
A new algorithm for the index determination in
DAEs by Taylor series using Algorithmic

Differentiation

René Lamour and Dagmar Monett?

Institute of Mathematics
Humboldt University of Berlin

Unter den Linden 6,
10099 Berlin, Germany

{lamour,monett}@math.hu-berlin.de

Abstract. We present an approach for determining the tractability index us-
ing truncated polynomial arithmetic. In particular, computing the index this
way generates a sequence of matrices that contains itself derivatives. We realize
the time differentiations using Algorithmic Differentiation techniques, specially
by using the standard ADOL-C package with which calculating the derivatives
becomes a simple shift and scaling of coefficients. We present the theory sup-
porting the procedure we propose, as well as the implementation issues behind
it to provide a convenient interface to the standard ADOL-C functionality. We
give also examples of academic and practical problems and report several ex-
perimental results we have obtained with them.

Keywords: DAE, index determination, tractability index, AD, Algorithmic
Differentiation, Automatic Differentiation
AMS Subject Classifications: 65L80, 65D25, 68W30

1 Introduction

The solution of a linear differential-algebraic equation (DAE) may in contrast
to an ODE depend on the derivative of the function at the right-hand side. How
often parts of the right-hand side are to differentiate depends on the index of
the DAE. The index is a measure of the difficulty to solve a DAE. Therefore the
determination of an index is important, because we have to know the expected
difficulties solving this DAE.

Different index definitions needs different procedures to calculate the index.
The differentiation index and the definitions based on it like the structural

index and the strangeness index calculate the index along a solution of the
DAE implicitly using the equations of the DAE and its derivatives forming
the so-called derivative array. The higher the index, the bigger the dimension
of the system under consideration is. Additionally, the differentiation of the
equations changes the properties of the DAE (cf. [11]), which makes its analysis
and treatment more difficult.

The tractability index analyzes the inner structure of a DAE using the lin-
earization of the DAE along an arbitrary function (which naturally has to fulfil
? Partial financial support from the DFG (German Research Foundation) Research Center

Matheon Mathematics for key technologies, Project D7: Numerical simulation of integrated
circuits for future chip generations, is acknowledged.

2

at least the same smoothness conditions as a solution). A sequence of matrices
(with the same dimension as the DAE) is computed and the subindex of the
first nonsingular matrix in that sequence indicates the index of the DAE. How-
ever, this matrix sequence contains in general itself a differentiation (see (2.4)
in Section 2), which also complicates the DAE analysis.

For both families of index definitions the question is how to realize the
differentiation which occurs. Realizations of the strangeness index require the
explicitly given derivative array by formulae [8]. Pryce [20] and later together
with Nedialkov [17–19] use the advantages of Algorithmic Differentiation (AD)
combined with the structural index concept to overcome the necessary explicit
differentiations. The structural index cannot analyze selected easy structured
DAEs. Furthermore, there are DAEs with constant coefficients of index 1 which
have arbitrarily high structural index (cf. [21]).

The present paper describes a realization of the tractability index matrix
chain applying AD. Based on the DAE and a function x̄, the linearization of
the DAE along x̄ has to be computed. The aim is to determine the index of
the DAE in the fixed point x̄(t) ∈ Rm for a t ∈ R. Only two differentiations
are needed: a differentiation to compute the Jacobian matrix of the DAE and
second one to realize the matrix sequence.

Algorithmic or automatic differentiation means roughly speaking the calcu-
lation of Taylor series of the functions of interest by using the structure and
the involved elementary functions (cf. [5, 2]). AD tools are available for many
platforms like C/C++, FORTRAN, matlab, python.

We use the standard AD package ADOL-C [23] that yields Taylor polyno-
mials for the matrices A(t), B(t), and D(t) on which we then perform linear
algebra in our own library for truncated polynomial arithmetic. How these ma-
trices are obtained is subject of Section 5, where we give details about the
algorithm we propose. We start with the necessary mathematical background
in Section 2 and then we follow with the mathematical realization of the matrix
sequence in Section 3. Then we give an overview about AD in Section 4. The
examples from Section 6 and the experimental results from Section 7 complete
this work.

2 Mathematical Background

DAEs arise in electrical network simulation, chemical kinetics, multi body prob-
lems. Beside these classical fields DAEs also arise using simulation packages
combining equations of various topics. Here it is not clear which index the re-
sulting DAE has, but this information is important to check the relevance of
the simulation and the expecting difficulties in the computation.

We deal with DAEs given by the general equation with properly stated
leading term

f((d(x(t), t))′, x(t), t) = 0, t ∈ I, (2.1)

with I ⊆ R being the interval of interest.

3

Properly stated means that

ker
∂f

∂z
(z, x, t)⊕ im

∂d

∂x
(x, t) = Rn, ∀z ∈ Dz ⊆ Rn, x ∈ Dx ⊆ Rm, t ∈ I (2.2)

and rank ∂f
∂z =: rA and rank ∂d

∂x =: rD are constant in the considered regions.
To compute the index as addressed in [14, 15] we begin by linearizing the

DAE along a chosen path x̄. The linearization of (2.1) is given by

∂f

∂z
(z̄(t), x̄(t), t)

︸ ︷︷ ︸
A(t)∈Rm×n

(
∂d

∂x
(x̄(t), t)

︸ ︷︷ ︸
D(t)∈Rn×m

z(t))′ +
∂f

∂x
(z̄(t), x̄(t), t)

︸ ︷︷ ︸
B(t)∈Rm×m

z(t) = −f((d(x̄(t), t))′, x̄(t), t)︸ ︷︷ ︸
q(t)

(2.3)

with z̄(t) = d′(x̄(t), t).
The tractability index of a DAE bases upon the matrix sequence

G0 = A D, B0 = B,

Gi+1 = Gi + Bi Qi = (Gi + Wi B0 Qi)
(
I + G−

i Bi Qi

)
,

Bi+1 =
(
Bi −Gi+1 D− (

D P0 · · ·Pi+1 D−)′
D P0 · · ·Pi−1

)
Pi,

(2.4)

where Qi is an admissible projector function such that imQi = kerGi,
Pi := I − Qi and Qi(I − P0 · · ·Pi−1) = 0. Wi are projector functions such
that kerWi = imGi. Further, D− denotes a reflexive generalized inverse of
D and G−

i the reflexive generalized inverse of Gi such that G−
i Gi = Pi and

GiG
−
i = I −Wi. The first index µ, where the matrix Gµ becomes nonsingular,

is called the tractability index.

3 Realizing the matrix sequence

The realization of (2.4) requires the determination of admissible projectors Qi

and the differentiation of matrix products to calculate Bi+1.
Crucial part of the procedure are the differentiations with respect to time,

which at first were approximated by divided differences [9]. The results were
dependent on the differencing increment and only reliable for low index systems.
These problems could be overcome by realizing the repeated differentiations in
the form of Taylor series arithmetic, where time differentiation becomes a simple
shift and scaling of coefficients on the original specification.

Let us introduce first the algorithm to compute the matrix function sequence
(2.4).

3.1 Checking the well matched condition

The computation of the QR decompositions of the matrices A and D by apply-
ing Householder transformations with column pivoting yields

A = UA

(
RA,1 RA,2

0

)
ΠT

A and D = UD

(
RD,1 RD,2

0

)
ΠT

D,

4

with orthogonal matrices UA, UD, upper triangular matrices RA,1 and RD,1 and
column permutation matrices ΠA and ΠD.

We compute
G0 = AD, (3.1)

which is used in the matrix sequence calculation (see (2.4)). Then we apply a
Householder decomposition of G0 and obtain

G0 = U0

(
R01 R02

0

)
ΠT

0 . (3.2)

Let rankG0 = r0. The well matched condition [14, 15] is checked in that
rankA = rankD = rankG0. If these equalities are not satisfied, then the leading
term is not properly stated and the algorithm should terminate.

In the case r0 equals m, then both the rank and the dimension of the DAE
are also m and the index is 0. However, if r0 < m, then the matrix sequence
should be computed.

3.2 Computing generalized inverses

If we know a decomposition of a matrix

Z = UZ

(
RZ 0
0 0

)
V −1

Z

with nonsingular matrices UZ , VZ and RZ then a generalized reflexive inverse
of Z is given by

Z− = VZ

(
R−1

Z mZ,2

mZ,1 mZ,1RZmZ,2

)
U−1

Z

with arbitrary matrices mZ,1,mZ,2.
To compute the generalized inverse of G0, i.e. G−

0 , we use the QR factoriza-
tion of G0 from (3.2) and obtain

G0 = U0

(
R01

0

)(
I R−1

01 R02

I

)
ΠT

0 . (3.3)

Then we calculate

G−
0 = Π0

(
I −R−1

01 R02

I

)

︸ ︷︷ ︸
V0

(
R−1

01 m02

m01 m01R01m02

)
U−1

0 , (3.4)

m01 and m02 being matrices that are initialized to zero entries.
The generalized inverse of D, i.e. D−, is also used in the matrix sequence.

It can be computed by operating in (3.1) as follows

D− = G−
0 A (3.5)

and it fulfills the following properties (see [14, 15, 9] for details):

D = DD−D,

D− = D−DD−,
(3.6)

where DD− and D−D are projectors with the same rank. Let R be a matrix
such that R = DD−.

5

3.3 Computing the matrix sequence

Every step of the matrix sequence (2.4) calculates Gi+1 and Bi+1. The former
needs the calculation of G−

i+1 in such a way that the resulting nullspace pro-
jector Qi+1 := I −G−

i+1Gi+1 is admissible with respect to the former nullspace
projectors Qj , j = 0, . . . , i. The latter needs the derivative of D P0 · · ·Pi+1 D−.
We will explain now how the matrices G−

i+1, Gi+1 and Bi+1 are computed.

Computing the matrix G−
i+1 To calculate the matrix G1 we use the matrices

G0 and G−
0 already introduced above. However, the calculation of the successive

Gi’s is not straightforward anymore. Similarly to the expression (3.4) for G−
0 ,

we have the following expression for G−
i+1 if we assume a decomposition of

Gi+1 = Ui+1

(
Si+1

0

)
V−1

i+1 (3.7)

G−
i+1 = Vi+1

(
S−1

i+1 mi+1,2

mi+1,1 mi+1,1Si+1mi+1,2

)
U−1

i+1. (3.8)

Suppose a decomposition of Gi = Ui

(
Si

0

)
V−1

i and a known generalized

inverse G−
i = Vi

(
S−1

i mi,2

mi,1 mi,1Simi,2

)
U−1

i . Then,

Qi = I −G−
i Gi = Vi

(
0

−mi,1Si I

)
V−1

i = Vi

(
0

I

)
T−1

l,i V−1
i , (3.9)

Wi = I −GiG
−
i = Ui

(
0 −Simi,2

I

)
U−1

i = Ui T
−1
u,i

(
0

I

)
U−1

i ,

with upper and lower triangular matrices

Tu,i =
(

I Simi,2

I

)
and Tl,i =

(
I

mi,1Si I

)

and using (2.4)

Gi+1 = Ui




(
Si

0

)
+ T−1

u,i

(
0

I

)
U−1

i B0 Vi︸ ︷︷ ︸
B̄i

(
0

I

)
T−1

l,i


V−1

i Fi

= Ui T
−1
u,i

((
Si

0

)
+

(
0

I

)
B̄i

(
0

I

))
T−1

l,i V−1
i Fi,

(3.10)

with a nonsingular matrix Fi := I + G−
i Bi Qi. Only the lower right block B̄i,22

of the matrix B̄i =
(

B̄i,11 B̄i,12

B̄i,21 B̄i,22

)
influences Gi+1. The matrices ŨT

i+1 and Ṽi+1

come from a Householder decomposition of the matrix B̄i,22:

B̄i,22 = Ũi+1

(
Ri+1,1

0

)(
I R−1

i+1,1Ri+1,2

I

)
Π̃T

i+1

︸ ︷︷ ︸
Ṽ −1

i+1

. (3.11)

6

Using (3.11) in (3.10) we reach the decomposition we are looking for

Gi+1 = Ui T
−1
u,i

(
I

Ũi+1

)

︸ ︷︷ ︸
=:Ui+1




(
Si

0

)
+




0 (
Ri+1,1

0

)






︸ ︷︷ ︸
=:

0
@Si+1

0

1
A

(
I

Ṽ −1
i+1

)
T−1

l,i V−1
i Fi

︸ ︷︷ ︸
=:V−1

i+1

In practice, rank B̄i,22 =: ri+1 determines whether to continue with the
algorithm (i.e., dimSi + ri+1 < m) calculating the matrix G−

i+1 or to terminate
because Gi+1 becomes nonsingular.

We create the projectors Qi+1 and Wi+1 by G−
i+1. The parameter matrices

mi+1,1 and mi+1,2 influence the properties of the projectors Qi+1 and Wi+1

respectively. We need admissible projectors Qi+1, i.e. Qi+1(I−P0 · · ·Pi) = 0 or
equivalently Qi+1Qj = 0, j = 0, . . . , i.

Are these conditions qualified to determine parameter matrices mi+1,1? The
condition reads in detail

0 = Qi+1Qj = (I −G−
i+1Gi+1)Qj = Qj −G−

i+1BjQj ⇔ Qj = G−
i+1BjQj .

Using the special structure of Qj (cf. (3.9)) we obtain

Vj

(
0

I

)
T−1

l,j V−1
j = G−

i+1BjVj

(
0

I

)
T−1

l,j V−1
j

= Vi+1

(
S−1

i+1 mi+1,2

mi+1,1 mi+1,1Si+1mi+1,2

)
U−1

i+1BjVj

(
0

I

)
T−1

l,j V−1
j

which leads to

V−1
i+1Vj

(
0
I

)

︸ ︷︷ ︸
=:wj

=
(

S−1
i+1 mi+1,2

mi+1,1 mi+1,1Si+1mi+1,2

)
U−1

i+1BjVj

(
0
I

)

︸ ︷︷ ︸
=:zj

. (3.12)

Equation (3.12) has to have fulfilled for j = 0, . . . , i. Introducing Ŵi :=
(w0, . . . , wi) and Zi := (z0, . . . , zi) we have to solve the equation

Ŵi =
(

S−1
i+1 mi+1,2

mi+1,1 mi+1,1Si+1mi+1,2

)
Zi.

We can prove that Zi =
(

Z̃i

0

)
} rm

with rm = m − dimSi+1, and Zi and

Z̃i are column regular (cf. [9]) which leads to the representation

Ŵi =:

(
Ŵi,1

Ŵi,2

)
=

(
S−1

i+1

mi+1,1

)
Z̃i.

Finally, we have for the matrix we are looking for

mi+1,1 = Ŵi,2Z̃
−
i (3.13)

because Z̃−i Z̃i = I for any generalized reflexive inverse Z̃−i . Z̃−i is computed via
a Householder factorization.

7

Computing the matrix Bi+1 For calculating the matrix Bi+1 from i ≥ 0 on
we do

Bi+1 =
(
Bi −Gi+1 D− (

D P0 · · ·Pi+1 D−)′
D P0 · · ·Pi−1

)
Pi, (3.14)

with B0 = B, Gi+1 = Gi + Bi Qi, P0 = D−D, and Q0 = I − P0.
By applying the product rule we have that
(
D P0 · · ·Pi+1 D−)′ = (D P0 · · ·Pi︸ ︷︷ ︸

Pi

Pi+1 D−)′

=
(
DPi D

−D Pi+1 D−)′

=
(
DPi D

−)′
D Pi+1 D− + DPi D

− (
D Pi+1 D−)′

(3.15)

where the only challenge is the calculation of (D Pi+1 D−)′ at each step since the
derivative (DPi D

−)′ is already calculated in the step before. This is initialized
to the derivative of D D−.

The major advantage of using AD is that no call to a differentiation routine is
needed every time a derivative is to be computed. Instead, we compute the time
differentiations through a shift operator over Taylor series. When the elements
of the matrices D, D−, and Pi+1 are Taylor series, then the computation of
(D Pi+1 D−)′ can be done by shifting the Taylor coefficients and by doing some
multiplications with them, after multiplying the matrices. The Taylor coefficient
propagation makes use of truncated polynomial arithmetic from [5].

Computational realization of the matrix sequence Figure 3.1 shows the
pseudo code corresponding to the matrix sequence loop. The mathematical
background described above is generalized and only its most important aspects
are included. The matrices A(t), B(t), and D(t), for example, are assumed to be
computed before the matrix sequence calculations starts. Their construction will
be explained in later sections. Output from the program is either the tractability
index or an error message that can depend on some special situations.

Of particular interest are the time differentiations (D Pi+1 D−)′ at each step
when computing Bi+1. The elements of the matrices D, Pi+1, and D− are Taylor
series, so the computation of the derivative is done by simply applying a shift
operator as we have already addressed above. The precision of the computed
derivative basically depends, however, on the number of Taylor coefficients that
is defined, which is related to the index of the corresponding DAE. We will give
more detail about AD and Taylor series in the following sections.

4 Algorithmic Differentiation

The DAEs we deal with contain derivatives. There are many ways to calculate
and evaluate derivatives. We prefer the Algorithmic Differentiation approach
[5] since the drawbacks from symbolic differentiation, numerical differentiation,
and differentiation by hand are widely overcame by using AD. With AD the

8

int matrixSeq(A, D, B) {
// It returns the tractability index value
// m is the number of equations that define the DAE
rA = Householder(A);
rD = Householder(D);
if rA 6= rD then TerminalError;
else {

B0 = B; G0 = AD;
r0 = Householder(G0);
if r0 6= rA then TerminalError;
else {

Compute V0;
Compute G−0 ;
D− = G−0 A;

}
}
i = −1; dim = r0;
Initialize S0 = R01; b = V02;
Split V0 after r0 columns [V01|V02];
while (i < m and dim < m)

i++;
Compute projectors Pi = G−i Gi, Wi, Qi = I − Pi;
Check out projectors’ properties;
Compute B̄i and obtain B̄i,22;
ri+1 = Householder(B̄i,22);
dim += ri+1;
if dim = m then return(index=i+1);
else {

if i > 0 {
dDPiDm = shiftOperator(D Pi+1 D−);

Apply product rule to obtain
�
D P0 · · ·Pi+1 D−�′;

Compute Bi+1;
}
Compute Gi+1 and Vi+1;
cWi = V −1

i+1b;
b = [b, Vi+1,2];
Compute zi and update Z = [Z, zi];

Compute Z̃−;

if Z̃− has full rank then mi+1,1 = cWi,2Z̃
−;

else TerminalError;
}

}
return(index=i+1);

}

Fig. 3.1. Index determination with the matrix sequence.

9

computed derivatives are free of truncation and cancelation errors and they
are exact up to machine precision. Furthermore, no explicit code development
for derivatives by hand is needed and derivatives of arbitrary order can be
computed automatically.

We then define derivatives of functions by computer programs so that AD
can work. AD repeatedly applies the chain rule from the derivative calculus to
these computer programs by implementing either a source code transformation
of the original program or an operator overloading strategy. AD usually pro-
vides both the forward mode (or forward accumulation) and the reverse mode
(or reverse accumulation) for the forward and reverse propagation of deriva-
tive values, respectively, when applying the chain rule. The former calculates
derivatives of intermediate variables with respect to the independent variables.
The latter calculates derivatives of the dependent variables with respect to the
intermediate ones.

In particular we use the AD tool ADOL-C, a package to evaluate first and
higher derivatives of vector functions that are defined by computer programs
written in C or C++ [23]. Thus, our programs are written in C++ and we
facilitate the user to provide the expressions for the random polynomial path
x̄(t) to linearize the DAE, for the dynamic d(x̄(t), t) and for the DAE itself, as
required for the construction of the matrices A(t), B(t), and D(t) in (2.3). We
consider then Taylor series expansions of the involved independent and depen-
dent variables up to a degree defined by the user. For this purpose we provide
new C++ classes, which overload built-in operators in C++ and implement
several Taylor arithmetic functionalities when the coefficients of a matrix are
Taylor series.

5 Algorithm for the index determination

The new algorithm we propose to compute the tractability index of DAEs in-
troduces the following features: The approximations of the matrices A(t), B(t),
and D(t) and the evaluations of derivatives are computed using specific drivers
from the C++ package ADOL-C. Furthermore, the time differentiations to com-
pute Bi+1 in (3.14) are realized via a shift operator over Taylor series, i.e., no
more calls to a differentiation routine are needed. This allows to compute the
derivative (DP0 · · ·Pi+1D

−)′ only by shifting Taylor series coefficients and by
doing some multiplications. In addition, the reflexive generalized inverses D−

and G−
i and therefore the projectors, are computed using QR decompositions

with column pivoting of the involved matrices. The Householder method is less
expensive than the singular value decomposition, method that was applied in
a precursor algorithm [9].

Figure 5.1 shows a flowchart that comprises the global operations concerning
the index determination. The user only needs to provide the problem specifi-
cation as a member of a certain abstract class (see top of the figure at the left
side). We provide a convenient interface to standard ADOL-C functionality.
This is why the vector functions related to the user’s problems are written in
C++.

10

Fig. 5.1. Index determination by computing Taylor coefficients using ADOL-C.

11

The most relevant aspects of the flowchart above will be addressed in the
next sections.

5.1 Computing Taylor coefficients

An active section in ADOL-C is a sequence of statements that contains the
calculations involving the differentiable quantities at some time during the pro-
gram execution. Their input and output variables can be expressed in terms of
univariate Taylor expansions that are truncated after a certain derivative de-
gree. This is the approach that ADOL-C [23] follows. We consider opportune to
describe here the general expressions for the Taylor expansions ADOL-C work
with. For the independent variables we have:

x(t + h) =
deg∑

j=0

xjh
j + O(hdeg+1),

with t, h ∈ R, deg the highest derivative degree defined by the user, and scaled
derivatives of x(t) : R → Rn at h = 0, i.e., Taylor coefficients vectors at the
parameter origin:

xj =
1
j!

∂j

∂tj
x(t). (5.1)

For the dependent variables we have:

y(t + h) =
deg∑

j=0

yjh
j + O(hdeg+1),

with y(t) = F (x(t)) : R → Rm, F being deg times continuously differentiable,
and y(t) smooth with (deg+1) Taylor coefficient vectors yj ∈ Rm. In particular,
the Taylor coefficients of both the dependent and the independent variables of
the trajectory, of the dynamic, and of the DAE are computed this way, as well
as the Jacobian path ∂F

∂x , when needed. The functions forward and reverse
are used with this respect. They implement the ADOL-C forward and reverse
modes we have introduced above, respectively.

A pseudo code of the algorithm we propose to compute the matrices of
Taylor series A(t), B(t), and D(t) is presented in Figure 5.2. It shows in some
deep how these matrices are obtained. We will give now an overview of the
general functioning.

Computing the trajectory The trajectory, i.e., the chosen polynomial path
x̄ : R → Rm that is used to linearize the DAE, is computed in the function
asectra from Figure 5.2, for a t ∈ R at which the index of the DAE should
be determined. For doing this, an active section is defined where the expression
for x̄ is evaluated at t.

The Taylor coefficients Xtra ∈ R1,deg+1 of the independent variable, i.e., of
t, are computed as described above in (5.1). They are initialized to the value
t0 given by the user. The dependent variable, i.e., x̄(t), has Taylor coefficients

12

int asectra() {
// Compute the trajectory:
Given t, compute x̄(t);
// Compute the Taylor coeff. of t and x̄(t) (i.e. Xtra and Ytra, resp.):
forward(. . . , Xtra, Ytra);

}
int asecdyn() {

// Compute the dynamic:
Given x̄(t) and t, compute d(x̄(t), t);
// Compute the Taylor coeff. of d(x̄(t), t) (i.e. Ydyn):
Xdyn = [Ytra, Xtra];
forward(. . . , Xdyn, Ydyn);
// Compute the adjoints to obtain the Jacobian matrix ∂d

∂x
:

reverse(. . . , Zdyn, . . .);
// Compute z̄(t) = d′(x̄(t), t)
Yddyn = shiftOperator(Ydyn);

}
int asecdae() {

// Compute the DAE:
Given z̄(t), x̄(t), and t, compute f(z̄(t), x̄(t), t);
// Compute the Taylor coeff. of f(z̄(t), x̄(t), t) (i.e. Ydae):
Xdae = [Yddyn, Ytra, Xtra];
forward(. . . , Xdae, Ydae);

// Compute the adjoints to obtain the Jacobian matrix ∂f
∂y

=
�

∂f
∂z

, ∂f
∂x

, ∂f
∂t

�
:

reverse(. . . , Zdae, . . .);
}
int ABD() {

// Compute the matrices A, B, and D:
Using adjoints Zdyn, construct D(t) =

�
∂d
∂x

�
;

Using adjoints Zdae, construct A(t) =
�

∂f
∂z

�
and B(t) =

�
∂f
∂x

�
;

}

Fig. 5.2. How to compute the matrices of Taylor series using ADOL-C.

13

Ytra ∈ Rm,deg+1 and are computed with a call to the ADOL-C function forward,
which implements the ADOL-C forward mode, as it was already described. Both
matrices Xtra and Ytra are relevant to the construction of the matrices A(t),
B(t), and D(t) as we will see later on.

Computing the dynamic The dynamic d : Rm+1 → Rn is computed similarly
to the trajectory, thereby with a call to the function asecdyn from Figure
5.2. The variables x̄(t) and t are already known from the calculation of the
trajectory so that we can easily compute d(x̄(t), t) within the corresponding
active section. We then calculate the Taylor coefficients of the independent and
dependent variables for this case, i.e., Xdyn ∈ Rm+1,deg+1 (with m independents
from x̄(t) and one from t) and Ydyn ∈ Rn,deg+1, similarly as we have done for
the trajectory.

The initialization of Xdyn, necessary to call the function forward from
ADOL-C, depends on the already computed matrices Ytra and Xtra from the
section above. This is why we only need to compute the Taylor coefficients Ydyn

of the dependent variable, i.e., d(x̄(t), t), that are later used to compute the
derivative z̄(t) = d′(x̄(t), t), with z̄ : Rm+1 → Rn.

The output Zdyn ∈ Rn,m+1,deg, after calling the ADOL-C function reverse,
is used to compute the Jacobian matrix ∂d

∂x . Zdyn contains the adjoints, as
defined in ADOL-C, needed for constructing the matrix D(t).

Finally, we calculate z̄(t) by applying a shift operator. In this case, the
coefficients of the Taylor polynomials are shifted and some multiplications are
done. The new matrix Yddyn ∈ Rn,deg+1 has a zeroed last column (the one
belonging to the derivative of the independent terms).

Computing the DAE The DAE f : Rn+m+1 → Rm is computed similarly
but with a call to the function asecdae from Figure 5.2. The expression for
f(z̄(t), x̄(t), t) = 0 is evaluated in the corresponding active section. Again, we
do not have to calculate the Taylor coefficients of all involved variables. We
have already the ones from the independent variables, i.e., from z̄(t), x̄(t), and
t, calculated up to the section above: the matrices Yddyn, Ytra, and Xtra, respec-
tively.

Thus, the Taylor coefficients Xdae ∈ Rn+m+1,deg+1 (with n independents
from z̄(t), m from x̄(t) and one from t) do not need to be recomputed. The
Taylor coefficients of the dependent variable, i.e., of f(z̄(t), x̄(t), t), are calcu-
lated with a call to the ADOL-C function forward.

Zdae ∈ Rm,n+m+1,deg is obtained after a call to the ADOL-C function
reverse. It is used to compute the Jacobian matrix ∂f

∂y :=
(

∂f
∂z , ∂f

∂x , ∂f
∂t

)
, which

is later used in the construction of the matrices A(t) and B(t).

Constructing the matrices A, B, and D Using the already computed
Jacobian matrices ∂d

∂x and ∂f
∂y we can straightforwardly construct the matrices

A(t), B(t), and D(t) as follows: A(t) =
(

∂f
∂z

)
, B(t) =

(
∂f
∂x

)
and D(t) =

(
∂d
∂x

)
.

14

Some programming challenges The function that implements the House-
holder QR with column pivoting of a matrix basically follows the Algorithm
5.4.1 from [4]. We have extended the classic Householder method to work with
matrices of Taylor series, introducing a new approach where the elements of
the matrices are vectors of Taylor coefficients. For example, to select the pivot
elements we analyze the first coefficients of the involved Taylor series, which
correspond to the evaluation of the function. Important parameters passed into
and out from our Householder C++ function are:

• (input/output) The original matrix to be factorized and its dimension.
• (output) The resulting matrix R (its diagonal and upper triangular part).
• (output) A vector of permutations on the columns of the original matrix.
• (output) The resulting orthogonal matrix Q.
• (input) The threshold value used in the stop criterion.
• (output) The calculated rank.

Furthermore, we have implemented and extended several Linear Algebra
functionalities to operate over matrices of Taylor series. In particular, we apply
the Taylor coefficient propagation by means of truncated polynomial arithmetic
from [5] (Sect. 13.2, p. 303). To this end we provide special classes that over-
load several operators (i.e. arithmetic and assignment operators, relational and
equality operators, and subscript operators) for Taylor arithmetic by redefining
the meaning of some built-in operators in C++. We can then consider different
types of matrix multiplications of the form C = αA · B + βC (for transposed
A and/or B, for inferior-right block of B being the identity matrix, for A or
B where only the upper triangular part is of interest, among others) as well as
solving equations like U ·X = B, thereby making only a few modifications to
the back-substitution algorithm from [4].

6 Examples

In the sections that follow we will present the examples we have used to deter-
mine the index and to test our algorithm. The DAEs belong to the following
cases:

1. Academic examples.
2. Classical pendulum.
3. Robotic arm.
4. Electromechanical problems: dynamo and plate-type capacitor.
5. Circuit simulations: bipolar ring oscillator, bipolar ring oscillator with in-

ductor, and bipolar ring oscillator with cross-modulation.

The purpose of presenting several examples is to show different cases where
the problem dimensions vary, as well as the conditions under which the index
is calculated. We want to analyze critical situations from simple examples to
more complex ones.

15

6.1 Academic examples

Example 1 ([7])

x′2 + x1 − t = 0,

x′2 + x′3 + x1x2 + ηx2 − 1 = 0,

x2

(
1− x2

2

)
+ x3 = 0,

(6.1)

with η ∈ R. By considering the differential terms x′2 and x′3 that appear in the
first two equations of this DAE we define the dynamic function d(x, t) as follows

d (x, t) =
(

x2

x2 + x3

)
.

We compute the linearization (2.3) along the trajectory1 x̄ and we choose:

x̄(t) =




t + c
2− 2et−1

log(t + 1)




with c ∈ R. The DAE has index 3 when d := det G3 = x̄1 + x̄′2 + η 6= 0. The
computation of the index depends on the derivative x̄′2. Choosing η = 1 and
t0 = 1 we obtain a singular matrix chain for c = 0 because of x̄1 + x̄′2 + η =
t0 + c− 2 + 1 = c. In this case, the index is not defined.

With A =




1 0
0 1
0 0


, D =

(
0 1 0
0 1 1

)
and B =




1 0 0
x̄2 x̄1 + η 0
0 1− x̄2 1


 we obtain G0 = AD,

Q0 =




1 0 0
0 0 0
0 0 0


 and G1 = G0 + BQ0 =




1 1 0
x̄2 1 1
0 0 0


. An admissible projector onto

the nullspace of G1 is given by Q1 =




0 −1 + (1− x̄2)β β
0 1− (1− x̄2)β −β
0 (1− x̄2)(−1 + (1− x̄2)β) (1− x̄2)β




where β is an arbitrary smooth function. Computing G2 using Mathematica we
obtained a nullspace projector onto kerG2

Q2 =




0 (x̄2−1)(1−β(d−x̄′2))
d

(1−β(d−x̄′2))
d

0 (x̄2−1)(dβ−1)
d

(dβ−1)
d

0 (x̄2−1)((x̄2−1)(dβ−1)+d)
d

((x2−1)(dβ−1)+d)
d




.

The explicit representation of the projectors allows a comparison with the com-
puted values. We will report this in the experimental section.

1 We recall that the function x̄ is not a solution of (2.1) but a random polynomial path that
is arbitrarily chosen to linearize the DAE.

16

Example 2 ([10])

x′1 + x1 + x4 = 0,

x′2 + α(x1, x2, x3, t)x4 = 0,

x′3 + x1 + x2 + x3 = 0,

x3 − p(t) = 0,

(6.2)

where α is a nonnegative C1 function on R3×R and p is C2 on R. This DAE has
index 3. The following function defines the dynamic, according to the differential
terms x′1, x′2, and x′3 in (6.2):

d (x, t) =




x1

x2

x3


 .

We choose the following function x̄ : R→ R4 to define the trajectory:

x̄(t) =




sin(t)
cos(t)
sin(2t)
cos(2t)


 .

6.2 Classical pendulum

Example 3
A well known DAE is the one that describes the behavior of a classical

pendulum:

x′1 − x3 = 0,

x′2 − x4 = 0,

x′3 + x1x5 = 0,

x′4 + x2x5 − g = 0,

x2
1 + x2

2 = 1,

(6.3)

with g = 9.81 being the gravity constant. This DAE has index 3. The dynamic
function d(x, t) is defined by

d (x, t) =




x1

x2

x3

x4


 ,

according to the differential terms x′1 to x′4 that appear in (6.3). We choose the
following trajectory x̄(t):

x̄(t) =




sin(t)
cos(t)

log(1 + t)
sin(2t)

5




.

17

6.3 Robotic arm

Example 4 ([3])
The following example describes the movement of a robotic arm:

x′1 − x4 = 0,

x′2 − x5 = 0,

x′3 − x6 = 0,

x′4 − 2c(x3)(x4 + x6)2 − x2
4d(x3)− (2x3 − x2)(a(x3) + 2b(x3))+

−a(x3)x7 + a(x3)x8 = 0,

x′5 + 2c(x3)(x4 + x6)2 + x2
4d(x3)− (2x3 − x2)(1− 3a(x3)− 2b(x3))+

+a(x3)x7 − (a(x3) + 1)x8 = 0,

x′6 + 2c(x3)(x4 + x6)2 + x2
4d(x3)− (2x3 − x2)(a(x3)− 9b(x3))+

+2x2
4c(x3) + (x4 + x6)2d(x3) + (a(x3) + b(x3))x7 − (a(x3) + b(x3))x8 = 0,

cos(x1) + cos(x1 + x3)− p1(t) = 0,
sin(x1) + sin(x1 + x3)− p2(t) = 0,

(6.4)

with

p1(t) = cos(et − 1) + cos(t− 1), p2(t) = sin(1− et) + sin(1− t),

a(x) =
2

2− cos2(x)
, b(x) =

cos(x)
2− cos2(x)

,

c(x) =
sin(x)

2− cos2(x)
, d(x) =

cos(x) sin(x)
2− cos2(x)

.

This DAE has index 5. The dynamic d(x, t) is defined by considering the dif-
ferential terms x′1 to x′6 that appear in (6.4), as follows

d (x, t) =




x1

x2

x3

x4

x5

x6




.

The trajectory x̄(t) we choose is

x̄(t) =




1− et

cos(t)
et − t
2 sin(t)

sin(t) + cos(t)
log(3 + t)

sin(t)− cos(t)
4 cos(t) + 1




.

18

6.4 Electromechanical problems

Example 5 (Dynamo [1])
Figure 6.1 shows a mechanical system, our next example. It consists of a

bike dynamo and its electrical circuit.

Fig. 6.1. Bike downhill with dynamo and corresponding electrical circuit.

The DAE is given by

p′ − v = 0,

v′ − f̃(v, jL, t) + λ = 0,

p− z(t) = 0,

Ce′ + Ge− jL = 0,

φ′ − e = 0,

φ− φL(v, t) = 0,

(6.5)

where z(t) is a function to model the variation of the mass point position p
depending on the time t, v is the velocity, e is the voltage at the knot, φ is
the magnetic flow, jL is the current through the inductance, λ is a constrain-
ing force, and C and G = 1

R are the capacity and the electrical conductance,
respectively, with R the electrical resistance. Further we have:

φL(v, t) = k0 r cos(2πkvt),

f̃(v, jL, t) =
fmech

m
+

2π

mk
k0 jL sin(2πkvt),

fmech = g m tan(α),
z(t) = sin(t),

where m is the mass of the bike, g = 9.81 is the gravity constant, α is the
inclination angle, r is the axial radius of the inductor, and k and k0 are problem
specific constants.

The dynamic d(x, t) has the following expression:

d (x, t) =




p
v
e
φ


 ,

19

according to the differential terms p′, v′, e′, and φ′ in (6.5), respectively. The
trajectory x̄(t) we choose in this case is defined by:

x̄(t) =




sin(t)
cos(t)

cos(t)− t sin(t)
cos(t)
sin(t)
cos(t)




,

for p, v, e, φ, λ, and jL, respectively.

We can compute the solution of (6.5) explicitly. We obtain p = z ⇒
v = p′ ⇒ Φ = ΦL(v, t) ⇒ e = Φ′ ⇒ jL = Ce′ + Ge ⇒ λ = f̃(v, jL, t)− v′.

The DAE from (6.5) has index 4.
Example 6 (Plate-type capacitor [1])
The DAE for this example is given by

p′1 − v1 = 0,

p′2 − v2 = 0,

v′1 + g −K(l0 − p1 + p2) + λ = 0,

v′2 + g + K(l0 − p1 + p2)− fel(e, p2) = 0,

p1 − x1(t) = 0,

q′ + jL = 0,

Lj′L + e = 0,

q − C(p2)e = 0,

(6.6)

with

fel(e, p2) = − ε0εrAe2

2p2
2

, C(p2) = ε0εrA
p2

, x1(t) = sin(t),

and g = 9.81 being the gravity constant, ε0 = 8.854 ·10−12 the absolute permit-
tivity, εr = 1.00059 the relative permittivity of the air, and L, A, K and l0 the
inductance, the capacity area, the spring constant, and its length, respectively.

Figure 6.2 shows the plate-type capacitor. The DAE has index 3. The dif-
ferential terms in (6.6) define the dynamic d(x, t) as follows

d (x, t) =




p1

p2

v1

v2

q
jL




,

20

Fig. 6.2. Plate-type capacitor.

according to p′1, p′2, v′1, v′2, q′, and j′L from (6.6), respectively. For this example
we choose the trajectory x̄(t) as follows:

x̄(t) =




0
1
0
1
0
−1
−1
−1




,

for p1, p2, v1, v2, e, q, λ, and jL, in this order.

6.5 Circuit simulations

We present in this subsection, the last one dedicated to give a flavor about the
type of problems we have addressed, to three examples of DAEs that model
electrical circuits. DAEs from electrical circuits that have neither loops consist-
ing of capacitors and voltage sources (CV-loop) nor cutsets containing induc-
tors and current sources (LI-cutset) have index 1. Adding at least one of such
electrical components to the topology would make the index higher, as it was
already shown in [22]. If the CV-loops and the LI-cutsets occur in a certain
configuration, then the index is 3 or even higher.

Example 7 (Bipolar ring oscillator [6])

We start with a bipolar ring oscillator (BRO) as shown in Figure 6.3. The
corresponding DAE has index 1 because it doesn’t have any CV-loop nor a
LI-cutset. The nonlinear capacity model q of the voltage v represents leading

21

Fig. 6.3. Bipolar ring oscillator.

terms of the DAE, which is given by:

γ
(
Ge1 + jC1 + jB3 + q′(e1 − e3)

)
= 0,

γ
(
Ge2 + jC2 + jB4 + q′(e2 − e3)

)
= 0,

γ
(
jE3 + jE4 + i− (q′(e1 − e3) + q′(e2 − e3))

)
= 0,

γ
(
Ge4 + jC3 + jB5 + q′(e4 − e6)

)
= 0,

γ
(
Ge5 + jC4 + jB6 + q′(e5 − e6)

)
= 0,

γ
(
jE5 + jE6 + i− (q′(e4 − e6) + q′(e5 − e6))

)
= 0,

γ
(
Ge7 + jC5 + jB1 + q′(e7 − e9)

)
= 0,

γ
(
Ge8 + jC6 + jB2 + q′(e8 − e9)

)
= 0,

γ
(
jE1 + jE2 + i− (q′(e7 − e9) + q′(e8 − e9))

)
= 0,

jV − 3i = 0,

e10 + v = 0,

(6.7)

with

q(ea − eb) = −4 · 10−11vB

√
1− ea − eb

vB
,

vBE = EB − EE, vBC = EB −EC,

jBE =
IS

α
(e

vBE
vT − 1), jBC =

IS

αr
(e

vBC
vT − 1),

jB = jBE + jBC , jC = α jBE − (1 + αr) jBC ,

where EE, EC and EB denote the knot potentials at the emitter, at the collec-
tor and at the basis of the transistor, respectively, with constant values α = 100,
αr = 10, vT = 0.0258, G = 10−3, IS = 10−12, v = 1.5, vB = 0.8, and i = 3·10−4.
The scale factor γ is used to improve the behavior of the resulting nonlinear
system.

22

The dynamic d(x, t) of this system is defined by:

d (x, t) =




q(e1 − e3)
q(e2 − e3)
q(e4 − e6)
q(e5 − e6)
q(e7 − e9)
q(e8 − e9)




,

for the differential terms q′ in (6.7). We choose the following trajectory x̄(t):

x̄(t) =




cos(t)
cos(t)
cos(t)
cos(t)
cos(t)
cos(t)
cos(t)
cos(t)
cos(t)
−1.5

9 · 10−4




,

for e1 to e10, and jV , in this order.
Example 8 (Bipolar ring oscillator with LI-cutset [6])
Now we add an inductor to the bipolar ring oscillator from Figure 6.3 ob-

taining a BRO with an LI-cutset. The DAE has then index 2. The electrical
circuit is shown in Figure 6.4. The nonlinear capacity model q of the voltage v

Fig. 6.4. Bipolar ring oscillator with inductor.

23

represents leading terms of the DAE, which is given by:

γ
(
G(e1 − e11) + jC1 + jB3 + q′(e1 − e3)

)
= 0,

γ
(
G(e2 − e11) + jC2 + jB4 + q′(e2 − e3)

)
= 0,

γ
(
jE3 + jE4 + i− (q′(e1 − e3) + q′(e2 − e3))

)
= 0,

γ
(
G(e4 − e11) + jC3 + jB5 + q′(e4 − e6)

)
= 0,

γ
(
G(e5 − e11) + jC4 + jB6 + q′(e5 − e6)

)
= 0,

γ
(
jE5 + jE6 + i− (q′(e4 − e6) + q′(e5 − e6))

)
= 0,

γ
(
G(e7 − e11) + jC5 + jB1 + q′(e7 − e9)

)
= 0,

γ
(
G(e8 − e11) + jC6 + jB2 + q′(e8 − e9)

)
= 0,

γ
(
jE1 + jE2 + i− (q′(e7 − e9) + q′(e8 − e9))

)
= 0,

jV − 3i = 0,

e10 + v = 0,

G(6e11 − e1 − e2 − e4 − e5 − e7 − e8)− jL = 0,

Lj′L + e11 = 0,

(6.8)

with q, vBE , vBC , jBE , jBC , jB, and jC calculated as in the former example.
The constants α, αr, vT , G, IS , v, vB, and i have the same values as before.
Further we have L = 1. The scale factor γ is used to improve the condition of
the problem.

The dynamic d(x, t) of this system is defined by:

d (x, t) =




q(e1 − e3)
q(e2 − e3)
q(e4 − e6)
q(e5 − e6)
q(e7 − e9)
q(e8 − e9)

jL




,

according to the differential terms q′ and j′L that appear in (6.8). For this
example we choose the following trajectory x̄(t):

x̄(t) =




κ cos(t)
κ cos(t)
cos(t)

κ cos(t)
κ cos(t)
cos(t)

κ cos(t)
κ cos(t)
cos(t)
−1.5

9 · 10−4

0.0
cos(t)




,

24

for e1 to e10, jV , e11, and jL, in this order, with κ = 1.01.
Example 9 (Bipolar ring oscillator with cross-modulation [6])
Finally, we add a capacitor and a voltage source in a loop, i.e., a CV-loop, to

the electrical circuit from Figure 6.4. We obtain then a bipolar ring oscillator
with a cross-modulation, i.e., a BRO with both an LI-cutset and a CV-loop
which is shown in Figure 6.5. The corresponding DAE has index 3.

Fig. 6.5. Bipolar ring oscillator with cross-modulation.

The nonlinear capacity model q of the voltage v represents leading terms of
the DAE, which is given by:

γ
(
G(e1 − e11) + jC1 + jB3 + q′(e1 − e3)

)
= 0,

γ
(
G(e2 − e11) + jC2 + jB4 + q′(e2 − e3)

)
= 0,

γ
(
jE3 + jE4 + i− (q′(e1 − e3) + q′(e2 − e3))

)
= 0,

γ
(
G(e4 − e11) + jC3 + jB5 + q′(e4 − e6)

)
= 0,

γ
(
G(e5 − e11) + jC4 + jB6 + q′(e5 − e6)

)
= 0,

γ
(
jE5 + jE6 + i− (q′(e4 − e6) + q′(e5 − e6))

)
= 0,

γ
(
G(e7 − e11) + jC5 + jB1 + q′(e7 − e9)

)
= 0,

γ
(
G(e8 − e11) + jC6 + jB2 + q′(e8 − e9)

)
= 0,

γ
(
jE1 + jE2 + i− (q′(e7 − e9) + q′(e8 − e9))

)
= 0,

γ
(
C e′10 − jv2 − 3i

)
= 0,

e12 + v1 = 0,

γ2 (G(6e11 − e1 − e2 − e4 − e5 − e7 − e8)− jL) = 0,

−jv1 + jv2 = 0,

γ3

(
Lj′L + e11

)
= 0,

e12 − e10 − β (e9 − e10) = 0,

(6.9)

with q, vBE , vBC , jBE , jBC , jB, jC , α, αr, vT , G, IS , v, vB, i, and L as before.
Further we have β = 0.1, C = 2 ·10−11. Scale factors γ, γ2, and γ3 are also used
to improve the condition of the problem.

25

The dynamic d(x, t) of this system is defined by:

d (x, t) =




q(e1 − e3)
q(e2 − e3)
q(e4 − e6)
q(e5 − e6)
q(e7 − e9)
q(e8 − e9)

jL

e10




,

according to the differential terms q′, j′L, and e′10, respectively, from (6.9). We
choose the following trajectory x̄(t):

x̄(t) =




κ cos(t)
κ cos(t)
cos(t)

κ cos(t)
κ cos(t)
cos(t)

κ cos(t)
κ cos(t)
cos(t)
cos(t)
cos(t)
−1.5
cos(t)
cos(t)
cos(t)




,

for e1 to e12, jL, jv1 , and jv2 , in this order. The constant κ = 1.01 is also used.
In the following section we will discuss some aspects concerning tests and

experiments we have done with each of the examples presented so far.

7 Experimental results

In this section we report several experimental results we have conducted with
the examples introduced above. Other theoretical insights have been also pre-
sented in [13].

Example 1
In [16] we presented some results for the DAE from (6.1). We analyzed the

accuracy of the projectors Qi, since exact Taylor expansions at the point t0 = 1,
for η = 1, computed from the theoretical expression with Mathematica, were
available. Our algorithm computes Q0, Q1 and Q2 as given in Example 1 of
Section 6.1 with a function β which has the Taylor expansion

β(t) = 0 + 2(t− 1) + (t− 1)2 − 23
3

(t− 1)3 − 10725
900

(t− 1)4 + O(t− 1)5

26

at the point t0 = 1, for η = 1 and c = 10−2. The Taylor expansion for

Q213 =
1− β (x1 + η)
x1 + x

′
2 + η

at the point t = 1, for η = 1, computed from its theoretical expression with
Mathematica is

Q213(t) = 100 + 9598(t− 1) + 969399(t− 1)2 + 9.79044743̄ · 107(t− 1)3+

+ 9.887711261916̄ · 109(t− 1)4 + O(t− 1)5.

The Taylor coefficients of Q113 and Q213 computed with our algorithm are pre-
sented in Table 1. The computed projectors values agreed with the theoretical

Table 1. Computed Taylor coefficients for Q113 and Q213 and their respective relative errors.

Term Q113 Rel.err. Q113 Q213 Rel.err. Q213

(t− 1)0 0.0 0.0 9.999999999999321 · 10 6.790e–14
(t− 1)1 2.0000000000000010 5.000e–16 9.597999999998652 · 103 1.404e–13
(t− 1)2 0.9999999999999998 2.000e–16 9.693989999997970 · 105 2.094e–13
(t− 1)3 –7.6666666666666780 1.478e–15 9.790447433330607 · 107 2.785e–13
(t− 1)4 –11.9166666666667400 6.153e–15

ones with working accuracy2 and our algorithm improved the performance of
the algorithm presented in [9]. We obtained accurate results, especially around
the points where the index might vary (i.e., around the DAE singular points).
Not only are the derivatives obtained with machine precision, but also the de-
termination of the index does not suffer from problem dependent singularities,
at least very close to the singular points.

Even at the singular point, when c = 0 (for t = 1 and η = 1), our algorithm
accurately identifies it in a closer neighborhood. This is not the case of the
algorithm from [9] where the value of c should be set to 3 · 10−5 to allow
successfully comparing pivot elements in the QR factorization. With a value
smaller than 3 · 10−5, neither the singular point is identified by that algorithm
nor the index is correctly computed.

Our algorithm behaves much better. We studied with which precision the
singular point could not be found any more. To this end we tried with different
values for the constant c and decremented them systematically. Table 2 shows
the obtained results. We found that, for a value of c greater or equal than
3.4 · 10−16, the singular point is always identified and the index is correctly
computed (i.e., the index is 3). For smaller values of c, however, the index is
said to be 3 when it should be actually 2 in such cases. Even up to 10−64, our
algorithms correctly detects the singularity.
2 Each differentiation reduces the relevant Taylor coefficients in one term. We considered a

number of five Taylor coefficients in the computations. This is why the last values for Q213

are not shown in the Table.

27

Table 2. Threshold’s assessment in a neighborhood of the singular point of the DAE from
(6.1).

Value Last pivot element that Singular point
of c holds the condition when Rank identified?

applying Householder to Z̃−i

10−5 1.00000000021172 · 1010 3
10−6 1.000000002347046 · 1012 3
10−7 1.000000027468525 · 1014 3
10−8 1.000000165636668 · 1016 3 y
10−9 1.0000019869449 · 1018 3
10−10 1.000021456205492 · 1020 3 e
10−11 1.00017219237835 · 1022 3
10−12 1.002183093489067 · 1024 3 s
10−13 1.016062706685979 · 1026 3
10−14 1.139904008044362 · 1028 3
10−15 3.549874073494557 · 1030 3

5 · 10−16 1.577721810442028 · 1030 3 y
3.5 · 10−16 1.577721810442028 · 1030 3 e
3.4 · 10−16 1.577721810442028 · 1030 3 s

3.3 · 10−16 1.0, 2 y

10−32 with rank of Z̃i = 1 2 e

10−64 6= nr. of columns of Z̃i = 2 2 s

Example 2

For the second academic example we conducted some experiments to test
the robustness of the algorithm we propose, as well as to measure the programm
running time including the computation of derivatives with ADOL-C. For this
purpose we defined matrices where each element is a polynomial with more
than 10000 Taylor coefficients. We should emphasize that the degree of the
Taylor expansions that is needed to compute the index is at most equal to the
dimension of the DAE, as we will address in short. With the experiments we just
wanted to work with big matrices and to check whether the algorithm worked
as expected.

Some of the results we obtained have been published in [16]. In short: the
algorithm correctly computes the index (i.e. it is 3 for the DAE from (6.2)
with α = x1, p(t) = e10t and t = 1) and the overall computation time does not
exceed a second for over 500 Taylor coefficients. For more than 10000 coefficients
the computation time was slightly greater than 6 minutes. Furthermore, the
computation effort grows theoretically quadratically (see Figure 7.1) but over
the range of practical interest only linearly with respect to the degree, i.e., with
respect to the number of Taylor coefficients.

We also conducted one experiment to analyze the memory requirements
of ADOL-C, i.e., the size of the tapes used by ADOL-C for evaluating the
underlying functions and their derivatives. The size of a tape depends on the
program code segment that is to be automatic differentiated.

28

Fig. 7.1. Programm running time when varying the number of Taylor coefficients.

Fig. 7.2. Programm running time when varying the number of Taylor coefficients.

29

Figure 7.2 shows that for a large number of Taylor coefficients the size
of the tapes remains acceptable: about 3500 KB for more than 10000 Taylor
coefficients.

Example 3
Another known example of DAE is the one from (6.3) describing a classical

pendulum. This DAE has index 3. A critical situation arises when the direction
of motion reverses, for instance, when the pendulum is in vertical position
and the velocity is zero, because the DAE has a singular point there and the
computation of the index may have difficulties. Our algorithm however detects
without any problem the singularities of the DAE and can correctly compute
the index even at these points.

Example 4
The DAE from (6.4) that describes the motion of a robotic arm is an example

of a high index DAE. Computing the index of high index DAEs could be very
difficult.

When applying our algorithms and once the projectors are computed as
described in Section 3.3, there should be analyzed their properties. To check
out projector properties like Qi+1Qi = 0, Q2

i = Qi, GiQi = 0, and P0 = D−D
we use the Frobenius norm defined as the square root of the sum of the absolute
squares of the matrix elements. Since the elements of these matrices are vectors
of Taylor coefficients, we consider the Frobenius norm either concerning the first
Taylor coefficients, i.e., the evaluation of the corresponding polynomials, or all
the Taylor coefficients as well. The decision is up to the user, which defines a
particular parameter for that. No matter what the case is, the Frobenius norm
should not be greater than a threshold eps ∈ R given by the user; otherwise the
calculation of the projectors might have problems.

We did some tests for a threshold eps = 10−14 and we defined the number
of Taylor coefficients to be 6, i.e., we deal with polynomials up to grade 5 in
the case of the robotic arm DAE.

When running the program with the above settings, it prints out some
warning errors inside the matrix loop. They indicate that the calculation of the
projectors might have problems because at least for one Taylor coefficient does
not hold that ‖Q2

i − Qi‖F < eps, being i the iterations concerning the matrix
sequence. However, as it can be seen in Figure 7.3, the values of the norm are
nevertheless very small.

We obtain similar results for the Frobenius norm ‖GiQi‖F , where at least
for one Taylor coefficient the norm value is greater that eps (see Figure 7.4).
Again, the values are acceptable.

Not only our algorithm correctly computes the index at problem singularities
(for example, when t = 0) but the results remain accurate when we vary the
number of Taylor coefficients. This is the kind of test the next experiment shows.
We expected that the accuracy of the involved matrices depends on the degree
of the Taylor expansions used in the computations, i.e., we should obtain more
accurate results when we define more Taylor coefficients before truncation. In
general, the number of Taylor coefficients NTC can be calculated using the
following formula:

NTC = (index− 1) + 2,

30

Fig. 7.3. Frobenius norm of Q2
i −Qi.

Fig. 7.4. Frobenius norm of GiQi.

31

where index is the index of the system (if it is known). It ensures a good
precision after truncating the univariate Taylor expansion. At most the index
is equal to the dimension of the DAE, what would be an upper bound.

We varied the number of Taylor coefficients from 1 to 7 in the robotic arm
example and analyzed the Frobenius norm of the derivative (D Pi+1 D−)′ that
is computed in order to obtain the matrix Bi+1 from (3.14). Actually, any vari-
ation on the number of Taylor coefficients would only affect the calculation
of (D Pi+1 D−)′ since it is computed by shifting the Taylor coefficients of the
polynomials of each element in the involved matrices (and by doing some mul-
tiplications with them after multiplying the matrices). Hence we wanted to see
whether the further calculation of the matrix sequence would be also affected
by this variation.

The number of Taylor coefficients does not have a direct effect on the results
accuracy since the Householder QR with column pivoting just considers the
column norms of the matrices, calculated these with the first coefficients of the
involved Taylor series, which correspond to the evaluation of the function (as it
was already explained in Section 5.1). So it is enough to consider an appropriate
number for the degree of Taylor polynomials to deal with, i.e., at most the DAE’s
dimension in case NTC above cannot be previously determined.

Examples 5 and 6
The DAEs of the electromechanical problems from Section 6.4, i.e., the ones

modeling the bike dynamo and the plate-type capacitor, have index 4 and 3,
respectively.

For the bike dynamo we simplified the DAE from (6.5) making C, R, G, k0,
k, m, and r equal to 1, and eliminating the factors with value 2π. Furthermore
we set α = 10◦. For the plate-type capacitor we set the values of m, L, A, K
and l0 to 1 in (6.6).

We should stress that for these practical problems there was not always
possible to determine the index at problem singularities by using other methods
[1]. The algorithm we propose, however, computes the index satisfactorily for
both ones, even at problem singularities as in the case of t = 0 for the bike
dynamo.

Examples 7, 8 and 9
In the case of the circuit simulations from Section 6.5 we analyzed the DAEs

of three bipolar ring oscillators. These DAEs have index 1, 2, and 3, respectively,
that depend on the topology of the electrical circuit. The complexity of the
circuit and of the DAE increase when particular transformations to the topology
are considered. These effects should be taken into account in the simulation
of real chips. The so called crosstalk effect, for example, is quite important in
practice; however, it has not been resolved satisfactorily from the numeric point
of view.

We had manually to tune the scale factors of these three examples until we
obtained reasonable results. The final values are shown in Table 3. The more
complex the problem is, the more difficult to tune the scale factors are. Our
program correctly computed the index for all cases. Special attention deserved
Example 9, the bipolar ring oscillator with cross-modulation. It is a case of an
ill-conditioned system with a high condition number, with solutions very sen-

32

Table 3. Settings for the scale factors in the circuit simulations (Examples 7, 8, and 9).

BRO BRO-LI BRO-LI-CV
Scale factor DAE from (6.7) DAE from (6.8) DAE from (6.9)

γ 109 106 109

γ2 – – 103

γ3 – – 106

sitive to small changes in the data. There we have encountered problems with
numerical conditioning. This is why we are still investigating that issue and have
considered to introduce some changes in the mathematical algorithm to com-
pute the index (although the ill-conditioning does not depend on the algorithm
or floating point accuracy used but on the properties of the involved matrices).
Our idea is to obtain projectors with better characteristics that allow us to ap-
ply further the Linear Algebra functionalities we have already implemented to
operate over matrices of Taylor series. These are topics of the ongoing research
work.

8 Conclusions and Outlook

We have presented a new approach to compute the tractability index based on
Algorithm Differentiation capabilities in the context of DAEs. Our algorithm
correctly computes the index very fast and without any human intervention,
disregarding problem singularities even in quite high index DAEs.

We have developed and implemented a new matrix-algebra package with
operations to deal with AD (e.g. implementation of special matrix-matrix mul-
tiplications, QR decomposition of matrices of Taylor polynomials, and much
more) using operator overloading in C++. We now have a novel program and
a library for the index determination with truncated polynomial arithmetic
that we have tested on various examples. Our implemented algorithm is also
the background for the extension of our method to compute consistent initial
values.

The main achievements we have obtained are the ones concerning accuracy
and runtime efforts: they are entirely satisfactory. No truncation errors are
present because we now have exact differentiations without explicit specification
of derivatives expressions. Furthermore, the algorithm’s complexity is quadratic
in degree: the computational effort grows theoretically quadratically but over
the range of practical interest only linearly with respect to the degree, i.e.,
with respect to the number of Taylor coefficients. The results are obtained with
working accuracy and are compared to exact calculations.

We also have documented the project, in two ways: internally, i.e., by includ-
ing comments in the code explaining the code to the reader, and externally, by
creating an on-line documentation browser (in HTML) and an off-line reference
manual (in LATEX) from the documented source files. The former easily helps
understanding and maintaining the software. The latter provides a more com-

33

pleted view of the whole project because almost all global variables, functions,
and classes are there documented.

The work in progress includes the extension of our method for computing
consistent initial values from time-invariant linear problems to general smooth
DAEs [12].

References

1. E. Abram. Netzwerkbasierte Analyse von elektromechanischen DAE-Systemen. Diplo-
marbeit, Institut für Mathematik, Technische Universität Berlin, 2008.

2. C. Bendtsen and O. Stauning. FADBAD, a flexible C++ package for Automatic Differen-
tiation. Technical Report IMM–REP–1996–17, IMM, Dept. of Mathematical Modelling,
Technical University of Denmark, August 1996.

3. A. De Luca and A. Isidori. Feedback Linearization of Invertible Systems. 2nd Colloq. Aut.
& Robots, Duisburg 1987.

4. G. H. Golub and Ch. F. Van Loan. Matrix Computations. The John Hopkins University
Press, Baltimore, MD, USA, 3rd edition, 1996.

5. A. Griewank and A. Walter. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. SIAM, second edition, 2008.

6. M. Günther and U. Feldmann. CAD based electric circuit modeling in industry I: Math-
ematical structure and index of network equations. Surv. Math. Ind., 8:97–129, 1999.

7. D. König. Indexcharakterisierung bei nichtlinearen Algebro-Differentialgleichungen. Mas-
ter’s thesis, Institut für Mathematik, Humboldt-Universität zu Berlin, 2006.

8. P. Kunkel, V. Mehrmann, and I. Seufer. GENDA – Homepage. http://www.math.tu-
berlin.de/numerik/mt/NumMat/Software/GENDA/.

9. A. Lamour. Index Determination and Calculation of Consistent Initial Values for DAEs.
Computers and Mathematics with Applications, 50:1125–1140, 2005.

10. R. Lamour, R. März, and C. Tischendorf. Proyector-Based DAE Analysis. (In prepara-
tion), 2009.

11. R. Lamour, R. Mattheij, and R. März. On the Stability Behaviour of Systems obtained
by Index Reduction. Journal of Comp. and Applied Math., 56:305–319, 1994.

12. R. Lamour and F. Mazzia. Computation of consistent initial values for properly stated
index 3 DAEs. In Int. Conf. on Scientific Computation and Differential Equations, Sci-
CADE’07, Saint-Malo, France, 2007.

13. R. Lamour and D. Monett. Index Determination of DAEs – A Wide Field for Automatic
Differentiation. In T.E. Simos, G. Psihoyios, and Ch. Tsitouras, editors, International
Conference on Numerical Analysis and Applied Mathematics, volume 2 of AIP Conference
Proceedings 1168, pages 727–730, Rethymno, Crete, Greece, September 2009.

14. R. März. The index of linear differential algebraic equations with properly stated leading
terms. In Result. Math., volume 42, pages 308–338. Birkhäuser Verlag, Basel, 2002.

15. R. März. Differential Algebraic Systems with Properly Stated Leading Term and MNA
Equations. In K. Antreich, R. Bulirsch, A. Gilg, and P. Rentrop, editors, Modeling,
Simulation and Optimization of Integrated Circuits, International Series of Numerical
Mathematics, volume 146, pages 135–151. Birkhäuser Verlag, Basel, 2003.

16. D. Monett, R. Lamour, and A. Griewank. Index Determination in DAEs Using the Library
indexdet and the ADOL–C Package for Algorithmic Differentiation. In C. H. Bischof,
H. M. Bücker, P. Hovland, U. Naumann, and J. Utke, editors, Advances in Automatic
Differentiation, volume 64 of Lecture Notes in Computational Science and Engineering,
pages 247–257, Berlin, 2008. Springer.

17. N.S. Nedialkov and J.D. Pryce. Solving Differential-Algebraic Equations by Taylor Series
(I): Computing Taylor coefficients. BIT Numerical Mathematics, 45:561–591, 2005.

18. N.S. Nedialkov and J.D. Pryce. Solving Differential-Algebraic Equations by Taylor Series
(II): Computing the System Jacobian. BIT Numerical Mathematics, 47:121–135, 2007.

19. N.S. Nedialkov and J.D. Pryce. Solving Differential-Algebraic Equations by Taylor Series
(III): the DAETS Code. Journal of Numerical Analysis, Industrial and Applied Mathe-
matics, 1(1):1–30, 2007.

34

20. J. D. Pryce. A Simple Structural Analysis Method for DAEs. BIT, 41(2):364–294, 2001.
21. G. Reissig, W.S. Martinson, and P. I. Barton. Differential-Algebraic Equations of Index 1

may have an arbitrarily high Structural Index. SIAM J. Sci. Comput., 21(6):1987–1990,
2000.

22. C. Tischendorf. Coupled systems of differential algebraic and partial differential equations
in circuit and device simulation. Modeling and numerical analysis. Habilitationsschrift,
Institut für Mathematik, Humboldt-Universität zu Berlin, 2004.

23. A. Walther and A. Griewank. ADOL-C: A Package for the Automatic Differentiation of
Algorithms Written in C/C++, Version 2.0.0, December 2008.

