest running hours in L. If L contains enough schedules to cover
all possible intermediate running hours, then this interval is a closed line, otherwise it is
the union of smaller intervals. The MIP does not only return the maximum profit, but also
returns the corresponding optimal schedule L∗d and thus the optimal energy w∗d

w∗d :=
24∑
t=1

Lt,∗d , (4.43)

by simply summing up the individual 24 hourly capacities Lt,∗d . In situations where the price
vector Xd is mainly itm, w∗d will match w and wr, respectively, otherwise 0 ≤ w∗d < w. We
use the pairs (w∗d, LZ∗d(Xd, w

r)) (not (!) (wr, LZ∗d(Xd, w
r))) as the input for a polynomial fit

to receive a cash flow curve LẐd(xid, wd) in wd for a fixed price vector xid4

LẐd(xid, wd) := Lẑ
i
d(wd) ≈

N∑
n=0

bid,n w
n
d . (4.44)

Each individual cash flow curve Lẑ
i
d(wd) is only valid in [wid, wid] ∈ [wmin, wmax] where wid

and wid are the shortest and longest production amount with maximum profitability for price
scenario i. wid, for instance, will never be 0 if L does not contain a zero production schedule.
wid is mainly driven by the price scenario. The itm hours define the number of hours with
maximum capacity Lmax and thus the maximum energy amount. For an otm price scenario,
for instance, it is not beneficial to have long production hours even if available in L and
hence wid < wmax, The entire procedure to receive Lẑ

i
d(wd) requires MIP solutions for each

price vector i and grid point W r ∈ [wmin, wmax]. Therefore we investigated again a faster
alternative matrix calculation. Due to the new energy constraint we cannot use any longer
our MIP reformulation from section 4.3.1. For this reason we will introduce yet another fast
implementation approach.

4From now on we use a hat to label variables that stand for approximated continuous functions.
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4.4.1. MIP Reformulation
Different to section 4.3.1 the solution of the MIP via complete enumeration of all {0,1}
schedules becomes more difficult with an additional upper energy bound w. Then we cannot
apply a digital volume profile on top of the operating states like in section 4.3 in order to
quickly generate the entire schedule. Instead we have to introduce a profile matrix L that
holds the actual MW for each hour of a given (0,1) schedule and price vector

Rd := (M ∗ L)(Xd −KI)− (KuI)′α− (KoI)′β, (4.45)

where ∗ indicates the component-wise multiplication and I is the unity matrix. L is of size
(J×24) with J being the number of schedule candidates in the set L. Each row of L represents
the volume profile in MW for the corresponding operating sequence of the same row in M
and given price vector Xd. Each profile hour can take four different values {0, Lmin, l, Lmax},
where Lmin ≤ l ≤ Lmax. The intermediate value l differs from row to row and can only
appear once or not at all in one single row. Either the best digital schedule is automatically
below w. Then there is only 0, Lmin and Lmax. Otherwise the energy of the schedule goes
up to the limit. Then the most profitable hours run on max capacity and only one of these
max capacities has to be reduced to l to match exactly the upper bound. A new algorithm
should therefore rearrange the hours in descending order of their profit (xtd −K) and assign
max capacity to each hour until the first hour that exceeds w. This very single hour will be
reduced to an intermediate value l in order to mach w. The following procedure defines in
detail the algorithm for setting up each row j = 1, .., Ĵ in L:

1. Compute all digital schedules according to equation 4.17 and select the sub set where
the generated energy is below w. Pick the one with the highest profit ("best value from
below"). Remove all schedule rows j from M and L whose profit is smaller. Then M
and L is of new size (Ĵ × 24)

2. For the remaining schedules fill all hours with Lmin.

3. Sort the schedule prices (Xd−KI) in descending order and bring the columns of M ∗L
in the same order.

4. Iterate from the top through this sorted list of hours t = 1, ..., T and replace Lmin with
Lmax in the corresponding column in M ∗L until (xtd−K) < 0 or stop at hour t = tmax
where the energy bound is exceeded the first time for row j. In the latter case reduce
the volume ltmax

j to l = w −
∑
t∈T\tmax l

t
j in order to meet w and continue the iteration

with the next row j+1.

Note that compared to equation 4.17 we use Xd instead of X̂d as we need to set up L for
each price scenario Xd individually and therefore cannot compute all scenarios at once with
a single matrix calculation as before. Consequently the new Rd is not a matrix, but only a
vector of length Ĵ . The row index ĵ of the maximum component in Rd defines the row in L
that holds the optimal schedule

LZd(Xd, w) := max
1≤ĵ≤Ĵ

{Rĵd}. (4.46)

Hence, we have to run this matrix calculation for all I price scenarios. For this reason the
whole procedure will only be faster than a MIP solver if the size of M can be kept small.
This is in particular the case for power plants with long minimum on- and off-times. Step 1
is therefore designed as a filter and especially reduces the number of candidates efficiently for
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large upper bounds w. Then the best schedule from below will have a high profit that will
allow to exclude most of the schedules and keep Ĵ small. In our specific example with ton = 12
and toff = 8 the matrix implementation of a single day dispatch optimization runs 10 to 25
times faster than the corresponding CPLEX implementation of the MIP getting faster with
increasing energy. As a further step recall that we introduced in equation 4.42 a preselection
of candidate schedules L that will keep M small independently of the available energy.

4.4.2. Bellman Iteration

So far we looked at the daily cash flow curve Lẑ
i
d(wd) (see equation 4.42) that we will now

use as an input for our Bellman expression to describe the cash flows between the days.
We start again from the situation without energy constraint, in particular from our Bellman
equation 4.19. Our new state space is not only continuous with respect to the spot price
vector Xd, but also with respect to the remaining total energy Wd at the beginning of day
d that will become another dimension of the state space. For computational feasibility we
do not extend the state space, but rather replace the power plant running mode Jd with Wd

by focusing on a smaller class of optimization problems that is restricted to a preselection
of candidate schedules L. As discussed in context of equation 4.37 this set can vary with
strike K. We will label all figures relying on this set with L as a prefix. This preselection
fits very well to our definition of the daily cash flow curve Lẑ

i
d(wd) for which we will use

the same set of schedule candidates. This daily cash flow curve becomes the marginal profit
of our dynamic program. As explained in context of equation 4.44 the daily cash flow will
have lower and upper energy bounds that depend on individual price realizations xid, i.e.
(wid, wid) or in general terms (wd(Xd), wd(Xd), for the actual production dependent on the
price scenarios (i=1,...,I) and schedule set L. This interval defines the action set Ad for
the current stage d. We also introduced the interval [wmin, wmax] where wmin and wmax are
computed from the schedule with the shortest and longest running hours multiplied by Lmin
and Lmax respectively. All individual intervals [wid, wid] fall into this larger one. As the overall
actual production is a concatenation of the daily ones, there will also be an individual lower
and upper bound of the actual overall production which we denote with (W i

d,W
i
d). The latter

must not be confused with the overall available production Wd. Since we use the same price
process as in the previous chapters we can describe the transition from Xd to Xd+1 via our
conditional normal distribution from equation 4.21. The new transition rule also needs to
describe how the remaining energy evolves over time. The remaining energy of the next stage
Wd+1 is simply the current one Wd reduced by the current generation amount wd. As usual
the value function LC

∗
d(Xd,Wd) is the value of an option that would be newly issued at day

d observing the current price Xd and available energy Wd. Whereas the continuation value
LQ
∗
d+1(Xd,Wd+1) is the expectation of the option value at d+ 1 conditional on today’s price

Xd and tomorrow’s remaining energy Wd+1. Hence, we can express the value function with
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the following Bellman equation

LC
∗
d(Xd,Wd) = max

wd

{
LZd(Xd, wd) + E

[
LC
∗
d+1(Xd+1,Wd − wd)|Xd

]}
0 ≤ d ≤ D

state : (Xd,Wd) Xd : current price,Wd : remaining available energy
action : wd ∈ Ad := [wd(Xd),min[wd(Xd),Wd]] actual production at day d

transition : {Xd,Wd} −→ {Xd+1,Wd − wd}
marginal profit : LZd(Xd, wd) cash flow for actual production
value function : LC

∗
d(Xd,Wd)

continuation value : LQ
∗
d+1(Xd,Wd+1) := E

[
LC
∗
d+1(Xd+1,Wd+1)|Xd

]
,

(4.47)

with LC
∗
D+1(XD+1,WD+1) := 0. The implementation of the backward iteration needs to

consider that LZd(Xd, wd), respectively LC
∗
d(Xd,Wd) and LQ

∗
d+1(Xd,Wd+1) are continuous

functions with respect to two dimensions, Xd, wd and Xd,Wd respectively. As we will apply
the Longstaff-Schwartz approach again we furthermore introduce the ACF LV

∗(Xd,Wd) as
another continuous function with two dimensions

LV
∗
d (Xd,Wd) :=

D∑
s=d

LZs(Xs, w
∗
s), (4.48)

with
∑D
s=dw

∗
s ≤ Wd. Following the Longstaff-Schwartz regression, we approximate an indi-

vidual realization of the continuation value LQ
∗
d+1(xid,Wd+1) by the average of all individual

path-wise ACFs starting from the next stage with future prices xjd+1 generated from the
observed price xid such that

LQ
∗
d+1(xid,Wd+1) ≈ 1

J

J∑
j=1

LV
∗
d+1(xjd+1,Wd+1). (4.49)

Formally, LZd(Xd, wd) and V ∗d (Xd,Wd) are functions with two dimensions. Similar to the
approximation of LZ

∗
d(Xd, wd) with Lẑ

i
d(wd) our numerical procedure will only approximate

the two dimensional function for the ACF by i=1,...,I one dimensional curves. i.e. Lv̂
i
d(Wd) :=

LV̂d(xid,Wd)

Lv̂
i
d(Wd) :=

M∑
m=0

αid,mW
m
d ≈ Lv

∗,i
d (Wd), (4.50)

or in general terms

LV̂d(Xd,Wd) :=
M∑
m=0

αd,m(Xd)Wm
d ≈ LV

∗
d (Xd,Wd). (4.51)

In order to calculate these individual ACF curve we first need sample points vi,∗d (W r) on
the fixed grid W r ∈ [0,W0], r = 1,...,R, for each price scenario i that we fit to a polyno-
mial curve similar to the approximation of the marginal profit Lẑ

i
d(wd) (see discussion around

equation 4.44). Hence, we need to solve the Bellman equation for each grid point and price
scenario which requires an approximation of the continuation value LQ

∗
d+1(Xd,Wd+1). Recall

that the Longstaff-Schwartz regression is based on the pairs (xid, Lv̂id+1(Wd+1)). The ACF
Lv̂

i
d+1(Wd+1), however, is not a single value any more, but a curve with respect to the re-
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maining energy Wd+1 (on the very last stage it is identical to the marginal profit curve i.e.
Lv̂

i
D(WD) = Lẑ

i
D(wD)). Consequently the approximated continuation value LŶd+1(Xd,Wd+1)

cannot be any longer a function of the current price only, but will also be a curve with re-
spect to the remaining energy Wd+1. For this reason we do not regress the current price to a
single value, but to an entire curve. Note that we use a polynomial approximation for each
ACF curve (see equation 4.50) which we therefore can represent by their parameters αid+1,m,
i.e. one parameter set αd+1,m for each price scenario i separately. We therefore only run a
regression on these parameters i.e. on the pairs (xid, αid+1,m). The resulting regression vector
λd+1,m of length R allows us to describe the set of parameters αd+1,m(Xd)

αd+1,m(Xd) ≈ Ψ′d,m(Xd) λd+1,m, (4.52)

where Ψd,m(Xd) is a vector of basis functions that transform the price vector into a scalar.
αd+1,m(Xd) enables us in a second step to define the approximated continuation value curve
for any given price Xd and remaining energy Wd+1

LŶd+1(Xd,Wd+1) =
M∑
m=0

αd+1,m(Xd) Wm
d+1 ≈ LQ

∗
d+1(Xd,Wd+1). (4.53)

As the Bellman equation is now a sum of two functions we can find the optimal current energy
production per scenario i and grid point W r via the first derivative

wi,r,∗d = arg
{

∂

∂wd
Lẑ

i
d(wd) + ∂

∂wd
Lŷ

i
d+1(W r − wd) = 0

}
. (4.54)

The relevant grid points W r to investigate need to belong to the individual interval of the
remaining actual generation from day d onwards, i.e. W r ∈ [W i

d,W
i
d]. We determine this

interval iteratively. The new lower bound is simply the minimum of the lower bound of today’s
production and the remaining production from tomorrow onwards. The new upper bound is
the sum of the upper bound of today’s and the remaining production, i.e.

W i
d := min{wid,W i

d+1}

W
i
d := wid +W

i
d+1,

(4.55)

where W i
D := wiD and W i

D := wiD. We need to verify that wi,r,∗d ∈ [wid, wid] and W r − wi,r,∗d

∈ [W i
d+1,W

i
d+1]. Otherwise we need to adjust wi,r,∗d to w̃i,r,∗d (see discussion in context of

equation 4.59). Then we can compute the corresponding ACF value for each grid point

Lv
i
d(W r) ≈ Lẑ

i
d(w̃

i,r,∗
d ) + Lv̂

i
d+1(W r − w̃i,r,∗d ). (4.56)

We fit the pairs (W r, Lv
i
d(W r)) to a polynomial curve according to equation 4.50. Now, we

can start the next iteration step by computing the continuation value curve Yd(Xd−1,Wd). We
repeat this entire iteration until t=0. Finally we obtain the option value curve by averaging
all individual ACFs for any initial available energy W0 and fixed x0

LC0(x0,W0) ≈ 1
I

I∑
i=1

Lv̂
i
0(x0,W0). (4.57)

Let us conclude with a summary of all relevant steps of the backward iteration

1. For each stage d = D,D-1,...,0
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a) For each price scenario i = 1,...,I
i. Calculate the marginal profit function Lẑ

i
d(wd) by solving equation 4.42 for all

grid points W r falling into [wmin, wmax] and fit them to a curve (e.g. poly-
nomial fit). We receive the actual production interval [wid, wid] and the curve
parameters bid,n of equation 4.44.

ii. Calculate the new overall actual production interval [W i
d,W

i
d] according to

equation 4.55 where W i
D := wiD and W i

D := wiD.
b) Calculate the continuation value curve LŶd+1(Xd,Wd+1) by regressing the parame-

ters (xid, αid+1,m) where αiD+1,m := 0 and αiD,m = biD,m (i.e. Lv̂
i
D(WD) = Lẑ

i
D(wD)).

We receive a vector λd+1,m for each parameter αd+1,m according to equation 4.52.

c) For each grid point W r ∈ [W i
d,W

i
d] and price scenario i = 1,...,I

i. Solve the Bellman equation via classical calculus according to equation 4.54.
We receive the optimal day production wi,r,∗d .

ii. Check that wi,r,∗d ∈ [wid, wid] andW r−wi,r,∗d ∈ [W i
d+1,W

i
d+1]. Otherwise adjust

the optimal day production to w̃r,i,∗d (see also discussion in context of equation
4.59).

iii. Calculate the value function value Lv
i
d(W r) using w̃i,r,∗d according to equation

4.56.
d) Fit the pairs (W r, Lv

i
d(W r)) to the new curve Lv̂

i
d(Wd). We receive the parameters

αd,m of equation 4.50.

2. For a given initial available energy W0 we average the corresponding figures on the
individual ACF curves Lv̂

i
0(W0), i = 1,...,I, according to equation 4.57 to receive the

real option value LC0(x0,W0).

Finally, we would like to emphasize that tracking the production intervals [W i
d,W

i
d] for each

price scenario i = 1,...,I separately allowed for applying a simple quadratic approximation of
the cash flow curves ẑ∗d(wi), v̂id(Wd) and thus a simple analytical solution of the Bellman
equation via the first derivative (see equation 4.54) since only within these intervals even for
long production horizons like a year the cash flow curves expose a parabolic pattern.

4.4.3. Numerical Results

We continue with our previous example from section 4.3.4, but now impose different upper
energy bounds W0 to our power plant. The technical constraints stay the same as listed
in section 4.1. First, we look at the daily production LẐd(Xd, wd) and need to find the
appropriate degree N for our polynomial bd,n, n = 0,...,N. For this purpose we select an
arbitrary weekday in March-08. We choose a grid distance of ∆W r = 1000 MWh and compute
the marginal profit Zd(Xd,W

r) for all grid points wmin ≤W r ≤ wmax. This interval is driven
by the set L of (0,1) candidate schedules for which we choose L622 since we look at a weekday
i.e. we allow running hours between 6:00 and 22:00. Hence, we added ±2 hours to a classical
peak schedule. Recall from section 4.2.1 that hour 6,7,20 and 21often reveal peak price
levels. Therefore we want to allow a production during these hours as well. The smallest
energy amount once the power plant is up and running is the minimum up-time multiplied
with the minimum capacity i.e. wmin = 12h x 240 MW = 2880 MWh. All curves need to
start from that value and are zero beforehand. The largest possible energy production is a
flat schedule with max capacity i.e. wmax =16h x 530 MW = 8480 MWh. All individual
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intervals [wid, wid] fall into this maximum range. As illustrated in Figure 4.13, we retrieve
already good results for a quadratic fit. The figure presents the curves for the first 50 price
vectors. The graph shows that not all curves will really produce up to wmax. If the price

Figure 4.13.: Profit-energy curve Lẑ
i
d for a single weekday in March 08 (K=70) with fixed grid

and quadratic approximation

vector has too many otm hours (in this example we used K = 70) then the power plant will
not make use of the extra energy for the profit would decrease otherwise. Hence all curves
are only plotted up to the energy amount with the highest cash flow wid and actually need to
be extrapolated from that peak value with a flat line parallel to the x-axis until 8480 MWh.
For better readability we skipped this extrapolation in Figure 4.13 likewise we skipped the
zero values for wd < 2880 MWh. As we observed a parabolic shape for the daily profit-
energy line the sum of all these days will reveal a quadratic pattern as well. For this reason
we use the quadratic approximation for the ACF V̂d(Xd,Wd) as well. Next, we look at the
approximation of the continuation value. Let us illustrate the procedure for the last stage
where Lv̂

i
D(WD) := Lẑ

i
D(wD) := αiD,0 + αiD,1WD + αiD,2W

2
D. In this situation the interval for

the global and local production are the same: wiD = W i
D and wiD = W

i
D. First, we run a

regression on the pairs (XD−1, αD,0/1/2) to find the polynomial coefficients αD,m(XD−1) of
the continuation value curve. Like in section 4.3.4 we replace the price vector XD−1 by the
principal components. From our numerical analysis in Table 4.6 we know that we can focus
on the first PC only, i.e. a1,D−1. Formally, we use the rotation functions of our principal
component analysis as our basis functions ΨD−1,m(XD−1) = am1,D−1. Figures 4.14 to 4.16 plot
the parameters αD,0, αD,1 and αD,2 of the last delivery day Lv̂

i
D(WD) = Lẑ

i
D(WD) for all three

strikes K = 50, 70 and 90 against the first PC aD−1,1. All graphs resemble the payoff profile
of a sold (Figure 4.14 and 4.15) or bought (Figure 4.15) call option. Zero parameter values
indicate a zero continuation value (no production is also a valid schedule of our candidate set
L622). This band of zero parameters moves to the right with increasing strike for all three
parameters αD,0, αD,1 and αD,2. A higher strike requires a higher price vector XD and hence
a higher first PC a1,D in order to afford a power plant start-up. The option like curve shape
motivates yet another quadratic approximation to find the parameters αD,m. This leads to
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Figure 4.14.: Parameter pairs (a1,D−1, αD,0) for all three strikes at D = 30

Figure 4.15.: Parameter pairs (a1,D−1, αD,1) for all three strikes at D = 30

Figure 4.16.: Parameter pairs (a1,D−1, αD,2) for all three strikes at D = 30
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the following concrete representation of our basis functions

N = 2 ⇒ Lẑ
i
d(wd) = bid,0 + bid,1wd + bid,2w

2
d

M = 2 ⇒ Lv̂
i
d(Wd) = αid,0 + αid,1Wd + αid,2W

2
d

⇒ LŶd+1(Xd,Wd+1)
= αd+1,0(Xd) + αd+1,1(Xd)Wd+1 + αd+1,2(Xd)W 2

d+1

Ψd,m,j(Xd) := (a1,d)j , J = 2 ⇒ αd+1,m(Xd) = λd+1,m,0 + λd+1,m,1 a1,d + λd+1,m,2 a
2
1,d,

(4.58)

with a1,d =
∑24
t=1 γ1tx

t
d (see also equation 4.27). For quadratic functions we can easily calculate

the first derivative with classical calculus and are able to solve the Bellman equation directly
for any grid values W r

wr,∗,id =
2 αid+1,2 W

r + αid+1,1 − bid,1
2(bid,2 + αid+1,2)

. (4.59)

Recall from Figure 4.13 that the parabolic behavior of energy vs. profit is only valid within
individual production intervals [wid, wid] for each scenario i. As we use the same quadratic
approach for the ACFs Lv̂

i
d(Wd) and approximated continuation value LŶd(Xd,Wd+1) we

likewise receive intervals [W i
d,W

i
d] and [W [y]

d+1,W
[y]
d+1]. As explained in equation 4.55 the

intervals for Wd are not only the remaining energy values, but represent the actual energy
usage. However, for the continuation value we cannot apply these individual upper and lower
bounds as the continuation values is a conditional average of all next step ACFs Lv̂

i
d+1(Wd+1).

Therefore there is only a common interval [W [y]
d ,W

[y]
d ] as it is an average across all scenarios.

We can only rely on our set of candidate schedules L as well as Lmin and Lmax to define these
borders. The lower bound W [y]

d is the shortest number of running hours of a single day that
we can find in L. Recall that we use schedule candidates with running hours between 6:00
and 22:00. Then the shortest running time is in fact the minimum runtime and we receive
W

[y]
d = tonLmin = 2880 MWh. The upper bound is the largest number of running hours in L

multiplied by the number of remaining days and Lmax. In our case L allows a production of
16 hours, hence W [y]

d = 16 · (D − d+ 1) · Lmax.
We need to check the validity of wr,∗,id not only against [wd, wd], but also W r−wr,∗d against

the energy interval of the ACF [W i
d+1,W

i
d+1] and the continuation value [W [y]

d+1,W
[y]
d+1]. First,

for each scenario i we compare wr,∗,id with today’s energy interval [wid, wid]. If wr,∗,id is below
the minimum border, then our schedules in L do not allow to produce such a small amount
and we need to replace wr,∗,id by 0 meaning no production today. If W r − wr,∗,id < W

[y]
d+1

i.e. the remaining energy after today’s production is below the required minimum energy
interval, then today’s energy allocation will be reduced to w̃r,∗,id = W r −W [y]

d+1. However,
if the adjusted generation amount falls below the minimum possible day production, i.e.
w̃r,∗,id < wid, then we set w̃r,∗,id = 0 meaning no production today. If wr,∗,id exceeds the upper
bound of today’s possible production, i.e. w∗ > wid we reduce it to w̃∗d := wid. It would not
make sense to claim a higher energy amount if we can attain the same profit with less energy.
If W r

d −w
r,∗,i
d > W

i
d+1, we do not need to adjust w∗d, but compute the ACF at W i

d+1 since we
said that LV̂ (W i

d) := LV̂d(W
i
d) for all W i

d > W
i
d. If no production is a valid candidate we also

need to compare the adjusted volume with zero production: Lẑ
i
d(w

r,∗,i
d ) + Lŷ

i
d+1(W r − wr,∗,id )

vs. Lŷ
i
d+1(W r). After this correction the adjusted optimal production w̃r,∗,id will be used to

compute the ACF Lv̂
i
d(W r) at the specific grid point r according to equation 4.56. Note that
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all these adjustments implicitly assume that L allows any production amount in [wid, wid]. In
our example this is indeed the case as L622 allows any production between 8 and 16 hours,
hence the interval is a continuous line. Figure 4.17 plots the optimal policy w̃r,∗,id for d = 26
March 08. The 3D plot shows the first PC a1 on the x-axis and the total available production
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Figure 4.17.: Production as a function of the first PC a1 and available energy Wd

Wd on the y-axis. Dependent on these two variables we see today’s production wd on the
z-axis. The flat roof of the mountain-like surface is at wmax = 8480 MWh which is the total
possible day production. The colors intend to emphasize the grid structure where identical
colors stand for policy values of the same energy grid point W r but different price scenarios.
We can identify two regions separated on the Wd axis at value 8480 MWh (we can envision
a parallel line to the a1-axis going through Wd = wmax = 8480 MWh). If the remaining
total energy can be entirely produced the same day (Wd ≤ wmax) then this will be done once
the price exceeds a specific threshold (a1 > 350). This threshold is similar to the exercise
line in Figure 2.3 that triggers an option exercise for any observed price above that line.
This rule explains the ramp in the (wd −Wd)-layer which raises in the wd-dimension until
Wd = wd = 8480 MWh. For larger remaining energy amounts (i.e. the area beyond the
imaginary line: Wd > wmax) we observe another ramp in the (wd − a1)-layer. The ramp
becomes steeper and starts earlier (i.e. smaller a1) the more energy is available (i.e. the
more we shift the (wd − a1)-layer along the Wd dimension. A steeper ramp translates into a
larger day production and that for even smaller price vectors/smaller a1). On 26 March there
are only five days left until the end of the production period. Before leaving large available
energy unused the power plant can afford to produce more even at a smaller price as long
as the resulting cash flow is still positive. That’s why the floor of the graph indicating no
production (wd = 0) gets more narrow and less dense in a1 dimension with increasing Wd.

Once we have iteratively solved equation 4.59 we finally are able to represent the option
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value as an average of I contingent cash flows Lv̂
i
0(W0)

C0(x0,W0) ≈ E[LV̂0(X0,W0)|X0 = x0,W0 =W0]

≈ 1
I

I∑
i=1

[
I
W i

0≤W0≤W
i
0

(
αi0,0 + αi0,1W0 + αi0,2W2

0

)
+ IW0>W

i
0

(
αi0,0 + αi0,1W

i
0 + αi0,2(W i

0)2
)]
.

(4.60)

The indicator function I restricts the profit-energy curve to the individual true production
interval [W i

0,W
i
0]. The ACF is 0 for (W0 < W i

0) and stays at the cash flow for W i
0 if

W0 > W
i
0. Hence, there will be no more production than W i

0 even if available. Figure 4.18
shows those individual cash flows for strike K = 70 and the schedule candidate set L = L622.
Like in Figure 4.13 we skipped the extrapolation with the parallel line to the x-axis at v̂i0(W i

0)
for W0 > W

i
0. Again, W0 in v̂i0(W0) is the remaining available energy which is identical to

the actual energy usage for W0 < W
i
0.

Figure 4.18.: Profit Energy Curves for all price scenarios.

While equation 4.60 is a lower bound of the option curve we added the calculation with full
price information as well to provide an upper bound. Then the ACF becomes a contingent
function on the known price Lv̂

f,i
d (W i

d) and we can run a deterministic dynamic program by
price scenario. Our current model in equation 4.47 stays the same except for a new objective
function:

Lv̂
f,i
d (Wd) := max

wd

{
Lẑ

i
d(wd) + Lv̂

f,i
d+1(Wd − wd)

}
. (4.61)

The former continuation value is replaced by the subsequent contingent ACF v̂f,id+1(Wd −wd)
and thus we can skip the extra estimation of the parameters αd+1,m as prices are known. In
equation 4.59 we only need to replace αd,m with αd,m and verify that the calculated optimal
energy amount w∗d falls into the valid energy intervals. This time we can directly rely on the
individual bounds [W i

d+1,W
i
d+1] rather than the shared interval from the continuation value

[W [y]
d+1,W

[y]
d+1]

w∗,id := arg max
wd

{
Lẑ

i
d(wd) + Lv̂

f,i
d+1(Wd − wd)

}
(4.62)
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In this way the estimation of the parameters αd,m and thus the description of the contingent
cash flow curves Lv̂

f,i
0 (W0) becomes more accurate and the energy allocation is more efficient

than Lv̂
i
0(W0)

Lv̂
f,i
d (Wd) = I

W i
d≤Wd≤W

i
d

(
αid + αi1Wd + αi2W

2
d

)
+ I

Wd>W
i
d

(
αid + αi1W

i
d + αi2(W i

d)2
)

LC
f
0 (x0,W0) ≈ 1

I

I∑
i=1

Lv̂
f,i
0 (W0).

(4.63)

Thus, we approximate the contingent ACFs Lv̂
f,i
d (Wd) for each price scenario i separately by

sampling the Wd-domain i.e. calculate analytically the best action per grid point W r. The
rest of the algorithm is identical to the lower bound calculation. Computing equations 4.60
and 4.62 for several different initial energy amounts W0 and interpolating the results leads
to Figure 4.19. It plots the lower bound LC0(x0,W0) and upper bound LC

f
0 (x0,W0) of the

Figure 4.19.: Upper and lower bound option values, Cf0 and C0 for all three strikes.

power plant for all three strikes and only those W0 where all curves Lv̂
i
0(W0) and Lv̂

f,i
0 (W0)

still increase with more energy across all scenarios i.e. W0 ∈ [W 0,W 0] with

W 0 = max{W i
0}

W 0 = min{W i
0}.

(4.64)

Hence, the graph shows the profit-energy line for the core production of the power plant. Any
individual curve with W i

0 > W 0 might still grow due to the contribution of higher cash flows
of some scenarios. However, W0 would then only represent the cash flow for the available
energy amount. As expected all curves have a parabolic shape. With increasing strike the
saturation is achieved much earlier. Table 4.7 provides actual lower bound values from these
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K W 0
[MWh]

LC0 [EUR] Lc
[EUR/MWh]

Lc
0.75
0

[EUR/MWh]
Lc

0.5
0

[EUR/MWh]
Lc

0.25
0

[EUR/MWh]
50 227,867 3,886,316 17.0 22.20 27.91 34.42
70 123,118 1,028,493 12.41 10.87 12.55 30.30
90 44,380 182,480 4.11 5.34 7.61 11.53

Table 4.7.: Option values in EUR and EUR/MWh for different max energy levels (Backward
Iteration)

three curves for a selection of initial energy amounts. Column 2 and 3 present W 0 and the
corresponding option value LC0 := LC0(x0,W 0). An increase of the strike from 50 EUR to 90
EUR entails a cut in W 0 to less than 20 % (from 227867 MWh down to 44380 MWh). The
decrease in the associated option value C0 is even more dramatic. LC0 for K=90 goes down to
5 % of the itm value LC0 for K=50. The values in column LC0 do not match those of column
C0(L622) in Table 4.6 (recall that we set L = L622). We need to recognize that our option
model with energy constraint returns smaller values. For instance for K = 50 we identify a
gap of 4.406 - 3.886 = 0.52 mio EUR (compare Table 4.6 with Table 4.7). The difference
indicates a loss in accuracy due to the more complex approximation of the continuous ACF
and related continuation functions. The gap can be partially explained by the fact that LC0
in Table 4.7 is computed for W 0. Different to C0(L622) in Table 4.6 LC0 does not contain
the highest cash flows Lv̂

i
0 for all scenarios, but only those where W0 ≤ W 0. For this reason

C(L622) is larger in general. The last four columns present option values per MWh indicated
with a small c

Lc
0.25
0 = LC0(0.25x0,W 0)

0.25W 0
Lc

0.5
0 = LC0(x0, 0.5W 0)

0.5W 0
Lc

0.75
0 = LC0(x0, 0.75W 0)

0.75W 0
. (4.65)

The superscript indicates the initial available energy W0 amount relative to W 0 e.g. W 0.25
0 =

0.25 W 0. Not surprisingly, the price per MWh goes down with more energy available.The
power plant will pick the most profitable hours first which explains the concave form of the
option curves in Figure 4.19.
Let us finally describe the algorithm for the forward iteration used for an out-of-sample

data set. It relies on the approximation of the continuation value at each stage / generation
day represented by the parameters αd,m that we computed during the backward iteration. For
a given initial upper energy amount W0 = W0 we can calculate the option value by running
through the following steps

1. For each price scenario i = 1,.., I
a) For each day d = 0,...,D

i. We compute the profit energy curve Lẑ
i
d(wd) by solving equation 4.42 for se-

lected sampling points W r ∈ [wid, wid] (for d = 0 choose W r ∈ [wmin, wmax])
and then perform a quadratic fit. We receive the function: Lẑ

i
d(wd) = bid,0 +

bid,1wd + bid,2w
2
d.

ii. For the remaining total energy amount W i
d (with initial value W i

0 := W0)
we compute today’s generation amount w∗,id by solving equation 4.59 with
W r = W i

d.5

5The relevant parameters αid,0, αid,1 and αid,2 were calculated beforehand from our stored parameter set λd,m,j
and the rotation function of the first PC a1,d according to equation 4.58.
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iii. We check the solution w∗,id against the intervals [wid,min{W i
d, w

i
d}] and possibly

adjust the value to w̃∗,id as discussed in context of equation 4.59.

iv. We update the production value Lv
i
d+1(W i

d − w̃
∗,i
d ) := Lv

i
d(W i

d) + Lẑ
i
d+1(w̃∗,id )

with Lv
i
0(W0) = 0 and W i

d+1 := W i
d − w̃

∗,i
d .

v. We repeat steps (i.) to (iv.) with the next day d + 1 until we reach D or
W i
d = 0.

2. We average all production values to approximate the option value LC0(x0,W0) ≈
1
N

∑N
i=1 Lv̂

i
D(W i

D).

Note that in step 1.a.(iv.) we only track a single overall production value vid(Wd) per scenario
and do not approximate the entire ACF curve v̂id(W i

d). But we can nevertheless regain the
entire profit-energy curve LC0(x0,W0) by repeating the algorithm for several different upper
bounds W(m)

0 with m = 1, ...,M and either interpolate the values LC0(x0,W(m)
0 ) as done

in Figure 4.20 or run another curve fitting6. Figure 4.20 shows the result of the forward
iteration LC0(x0,W0) for K = 70 EUR and three new price scenario sets with 1000 price
trajectories each, normalized to the fixed base and peak Future price of 50.59 EUR and 71.85
EUR in March 08. We can see that forward iteration results are fairly close to each other. As
indicated by the second sub graph the largest discrepancy between all three sets is less than
10000 EUR compared to corresponding real option value of 0.9 mio EUR which is around 1.1
%. A proper stability test would apply the forward iteration on further sets of price scenarios
(e.g. 20) assuming the same Forward price for base and peak. Based on these results we
could compute the confidence interval for our estimator of the option value C0 as a stability
measure.

4.4.4. Heuristic Solution
Next, we want to benchmark our valuation model against an energy allocation that is based on
a heuristic approach. Recall from equation 4.47 that today’s generation amount is dependent
on our expectation of the value of the remaining energy from tomorrow onwards (continuation
value). This expectation is again dependent on the price we observe today. We described
this expectation as a function of the remaining energy and today’s price LŶd+1(Xd,Wd+1) (see
equation 4.53). We also computed the value-energy profile for today’s generation LẐd(Xd, wd)
(see equation 4.44) and by comparing both curves we found the best energy allocation for
today w∗d. A heuristic should prevent the complex approximation of the continuation values
and assess the dependency between today and the rest of the delivery period with easier rules.
For this reason we want to define a simple policy that is based on the following principles

1. Today’s maximum energy production wd (see equation 4.71) can take three different
values: (i) enough energy to produce the entire day (24 × Lmax) or (ii) only for peak
(12× Lmax) hours or (iii) not at all.

2. We extend our MIP from equation 4.12 by an upper energy bound and apply wd from
1. We reduce the list of available generation schedules by limiting the end states Jd
such that an immediate shut down on the next day is always possible (i.e. the power
plant was off or runs already for at least 12 hours at midnight on the prior day, see also
equation 4.75).

6Alternatively we could ignore steps 1.a.(iii) and (iv) and instead run the MIP another time with w := w∗,i
d

from 1.a.(ii). Then we would use the resulting optimal cash flow Lz
i
d(w

∗,i
d ) (see equation 4.42) and new

optimal energy allocation w∗
d (see equation 4.43) to update the value function and remaining energy, i.e.

Lv
i
d+1(W i

d − w
∗,i
d ) := Lv

i
d(W i

d) + Lz
i
d+1(w̃∗,i

d ) and W i
d+1 := W i

d − w
∗,i
d .
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Figure 4.20.: Forward iteration with 3 out-of-sample data sets.

3. We assess the likelihood of today’s observed price XO/P
d (see equation 4.67) by relying

on the distribution of the average delivery price for the remaining production period
X
O/P
d (see equation 4.68).

4. We relate the percentage that our remaining energy Wd (see equation 4.72) covers of
the total potential production for the entire remaining delivery periodW d (see equation
4.69) to the likelihood of the price that we observe today. IfWd, for instance, only holds
for 10 % of W d, then we will nevertheless produce today if today’s price belongs to 10
% of the highest prices that we could have observed today. In other words, the less
energy is available, the better the current price scenario has to be before we reduce the
available energy even more by producing today.

The heuristic is not dependent on any estimation of the conditional expectation. Instead it
runs a local optimization i.e. finds every day’s maximum payoff Zd := Zd(Xd, Ud, Jd, wd).
This new cash flow definition is based on our initial MIP from equation 4.12 to which we refer
for all other variable declarations. We extend the MIP by the energy constraint I ′Ld ≤ wd
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and specific sub sets of start states Joff (see equation 4.75)

Zd(Xd, Ud, Jd, wd) = max
Ld,ξd.β

u
d
,βo
d

{
(Xd −KI)′Ld −KuI

′βud −KoI
′βod
}

subject to:
I ′Ld ≤ wd

Lmin ξd − Ld ≤ 0
−Lmax ξd + Ld ≤ 0

Λξd ≤ 0
−I −Bξd ≤ 0
Eξd − βud ≤ 0
−Eξd − βod ≤ 0

Ltd ∈ {0} ∪ [Lmin, Lmax]
ξd := ξd(Ud, Jd)
Jd ∈ Joff

ξtd, β
o,t
d , βu,td ∈ {0, 1}

t = −max{ton, toff}+ 1, ...,−1, 0, 1, ..., 24.

(4.66)

Note that wd in equation 4.66 is an upper daily energy constraint that we specify according
to rule 3 and 4. Hence, we first separate the initial available energy amount W0 into its peak
and off-peak parts WO/P

0 . We allow a peak production for today, i.e. wd = 12Lmax, only if
the average of today’s peak hour prices XP

d

X
O/P
d = 1

|TO/Pd |

∑
t∈TO/P

d

xtd, (4.67)

is above the relevant quantile qβ(XP
d ), β > 0.5, of the distribution of the average peak prices

for the remaining generation period XP
d

X
O/P
d = 1∑D

n=d |T
O/P
n |

D∑
n=d

∑
t∈TO/Pn

xtn, (4.68)

where TO/Pd is the set of peak and off-peak hours respectively at day d and |TO/Pd | is the
number of hours in set TO/Pd . We allow for a full day production wd = 24Lmax only if
additionally the same criteria holds true for the off-peak hours XO

d . These quantiles and
hence the threshold for today’s production will be higher the less energy is available for the
rest of the production period as rule 4 derives the corresponding probability β from the ratio
of the remaining available energy at the current stage WO/P

d and the max energy WP/O
d that

could be potentially produced until the end of the delivery period separated for peak and
off-peak hours, i.e.

W
O/P
d =

D∑
n=d
|TO/Pn |Lmax. (4.69)

Assigning the complementary percentage to β ensures that the corresponding quantile in-
creases the less energy is available (recall that we look at the upper tail of the distribution,
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i.e. β > 0.5)

β := β
O/P
d = 1− W

O/P
d

W
O/P
d

. (4.70)

In short, wd is defined as follows

wd := wd(WO
d ,W

P
d ) =


min{12 Lmax,W

P
d } if XP

d ≥ qβ(XP
d ), XO

d < qβ(XO
d ),

min{24 Lmax,W
P
d +WO

d } if XP
d ≥ qβ(XP

d ), XO
d ≥ qβ(XO

d ),
0 else.

(4.71)

Basically, the current price needs to belong to the best (1−β) percent of all prices in order to
allow an energy production for today. For a baseload production both, today’s peak and off-
peak price XO/P

d , need to exceed the quantiles qβ(XO/P
d ) of the distribution for both peak and

off-peak price band prices of the remaining delivery period. The local maximization searches
for the optimal end state J∗d that maximizes the current cash flow Zd. It also returns the
best schedule L∗d and thus the remaining energy from tomorrow onwards, i.e. Wd+1 implicitly
defines wd+1 (see equation 4.71) and henceforth the optimization problem of the next stage
Zd+1 with Ud+1 = J∗d

W
O/P
d+1 := W

O/P
d+1 (L∗d) = W

O/P
d −

∑
t∈TO/P

d

lt,∗d . (4.72)

Recall that wd is today’s upper energy bound whereas the schedule L∗d describes the actual
energy production resulting from our local maximization. Thus, the heuristic only determines
the available production at day d and calculates an optimal actual production for it. We solve
this MIP in a forward iteration separately for every day d=0,...,D and price scenario i = 1,..,I
starting from the same initial known price X0 = x0. Hence, for each price scenario we receive
the ACF

V h
0 (x0, u0,WO

0 ,WP
0 ) =

D∑
d=0

max
Jd

Zd(Xd, Ud, Jd, wd), (4.73)

whose average is our approximation of the real option value

Ch0 (x0, u0,WO
0 ,WP

0 ) ≈ 1
I

I∑
i=1

vh,i0 (u0,WO
0 ,WP

0 ). (4.74)

Recall that similar to our model without an energy constraint in equation 4.19 the daily
production schedules Ld are linked via the start and end operating state Ud+1 := J∗d . The main
difference is that we ignore the impact of today’s end state on tomorrow’s admissible schedule
candidates when we optimize for Zd. For this reason we restricted Joff to end operating states
that force the power plant to shut-down at least one hour before midnight or to run long
enough that it can shut-down the very first hour on the next day, i.e.

Jd ∈ Joff = {(1, 0), ..., (toff, 0), (0, ton)}. (4.75)

In this way we always ensure a potential immediate shut-down on the next day. This prese-
lection improved the heuristic otherwise the policy often failed on Friday’s when the next day
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is an entire off-peak day. The resulting smaller set of candidate schedules does still require to
track the start operating state Ud since not all combinations of candidate schedules meet the
time constraints. Start states (4,0) or (3,0), for instance, guarantee a zero start the next day,
but also determine the earliest start hour, in this case 8 or 9 o’clock on the next morning.
This is different to our continuous SDP where the set of candidate schedules is even more
restricted to schedules that can be freely concatenated.
In order to compare the results with our previous two models we run our heuristic for several

initial energy values W0 and interpolate the results. Table 4.8 summarizes and Figure 4.21
visualizes the numbers for our three models (stochastic C0, deterministic/full information Cf0 ,
heuristic Ch0 ) and three different strikes. The columns stand for different upper energy bounds
as a percentage of the energy amount W 0 from Table 4.7. The results help us to assess the
quality of our stochastic dynamic program (SDP). We can see that our SDP performs better
than the heuristic only for the itm situation. For the atm and otm case where only fewer
hours are in the money the flexibility of the power plant i.e. the optimal dispatch contributes
most to the valuation. Obviously the dispatch policy of the heuristic leads to higher cash
flows than the SDP7. Consequently our set of schedule candidates for the SDP does not cover
all relevant dispatches. Recall that our set L622 allows for a production between hour 6 and
22. This is obviously too restricted. In order to show that our SDP is able to return good
results even for more flexible power plants if the right schedule set is in place we repeat the
same example with half of the on- and off-times, i.e. ton = 6 and toff = 4. In addition we
alter our candidate schedules to L723 that contains all schedules between hour 7 and hour 23.
Figure 4.22 presents the results. First of all we can observe that in general all three valuation

K 10% 20 % 30% 40% 50 % 60 % 70 % 80 % 90 % 100 %

50
Cf

0 1.047 1.741 2.339 2.8415 3.2489 3.5610 3.7778 3.8997 3.9382 3.9410
Ch

0 0.948 1.560 2.120 2.6192 3.0376 3.4044 3.6721 3.8184 3.8877 3.9305
C0 0.972 1.664 2.263 2.7688 3.1811 3.5001 3.7261 3.8607 3.9129 3.9188

70
Cf

0 0.376 0.614 0.804 0.9477 1.0451 1.1009 1.1257 1.1336 1.1350 1.1352
Ch

0 0.372 0.580 0.769 0.9150 1.0136 1.0745 1.1086 1.1242 1.1303 1.1330
C0 0.335 0.553 0.729 0.8661 0.9675 1.0365 1.0779 1.0971 1.1024 1.1029

90
Cf

0 0 0.097 0.125 0.1478 0.1650 0.1777 0.1867 0.1927 0.1967 0.1991
Ch

0 0 0 0.118 0.1349 0.1533 0.1688 0.1805 0.1885 0.1939 0.1970
C0 0 0.077 0.103 0.1240 0.1403 0.1530 0.1628 0.1701 0.1756 0.1796

Table 4.8.: Option values in mio EUR relative to W 0 (forward iteration with new price
scenarios)

models return higher option values than in our initial example due to the higher flexibility of
the power plant. In particular the shorter run-times allow for intra-day shut-downs during
non-profitable hours and thus generate larger cash flows. This time our SDP returns higher
option values than the heuristic model throughout the entire energy interval and all strikes.
With increasing available energy the simple energy allocation of the heuristic model becomes
more and more a weakness. The power plant in this second example has a faster reaction
time and therefore can run in smaller time intervals i.e. can generate smaller energy buckets.
While the SDP model by design can allocate energy continuously, the heuristic model tends
to allocate too much energy on days where smaller energy buckets would be sufficient. Recall
that the heuristic only differs between peak, base and no energy allocation. In this way there
is less energy left for more beneficial future delivery days. This effect is most apparent for

7In Figure 4.12 we put this result into a different perspective when we look at the associated risk of the
different dispatch policies. The heuristic turns out to generate also a much higher risk profile.
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Figure 4.21.: Power plant valuation with ton = 12 and toff = 8 and L622 for the SDP.
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Figure 4.22.: Power plant valuation with ton = 6 and toff = 4 and L723 for the SDP.

130



CHAPTER 4. POWER GENERATION ASSETS

the atm situation where hourly prices fluctuate around the strike and dispatching becomes
very important. This is where all three models deviate most. As soon as full energy is
available the optimization does not need to consider future delivery days any longer and the
local optimization of the heuristic model will approximate the results of the model with full
information. Thus we observe the largest value deviation among the three models for initial
energy bounds between 70 % to 90 % of the total energy.
As an immediate next step for further research we would suggest to investigate different

basis functions for the approximation of the continuation value curve in order to address the
inaccuracy of our SDP in our first example. Instead of using one set of basis function across
all strikes one could rather have different sets. For the itm case, for instance, one could work
with linear functions as the power plant is always running and thus the ACF and continuation
value are linear with respect to the price. For the atm and otm situation this is not true any
longer and one would need to apply a different set. The two examples also illustrated the
importance of the candidate schedules. Like for the basis functions one should investigate as
well different candidate schedules dependent on the strike.

4.5. Hedge Analysis

Next, we want to apply our discussion about risk controlling from chapter 3 for our power
plant model. In particular we want to investigate several hedging alternatives. First, we want
to look at a Forward and volumetric hedge before we try to find an appropriate swing contract
that will help us to cover the spot price risk. The former requires the calculation of Forward
deltas and the latter the computation of spot deltas. For this reason we will focus first on
the computation of these sensitivities (see section 3.3.2 and 3.3.4 for a detailed description
of the relevant figures). Let us first look at the Forward deltas. We focus on peak prices
and thus the peak Forward delta since dispatching will mainly fall into peak hours especially
for two (atm, otm) of our three scenarios (recall that the peak Futures price in our example
is g0 = 70.85 EUR). We apply equation 3.45, where C∗0 (x0, g0, δ) will be replaced by our
three valuation models, i.e. stochastic C0 := C0(x0,W0), deterministic Cf0 := Cf0 (x0,W0) and
heuristic approach Ch0 (x0, u0,WO

0 ,WP
0 ) and we calculate ∆F for all grid points W r. Figure

4.23 visualizes the interpolated results and Tables 4.9 to 4.11 show the actual figures for
dedicated energy values and all three strikes in column 4. All sub graphs are trimmed to
the core generation domain [W 0,W 0] (see also equation 4.64). Hence, the most right energy
value on each curve refers to the 100 % available energy W 0 in Tables 4.9 to 4.11. Beyond
that value all curves will still slightly grow due to some (but not any more all) scenarios that
still provide a higher cash flow through a larger production. To be precise, the graphs show
the MWDelta

∆F
MW := ∆F

|TF |
, (4.76)

i.e. the Forward delta divided by the delivery hours |TF | of the Forward (see also section
3.3.1 for a detailed discussion). Recall that the MWDelta can be interpreted as the capacity
in MW that the Forward will provide every hour during delivery. This figure allows for a
direct comparison with the maximum capacity of our power plant which is Lmax = 530 MW.
Most apparent in Figure 4.23 is the almost linear relation of the Forward MWDelta with
respect to the available energy W0 across all option models and strikes except for W0 close
to W 0 where by definition the cash flows and thus the delta will not change any longer. This
linear behavior is mainly caused by the mean reversion. It ensures that the electricity prices
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are mainly driven by the seasonal daily shapes. In our example all shapes are identical on
weekdays. Thus, all weekday schedules will look similar and resemble flat peak schedules.
With increasing available energy, more of these daily peak schedules will be concatenated. As
prices are similar between weekdays due to the normalization, the power plant value is mainly
a linear function of the available energy as long as there are still unused weekdays and so is
the Forward delta. The blue line indicates the delta based on the model with full information
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Figure 4.23.: Forward deltas for all three valuation models and strikes

about future prices Cf0 . We can see that our stochastic model (from now on we abbreviate
it with SDP) is below this line until full energy is available. Then it is significantly above
the blue line. Recall that the Forward delta is a value hedge. High deltas stand for large
value changes which usually result from large energy amounts (the larger the energy amount
the more small price shifts change the asset value) or high production flexibility (small price
shifts suddenly lead to entirely new dispatch profiles and thus different energy amounts). In
this sense the small delta of our SDP before full production indicates that our SDP tends
to produce not enough for the given initial energy amount. This observation lets us assume
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that the approximated continuation values are rather too high and prevent more variability
in the production. On the other hand, the SDP Forward delta is too high in case of nearly
full energy availability (W0 = W 0). This becomes most obvious in direct comparison with the
Forward delta based on the power plant model without energy constraints Cr0 := C0(x0, u0)
with C0 := C0(x0, u0) from equation 4.26 and values in Table 4.6. The figure can only serve as
an upper reference value as by definition we cannot restrict Cr0 to W 0. For K = 70 MW and
full energy amount we observe ∆F for C0 = 409 MW that is even larger than ∆F for Cr0 with
384 MW. Evidently, our SDP requires more energy, but nevertheless returns a smaller real
option value. Thus, the introduction of an energy constraint and the related approximation
schemes entail a loss in accuracy and energy efficiency. For K = 50 MW we see that all
Forward deltas clearly exceed the maximum hourly capacity of Lmax = 530 MW. Recall from
section 3.3.2 that different to the volumetric hedge the Forward delta as a value hedge can in
deed be higher than the max capacity of the power plant to compensate for the flexibility and
thus the non-linearity of the option value (a contract with fixed delivery will instead always
have a delta that matches the delivery schedule). The fact that for K = 50 and W0 = W 0 the
Forward delta for our heuristic is even higher than our SDP (∆F for C0 is 606 MW and ∆F

for Ch0 is 670 MW) stands for a small energy efficiency and corresponds to our observation
from Table 4.8 that the heuristic performs worst of all models for K = 50. In general the
delta results are consistent with the option values. For instance we see that the deltas of our
heuristic and full information match for high W0. Likewise we observe similar option values
Ch0 and Cf0 .

K W0 ∆F
MW ∆9−11

MW ∆12
MW ∆13−16

MW ∆17−20
MW

50

30 %

Cf
0 207 181 306 124 260

Ch
0 176 160 47 67 298

C0 173 132 210 109 236
Cs

0 206 230 480 19 263

50 %

Cf
0 310 293 438 203 369

Ch
0 321 234 406 248 408

C0 279 248 366 189 342
Cs

0 300 338 607 105 346

70 %

Cf
0 395 389 534 269 459

Ch
0 402 335 576 297 478

C0 369 353 480 258 434
Cs

0 378 421 702 183 416

100 %

Cf
0 597 513 617 351 567

Ch
0 670 552 579 405 597

C0 606 498 584 347 549
Cs

0 570 526 760 286 503
Cr

0 643 749 756 447 696

Table 4.9.: MW deltas for different upper energy bounds relative to W 0 and strike K = 50
EUR

Next, we proceed with the spot delta. As motivated in section 3.3.4 we are not interested
in the sensitivity with respect to today’s spot price only and therefore introduced the notion
of the synthetic spot delta in equation 3.53. Consequently, we need to aggregate neighboring
spot prices to new artificial products p. We decided to group the individual peak spot prices
into four blocks p ∈ {9 − 11, 12, 13 − 16, 17 − 20}. We grouped those hours together that
are highly correlated. From our correlation analysis of the weekday prices in Figure 4.6 we
saw that the noon price stands out, but the remaining peak prices can be bundled together.
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K W0 ∆F
MW ∆9−11

MW ∆12
MW ∆13−16

MW ∆17−20
MW

70

30 %

Cf
0 189 155 339 90 246

Ch
0 163 121 355 53 224

C0 160 118 288 81 213
Cs

0 204 228 472 17 263

50 %

Cf
0 302 289 469 179 361

Ch
0 310 256 517 199 375

C0 281 234 484 180 335
Cs

0 293 337 589 95 340

70 %

Cf
0 368 387 495 234 425

Ch
0 364 374 472 246 420

C0 379 351 622 252 430
Cs

0 357 417 639 158 400

100 %

Cf
0 379 406 500 239 435

Ch
0 379 407 501 238 435

C0 409 405 638 269 459
Cs

0 387 473 616 184 429
Cr

0 384 411 520 245 437

Table 4.10.: MW deltas for different upper energy bounds relative to W 0 and strike K = 70
EUR

K W0 ∆F
MW ∆9−11

MW ∆12
MW ∆13−16

MW ∆17−20
MW

90

30 %

Cf
0 116 92 217 34 167

Ch
0 116 93 214 34 167

C0 118 85 227 40 169
Cs

0 141 156 333 -12 200

50 %

Cf
0 116 93 216 34 168

Ch
0 116 93 214 34 168

C0 120 91 222 40 173
Cs

0 144 161 331 -12 204

70 %

Cf
0 116 93 216 34 168

Ch
0 116 93 214 34 168

C0 120 91 222 40 173
Cs

0 144 161 331 -12 204

100 %

Cf
0 116 93 216 34 168

Ch
0 116 93 214 34 168

C0 120 91 222 40 173
Cs

0 144 161 331 -12 204
Cr

0 117 90 230 34 167

Table 4.11.: MW deltas for different upper energy bounds relative to W 0 and strikes K = 90
EUR
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Hence, the resulting Taylor series representation looks as follows

V ∗0 (x0, g0, δ) := C∗0 (x0, g0, δ) + ∆9−11(X9−11 − h9−11) + ∆12(X12 − h12)
+ ∆13−16(X13−16 − h13−16) + ∆17−20(X17−20 − h17−20) + ε

(4.77)

Note that we are interested in the MWDelta (see section 3.3.1) and therefore divide the
sensitivity by the associated number of delivery hours |Tp| and we abbreviate

∆p
MW := ∆p

|Tp|
, (4.78)

where Tp is the set of all hours of the delivery period that belong to product p. We compute
these MWDeltas for all our models and replace V ∗0 (x0, g0, δ) and C∗0 (x0, g0, δ) in equation
3.53 accordingly: for our power plant with full information by V f

0 (x0,W0) and Cf0 (x0,W0),
for our heuristic by V h

0 (x0, u0,WO
0 ,WP

0 ) and Ch0 (x0, u0,WO
0 ,WP

0 ), for our SDP with and
without energy constraint, by V0(x0,W0), C0(x0,W0), V r

0 (x0, u0) and Cr0(x0, u0), and for a
swing option with the same hourly capacity as our power plant i.e. Lmax = 530 MW by
V s

0 := V0(x0, N) and Cs0 := C0(x0, N) (see equations 2.3 and 2.9). We ran the calculation for
all three strikes and ten different upper energy boundsW0 starting from 10 % to 100 % ofW 0.
For the swing option we translate the different upper energy bounds into different number of
swing rights via N = W0/Lmax. Only for W0 = W 0, i.e. full available energy, we compute
the MWDelta for our real option model without energy constraint Cr0 . Tables 4.9 to 4.11
present and Figure 4.24 visualizes the results for the three different strikes. For readability
we only plotted two option models: our SDP vs. our deterministic model (full information).
The deterministic model is always the line of the same color pair that starts more to the left.
Each color stands for one of the synthetic products. Thus, for small energy amounts W0 the
synthetic spot delta of our SDP is always smaller throughout all price blocks and strikes. We
interpret the spot MWDelta as the average capacity in MW during the associated product
hours. The deltas of the deterministic model represent the best allocation. For large W0 and
K = 70 and K = 90 the SDP returns higher deltas than the deterministic model except for
the first block (9-11). This is an indication of an inefficient energy allocation of our SDP for
these blocks. In general, the shape for all curves is similar to the ones of the Forward delta
in Figure 4.23 and can be explained analogously by the mean reversion character and the
identical weekend and weekday patterns of the prices. With increasing available energy W0
there are more production days (i.e. less 0 MW days) and consequently the average hourly
capacity increases. However, the fact that the spot MWDeltas for different price blocks
drift apart with increasing strike shows that the average capacity does not increase equally
across all hours. Especially the outstanding delta curve for hour 12 underlines its particular
value contribution to the daily production schedule. The high delta also indicates large value
changes due to high volatility and spikiness of hour 12. It is also the only curve that does not
increase monotonously, but briefly falls before it converges to a fixed delta value. Apparently
its contribution to the overall asset value will be partially compensated by the other price
blocks as soon as the full or almost entire energy amount is available.

In general we can state that the more distinct the spot deltas mutually differ the better
is the classification of the corresponding price blocks. For the itm situation the power plant
produces a baseload schedule and the deltas of the different blocks are close to each other.
The small difference is only originated in the different price variations. With rising strike the
dispatch decision becomes more important and we can see that the delta and hence average
production varies between blocks. Block 13-16 for instance has always the smallest delta
which can be explained best by the seasonal shape. Reviewing Figure 4.3 we see that the
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Figure 4.24.: Spot deltas calculated via SDP and total information.

136



CHAPTER 4. POWER GENERATION ASSETS

price usually goes down after noon and will only go up again in the evening. Consequently
there is less production during these hours and hence a smaller delta.

Next, we want to use these spot deltas to specify a swing option contract that a power
plant owner can sell to other market participants in order to offset the spot price risk of his
generation asset. We denote the swing option with Cs,∗0 := Cs,∗0 (x0, N, L) (see also equation
2.3 with L implicitly set to 1) where x0 is the current spot price, N the number and L the
size of the swing rights. First, we will work with a general description of the power plant
C∗0 (x0,W0, δ) where W0 is the initial energy amount and δ is a parameter vector covering all
technical constraints of the specific power plant. We will soon replace this general description
with our different implementation models. We set up a hedge portfolio CH0 consisting of a
long position in the power plant and a short position in the swing option

CH,∗0 (x0,W0, N, L, δ) := C∗0 (x0,W0, δ)− Cs,∗0 (x0, N, L). (4.79)

In particular, we are interested in the number of swing rights N and swing size L that the
swing option should carry. As a measure for the risk mitigation we want to use our definition
of EaR. Recall that EaR is based on the distribution of the difference of the potential, i.e.
ACF, versus the expected cash flow of an option value after a Forward hedge. For this purpose
we first need the definition of the ACF for our hedge portfolio which is the difference of the
ACFs of the two underlying contracts

V H,∗
0 (x0,W0, N, L, δ) := V ∗0 (x0,W0, δ)− V s,∗

0 (x0, L,N), (4.80)

with V s,∗
0 := V s,∗

0 (x0, L,N) as defined in equation 2.9 with L = 1 and V ∗0 (x0,W0, δ) being a
general description of the ACF of a power plant with energy constraint that we will replace
with our different implementation models (see for instance equation 4.48). Then EaR of our
hedge portfolio is the β-quantile of the remaining spot price exposure εH after a Forward
hedge

εH(x0, g0,W0, N, L, δ) := V H,∗
0 (x0,W0, N, L, δ)− CH,∗0 (x0,W0, N, L, δ)−∆F (F0 − g0),

(4.81)

with ∆F as the Forward delta according to equation 3.45. In short, the objective is to find
the number of swing rights N and swing size L for a hedge portfolio with given initial energy
amount W0 that will minimize respectively maximize the EaR figure dependent on whether
we look at a buyer’s or seller’s situation i.e. whether β is greater or smaller than 0.5

max
N,L

qBβ :=max
N,L

qβ (εH(x0, g0,W0, N, L, δ)) , β < 0.5

min
N,L

qSβ :=min
N,L

qβ (εH(x0, g0,W0, N, L, δ)) , β > 0.5.
(4.82)

Different to the last chapter we are not interested in a dynamic strategy that looks for ap-
propriate dispatch decisions during delivery as we want to sell the swing contract in advance
of the actual production period (see also the distinction between before and in delivery in
our introductory example in section 3.1). Note that the objective focuses on the risk measure
only. A further consideration of the expected value of the portfolio in terms of a mean-risk
analysis is not necessary. The reduction of the real option value through selling the power
plant production via the swing option is compensated by the cash of the same amount that
we earn for the sale. So only the deviation from this option premium i.e. expected value C∗,s0
implies a potential loss and therefore is only relevant for this investigation. This is exactly
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represented by εH . We want to introduce a heuristic to solve equation 4.81 that will be useful
for a comparison once a proper solution becomes available. The straightforward approach
uses a combination of a Forward and swing contract. We will call this approach a volumetric
hedge as it follows the basic idea in section 3.3.3. The Forward contract would cover the
minimum capacity Lmin once the power plant is running. The corresponding volume delta
(see also equation 3.50) is then simply the number of the Forward contract delivery hours TF
multiplied by Lmin

∆w := TF Lmin. (4.83)

In our case this is a peak Forward as our power plant mainly runs during peak hours in the
atm (K=70) and otm case (K = 90). The further schedule profile above Lmin will be covered
by a swing option with swing size Lvol := Lmax − Lmin. The relevant number of swings will
be derived from the remaining energy amount after subtracting the energy of the Forward
contract ∆w from the initially available energy W0

Nvol := bW0 −∆w

Lvol
c, (4.84)

where the symbol bc stands for rounding to the closest lower integer. Then the relevant
residual for computing the quantile according to equation 4.81 looks as follows

εvolH (x0,W0, g0, N
vol, Lvol, δ) := V H,∗

0 (x0,W0, L
vol, Nvol)− CH,∗0 (x0,W0, N

vol, Lvol, δ)
−∆w(F0 − g0).

(4.85)

You will find the corresponding figures in column 4 and 5 of Table 4.12. The technical
constraints of a power plant, however, make it less flexible than a swing option with the same
amount of producible energy and therefore the volumetric hedge is not the most efficient
hedge. We want to rather account for the inflexibility by reducing the number of swing rights
below the total available energy. This is where our synthetic spot delta comes into play.
The idea is to compare the spot deltas for both the power plant ∆p

W0
and the swing option

∆p
N and find the number of exercise rights and size where both spot deltas fit best. The

figures ∆P
W0

and ∆P
N will be calculated according to equation 3.53 by replacing V ∗0 (x0, g0, δ)

with V ∗0 (x0,W0) and V s,∗
0 (x0, 1, N) respectively for each artificial product p. Note that we

calculate the spot delta for the swing option with size L=1. By adjusting the swing size after
the delta calculation we can make the swing spot delta fit the power plant spot delta

Lp(W0, N) :=
∆p
W0

∆p
N

. (4.86)

Note that we adjust the swing size for each artificial product p individually. Next we look for
the common swing size across all artificial products that has the smallest absolute difference
from the individual spot deltas. This is exactly the definition of the median

L(W0, N) := arg min
x

P∑
p=1
|Lp(W0, N)− x|. (4.87)

Finally we look for the number of swing rights whose median fits all P spot deltas best. This
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is the approximated optimal swing number

N̂∗(W0) := arg min
N

P∑
p=1

∣∣∣Lp(W0, N)− L(W0, N)
∣∣∣ . (4.88)

The optimal swing size can then be directly derived as

L̂∗ := L(W0, N̂
∗). (4.89)

The underlying rationale is that a close match of the spot delta positions between the power
plant and the swing option should indicate a good hedge of the spot risk and thus of EaR.
The algorithm runs as follows

1. Compute synthetic spot deltas ∆p
W0

according to equation 3.53.

2. For each swing option N= 1,..,T with T being the maximum number of production
hours
a) Compute synthetic spot deltas ∆p

N with fixed swing size Lmax = 1 according to
equation 3.53.

b) Divide each spot delta ∆p
N , p = 1,...,P, by the power plant’s spot delta ∆p

W0
of the

same product p according to equation 4.86.
c) Compute the median L(W0, N) of the adjusted spot deltas according to equation

4.87.

3. Out of all T swing options pick the one whose median has the smallest total absolute
differences to its individual spot deltas (see equation 4.88). This is N̂∗(W0). The
corresponding median is L̂∗ (see equation 4.89).

We apply this algorithm for four initial energy bounds (W0 is 30 %, 50 %, 70 % and 100
% of W 0) and all three strikes (K = 50, 70, 90) and receive the corresponding quantiles q̂∗β.
We also compute the quantiles for the volumetric hedge qvolβ with Nvol and Lvol. Finally we
compare both with the quantile q∗β based on the optimal hedge

qvolβ := qβ
(
εvolH , x0, g0,W0, N

vol, Lvol, δ
)

q̂∗β := qβ
(
εH , x0, g0,W0, N̂

∗, L̂∗, δ
)

q∗β := qβ (εH , x0, g0,W0, N
∗, L∗, δ) .

(4.90)

We compute the optimal hedge via full enumeration, i.e. we generate the distribution of the
hedge portfolio for all N =1, ..., T and all L and look for the smallest quantile that defines
N∗ and L∗. This can become cumbersome for large N and in particular for large L. Recall
from Figure 4.24 and our introductory example in section 3.1 that the spot delta can exceed
the maximum capacity of the power plant Lmax. The analysis of our particular example
revealed that none of the spot deltas exceeds twice the maximum capacity. Therefore the full
enumeration runs on the interval L ∈ [1, 2 · Lmax]. If we apply a granularity of ∆N = 1 and
∆L = 1 MW, then the full enumeration requires T × 2Lmax × I revaluations of the hedge
portfolio to receive the optimal quantile with I being the number of price trajectories. Our
heuristic instead finds L directly and therefore can prevent the additional enumeration over
2Lmax. In order to understand how much the gain in computation time results in a lack of
accuracy we introduce the approximation error R as the relative deviation of the approximated
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from the optimal quantile

R :=
|q̂∗β − q∗β|
|q∗β|

, (4.91)

and we denote with mR and sR the sample mean and standard deviation of the estimation
error. We retrieve the relevant sample points using 100 out-of-sample price paths. We apply
our heuristic to find the (N̂∗, L̂∗) pairs that define the relevant swing contract and the cor-
responding q̂∗β. Then we compute the optimal pair (N∗, L∗) and related quantile q∗β via full
enumeration over N and L. We run this calculation separately for our three different valua-
tion models, So we replace V ∗0 (x0,W0, δ) with the true stochastic program C0(x0,W0), the
heuristic model Ch0 (x0, u0,WO

0 ,WP
0 ) and the deterministic valuation Cf0 (x0,W0). Table 4.12

summarizes the results.

K W0 Model qvol
0.05 qvol

0.95 q∗
0.05 q∗

0.95 q̂∗
0.05 q̂∗

0.95 mR sR

50

30%
Cf

0 -2.650 2.674 -1.233 1.035 -1.263 1.061
2.9% 0.41%Ch

0 -4.433 4.344 -3.929 3.782 -4.045 3.894
C0 -2.516 2.520 -1.388 1.336 -1.426 1.371

50%
Cf

0 -2.460 2.284 -1.683 1.697 -1.725 1.742
2.7% 0.35%Ch

0 -3.586 3.068 -2.938 3.062 -3.017 3.151
C0 -2.391 2.184 -1.679 1.632 -1.725 1.689

70%
Cf

0 -2.601 2.251 -2.044 1.870 -2.09 1.907
2.2% 0.29%Ch

0 -3.254 3.026 -3.023 2.405 -3.087 2.451
C0 -2.556 2.289 -2.231 1.997 -2.278 2.033

100%
Cf

0 -2.534 2.404 -2.136 1.954 -2.182 1.991
2.0% 0.25%Ch

0 -2.793 2.823 -2.644 2.791 -2.694 3.046
C0 -2.752 2.541 -2.261 2.025 -2.315 2.067

70

30%
Cf

0 -1.154 1.323 -1.169 1.321 -1.201 1.356
2.7% 0.22%Ch

0 -2.054 1.939 -1.799 1.848 -1.844 1.894
C0 -1.490 1.492 -1.427 1.337 -1.463 1.371

50%
Cf

0 -2.866 2.903 -1.224 1.147 -1.264 1.18
2.9% 0.27%Ch

0 -3.123 3.001 -1.822 1.711 -1.872 1.759
C0 -2.924 2.757 -1.714 1.326 -1.764 1.364

70%
Cf

0 -2.168 2.231 -1.240 0.911 -1.273 0.942
3.1% 0.32%Ch

0 -2.766 2.312 -2.325 1.371 -2.394 1.407
C0 -2.638 2.192 -1.873 1.263 -1.932 1.304

100%
Cf

0 -1.855 1.712 -1.234 0.891 -1.272 0.923
3.4% 0.35%Ch

0 -2.825 2.131 -1.944 1.204 -2.015 1.246
C0 -2.438 1.955 -1.762 1.127 -1.832 1.169

90

30%
Cf

0 -0.605 0.707 -0.516 0.605 -0.622 0.731
3.1% 0.29%Ch

0 -0.992 1.042 -0.861 1.002 -0.882 1.136
C0 -0.711 0.739 -0.632 0.661 -0.733 0.758

50%
Cf

0 -0.711 0.843 -0.666 0.803 -0.736 0.831
3.5% 0.35%Ch

0 -0.941 1.260 -0.930 1.067 -0.974 1.305
C0 -0.918 0.843 -0.867 0.830 -0.954 0.872

70%
Cf

0 -0.763 0.955 -0.737 0.926 -0.789 0.959
3.6% 0.41%Ch

0 -1.296 1.135 -1.228 1.105 -1.269 1.176
C0 -1.006 1.023 -0.993 0.995 -1.025 1.027

100%
Cf

0 -0.829 1.141 -0.811 1.106 -0.861 1.184
3.8% 0.45%Ch

0 -1.303 1.358 -1.296 1.212 -1.342 1.416
C0 -1.108 1.189 -1.062 1.122 -1.101 1.163

Table 4.12.: EaR values in multiples of 100,000 EUR
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Before we look at the effect of the different hedge portfolios, let us first start a direct
comparison of the valuation models across all computed quantiles. The quantiles of the
heuristic valuation approach Ch0 clearly stand out with the worst performance throughout all
strikes, hedge type and available energy amount. The left and right quantile are always the
highest in absolute terms. This is most obvious for K = 50 and W0 = 0.3W 0 with qvol0.05(Ch0 )
= 0.44 mio EUR for the heuristic vs. qvol0.05(Cf0 ) = 0.26 mio EUR for the deterministic vs.
qvol0.05(C0) = 0.25 mio EUR for the stochastic model. In this case the heuristic policy produces
a 75 % higher risk than the other two models. This observation tarnishes the good results we
received in the previous section in terms of the expected value (see Table 4.8 and Figure 4.21).
We assume that the heuristic’s simple energy allocation rule assigns daily energy less cautious
and therefore results in more extreme cash flows. Comparing the cash flows of identical price
trajectories among the different valuation models should help to verify this assumption, but
was beyond the scope of our analysis. Comparing the hedge types we can see that the swing
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Figure 4.25.: Profit and loss histogram for 70 % of total energy W 0

hedge q∗β and q̂∗β respectively clearly prevails the volumetric hedge qvolβ across all strikes and
different energy restrictions. Figure 4.25 illustrates this effect by a further comparison with
the non-hedged and Forward hedged position. We see the hedge portfolio distributions for 70
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% of the total energy amount W 0 and all three strikes (recall from Table 4.8 and Figure 4.21
that energy amounts between 50 % and 70 % of the total possible productionW 0 benefit most
from the power plant flexibility). The distributions were generated with our SDP model8. Not
surprisingly, all hedges significantly reduce the quantile compared to the non-hedged position.
For K = 70 EUR, for instance, the unprotected power plant value returns a quantile of - 0.571
mio EUR. Already the Forward delta hedge reduces the potential loss by 30 % to -0.397 mio
EUR. This figure will be again reduced by 33 % to -0.2638 mio EUR through the volumetric
hedge. The swing hedge allows yet another reduction of the potential loss by nearly 30 % to -
0.183 mio EUR. The graphs show that this effect is actually smaller for itm (K=50) and otm
(K=90) power plants. The reason is that for K = 50 EUR the optimal (N∗, L∗) pair for the
swing hedge is close to (T, Lmax) as the power plant will produce almost every hour at full
capacity. In this situation of almost no change in produced energy the volumetric hedge is
very efficient. The swing hedge still returns a slightly smaller quantile as our set of candidate
schedules L622 allows for a production during non-peak hours (hour 6,7,21 and 22) that is not
covered by the peak Forward contract of the volumetric hedge. We observe a similar situation
for K = 90 EUR. A swing option with full exercise rights will only exercise at few itm hours.
Again, the produced energy amount hardly varies and therefore the volumetric hedge already
returns good results and the swing hedge can only provide a minor improvement.
Finally let us look at the swing hedge only and compare the quantiles based on the heuristic

(N̂∗, L̂∗) versus the optimal selection (N∗, L∗). The last two columns in Table 4.25 provide
the estimation error of our heuristic according to equation 4.91 based on 100 out of sample
price sets with 1000 trajectories each. We can see that the average estimation error mR and
standard deviation sR becomes worse with increasing strike. The range is between mR =
2%, sR = 0.25% for K = 50 and mR = 3.8%, sR = 0.45% for K= 90 and is originated in
the nature of our numerical approach. Recall that the input data to the Longstaff-Schwartz
regression are only itm(!) price-cash flow pairs (Xd, Vd), i.e. Xd has to be larger than the
strike. For high strikes like K = 90 there are not many price-cash flow pairs left (our in depth
analysis revealed situations with not more than 20 data pairs) which makes the regression less
accurate. The average estimation error also increases with more available energy W0 except
for K = 50 where we observe the opposite. For K = 50 and 100 % available energy we observe
the smallest approximation error and standard deviation. Recall that we need to find the
(N∗, L∗) pair for the swing option that reduces the hedge portfolio’s quantile best. For K =
50 both, the power plant and the swing option are deep in the money and thus we observe
full production i.e. N∗ = T . Analyzing the actual pairs (N∗, L∗) and (N̂∗, L̂∗) we indeed
observe N∗ = N̂∗ = T and only see variability in L∗ and L̂∗ which makes the approximation
of our heuristic more accurate. We have a similar situation for small energy amounts like
W0 = 30%W 0. The available energy is so small that only few itm hours are used for the
production. So again, there is not a large variation in the number of hours N and we only
see changes in L∗ and L̂∗ which keeps mR and sR small. However, with increasing available
energy and especially increasing strike the actual production will vary more and therefore we
see more variations in N∗ as well which makes the approximation N̂∗ more difficult. Still
with an approximation error of less than 4 % overall the heuristic performs very well. The
main reason is that different (N,L) combinations still lead to similar quantiles qβ. Therefore
(N̂∗, L̂∗) do not need to match exactly (N∗, L∗) to get q̂∗β close to q∗β. Finally, we want to
remark that the approximation error does not vary between the different valuation models
that’s why we did not provide mR, sR figures by valuation model. The reason is that the
heuristic tries to match the spot deltas between the power plant and the swing option and
does not care based on which model these deltas were calculated. As a summary we can

8In Appendix D you will find an alternative representation of the same histograms.
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state that our heuristic based on matching synthetic spot deltas allows for a fast and close
approximation of the optimal hedge of a power plant with a swing contract. Recall that the
complete enumeration for finding the optimal swing option parameters instead requires at
least (N × 2Lmax × I) revaluations of the hedge portfolio opposed to (N × I) revaluations,
but the optimal result improves i.e. minimizes the risk only by nor more than 4 %.

4.6. Directions for Further Research

In our first power plant model that ignored an energy threshold we introduced the idea to
split a daily schedule into its operational mode (on/off sequence) and its volume profile.
This idea helped us to replace the MIP for the calculation of the marginal profit by a faster
matrix computation to compute the daily production schedule and marginal profit. So far,
we illustrated the small error of this simplification on the option value for one runtime/off-
time setting (12 and 8 hours). A further investigation with different shorter and longer
runtime/offtime constraints would be necessary to underline the effectiveness in terms of the
small approximation error compared to the performance improvement. The main difficulty in
particular with shorter minimal run- and off-times is that the number of candidate schedules
increases which will slow down the matrix calculation (recall that the matrix calculation
requires the complete enumeration of schedules). For this reason we started to look into cluster
analysis that would help us to associate a small subset of schedules with a representative price
vector. For any new price scenario we would detect the schedule cluster with the best fitting
price representation. In this way we could pick a small subset of schedules that we would use
in the matrix calculation. Our first results were promising, but a complete error analysis of
such a cluster approach is still an open task.
Recall that we had to modify the matrix calculation when we added an energy constraint

(see section 4.4.1). The schedule profile linked to an on-off-switching sequence did not follow
a simple hourly min/max capacity any longer, but required a filling logic of the individual
hours. We introduced one possible implementation of this filling logic, but think that further
investigations into faster algorithms is beneficial for the overall performance of the power plant
valuation. In particular, we think that a separate design for short and long run-/off-times
might be helpful.
The separation of a schedule in its volume profile and switching sequence also allowed

us to define a small subset of schedule candidates in terms of the switching sequence only
that helped us to eliminate the start operating mode from the state space. In this way we
were able to set up our continuous stochastic dynamic program in section 4.4. We used our
candidate schedule set L622 for the entire subsequent numerical analysis. However, in Table
4.6 we already pointed out that the candidate set should rather vary with different strikes.
In other words the impact of different schedule candidate sets on the continuous real option
value should be reviewed and a smarter selection (e.g. separate subsets for weekdays and
weekends) will very likely improve the current results.
As we have seen in Table 4.8 our comparison of the three implementation approaches for

power plants with energy constraint revealed a lack of accuracy of our stochastic optimization
model. Our stochastic models with and without energy constraint should have coincided in
case of no energy constraint. Instead, we had to observe a significant gap i.e. a reduced
efficiency of our stochastic model with energy constraint in terms of profit compared to
allocated energy. One reason is the aforementioned focus on a single set of schedule candidates.
Another reason are two specific approximation errors that accumulate with every decision
stage: the appropriate definition of the basis functions on one hand and the identification of
the relevant energy domain on the other hand. So far we used the same quadratic approach
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to describe the marginal profit function, continuation value and the overall cash flow. A
separation into different sets of basis functions is advisable. For the marginal profit as a
function of the daily allocated energy one could replace the quadratic by a rational function.
Especially the asymptotic behavior of the profit-energy curve towards the total available
energy (right end of the curve) cannot be covered well by a parabolic curve. A rational
function can adjust better to variations in the curve shape. Regarding the approximated
function for the continuation values recall that we used the quadratic function first with
respect to the energy amount and then approximated the corresponding function parameters
cd,m again as a quadratic function of the current price. A combined rather than a separate
approximation of the price and energy dimension might improve the accuracy. We think that
the latter, in particular the quadratic approximation of cd,m, caused the main inaccuracy. An
analysis of different basis functions should therefore also include a new sequential versus a
simultaneous approximation with respect to price and energy. We recommend to reuse our
factor analysis as it turned out to efficiently reduce the price dimension from 24 to a single
factor. This will help to keep the number of variables small for the regression. However,
we also want to point out that the success of the factor analysis could mainly be explained
by the strong mean-reversion and hence clear seasonality of the prices. The analysis should
therefore be reviewed with different parameter settings for the price process.
The second main approximation error of our continuous stochastic program is the difficulty

of defining a common valid energy domain space [W [y]
d ,W

[y]
d ] for the continuation value as

it is approximated from ACFs with varying energy intervals (see discussion around equation
4.59). If the interval for the remaining energy of the continuation value is larger than most
of the related individual cash flows, then the dispatch policy will tend to spend too much
daily energy too early in the delivery period and vice versa for too small energy intervals. In
particular this error accumulates with every stage and therefore requires special attention.
The efficiency of profit compared to allocated energy decreases if the interval tends to be
too large. This is the case in our implementation where the real option value with energy
constraint is smaller than the option value without energy constraint in case of no energy
restriction (W0 = W 0). New interval definitions should be investigated and also be tested
for larger production periods. A year compared to a one month delivery will reveal the
accumulation error even better and thus allow for a proper comparison.
The surprisingly good result of our heuristic is also worth a further investigation. Trans-

lating the remaining available energy into a quantile based price threshold for the exercise
decision was the key for the good results. The long on and off-times of our power plant
allowed to consider only three type of schedules (base hours, peak hours, no production). In
a next step one should therefore stress-test the heuristic against different run- and off-times
which will increase the number of potential schedule candidates and will make the link be-
tween allocated energy and price threshold more complex. It will be interesting to see if the
heuristic will still return good results in particular for short operating times.
Finally, we want to review our hedge analysis. We were able to show that a swing option

can hedge a power plant more effectively than a Forward or Futures hedge. So far the analysis
focused on the loss function only i.e. we looked for an appropriate swing option with size
N∗ that will reduce the Earnings-at-Risk figure best (see equation 4.81). We could extend
the analysis by including the profit as well and hence define a mean risk function similar to
our investigations in chapter 2. One could also investigate a combination of a Forward and a
swing option as the hedging product where the Forward covers the minimum production level
of the power plant and the swing option compensates the additional generation variability.
This is potentially the cheaper hedge as the Forward hedge part does not entail any cost and
additionally reduces the swing size and thus the option premium.
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In addition several applications of our stochastic power plant model with volume constraints
should be investigated. It can be used to price options on spinning reserve energy. Large
utilities are obliged to hold a daily back log of a certain energy amount that is meant to
stabilize the electricity grid in case of a sudden outage. Alternatively, a power plant owner
can buy an option on this reserve energy from another utility. By valuing the power plant
once with a free energy allocation and then with a capped amount due to the spinning reserve
provides an indication of the spinning reserve value and hence the price of an appropriate
option. The power plant owner can repeat this valuation for several different spinning reserve
amounts and in this way create his merit order (option prices for different reserve energy
amounts) if he wants to participate in an auction. The same procedure is applicable to find
the fair CO2 prices for a specific power plant portfolio of a utility company. Governments
deliberately granted less CO2 certificates than necessary for the full production. This can
be translated into an upper energy border beyond which extra CO2 prices apply. As for the
spinning reserve the real option value with and without the extra energy constraint can be
computed. The valuation difference allows to derive a fair CO2 price for the own generation
asset. These kind of scenarios should be investigated in a real world business case.
A rather long-term project would extend the characteristics of our thermal power plant.

A first important extension should introduce the fuel and possibly the CO2 price. The
appropriate swing option for hedging would then be a spark spread basket swing option. Its
payoff function is the difference between the power price and the sum of the fuel and CO2
price calculated at the exercise hours. The increasing complexity through additional random
price processes could be handled via further dimension reduction tools other than principal
component analysis. Siclari and Castellacci [17] or Weber [67] used the spark spread or basket
price instead of each individual price component. Furthermore the impact of unforeseen
outages on the production value should be investigated. Outages occur quite frequently
and are the main source for jumps of the spot price. Power plant owners have statistics
about outages which should allow for defining an appropriate stochastic process. The outage
process will be imposed after a generation decision. A power plant owner registers tomorrow’s
generation schedule today. Then the outage suddenly occurs the next day which will impact
the generation decision for the day after tomorrow. One could investigate whether there are
smart dispatch policies that allow to reduce the average loss caused by sudden outages.
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A. Selected Source Code

You will find the entire source code for all the models of this thesis on the enclosed CD.
We separated the source code that represents a closed topic of its own into different folders.
Each folder contains a readme.txt file that presents the relevant function calls in the right
sequence. We also added one further folder covering the cluster analysis that we suggested
as a further improvement or our MIP reformulation of the daily schedule optimization (see
section 4.4.1). In this Appendix we want to focus on some key implementation aspects. Each
listing is limited to those code sections that illustrate the main steps of the corresponding
algorithm. We begin each listing with a brief introduction where we refer to particular code
statements with the label {n} that can be found again in the corresponding listing marked
with *** n ***.

A.1. Volumetric Swing Option

The following algorithm is the implementation of the upper bound for a volumetric swing
option according to see section 2.4). It consists of two large nested loops, each treating all
outer price paths simultaneously. The first one iterates over every additional marginal swing
right n. At the beginning of each iteration the function forwarditerationMult (see {1})
determines the stopping times for the entire delivery period. Two aspects are important:
First, these stopping times will be calculated only once for each marginal swing right using
the policy at the initial stage (hence, there are no recalculations for every delivery hour).
Second, the total number of stopping times is always one swing right below the marginal
swing currently under investigation. In this way we model the fact that τk ∈ π(n− 1, t = 0)
in equation 2.30. The second loop computes the marginal martingale M for each hour. It
requires the calculation of the lower bound value L at each stage h as well as the expected
continuation value ELh. The latter requires to verify wether there was an exercise at the
previous stage. This check runs differently for a single versus many remaining swing rights
only because of a mere technical reason. forwarditerationMult is not defined for a single
exercise (n = 1). So, in case of a single exercise we compute the exercise decision directly
via the optimal policy at the previous hour (see {2}). In all other cases (see {3}) we can
rely on the stopping times we already calculated in {1}. In case of no exercise the expected
continuation value is identical to the lower bound value at the previous stage. Otherwise we
need to generate new prices (generateMR) for the current hour starting from the price of the
previous hour. We use the Bellmann equation to quickly approximate the new marginal lower
bound value (see {4} and equation 2.23). After we found all hourly marginal martingales we
remove all exercised hours (see {5}) and compute the maximum cash difference according to
equation 2.43 for each price path separately. Their average is finally the approximation of
the marginal upper bound. Then we move to the next swing right.

function Cu = multupperbound (S , S0 , alpha ,K,NN,Uh,mu, sigma , kappa )
% S (N,H) N p r i c e s cenar i o s f o r H hours
% S0 s t a r t p r i c e
% alpha (M+1,n+1,H) po lynomia l parameters f o r each hour and e x e r c i s e r i g h t
% K s t r i k e p r i c e
% NN number o f s c enar i o s f o r nes ted loop
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% Uh (1 ,H) number o f e x e r c i s e s per s t a g e
% mu mean o f nes ted MC
% sigma sigma o f nes ted MC
% kappa mean r e v e r s i o n speed o f nes ted MC
%
% return
% Cu(M) upper bound f o r marginal swing r i g h t m

% i n i t i a l i z a t i o n o f v a r i a b l e s
[ . . . ]

% Sh , Sh1 : p r i c e o f curren t / prev ious hour
% Yh, Yh_1, Yh_2: curren t con t inua t i on va lue wi th a l l , l e s s than 1 and l e s s

than 2 swing r i g h t s
% Yh_h1 , Yh_1_h1 , Yh_2_h1 : con t inua t i on va lue o f p rev ious hour

% f o r each swing n
for n=2:M % n = 1 stands f o r 0 swings

[ . . . ]

∗∗∗ 1 ∗∗∗
% g e t s topp ing t imes through forward i t e r a t i o n at i n i t i a l ( ! ) s t a g e
[ Cf , tau ] = fo rward i t e ra t i onMul t (S , n−1,Uh, alpha ) ;

% mart inga le f o r hour 1 w i l l be c a l c u l a t e d d i f f e r e n t l y ( ! )
h = 1 ;
% f i r s t s i n g l e e x e r c i s e (m = 2)
[ . . . ]

% s i m p l i f i e d lower bound c a l c u l a t i o n v ia con t inua t i on va lue
dLh( I ) = max(Sh( I ) ,Yh) ;

% then more than one e x e r c i s e (m > 2)
i f (n>2)

[ . . . ]

% s i m p l i f i e d lower bound c a l c u l a t i o n v ia con t inua t i on va lue
dLh( I ) = max(Sh( I ) + Yh_1, Yh) − max(Sh( I ) + Yh_2,Yh_1) ;

end

% in hour 1 mart inga le = lower bound va lue
Ma( : , h ) = dLh ;

% hour > 1
for h=2:H

% f i r s t s i n g l e e x e r c i s e
[ . . . ]

% lower bound va lue
dLh( I ) = max(Sh( I ) ,Yh) ;
[ . . . ]

∗∗∗ 2 ∗∗∗
% check e x e r c i s e at p rev ious s t a g e
[MM, I I ] = max( [ Sh1 ( I ) Yh_h1 ] , [ ] , 2 ) ;

% no e x e r c i s e at p rev ious s t a g e
[ . . . ]

% e x e r c i s e at p rev ious s t a g e => nes ted loop
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for j = 1 : length ( I I I )
Sht = generateMR (Sh1 ( I ( I I I ( j ) ) ) ,NN, 1 , 1 ,mu, sigma , kappa ) ;
Yh = polyval ( a , Sht ) ; % cont inua t i on va lue
dELh( I ( I I I ( ( j ) ) ) ) = mean(max( Sht ,Yh) ) ;

end
[ . . . ]

% more than one e x e r c i s e
for k = 3 : n

[ . . . ]

%lower bound va lue
dLh( I ) = max(Sh( I ) + Yh_1,Yh) − max(Sh( I ) + Yh_2,Yh_1) ;
[ . . . ]

∗∗∗ 3 ∗∗∗
% check e x e r c i s e at p rev ious s t a g e
X = tau ( I , h−1) − tau ( I , h ) ;
I I I = find (X == 0) ;

% no e x e r c i s e at p rev ious s t a g e
i f ( length ( I I I )>0)

dELh( I ( I I I ) ) = Yh_h1( I I I ) − Yh_1_h1( I I I ) ;
end

% e x e r c i s e at p rev ious s t a g e => nes ted loop
I I I = find (X>0 ) ;
i f ( length ( I I I ) >0)

for j = 1 : length ( I I I )
Sht = generateMR (Sh1 ( I ( I I I ( j ) ) ) ,NN, 1 , 1 ,mu, sigma , kappa ) ;
Yh = polyval ( a , Sht ) ; % cont inua t i on va lue
Yh_1 = polyval (a_1 , Sht ) ; % cont inua t i on va lue
Yh_2 = polyval (a_2 , Sht ) ; % cont inua t i on va lue

∗∗∗ 4 ∗∗∗
dELh( I ( I I I ( j ) ) ) = mean(max( Sht + Yh_1,Yh)− max( Sht + Yh_2, Yh_1) )

;
end

end
%%% expec ted con t inua t i on va lue ( end ) %%%

[ . . . ]
end

end

% compute mar t inga l e
Ma( : , h ) = Ma( : , h−1) + dLh − dELh ;

end

% remove a l l e x e r c i s e d hour
D = zeros (N,H) ;
DD = d i f f ( tau , 1 , 2 ) ;

D( : , 1 :H−1) = tau ( : , 1 :H−1) .∗DD.∗(−1) ;

∗∗∗ 5 ∗∗∗
% outer loop
for i =1:N

X = (D( i , : ) == 0) ;
I = find (X==1) ;
% compute max(Z − M)
[U( i ) ,MM] = max(S( i , I )−Ma( i , I ) , [ ] , 2 ) ;

end
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% average a l l i n d i v i d u a l r e s u l t s
Cu(n) = mean(U) ;

end

Listing 1: Upper bound computation for multiple exercises at the same stage

A.2. Risk adjusted Option Exercise
The following algorithm implements the valuation of an American option using a risk ad-
justed exercise strategy (see section 3.4.3). The main structure of the code is identical to
our implementation of the regular American/swing option. The outer loop represents the
backward iteration and makes use of several CompEcon library functions [52]. In addition to
the regular swing option with value function Vopt we run a second iteration in parallel for
the risk adjusted value function V. As emphasized in equation 3.73 we compute the quantile
Qopt for the regular value function only (see {1}). But we penalize cash flows exceeding this
quantile (see {2}) when we calculate the new risk adjusted value function according to the
Bellmann equation. The quantile regression is based on a linear optimization and we rely on
a library by Roger Koenker (http://www.econ.uiuc.edu/ roger/research/). The listing also
contains our implementation of the Longstaff-Schwartz regression (sub function lsm) where
we want to point out the important pre-selection of only in-the-money price/value function
pairs (see {3}) before starting the regression via polyfit.
function V = dpborders (S ,K, r , n , q , i s c a l l )
% S p r i c e s cenar i o s (N,H)
% K s t r i k e
% r i n t e r e s t ra t e
% n degree o f po lynomia l used f o r q u a n t i l e r e g r e s s i o n
% q (Lq , 1 ) q u a n t i l e s to i n v e s t i g a t e
% i s c a l l 1 i f c a l l , e l s e 0
%
%
% return
%
% V (N, 1 ) va lue func t i on per scenar io wi th r i s k r e s t r i c t i o n

[ . . . ]
% i n i t l a s t Stage
[ . . . ]

% backward i t e r a t i o n
for h=H−1:−1:1

Sh = S ( : , h ) ;
Z = payo f f (Sh ,K, i s c a l l ) ;

% Run l e a s t square approximation and q u a n t i l e r e g r e s s i o n
% f o r r i s k−ad ju s t ed AND( ! ) r e g u l a r va lue func t i on

Copt = lsm (Vopt∗exp(−r ) ,Sh ,K, 1 , i s c a l l ) ;

∗∗∗ 1 ∗∗∗
[ Qopt , beta ] = qreg (Vopt , Sh , n , q ) ;
[C, alpha ] = lsm (V∗exp(−r ) ,Sh ,K, 1 , i s c a l l ) ;

% loop through scenar i o s
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for i =1:N
% f e t c h a s s o c i a t e d reward func t i on
Zi = Z( i , : ) ;
f = Zi ( ones (M, 1 ) , : ) ;
f ( ID) = penal ty ;

% f i n d p o l i c y p i f o r no r i s k r e s t r i c t i o n s i t u a t i o n
% Bellmann equat ion
[ c , pi ] = valmax (Copt ( : , i ) , f ,P, 1 ) ;
IND = sub2ind ( s ize ( f ) , ( 1 :M) ’ , pi ) ;
Vopt ( : , i ) = f (IND)+Vopt (TRANS(IND) , i ) ∗exp(−r ) ;

∗∗∗ 2 ∗∗∗
% f i n d p o l i c y f o r r i s k a d ju s t ed s i t u a t i o n
% do not a l l ow e x e r c i s e s above q u a n t i l e
f ( : , 2 ) = f ( : , 2 ) + penal ty ∗( f ( : , 2 )> Qopt ( i ) ) ;
% Bellmann equat ion
[ c , pi ] = valmax (C( : , i ) , f ,P, 1 ) ;
IND = sub2ind ( s ize ( f ) , ( 1 :M) ’ , pi ) ;
V( : , i ) = f (IND)+V(TRANS(IND) , i ) ∗exp(−r ) ;

end
end

function [C, alpha ] = lsm (V, S ,K, n , i s c a l l )
% Longs ta f f−Schwartz r e g r e s s i o n
%
% V (M,N) va lue func t i on o f next s t a g e and a l l N paths
% S (N, 1 ) p r i c e paths f o r curren t s t a g e
% K s t r i k e
% n max degree o f p o l y f i t f unc t i on
% i s c a l l 1 i f c a l l , 0 e l s e
%
% return
% C (M,N) con t inua t i on v a l u e s f o r each s t a t e and p r i c e path
% alpha (M, n+1) i n d i c e s o f itm p r i c e s

[ . . . ]

i f ( i s c a l l == 1)
dS = S−K∗ ones (N, 1 ) ;

else
dS = K∗ ones (N, 1 )−S ;

end
I = find (dS>0)
[ . . . ]

∗∗∗ 3 ∗∗∗
% cons ider on ly itm p r i c e / va lue p a i r s
S = S( I ) ;
CC = C( : , I )
VV = V( : , I )

% compute c o e f f i c i e n t s f o r cond . e x p e c t a t i o n v ia p o l y f i t
for i =2:M

Vi = VV( i , : ) ’ ;
a lpha ( i , : ) = polyf it (S , Vi , n ) ;
CC( i , : ) = polyval ( alpha ( i , : ) ,S ) ;

end
C( : , I ) = CC;

Listing 2: Quantile Based Option Exercise
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A.3. MIP Reformulation
Our real option model in chapter 4 requires the calculation of an optimal dispatch schedule
with every decision stage and state. This dispatch decision can be described as a mixed
integer problem (MIP). In section 4.3.1 and 4.4.1 we replaced the MIP by a fast matrix
calculation whose implementation we present in this section. The method requires a complete
enumeration of all relevant schedules that we present in the first sub section. The second sub
section outlines the code for the actual matrix calculation.

A.3.1. Schedule Enumeration
As we need to run as many schedule enumerations as matrix calculations we had to rely
on a fast implementation. The enumeration requires several nested loops which in general
have a poor performance in Matlab. For this reason we decided to implement the schedule
enumeration logic in c and exposed it to matlab via the Matlab interface API. The code
below ignores the interface logic and focuses on the actual enumeration. The algorithm
lists all schedules for a given start state encoded by offset0 and offset1 which stand for
the number of off- and on-hours before midnight of the previous day. enumerateSchedules
iterates over each hour of the delivery period. It first fills the minimum number of 0 or 1
values to meet the minimum on- and off-time according to offset0 and offset1. From this
new start position the function loops through the hours and subsequently adds a 1 and toff
0 values in case the prior value was 1. Otherwise a single 0 value will be added. Then, in
both cases the inner fill function will be called recursively (see {1}).In this way the fill
function adds and iteratively extends a new running block in a double nested loop until all
schedules are enumerated.
double∗∗ enumerateSchedules ( int ton , int t o f f , int T, int ∗rows , int o f f s e t 0 ,

int o f f s e t 1 )
/∗ This f unc t i on emumerates a l l v a l i d s c h e d u l e s based on an o f f s e t o f e i t h e r 0

s ( o f f s e t 0 ) or 1 s
∗ ( o f f s e t 1 ) .
∗/
{

double ∗∗S ;
double ∗ s ;
int t , t1 , t2 , i ;
int N; // number o f rows in S

/∗ c r e a t e f i r s t row in S and s ∗/

S = (double ∗∗) c a l l o c (1 , s izeof (double∗) ) ;
s = (double∗) c a l l o c (T, s izeof (double ) ) ;
N = 0 ;

/∗ f i r s t determine type and l e n g t h o f o f f s e t ∗/

i f ( o f f s e t 0 >0)
{

t1 = to f f−o f f s e t 0 −1; // new pos i t i on , s u b t r a c t 1 s ince loop (∗) s t a r t s wi th
t1 , hence i s adding another t1+1 0

/∗ s t a r t r ecur s i on ∗/

for ( t= t1 ; t<T; t++) // (∗)
{

N = f i l l ( t ,T, ton , t o f f ,&S , s ,N) ;
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}
}
else
{

/∗ i n i t s wi th ( ton−o f f s e t 1 ) 1 s ∗/

t1 = ton−o f f s e t 1 −1; //// new pos i t i on , s u b t r a c t 1 s ince loop (∗) s t a r t s
wi th t1

for ( t=0; t<t1 ; t++)
s [ t ] = 1 ;

for ( t= t1 ; t<T; t++) // (∗)
{

i f ( t>=0)
s [ t ] = 1 ;

t2 = t+t o f f ;

i f ( t2 > T−1)
N = f i l l ( t2 ,T, ton , t o f f ,&S , s ,N) ;

else
{

for ( i= t2 ; i<T; i++)
{

N = f i l l ( i ,T, ton , t o f f ,&S , s ,N) ;
}

}
}

}

/∗ f r e e memory ∗/
f r e e ( s ) ;
∗ rows = N;
return S ;

}

int f i l l ( int t0 , int T, int ton , int t o f f , double ∗∗∗S , double ∗ s0 , int rows )
/∗ This f unc t i on w i l l be c a l l e d r e c u r s i v e l y . I t cop i e s the current v e c t o r s

and adds ton 1 s . In
∗ a f o l l o w i n g nes ted loop i t adds f u r t h e r 1 s up to the end . With every

a d d i t i o n a l 1
∗ i t adds t o f f 0 s and adds f u r t h e r 0 s w i th in the inner loop . With every

a d d i t i o n a l 0 the
∗ f unc t i on c a l l s i t s e l f .
∗
∗ param
∗
∗ t0 the l a s t f i l l e d p o s i t i o n in s
∗ T t o t a l l e n g t h
∗ ton getMin number o f 1 s
∗ t o f f getMin number o f 0 s
∗ ∗∗S (NxT) schedu l e matrix
∗ ∗ s l a s t row in matrix
∗ rows curren t number o f rows in S
∗
∗ re turn
∗
∗ i n t updated number o f rows in S
∗/
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{
int t , t1 , t2 , i ;
double ∗ s ;
int N1 ; // minimum number o f 1 s
int N0 ; // minimum number o f 0 s

/∗ copy ve c to r s0 ∗/
s = (double ∗) c a l l o c (T, s izeof (double ) ) ;
for ( t=0; t<T; t++)
s [ t ] = s0 [ t ] ;

i f ( t0 < T−1)
{

N1 = getMin ( ton−1 ,(T−1)−t0 ) ; // (T−1) => index ing s t a r t s wi th 0 , ( ton−1) =>
we s t a r t loop (∗) wi th s e t t i n g another 1

// now f i l l N1 1 s

for ( t=t0+1; t<=t0+N1 ; t++)
s [ t ] = 1 ;

t1 = t0+N1 ; // new index p o s i t i o n
i f ( t1 == T−1)
{

/∗ add s to S ∗/
rows = rows + 1 ;
∗S = (double ∗∗) r e a l l o c (∗S , s izeof (double∗) ∗ rows ) ;
(∗S) [ rows−1] = s ;

}
else
{

for ( t=t1+1; t<T; t++) // (∗)
{

s [ t ] = 1 ; // f o r t=t1+1 => the l a s t 1 o f ton

N0 = getMin ( t o f f , (T−1)−t ) ; // (T−1) => index ing s t a r t s wi th 0 ,

// l e a v e N0 0 s

t2 = t+N0 ; // new index p o s i t i o n

// now s e t another 0 and c a l l f i l l again
for ( i=t2 ; i<T; i++) // (∗∗)
{
∗∗∗ 1 ∗∗∗
rows = f i l l ( i ,T, ton , t o f f , S , s , rows ) ;

}
}
f r e e ( s ) ;

}
}
else
{

/∗ add s to S ∗/
rows = rows + 1 ;
∗S = (double ∗∗) r e a l l o c (∗S , s izeof (double∗) ∗ rows ) ;
(∗S) [ rows−1] = s ;

}
return rows ;

}
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Listing 3: Schedule Enumeration

A.3.2. Matrix Representation
The two main ideas that allowed to translate the MIP into a matrix calculation are first the
separation of a schedule into its hourly operation mode (on/off- hours) plus the actual volume
profile (MW per hour) and second, that the profile itself can only take three different quantities
per running hour. This is either the minimum capacity vmin, the maximum capacity vmax or
at most one hour with a capacity in between. The latter only occurs if the entire available
energy will be used and the actual amount varies with the individual observed price vector.
Therefore we need to treat each price scenario separately in a loop (see FillPerScenario).
In order to keep this loop small we try to reduce the list of all possible schedules. We do
so by first computing the schedules without an energy constraint. In this case the schedules
only feature two states vmin and vmax what we refer to as a ’bang-bang’ or digital schedule
(see {1}). These schedules can be computed even faster because they can be calculated for
all price trajectories simultaneously without any extra loop. In case of a generation asset
valuation without an energy constraint (see section 4.3.1) this fast bang-bang calculation is
sufficient. With an energy constraint, though, we pick from these schedules only a subset
that has an energy production below the predefined max energy and select the one with the
highest cash flow. All schedules below this benchmark will be excluded (see {2}). For the
remaining schedules we fill the running hours in descending price sequence with vmax (see in
particular {3} for the compact and very efficient implementation) and adjust the very last
filling hour to the intermediate quantity L if necessary.
function [ Copt , Eopt , Sopt ] = f indOptSchedule (S ,Pd ,Xud , vmin , vmax , emax)
% This func t i on f i n d s the opt imal s chedu l e based on an enumeration o f a l l b a s i s

s o l u t i o n s .
%
% param :
%
% S : (K,T) enumeration o f a l l b a s i s s o l u t i o n ( i . e . v a l i d s c h e d u l e s )
% Pd : (T,N) p r i c e s c enar i o s P−K
% Xud : (K, 1 ) s t a r t−up and shut−down c o s t s a s s o c i a t e d wi th each b a s i s s o l u t i o n .
% vmin min capac i t y
% vmax max capac i t y
% emax max energy
%
% return :
%
% Copt (N, 1 ) opt imal v a l u e s
% Eopt (N, 1 ) opt imal energy
% Sopt (N, 1 ) index o f opt imal s chedu l e in schedu l e s e t

v d i f f = vmax − vmin ;
[T,N] = s ize (Pd) ;
[ . . . ]

% remove a l l s c h e d u l e s where sum(S , 2 ) ∗vmin > emax

I = find (sum(S , 2 ) ∗vmin<=emax) ;
[ . . . ]
S = S( I , : ) ;
Xud = Xud( I ) ;

K = s ize (S , 1 ) ;
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% compute b e s t wi th bang−bang

Ip = Pd>0; %itm hours
Im = 1−Ip ;
Vmax = Ip∗vmax ;
Vmin = Im∗vmin ;
Vminmax= Vmax+Vmin ;

∗∗∗ [ 1 ] ∗∗∗
% matrix c a l c u l a t i o n to compute the cash f l ow
C = S∗(Pd .∗ Ip ) ∗vmax+S∗(Pd .∗ Im) ∗vmin−repmat (Xud, 1 ,N) ;
[ Copt , I c ] = max(C, [ ] , 1 ) ;
Vopt = S( Ic , : ) .∗Vminmax ’ ;
Eopt = sum(Vopt , 2 ) ;
Sopt = S( Ic , : ) ;

% check whether bang−bang v i o l a t e s emax , we are done i f t h a t i s never the
case

Ix = find ( Eopt > emax) ;
[ . . . ]

% compute b e s t from below f o r those s cenar i o s t h a t exceed emax as a benchmark
f o r the f i l l i n g a l gor i thm

Ex = S∗Vminmax ( : , Ix ) ;
Cx = C( : , Ix ) ;
[K,M] = s ize (Ex) ;
Ib = find (Ex<=emax) ;
[ . . . ]
Cb = ones (K,M) ∗(−100000) ;
Cb( Ib ) = Cx( Ib ) ;
[Cbm, Ibm ] = max(Cb , [ ] , 1 ) ;
Ebm = Ex(Ibm + ( 0 :K: (M−1)∗K) ) ;

% e x t r a c t p r i c e s c enar i o s t h a t v i o l a t e d emax and run f i l l i n g a l gor i thm

P = Pd ( : , Ix ) ;
for i = 1 :N

[ c , v ] = f i l l e r S c e n a r i o (Pd ( : , i ) ,Xud ,Cbm(1 , i ) ,S , vmin , vmax , vd i f f , emax) ;
Cf (1 , i ) = c ;
Ef (1 , i ) = sum(v , 2 ) ;
Sf ( i , : ) = v>0;

end

% now compare b e s t from below with f i l l i n g

n = length ( Ix ) ;
Cc = zeros (2 , n ) ;
Cc ( 1 , : ) = Cbm;
Cc ( 2 , : ) = Cf ;
[ . . . ]
[C, I ] = max(Cc , [ ] , 1 ) ;
Copt ( Ix ) = C;
[ . . . ]

function [ c , v ] = f i l l P e r S c e n a r i o ( Pi ,Xud , cmax , S , vmin , vmax , vd i f f , emax)

T = s ize ( Pi , 1 ) ;
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v = zeros (1 ,T) ;

% g e t pos . , neg . and cum p r i c e matrix Pn, Pp , Pc and number o f pos p r i c e s Np

Pn = min( Pi , 0 ) ; % only pos p r i c e s
Pp = max( Pi , 0 ) ; % only neg p r i c e s
Ps = sort ( Pi , 1 , ’ descend ’ ) ;
Pc = cumsum(Ps ) ;
Np = sum( Pi>0) ;

% compute f i l l i n g hours , i . e . hours t h a t can be > vmin

H = sum(S , 2 ) ; % sum of on−hours
E = emax − H∗ vmin ; % a v a i l a b l e energy
Ef = f loor (E/ v d i f f ) ; % number o f p o t e n t i a l on hours
F = min(Ef ,H) ; % in case S has a sma l l number o f running hours
Ec = c e i l (E/ v d i f f ) ; %max number o f hours t h a t can be f i l l e d up
F1 = min(Ec ,H) ;
L = rem(E, v d i f f ) ; % remaining energy amount <> v d i f f
L = L + (Ef == Ec) ∗ v d i f f ; % i f c e i l = f l o o r , then L = v d i f f
I = find (Ec ==0) ;
i f ( length ( I ) >0)

L( I ) = L( I ) − v d i f f ; %account f o r emax = vmin∗H
end

% i d e n t i f y r e l e v a n t s c h e d u l e s

R = vmin∗(S∗Pp) ;
X = (−1)∗vmin∗(S∗Pn) ;
% f i l l as much hours as hours wi th pos p r i c e s Np or v a l i d f i l l i n g hours F1
M = min(Np, F1) ;
M = max(M, 1 ) ;
R1 = vd i f f ∗Pc(M) ; % va lue o f f i l l i n g hours
Rmax = R + R1 ; % t o t a l va lue fo s chedu l e

∗∗∗ [ 2 ] ∗∗∗
% e x t r a c t those s c h e d u l e s whose va lue > b e s t from below
I = find (Rmax − X − Xud > cmax) ;

% now f i l l i n g l o g i c f o r remaining s c h e d u l e s

i f ( s ize ( I , 1 ) > 0)

% e x t r a c t r e l e v a n t s c h e d u l e s

SS = S ( [ I ] , : ) ;
XXud = Xud( I ) ;
LL = L( I ) ;

% determine new f i l l i n g t h r e s h o l d

[ SP , I s ] = sort (SS∗diag ( Pi ) ,2 , ’ descend ’ ) ;
Nsp = sum(SP>0 ,2) ; % itm hours t h a t are on−hours at the same time
FF1 = min(F1( I ) ,Nsp) ; %f i l l i n g on ly f o r itm hours
FF1 = max(FF1 , 1 ) ;
FF = min(F( I ) ,Nsp) ;
% f i l l up to FF with vmax

mmax = max(FF) ; % l a r g e s t number o f itm−on−hours across a l l s c h e d u l e s

V = ~(SP==0) ;
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V = V ∗vmin ;

∗∗∗ [ 3 ] ∗∗∗
% f i l l a l l s c h e d u l e s wi th vmax accord ing to i n d i v i d u a l itm−on−hours
for j =1:mmax

idx = FF>0;
V( idx , j ) = (FF( idx )>0)∗vmax ;
FF = FF−idx ;

end

% remainder f o r FF1

[K,T] = s ize (SS) ;
R = [ 1 :K] ’ ;
% in case FF1 = FF = Nsp then the f i l l i n g w i l l be wrong , but bang−bang w i l l

t ake over
IND = sub2ind ( s ize (V) ,R, FF1) ;
% t h i s w i l l p revent t h a t a non schedu l e hour w i l l be f i l l e d −up
V(IND) = (LL+vmin ) . ∗ (V(IND)>0) ;

% now compute optimum

C = sum(V.∗SP , 2 )−XXud;
[ c , i i ] = max(C) ;
v ( : , [ I s ( i i , : ) ] ) = V( i i , : ) ;

else
c = −1000000;
v ( 1 , : ) = 0 ;

end

Listing 4: MIP Reformulation

A.4. Power Plant Valuation

Our power generation asset model is a direct extension of our basic swing valuation in section
2.1. The basic code structure of the dynamic program is therefore similar to Listing 2.
The next two subsections present the relevant modifications for the power plant model first
without and then with an additional energy constraint. The former is a discrete and the
latter a continuous model.

A.4.1. No Energy Constraint - Discrete Model

Compared to the swing option code in Listing 2 the discrete real option model requires three
main extensions: new state space (power plant running mode at midnight rather than remain-
ing swing rights), new payoff function (value of optimal daily dispatch instead of standard
contingent claim) and multi- vs. single dimensional price process. The operation mode is
encoded via an integer between 1 and (ton + toff). The first toff numbers represent the
amount of hours before midnight since the last shut-down. The remaining integers are the
number of hours before midnight since the last start-up (see {3}). For each of these start
states we enumerate all relevant schedules via enumerateSchedules (see Listing 3) and sepa-
rate them by end state (see {4}) as we need to compute the payoff by start/end state pair for
each day. Then we calculate the associated continuation values for these pairs. In order to be
able to apply the Longstaff-Schwartz regression we replace the daily price vector Sd by the
first m principal components Fd via multiplication with the rotation matrices FLWD and FLWE
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for weekday and weekend prices respectively (see {1}). As m can be larger than 1 we can only
rely on polyfit for m = 1. Otherwise we use the Matlab operator for a multi-dimensional
regression which requires all variables and product of variables as separate columns in the
input matrix X (see {2}). After the regression in lsm we calculate the Bellmann equation by
price scenario similar to Listing 2.
function [V, Pi ] = dprea lopt (S ,K, r , n , vmin , vmax , c_su , c_sd , t o f f , ton ,DT,FLWD,FLWE,m

)
% S (N,H) N p r i c e paths f o r H hours
% K s t r i k e
% r one s t a g e i n t e r e s t ra t e
% n (Ln , 1 ) max degree o f po lynomia l s to cons ider in L o n g s t a f f
% vmin min capac i t y
% vmax max capac i t y
% c_su s t a r t−up c o s t
% c_sd shut−down c o s t
% t o f f o f f t ime
% ton on time
% DT (D, 3 ) year month weekday
% FLWD (24 ,24) f a c t o r l o a d i n g s weekdays
% FLWE (24 ,24) f a c t o r l o a d i n g s weekends
% m number o f f a c t o r s
%
% return
%
% V (M,N) va lue func t i on per scenar io wi th r i s k r e s t r i c t i o n
% Pi (M,N,D) end s t a t e per s t a r t s t a t e and scenar io

[ . . . ]

% backward i t e r a t i o n

for d=D−1:−1:1

d
Sd = SS ( : , : , d ) ;
% c a l c u l a t e d a i l y s c h e d u l e s
Z = payo f f (Sd ,K, t o f f , ton , vmin , vmax , c_su , c_sd ) ;

∗∗∗ 1 ∗∗∗
% app ly p r i n c i p a l components s epara t e f o r peak and o f f−peak

dt = DT(d , 3 ) ;
i f ( ( dt>1) & ( dt<7) )

Fd = Sd∗FLWD;
else

Fd = Sd∗FLWE;
end
Fd = Fd ( : , 1 :m) ;

% Run l e a s t square approximation

C = lsm (V∗exp(−r ) ,Fd , n) ;

Pid = Pi ( : , : , d ) ;
% loop through scenar i o s

for i =1:N
% f e t c h a s s o c i a t e d reward func t i on
Zi = Z ( : , i ) ;
Zi = reshape ( Zi ,M,M) ’ ;
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f = Zi ;
%f (ID) = pena l t y ;

% c a l c u l a t e Bellmann equat ion

[ c , pi ] = valmax (C( : , i ) , f ,P, 1 ) ;
IND = sub2ind ( s ize ( f ) , ( 1 :M) ’ , pi ) ;
V( : , i ) = f (IND)+V(TRANS(IND) , i ) ∗exp(−r ) ;
Pid ( : , i ) = pi ;

end
Pi ( : , : , d ) = Pid ;

end

function Z = payo f f (S ,K, t o f f , ton , vmin , vmax , c_su , c_sd )
% S (N,24) s cenar i o s f o r a day
% K s t r i k e
%
% return
%
% Z (M∗M,N) f i r s t M rows are s t a r t s t a t e 1 , second M rows are s t a r t

s t a t e 2

M = t o f f+ton ;
N = s ize (S , 1 ) ;
Z = zeros (M∗M,N) ;
for t=1:M

Z( ( t−1)∗M+1: t ∗M, : ) = solveOptimal (vmin , vmax , ton , t o f f , t , S ’ ,K, c_su , c_sd ) ;
end

function C = lsm (V, S , n)
% V (M,N) va lue func t i on o f next s t a g e and a l l N paths
% S (N,H) p r i c e v e c t o r s f o r curren t s t a g e
% K s t r i k e
% n max degree o f p o l y f i t f unc t i on
% i s c a l l 1 i f c a l l , 0 e l s e
%
% return
% C (M,N) con t inua t i on v a l u e s f o r each s t a t e and p r i c e path
% I i n d i c e s o f itm p r i c e s

% i n i t dimensions
[M,N] = s ize (V) ;
C = zeros (M,N) ;
H = s ize (S , 2 ) ;

% i f more than 1 independent v a r i a b l e
i f (H>1)
X = zeros (N,1+n∗H+n∗nchoosek (H, 2 ) ) ;

∗∗∗ 2 ∗∗∗
% s e t up v ec t o r f o r l i n e a r r e g r e s s i o n x y x^2 xy y^2 . . .
m = 1 ;
X( : , 1 ) = ones (N, 1 ) ;
for h=1:H

for i=h :H
A = S ( : , i ) .∗S ( : , h ) ;
for j =1:n

X( : ,m+j )= A;
A = A.∗A;

end
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m = m + n ;
end

end

% compute c o e f f i c i e n t s f o r cond e x p e c t a t i o n

for i =1:M
Vi = V( i , : ) ’ ;
a lpha = X\Vi ; % run l i n e a r r e g r e s s i o n
C( i , : ) = X∗ alpha ;

end
else

% f o r s i n g l e v a r i a b l e run p o l y f i t
for i =1:M

Vi = V( i , : ) ’ ;
a lpha = polyf it (S , Vi , n ) ;
C( i , : ) = polyval ( alpha , S) ;

end
end

function Copt = solveOptimal ( vmin , vmax , ton , t o f f , t0 ,P,X, c_su , c_sd )
% vmin : min capac i t y per hour
% vmax : max capac i t y per hour
% ton : min running time
% t o f f : min c o o l i n g time
% t0 : v e c t o r ho l d ing the r e l e v a n t opera t ing s t a t e s
% P: (T,N) p r i c e s c enar i o s
% X: s t r i k e
% c_su : s t a r t−up c o s t s
% c_sd : shut−down c o s t s
%
% return :
% Copt : ( t o f f+ton ,N) p r o f i t d i s t r i b u t i o n f o r each end s t a t e

penal ty = − 1000000;
N = s ize (P, 2 ) ;
Pd = P−X;
T = s ize (Pd , 1 ) ;

∗∗∗ 3 ∗∗∗
% determine opera t ing s t a t e at the beg inn ing o f the day

i f ( t0>t o f f )
o f f s e t 1 = t0−t o f f ;
o f f s e t 0 = 0 ;

else
o f f s e t 0 = t0 ;
o f f s e t 1 = 0 ;

end

SS = enumerateSchedules ( ton , t o f f ,T, o f f s e t 0 , o f f s e t 1 ) ;

tm = max( ton , t o f f ) ;
A = cas t (SS ( : , [ T−tm+1:T] ) , ’ double ’ ) ;
A = f l i p l r (A) ;
N1 = sum(cumprod(A, 2 ) ,2 ) ;
N0 = sum(cumprod(1−A, 2 ) ,2 ) ;
Copt = zeros ( ton+to f f ,N) ;

∗∗∗ 4 ∗∗∗
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% separa t e s c h e d u l e s by end s t a t e
for t =1:( t o f f+ton )

i f ( t<=t o f f )
i f ( t==t o f f )

I = find (N0>= t o f f ) ;
else

I = find (N0 == t ) ;
end

else
i f ( t==( t o f f+ton ) )

I = find (N1 >=ton ) ;
else

I = find (N1== t−t o f f ) ;
end

end
[ . . . ]
S = SS( I , : ) ;
[ . . . ]
[ Copt ( t , : ) , Lopt ] = f indOptSchedule (S ,Pd ,Xud , vmin , vmax) ;

end
end

Listing 5: Discrete Stochastic Dynamic Programming

A.4.2. Energy Constraint - Continuous Model

With the introduction of an energy constraint to the power plant we decided to move towards
a continuous stochastic dynamic program. The general structure of the backward iteration
is similar to Listing 5. The switch to a continuous model, however, required a new variable
declarations. Now, variables for the marginal profit alpha, the value function V and contin-
uation value C stand for functions rather than actual values. As we use parabolic functions
(f(x) = p0 + p1x+ p2x

2) only, the variables store the three polynomial parameters p0, p1, p2
that describe the entire curve. There is a curve for each price scenario i = 1, ..., I sepa-
rately. In addition the variables store the valid domain space of each curve as we are only
interested in the positive monotonously increasing (concave) part of the curve. Thus the two
variables V and alpha are of size (I,5). The In section 4.4.3 we discussed the different energy
intervals in detail and we assign them to the variables as follows: V(:,4) = W i

d, V(:,5)
= W

i
d, alpha(:,4) = wid, alpha(:,5) = wid, wmin = W y,d and wmax = W

y (see {1}, {2}
and {7}). The individual function parameters for alpha, V and C will be calculated from a
grid of value/energy pairs via polyfit. The function payoff runs the regressions to gain the
marginal profit functions stored in alpha. First, we generate the energy grid based on the
schedule candidates L that we have chosen beforehand and are an input to dprealoptcont
(see also Table 4.6). Then we compute the optimal dispatch for each grid point and price sce-
nario using solveOptimal form Listing 4 before we fit the energy/profit pairs to a parabolic
curve and save the resulting parameters in alpha. For the continuation value, following the
Longstaff-Schwartz regression, we need to additionally regress the function parameters of V
(i.e. c0/1/2) over all itm price scenarios (see {6} in function lsm). We obtain the parameters
α0/1/2 (see also equation 4.58). We use these parameters to calculate the best energy alloca-
tion x. First we define the interval of the total remaining energy based on the energy domain
of the current marginal profit function and the energy domain of the previous value function
(see {2}). For each grid point and price scenario we calculate the Bellmann equation via the
first derivative ({3}) following equation 4.54. As discussed in section 4.4.3 the resulting best
energy allocation w∗,r,id has to fit into the valid energy domain and if not will be adjusted.
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The function computeX performs all relevant checks (see detailed comments in the code) and
adjusts w∗,i,rd to w̃∗,i,rd . The auxiliary variable W tracks modifications of w̃∗,i,rd to 0 as only for
non-zero energy allocations we need to compute new value functions. We apply the best non-
zero energy allocation to each individual price scenario to compute the new value function
by energy grid point (see {4}). Finally, we regress these new value function/energy pairs (see
{5}) to obtain the new value function curve parameters V(:.[1:3]) and again restrict the
individual energy domain to the concave part of the parabola (see {7}) before we start the
next iteration.

function [V, Pi ] = dprea loptcont (S ,K, r , vmin , vmax , c_su , c_sd , t o f f , ton ,DT,FLWD,FLWE
,L , dE , n)

% S (N,H) N p r i c e paths f o r H hours
% K s t r i k e
% r one s t a g e i n t e r e s t ra t e
% vmin min capac i t y
% vmax max capac i t y
% c_su s t a r t−up c o s t
% c_sd shut−down c o s t
% t o f f o f f t ime
% ton on time
% DT (D, 3 ) year month weekday
% FLWD (24 ,24) f a c t o r l o a d i n g s weekdays
% FLWE (24 ,24) f a c t o r l o a d i n g s weekends
% L (M,24) s chedu l e cand ida te s
% dE g r i d d i s t a n c e
% n polynomia l degree f o r approximation o f c0 , c1 and c2
%
% return
%
% V (N, 5 ) a0 , a1 , a2 ,Wmin,Wmax
% Pi (3 ,n ,D) c o e f f i c i e n t s f o r c0 , c1 and c2 f o r each day d in D ( number o f

c o e f f i c i e n t s dependent on po lynomia l degree n)

[ . . . ]

% backward i t e r a t i o n

for d=D−1:−1:1

wmin = zeros (N, 1 ) ;
wmax = zeros (N, 1 ) ;
Sd = SS ( : , : , d ) ;
[ . . . ]

% new p a y o f f f unc t i on re turns fu nc t i on parameters i n s t e a d o f a c t u a l v a l u e s
alpha = payo f f (Sd ,K, t o f f , ton , vmin , vmax , c_su , c_sd ,L , dE) ;

% r e p l a c e p r i c e v e c t o r by f i r s t p r i n c i p a l component ( see L i s t i n g 5)
[ . . . ]

% Run l e a s t square approximation

[C, Fmin , pi ] = lsm (V, exp(−r ) ,Fd , 2 ) ;
[ . . . ]

% determine energy g r i d across a l l s c enar i o s

A = ( alpha ( : , 4 ) >0) . ∗ (V( : , 4 ) >0) ;
I = find (A==1) ;
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wmin( I ) = min( alpha ( I , 4 ) ,V( I , 4 ) ) ;
I = find (A == 0) ;

∗∗∗ 2 ∗∗∗
wmin( I ) = max( alpha ( I , 4 ) ,V( I , 4 ) ) ;
wmax = alpha ( : , 5 ) + V( : , 5 ) ;
I = find (wmin>0) ;
emin = min(wmin( I ) ) ;
emax = max(wmax) ;
M = f loor ( ( emax−emin ) /dE) ;
U = c e i l ( emin/dE) ;
M = f loor ( ( emax−U∗dE) /dE) ;
E = [ emin (U∗dE :dE :U∗dE+M∗dE) emax ] ;
M = length (E) ;

% loop through g r i d p o i n t s

Y = zeros (N,M) ; % inte rmed ia t e va lue func t i o n by scenar io and g r i d po in t
W = zeros (N,M) ; % curren t remaining energy by scenar io and g r i d po in t
X = zeros (N,M) ; % opt imal current energy a l l o c a t i o n by scenar io and g r i d

po in t

for m=1:M

w = E(m) ; % energy at g r i d po in t m
∗∗∗ 3 ∗∗∗
% compute Bellman equat ion v ia f i r s t d e r i v a t i v e
% W i d e n t i c a l to w i f w i s v a l i d f o r a s p e c i f i c scenar io , e l s e W = 0
[ x ,W( : ,m) ] = computeX( alpha ,w,C,Fd , Fmin ,wmin ,wmax) ;
X( : ,m) = x ;

% check v a l i d i t y o f the computed r e s u l t
I = find (W( : ,m)>0) ;
for i i =1: length ( I )

i = I ( i i ) ;
% no energy a l l o c a t i o n
i f ( x ( i ) == 0)
Y( i ,m) =polyval (V( i , 1 : 3 ) ,w) ;

else
% f u l l energy a l l o c a t i o n
i f ( x ( i ) == w)
Y( i ,m) =polyval ( alpha ( i , 1 : 3 ) ,w) ;

else
∗∗∗ 4 ∗∗∗
% r e g u l a r case
Y( i ,m) =polyval ( alpha ( i , 1 : 3 ) , x ( i ) ) + polyval (V( i , 1 : 3 ) ,w−x ( i ) ) ;

end
end

end
end

% c a l c u l a t e new va lue func t i o n curve
for i =1:N

Yi = Y( i , : ) ;
Wi = W( i , : ) ;
I = find (Yi > 0) ;
i f ( length ( I ) >2)
Wi = Wi( I ) ;
Yi = Yi ( I ) ;
∗∗∗ 5 ∗∗∗
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V( i , 1 : 3 ) = polyf it (Wi’ , Yi ’ , 2 ) ;
% d e f i n e energy domain per scenar io
wmin( i ) = min(Wi) ; % s t a r t wi th s m a l l e s t energy
[M, I I ] = max(Yi ) ; % end at maximum p r o f i t
wmax( i ) = Wi( I I ) ;

end
end

% add new wmin and wmax
∗∗∗ 7 ∗∗∗
V( : , 4 ) = wmin ;
V( : , 5 ) = wmax;

end

function alpha = payo f f (S ,K, t o f f , ton , vmin , vmax , c_su , c_sd ,L , dE)
% S (N,24) s c enar i o s f o r a day
% K s t r i k e
% t o f f min o f f−t ime
% ton min on−t ime
% vmin min capac i t y
% vmax max capac i t y
% c_su s t a r t−up c o s t
% c_sd shut−down c o s t
% L (SL ,24) schedu l e cand ida te s
% dE g r i d d i s t a n c e
%
% return
%
% R (N, 5 ) a0 , a1 , a2 , wmin , wmax

% s e t up energy g r i d p o i n t s

N = s ize (S , 1 ) ;
emin = ton∗vmin ;
emax = max(sum(L , 2 ) ) ∗vmax ;
M = f loor ( ( emax−emin ) /dE) ;
C = c e i l ( emin/dE) ;
M = f loor ( ( emax−C∗dE) /dE) ;
E = [ emin (C∗dE :dE :C∗dE+M∗dE) emax ] ;
M = length (E) ;
Zopt = zeros (M+1,N) ; % account f o r 0 product ion
Eopt = zeros (M+1,N) ;

% compute s chedu l e by g r i d po in t

for m=1:M
[ Zopt (m+1 , :) , Eopt (m+1 , :) ] = solveOptimal (E(m) ,L , vmin , vmax , ton , t o f f , S ’ ,K,

c_su , c_sd ) ;
end

E = Eopt ;
Z = Zopt ;

alpha = zeros (N, 5 ) ;

% r e g r e s s by g r i d po in t

for i =1:N
X = [E( : , i ) Z ( : , i ) ] ;
[U] = unique (X, ’ rows ’ ) ;
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I = find (U( : , 1 ) >0) ;
i f ( length ( I ) >2)
U = U( I , : ) ;
a = polyf it (U( : , 1 ) ,U( : , 2 ) , 2 ) ;
alpha ( i , 1 : 3 ) =a ;
% now g e t w domain
W = (min(U( : , 1 ) ) : 1 :max(U( : , 1 ) ) ) ’ ;
Y = polyval ( a ,W) ;

∗∗∗ 1 ∗∗∗
% s t o r e Wmin, Wmax
I = find (Y>0 ,1) ;

alpha ( i , 4 ) = W( I ) ;
[M, I ] = max(Y) ;

alpha ( i , 5 ) = W( I ) ;
end

end

function [C, Smin , pi ] = lsm (V, r , S0 , n )
% V (N, 5 ) a0 , a1 , a2 , wmin ,wmax
% r i n t e r e s t
% S0 (N, 1 ) p r i c e f o r current s t a g e
% n polynomia l degree to approximate c0 , c1 and c2
%
% return
% C (N, 3 ) func t i o n parameters per p r i c e scenar io t h a t d e s c r i b e a

quadra t i c f unc t i on V = a0 + a1 E + a2 E∗E
% Smin a l l PCAs below Smin w i l l r e s u l t in C = 0
% pi (3 ,n+1) po lynomia l c o e f f i c i e n t s f o r c0 , c1 , c2

% i n i t dimensions
[N] = s ize (V, 1 ) ;
C = zeros (N, 5 ) ;
pi = zeros (3 , n+1) ;

% r e g r e s s on parameters c0 , c1 , c2

F0 = S0 ;

% second , l i n e a r f i t f o r a0
∗∗∗ 6 ∗∗∗
a0 = V( : , 3 ) ;
alpha = polyf it (F0 , a0 , n) ;
pi ( 1 , : )= alpha ;
c0 = polyval ( alpha , F0) ;
C( : , 3 ) = c0 ;

% t h i r d l i n e a r f i t f o r a1
∗∗∗ 6 ∗∗∗
a1 = V( : , 2 ) ;
alpha = polyf it (F0 , a1 , n) ;
pi ( 2 , : ) = alpha ;
c1 = polyval ( alpha , F0) ;
C( : , 2 ) = c1 ;

% t h i r d l i n e a r f i t f o r a2

∗∗∗ 6 ∗∗∗
a2 = V( : , 1 ) ;
alpha = polyf it (F0 , a2 , n) ;
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pi ( 3 , : ) = alpha ;
c2 = polyval ( alpha , F0) ;
C( : , 1 ) = c2 ;

Smin = 0 ;

function [ x ,ww] = computeX( alpha ,w,C,F , Fmin ,wmin ,wmax)
% alpha (N, 5 ) a0 , a1 , a2 , xmin , xmax per scenar io
% w current max energy
% C (N, 3 ) c0 , c1 , c2 per scenar io
% F (N, 1 ) current p r i n c i p a l component
% Fmin t h r e s h o l d f o r 0 con t inua t i on v a l u e s
% wmin (N, 1 ) min energy f o r con t inua t i on v a l u e s
% wmax (N, 1 ) max energy f o r con t inua t i on v a l u e s
%
% return
%
% x (N, 1 ) today ’ s opt imal product ion
% ww (N, 1 ) w i f w i s v a l i d f o r scenar io i ,0 e l s e

xmin = alpha ( : , 4 ) ;
xmax = alpha ( : , 5 ) ;
N = s ize (C, 1 ) ;
x = zeros ( s ize (C, 1 ) ,1 ) ;
ww = ones (N, 1 ) ∗w; % s e t to 0 i f w i s not v a l i d f o r scenar io i

% f i r s t e x t r a c t non zero c o e f f i c i e n t s

I I = find ( alpha ( : , 3 ) ~=0) ;
xx = x( I I ) ;
aa = alpha ( I I , : ) ;
CC = C( II , : ) ;
FF = F( I I ) ;

I = find ( (C( : , 3 ) == 0) & ( alpha ( : , 3 ) == 0) ) ;
ww( I ) = 0 ;

% compute x v ia the d e r i v a t i v e o f the Bellmann func t i on assuming a quadra t i c
equa t ion

% f i r s t con t inua t i on va lue non zero
I = find (FF>=Fmin) ;
∗∗∗ 3 ∗∗∗
xx ( I ) = (2∗CC( I , 1 ) .∗w+CC( I , 2 )−aa ( I , 2 ) ) . / ( 2∗ ( aa ( I , 1 )+CC( I , 1 ) ) ) ;

% second con t inua t i on va lue zero
I = find (FF<Fmin) ;
xx ( I ) = (−1)∗aa ( I , 2 ) . / ( 2∗ aa ( I , 1 ) ) ;
x ( I I ) = xx ;
xold = x ;

% i f w < min(wmin , xmin ) then w = 0

I = find (w<min(wmin , xmin ) ) ;
i f ( length ( I ) > 0)

ww( I ) = 0 ;
end

% i f w > (wmax +xmax) then w = 0

I = find (w> wmax + xmax) ;
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i f ( length ( I ) > 0)
ww( I ) = 0 ;

end

% i f x < xmin then x = 0

A = (x<xmin ) ;
I = find (A == 1) ;
i f ( length ( I ) >0)

x ( I ) = 0 ;
end

% i f x > min(xmax ,w) then x = min(xmax ,w)

W = min(xmax ,w) ;
A = (x>W) ;
I = find (A == 1) ;
i f ( length ( I ) >0)

x ( I ) = W( I ) ;
end

% i f w−x < wmin then x = 0 ( i f w < wmin or w > wmax) then ww = 0 as w e l l

A = (w−x<wmin) ;
I = find (A == 1) ;
i f ( length ( I ) >0)

x ( I ) = 0 ;
A = ( (w >wmax( I ) ) | (w <wmin( I ) ) ) ;
I I = find (A ==1) ;
i f ( length (A) >0)

ww( I ( I I ) ) = 0 ;
end

end

% i f w−x > wmax then x = ww = 0

A = (w−x>wmax) ;
I = find (A == 1) ;
i f ( length ( I ) >0)

x ( I ) = 0 ;
ww( I ) = 0 ;

end

% compare xopt wi th x = 0 and x = w f o r w in [ wmin ,wmax ] and w in [ xmin , xmax
]

I = find ( (w>=wmin) & (w<=wmax) & (w>=xmin ) & (w<=xmax) ) ;
for i i =1: length ( I )

i = I ( i i ) ;
R = polyval ( alpha ( i , 1 : 3 ) , x ( i ) )+ polyval (C( i , 1 : 3 ) ,w−x ( i ) ) ;
R0 = polyval (C( i , 1 : 3 ) ,w) ;
Rw = polyval ( alpha ( i , 1 : 3 ) ,w) ;
xx = [ x ( i ) 0 w ] ;
[M,m] = max( [R R0 Rw] ) ;
x ( i ) = xx (m) ;

end

% compare xopt wi th x = 0 where w only in [ wmin , wmax ] or w = 0

I = find ( (w>=wmin) & (w<=wmax) & ( (w<xmin ) | (w>xmax) ) ) ;
for i i =1: length ( I )
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APPENDIX A. SELECTED SOURCE CODE

i = I ( i i ) ;
R = polyval ( alpha ( i , 1 : 3 ) , x ( i ) )+ polyval (C( i , 1 : 3 ) ,w−x ( i ) ) ;
R0 = polyval (C( i , 1 : 3 ) ,w) ;
i f (R0 >R)

x ( i ) = 0 ;
end

end

% compare xopt wi th x = w where w only in [ xmin , xmax ]

I = find ( (w>=xmin ) & (w<=xmax) & ( (w<wmin) | (w>wmax) ) ) ;
for i i =1: length ( I )

i = I ( i i ) ;
R = polyval ( alpha ( i , 1 : 3 ) , x ( i ) )+ polyval (C( i , 1 : 3 ) ,w−x ( i ) ) ;
Rw = polyval ( alpha ( i , 1 : 3 ) ,w) ;
i f (Rw >R)

x ( i ) = w;
end

end

Listing 6: Continuous Stochastic Dynamic Programming
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B. Volumetric Swing Option - Further
Examples

The following two tables present two more upper bound calculations for the volume constraint
case in addition to Table 2.4 with the parameter settings as in section 2.5, but with drift
µ = 0.1 and strike K = 1.

n C0(n) ∆D0(n) [C(99%)
0 (n), C(99%)

0 (n)]
1 5.300 0.007 [5.221 , 5.368]
2 10.197 0.020 [10.071 , 10.553]
3 14.753 0.103 [14.596 , 15.227]
4 19.097 0.214 [18.914 , 19.856]
5 23.319 0.192 [23.111 , 24.165]
10 42.804 0.123 [42.505 , 44.067]
15 60.595 0.154 [60.233 , 62.626]
20 77.288 0.009 [76.877 , 79.552]
30 108.400 0.035 [107.913 , 111.063]
40 137.432 0.021 [136.880 , 140.595]
50 164.875 0.062 [164.269 , 168.600]
60 191.047 0.013 [190.397 , 195.373]
70 216.176 0.066 [215.482 , 221.232]
80 240.402 0.100 [239.668 , 246.148]
90 263.903 0.122 [263.129 , 270.541]
100 286.762 0.011 [285.949 , 293.905]

Table B.1.: Swing Option with Volume Constraint (µ = 0.1)
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APPENDIX B. VOLUMETRIC SWING OPTION - FURTHER EXAMPLES

n C0(n) ∆D0(n) [C(99%)
0 (n), C(99%)

0 (n)]
1 4.230 0.006 [4.174, 4.291]
2 8.042 0.018 [7.951, 8.073]
3 11.625 0.141 [11.513, 12.039]
4 15.016 0.193 [14.887, 15.822]
5 18.221 0.221 [18.074, 19.023]
10 32.727 0.043 [32.519, 33.934]
15 45.516 0.163 [45.266, 47.711]
20 57.214 0.054 [56.928, 59.446]
30 78.291 0.242 [77.953, 80.933]
40 97.264 0.113 [96.875, 100.377]
50 114.694 0.099 [114.262, 118.356]
60 130.873 0.023 [130.403, 135.197]
70 146.087 0.292 [145.586, 151.200]
80 160.373 0.045 [159.842, 166.055]
90 173.897 0.036 [173.339, 180.577]
100 186.773 0.193 [186.188, 194.002]

Table B.2.: Swing Option with Volume Constraint (µ = 0.1, K = 1)
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C. Price Path Samples

The following two figures show a subset of the price scenarios that we used throughout this
entire thesis. Figure C.1 shows the trajectories that we used in chapter 1 and 2. They
were generated with the price process and parameter settings suggested in the example by
Meinshausen and Hambly [50]. See equation 2.7 for the price process definition and section
2.5 for the actual parameter settings. Figure C.2 shows sample paths of our hourly electricity
spot prices that we used in our real world example for pricing power generation assets in
chapter 3.
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Figure C.1.: Mean reverting prices around x0 = 1
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APPENDIX C. PRICE PATH SAMPLES
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Figure C.2.: Hourly electricity prices for March 08 with weekend and weekday day types
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D. Profit and Loss Distribution of Hedged
Power Plant

The following graph is an alternative representation of Figure 4.25. It shows the same histro-
grams, but plotted with identical number of buckets instead of fixed bucket borders. Hence,
a higher frequency of observations does not result in taller, but more narrow bars. In this
way the histograms do not overlay each other too much and simplify a direct comparison.

Figure D.1.: Profit and loss histogram for 70 % of total energy W 0
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