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Abstract

We discuss the almost-sure convergence of a broad class of sampling

algorithms for multi-stage stochastic linear programs. We provide a

convergence proof based on the finiteness of the set of distinct cut

coefficients. This differs from existing published proofs in that it does

not require a restrictive assumption.
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1 Introduction

Multistage stochastic linear programs with recourse are well known in the
stochastic programming community, and are becoming more common in ap-
plications. The typical approach to solving these problems is to approximate
the random variables using a finite set of outcomes forming a scenario tree
(see e.g. [1]). This yields a large-scale mathematical programming problem
that can be attacked using a suitable algorithm. One algorithm that has been
widely applied in energy and logistics settings is the stochastic dual dynamic
programming (SDDP) method of Pereira and Pinto [9]. This algorithm con-
structs feasible dynamic programming policies using an outer approximation
of a (convex) future cost function that is computed using Benders cuts. The
policies defined by these cuts can be evaluated using simulation, and their
performance measured against a lower bound on their expected cost. This
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provides a convergence criterion that may be applied to terminate the algo-
rithm when the estimated cost of the candidate policy is close enough to its
lower bound. The SDDP algorithm has led to a number of related methods
(see [2],[3],[4],[6],[10]) that are based on the same essential idea, but seek to
improve the method by exploiting the structure of particular applications.

Since its publication in 1991, a number of authors have studied the con-
vergence behaviour of SDDP and related algorithms. In his PhD thesis [3]
(and in [4]) Donohue states that “finite convergence of this algorithm follows
from the finite convergence of the Nested Decomposition algorithm, since
the scenarios from which the optimality cuts are generated are re-sampled at
each iteration.” This remark which, strictly speaking, should be a statement
of convergence with probability 1, is not accompanied by a formal proof.

The first formal proof of the almost sure convergence of multi-stage sam-
pling algorithms was published by Chen and Powell [2] who derived this for
their CUPPS algorithm. This proof was extended by Linowsky and Philpott
[8] to cover other multi-stage sampling algorithms (SDDP [9], AND [4], ReSa
[6]) that use outer approximation. The convergence proofs in [2] and [8]
make use of an unstated assumption regarding the independence of sam-
pled random variables and convergent subsequences of algorithm iterates.
The absence of an argument showing that this assumption holds weakens
the analysis in these papers, and leaves open the question of convergence in
general.

The purpose of this paper is to give a simpler proof of almost sure con-
vergence for a broad class of sampling algorithms that include SDDP, AND,
ReSa and CUPPS. Our proof does not require the independence assumption
referred to above, but follows the finiteness argument that Donohue alluded
to in his thesis, and makes this argument explicit, by basing it on two well-
defined properties of the sampling procedure. Although it could be claimed
that this proof is already part of the stochastic programming folklore, our
contribution is to illuminate the key properties that underly almost sure
convergence of these methods.

2 Multistage Benders decomposition

We follow the notation and terminology of [8], and restrict attention to mul-
tistage stochastic programs with the following properties.

(A1) Random quantities appear only on the right-hand side of the linear
constraints in each stage.
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(A2) The set Ωt of random outcomes in each stage t = 2, 3, . . . , T is discrete
and finite
(Ωt = {ωti| i = 1, . . . , qt <∞} with probabilities pti > 0 , ∀i).

(A3) Random quantities in different stages are independent.

(A4) The feasible region of the linear program in each stage is non-empty
and bounded.

The assumption (A3) includes the case where the right-hand sides of the
linear constraints follow an ARMA process, which can be accommodated
by augmenting x with variables that model this, along with stagewise inde-
pendent residuals (see [7]). Under the above assumptions, the multi-stage
stochastic linear program can be written in the following form.

Solve the problem defined by

[LP1] Q1 = minx1 c
⊤
1 x1 +Q2(x1)

subject to A1x1 = b1,
x1 ≥ 0,

where for all t = 2, . . . , T,

Qt(xt−1) =

qt∑

i=1

ptiQt(xt−1, ωti),

Qt(xt−1, ωti) is defined by the problem

[LPt] Qt(xt−1, ωt) = minxt c
⊤
t xt +Qt+1(xt)

subject to Atxt = ωt −Bt−1xt−1,
xt ≥ 0,

and we set QT+1 ≡ 0.
The problem [LPt] depends on the choice of ωt and xt−1, and so we could

write [LPt(xt−1, ωt)], though we choose to suppress this dependence in the
notation. By Assumption (A3), [LPt] is independent of ωt−1, ωt−2 . . . .

In the class of sampling algorithms that we consider in this paper the
functions Qt(xt−1) in each stage are approximated by the maximum of a
collection of linear functions, each of which is called a cut. In each iteration
k = 1, 2, . . . , the type of algorithm we consider computes a set of feasible
solutions {xkt : t = 1, . . . , T − 1}, and a set of cuts, one for each stage
t = 1, . . . , T − 1. This gives rise to a sequence of approximate problems
[AP k

t ], k = 1, 2, . . . , for each stage. These are defined as follows:
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For t = 1, we solve the linear program

[AP k
1 ] Ck

1 = minx1,θ2 c
⊤
1 x1 + θ2

subject to A1x1 = b1,

θ2 + (β
j
2)
⊤x1 ≥ α2,j , j = 0, . . . , k − 1,

x1 ≥ 0,

and, for t = 2, . . . , T − 1, we solve

[AP k
t ] Ck

t (x
k
t−1, ωt) = minxt,θt+1 c

⊤
t xt + θt+1

subject to Atxt = ωt −Bt−1x
k
t−1,

θt+1 + (β
j
t+1)

⊤xt ≥ αt+1,j, j = 0, . . . , k − 1,
xt ≥ 0.

Finally for every k, we set [AP k
T ]=[LPT ]. The problems [AP

k
t ] are approxi-

mations of [LPt] in the sense that Qt+1(xt) is approximated (below) by the
polyhedral function

max
j=0,...,k−1

{αt+1,j − (β
j
t+1)

⊤xt}.

This means that any solution to [AP k
t ] has a value that is a lower bound on

the optimal value of [LPt].
For all stages, the first cut (j = 0) is set as the trivial cut θt+1 ≥ −∞. We

use the notation Ckt (xt−1) to denote
∑qt

i=1 ptiC
k
t (xt−1, ωt). In the last stage,

T , we have [AP k
T ]= [LPT ], and so for every xT−1 and ωT

Ck
T (xT−1, ωT ) = QT (xT−1, ωT ), k = 1, 2, . . . .

Since cuts are added from one iteration to the next, and no cuts are
taken out, the optimal values of [AP k

t ] form a monotonic sequence, i.e. for
k = 1, 2, . . .

Ck+1
t (xt−1, ωt) ≥ Ck

t (xt−1, ωt), t = 2, 3, . . . , T,

and

Ck+1
1 ≥ Ck

1 .

Observe that under Assumption (A4),

{xt | Atxt = ωt −Bt−1x
k
t−1, xt ≥ 0}

is nonempty and bounded so [AP k
t ] always has a nonempty feasible set (with

θt+1 chosen large enough) and hence an optimal solution. Thus its dual has
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an optimal solution (πt, ρt), where πt corresponds to the equality constraints,
and ρt corresponds to the cut constraints. Furthermore, by Assumption (A1),
the set of extreme points of the dual of [AP k

t ] is independent of the outcomes
of the random quantities, which allows us to construct a valid cut at each
stage based on an assembled collection Dkt of extreme-point dual solutions
from different samples.

Initially at iteration k = 0, D0t = ∅. At any subsequent iteration k the
coefficients of the cuts at each stage t = 1, 2, . . . , T − 1, are calculated as
follows.

Cut Calculation Algorithm (CCA)

1. Choose a sample Ωkt ⊆ Ωt, solve [AP
k
t ] for all ωti ∈ Ω

k
t , and add the

optimal extreme-point dual solutions to Dkt .

2. Let (πit(x
k
t−1), ρ

i
t(x

k
t−1)) be the best dual solution in D

k
t for [AP

k
t ] for

each ωti ∈ Ωt, that is, if t < T then

(πit(x
k
t−1), ρ

i
t(x

k
t−1))

= argmax{π⊤t (ωti −Bt−1x
k
t−1) + ρ⊤t α

k−1
t+1 | (πt, ρt) ∈ D

k
t },

and

πiT (x
k
T−1) = argmax{π

⊤
T (ωTi −BT−1x

k
T−1) | πT ∈ D

k
T}

otherwise.

3. The cut has the formula

θt ≥ αt,k − (β
k
t )
⊤xt−1

where

βkt =

qt∑

i=1

pti B
⊤
t−1 π

i
t(x

k
t−1) for 2 ≤ t ≤ T,

αt,k =

qt∑

i=1

pti
[
ω⊤ti π

i
t(x

k
t−1) + (α

k−1
t+1 )

⊤ρit(x
k
t−1)

]
for 2 ≤ t ≤ T − 1,

αT,k =

qT∑

i=1

pTi ω
⊤
Ti π

i
T (x

k
T−1).
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CCA is the same algorithm as that used to define a sampled cut in [8].
Observe that αt,k is a scalar, whereas αk−1t+1 denotes a (k − 1)-dimensional
vector. This means that the dimensions of αk−1t+1 and ρit(x

k
t−1) are increasing

as the iteration count k increases, and thus the collection of extreme-point
solutions of the dual of [AP k

t ] may be infinite. On the other hand, the
collection of distinct values of (βkt , αt,k) is provably finite, as we show in the
following lemma.

Lemma 1 For each t = 2, 3, . . . , T , define the set

Gkt = {(β
j
t , αt,j) : j = 1, 2, . . . , k − 1}.

Then for any sequence Gkt , k = 1, 2, . . . generated by the repeated application
of CCA there exists mt such that for all k

∣∣Gkt
∣∣ ≤ mt.

Furthermore, there exists kt, so that if k > kt then Gkt = G
kt
t .

Proof. Consider any realization of the sequence Gkt , k = 1, 2, . . . gener-
ated by the repeated application of CCA. We use induction on t to construct
mt such that

∣∣Gkt
∣∣ ≤ mt. The second part of the lemma follows immediately.

First at T , ρT = 0 and πT is an extreme point of {π | A⊤T π ≤ cT} of which
there are at most mT+1, say. Then the cut coefficients

αT,k =

qT∑

i=1

pTi ω
⊤
Ti π

i
T (x

k
T−1),

βkT =

qT∑

i=1

pTi B
⊤
T−1 π

i
T (x

k
T−1),

each can only take at most mqT
T+1 values, and thus if mT = m2qT

T+1, then for
all k

∣∣GkT
∣∣ ≤ mT .

Now suppose at t that there exists mt+1 such that for all k
∣∣Gkt+1

∣∣ ≤ mt+1.

It follows that there exists kt+1, so that if k > kt+1 then Gkt+1 = Gkt+1t+1 and
the cut at iteration k > kt+1 is a repeat of some cut in the existing cuts.
Consider the feasible region of the dual of [AP k

t ], namely

Hk
t = {(πt, ρt) | A

⊤
t πt +

k−1∑

j=1

βjt+1ρ
j
t ≤ ct,

k−1∑

j=1

ρjt = 1, ρt ≥ 0}.
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If k > kt+1 then any extreme point (π
k
t , ρ

k
t ) of H

k
t corresponds to an extreme

point (π, ρ) ofHkt+1
t with the same dual objective value, obtained by choosing

π = πkt and basic columns β
j
t+1 for j < kt+1 that match the basic columns

βjt+1, kt+1 ≤ j < k. This is because each latter column βjt+1 and its cost

coefficient αt+1,j is a duplicate of some (β, α) ∈ G
kt+1
t+1 . Since there are a finite

number, say et, of extreme point solutions to H
kt+1
t , there are at most et

distinct values of
[
ω⊤ti π

i
t(x

k
t−1) + (α

k−1
t+1 )

⊤ρit(x
k
t−1)

]

and so (et)
qt distinct values of

αt,k =

qt∑

i=1

pti
[
ω⊤ti π

i
t(x

k
t−1) + (α

k−1
t+1 )

⊤ρit(x
k
t−1)

]
,

Similarly,

βkt =

qt∑

i=1

pti B
⊤
t−1 π

i
t(x

k
t−1),

can take at most (et)
qt values and so if mt = (et)

2qt then
∣∣Gkt
∣∣ ≤ mt,

which proves the result.
Linowsky and Philpott [8] define a class of sampling-based decomposition

algorithms, the Multi-stage Sampled Benders Decomposition (MSBD), which
includes SDDP, AND, ReSa and CUPPS. Here we define a different class of
algorithms that we call Dynamic Outer Approximation Sampling Algorithms
(DOASA). For DOASA the sampling procedures must satisfy two distinct
properties FPSP and BPSP that are defined below. We make use of the
terminology scenario to denote an element of

∏T−1
t=2 Ωt indexed by j so

T−1∏

t=2

Ωt = {ω(j) | j = 1, 2, . . . ,
T−1∏

t=2

qt}.

Algorithms in the DOASA class perform the following steps:

Step 0: (Initialization) Set k = 1.

Step 1: (Forward pass)
Sample a single outcome ωt of the random variable in each stage t =
2, 3, . . . , T −1, to give a single scenario {ωkt } satisfying FPSP. For each
stage t = 1, 2, . . . , T − 1, compute the primal solution (xkt , θ

k
t+1) of the

problem [AP k
t ].
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Step 2: (Cut Generation)
For each stage t = T, T −1, . . . , 2, apply CCA to generate a cut at xkt−1
with sample Ωkt satisfying BPSP.

Step 3: Set k = k + 1 and go to Step 1.

We now formally state the sampling properties as follows:

Forward Pass Sampling Property (FPSP):
For each j = 1, 2, . . . ,

∏T−1
t=2 qt, with probability 1

∣∣{k : {ωkt | t = 2, 3, . . . , T − 1} = ω(j)
}∣∣ =∞.

Backward Pass Sampling Property (BPSP):
For each t = 2, 3, . . . , T and i = 1, 2, . . . , qt, with probability 1

∣∣{k : ωti ∈ Ωkt
}∣∣ =∞.

FPSP states that each scenario ω(j) is traversed infinitely many times
with probability 1 in the forward pass. BPSP states that each scenario
outcome ωti is visited infinitely many times with probability 1 in the back-
ward pass. There are many sampling methods satisfying these two prop-
erties. For example, consider independently sampling a single outcome in
each stage with a positive probability for each ωti in the forward pass and
backward pass respectively. Then by the Borel-Cantelli lemma (see [5]) this
method satisfies both properties. Another sampling method that satisfies
FPSP and BPSP is to repeat an exhaustive enumeration of each scenario
ω(j), j = 1, 2, . . . ,

∏T−1
t=2 qt in both the forward pass and the backward pass,

although such a method would be prohibitively expensive in all but the small-
est examples.

3 Convergence of DOASA algorithms

Previous published results in [2] and [8] give proofs for the almost sure con-
vergence of CUPPS and MSBD respectively. The proofs in both of these
papers require an important but unstated assumption. Here we state this
assumption formally and discuss it.

Let the iterations of the algorithm be indexed by N = {1, 2, . . . } and
suppose t ∈ {1, . . . , T − 1}. Let {ωnt , x

n
t }n∈N be the sequence generated by

the sampling algorithm at stage t.
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Assumption 1: For any infinite subsequence {xkt }k∈K of {x
n
t }n∈N there

exists a convergent subsequence {xjt}j∈J that is independent of {ω
j
t+1}j∈J .

Remark 4.1 in [2] correctly claims that if N is infinite then with proba-
bility one N has an infinite subset Nti corresponding to draws of outcome
ωti for any i = 1, . . . , qt and t = 2, . . . , T . This follows by an application
of the Borel-Cantelli lemma, because each ωnt in {ω

n
t }n∈N is independently

sampled and Pr[ωnt = ωti] > 0.
However, the situation becomes more subtle in the proof of Lemma 5.2 in

[2]. Here the authors claim that for any infinite subset K of N , there exists
an infinite subset J with a convergent subsequence {xjT−1}j∈J such that
with probability one there exists an infinite subset Ji of J corresponding
to draws of each sample ωTi for i = 1, . . . , qT . The convergent subsequence
{xjT−1}j∈J in this lemma is constructed using the assumed compactness of the
set X in which xT−1 lies. Of course, compactness guarantees a convergent
subsequence {xjT−1}j∈J of {xkT−1}k∈K, but it cannot be deduced from this

and Remark 4.1 in [2] that there are an infinite number of ωTi in {ω
j
T}j∈J

for every i = 1, . . . , qT . (The problem here is that for every convergent
subsequence it might be the case that there are only finitely many ωTi for
some i = 1, . . . , qT , and this possibility needs to be ruled out somehow.)

In claiming the independence of the sampling procedure from the conver-
gence of the subsequence, the authors of [2] are making an implicit assump-
tion (Assumption 1), which is needed to make the proof of Lemma 5.2 valid.
The proof in [8] is based on Lemma 5.2 in [2], and so it is also flawed in the
absence of Assumption 1.

We now proceed to give a direct proof of almost sure convergence that
does not rely on Assumption 1. The new proof formalizes the assertion by
Donohue [3] that convergence follows from re-sampling. To understand how
the proof works consider an approach (DOASA-N) in which a finite set of
N scenarios is sampled in advance, and the forward pass of the algorithm
traverses each of these scenarios.

DOASA-N

Step 0: (Initialization) Set k = 1. For s = 1 to N , select at each stage
t = 2, 3, . . . , T − 1, a single outcome ωst of the random variable to give
a set of N scenarios.

Step 1: (Forward pass)
For each scenario s, and stage t = 1, 2, . . . , T − 1, compute the primal
solution (xkst, θ

k
s,t+1) of the problem [AP k

t ].
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Step 2: (Cut Generation)
For each stage t = T, T − 1, . . . , 2, apply CCA to generate N cuts at
the states xks,t−1 with samples Ω

k
s,t, s = 1, 2, . . . , N .

Step 3: Set k = k + 1 and go to Step 1.

Lemma 2 In every realization of iterations, DOASA-N converges in a finite
number of iterations to a policy giving value limk C

k
1 which is at most equal

to the optimal expected cost of [LP1].

Proof. For each s = 1, 2, . . . ,N , since k = 1, 2, . . . and one cut is
constructed in each iteration k, then by Lemma 1, for t ∈ {2, . . . , T}, there

exists ks,t, so that if k > ks,t then Gkt = G
ks,t
t and thus there is no further

change in the cuts defining Cks,t(xs,t−1), that is, for every xs,t−1

max
j=0,...,k−1

{αt,j − (β
j
t)
⊤xs,t−1} = max

j=0,...,ks,t−1
{αt,j − (β

j
t)
⊤xs,t−1}.

For t ∈ {2, . . . , T}, if we choose kt = maxNs=1{ks,t}, then for each k > kt
there is no change in the cuts defining Ckt (xt−1), that is, for every xt−1

max
j=0,...,k−1

{αt,j − (β
j
t)
⊤xt−1} = max

j=0,...,kt−1
{αt,j − (β

j
t)
⊤xt−1}.

Thus all solutions (xk1, θ
k
2) to [AP

k
1 ] are the same for k > k2, as are all

solutions (xkt , θ
k
t+1) to [AP

k
t ], t = 2, 3, . . . , T , so DOASA-N terminates after

iteration k2.
It is easy to see that for every k the optimal value of [AP k

1 ] is a lower
bound on the optimal expected cost of [LP1].

A special case of DOASA-N uses the universe of N =
∏T−1
t=2 qt scenarios.

Lemma 3 Under BPSP, DOASA-N with the universe of scenarios con-
verges with probability 1 to an optimal solution to [LP1] in a finite number
of iterations.

Proof. From Lemma 2 in every realization of iterations DOASA-N will
converge in a finite number of steps to a policy that has limk C

k
1 giving a lower

bound on the true expected cost. Now consider a realization of DOASA-
N iterations, and denote the limiting policy by (x̄1, x̄2(ω2), x̄3(ω2, ω3), . . . ),
which is obtained at iteration k̄, say. For any scenario ω2, ω3, . . . , ωT , we
denote x̄t(ω2, . . . , ωt) by x̄t(ω). We claim that for every k > k̄, and any
scenario ω,

CkT (x̄T−1(ω)) = QT (x̄T−1(ω)), (1)
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with probability 1, which implies Ck
T (x̄T−1(ω), ωT ) = QT (x̄T−1(ω), ωT ) for all

ωT . Otherwise for some particular outcome ω̂T , we have ω̂T /∈ Ωkt , for every
k > k̄, with positive probability which violates BPSP.

Now we claim that if k > k̄ then for every scenario ω

CkT−1(x̄T−2(ω)) = QT−1(x̄T−2(ω)). (2)

Otherwise for some particular outcome ω̂T−1,

Ck
T−1(x̄T−2(ω), ω̂T−1) < QT−1(x̄T−2(ω), ω̂T−1). (3)

But

Ck
T−1(x̄T−2(ω), ω̂T−1) = minxT−1,θT c

⊤
T−1xT−1 + θT

subject to AT−1xT−1 = ω̂T−1 −BT−2x̄T−2(ω),

θT + (β
j
T )
⊤xT−1 ≥ αT,j, j = 0, . . . , k − 1,

xT−1 ≥ 0,

which has optimal solution

(x∗T−1, θ
∗
T ) = (x̄T−1(ω),maxj=0,...,k−1{αT,j − (β

j
T )
⊤x̄T−1(ω)})

with ωT−1 = ω̂T−1.
If θ∗T < CkT (x

∗
T−1), then for any k > k̄

maxj=0,...,k−1{αT,j − (β
j
T )
⊤x̄T−1(ω)}) < C

k
T (x

∗
T−1) = QT (x̄T−1(ω)) (4)

by (1). But by BPSP we have with probability 1 that for each ωT there

is some k(ωT ) > k̄ with ωT ∈ Ω
k(ωT )
T . If we let k̂ denote the maximum of

the k(ωT ) then the height of the cut at x̄T−1(ω) evaluated at iteration k̂ is
QT (x̄T−1(ω)) contradicting (4) (see Figure 1).Thus we have

θ∗T = C
k
T (x

∗
T−1) = QT (x

∗
T−1)

and

Ck
T−1(x̄T−2(ω), ω̂T−1) = c⊤T−1x

∗
T−1 +QT (x

∗
T−1) = QT−1(x̄T−2(ω), ω̂T−1)

contradicting (3), thereby demonstrating (2). Observe that since ω̂T−1 was
arbitrary this shows that x̄T−1(ω) solves [LPT−1(x̄T−2(ω), ωT−1)] for any
ωT−1.

In a similar way, it is easy to show by induction that x̄t−1(ω) solves
[LPt−1(x̄t−2(ω), ωt−1)] thus demonstrating that (x̄1, x̄2(ω2), x̄3(ω2, ω3), . . . ) is
an optimal policy.

We now return to the DOASA class of algorithms, in which a single
scenario is re-sampled in each forward pass, in contrast to the methods above
when these are sampled once and then fixed.
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xT-1(ω)

xT-1(ω)Q T(xT-1(ω)xT-1(ω)Q T( )

xT-1(ω)xT-1(ω)C T
k( )

Figure 1: A new cut shown in bold would be created if θ∗T < CkT (x
∗
T−1).

Theorem 4 Under FPSP and BPSP, DOASA converges with probability 1
to an optimal solution to [LP1] in a finite number of iterations.

Proof. By FPSP, each scenario in the finite collection of N =
∏T−1
t=2 qt

scenarios will occur an infinite number of times in the course of the algorithm
with probability 1. Thus with probability 1, DOASA will contain a sequence
of iterations that are equivalent to DOASA-N applied to the universe of
scenarios. We may then apply Lemma 3 which shows that with probability
1, DOASA will converge in a finite number of steps to an optimal solution
to [LP1] in a finite number of iterations.

4 Discussion

The proof of convergence in [8] makes some different assumptions from FPSP
and BPSP, namely the Cut Sampling Property and the Sample Intersection
Property. The Cut Sampling Property (CSP) states that there are only a
finite number of iterations in the algorithm where Ωkt is empty. Since we are
investigating convergence as k →∞, CSP is effectively the same as assuming
that Ωkt is nonempty for all k. The Sample Intersection Property (SIP) states
that for any t, each ωti ∈ Ωt and each k (given Ωkt �= ∅),

Pr[(ωti ∈ Ω
k
t ) ∩ (ω

k
t = ωti)] > 0.
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The following Lemma shows that SIP is sufficient to guarantee FPSP and
BPSP if it is accompanied by independent sampling in the forward pass and
the backward pass.

Lemma 5 Given independent sampling in the forward pass, SIP implies
FPSP. Given independent sampling in the backward pass, SIP implies BPSP.

Proof. By SIP, for each ωti ∈ Ωt and each k (given Ωkt �= ∅),

Pr[ωkt = ωti] > 0, (5)

Pr[ωti ∈ Ωkt ] > 0. (6)

By (5) and independent sampling in the forward pass, for any scenario ω(j)
with ωti ∈ ω(j), t = 2, 3, . . . , T − 1,

Pr[{ωkt } = ω(j)] =
T−1∏

t=2

Pr[ωkt = ωti] > 0.

Then with independent sampling in the forward pass, by the Borel-Cantelli
lemma, there are infinite traversals of each scenario ω(j), j = 1, 2, . . . ,

∏T−1
t=2 qt

with probability 1, and thus FPSP is satisfied. Given (6) and independent
sampling in the backward pass, by the Borel-Cantelli lemma, there are infi-
nite visits to each ωti with probability 1, and thus BPSP is satisfied.

The CUPPS algorithm in [2] uses independent sampling in the forward
pass, and cuts computed using Ωkt = {ωkt }. This is easily seen to satisfy
SIP, and FPSP and BPSP. Observe, however, that SIP is not necessary for
FPSP and BPSP to hold. A version of CUPPS in which cuts are computed
using Ωkt = Ωt \ {ωkt } does not satisfy SIP, but it does satisfy FPSP and
BPSP. The algorithms SDDP, AND, and ReSa all use independent sampling
in the forward pass, and set Ωkt = Ωt. (We are assuming here that SDDP
re-samples in its forward pass. Some commercial implementations of SDDP
do not re-sample and so are more akin to DOASA-N than DOASA.) Thus
BPSP is trivially true, and FPSP follows by the Borel-Cantelli lemma. These
algorithms also satisfy SIP trivially.

Finally, Lemma 8 in [8] asserts that CSP, SIP and independent sampling
in the forward pass are sufficient for almost sure convergence. As discussed
above there is an implicit independence assumption in the proof of Lemma 8.
It is tempting to suppose that independent sampling in the forward pass and
SIP give BPSP, which would make Lemma 8 true. However this is not true
in general. Thus, in the absence of independent sampling in the backward
pass, Lemma 8 in [8] remains unproven.
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