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Abstract— Research and industry has tackled the object iden-
tification problem of data integration in many different ways.
This paper presents a framework, that allows the evaluation of
competing approaches. To this end, complexity measures and
data characteristics are introduced, which reflect the hardness
of a given object identification problem. All characteristics can be
estimated by use of simple SQL queries and simple calculations.
Following the principle of benchmark definitions we specify a test
framework. It consists of a test database and its characteristics,
quality criteria, and a test specification. Adequate measures
needed for the correctness criterion of the benchmark are given.

A running example of the Berlin Online Apartment-Advertisements
database (BOA) illustrates the approach. The BOA-database is
freely available at www.wiwiss.fu-berlin.de/lenz/boa/.

I. MOTIVATION

Even though quality cannot be def ined,
you know what it is.

Robert Pirsig

For databases, object identification is the task of finding
multiple database records, which represent the same real world
object, in particular when no global identifier is available.
Object identification becomes essential, when data about the
same real-world objects is distributed over two or more data
sources. Different methods and software packages tackle this
problem: Known methods are Record Linkage [1], [2], [3], the
Nearest-Neighbor- and k-way Sorting-Method [4], [5], Data
Lineage Tracing [6] or the generic approach Identif ication-by-
means-of-Classif ication introduced by two of the authors, c.f.
[7], [8]. Commercial software packages are INTEGRITYTM

[9], or the MERGE/PURGE component of the CENTRUSTM

data quality software [10] for example. A wide range of
software dealing with the standardization and de-duplication
of address data exists, e.g. FUZZY! POSTTM [11]. In this
paper we provide a test framework to enable the comparative
analysis of such competing approaches.

Currently, no publicly available test data exist — researchers
and software vendors usually evaluate their solutions on
domain-specific data. Unfortunately, data used for testing typ-
ically is confident, such as customer data or census data. Thus,
a publicly available collection of test data for independent
evaluation is required. In this paper we discuss properties,

∗Part of this work was supported by the Berlin-Brandenburg Graduate
School in Distributed Information Systems (DFG grant no. GRK 316)

that such test databases should fulfill and recommend quality
criteria and a test specification.

This paper is organized as follows: First, we present the
general object identification problem and the structure and
properties of its corresponding object identification solution.
Next, we define a test database and discuss characteristics of
object identification problems, which determine their hard-
ness. Then, we specify a test framework for object iden-
tification, consisting of a test database, its characteristics,
quality criteria, and a test specification. Finally, we discuss
the details of quality criteria and the specification.

II. THE OBJECT IDENTIFICATION PROBLEM

Looking for duplicated records
within a large real-world database

is like f ishing in troubled waters

User experience

Object identification on a database A, providing data on
an universe of real-world objects like people, books, etc.,
describes the following problem:

”Which database records a, b ∈ A refer
to the same real-world object?”, (1)

or, more comprehensive, ”Which records a, b ∈ A are dupli-
cates?”

We are interested in a solution of (1) concerning additional
constraints, implied by background information (metadata) on
A. For example, apartments of a different size (square meters)
do definitely not refer to the same real-world object, whereas
appartments with a different rent might still refer to the same
real-world object. In this work metadata are characterized as
a set of constraints C on A. We denote any particular solution
of (1) as an object identification solution, e.g., an algorithm
that, given A and C, returns the pairs assessed as duplicates
in A. Formally, a solution can be described as a decision rule
or classif ier δC : A×A→ {0, 1}, with

δC(a, b) = 0⇐⇒ a and b are classified as duplicates. (2)

Remark II.1. The decision δC(a, b) = 1 indicates, that a
and b could not be classified as duplicates—the hypothesis
a and b are duplicates would be rejected. From test theory
we know that two kinds of errors occur, namely the rejection
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of matches (so-called α-error), and the acceptance of non-
matches as duplicates (so-called β-error), c.f. section IV-B.
Lim et al. [12] propose to distinguish three decisions:
identical/undetermined/non matching.1 However, a third unde-
termined decision causes the difficulty of correct error estima-
tion. If the number of undetermined cases increases, both the
α- and β-error tend to decrease. Therefore a limit ε ∈ [0, 1) for
the number of undetermined cases has to be set beforehand,
such that |{undetermined pairs (a, b) ∈ A×A}| ≤ ε · |A| .
Typical sizes for the limit ε are 0, 0.1, 0.01, etc.

In the next section we introduce and discuss the hardness of
an object identification problems. The hardness is related to
the quality of solutions. The complexity and difficulty of a
problem influence the quality: Even if a solution is regarded as
good for a specific class of problems, it might be outperformed
by other solutions for a different class of problems. This fact
is similar to the NO FREE LUNCH situation for optimization
and supervised learning problems (c.f. details [13]) and it
applies also for the object identification problem.

III. THE HARDNESS OF OBJECT IDENTIFICATION

PROBLEMS

Due to the uniqueness of every object identification problem,
it is rather difficult to define its hardness. Before we define
the hardness we restrict the database A to a single relation,
e.g., A is made of a single table with the n attributes
X = (X1, . . . , Xn). This assumption is reasonable, since the
identifying information of real-world objects belonging to one
universe can be made uniformly and flat in the most cases. If
a value of an attribute Xi is not provided for the j-th tuple
aj ∈ A, we set Xi(aj) = NULL.

The indicator hardness of an object identification problem
for an database A depends (1) on given metadata for A, it
is a set of semantic constraints C, (2) on the number of
pairs, which can be built from A, it is |A|2/2, and (3) on
the selectivity of the attribute set Y ⊂ X , which contains
identifying information. The hardness measure reflects the I/O
complexity to access pairs of tuples from A.

Definition III.1 (Hardness). Let Y ⊂ X be an attribute
set and let φlog10

: R≥0 → [0, 1), v 7→ φlog10
(v) :=

(
1 − 1

1+log10(1+v)

)
be a function.2 Then the hardness of the

object identification problem for A is defined by

hardness(Y,A, C) := φlog10

(

Ψ(C) · |A|
2

2 ·Ψsel

)

, (3)

with Ψ sel := 1 + θ0 −maxY ′⊂Y

(
selectivity(Y ′, A)

)
,

where Ψ(C) ∈ [0, 1] is a sophisticated weight function (c.f.
Section III-B, Definiton III.16), dependent from metadata,
namely from a set of characteristics C supplied with an object
identification problem. θ0 ∈ (0, 1) is chosen, such that the
third factor in (3) is greater zero, e.g. θ0 = 1

100 .

1The undetermined cases require a manual inspection afterwards.
2φlog10

is a bijection with φ−1
log10

: [0, 1)→ R≥0, ξ 7→
(
10

ξ
1−ξ − 1

)
.

Remark III.2. The suggested indicator for the hardness mea-
sure (3) is defined as an product, because we suppose, that the
compensability axiom holds: The enlargement of one factor
can be compensated with the diminution of another factor,
e.g., the enlargement of the size |A| might be compensated
by improved metadata C for |A|, such that the Ψ(C)-value is
decreased.

Each characteristic Ck is a numerical function defined on a
subset of attributes Xi and subsets of A. Practioners might
determine their knowledge by a set of semantic constraints C.
Each constraint in C characterizes metadata for a given data
set A and is termed as [Ck ¦ v], ¦ ∈ {<,≤,=,≥, >,≈} and
v as a nonnegative numeric value.

An object identification solution might use the given semantic
constraints to improve the precision of its result. Practioners
can fix semantic constraints for a given problem A. The
constraints can be evaluated precisely, if a correct list of
duplicates is available.

Definition III.3. D = (A, C,Same) is a Test Database (for
object identification), if

• A is a database containing tuples a ∈ A from the same
universe of real-world objects,

• C is a finite set of semantic constraints describing char-
acteristics of A (metadata), and

• Same ⊂ (A×A) is an equivalence relation and contains
the pairs which are equivalent in reality. The Same-
relation is complete if (1) for each pair (a, b) ∈ Same ,
a and b really provide data referring to equivalent real-
world objects, written a ≡ b and (2) for each pair
(a, b) ∈ (A×A)\{Same}, a and b refer to nonequivalent
real-world objects, written a 6≡ b.

Remark III.4. There might exist a difference between the
equivalence and identity of two real-world objects. The equiv-
alence of real-world objects must be determined by a domain
specific concept of identity. For example, the abstract concept
of identity for a library catalogue can be determined by
editions of books. Note, that an object identification solution
δC might be imprecise and therefore different from Same , it
is Same 6= {(a, b) | δC(a, b) = 0}.

We can precisely evaluate each function Ck on Same . The
resulting value is denoted as Cs

k and the set of this constraints
is denoted as Cs. We assume that C and Cs are consistent.
That is, for each constraint Ck ¦ v, Cs

k ¦ v holds true.

Example III.5 (BOA — Berlin Online Apartment Ads).
Database A contains advertisements of Berlin apartments.
These ads were extracted from four online editions of the
Berlin newspapers Tagesspiegel and Berliner Morgenpost3

at the 18th and 25th of May 2002, respectively. From
Tagesspiegel we extracted 1,507 and 1,643 ads (forming
the subsets A1, A2 ⊂ A), while Berliner Morgenpost sup-
plied 2,962 and 3,730 ads of apartments in Berlin (forming
A3, A4 ⊂ A). The database comprises a single table with

3www.tagesspiegel.de and www.mopo-immo.de.



approximately 10,000 rows. Common attributes in all ads are
FullText, DistrictOfBerlin, Rent, Rooms, and Size. If available,
we extracted Phone (for 96%), Street (for 66%), Floor (for
43%) and other attributes.

To simplify data processing we performed the following steps:
(1) We annotated each record with an attribute identifying its
lineage, (2) We annotate each record with an attribute ID as
unique key, (3) We sort the tuples of A in increasing order
w.r.t. ID, A = (a1, . . . , aN ), such that holds

∀ ai, aj ∈ A : i < j =⇒ ID(ai) < ID(aj),

we notate the ordering on A by ai < aj for i < j, (4) To avoid
redundancy, we report only |A′|−1 pairs in the Same-relation

instead of all
(
|A′|
2

)

possible pairs for a set of duplicates

A′ ⊂ A — t.i. all tuples a ∈ A′ refer to the same real-
world object. Therefore, let I ⊂ {1, . . . , |A′|} be an index set,
such that A′ = {ai}i∈I . We set i0 := min(i ∈ I). Then we
report for each duplicate ai, i ∈ I, i 6= i0 exactly one pair in
the Same-relation, namely (ai0 , ai). Nevertheless, all pairs of
duplicates can be derived from the Same-relation by

a ≡ b⇐⇒
(
(a = b) ∨ (a, b) ∈ Same ∨ (b, a) ∈ Same ∨

∨ (∃a0 ∈ A : (a0, a) ∈ Same ∧ (a0, b) ∈ Same)
)
.

A. Complexity Measures and Characteristics

In the following subsection we proceed to define a set of
complexity measures and a set of characteristics. Measures
are metadata that can be derived automatically, while char-
acteristics can only be determined by an expert. Both sets
of properties will then be used to evaluate the difficulty of
finding duplicates in a database — the hardness of the object
identification problem. Most properties are accompanied by
our running example and the results are shown in Figure 3.

• Set of complexity measures: (1) The size4 |A| as the
number of tuples in A, (2) the selectivity(Y,A) of an
attribute set Y of A, and (3) the fraction of NULL-values
for an attribute set Y in A: null(Y,A).

• Set of characteristics: (1) Existence of semantic keys and
anti-keys Y ⊂ X and the reduction_rate(A) of pairs from
A×A achieved by these keys, (2) the share of duplicates
in A: duplicates(A), (3) the goodness of identif ication of
attribute sets: goodness(Y ), and (4) the accuracy(Y ) of
attribute sets.

1) Selectivity and Missing Values: A necessary condition for
object identification with attribute sets is high selectivity. The
selectivity for an attribute set Y ⊂ X is defined as:

selectivity(Y,A′) :=
|A′/domY |

|A′|
(4)

=
|{ {a ∈ A′ | Y (a) = y} | y ∈ domY }|

|A′|
,

4Size is a relative measure, since hardware and computational power
increases over time.

where A′/domY is induced by the equivalence rela-
tion (A,=Y ). Obviously, for any candidate key we get
[selectivity(Y,A) = 1]. But the converse is not true — high
selectivity is no indicator for the key property, since [a ≡
b =⇒ Y (a) = Y (b)] must not hold in general. Missing values
influence the identification. We can calculate the occurrence
of missing values for attribute sets Y ⊂ X by

null(Y,A′) :=
|{a ∈ A′ | ∃Yi ∈ Y : Yi(a) = NULL}|

|A′|
. (5)

Claim III.6. For all Y ⊂ X and for all A′ ⊂ A holds
null(Y,A′) ≤ 1− selectivity(Y,A′).

2) Semantic Keys and Anti-Keys: Knowledge about keys can
greatly reduce the number of pairs of (A×A) to be checked.

Definition III.7. Y is an semantic key on A′ ⊆ A, if Y fulfills
the key property

[∀a, b ∈ A′ : Y (a) = Y (b)⇐⇒ a ≡ b]. (6)

If a semantic key Y exists for a subset A′, object identification
can be performed on A′ — using Y as an identifier. Then, the
number of pairs in A×A decreases by 1

2 (|A
′|−1)(|A′|−2) ≈

1
2 |A

′|2.

Example III.8 (Semantic Key). Let A be a library cata-
logue, let A(i) ⊂ A and let Y (1) = (ISBN) and Y (2) =
({Author1,Author2, . . . }, Title,Edition,Publisher) attribute sets.
If [null(Y (i), A(i)) = 0] for A(i) ⊂ A then Y (i) forms a
semantic key, [semKey(Y (i), A(i)) = 1].

Definition III.9. Let Y be an attribute set, dist : (domY )2 →
R≥0 a distance measure, and ∆ > 0. Y is an semantic anti-
key on A′ ⊆ A, if Y indicates non-equalness of real-world
objects, if the distance measure exceeds ∆, t.i. ∀a, b ∈ A′ :
dist
(
Y (a), Y (b)

)
≥ ∆ =⇒ a 6≡ b.

Anti-keys form k pairwise disjunct duplicate-free subsets
A(i) ⊂ A (i = 1, . . . , k; k > 1), such that the number of or-
dered pairs in A×A reduces to 1

2

∑k
i=1(|A

(i)|−1)(|A(i)|−2) ≈
1
2

∑k
i=1 |A

(i)|2. The value of k depends on the selectivity of Y
in A. Anti-keys are a very efficient way for reduction, since the
reduction rate grows exponential w.r.t. the number of applied
anti-keys in the best case. Finally, [reduction_rate(A) = c]
denotes the ratio of all pairs removed by such keys.

Example III.10 (BOA cont.). Our data has been extracted
from four sources Ai ⊂ A, 1 ≤ i ≤ 4 (online editions).
Each source provides a semantic key [semKey(Y,Ai)] for
some attribute Y indicating that each source is free of du-
plicates. Thus the overall number of pairs 48, 417, 720 of
potential duplicates is reduced to 34, 604, 058. Further the
following anti-keys are given: [antiKey(DistrictOfBerlin, A, 0)],
[antiKey(Rooms, A, 0.5)], and [antiKey(Size, A, 1.0)]. The
number of ordered pairs decreases to 51,593.5 After all, a
reduction rate of 99.8761% has been achieved.

5This number might be increase approximately by 10%, if records with
exceptional or implausible values must be compared with other records.



3) The Number of Duplicates: Sometimes metadata contain
information about the expected number of duplicates in subsets
of A.

Let A′ ⊂ A. Then the characteristic duplicates is defined as
follows:

duplicates(A′) := |{a ∈ A′ | ∃a0 ∈ A′ : (a > a0 ∧ a ≡ a0}| .
(7)

Note, that the expression duplicates(A′) = 0 indicates
duplicate-freeness of A′, while duplicates(A′) ≤ |A′| − 1
specifies, that the number of duplicates in A′ is unknown.

Let A′, A′′ ⊂ A. The overlap of the real-world objects, both
A′ and A′′ refer to, is given by

overlap(A′, A′′) := duplicates(A′ ∪A′′)−

− duplicates(A′)− duplicates(A′′) (8)

Let {A(i), i = 1, . . . , k} be a partitioning of A. Assume the
constraints [overlap(A(i), A(j)) ¦ cij ], [duplicates(A(i)) ¦
ci] ,with 1 ≤ i ≤ j ≤ k, an operator ¦ ∈ {<,≤,=,≥, >,≈}
and ci, cij ∈ N. Applying (8), these expressions can be
aggregated to the constraint

[

duplicates(A) ¦
k∑

i=1

(

ci +
k∑

j=i+1

cij

)]

. (9)

It follows, that cmin, cmax ∈ N with 0 ≤ cmin ≤ cmax ≤
|A| − 1 exist, such that

[cmin ≤ duplicates(A) ≤ cmax] . (10)

Example III.11 (BOA cont.). For the sources A1, . . . , A4 we
have the following information: Between 5% and 30% of the
apartments are announced in two successive weekend-editions
of the Tagespiegel and the Berliner Morgenpost and the over-
lap of both newspapers of the same weekend is between 10%
and 20%. If we consider the duplicate-freeness of each online
edition we get by use of (9) [537 < duplicates(A) < 2, 636] .
Of course we still do not know, which records in A are in
fact duplicates. Satisfyingly, through a manual search we have
found 2,187 duplicates — [duplicatesS(A) = 2, 187]. But for
the successive weekend-editions of the Berliner Morgenpost
we found above 50% duplicates. We conclude from this result,
that for practical applications it is rather difficult to determine
the number of duplicates.

4) Goodness of Identif ication: In section III-A.2 we intro-
duced the concept of keys. However, for a given attribute Y we
are also interested in its capability to fulfill the key property.
The goodness of identif ication of an attribute set Y ⊂ X can
be analyzed with the accuracy of Y , i.e., the probability of
Y (a) = Y (b) for matched pairs (a, b). Since the equality of
the attribute values of Y is only of interest for identification,
if Y (a) = Y (b) occurs infrequently for non-matched pairs,
we apply the likelihood ratio λ ∈ R≥0,

λ(Y ) :=
P
(
Y (a) = Y (b) | a ≡ b

)

P
(
Y (a) = Y (b) | a 6≡ b

) . (11)

Resolving the conditional probabilities in (11) leads to6

λ(Y ) =

=
P
(
Y (a) = Y (b), a ≡ b

)
P
(
a 6≡ b

)
P
(
Y (a) = Y (b)

)

P
(
Y (a) = Y (b), a 6≡ b

)
P
(
a ≡ b

)
P
(
Y (a) = Y (b)

)

=
P
(
a ≡ b | Y (a) = Y (b)

)

P
(
a 6≡ b | Y (a) = Y (b)

) ·
P
(
a 6≡ b

)

P
(
a ≡ b

)

︸ ︷︷ ︸

const.

. (12)

Hence, the likelihood ratio (11) is influenced by the ratio of
the apriori probabalities of unmatched and matched pairs in
A. Thus, we define the rescaled likelihood ratio λ∗(Y ) by

λ∗(Y ) := λ(Y ) ·
P
(
a ≡ b

)

P
(
a 6≡ b

) . (13)

If (13) is transformed by the bijection φ : R≥0 ∪ {∞} →
[0, 1], ξ 7→

(
1 − 1

1+ξ

)
, φ(∞) = 1, the goodness of Y

for identification can be measured by the conf idence value
goodness(Y ) ∈ [0, 1] on a test database D = (A, C,Same) as
follows:

goodness(Y ) := φ
(

λ̂∗(Y )
)

=

(

1−
1

1 + λ̂∗(Y )

)

(14)

By use of (12) and (13) we simplify (14) as follows

goodness(Y ) = (15)

=
P̂
(
Y (a) = Y (b) | a ≡ b

)
P̂
(
a ≡ b

)

∑

¦∈{≡,6≡} P̂
(
Y (a) = Y (b) | a ¦ b

)
P̂
(
a ¦ b

)

We set [goodness(Y ) = 0] if the denominator in (15) vanishes.
The estimates of the conditional probabilities in (15) are given
by (with ¦ ∈ {≡, 6≡})

P̂
(
Y (a) = Y (b) | a ¦ b

)
:=
|{(a, b) | Y (a) = Y (b) ∧ a ¦ b}|

|{(a, b) | a ¦ b}|
.

As an extension of semantic keys we introduce the concept of
approximate keys.

Definition III.12. Y is a approximate key for A with
confidence factor p > 1

2 , iff goodness(Y ) = p.

The higher the confidence factor, the more correct the iden-
tification can be carried out by Y . But in contrast to semantic
keys, the key property (6) holds for an approximate key only
with its confidence p, e.g., for [goodness(Y ) ≈ 1

2 ] we have
λ̂(Y ) ≈ 1, that is the odds are 1:1. Thus, if the goodness(Y )
is below 1

2 , the use of Y as an approximate key becomes
unreasonable.

Further, in analogy to anti-keys, a notion of anti-goodness can
be defined. Similar to semantic anti-keys, approximate anti-
keys with a high confidence can be used to reduce the number
of pairs left for comparison. We omit details.

6The conditional probability is defined for events A,B by

P (A | B) :=
P (A, B)

P (B)
.



Example III.13 (BOA cont.). For some attributes of the
BOA database the goodness values are given in Fig-
ure I. Note that the attribute FullText has a high good-
ness, [goodnessS(FullText) = 0.9887] and no occurrences
of null values [nullsS(FullText) = 0] and consequently
[approxKey(FullText, A)].

5) Accuracy: Errors have a deep impact on data quality. In
case of quantitative data recorded from observations, errors
can often be modelled by Gaussian noise. Then outliers can
be detected with high probability. Unfortunately, errors in real-
world data are often more complicated: Many attributes are
qualitative (e.g., text), sometimes values are missing and errors
are not basically noise. Errors exists in data for several reasons,
e.g., mistypings and misspellings. Moreover, two tuples a, b
which differ in their values of attribute Yi, can still refer
to the same real-world object: (1) Usage of abbreviations
or alternatives, e.g., Dr. H. Mueller and Hans Müller, Dr.,
(2) Optional elements, e.g., Hans Müller and Hans W. Müller,
or (3) Changing values, e.g., Hertha Schmidt might marry
Hans at some day and be called Hertha Müller later on. Many
software packages are specialized to find duplicates among
address data. They are able to split and standardize name
and address data adequately. Obviously, similar problems arise
for other domains and a more generic approach is needed.
Given a Same-relation, which contains many pairs of tuples
with attribute value variations, the influence of variations
as described above can be analyzed. Furthermore, if some
variations, such as abbreviations, are frequent for an attribute,
this knowledge can be utilized, e.g., by use of an adequate
distance measure. The inaccuracy of attributes Y might be
known and measurable with a distance measure dist : domY ×
domY → R. If a value ∆ ≥ 0 is given, we get the estimator

∆-accuracy(Y ) :=
|{(a, b)|a ≡ b ∧ dist(Y (a)−Y (b))≤∆}|

|{(a, b) | a ≡ b}|
.

(17)
As special case of (17) we can estimate the absolute
correctness of an attribute set Y by accuracy(Y ) :=
|{(a, b) | a ≡ b ∧ Y (a) = Y (b)}|/|{(a, b) | a ≡ b}|.

Similar to the ∆-accuracy defined above, we can extend the
goodness-measure (14) similarly (compare figure 1).

Remark III.14. Note, that for attribute sets Y with average
selectivity, e.g. [selectivity(Y,A′) ≥ 1

10 ], typically holds
accuracy(Y,A′) ≤ goodness(Y,A′).

Example III.15 (BOA cont.). For a selection of attributes
supplied by the BOA–database we performed an estimation
of some characteristics c.f. Figure 3. For the ∆-measures we
employed suitable distance measures, e.g. the absolute value
function ABS() for Size (∆ = 1.0m2), Rooms (∆ = 1)
and Rent (∆1 = 1. For text-attributes we applied user-
defined functions, namely the Minimum-Edit-Distance for
Phone (∆ = 2 edits) and (1−Percentage-Of-Same-Words) for
FullText (∆ = .1% disagreement). For this estimation we built
a sample of pairs.

6) Other Characteristics: Domains and Content: Usually

a data dictionary is part of a database, where information
is supplied for each attribute about the data type, range,
format, description etc. Moreover, we can derive empirical
characteristics, e.g., frequencies and ranges of values of the
attributes of A. Other properties like signatures, fingerprints
of attributes (e.g., hash values), n-grams or other codes can
be calculated for each attribute from its content, too. But
it becomes more difficult to formulate conditions for the
hardness involving these characteristics.

Functional Dependencies: The accuracy of functionally de-
pendent attributes can be measured alternatively by the relative
frequency of the tuples, where the dependency constraint
[∃g ∀a ∈ A : g(Y (a)) = Xi(a)] failed,

FD-accuracy(Y ∪ {Xi}) :=
|{a ∈ A | g(Y (a)) = Xi(a)}|

|A|

or, alternatively,

∆-FD-accuracy(Y ∪ {Xi}) :=

=
|{a ∈ A | dist

(
g(Y (a)−Xi(a)

)
≤ ∆}|

|A|
,

for some ∆ ∈ R>0. Unfortunately, both estimates are limited
to sets of functional dependent attributes.

B. The Usage of Characteristics as Weights in the Hardness
Measure

Next we define the weight function Ψ , to be used in Definition
III.1. Let C = {C1, . . . , Cn} the set of characteristics supplied
with A, and let each class Ci consist of characteristics of
the same type, e.g. duplicates(A). Typically, we have only
some information about the monotony and extreme values for
a class of characteristics. We make use of weight functions
of its simplest kind, that match these properties, t.i. linear
functions. According to Remark III.2 we choose three classes
of characteristics, such that each component might compensate
the change of other components. Thus —following Claim III.6
and Remark III.14— we exclude the characteristics null(Y,A)

TABLE I

MEASURES AND CHARACTERISTICS FOR THE BOA–DATABASE

Characteristic/Measure
accu- ∆-accu- good- ∆- good-

Attributes racys racys nesss nesss null
DataSource .8453 .6288 0
FullText .4120 .5336 .9887 .9869 0
District 1 .5 0
Street .8721 .9647 .3324
Size .9984 1 .7193 .5 0
Rooms .9965 1 .5338 .5 0
Rent .9665 .9677 .9605 .9538 0
Phone .9575 .9807 .9564 .9504 .0389
Floor .4908 .8838 .5651
Rent, Size .9654 .9661 0
Rent, Rooms .9634 .9657 0
Street, Floor .3971 .9844 .6670
Street,
Phone,Floor .3735 .9968 .6879



∆-goodness(Y ) =
P̂
(

dist
(
Y (a), Y (b)

)
≤ ∆ | a ≡ b

)
P̂
(
a ≡ b

)

∑

¦∈{≡,6≡} P̂
(

dist
(
Y (a), Y (b)

)
≤ ∆ | a ¦ b

)
P̂
(
a ¦ b

) (16)

Fig. 1. The ∆-goodness — an extension of the goodness-measure

Ψ1

(

[reduction_rate(A) = c]
)

:= 1− c, (18a)

Ψ2

(

[c1 ≤ duplicates(A) ≤ c2]
)

:=

{

0 c2=0 ∨ c1= |A|−1,

θ1 + (1− θ1)
c2−c1
|A|−1 otherwise.

(18b)

Ψ3

(

max
Y ′⊂Y

(
c : [∆-goodness(Y ′, A) ≥ c]

))

:=

{

2− 2c c > 1
2

1 otherwise.
(18c)

Fig. 2. The components of the weight function Ψ (C)

and accuracy(Y,A) from the weight function Ψ of Definition
(3).

Definition III.16 (Weight Function). Let Y ⊂ X an attribute
set. Then the weight function of the hardness-measure (3) is
defined as

Ψ(C) =
3∏

i=1

Ψ i(Ci), (19)

whereby Ψ i denotes the weight function for the suggested
class of characteristics Ci ⊂ C. The weight functions are
defined as displayed in figure 2 (θ1 is chosen from the interval
(0, 1), e.g. θ1 = 0.01). The characteristic goodness is included
as special case of the ∆-goodness.

If Ci = ∅, we set Ψ i(∅) = 1 (since no reduction of complexity
can be achieved with this class of characteristics).

Example III.17 (BOA cont.). Let Y be a selection of 13
attributes from the BOA-database. Then we can calculate
the hardness measure: (1) hardness(Y,A, C) = .8578 for
C = ∅, (2) hardness(Y,A, Cs) = .1031 for the constraints
calculated precisely at the Same-relation, and (3) for several
sets of constraints fixed by experts, e.g. hardness(Y,A, C) =
.8256 for C = {[reduction_rate(A) = .95]} (low-level expert)
or hardness(Y,A, C) = .5976 for C = {[reduction_rate(A) =
.998761], [goodness(Y ′, A) ≥ .95], [538 ≤ duplicates(A) ≤
2, 535]} for an attribute set Y ′ ⊂ Y (high-level expert).

IV. A FRAMEWORK FOR COMPARATIVE ANALYSIS

A software benchmark is a prescription for a set of measurements
to evaluate some category of software capability,

usually performance.

P. O’Neill (in [14, p. 602])

In this section, we describe a framework allowing the eval-
uation of object identification solutions—specific software
packages and algorithms, capable of solving the object iden-
tification problem described above. An object identification

solution is compounded with its implementation and a fixed
hardware/software equipment.

Our objective is similar to the objective of benchmarking of
management systems. J. Gray states four important criteria
for a good domain-specific database benchmark [15], namely
Relevancy, Portability, Scalability, and Simplicity. We use
these criteria as guiding principles for our framework: (1) Rel-
evancy: Duplicates of the Benchmark database should contain
variations that are typical of real world duplicates. Match-
ing of typical data characteristics of real-world databases,
e.g., existence of semantic keys, accuracy, (2) Portability:
Avoidance of system specific functionality in the general test
prescription like work f lows or stored procedures of database
management systems, (3) Scalability: Applicability to small
and large database sizes |A|, (4) Simplicity: Usage of simple-
as-possible test data like a database containing a single table
using standard data types.

Standard database benchmarks, such as the TPC-benchmark of
the Transaction Processing Performance Council [16], [15]
use artificial data. Because each domain provides its own
specifics, it is difficult to generate representative artificial
data for object identification problems. For example, errors
in name and address data are specific. Therefore we vote for
the following test framework.

Definition IV.1 (Test Framework). A Test Framework for
object identification solutions is given as triple (D,Q,S),
where
• D is a test database made of a database A and its

characteristics C and a Same-relation as introduced in
Section III,

• Q is a definition of quality criteria and description of
their computation for a object identification solution on
D, c.f. section IV-B, and

• S is a specification of the test procedure (also called
control logic). It consists of a detailed plan prescribing
the way to the achieve reproducible results Q̂, allowing
exact comparisons of different test runs, c.f. Section IV-C.



A. The Test Database

There exist two possibilities to build a test database:

Real-World Test Database: Given a database with duplicates
an domain expert seeks for duplicates and fills in a Same-
relation, using the ID’s of duplicates. For example this was
applied to census data, c.f. [17], [18].

Artificial Test Database:7 A program inserts duplicated
records into a given database. The inserted duplicates are
randomly produced corrupted and the corresponding ID’s are
inserted as new tuples into the Same-relation. For example
this was applied to medical records, c.f. [19].

Both techniques have advantages and disadvantages. Many
efforts are required for the creation of the Same-relation for a
real-world test database and the overall number of duplicates
is usually limited. For the artif icial test database —in contrast,
merely the error generating process has to be specified to
generate an arbitrary large Same-relation. The most important
advantage of the real-world test database is that the variations
of data among duplicates are variations as they realistically
occur in the real world. Artificially introduced errors, on the
other hand, are not domain specific, do not necessarily cover
all error types, and their distribution might be unrealistic. The
BOA-database contains at least 20% duplicates, thus yielding
a real-world test database.

B. Quality of Object Identif ication Solutions

We suggest the following criteria for the evaluation of the
quality of an solution:

• Quantitative Criteria: Correctness, Scalability, Perfor-
mance, and Expenditures/Costs

• Qualitative Criteria: Usability, Integrability, Reliabil-
ity/Completeness, Robustness, Transparency, Adaptabil-
ity, and Flexibility

We discuss shortly these criteria: (1) Correctness: Estimation
of misclassification rates for test runs, (2) Scalability, e.g. to
|A| or w.r.t. the number of undetermined cases and presets
misclassification limits, (3) Performance: Computational ef-
forts, e.g. complexity of algorithms, computational time for
test runs, (4) Expenditures: Manual efforts for starting opera-
tions, e.g. installation, preprocessing, and efforts for learning
(5) Costs: Expenses for running operations, e.g. hardware,
software licenses, and maintenance (6) Usability, e.g. the need
of specialized experts and the possibility of automated or
incremental updates, (7) Integrability into existing software
architectures, e.g. interfaces, data/object exchange, remote
control, (8) Reliability/Completeness, e.g. well-tried, fault-
less solutions, (9) Transparency, e.g. understandability, non-
proprietarity of algorithms, heuristics, and results, (10) Adapt-
ability/Flexibility: Possibility of automated and incremental
updates, e.g. carrying in improved expert/user experience,

7As briefly discussed above, we vote against the usage of completely
artificial data for the test database.

adaptability to the life cycle of data and the evolution of data
models.

If there is a weakness of defining computable measures for
some criteria, it might be sufficient to make a qualitative
evaluation with a rank or score for these criteria. Note, that this
situation can occur for most of the above criteria, but without
any test database, the evaluation can never be carried out in a
quantitative manner.

Among all the above quality criteria we focus in this article on
the Correctness criterion. The correctness of an object iden-
tification solution can be measured by (compare figure 3)

– The False Negative Rate or α–error: The probability to
miss duplicates,

– The False Positive Rate or β–error: The probability to
falsely match non-duplicates.

α := P
(
δC(a, b) = 1 | a ≡ b

)
, (20a)

β := P
(
δC(a, b) = 0 | a 6≡ b

)
. (20b)

Given the Samerelation on D, i.e., duplicates are known,
these probabilities can be estimated on D = (A, C,Same)
as follows:

α̂ := P̂
(
δC(a, b) = 1 | a ≡s b

)
(21a)

= |{(a, b) | δC(a, b) = 1 ∧ a ≡s b}|/|{(a, b) | a ≡s b}| ,

β̂ := P̂
(
δC(a, b) = 0 | a 6≡s b

)
(21b)

= |{(a, b) | δC(a, b) = 0 ∧ a 6≡s b}|/|{(a, b) | a 6≡s b}| ,

If the decision δC(a, b) = 0/1 was left open for a portion of
ε pairs as discussed in Remark II.1, these pairs should not to
be taken into account for the calculation of the error rates.8

Remark IV.2. Alternatively to the error rates, we can estimate
the measures

precision := P̂
(
a ≡s b | δC(a, b) = 0

)

=
|{(a, b) | δC(a, b) = 0 ∧ a ≡s b}|

|{(a, b) | δC(a, b) = 0}|

and

recall := P̂
(
δC(a, b) = 0 | a ≡s b

)
= (1− α̂).

Note, that the undetermined matches decrease only the value of
recall, while the undetermined nonmatches influence neither
the values of recall or precision. Both measures can be
aggregated to the Match-Accuracy introduced by Melnik et al.
[20], match-accuracy := recall

(

2− 1
precision

)

. The match-
accuracy measures the user effort needed to transform the
result of an object identification solution into the correct
answer, as reported in the Same-relation.

8One may argue, that the error rates are only correct, if the value of ε
is added to the error rates α̂, β̂, since these pairs where either accepted or
rejected as duplicates. But this is too restrictive.
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Fig. 3. Decision vs. Reality for object identification solutions

C. The Test Specif ication

Testing an object identification solution δC accessing D is
a set of test runs according to the specification S , leading
to results Q̂ for each test run. The test specification is a
guideline for the test of an object identification solution on
a given test database. For evaluation, each quality criterion
requires a detailed description of the methods for achieving
comparable results. To clarify this idea, we document the
test specification for the correctness quality criteria en detail.
For this specification we adopt the learn-and-test-paradigm of
supervised learning:

Given a set of labelled examples, a classif ication is learned
for a subset and tested at the complement set.

In this manner unbiased estimators can be obtained for the
correctness. The complete specification is as follows:

1) Preconditions: (1) A complete Same-relation is
supplied with the test database D, (2) A PreSelection
of pairs from A × A is provided in order to downsize
the size of pairs, c.f. Section III-A.2. (3) The transitive
closure TC(Same) of Same is given.9 (4) An empty table
P(PairID, a_ID, b_ID, Same, a_X1,. . . , a_Xn, b_X1,. . . ,
b_Xn) exists in the database, whereby dom(a_Xi) =
dom(b_Xi) :=dom(A.Xi) and dom(Same)=[0, 1].

2) Construction of the Samples: (1) Insert into P a
random sample of matched pairs10of size N (0) ≤

9The transitive closure is defined by
[(∀a, b ∈ A : ((∃a0 ∈ A : a < b ∧ (a0, a) ∈ Same ∧ (a0, b) ∈ Same)

=⇒ (a, b) ∈ TC(Same))]
10A pair (a,b) is matched, if (a,b) ∈ TC(Same)

|TC(Same)| and set P.Same = 0. (2) Insert into P a
random sample of nonmatched pairs11 of size N (1) ≤
(|PreSelection| − |TC(Same)|) with P.Same=1. (3) Up-
date for each pair ∈ P the attributes pair.a_Xi, i =
1, . . . , n with the values of the respective record in A,
a ∈ A : pair.a_ID = a.ID, and for the attributes pair.b_Xi
respectively, (4) Split up the table P into a learning
sample L (of size NL) and a testing sample T (of size
NT = N (0) + N (1) − NL) and nullify the value of
T.Same.

3) Establishment of the Decision Rule: Then the object
identification solution δC is to be established by use of
the learning sample L, hiding all other records from it,
especially the testing sample T.

4) Validation of the Decision Rule: (1) Apply the decision
rule δC to all pairs in the testing sample T, and thus the
Attribute T.Same is valuated for all pairs. (2) Calculate
the correctness measures for the decision rule at the
testing sample T (e.g., the error rates or precision and
recall).

Remark IV.3. To apply supervised or unsupervised learning,
a comparison of the records a with b, any pair ∈ P is made
of, has to be performed and the results have to be stored, too.
Therefore, a set of suitable comparison functions12 for pairs
of records of A has to be specified and implemented, and for
each function a column has to be added to the table P. Most
learning software, e.g. decision trees, can employ learning only
based on this comparison values.
For supervised learning, the software has to be feeded with the
modified learning sample L ⊂ P, and the learned classification
rule δC is to be stored. In case of unsupervised learning, the
result is not yet a decision rule, the decision rule has to
be established after post-processing of the results, e.g., the
labelling of clusters with Same or Not Same.
In other cases the decision rule δC might be provided by a
domain expert, such that learning is not necessary (e.g. the
Sorted-Neighborhood-Method, where rules of an equational
theory have to be coded separately, c.f. [19], [4]). The above
described sampling procedure can be simplified to record
sampling (instead of the separate creation of pairs of records),
if the execution of the decision rule can be performed directly
at the database.

Example IV.4 (BOA cont.). We have applied five successive
test runs of association rule mining to equal sized samples
of pairs extracted from BOA-database. We have generated
approximately 3,000 two- and three-level association rules
with minimal support of 1% and minimal confidence of 75%.
For at least 300 rules the Same-attribute was the decision
attribute, in the following named as positive rules, if Same =
0, and negative rules, if Same = 1. To classify according to
these rules, they must be matched with the comparison values
of a pair in the testing sample. Firstly we removed from the
matching rules these, which indicate for inter-dependencies

11A pair is nonmatched, if (a,b) /∈ TC(Same).
12e.g. ABS(x, y) = |x − y|, applicable to numeric attributes or the

Minimum-Edit-Distance(x, y), applicable to text attributes
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Fig. 4. The error rates of four object identification solutions calculated at five test samples, all based on association rules extracted from learning samples
of pairs selected from the BOA-database (c.f. Example IV.4)

of all but the Same-attribute. Nevertheless, often conflicting
rules match, such that we needed to apply rule aggregation.
Therefore we employed four different rule aggregation cri-
teria, namely (1) BestRule: Apply the rule with the largest
confidence, (2) Conf idence: Compute the the sum of the
confidence for positive and negative rules, respectively and
decide for Same = 0 if the first sum is larger than the second,
(3) Rank: Compute the sums of the inverse rank for positive
and negative rules, respectively and decide for Same = 0
if the first sum is larger than the second, (4) Count: Decide
for Same = 0, if the number of positive rules exceeds the
number of negative rules and for Same = 1 else. To avoid
undetermined cases, all four criteria provide a clear decision
Same = 0/1.
The error rates α̂, β̂ were around 2% for all criteria and all
five test runs, see Figure 4. We deduce from the results, that
the variances of the error rates differ. Low variance indicates
for the robustness of the estimated error-rates, t.i. for new data
similar error-rates can be expected. For example, the α-errors
of the Count-criterion (the circs in figure 4) range from .5% to
5.5%, while the α-errors for the Rank-criterion (the triangles)
are concentrated at the 1%-line, and the β-errors range from
1% to 1.7%.

The implementation used for this test run was based on
Microsoft Visual Basic for Applications, e.g. sampling, com-
parison and rule aggregation. We performed a lot of dynamic
created SQL queries and a huge amount of SQL executions
interacting with tables stored in a Microsoft Access database (a
few examples are displayed in figure 5). Nevertheless, due to
the simplicity and the portability, the above test specification is
portable to arbitrary database management systems. A detailed
prescription of the technical details for this test specification
is currently in preparation.

V. SUMMARY

Quality is an important issue for object identification in
databases. We discussed the two main aspects of object
identification quality,

• The hardness of object identification problems, and
• The quality of object identification solutions —

e.g.correctness— in order to enable a comparative anal-
ysis of different solutions at test databases.

We described detailed the determination of the hardness,
which can be expressed by a set of complexity measures and
semantic constraints for an object identification problem. We
defined an indicator for the overall hardness based upon these
properties.

Further we established a test framework. Several quality crite-
ria are recommended. A prescription of the test specification
for the correctness criterion is given. We illustrated our ap-
proach with a running example, the BOA-database.

In conclusion, following our approach, it is possible to es-
tablish test databases and to evaluate different methods and
software packages. We vote for freely available test databases,
such that practioners and researchers can perform tests inde-
pendently from software vendors. Similar to the benchmarks
of database management systems, e.g. the TPC-Benchmark
[16], comparable results of object identification solutions can
be achieved.
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