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Abstract�The integration of di�erent learning and adap�
tation techniques in one architecture� to overcome individual
limitations and achieve synergetic e�ects through hybridiza�
tion or fusion of these techniques� has in recent years con�
tributed to a large number of new intelligent system designs�
Most of these approaches� however� follow an ad hoc design
methodology� further justi�ed by success in certain applica�
tion domains� Due to the lack of a common framework it
remains often di�cult to compare the various systems con�
ceptually and evaluate their performance comparatively�
In this paper we �rst aim at classifying state�of�the�art

intelligent systems� which have evolved over the past decade
in the soft computing community� We identify four cate�
gories� based on the systems� overall architecture	 
�� single
component systems� 

� fusion�based systems� 
�� hierarchi�
cal systems� and 
�� hybrid systems�
We then introduce a unifying paradigm� derived from con�

cepts well known in the AI and agent community� as con�
ceptual framework to better understand� modularize� com�
pare and evaluate the individual approaches� We think it is
crucial for the design of intelligent systems to focus on the
integration and interaction of di�erent learning techniques
in one model rather then merging them to create ever new
techniques�
Two original instantiations of this framework are pre�

sented and discussed� Their performance is evaluated for
prefetching of bulk data over wireless media�

Keywords� Intelligent systems� neuro�fuzzy approaches�
agent paradigm� intelligent prefetching over wireless media�

I� Introduction

Complex adaptive systems� also referred to as intelligent
systems� have in recent years been developed for model�
ing expertise� for decision support� and for process control�
among others� Many of these approaches go beyond sim�
ply applying one problem solving technique� but rather�
combine di�erent knowledge representation schemes� deci�
sion making models� and learning strategies in one system�
This integration aims at overcoming limitations of individ�
ual techniques through hybridization or fusion of various
techniques�
These ideas have lead to the emergence of many di�erent

kind of intelligent system architectures in the soft comput�
ing literature in the past decade� We have identi�ed four
categories based on the systems� overall architectural de�
sign� We distinguish between single and multi�component
approaches and between hybridization and fusion based ap�
proaches�
Most systems are designed in an ad hoc manner� further

justi�ed by demonstrations of successful applications� Such
approaches make it often hard to adapt the design ideas to
domains governed by di�erent conditions� Moreover� this
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makes it di�cult to compare the individual approaches and
evaluate their relative performance� since no common ba�
sis for such comparison is available� It remains therefore
di�cult to precisely pinpoint merits and demerits of the dif�
ferent approaches� Especially� when new techniques� based
on the integration of know algorithms� are proposed this is
a major drawback�

In an attempt to alleviate these problems we introduce
a paradigm� well known in the AI and agent community�
as conceptual framework to better understand� modular�
ize� evaluate� and compare the individual approaches� This
framework de�nes an intelligent system in a modular man�
ner which allows one to focus on the interaction of di�erent
system components and their overall utility for the problem
solving task�

We think it is crucial for the design of intelligent sys�
tems to primarily focus on the integration and interaction
of di�erent techniques rather than merge di�erent meth�
ods to create ever new techniques� Techniques� already
well understood� should be applied to solve speci�c domain
problems within the system� Their weaknesses must be ad�
dressed by combining them with complementary methods�
The focus must therefore lie on the component�wise inte�
gration of di�erent methods and be geared towards study�
ing their mutual dependencies� synergetic e�ects and pre�
cise interactions�

The rest of the paper is organized as follows� Section II
surveys state�of�the�art intelligent systems and identi�es
four distinct categories� Section III reviews the agent
paradigm and illustrates how it is applied in the design of
intelligent systems� We instantiate it with two original sys�
tems� Section IV validates these systems experimentally�

II� Intelligent systems based on neural and

fuzzy techniques

Neural networks are well suited for learning and adap�
tation tasks� In general� however� a neural network con�
stitutes a black box� This means it is not possible to un�
derstand how a neural system works� Furthermore� it is
very hard to incorporate human a priori knowledge into a
neural network� This is mainly due to the fact that the
connectionist paradigm gains most of its strength from a
distributed knowledge representation�

Fuzzy knowledge based systems� on the other hand�
exhibit complementary characteristics� The incorpora�
tion and interpretation of knowledge is straight forward�
whereas learning and adaptation constitute major prob�
lems� Table I gives a more clear cut juxtaposition of these
characteristics�
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Fig� �� Di�erent categories of intelligent system designs based on neural and fuzzy techniques�

TABLE I

Juxtaposition of complementary characteristics of pure

neural and pure fuzzy systems�

neural concepts fuzzy concepts

learnable� adaptive static devices� a
devices priori non�adaptive
black�boxes� rule�based�
not interpretable interpretable
learns from scratch domain knowledge

expressed in rules

Due to this complementarity it is not surprising that
many approaches have evolved which combine neural net�
work and fuzzy techniques in one system� A complete sur�
vey of all these approaches is out of the scope of this paper�
Rather� we try to focus on the di�erent kind of architec�
tures developed over the past few years� Figure � depicts
the di�erent approaches metaphorically� characterized be�
low� The four categories we have identi�ed are	 single com�
ponent system� fusion based systems� hierarchical systems�
and hybrid systems� The boundaries between the di�erent
categories are not strict� For many cases one could argue
that a given system could belong to more then one class�

The single component system class contains systems
based solely on one technique� It contains the �puristic�
approaches� such as plain fuzzy control� TSK�control� or
multi�layered perceptron based approaches� Many success�
ful applications of such approaches have been demonstrated
in the literature�

The fusion based system class includes systems which
combine di�erent techniques into one single computational
model� Instances of this class are� for example� AN�
FIS 
Jan���� NEFCON 
NK�
�� FUN 
STGV���� Eppler�s
approach 
Epp���� FINEST 
TOA���� and FLINS 
Oea����
among many others�

Common to these approaches is their network�like archi�
tecture which is often based� in one way or another� on the
�ve staged fuzzy rule base evaluation scheme �fuzzi�cation�
premise evaluation� truth value propagation� conclusio ag�
gregation� and defuzzi�cation�� Like the approaches in the
previous class� these systems realize a mapping from an
input space to an output space� The system does not con�
tain other components which perform strategic planing or
self�assessment�

The hierarchical system class comprises more archi�
tecturally complex systems� Its instances are build in a hi�
erarchical fashion� associating a di�erent functionality with
each layer �e�g�� preprocessing of sensor data� planing� and
action selection�� The correct functioning of the system�
thus� depends on the correct operation of all layers� a pos�
sible error in a lower layer is propagated up through the
hierarchy directly e�ecting the system output� Examples
are 
ATFS���� 
Tan���� and 
TNS����� among others�

Finally� the bybrid system class contains approaches
that put di�erent techniques on a side by side basis and
focus on their interaction in the problem solving task� It
is this interaction which we deem important� since it al�
lows to integrate alternative techniques and exploit their
mutuality� Furthermore� the conceptual view of the agent
allows one to abstract from the individual techniques and
focus on the global system behavior� as well as study the
individual contribution of each component� Examples are
ARIC 
Ber�
�� GARIC 
BK�
�� SHADE 
JIG���� 
JI���
and our work on the fuzzy relation adaptation architec�
ture 
Jac���� 
JW����

We are proponents of this latter class of systems� As
we believe� they exhibit greater potential for solving dif�
�cult tasks �learning� classi�cation� and control�� due to
the inherent self�assessment capabilities of the approaches
and their potential to gracefully degenerate with the loss
or unavailability of one of their component functions�

III� A modular architecture for hybrid

intelligent systems following the agent

paradigm

We now review an abstract framework of a learning agent
architecture to more easily capture the complexity of intel�
ligent systems� to better understand and modularize such
systems� and to obtain a terminological framework within
which future intelligent system designs can be evaluated
and compared� We illustrate how this framework can be
used to instantiate intelligent systems by discussing two ar�
chitectures derived from it� The framework is based on the
rational agent approach introduce by Russell and Norvig

RN��� who describe a rational agent as �something that
perceives and acts in a rational way�� The general agent
architecture is given in Figure 
 �adapted from 
RN�����
This framework should be seen as a tool to characterize
and analyze complex intelligent systems� Its basic prin�
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� Conceptual learning agent architecture according to Russell
� Norvig �adapted from �RN	����

ciples may be found with varying degrees in all systems
presented earlier� The architecture consists of four compo�
nents 
RN��� and the environment upon which the agent
acts	
The environment constitutes the problem task� e�g��

the process to be controlled� the decision space to be an�
alyzed� or the learning problem to be solved� Abstractly
speaking� it is described by a state vector perceived by the
agent through its sensors and in�uenced by it through its
e�ectors�
The performance element �PE� is the actual �con�

troller� mapping environment states to actions�
The learning element �LE� updates the knowledge rep�

resented in the PE in order to optimize the agent�s perfor�
mance w�r�t� to an outside performance measure� It has
access to the environment state� the agent�s past actions�
and an immediate reinforcement signal indicating the ap�
propriateness of the action that last in�uenced the environ�
ment state� Given this information it updates the PE so
that in future situations more pertinent actions are chosen
over less pertinent ones�
The critic faces the problem of transforming an exter�

nal reinforcement signal into an internal one� The crux is
that the external reinforcement signal may be very poor�
an indication of failure� for example� and it may even be de�
layed� indicating failure after an entire sequence of actions
has in�uenced the environment� The internal reinforce�
ment signal� on the contrary� must be more informative
and immediate� It indicates for each action taken whether
it was bene�cial or not��

The problem generator�s role in the agent architec�
ture is to contribute to the exploration of the problem
space� Abstractly speaking� it proposes di�erent actions

�This problem is discussed in the AI literature as credit assignment
problem �CAP�� depending on the overall situational outcome credit
or blame have to be distributed among actions and decision steps
involved in the agent�s reaction behavior� Sutton �Sut
��di�erentiates
between temporal credit assignment and structural credit assignment�
Temporal credit assignment is the distribution of credit for outcomes
to actions� The question is when the action occurred that caused the
outcome� Structural credit assignment is the distribution of credit
for actions to internal decisions that caused the action� It e�ects the
internal structure of a system� With this di�erentiation it is clear
that the critic faces the temporal CAP and the LE the structural
CAP�

which might lead to the discovery of new and better solu�
tions� In most existing systems it is realized by adding a
small amount of random noise to the output action� The
amount added depends on the system performance� If the
system performs well the need for new and better solution
is not as urgent as if it performs poorly�
Clearly� this framework does not require the use of a

speci�c technique for realizing the individual components�
These techniques may be chosen entirely according to their
strength and according to the problem task at hand�
Russell and Norvig 
RN��� present a rich set of instantia�

tions of this framework with diverse machine learning tech�
niques implementing di�erent component functions� In the
soft computing community� however� little attention is paid
to conceptual learning agent frameworks� We are aiming
at closing this gap�
We now introduce two instantiations of this frame�

work partially explored in previous work 
Jac�
�� 
JI����

Jac���� 
JW���� but never explored as entire architec�
tures� In Section IV we will demonstrate their e�ec�
tiveness on di�erent applications� Figure � and � show
how their architectures derive from the framework pre�
sented above� Reinforcement�driven fuzzy�relation�

adaptation The PE is instantiated by a rule�based fuzzy
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decision support system� i�e�� a mapping from observed in�
put states to an output decision �action�� The mapping is
de�ned by a fuzzy rule base�
The following discussion is based on previous work pre�

sented in 
Wei��� and 
JW���� 
Jac���� In the following�
without loss of generality� we will consider only a one in�
put�one output system� All results are easily extended to
systems with many input and many output variables� We
will therefore� consider here just two variables� the input
variable x and the output variable y� with their respective
universes of discourse Ux and Uy � Additionally� we denote
the generic elements of Ux and Uy by u and v� respectively�

Furthermore� let �Ai and �Bi represent fuzzy sets on the uni�
verses of discourse Ux and Uy� respectively �i � f�� � � � � ng��

We will denote the fuzzy rule �IF x is �Ai THEN y is �Bi�
by 
 �Ai � �Bi��
The general framework for handling a fuzzy rule base


 �Ai � �Bi� is to transform each rule into a fuzzy relation



�Ri � transform� �Ai� �Bi� on Ux �Uy� to aggregate these im�

plication relations to �R � aggregate� �Ri�� and to apply the
resulting so called meta rule �R by using max�min com�
position� That is� given the actual input �A� on Ux� the
result �B� on Uy of applying the fuzzy rule base 
 �Ai � �Bi�
is determined by computing	

�B� � �A� � �R� ���

�B��v� � max
u�Ux

minf�A��u�� �R�u� v�g� �
�

The meta rule �R is given as follows	

�Ri � transform� �Ai� �Bi� � �Ai � �Bi� and ���

�R � aggregate� �Ri� �
�

�Ri �
�

i

� �Ai � �Bi�� ���

with the appropriate t�t�co�norms �min and max in our
case� The meta relation can thus be computed� given the
fuzzy production rules governing the problem task� How�
ever� during the adaptation step there is no need to consider
the way the meta rule is constructed� We may just take
the fuzzy relation �R for granted and adapt it according to
the critic�s reinforcements� This is due to the fact� that any
meta rule is processed using max�min composition accord�
ing to eq� ����
The LE is instantiated with the reinforcement�driven

fuzzy relation adaptation algorithm developed for the ag�
gregated relation representation of the fuzzy rule base�
Given the input x and the output y we know exactly

how and why the selected decision was chosen from the set
of possible decisions� Observing the e�ect of the output
on the process it becomes thus possible to reinforce the
selection of the same control action or to suppress its se�
lection in future situations� This is achieved by directly
modifying the underlying knowledge relation� Clearly� the
objective is to reinforce good actions and to suppress bad
actions� Several di�erent reinforcement schemes for updat�
ing the relation have been developed	 point�wise updates�
neighborhood incorporating updates and fuzzy set oriented
updates� We now denote �R�u� v� by �R�u� v� to better em�
phasize the relational nature of the approach� Note� u� v
denote the generic input�output variables� whereas x� y
denote the speci�c system input and observed output�
Point�wise update	

R�x� y� � minf��maxf�� R�x� y�g� ��gg�

with � � � � � a learning rate and � the reinforcement
signal �� � � for rewards and � � � for punishments�� The
min�max operations serve to enforce the boundary condi�
tions�
Neighborhood incorporating update	
�ui � Ux and �vj � Uy

Rt�ui� vj� � minf��maxf�� Rt�ui� vj�

���Rt�ui� vj� e
���dx�yui�vj

������t gg

with � and � as above� �t an adaptive variance� and d a
distance measure� The adaptation is here additionally a
function of time� With increasing time �number of iter�
ations� the updated neighborhood decreases� �nally con�
verging to the center point�

Fuzzy set oriented update	
�ui � Ux and �vj � Uy

R�ui� vj� � maxf� R�ui� vj��minf�Iw� �ui�� �Ow�
�vj�gg�

with � � � � � a discount factor and w�� w� parameters
specifying the fuzzy set �I on the input domain and the
fuzzy set �O on the output domain centered around the
crisp state�action pair �x� y�� The discount factor � was
introduced to discount the relation in situations where the
process response patterns change�
A more detailed description of this algorithm� evaluation

of its behavior �performance and robustness� and its appli�
cation to control problemsmay be found in 
JW���� 
Jac����
Its instantiation in the above framework and combined use
with a critic is original to this work�
The PG is a module that adds a small amount of random

noise to the output� depending on the performance of the
system�
The critic is implemented by a feed�forward neural net�

work trained with the TD�	� rule 
Sut����
This approach resembles the adaptive critic developed by

Barto et al� 
BSA���� with the obvious di�erences in terms
of component techniques applied here�
Expert�guided hybrid neuro�fuzzy systemThe PE is
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Fig� �� Expert�guided hybrid neuro�fuzzy system

instantiated by two entirely independent modules� a feed�
forward neural network �NN� and a rule�based fuzzy de�
cision support �FDS� system� Both map the system input
state to an output decision �action�� The neural network
component is trained on a sample set �if available� by back�
propagation� The FDS is derived in concert with a human
domain expert and an additional �ne tuning stage� In our
system we rely on a manual tuning stage� but any number
of algorithms explored for this design stage could equally
well be employed� The �nal PE output is determined by a

�The adaptive variance� �t � �initial

� �final
�initial

�t�tmax
�



con�ict resolution scheme and depends on the operational
mode of the system� We chose mechanisms as developed
in our previous work 
JI���� 
JIG��� �emphasize on NN or
on FDS depending on the domain knowledge available� ac�
tion combination through a resolution operation�� To ob�
tain exploratory behavior these resolution schemes must
be adapted to account for a slight degree of randomness
according to the system performance�
The LE is a knowledge transfer component which allows

knowledge to be explicitly transferred from either one of
the modules� inherent to the PE� to the other� Several
modes of operation are possible� see Table II�

TABLE II

Knowledge transfer modes�

From NN to FDS

Rule extraction algorithm explored in �JI	��
that describes the neural network in terms
of fuzzy production rules�

From FDS to NN

Bootsrapping of a neural network with the
inverse of the extraction algorithm described
in �JI	���
Generation of samples by applying randomly
generated inputs to the FDS� inferring an
output and training the NN with the random
sample�

The system requires the assistance of a human critic
which evaluates the decisions inferred and possibly inter�
venes to tune the system�s parameters until it operates re�
liably� This approach is less appropriate for online learning
due to the human interactions required� We plan to exper�
iment with an automated critic in the future�
The overall architecture derives from the SHADE system

fully explored in 
Gia�
� incorporating a symbolic� on clas�
sical logic based� expert system� In 
Jac�
�� 
JIG���� 
JI���
we extended the system to incorporate a fuzzy inference
mechanism� generalizing the expert system component of
the system� and extend the knowledge transfer operations
available�

In the system instantiations presented here we have
mainly focused on neural network and fuzzy system
based techniques for realizing the individual components�
Clearly� other techniques might equally well be used in�
stead� e�g�� believe networks� dynamic believe networks� de�
cision trees� or symbolic processing techniques� Moreover�
the individual components may be arbitrarily complex con�
stituting any one instance of the architectures presented in
Section II� We leave such exploration open for future work�

IV� Intelligent prefetching for mobile aware

applications in wide area wireless networks

Wireless networking is becoming an increasingly impor�
tant communication means� yet high wide�area wireless
data connectivity is di�cult to achieve due to technological
and physical limitations� To alleviate these problems an al�
ternative has been proposed in 
YJK���� that places many

high bandwidth local �islands� of info�stations dispersed
throughout the low bandwidth wide�area wireless network�
These info�stations are deployed in a transparent manner�
often not geographically visible to the user� Applications
must therefore be designed mobile�aware and be able to
account for changing network characteristics by optimally
utilizing the available network resources�
Ye et al�� 
YJK���� experiment with an incremental map

downloading application for road travelers employing dif�
ferent prefetching strategies which prove to hide latency
from the user better than a mobile�unaware prefetching
algorithm�
Ye et al� incorporate vehicle location and speed informa�

tion into the prefetching algorithm� These hints are used
to predict the user�s future reference needs� This more ex�
act information eases request prediction and consequently
improves performance �i�e�� decreases user perceived la�
tency�� However� their results indicate that� under certain
conditions� little of the information prefetched is actually
touched by the application� thus wasting valuable network
resources�
We show in our experiments that the performance of this

prefetching algorithm may be further enhanced� by incor�
porating an adaptive user model� Performance is measured
as percentage of data touched from the amount prefetched�
The prefetching algorithm in 
YJK��� implements the

function	

fRoute��x� y�� v� t�� f Requestable pages g

where� Route� denotes start and end point of the journey�
�x� y� denote the vehicles location relative to an origin cho�
sen� v denotes the vehicle speed� and t denotes an attribute
identifying the point in time in the journey�
We use both of the above developed architectures to

experiment with this application and validate their de�
sign� Prior to retrieval� a request� generated by the regular
prefetching algorithm� is additionally passed through the
intelligent system� which assesses the utility of retrieving
the page�
The FDS is initialized with a set of fuzzy rules which

describe prefetching heuristics of the form	 If the speed is
high then the utility of prefetching is low� if the speed is low
then the utility of prefetching is high�
The TD�net is trained online such that it predicts the

�time to page access�� This signal is used to reinforce the
FDS�s knowledge representation� The TD�net receives an
external failure signal for every prefetched page which is
overwritten without being touched� Results are given in
Table III�
The second architecture is used with an uninitialized

neural network� thus demonstrating the plain FDS perfor�
mance�
The results shown compare the location and speed driven

prefetching� the greedy prefetching 
YJK���� and the intel�
ligent prefetching algorithms� The results are preliminary�
It can� however� be seen that the addition of a critic to
the system� has considerable e�ects on the overall perfor�
mance�



TABLE III

Utilization ��� of data retrieved�

Total �MB� ��� ���	 ��� 
�
	 
��	 ��
 ��� 	��

greedy ��� ��� 	�� �
	 ��� ��� 

� 
�

loc�speed ���� ���	 ���� ��� ��� ��
 ��
 ��	
arch� ���� �
�� ���� ���� 
��� 
��� ���� ���
 ����
arch� ���� 
��	 
��
 

�� 
��� ���� ���
 
��� 
���

V� Conclusion

We argue that� to obtain a less ad hoc design method�
ology for designing intelligent systems� attribute should be
paid to the learning agent architecture which has long been
discussed in the AI community� We have presented two
original instantiations of this architecture and have exper�
imentally validated their designs�
Our experiments present a preliminary study of the inter�

action of the di�erent components in the agent� We intend
to further study their mutual e�ects and experiment with
alternative instantiations�
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