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Abstract

This study gives an outline of modern theory of classification and regression
trees (CART) and shows the advantages of CART applications in finance.
Practical issues regarding CART applications and core implementation are
presented. The second part of the work is mainly concentrated on DAX30
market simulation results and shows how a CART-based business application
can perform on stock market as well as what supplementary results can be got
using CART as a forecasting system. In this realm comparison of technical
and fundamental approaches is performed. Finally, information ageing effect
in the context of learning sample construction is analyzed.

Keywords: CART, decision trees, financial applications, information ageing
effect, simulation
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1 Introduction to Classification and Regression Trees
(CART)

Classification and Regression Trees is a relatively new method of discriminant analysis
developped by a group of American scientists [1] during the last 25 years. As it is
for discriminant analysis, the aim of CART is to classify a group of observations or a
single observation into a subset of known classes. Comparing to classical parametric
discriminant analysis CART offers a number of particular benefits like a high degree of
results’ interpretability, high precision and fast computation.

CART is a non-parametric tool of discriminant analysis which is designed to represent
decision rules in a form of so called binary trees. Binary trees split learning sample data
imposing univariate linear restrictions and represent resulting data clusters hierarchically
starting from root node for the whole learning sample itself and ending with relatively
homogenous small groups of observations. For each terminal node class tag or forecasted
value is assigned, hence resulting tree structure can be interpreted as a decision rule.

Recall that traditional discriminant analysis operates only with discrete dependent
variables i.e. classes can be enumerated and represented in this way. Imagine that
instead of classes learning sample has some numerical data with continuous variables.
Moreover, there can be a connection between a continuous variable and a subset of
other continuous or disctere variables. In this situation classical discriminant analysis
can not be applied while CART will be able to produce decision trees and conduct a
classification. Trees with continuous dependent variable are called regression trees and
in fact are estimators of non-parametric regression model describing possible reltionship
between different variables of learning sample.

The following sections will provide an outlook of how decision trees are created, what
challenges arise during practical applications and, of course, a number of examples will
illustrate the power of CART in financial applications.

1.1 What is CART?

Classification and Regression Trees is a special method of creating decision rules to
distinguish between clusters of observations and determine the class of new observations.
A particular feature of CART is that decision rules are represented via binary trees, that
is why it can be extremely easy to apply these rules in practice.

Consider the following real life example of how high risk patients (those who will not
survive at least 30 days after heart attack is admitted) were identified at San Diego Med-
ical Center, University of California on the basis of initial 24-hour data. A classification
rule using at most three natural questions was produced (see Figure 1). Comparing
with classical discriminant analysis the precision of CART classification was even higher
while the rule itself does not require any additional calculations and can be easily used
virtually by anybody.

Here observation class is obviously a binary variable: low risk (0) and high risk (1).
Consider, however, different situation when we would be interested in the expected
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Figure 1: Decision tree example

amount of days the patient will be able to survive. Obviously the decision tree will
change its structure but the approach remains the same and terminal nodes will contain
data on mean expected number of days the patient will survive. Once we have got the
decision tree, a new patient can be diagnosed and be assigned to one of two possible
groups – everything on the basis of at most three simple questions. Obviously for this
example there is an implied assumption that there is a relationship between a set of
patient’s characteristics and expected durance of his/her life. This relationship was
estimated using CART applied to the learning sample where there is information about
patients and how long they lived. The decision rule then was explicitely presented via
the binary tree. Let Xi denote i-th factor from the factor space of learning sample X
consisting of p variables,

p⋃
i=1

Xi = X

Let Y be a dependent variable – binary or continuous. Then we assume that there
exists a mapping

f : X → Y

which is estimated in the step-function class, that is why decision tree can be represented
as it appears in the example. Obviously the estimator is not unique because learning
sample data can be split in numerous ways, hence the main question is to find some
"good" ways of splitting data so that future observations will be classified correctly.

1.2 CART advantages

When learning sample data are being split in order to find best node questions, an
iterative computer procedure is initiated and all possible splits are processed. Hence one
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may question the efficiency of such method. Nonetheless, CART appears to be a well
tuned procedure with numerous benefits.

• CART is non-parametric
This is very important even for analyzed dependencies of known nature where
researchers are able to set up some a priori functional forms and becomes extremely
important while performing explorative data mining of complex high dimensional
structures. When no data strucuture hypotheses are available, non-parametric
analysis becomes merely the single effective data mining tool. Moreover, when
building such a model one should not make any additional assumptions concerning
model errors distribution which becomes a substantial obstacle when sample errors
distribution does not match the required one.

• CART does not require variables to be selected in advance
This means that from a given subset of variables constituting a learning sample
CART will automatically select the most significant ones in some sense. Hence
even if learning sample holds some irrelevant information due to e.g. measurement
errors or misspecification, the model will choose correct splits by itself and hence
account for disturbances automatically.

• CART is very efficient in computational terms
Although all possible data splits are analyzed, CART architecture is flexible to
account all of them and do it quite quickly.

• Results are invariate with respect to monotone transformations of independent
variables
Hence it is relatively easy for a researcher to rescale properly the input variables
so that the intrepretability of results could be even higher.

• CART can handle datasets with complex structures
This becomes more important once no a priori information about dataset is avail-
able. On the other hand this peculiarity allows to consider a bigger variety of
possible model specifications.

• CART is extremely robust to the effect of outliers
Due to data-splitting nature of decision rules creation it is possible to distiguish
between datasets with different characteristics and hence to neutralize outliers in
separate nodes.

• CART can use any combination of continuous and categorical data
That is why researcher is no more limited to a particular class of data and created
models will be able to capture more real-life effects to make prediction accuracy
higher.

Hence CART can be easily applied to a variety of fields especially in financial applica-
tions where nowadays there is a growing need for a set of robust and efficient classification
methods.
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1.3 How do decision trees work?

In order to create a decision tree two major questions should be answered. Firstly, a
proper variable and a proper question value must be determined for each of the tree’s
nodes. For instance, in the example above there was a question if the patient’s age is
greater than 62.5 years. Hence age variable was somehow the most significant at that
particular tree node and a threshold of 62.5 was also determined due to some particular
criterion. Secondly, a right configuration i.e. size of decision tree must be found since it
is possible to split all learning sample data until absolutely class homogenous groups of
observations are left whereas such kind of structure will obviously lack predictive power.

Let Xi be the i-th variable of the learning sample X, then an arbitrary decision tree
node poses a question like

Xi ≤ x (1)

where x is some constant.
Since such kind of restrictions are univariate, data splitting is always orthogonal. Fig-

ure 2 is an example of how similar questions may work with simulated two-dimensional
data. Here only two questions were sufficient to split the data reasonably.

But how the optimal values were determined? First let’s analyze the question of
existance of splits for an arbitrary data set. Is it always possible to filter the data in the
way that each cluster has only class homogenous datasets? The answer is positive since
every coordinate of a p-dimensional observation Xi = (X1

i , X2
i , . . . , Xp

i ) in the space X
can be bounded in the following way:

a1
i < X1

i < b1
i

a2
i < X2

i < b2
i

...
ap

i < Xp
i < bp

i

(2)

for some arbitrary constants aj
i and bj

i .
On the other hand it is quite obvious that these constants are not unique, since it is

always possible to find p-dimensional vector ε → 0 so that
a1

i − ε1 < X1
i < b1

i + ε1

a2
i − ε2 < X2

i < b2
i + ε2

...
ap

i − εp < Xp
i < bp

i + εp

(3)

Hence for any learning sample splitting algorithm alowing to separate class homoge-
nous clusters of observations always exists since in limiting case one can split the sample
up to a set of single observations. But the solution is non-unique, that is why we will
introduce effective ways of splitting the data.

Hence some criterion measuring data homogeneity or impurity should be introduced.
Then different feasible data splits should be compared according to this measure and
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Figure 2: Simulated data splitting via orthogonal clusters

thus it will be possible to find an optimal split for a given tree node once such measure
is determined and possesses some "good" properties.

It is also important to point out that for any such criterion the number of feasible
splits is always finite. Moreover, it is always possible to split data if question values x
are taken as variable values from the learning sample. If there are two one-dimensional
observations v1 and v2 then obviously a filter in form of X ≤ v1 will cluster each obser-
vation. Note, however, that a similar filter X ≤ v1+v2

2
will result in same split. Hence

it is always sufficient to make a grid based on observation values in the learning sample
in order to find the best x given some criterion. For reasons of robustness a symmetric
grid is usually considered i.e. means between different observations are used to construct
filters.

Depending on the type of a decision tree or more precisely – on the type of depen-
dent variable, different splitting approaches based on so called impurity functions are
available. We will start with classification trees and then proceed with regression ones.
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Suppose next that each split is determined optimally and learning sample is clustered
up to absolutely class homogenous groups – a tree representing such a structure is called
a maximum tree since it is impossible to make additional data split without violating
a condition that some base node (or so called parent node) has observations of differ-
ent classes. The next important question arising during tree construction is where to
stop splitting i.e. how to determine the optimal decision tree configuration. There are
different available approaches which share the logic for both types of the trees: classi-
fication and regression. We will then try to analyze advantages and disadvantages of
these methods especially in the realm of financial applications.

1.4 Impurity measures for classification trees

Let’s introduce some basic learning sample data characteristics we will operate in future.
Suppose there are N observations in the learning sample and Nj is the overall number of
observations belonging to class j, j = 1, J . Then define class probabilities as following:

{π(j)}j=J
j=1 =

{
Nj

N

}j=J

j=1

(4)

i.e. a proportion of observations belonging to particular class relative to overall number
of observations.

Let N(t) be the number of observations in node t and Nj(t) – the number of observa-
tions belonging to j-th class in the same node t. Then a joint probability of the event
that an observation of j-th class falls into node t is:

p(j, t) = π(j)
Nj(t)

Nj

(5)

Hence p(t) =
J∑

j=1

p(j, t) and condtional probability of an observation to belong to node

t given that its class is j is computed as following:

p(j| t) =
p(j, t)

p(t)
=

Nj(t)

N(t)
(6)

i.e. proprtion of class j in node t. It is obvious that
J∑

j=1

p(j| t) = 1.

Let’s now introduce a new measure of the tree which shows the degree of class ho-
mogeneity in a given node and call this characteristic an impurity measure i(t) which
will be able to represent a class homogeneity indicator for a given tree node and hence
will help to find optimal question value x as well as proper variable number for a node
equestion. But first we will define an impurity function ϕ(t) which is determined on

subsets {p1, . . . , pJ} for ∀J and pj ≥ 0, j = 1, J ,
J∑

j=1

pj = 1 so that:

1. ϕ has a unique maximum at point
(

1
J
, 1

J
, . . . , 1

J

)
;
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2. ϕ has a unique minimum at points (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . ., (0, 0, 0, . . . , 1);

3. ϕ is symmetric function of p1, . . . , pJ

Each function satisfying these conditions can be called an impurity function. Given
function ϕ, define impurity measure i(t) for a node t as:

i(t) = ϕ (p(1| t), p(2| t), . . . , p(J | t)) (7)

It is important to point out that from given definitions it follows that it is possible to
define multiple impurity measures for the same node t.

Denote an arbitrary data split by s, then for a given tode t which we will call a parent
node two child nodes arise: tL and tR representing correspondingly observations subsets
meeting and not meeting filter s so that a fraction pL of data from t falls at left child
node and pR = 1− pL is the share of data in tR.

Figure 3: Parent and child nodes hierarchy

Hence a quality measure of how well split s filters the data according to class hetero-
geneity (which can be defined arbitrary) is

∆i(s, t) = i(t)− pL · i(tL)− pR · i(tR) (8)

Obviously, the higher is the value of ∆i(s, t) – the better split we have since it was
possible to reduce data impurity more significantly. Since tL ∪ tR = t, the value ∆i(s, t)
represents a change of data impurity in t solely due to split s.

To find the optimal question value x and the proper variable for that question i.e. to
find optimal s it is natural to maximize ∆i(s, t) by different s at each node t. Hence
such kind of procedure will enable one to build a decision tree of any configuration up
to a maximum tree.

While searching for optimal value s∗, the value of i(t) in fact remains constant, hence
it is equivalent that
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s∗ = argmax
s

∆i(s, t) = argmax
s

{−pLi(tL)− pRi(tR)} =

= argmin
s

{pLi(tL) + pRi(tR)} (9)

where tL and tR are implicit functions of s.
If resulting nodes are not class homogenous, the same procedure can be looped until

a decision tree becomes of required configuration. Classes are then assigned to terminal
nodes using the following rule:

If p(j| t) = max
i

p(i| t), then j∗(t) = j (10)

If maximum is not unique, then class j∗(t) is assigned arbitrary from the pool of
arguments {i} for which p(i| t) takes its maximum value.

By this momement function i(t) was not defined, hence the proposed algorithm is in
fact quite versatile. But before proceeding with specification of i(t), it is worth pointing
out the following. Maximizing the increment of impurity function means that only two
levels of a decision tree are taken into account whereas other parts of the tree can not
influence optimal split. That is why the procedure can be characterized only as locally
optimal.

Is it possible to build a globally optimal algorithm of data splitting? Imagine that
locally optimal maximum tree has n terminal nodes. Then to build a globally optimal
decision tree one should check every possible tree structure with the same number of
terminal nodes which will rocket the amount of necessary computations. Moreover, n
is just an estimate of how many terminal nodes a globally optimal tree should have
because in fact it can be different. Hence the procedure should be looped so that all
possible combinations are taken into account – this, of course, makes the amount of
computations overwhelming.

Thus in practice a locally optimal variant is used, but one should keep in mind that
locally optimal tree is not necessarily globally optimal and, that is probably more im-
portant, globally optimal tree is not necessarily locally optimal.

In financial sphere where computations are sometimes required to be done virtually
online or at least to be conducted very quickly, the speed matter becomes crucial, that is
why it is reasonable to apply locally optimal procedures. Once an enhanced precision is
required e.g. in credit scoring or portfolio optimizations and computation speed recedes
into the background, then if sufficient computing power is available it will be possible
to construct globally optimal decision rules. Nonetheless, to the best knowledge of the
author nowadays commercial versions of software capable of producing globally optimal
structures are not present on the market.

Let’s get back to the question of impurity function specification. Perhaps the most
natural way to define data impurity is to use the variance measure. Assign 1 to all
observations at node t belonging to class j and 0 to others. Then a sample variance
estimate for node t observations is:
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p(j| t) (1− p(j| t) (11)

Summing over all J classes we get a so called Gini index:

J∑
j=1

p(j| t) (1− p(j| t) = 1−
J∑

j=1

p2(j| t) (12)

Thus Gini index can be considered as a function ϕ(p1, . . . , pJ) which in its turn is a
second degree polynom with non-negative coefficients. For each convex function it holds
that for ∀α ≥ 0:

ϕ (αp1 + (1− α)p′1, αp2 + (1− α)p′2, . . . , αpJ + (1− α)p′J) >

> αϕ(p1, . . . , pJ) + (1− α)ϕ(p′1, . . . , p
′
J)

Since

ϕ(αp1 + (1− α)p′1, . . . , αpJ + (1− α)p′J) =

[
1− α

J∑
j=1

p2
j

]
+

+

[
1− (1− α)

J∑
j=1

p′j
2

]
= 2− α

J∑
j=1

p2
j − (1− α)

J∑
j=1

p′j
2

and

αϕ(p1, . . . , pJ) + (1− α)ϕ(p′1, . . . , p
′
J) =

[
α− α

J∑
j=1

p2
j

]
+

[
(1− α)− (1− α)

J∑
j=1

p′
2
j

]
=

= 1− α
J∑

j=1

p2
j − (1− α)

J∑
j=1

p′
2
j

we conclude

2− α

J∑
j=1

p2
j − (1− α)

J∑
j=1

p′
2
j > 1− α

J∑
j=1

p2
j − (1− α)

J∑
j=1

p′
2
j

that is why function ϕ is convex.
This property of Gini index is quite important. Since ϕ(p1, . . . , pJ) is a convex function

and pL + pR = 1, we get:

i(tL)pL + i(tR)pR = ϕ (p(1| tL), . . . , p(J | tL)) pL + ϕ (p(1| tR), . . . , p(J | tR)) pR ≤
≤ ϕ (pLp(1| tL) + pRp(1| tR), . . . , pLp(J | tL) + pRp(J | tR))

where inequality becomes an equality in case p(j| tL) = p(j| tR), j = 1, J .
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Recall that
p(j, tL)

p(t)
=

p(tL)

p(t)
· p(j, tL)

p(tL)
= pL · p(j| tL)

and since
p(j| t) =

p(j, tL) + p(j, tR)

p(t)
= pLp(j| tL) + pRp(j| tR)

we can conclude that
i(tL)pL + i(tR)pR ≤ i(t) (13)

Hence each variant of data split leads to ∆i(s, t) > 0 unless p(j| tR) = p(j| tL) = p(j| t)
i.e. when even the best available univariate filter can not decrease class heterogeneity.

Given the way how Gini index is computed it becomes obvious that this impurity
measure can be quite effective. First, it is relatively cheap in terms of computation
speed and second, as it was mentioned before, Gini index is relatively robust to the
effect of outliers – a few outliers can not drastically change the values of p(j| t), j = 1, J ,
hence s∗ is not affected.

But of course impurity measure can be defined in a number of different ways, for
practical applications a so called twoing rule should also be considered.

Its idea is completely different. Instead of looking for maximization of impurity mea-
sure change at a particular node, twoing rule tries to balance constructed tree in a special
way as if learning sample had only two classes. The reason for such an algorithm is that
a decision rule based on twoing criterion is able to distinguish observations between gen-
eral factors on top levels of the tree and take into account specific data characteristics
at lower levels.

If S = {1, . . . , J} is a set of learning sample classes, let’s divide it into two subsets

S1 = {j1, . . . , jn} , and S2 = S\S1

so that all observations belonging to S1 get dummy class 1, and the rest – dummy
class 2.

The next step is to calculate ∆i(s, t) for different s as if there were only two dummy
classes. Since actually ∆i(s, t) depends on S1, the value ∆i(s, t, S1) is maximized. That
is why we get a two-step procedure: first, find s∗(S1) maximizing ∆i(s, t, S1) and second,
find a superclass S∗

1 maximizing ∆i(s∗(S1), t, S1).
In other words the idea of twoing criterion is two find such a combination of super-

classes at each node as if impurity increment was maximized for the data only with two
classes S = {1, 2}.

This method provides one big advantage: it finds so called strategic nodes i.e. nodes
filtering observations in the way that they are different to the maximum feasible extent.

Although applying twoing rule may seem to be desirable especially for data with a
big number of classes, another challenge can arise, namely computational speed. Let’s
assume that learning sample has J classes, then a set S can be split into S1 and S2

by 2J−1 ways. For 11 classes data in learning sample it will create more than 1000
combinations. Fortunately there is a result helping to reduce drastically the amount of
necessary computations.
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It can be proven [1] that in a classification task with two classes and impurity measure
p(1| t)p(2| t) for an arbitrary split s a superclass S1(s) is determined as following:

S1(s) = {j : p(j| tL) ≥ p(j| tR)} ,

max
S1

∆i(s, t, S1) =
pLpR

4

[
J∑

j=1

|p(j| tL)− p(j| tR)|

]2

(14)

Hence twoing rule can be easily applied in practice as well as Gini index, although the
first criterion works a bit slower.

1.5 Gini index and twoing rule in practice

In this section we will conclude the overview of two most popular impurity measures for
classification trees by looking at practical issues of using these two rules.

Consider1 some learning dataset wih 400 observations characterizing automobiles:
their make, type, color, technical parameters, age etc. The aim is to build a decision
tree splitting different cars by their makes basing on other feasible relevant parameters.

Look at this classification tree constructed using Gini index.

Figure 4: Classification tree constructed by Gini index

A particular feature here is that at each node observations belonging to one make are
filtered i.e. observations with most striking characteristics are separated. As a result a
decision tree is able to pick out autmobile makes quite easily.

1Example is taken from Critical Features of High Performance Decision Trees Salford Systems adver-
tisement leaflet
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The next tree (Figure 5) for the same data is somewhat different.

Figure 5: Classification tree constructed by twoing index

Instead of specifying particular car makes at each node, application of twoing rule
results in demonstration of strategic nodes i.e. questions which distinguish between
different car classes to the maximum extent. This feature can be vital when high-
dimensional datasets with a big number of classes are processed. A typical example is
speech recognition problem – every word can be coded with a new class, then if twoing
rule is applied, classification tree probably will split different words by the number of
syllables: with one and more than one syllables. At the next step other similar words’
characteristics will be probably taken into account.

For financial applications some researchers claim that Gini index is more preferable
than twoing rule. It is impossible, of course, to derive such an absolute dominance
theoretically, but some simulations which we carried out for DAX data showed that
such dominance can exist at least for particular datasets.

1.6 Optimal size of a decision tree: overview of available
methods

By this moment we were interested in determining the best split s∗ at a particular node.
The next and perhaps more important question is how to determine the optimal tree
size i.e. when to stop splitting. Why is this important?
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Consider the application of some impurity measure recursively to some dataset. In
limiting case it is possible to stop splitting once the node has only observations of the
same class i.e. when there is no advantage of splitting data anymore. If each terminal
node has only class homogenous dataset, then such kind of tree accounts for all data
variations: every point of the learning sample can be flawlessly classified using this
maximum tree. But can be such approach fruitful in financial practice?

In classification procedures terms underspecification and overspecification are fre-
quently used. The direct use of maximum tree is the obvious case of overspecifica-
tion. This implies that learning sample is characterized absolutely by a decision tree i.e.
without any errors. However in most cases application of maximum tree to real data
results in severe errors. The reason is that maximum classification or regression tree
accounts for any, even small and insignificant data variations which can be caused by
random shocks or measurement errors. That is why when an unclassified observation
is processed using maximum tree, with a high probability it can follow to a terminal
node describing such kind of disturbance. Hence the recommendation of a rule will be
obviously biased. That is why a maximum tree usually tries to explain purely random
effects using factor space of the learning sample. But such an explanation is usually
only spurious, moreover – nobody could guarantee that future random distirbances are
accounted in the same way. There is a small probabiltity that when classifying a new
observation it follows to "fundamental" part of the tree which in some cases can be of
course a subset of terminal nodes but there is no way to regularize this event.

On the other hand a too small or simple decision rule is not a panacea. In this case
significant relationships probably could not be revealed since only a few iterations were
used to split the dataset. Hence decision rules become too rough and possibly do not
account some fundamental data relationships.

Thus some special criterion is required to stop data splitting. Since tree building
is mostly dependent on ∆i(s, t), the easiest way is to involve this variable into a rule.
When data splitting becomes useless in terms of ∆i(s, t)? The answer is quite obvious:
in case ∆i(s, t) = 0. But ∆i(s, t) = 0 usually means the limiting case or approaching
the maximum tree, hence the primary criterion could be of the following form – stop
data splitting if

∆i(s, t) < β̄ (15)

where β̄ is some threshold value. So if for a subset of data all possible splits were
tried (recall that there is always a finite number of splits) and max

s
∆i(s, t) < β̄ then

no splitting is conducted. It is worth pointing out that setting β̄ = 0 is equivalent to
building the maximum tree.

The value of β̄ is unknown and could be determined from data simulations, but unfor-
tunately this is not the only drawback of the method. Empirical simulations conducted
by many researches show that impurity increment is frequently non-monotone, that is
why even for small β̄ decision tree may be underparametrized. Setting even smaller
values for β̄ will probably remedy the situation but at cost of tree overparametriza-
tion. Setting high values for β̄ significantly increases the risk of underparametrization
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explicitely and since there can be a high value of impurity increment preceded by a value
smaller than β̄, the situation can become even worse.

Another possible way to determine the adequate shape of a decision tree is to set up
a restriction on the minimum number of observations N̄ at each terminal node. If at
terminal node t the number of observations is higher

N(t) > N̄ (16)

then this node is also being split as data are still not supposed to be clustered well
enough. Although the dynamic of N(t) is always monotone due to the way question
values are selected, the problem of estimation of N̄ is still remaining. On the other
hand, using historical simulations for financial data or artificial samples it is sometimes
possible to estimate a more or less robust level of N̄ that for some cases results in better
productivity and even overall efficiency comparing with more advanced and demanding
methods. Difficulties with estimation of N̄ suggest the usage of some criterion which
would not share described drawbacks and particularly would not require any a priori
information like N̄ or β̄.

Thus a procedure called cross-validation is usually employed.

1.7 Cross-validation as a method of optimal decision tree
pruning

Usually cross-validation implies a procedure which uses available data in the way so that
the bigger part of them is employed as a training set and the rest – as a test set. Then
the process is looped so that different parts of the data become learning and training set,
so that at the end each datapoint was employed both as a member of test and learning
sets. The aim of this procedure is to extract maximum information from the learning
sample especially in the situations of data scarceness.

The procedure is implemented in the following way. First, learning sample is randomly
divided into V parts – after that (V − 1) refer to training set and one part – to test
set. Using training set a decision tree is constructed while the rest of the data (test
set) is used to verify the tree quality since its actual class/response value is known from
learning sample. At the next step the pool of data which was used as test set becomes
a part of learning set whereas another 1

V
-th part of the data becomes a test set. The

loop stops when all data points were employed in such a way i.e. maximum information
from the data was extracted.

The aim of cross-validation is to compare the quality of the tree in different configura-
tions i.e. trees of different size. Define L\Lv, ∀v = 1, V as the training set and Lv as the
test set where L is the learning sample itself. For a given classification rule dv basing on
learning set L\Lv it is then possible to estimate its quality in the following way:

E1
(
d(v)

)
=

1

Nv

∑
(ln,jn)∈Lv

I
(
d(v)(ln) 6= jn

)
(17)

where ln is a test set observation with class jn and E1
(
d(v)

)
is a one-iteration estimate.
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Since none of the observations from Lv was engaged during construction of decision
rule d(v), it is then possible to define the cross-validation measure of tree quality as

ECV (d) =
1

V

V∑
v=1

E1
(
d(v)

)
(18)

The next important point is how to choose V . Although V is not an internal calibration
parameter like β̄, it is still quite important because this parameter is the key factor in
speed-precision trade-off. It is worth noting that cross-validation can be extremely slow
for big N and V , hence an adequate balance is required. Usually the value of V can be
specified given the precise task formulation where time constraint becomes extremely
important. Imagine that an online classification system is required e.g. for classifying
different high-frequency stock exchange operations, then if one classification takes say
several minutes and time constraint is only one second – cross-validation is obviously the
wrong algorithm to apply. Nonetheless, usually time constraints are not so extremely
tough, that is why the choice of V is mainly dependent on feasible computing power.

Unfortunately for small values of V cross-validation estimates can be unstable since
each iteration a cluster of data is selected randomly and the number of iterations itself
is relatively small, thus the overall estimation result is somewhat random. Empirical
simulations showed that e.g. for DAX30 stock selection classification problem (see next
part of the study) where the individual stock average yield was about 25%, the devia-
tion caused by this kind of randomness was about 10% which is, of course, absolutely
inadequate.

Since N
(
1− 1

V

)
→ N for big V ≤ N the only way out can be to increase V . In

the limiting case where V = N randomness obviously disappears but only at cost of
overwhelmingly increased amount of computations. For practical financial applications
with high-dimensional datasets significant increase of V can be not feasible unless su-
percomputers are employed.

Nowadays cross-validation with V = 10 is an industry standard and for many ap-
plications different researches claim that result robustness is at acceptable level, hence
we can conclude that cross-validation can be recommended as the primary method for
decision tree optimizations.

But employing cross-validation method itself for all possible tree configurations is also
not feasible due to computational constraints. Here the question arises – is it possible to
check not all subtrees of the maximum tree but only special key subtrees? With results
introduced in [1] it appeared to be possible.

1.8 Cost-complexity function and cross-validation

The idea of the method is to introduce some new measure that would be able to take into
account tree complexity i.e. its size which can be estimated by the number of terminal
nodes: then maximum tree will get a penalty for its big size, on the other hand it will be
able to make perfect in-sample predictions. Small trees will, of course, get much lower
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penalty for their size but their predicting abilities are naturally limited. Optimization
procedure based on such trade-off criterion could determine the best decision tree size.

Define internal misclassification error of an arbitrary observation at node t as e(t) =
1−max

j
p(j| t), define also E(t) = e(t)p(t). Then internal misclassification tree error is

E(T ) =
∑
t∈T̃

E(t) where T̃ is a set of terminal nodes.

This estimates are called internal because they are based solely on the learning sample
on the contrary to cross-validation which artificially introduces both learning and test
sets. It may seem that using E(T ) as tree quality measure is sufficient but unfortunately
it is not so. Consider the case of maximum tree where E(TMAX) = 0 i.e. the tree is
of best configuration. As it was discussed above, maximum tree can represent optimal
decision rules only in quite rare cases.

For any subtree T ≤ TMAX define the number of terminal nodes
∣∣∣T̃ ∣∣∣ as a measure of

its complexity. Then the following cost-complexity function could be used to optimize
decision tree size:

Eα(T ) = E(T ) + α
∣∣∣T̃ ∣∣∣ (19)

where α ≥ 0 is a complexity parameter and α
∣∣∣T̃ ∣∣∣ is cost component: the more complex

is the tree (the higher is the number of terminal nodes) – the lower is E(T ) but at the
same time the higher is the penalty α

∣∣∣T̃ ∣∣∣ and vice versa.
Alhough α can have infinite number of values, the number of subtrees of TMAX re-

sulting in minimization of Eα(T ) is finite. Hence pruning of TMAX leads to creation of
subtrees sequence T1, T2, T3, . . . with a decreasing number of terminal nodes. Since the
sequence is finite, if T (α) is an optimal subtree for some arbitrary α, then it will remain
optimal until complexity parameter is not changed to some α′ when T (α′) becomes a
new optimal subtree until complexity parameter value is α′′ and so on.

The main question is if the optimal subtree T ≤ TMAX for a given α minimizing Eα(T )
always exists and if it is unique? Moreover, for the reasons of computational efficiency
which are usually crucial in financial applications we are interested if the sequence of
optimal subtrees for different values of α is nested i.e. T1 � T2 � . . . � {t0} where t0 is
the root node (learning sample itself)? In this case the number of subtrees to check is
obviously reduced drastically.

In [1] it is shown that for ∀α ≥ 0 there exists an optimal tree T (α) in the sense that

1. Eα (T (α)) = min
T≤TMAX

Eα(T ) = min
T≤TMAX

[
E(T ) + α

∣∣∣T̃ ∣∣∣]
2. if Eα(T ) = Eα (T (α)) then T (α) ≤ T .

This result is then not only proof of existance, but also a proof of uniqueness: consider
another optimal subtree T ′ so that T and T ′ both minimize Eα and are not nested, then
T (α) does not exist in accordance with second condition.
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The idea of introducing cost-complexity function at this stage is to check only a subset
of different subtrees of TMAX : optimal subtrees for different values of α. The starting
point is to define the first optimal subtree in the sequence so that E(T1) = E(TMAX)
and the size of T1 is minimum among other subtrees with the same cost level. To get
T1 out of TMAX for each terminal node of TMAX it is necessary to verify the condition
E(t) = E(tL)+E(tR) and if it is fulfilled – node t is pruned. The process is looped until
no extra pruning is available – the resulting tree T (0) becomes T1.

Define node t as ancestor of t′ and t′ as descendant of t if there is a connected path
down the tree leading from t to t′.

Figure 6: Decision tree hierarchy

In this example nodes t4, t5, t8, t9, t10 and t11 are descendants of t2 while nodes t6 and
t7 are not descendants of t2 although they are positioned lower since it is not possible
to connect them with a path from t2 to these nodes without engaging t1. Analogously
nodes t4, t2 and t1 are ancestors of t9 and t3 is not ancestor of t9.

Define the branch Tt of the tree T as a subtree based on node t and all its descen-
dants. For the example above marked area represents the branch Tt2 . This brach can
be considered as a separate tree.

Pruning a branch Tt from a tree T means deleting all descendant nodes of t. Denote
transformed tree as T −Tt. For our example pruning the branch Tt2 will result in a new
tree on Figure 8.

Now for any branch Tt define an internal misclassification estimate as:

E(Tt) =
∑
t′∈T̃t

E(t′) (20)
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Figure 7: The branch Tt2 of original tree T

Figure 8: T − Tt2 – pruned tree T

where T̃t is the set of terminal nodes of Tt. Hence for arbitrary node t of T1 is true that

E(t) > E(Tt) (21)

Consider now cost-complexity misclassification estimate for branches or single nodes.
Define a single node estimator as

E ({t}) = E(t) + α (22)

where {t} is a subtree consisting of signle node t and branch estimate as

Eα(Tt) = E(Tt) + α
∣∣∣T̃t

∣∣∣ (23)

When Eα(Tt) < Eα ({t}) the branch Tt is preferred to single node {t} according to
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cost-complexity misclassification estimation. But for some critical α both values will
become equal – this critical value of α can be determined from the following inequality:

Eα(Tt) < Eα ({t}) (24)

which is equivalent to

α <
E(t)− E(Tt)∣∣∣T̃t

∣∣∣− 1
(25)

where α > 0 since E(t) > E(Tt)
To get the next member of optimal subtrees sequence i.e. T2 out of T1 a special node

called weak link is determined. For this purpose a function g1(t), t ∈ T1 is defined as

g1(t) =

{
E(t)−E(Tt)

|T̃t|−1
, t /∈ T̃1

+∞, t ∈ T̃1

(26)

Then node t̄1 is a weak link in T1 if

g1(t̄1) = min
t∈T1

g1(t) (27)

and new value for α2 is defined as

α2 = g1(t̄1) (28)

New tree T2 ≺ T1 in the sequence is obviuosly defined by pruning the branch Tt̄1 i.e.

T2 = T1 − Tt̄1 (29)

The process is looped until root node {t0} – the final member of sequnce – is reached.
When there are multiple weak links detected, for instance gk(t̄k) = gk(t̄

′
k), then both

branches are pruned i.e. Tk+1 = Tk − Tt̄k − Tt̄′k
In this way it is possible to get the sequence of optimal subtrees TMAX � T1 � T2 �

T3 � . . . � {t0} for which it is possible to prove that the sequence {αk} is increasing i.e.
αk < αk+1, k ≥ 1 and α1 = 0. For k ≥ 1: αk ≤ α < αk+1 and T (α) = T (αk) = Tk.

Practically this tells us how to implement the search algorithm. First, maximum tree
TMAX is taken, then T1 is found after what weak link t̄1 is detected and branch Tt̄1 is
pruned off, α2 is calculated and the process is looped.

When the algorithm is applied to T1, the number of pruned nodes is usually quite
significant. For instance, consider the following typical empirical evidence:

Tree T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13∣∣∣T̃k

∣∣∣ 71 63 58 40 34 19 10 9 7 6 5 2 1

Table 1: Typical pruning speed
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When the trees become smaller, the difference in the number of terminal nodes also
gets smaller.

Finally, it is worth mentioning that the sequence of optimally pruned subtrees is a
subset of trees which might be constructed using direct method of internal misclassi-
fication estimator minimization given a fixed number of terminal nodes. Consider an
example of tree T (α) with 7 terminal nodes, then there is no other subtree T with 7
terminal nodes having lower E(T ). Otherwise

Eα(T ) = E(T ) + 7α < Eα (T (α)) = min
T≤TMAX

Eα(T )

which is impossible by definition.
Applying the method of V -fold cross-validation to the sequence TMAX � T1 � T2 �

T3 � . . . � {t0}, an optimal tree is determined.
On the other hand it is frequently pointed out that choice of tree with minimum value

of ECV (T ) is not always adequate since ECV (T ) is not too robust i.e. there is a whole
range of values ECV (T ) satisfying ECV (T ) < E

CV

MIN(T ) + ε for small ε > 0. Moreover,
when V < N a simpe change of random generator seed will definitely result in changed
values of

∣∣∣T̃k

∣∣∣ minimizing Ê(TK). Hence a so called one standard error empirical rule
is applied which states that if Tk0 is the tree minimizing ECV (Tk0) from the sequence
TMAX � T1 � T2 � T3 � . . . � {t0}, then a value k1 and a correspondent tree Tk1 are
selected so that

argmax
k1

Ê(Tk1) ≤ Ê(Tk0) + σ
(
Ê(Tk0)

)
(30)

where σ(·) denotes sample estimate of standard error and Ê(·) – the relevant sample
estimators.

The dotted line on Figure 9 shows the area where the values of Ê(Tk) only slightly
differ from min

|T̃k|
Ê(Tk). The left edge which is roughly equivalent to 12 terminal nodes

shows the application of one standard error rule.
The use of one standard error rule allows not only to achieve more robust results but

also to get trees of lower complexity given the error comparable with min
|T̃k|

Ê(Tk).

1.9 Regression trees: what is the difference?

By this moment we mainly concentrated on decision trees as a structure and covered
some aspects of classification trees creation. Although regression trees share similar
logic, there are some important peculiarities which should be covered not forgetting, of
course, the technical aspects of regression trees building.

Recall that the only difference between classification and regression tree is the type of
dependent variable. When it is discrete, a decision tree is called classification, regression
tree is a decision tree with a continuous dependent variable.
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Figure 9: The example of relationship between Ê(Tk) and number of terminal nodes

Main stages of classification trees creation remain the same for regression ones. First
and foremost, there should be some criterion worked out so that learning sample data
can be efficiently split. At the second stage, the maximum regression tree should be
efficiently pruned as well.

Gini index and twoing rule discussed in previous sections assume that the number of
classes is finite and hence introduce some measures based mainly on p(j|t) for arbitrary
class j and node t. But since in case of continuous dependent variable there are no more
classes, this approach cannot be used anymore unless groups of continuous values are
effectively substituted with artificial classes.

Since there are no classes anymore – how can be the maximum regression tree de-
termined? Analogously with discrete case, absolute homogeneity can be then described
only after some adequate impurity measure for regression trees is introduced.

Recall the idea of Gini index, then it becomes quite natural to use the variance as
impurity indicator. Since for each node data variance can be easily computed, then
splitting criterion for an arbitrary node t can be written as

s∗ = argmax
s

(pLvar (tL(s)) + pRvar (tR(s))) (31)

where tL and tR are emerging child nodes which are, of course, directly dependent on
the choice of s∗.

Hence maximum regression tree can be easily defined as a structure where each node
has only the same predicted values. It is important to point out that since continuous
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data have much higher chances to take different values comparing with discrete ones,
the size of maximum regression tree is usually very big.

When maximum regression tree is properly defined, it is then of no problem to get
an optimally-size tree. Like with classification trees, maximum regression tree is usually
supposed to be upwardly pruned with the help of cost-complexity function and cross-
validation. That is why the majority of results presented above is applied to regression
trees as well.
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2 CART in practice

2.1 Regression trees vs classification trees in financial
applications

It may seem plausible to use regression or classification trees in accordance with type of
dependent variable. However, empirical results does not necessarily support this point
of view.

In many occasions classification trees can be preferred to regression ones. It usually
happens because of not sufficiently high degree of regression trees robustness in terms of
classification rule structure. As it was mentioned before, because of possible extremely
high complexiy of maximum regression tree the derived rules tend to be overparametrized
i.e. even optimally derived size of the regression tree is too big.

The simplest example to consider is to look at two linearly separable datasets which
are though can not be obviously separated by orthogonal hyperplanes. Then even if true
decision rule is just a linear inequality, regression tree will reproduce it only at cost of
high complexity. In case when learning sample data are relatively noisy, this will add
some more obstacles as we will see below.

What can be the typical classification task of a financial application? It can be a direct
classification like CRM (customer relationship management), insurance class diagnostics
etc. or the task may be, say, to construct a profitable portfolio of stocks basing on some
extra evidence like technical and fundamental data. In the last case an investor is
obviously interested in the future stock prices i.e. some forecasts are to be made. Since
stock price is a continuous variable, the obvious way is to use regression tree to represent
a future stock price estimate. But for the reasons mentioned above the characteristics
of such an estimate can be quite far from the optimal one. That’s why one of the ways
to overcome the problem is to somehow substitute a regression tree with a classification
one. The effect will probably be even more bigger if the number of classes of a modified
dataset is relatively moderate.

This can be achieved by introducing artificial classes i.e. classes based on dependent
variable values. For a stock price example three classes can be introduced so that finally
an investor gets a decision "long-short-neutral" type rule based on current information
set. For this one period relative price increments can be used so that if Rt denotes stock
price at t, then the most important value is ∆R = Rt+1−Rt

Rt
since new classes set S can

be difened as

S = I(∆R > R̄)− I(∆R < R̄) (32)

where R̄ is an arbitrary non-negative constant, I (·) – indicator function
In other words S = 1 implies expected price growth and long position, S = 0 – non-

siginificant future one-period price fluctuations and neutral position and S = −1 – short
position. Constant R̄ can be set according to investor’s risk aversion prefences, historical
simulations and/or other a priori information.

Empirical simulations with DAX data showed that such approach can dramatically
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improve model performance, hence classification trees can effectively substitute regres-
sion structures even in case of continuous dependent variable.

2.2 CART challanges in business applications

Recall that by model assumptions decision trees are constructed using only univariate
orthogonal splits. Although in some cases data seem to be linearly separable, there are
lots of situations when it is not true.

There can be several reasons for that, for instance such kind of effect may stand for
nonlinear fundamental dependency or learning sample data were measured with errors
and thus a lot of random disturbancies could occur. Anyway, in such a situation it can
be quite difficult to construct an efficient decision rule.

Let’s examine the case of non-linearity first. How does a decision tree normally try to
represent that kind of structure?

Figure 10: Non-linear separable data

Hence we can conclude that decision trees can quite effectively capture even non-
linear dependencies by means of step approximations. In real applications the majority
of situations follows this or similar case, but as we can see a decision tree can still be
applied there.

The question is if it may be possible to substitute linear filters with non-linear and
univariate with multivariate. Although some properties of resulting decision rules may
become better, the cost is too high leaving alone technical issues of such kind of algo-
rithm. The problem is that there is infinite number of different variables combinations
and even if one is restricted to a certain class of functions (e.g. linear) it will still be
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extremely hard to determine the "correct filter" at a particular node i.e. a filter with
a proper dimension. Brute force approach can probably help only for low-dimensional
data, so the sitution is similar with derivation of globally optimal trees. Supercomputers
can, of course, solve the problem.

A more serious issue is the existance of measurement errors and/or highly noised data.
Consider the following example on Figure 11.

Figure 11: Data with significant random disturbances and a fundamental relationship
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This situation is quite typical for financial applications. The majority of data is highly
noised although there exists a cluster which is quite homogenous and surely represents
some fundamental dependency. This cluster is t12 and appears only in the bottom of the
tree. Apparently an investor would like to get an explanation for this data portion but
is it really feasible using standard methods described above?

Such kind of data pattern will surely result in underparametrization of the final rule
i.e. only small number of nodes from tree on Figure 11 will be present. Using 1-SE rule
in conjunction with cost-complexity function and cross-validation will typically produce
a tree constituted by nodes t0, t1, t2, t3 and t4 and hence information in node t12 will be
lost! That is why traditional approaches does not necessary appear to be versatile and
there is an obvious need to develop alternative approaches to surmount obstacles like
this.

An alternative method of decision tree pruning was developped by the author. Al-
though its detailed description and overview of theoretical properties is out of the scope
of this work, the next section provides an outlook how efficient can alternative approaches
be when traditional solutions provide only inadequate results.

2.3 Recursive DAX30 stocks portfolio creation: an example

This example continues the implications started in 2.1 and shows how successful can
classification trees be applied even in case of noisy data with non-linear dependencies.

The problem framework is the following. An investor is operating on DAX30 market
and possesses a database with technical and fundamental data referring to the DAX30
companies, he (she) also has a time series of historical stock close prices. Investor’s task
is to create a recursive portfolio out of some or all available DAX30 stocks so that to
maximize the wealth and reduce portfolio’s possible deviation. At each period an investor
can buy/sell/hold a particular stock while each transaction leads to supplementary costs
at the rate of 10 b.p. (basis points).

Moreover, investor supposes that there is a certain relationship between technical and
fundamental parameters and future stock price, but he(she) has no idea about the form
(class) of such mapping (function).

More formally, the task is the following. Let M̄ be a fixed amount of cash available to
an investor at each time period. This money can be invested into N(t) different DAX30
stocks at time period t. Let Rit be the yield of a particular i-th stock due to the one-
period change of stock’s price. Denote the weight of that i-th stock in portfolio investor
should construct as wit. A long/short/neutral position πit against each stock can be
taken that is why control variable is discrete and can take only one of three possible
values out of the positions set S. In order to reduce portfolio risk investor closes active
positions at the end of each period, hence transaction costs arise:

0.001 · [I {Rit > 0} · I {πit = πi,t−1 6= 0} − I {Rit < 0} · I {πit = πi,t−1 6= 0}] PitQit (33)

where Pit – the price and Qit – the quantity of i-th stock in the portfolio in t-th period
of time.
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Moreover, to reduce the risk of returns investor is supposed to make equally-weighted
portfolio i.e.

wit =
1

N(t)
π∗it (·) (34)

Investor assumes that there is a relationship between Rit and an information set
Fi,t−1 of technical and fundamental historical data of relevant companies determined by
mapping fi,t but the precise form of this mapping is unknown to investor. Nonetheless,
there is a set of empirical rules A concerning some patterns of this relationship and
history of stock prices movements available.

Given these assumptions, investor’s problem can be stated as:

T∑
t=τ

N(t)∑
i=1

wit [E (Rit|Fi,t−1) (1− I {Rit > 0} · I {πit = πi,t−1 6= 0}+

+ I {Rit < 0} · I {πit = πi,t−1 6= 0})] → max
πit

fit : Fi,(t−1) → Rit

πit ∈ S = {−1; 0; 1}
Rit ∈ A
N(t)∑
i=1

[1 + 0.001 · I {πit = πi,t−1 6= 0}] · πitPitQit = M̄

wit = 1
N(t)

π∗it (Fi,t−1)

Fi,T ⊃ Fi,T−1 ⊃ . . . ⊃ Fi,τ ∀i = 1, N(t)

(35)

where subset S is described by (32).
As a result of a priori investor’s expectations A and other factors an implied estimation

of mapping fit : Fi,(t−1) → Rit is carried out. On its basis function π∗it (Fi,t−1) ∈ S is
estimated in the class of binary decision rules represented by classification trees.

Hence as a result investor gets a decision rule in class "long/short/neutral" dependent
on historical technical and fundamental data of DAX30 companies.

Using actual data it was possible to simulate such kind of strategy. Unfortunately
direct application of classical approach didn’t result in even positive profit, that’s why
model 35 was used instead.

The optimal trajectories π∗it were tested for the period of November 27, 2000 – June 7, 2004.
After proper calibration was made, investment activity was imitated (Figure 12) bas-
ing on calculated optimal strategies. Simulations were implemented in Matlab R13 and
C++ by means of created program complex.

Active strategy implies that solutions of (35) were used and capital dynamic was
recorded. On the contrary, passive strategy stands for holding equally-weighted DAX30
portfolio so that model performance evaluation could be carried out. It is important to
point out that equally-weighted DAX30 portfolio and DAX30 index itself have different
yields because DAX30 is computed in a more complicated way. As another comparison
ground, wealth curves for risk-free bonds yielding 4% and 9% annually are presented.
From the picture it is clearly seen that active strategy outperforms others and is in fact
very efficient.

31



Figure 12: Simulation results

The next two figures show the weekly return distributions for both active and passive
strategies. The active strategy distribution clearly implies the positive skewness of the
yield.

Average portfolio yield is 51.2673% while Sharp index is 19.7637 since the yield
standard deviation is only 2.5940%. All the values are expressed in annual terms. The
similar study of CityGroup [16] which aim was to classify stocks of US technological
companies produced on average 19.62% with a standard deviation of 11.96% (Sharp
index is 1.23 and risk-free rate is 4.92%). Another study by JPMorgan [15] aimed at
classification of some US stocks (no more information is available) produced similar
results: average yield is 14.6% with a standard deviation of 9.5% (Sharp index is 1.54).
Both studies employed traditional approach of classification trees.

We can not, of course, directly compare these results since there are different stock
markets involved etc., but on the other hand the timeline is the same and hence we can
conclude that at least for the last two years proposed active strategy clearly outperforms
investment strategies of JPMorgan and CityGroup applied to US stocks in absolute terms.
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Figure 13: Active strategy weekly returns

Figure 14: Passive strategy weekly returns
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The next issue to analyze is how modified CART algorithms affected the results. For
this purpose during the implementation both classical and a set of modified methods
were allowed to use and special calibration criterion derived the best algorithm for the
moment. The results are the following: in 66.6% of situations modified algorithms were
acknowledged to be better comparing with conjuction of cost-complexity function and
cross-validation. Moreover, a forced application of classical approach resulted in much
lower precision in almost 95% of cases, hence one can conclude that modified CART
core plays a prominent role in the showed financial results.

2.4 Technical vs fundamental analysis: example continued

Although performance itself may be vital for financial engineering, there are numerous
situations when classification trees provide another valuable information. We will con-
tinue to work with the same dataset and try to find out which variables appeared to
be most signficant in constructed trees and how this result can affect the impression of
technical and fundamental analysis relevance.

The next table clues up about available variables used in the analysis.

Variable name Variable type Regulariry estimate
Close price Fund./Tech. 1 day
Momentum Technical 1 day
Stohastic Technical 1 day
MA Technical 1 day
MACD Technical 1 day
MA standard error Technical 1 day
ROC Technical 1 day
TRIX Technical 1 day
BV Fundamental 1 month
CF Fundamental 1 month
Dividends paid Fundamental 1 month
EBITDA Fundamental 1 month
EPS Fundamental 1 month
Number of stocks outstanding Fund./Tech. 3–6 months
Sales Fundamental 1 month

Table 2: List of available variables

Some of these variables were transformated e.g. to adjust different periods of regularity
or to match different company scales.
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Variable name Variable type Regulariry estimate
Pt−1−Pt−2

Pt−2
Fund./Tech. 1 day

Salesit

Pit
Fundamental 1 day

CFit

Pit
Fundamental 1 day

EPSit

Pit
Fundamental 1 day

∆12
EPSit

Pit
Fundamental 1 day

ROEit Technical 1 day
Momentumit Technical 1 day
Stohasticit Technical 1 day
MAit

Pit
Technical 1 day

MACDit Technical 1 day
σ(MAit

Pit
) Technical 1 day

ROCit Technical 1 day
TRIXit Technical 1 day

Table 3: List of transformed variables used in simulation

where ROEit is return on equity estimated using market prices so that

ROEit =

Pit−Pi,t−1

Pi,t−1
Qit

PitQit

=
1

Pi,t−1

− 1

Pit

Other variables appeared to be insignifant during the calibration procedure determined
by A.

Since decision trees provide unprecedented level of rule intuition, it is worth examining
the trees from different angle. What if this kind of algorithm is used as a supplementary
means of preliminary data analysis so that an investor is interested in the most significant
variables explaining furure stock prices while has no fixed specification for some reason or
failed to apply classical regression analysis due to, say, inadequate residuals distribution?
Then decision trees as a non-parametric tool could give an insight into the fundamental
relationships.

Nowadays there are different approaches evaluating market efficiency and hence there
are different groups of methods trying to reveal fundamental relationships like ones
described above. Usually one distinguishes between technical and fundamental analysis
– each of the methods has specific assumptions and tools and at the same time both of
them are widely spread in modern financial applications. That is why it is of particular
interest to analyze the most significant variables appeared in decision trees from this
particular point of view.

Since root node filter is the most significant one, its variable was used as a proxy
for the most important factor. Since the simulation performed was dynamic i.e. each
period decision rules were reevaluated for each stock, it was possible to collect a large
dataset with a distribution of root node variables. Refer to both tables above to get
characteristics of different variables.
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The results are quite promising.

Figure 15: Root node filter variables distribution

The distribution of technical vs fundamental variables is about 50 by 50 so there is
no dominance of one methodology over another. On the other hand, feasible investor
strategy during simulation implied also the combination of two types of variables. As
empirical results show, in 47% of cases the use of both types of variables simultaneously
was acknowledged to be superior while in 33% only fundamental variables together with
last period yield resulted in the best performance and finally in 20% of cases the use of
single variable – last period yield – led to the highest results.

Although these results are valid only for a specific choice of A and, what is more
important, for a specific dataset, the conclusion we make here is that the separate
application of either technical or fundamental variable subsets does not appear to be a
rational strategy.

2.5 Does the effect of information ageing influence financial
performance?

In this section we will analyze another important issue – how different layers of infor-
mation may affect the empirical properties of investor’s strategy and what implications
can be made out of performed simulations.
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By definition information ageing is the effect when observations measured at different
time periods have different impact on model forecasting power i.e. more recent obser-
vations play a more important role in the sample whereas the use old data could even
deteriorate model predictions.

For dynamic imitation systems three major ways to create a learning sample can be
specified. First of all, a learning sample can be static i.e. its size remains constant
and new observations do not have any influence on it, for instance, that can be a set
constituted by first 100 observations and even when new observations become available
it does not change its structure. This is, of course, the most naive way to construct a
learning sample but in some cases it may be adequate.

Another approach suggests to add each new observation to a learning sample so that
most up-to-date information is accounted and a sample becomes dynamically expanding
i.e. its size is constantly growing unless no new observations are available. Obviously
this creation method implies that all observations have significant forecasting power and
is usually applied when data dimensions are low.

When the analyzed time period is quite long, it could be a good idea to restrict possible
negative influence of old observations on producing forecasts i.e. to avoid information
ageing effect. In such a case, after a learning sample has at least a specified number of
observations each new observation is being added while the oldest one is neglected so
that a dynamically stable sample is created since its size is constant.

Figure 16: Learning sample and information ageing effect

It is important to point out that to the best author’s knowledge the majority of
financial studies uses only the first and/or the second approaches. For instance, in [10]
it is stated that increased learning sample size led to better financial results since actual
information was accounted.
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The simulation for DAX30 stocks allowed all three types of learning sample creation,
the optimal one was chosen at calibration stage. Here is the evidence of how frequently
different approaches were used: in 66.6% cases dynamically stable learning sample was
acknowledged to be best and in 33.3% – dynamically expanding one. Notice that static
version didn’t appear in the distribution at all.

Ex-post simulation analysis also showed that more than in 95% cases such kind of
calibration decision was right, hence we can state that one possible reason for more than
average simulated financial results is probably the proper accounting of information
ageing effect.
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3 Conclusion

Classification trees appear to be quite a powerful and versatile tool in modern finance
applications. As empirical results show, simulated financial performance was of above
average level when author-modified core of CART was applied to DAX30 data.

We can conclude that CART is not a mere effective non-parametric classification/re-
gression tool but also a powerful means of explorative data analysis because of its excep-
tional interpretation capabilities. Such properties allowed us not only to demonstrate
its power for pure financial applications like recursive portfolio creation but also to shed
some light on the problem of technical and fundamental analysis application.

Although a lot of promising results were got during the study, there are at least two
major directions towards the future research that are of particular interest. Firstly,
a two-step hybrid CART-Logit model could be built so that first CART analyzes the
dataset and extracts the most valuable information and then Logit model is built to
account possible data peculiarities.

The second direction is to enhance the core of CART, for instance to try to construct
an algorithm alowing to build more efficient trees comparing to one-level-optimal ones.

And, of course, it could be quite useful to test the built system applying it to different
financial datasets.
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