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Abstract

The state price density is a second derivative of the discounted Euro-
pean options prices with respect to the strike price. We use Maximum
Likelihood method to derive a simple estimator of the curve such that it is
decreasing, convex and its second derivative integrates to one. Confidence
intervals for this estimator can be constructed using standard Maximum
Likelihood theory. The method works well in praxis as illustrated on the
DAX option prices data.

Key words and Phrases: option pricing, state price density estimation,
nonlinear least squares, confidence intervals

1 Introduction

The fair price of European option with payoff (ST−K)+ = max(ST−K, 0),
with ST denoting the price of the stock at time T , K the strike price, and
r the risk free interest rate, can be written as

Ct(K,T ) = exp{−r(T − t)}
+∞∫
0

(ST −K)+f(ST )dST , (1)

i.e., as the discounted expected value of the payoff with respect to the
so-called state price density f(ST ). The state price density (SPD) is
widely acknowledged to bear important information on the behaviour and
expectations of the market. An important application of SPD is that
it allows to price options with complicated payoff functions simply by
(numerical) integration of the payoff with respect to this density.

Prices Ct(K,T ) of European options with strike price K observed at
time t and expiring at time T allow to deduce the state price density in
the following form (Breeden and Litzenberger 1978)

f(K) = exp{r(T − t)}∂
2Ct(K,T )

∂K2
. (2)

Equation (2) is often used to estimate the state price density by the means
of nonparametric regression. Kernel smoothers were in this framework
proposed and succesfully applied by, e.g., Aı̈t-Sahalia and Lo (1998) or
Aı̈t-Sahalia, Wang and Yared (2000). Another, more sophisticated ap-
proach based on nonparametric least squares which allows to include the
required constraints is described and applied on simulated data in Härdle
and Yatchew (2001).
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Figure 1: Option prices plotted against strike price and time to maturity with
two-dimensional kernel regression surface (left) and scatterplot of the option
prices against strike price (right) on 16-th January 1995.

In the following, we will concentrate on nonparametric estimates of the
SPD. An extensive overview of parametric and other estimation techniques
can be found, e.g., in Jackwerth (1999).

An example of option prices data set is given on the left hand side
of Figure 1. You can see the typical shape of the data (decreasing and
convex) for various maturities. The structure of the data can be clearly
seen on the kernel regression surface which is also included in the plot.
The right plot in Figure 1 displays the data only for the shortest time to
expiry. In this paper, we will concentrate on this type of data and we
will propose a simple method for fitting a curve satisfying all the required
shape constraints such as monotonicity, convexity and the fact that the
second derivative (SPD) integrates to (less than) one.

2 Construction of the estimate

In this section, we construct an estimate of the state price density satisfy-
ing all of the shape constraints which follow from the theoretical properties
(no-arbitrage assumptions) of the option prices.

2.1 Notation

Let us denote the i-th observation of strike price by Ki and the corre-
sponding option price by Ci = Ct,i(Ki, T ). In praxis, one observes option
prices repeatedly for small number of distinct strike prices. Therefore,
it is useful to adopt the following notation. Let C = (C1, . . . , Cn)> be
the vector of observed option prices. We assume that the corresponding
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vector of the strike prices has the following structure:

K =


K1

K2

...
Kn

 =


k11n1

k21n2

...
kp1np

 ,

where k1 < k2 < · · · < kp, nj =
∑n
i=1 I(Ki = kj) with I(.) denoting the

the identificator function and 1n vector of ones of length n.
The symbol µj will denote the expected value of the option price

Ct(K,T ) in K = kj .

2.2 Assumptions and constraints

We assume that the i-th observed option price (corresponding to strike
price K) follows the regression model

Ct,i(K,T ) = µ(K) + εi, (3)

where εi are i.i.d. N (0, σ2) distributed variables. Heteroskedasticity can
be incorporated in model (3) if we assume that the random errors εi have
N (0, σ2

K) distribution.
From the theory of option pricing it follows that the function of true

conditional means µ(.) has to satisfy the following no-arbitrage constraints:

1. it is positive,

2. it is decreasing in K,

3. it is convex,

4. its second derivative exists and it is a density (i.e., nonnegative and
it integrates to one).

Let us now consider the family, F , of functions satisfying Constraints 1–4.

LEMMA 1 Suppose that f ∈ F . Then we have for its first derivative,
f ′, that limx→+∞ f

′(x) = 0 and limx→−∞ f
′(x) = −1.

PROOF:
Constraint 4 implies that the first derivative, f ′, exists and that it is dif-
ferentiable. limx→+∞ f

′(x) exists since the function f ′ is increasing (Con-
straint 3) and bounded (Constraint 2). Next, limx→+∞ f

′(x) = 0 since
negative limit would violate Constraint 1 for large x (f ′(x) cannot be pos-
itive because f(x) is decreasing). Finally, Constraint 4,

∫∞
−∞ f

′′(x)dx =

1 = limx→+∞ f
′(x) − limx→−∞ f

′(x), leads that limx→−∞ f
′(x) = −1.

�

2.3 Existence and uniqueness

In this subsection we address the issuess of existence and uniqueness of
a regression function satisfying the above stated assumptions and con-
straints.

In praxis, we don’t deal with continuous function. Hence, we restate
Constraints 1–4 for discrete functions, defined only on finite set of points,
say x1, . . . , xn, in terms of their function values, f(xi), and their scaled

first differences, f
(1)
xi,xj =

f(xi)−f(xj)

xi−xj
.
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5. f(xi) > 0, i = 1, . . . , n,

6. xi < xj implies that f(xi) ≥ f(xj),

7. xi < xj < xk implies that −1 ≤ f (1)
xi,xj ≤ f

(1)
xj ,xk ≤ 0.

It is easy to see that Constraints 5–7 are discrete versions of Constraints 1–
4.

From now on, similarly as in Robertson, Wright and Dykstra (1988),
we think of the collection, F , of functions satisfying Constraints 5–7 as a
subset of a p-dimensional Euclidean space, where p is the number of dis-
tinct xis. The constrained regression, ĝ, is in this setting the closest point
of F to the observed g with distances measured by the usual Euclidean
distance

d(f, g) = (f − g)>(f − g) =

n∑
i=1

{f(xi)− g(xi)}2. (4)

In this point of view, the regression function, ĝ, consists only of the values
of the function in the points x1, . . . , xn. The first and second differences
can be then used to approximate the first and the second derivatives,
respectively.

We claim that the set, F , of functions satisfying Constraints 5–7, has
the following properties

1. F is closed in the topology induced by the metric given by (4),

2. F is convex, i.e., if f, g ∈ F and 0 ≤ a ≤ 1, then af + (1− a)g ∈ F .

LEMMA 2 Assume that ĝ is the regression of g(xi) on x1 ≤ · · · ≤ xn
under Constraints 5–7. If a and b are constants such that a ≤ g(xi) ≤ b,
∀i, then a− (xn − x1) ≤ ĝ(xi) ≤ b+ (xn − x1).

PROOF:
It is not possible that ĝ(xi) lies bellow a or above b for all xi’s (otherwise
we would get better fit only by shifting ĝ(xi)). The bounds now follow
from Constraint 7. �

THEOREM 1 A regression, ĝ = arg minf∈F d(g, f), satisfying Con-
straints 5–7 exists.

PROOF:
Lemma 2 implies that ĝ belongs to a subset, S, of F bounded below by
a− (xn − x1) and above by b+ (xn − x1). Thinking of the functions as of
points in Euclidean space, it is clear that the continuous function d(f, g)
attains its minimum on the closed and bounded set S. �

REMARK 1 Suppose F is any convex set of functions on X and g is a
given function on X . If ĝ = arg minf∈F d(g, f) then for every f ∈ F ,

n∑
i=1

{g(xi)− ĝ(xi)}>{ĝ(xi)− f(xi)} ≥ 0. (5)

There exists at most one function ĝ satisfying (5).

PROOF:
See Robertson, Wright and Dykstra (1988, Theorem 1.3.1). �

4



β0 = µ4XX
XXX

XXXy
H
HH

H
HH

H
HY

β0 + β1 = µ3

@
@
@
@
@
@
@
@I

β0 + β1 + β1 + β2 = µ2

β0 + 3β1 + 2β2 + β3 = µ1

Figure 2: Illustration of the dummy variables.

COROLLARY 1 A regression, ĝ, satisfying Constraints 5–7 exists and
it is unique.

PROOF:
It follows from Theorem 1 and Remark 1. �

2.4 Regression model

The configuration of data, under Constraints 5–7 of Subsection 2.2, can
be easily described using simple regression model with constraints.

In the following, we fix the time t and the expiry date T and we
omit these symbols from the notation. Let us assume that the option
prices Ci(K) are repeatedly observed for small number p of distinct strike
prices K (such setup can be seen, for example, in the right hand plot in
Figure 1), where we have many observations (n = 575) observed only for
p = 8 distinct strike prices.

For simplicity of the following presentation we display the coefficients
βi in the situation with only four distinct strike prices (p = 4) in Figure 2.

Defining the expected values of the option prices given strike price,
µj = EC(Kj), we can write

µp = β0,

µp−1 = β0 + β1,

µp−2 = β0 + 2β1 + β2,

µp−3 = β0 + 3β1 + 2β2 + β3,

...

µ1 = β0 + (p− 1)β1 + (p− 2)β2 + · · ·+ βp−1.

Thus, we fit our data using coefficients βj , j = 1, . . . , p. The conditional
means µi, i = 1, . . . , p are replaced by the same number of parameters βj ,
j = 0, . . . , p − 1 which allow to impose the shape constraints in a more
natural way.

The interpretation of the coefficients βj can be seen from Figure 2.
β0 is the mean option price at point 4. Constraint 1, Subsection 2.2,
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implies that it has to be positive. β1 is the difference between the mean
option prices at point 4 and point 3; Constraint 2 implies that it has to be
positive. The next coefficient, β2, approximates change in first derivative
in point 3 and it can be interpreted as an approximation of the second
derivative in point 3. Constraint 3 implies that β2 has to be positive.
Similarly, β3 is an estimate of the (positive) second derivative of C(K) in
point 2. Constraint 4 can be rewritten as β2 + β3 ≤ 1.

In praxis, we start with the construction of a design matrix which
allows us to write the above model in the following linear form. For
simplicity of presentation, we again set p = 4:

µ1

µ2

µ3

µ4

 =


1 3 2 1
1 2 1 0
1 1 0 0
1 0 0 0



β0

β1

β2

β3

 . (6)

Ignoring the constraints on the coefficients would lead to simple linear
regression problem. Unfortunatelly, this approach does not have to lead,
and usually does not, to reasonable results.

Model (6) in the above form can be reasonably interpreted only if the
observed strike prices are equidistant and if the distances between the
neigbouring observed strike prices are equal to one. If we want to keep
the interpretation of the parameters βj as the derivatives of the estimated
function, we should use the design matrix

∆ =



1 ∆1
p ∆1

p−1 ∆1
p−2 · · · ∆1

3 ∆1
2

1 ∆2
p ∆2

p−1 ∆2
p−2 · · · ∆2

3 0
...

...

1 ∆p−2
p ∆p−2

p−1 0 · · · 0 0
1 ∆p−1

p 0 0 · · · 0 0
1 0 0 0 · · · 0 0


(7)

where ∆i
j = max(kj − ki, 0) denotes the positive part of the distance

between ki and kj , the i-th and the j-th (1 ≤ i ≤ j ≤ p) sorted distinct
observed values of the strike price.

The vector of conditional means µ can be written in terms of the
parameters β as follows

µ1

µ2

...
µp

 = µ = ∆β = ∆


β0

β1

...
βp−1

 . (8)

The constraints on the conditional means µj can now be expressed as
conditions on the parameters of the model (8). Namely, it suffices to
request that βi > 0, i = 0, . . . , p− 1 and that

∑p−1
j=2 βj ≤ 1.

The model for the observed option prices C and for the observed strike
prices K becomes

C = X∆β + ε, (9)

where X∆ is the design matrix in which each row of the matrix ∆ is
repeated nj times, j = 1, . . . , p.
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2.5 Implementing the constraints

In order to impose Constraints 5–7 on parameters βi, i = 0, . . . , p− 1, we
propose the following parametrization of the model in terms of parameters
θj , j = 0, . . . , p:

β0(θ) = exp(θ0),

β1(θ) =
exp(θ1)∑p
j=1 exp(θj)

,

...

βp−1(θ) =
exp(θp−1)∑p
j=1 exp(θj)

.

Clearly, parameters βi(θ) satisfy the constraints

βi(θ) > 0, i = 0, . . . , p− 1,
p−1∑
j=2

βj(θ) < 1.

This means that the parameters β2(θ), . . . , βp−1(θ) can be considered as
point estimates of the state price density (the estimates have to be positive
and integrate to less than one). Furthermore, in view of Lemma 1, it is
worthwhile to note that the parameters satisfy also

−
k∑
j=1

βj ∈ (−1, 0), for k = 1, . . . , p− 1.

Notice that
∑k
j=1 βj , for k = p− 1, . . . , 1, can be interpreted as estimates

of the integrated state price density.
The equality

exp(θp)

{
p−1∑
j=1

exp(θj)

}−1

= 1−

{
p−1∑
j=1

βj(θ)

}−1

shows the meaning of the parameter θp. Setting this parameter to −∞ is
the same as requiring that

∑p−1
j=2 βj(θ) = 1. This also allows to test the

hypothesis whether our data cover the support of the state price density
as H0: θp =∞ against H1: θp 6= −∞.

The model (9) written in terms of parameters θi, i = 0, . . . , p is a
nonlinear regression model which can be estimated using standard maxi-
mum likelihood methods. The main advantage of the maximum likelihood
estimator (MLE) is that the asymptotic distribution is well known and
that the asymptotic variance of the estimator can be approximated using
numerical methods implemented in many statistical packages.

Using the data displayed in the right hand plot in Figure 1, we ob-
tain the estimates displayed in Figure 3. The top plot displays the orig-
inal data, the second plot shows the estimate of the first derivative, and
the third plot shows the estimate of the second derivative, i.e., the state
price density. Actually, all plots contain two curves, both obtained using
model (9). The thick line is calculated using the parameters βi without
constraints whereas the thin line uses the reparametrization βi(θ) given
in Subsection 2.5. In Figure 3, these two estimates coincide since the
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Figure 3: 16th January 1995

model maximizing the likelihood without constraints, by chance, fulfills
the constraints (∃θ : βi = βi(θ), i = 0, . . . , p−1) and hence it is clear that
the same parameters maximize also the constrained likelihood.

The situation, in which the estimates with and without constraints
differ, is displayed in Figure 4. Notice that the difference between the two
regression curves is small whereas the difference between the estimates of
the state price density (i.e., the second derivative of the curve) is surpris-
ingly large. The unconstrained estimate shows very bad behaviour on the
left hand side of the plot. The constrained version behaves much more
reasonably. Very small difference between the fitted lines in the top plot
in Figure 4 leads to huge differences in the estimates of second derivative.

We can conclude that small errors in the estimates of the curve can
lead to huge errors in the estimates of the first and second derivatives.
The scale of this type of error seems to be limited by imposing the shape
constraints given in Subsection 2.2.

2.6 Inverse transformation of model parameters

For the numerical algorithm, it is useful to know how to calculate θs from
given βs. This is needed, for example, to obtain reasonable starting point
for the iterative procedure maximizing the likelihood.

LEMMA 3 Given β = (β1, . . . , βp)
>, where βp = 1 −

∑p−1
i=1 βi, the pa-

rameters θ = (θ1, . . . , θp)
> satisfy the system of equations(

β1>p − Ip
)

exp θ> = A exp θ> = 0, (10)

where 1 denotes vector of ones and I is the identity matrix. Furthermore,
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rankA = p− 1. (11)

The system of equations (10) has infinitely many solutions which can be
expressed as

exp(θ) =
(
A−A− Ip

)
z, (12)

where A− denotes the generalized inverse of A and where z is an arbitrary
vector in Rp such that the right hand side of (12) is positive.

PROOF:
Parts (10) and (11) follow from the definition of β(θ) and from simple
algebra (notice that the sum of rows of A is equal to zero). Part (12)
follows, e.g., from Anděl (1985, Theorem IV.18). �

It remains to choose the vector z in (12) so that the solution of the
system of equations (10) is positive.

PROPOSITION 1 The rank of matrix A−A − Ip is 1. Hence, any
solution of the system of equations (10) is a multiple of the first column of
the matrix A−A−Ip. The vector z in (12) can be chosen, e.g., as z = ±1p,
where the sign is chosen so that the resulting solution is positive.

PROOF:
The definition of the generalized inverse is

AA−A−A = A(A−A− Ip) = 0. (13)

Lemma 3 says that rankA = p − 1. Hence, equation (13) implies that
rank(A−A− Ip) ≤ 1. Noticing that A−A 6= Ip means that rank(A−A−
Ip) > 0 and concludes the proof. �
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2.7 The algorithm

The proposed algorithm consists of the following steps:

1. obtain reasonable initial estimate β̂, e.g., by running PAV algorithm
on the unconstrained least squares estimates of the first derivative
of the curve,

2. transform the initial estimates β̂ into the estimates θ̂ using the
method described in Subsection 2.6,

3. minimize the nonlinear least squares as described in Subsection 2.5
using numerical methods.

An application of this simple algorithm on real data is given in the next
section.

3 Application on DAX data

In order to illustrate the method, we apply it on observed DAX option
prices on two consecutive days. These days (16th and 17th January 1995)
were selected since they provide nice insight into the behaviour of the
presented methods.

The observed option prices on one day (16th January 1995) are plotted
on the left hand side of Figure 1 against maturity and strike price. The
shape of dependency of the option price on the strike price can be nicely
observed. For simplicity, in the following analyses we restrict ourselves
only to data for fixed maturity as displayed on the right plot in Figure 1.

In Figures 3 and 4 we observe the difference between the unconstrained
linear regression estimate and the constrained nonlinear regression esti-
mate described in Section 2.5.

In Figure 3, the unconstrained model incindentally satisfies all condi-
tions on the shape of the curve. Hence, the estimates of the curve itself
(1st plot) its first derivative (2nd plot) and the SPD (3rd plot) coincide.

On 17th January, the situation becomes more interesting and it il-
lustrates very clearly the advantages of the constrained estimator. In
Figure 4, we plot the unconstrained and the constrained estimates using
thick and thin line, respectively. Clearly, the difference between the fitted
data (1st plot) is very small. However, this small difference in the first
plot results in huge differences in the estimate of the first derivative (2nd
plot) and especially in the estimate of the second derivate, the SPD, in
the 3rd plot of Figure 4.

Figures 3 and 4 are, in more detail, discussed also in Subsection 2.5.

Interpretation of the estimates

The coefficients, β̂p−1, . . . , β̂2, plotted in Figures 3 and 4 can be described
as estimates of the changes of the first derivative in that point. Since the
first derivative of the curve corresponds to the integrated SPD, the coeffi-
cients β̂p−1, . . . , β̂2 estimate probabilities associated with the correspond-
ing strike price. These estimates can thus be interpreted as histogram-like
estimates of the state price density. Obviously, the next step might be
kernel smoothing of the above estimate which would easily provide contin-
uous and smooth estimates of the SPD. Using asymptotic distribution of
the Maximum Likelihood estimates we can obtain asymptotic pointwise
confidence intervals for the smoothed curve.
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Figure 5: Confidence intervals for SPD on 16th January 1995.

Using this model, it might be interesting to test whether the paramet-
ric models commonly used in praxis (e.g., mixtures of log-normal distri-
butions) are consistent with our nonparametric estimate of the SPD.

Confidence intervals for SPD

We present two simple methods for calculating pointwise confidence inter-
vals for the SPD. The description of the x-axis in Figures 5 and 6 shows
the number of observations at each of the design points.

Notice that, in the unconstrained model, the estimates of the values of
the SPD are directly the parameters of the linear regression model. Hence,
the confidence intervals for the parameters are also confidence intervals
for the SPD. These confidence intervals for 16th and 17th January are
displayed in upper plots in Figures 5 and 6. The drawbacks of this method
are clearly visible. In Figure 5, the lower bounds of the confidence intervals
do not satisfy the condition of positivity. In Figure 6, we observe large
variability on the left-hand side of the plot (the region with low number
of observations). Again, some of the lower bounds are not positive.

Clearly, the confidence intervals based on the unconstrained model
makes sense only if the constraints are, by chance, satisfied. Even if this
is the case, there is no guarantee that the lower bounds will be positive.

The lower plots in Figures 5 and 6 display confidence intervals condi-
tional on the fact that

∑p
i=1 exp(θi) = 1. This conditioning corresponds
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Figure 6: Confidence intervals for SPD on 17th January 1995.

to the following parametrization of the model:

β0(θ) = exp(θ0),

β1(θ) = exp(θ1),

β2(θ) = exp(θ2),

...

βp−1(θ) = exp(θp−1),

under the constraint that
∑p−1
i=1 βi(θ) < 1. Using maximum likelihood

theory, we calculate confidence intervals for the parameters θ (rescaled
so that

∑p
i=1 exp(θi) = 1). Exponentiating the limits of these confidence

intervals leads to valid confidence intervals for parameters β.
In Figure 5, both type of confidence intervals provide very similar

results. The only difference is at the minimum and maximum value of
the independent variable (strike price) where the unconstrained method
provides negative lower bounds and the conditional method leads to very
large upper bounds of the confidence intervals.

In Figure 6, we plot the confidence intervals for January 17th. Here,
the unconstrained and the conditional methods lead to very different es-
timates. We can observe that the confidence intervals on the right hand
side are much narrower for the conditional method. On the left hand side,
both methods tend to provide confidence intervals that look very wide.
For the conditional method, we observe that the confidence intervals look
“suspicious” when the estimated value of the SPD is very close too zero
and when the number of observation in that region (see the description of
the x-axis) is small.
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Figure 7: Estimate of SPD on 17th January 1995 for each hour.

Further considerations

The SPD estimates in Figure 7 were calculated for each hour separately in
order to display the development of the SPD during the day. The thickness
of the line corresponds to the time coordinate. Clearly, the estimate does
not change “too much” during the day. It might be easily tested if there
is a change in the behaviour of the SPD at a given time. Methods for
identifying a change of behaviour (changepoint) are one of the topics for
further research.

Appendix

Maximum Likelihood

Assuming normality, the log-likelihood for the model (9) can be written
as

l(C,X∆, θ, σ) = −n log σ − 1

2σ2
{C − X∆β(θ)}>{C − X∆β(θ)}, (14)

where X∆ is the design matrix given in (9). The maximum likelihood
estimator is defined as

θ̂ = arg max
θ
l(C,X∆, θ, σ). (15)

In order to implement the described algorithm numerically, it is useful
to express the contribution of the i-th row to the log-likelihood in the
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following form:

li(θ) = − log σ − 1

2σ2

{
Ci(K)− exp(θ0)−∆i

p
exp(θ1)∑p
j=1 exp(θj)

− ∆i
p−1

exp(θ2)∑p
j=1 exp(θj)

− · · · −∆i
2

exp(θp−1)∑p
j=1 exp(θj)

}2

= − log σ − 1

2σ2
r2
i , (16)

where ∆j
i = 0 if j ≤ i and where ri denotes the i-th residual. The

derivative of (16) with respect to the unknown parameters θ0, . . . , θp is

∂li(θ)

∂θ0
=

1

σ2
ri exp(θ0),

∂li(θ)

∂θk
= − 1

σ2
ri

−∆i
p

exp(θ1) exp(θk){∑p
j=1 exp(θj)

}2

− · · ·+ ∆i
p−k+1

exp(θk)
{∑p

j=1 exp(θj)− exp(θk)
}

{∑p
j=1 exp(θj)

}2

− · · · −∆i
2

exp(θp−1) exp(θk){∑p
j=1 exp(θj)

}2


= − 1

σ2
riβk(θ)

∆i
p−k+1 − (∆i

p, . . . ,∆
i
2)

 β1(θ)
...

βp−1(θ)


 .
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