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1 Introduction

Iterative operator splitting methods are well-known splitting methods for com-
plicated equations and do not allow a decoupling in separate equations, like the
standard A-B splitting.

Overlapping Schwarz waveform relaxation is the name for a combination of
two standard algorithms, Schwarz alternating method and wave form relaxation
algorithm, which solves evolution problems in parallel. The method is charac-
terized by the partitioning of the spatial domain into overlapping sub-domains,
as in the classical Schwarz method.

The combined time-space iterative operator splitting method combines the
Schwarz waveform relaxation and the iterative operator splitting method.

The outline of the paper is as follows. For our mathematical model we de-
scribe the convection-diffusion-reaction equation in section 2. The Fractional
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Splitting is introduced in section 3. We present the error analysis of the over-
lapping Schwarz waveform relaxation method for the solution of convection-
diffusion-reaction equation in section 4. Sections 5, 6 and 7 provide all the nec-
essary theoretical background and facts about the proposed new method. In
section 8 we present the numerical results from the solution of selected model
problems. We end the article in Section 9 with conclusion and comments.

2 Mathematical Model and Methods

2.1 Model-Problem

The motivation for the study presented below originates from a computational
simulation of heat-transfer [5] and convection-diffusion-reaction-equations [4],
[7], [8] and [6].

In our paper we concentrate on an one dimensional convection-diffusion-
reaction equation as our model problem given by

ut − D uxx + ν ux = −λ u , in Ω × (0, T ) ,

u(x, 0) = u0 , (Initial-Condition) ,

u(x, t) = u1 , on ∂Ω × (0, T ) , (Dirichlet-Boundary-Condition) .

The unknown u = u(x, t) is considered in Ω× (0, T ) ⊂ IR× IR, where Ω = [0, L].
The constants u0, u1 ∈ IR+ are used as initial and boundary parameters respec-
tively. λ is a constant factor, for example a decay-rate of a chemical reaction. D
is constant factor, for example the diffusion factor of a transport-process and ν
is a constant factor, for example the velocity-rate of a transport-process.

The aim of this paper is to present a new method based on a mixed discretiza-
tion method with Fractional-Splitting and Domain decomposition methods for
the effective solution of strong coupled parabolic differential equations.

In the next section we discuss the decoupling of the time-scale with a first
order fractional splitting-method.

3 Fractional Splitting methods of first order for linear

equations

First we describe the simplest operator-splitting, which is called sequential op-
erator splitting for the following linear system of ordinary differential equations:

∂tu(t) = A u(t) + B u(t) , t ∈ (0, T ), (1)

where the initial condition is u(0) = u0. The operators A and B are spatially
discretised operators, i.e. they correspond to the discretised in space convection
and diffusion operators (matrices). Hence, they can be considered as bounded
operators.
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The sequential operator-splitting method is introduced as a method that
solves two sub-problems sequentially, where the different sub-problems are con-
nected via the initial conditions. This means that we replace the original problem
(1) with the sub-problems

∂u∗(t)

∂t
= Au∗(t) , with u∗(tn) = un ,

∂u∗∗(t)

∂t
= Bu∗∗(t) , with u∗∗(tn) = u∗(tn+1) ,

where the splitting time-step is defined as τn = tn+1 − tn. The approximated
split solution is defined as un+1 = u∗∗(tn+1).

Clearly, the replacement of the original problem with the sub-problems usu-
ally results some error, called splitting error. The splitting error of the sequential
operator splitting method can be derived as follows (cf. e.g. [9], [10])

ρn =
1

τn

(exp(τn(A + B)) − exp(τnB) exp(τnA)) u(tn)

=

{
0 , for [A, B] = 0 ,
O(τn) , for [A, B] 6= 0 ,

where [A, B] := AB − BA is the commutator of A and B. Consequently, the
splitting error is O(τn) when the operators A and B do not commute, otherwise
the method is exact. Hence, by definition, the sequential operator splitting is
called first order splitting method .

4 Overlapping Schwarz wave form relaxation for the

solution of convection-diffusion-reaction equation

In this section we shall present the necessary conditions for the convergence of
the overlapping Schwarz wave form relaxation method for the solution of the
convection-diffusion-reaction equation with constant coefficients. We will utilize
the convergence analysis for the solution of the decoupled and coupled system
of convection reaction diffusion equation to elaborate the impact of the coupling
on the convergence of the overlapping Schwarz wave form relaxation.

Given is the following model problem

ut + Lu = f , in Ω × (0, T ) , Ω × (0, T ) := Ω1 × (0, T ) ∪ Ω2 × (0, T ) ,

u(x, 0) = u0 , (Initial-Condition) ,

u = g , on ∂Ω × (0, T ) ,

where L denotes for each time t a second-order partial differential operator
Lu = −∇D∇u + v∇u + cu for the given coeffients D ∈ IR+, v ∈ IRn, c ∈ IR+,
and n is the dimension of the space. The underlying domains Ω1 and Ω2 are
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nonconvex and lipschitzian and do not influence the following analysis. Each
iteration step consists of two half steps associated with the two subdomains and
we solve 2 subproblems

u1t + Lun
1 = f , in Ω1 × (0, T ) ,

u1(x, 0) = u10 , (Initial-Condition) ,
un

1 = un−1
2 , on L2 = ∂Ω1 × (0, T )\∂Ω × (0, T ) ,

un
1 = g , on L0 = ∂Ω × (0, T ) ∩ ∂Ω1 × (0, T ) ,

(2)

u2t + Lun
2 = f , in Ω2 × (0, T ) ,

u2(x, 0) = u20 , (Initial-Condition) ,
un

2 = un
1 , on L1 = ∂Ω2 × (0, T )\∂Ω × (0, T ); ,

un
2 = g , on L3 = ∂Ω × (0, T ) ∩ ∂Ω2 × (0, T ) ,

(3)

4.1 Error of an Overlapping Schwarz wave form relaxation for the

scalar convection-diffusion-reaction equation

We consider the convection diffusion-reaction-equation, given by

ut = Duxx − νux − λu ,

defined on the domain Ω = [0, L] for T = [T0, Tf ], with the following initial and
boundary conditions

u(0, t) = f1(t), u(L, t) = f2(t), u(x, T0) = u0 .

To solve the model problem using overlapping Schwarz wave form relaxation
method, we divide the domain Ω in two overlapping sub-domains Ω1 = [0, L2]
and Ω2 = [L1, L], where L1 < L2 and Ω1

⋂
Ω2 = [L1, L2] is the overlapping

region for Ω1 and Ω2.

Theorem 1. Let {ek+1} and {dk+1} be the sequences of errors from the solution
of the subproblems (2) and (3) by Schwarz wave form relaxation over Ω1 and
Ω2, respectively, then

||ek+2(L1, t)||∞ ≤ γ||ek(L1, t)||∞ ,

and
||dk+2(L2, t)||∞ ≤ γ||dk(L1, t)||∞ ,

where

γ =
sinh(βL1)

sinh(βL2)

sinh(β(L2 − L))

sinh(β(L1 − L))
< 1 ,

with β =
√

ν2+4Dλ
2D

.

Theorem 1 shows that the convergence of the overlapping Schwarz method

depends on γ = sinh(βL1)
sinh(βL2)

sinhβ(L2−L)
sinhβ(L1−L) . Due to the characteristic of the sinh func-

tion we will have sharp decay of the error for any L1 < L2, and also for large
size of overlapping the error will vanish.
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5 The iterative splitting method

The following algorithm is based on the iteration with fixed splitting discretiza-
tion step-size τ . On the time interval [tn, tn+1] we solve the following sub-
problems consecutively for i = 0, 2, . . .2m.

∂ci(x, t)

∂t
= Aci(x, t) + Bci−1(x, t), with ci(t

n) = cn (4)

c0(x, tn) = cn , c−1 = 0,

and ci(x, t) = ci−1(x, t) = c1 , on ∂Ω × (0, T ) ,

∂ci+1(x, t)

∂t
= Aci(x, t) + Bci+1(x, t), (5)

with ci+1(x, tn) = cn ,

and ci(x, t) = ci−1(x, t) = c1 , on ∂Ω × (0, T ) ,

where cn is the known split approximation at the time level t = tn, cf. [3].

6 The combined time-space iterative splitting method

Notation. For the sake of simplicity and for economy of space, from now on we
omit writing the dependence of the functions on the variable x. However, it is
important to leave the dependence on t for obvious reasons.

The following algorithm iterates with fixed splitting discretization step-size τ .
On the time interval [tn, tn+1] we solve the following sub-problems consecutively
for i = 0, 2, . . . 2m and j = 0, 2, . . . 2q. In this notation i represents the iteration
index for the time-splitting and j represents the iteration index for the spatial-
splitting.

∂ci,j(t)

∂t
= A|Ω1

ci,j(t) + A|Ω2
ci,j−1(t) + B|Ω1

ci−1,j(t) + B|Ω2
ci−1,j−1(t),

with ci,j(t
n) = cn (6)

∂ci+1,j(t)

∂t
= A|Ω1

ci,j(t) + A|Ω2
ci,j−1(t) + B|Ω1

ci+1,j(t) + B|Ω2
ci−1,j−1(t),

with ci+1,j(t
n) = cn (7)

∂ci,j+1(t)

∂t
= A|Ω1

ci,j(t) + A|Ω2
ci,j+1(t) + B|Ω1

ci+1,j(t) + B|Ω2
ci−1,j−1(t),

with ci,j+1(t
n) = cn (8)

∂ci+1,j+1(t)

∂t
= A|Ω1

ci,j(t) + A|Ω2
ci,j+1(t) + B|Ω1

ci+1,j(t) + B|Ω2
ci+1,j+1(t),

with ci+1,j+1(t
n) = cn (9)

where cn is the known split approximation at the time level t = tn, cf. [3].
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6.1 The nonoverlapping time-space iterative splitting method

We introduce for the semi-discretisation in space the variable k as the node for
the point xk and we have k ∈ (0, . . . , p), where p is the number of nodes. We
have the decomposition in space, where Ω1 consists of the points 0, . . . , p/2 and
Ω2 of p/2 + 1, . . . , p, we assume p is even. So we assume Ω1 ∩ Ω2 = {} and we
have the following algorithm

∂(ci,j)k(t)

∂t
= Ã|Ω1

(ci,j)k(t) + Ã|Ω2
(ci,j−1)k(t)

+ B̃|Ω1
(ci−1,j)k(t) + B̃|Ω2

(ci−1,j−1)k(t),

with (ci,j)k(tn) = (cn)k

∂(ci+1,j)k(t)

∂t
= Ã|Ω1

(ci,j)k(t) + Ã|Ω2
(ci,j−1)k(t)

+ B̃|Ω1
(ci+1,j)k(t) + B̃|Ω2

(ci−1,j−1)k(t),

with (ci+1,j)k(tn) = (cn)k

∂(ci,j+1)k(t)

∂t
= Ã|Ω1

(ci,j)k(t) + Ã|Ω2
(ci,j+1)k(t)

+ B̃|Ω1
(ci+1,j)k(t) + B̃|Ω2

(ci−1,j−1)k(t),

with (ci,j+1)k(tn) = (cn)k

∂(ci+1,j+1)k(t)

∂t
= Ã|Ω1

(ci,j)k(t) + Ã|Ω2
(ci,j+1)k(t)

+ B̃|Ω1
(ci+1,j)k(t) + B̃|Ω2

(ci+1,j+1)k(t),

with (ci+1,j+1)k(tn) = (cn)k

where cn is the known split approximation at the time level t = tn, cf. [3].

The operators in the above equations are given as :

Ã|Ω1
(ci,j)k =

{
Aci,j for k ∈ {0, . . . , p/2}

0 for k ∈ {p/2 + 1, . . . , p} (10)

Ã|Ω2
(ci,j)k =

{
0 for k ∈ {0, . . . , p/2}

Aci,j for k ∈ {p/2, . . . , p} (11)

Similar are the assignments for operator B.

B̃|Ω1
(ci,j)k =

{
Bci,j for k ∈ {0, . . . , p/2}

0 for k ∈ {p/2 + 1, . . . , p} (12)

B̃|Ω2
(ci,j)k =

{
0 for k ∈ {0, . . . , p/2}

Bci,j for k ∈ {p/2, . . . , p} (13)
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6.2 The overlapping time-space iterative splitting method

We introduce for the semi-discretisation in space the variable k as the node for
the point xk and we have k ∈ (0, . . . , p), where p is the number of nodes. Now we
consider the overlapping case, so we assume Ω1∩Ω2 6= {}. We have the following
sets : Ω\Ω2 = {0, . . . , p1}, Ω1∩Ω2 = {p1+1, . . . , p2} and Ω\Ω1 = {p2+1, . . . , p}.
We assume p1 < p2 < p and can derive the following overlapping algorithm

∂(ci,j)k(t)

∂t
= Ã|Ω\Ω2

(ci,j)k(t) + Ã|Ω1∩Ω2
(ci,j , ci,j−1)k(t) + Ã|Ω\Ω1

(ci,j−1)k(t)

+ B̃|Ω\Ω2
(ci−1,j)k(t) + B̃|Ω1∩Ω2

(ci−1,j , ci−1,j−1)k(t) + B̃|Ω\Ω1
(ci−1,j−1)k(t),

with (ci,j)k(tn) = (cn)k (14)

∂(ci+1,j)k(t)

∂t
= Ã|Ω\Ω2

(ci,j)k(t) + Ã|Ω1∩Ω2
(ci,j , ci,j−1)k(t) + Ã|Ω\Ω1

(ci,j−1)k(t)

+ B̃|Ω\Ω2
(ci+1,j)k(t) + B̃|Ω1∩Ω2

(ci+1,j , ci−1,j−1)k(t) + B̃|Ω\Ω1
(ci−1,j−1)k(t),

with (ci+1,j)k(tn) = (cn)k (15)

∂(ci,j+1)k(t)

∂t
= Ã|Ω\Ω2

(ci,j)k(t) + Ã|Ω1∩Ω2
(ci,j+1, ci,j)k(t) + Ã|Ω\Ω1

(ci,j+1)k(t)

+ B̃|Ω\Ω2
(ci+1,j)k(t) + B̃|Ω1∩Ω2

(ci+1,j , ci−1,j−1)k(t) + B̃|Ω\Ω1
(ci−1,j−1)k(t),

with (ci,j+1)k(tn) = (cn)k (16)

∂(ci+1,j+1)k(t)

∂t
= Ã|Ω\Ω2

(ci,j)k(t) + Ã|Ω1∩Ω2
(ci,j+1, ci,j)k(t) + Ã|Ω\Ω1

(ci,j+1)k(t)

+ B̃|Ω\Ω2
(ci+1,j)k(t) + B̃|Ω1∩Ω2

(ci+1,j , ci+1,j+1)k(t) + B̃|Ω\Ω1
(ci+1,j+1)k(t),

with (ci+1,j+1)k(tn) = (cn)k (17)

where cn is the known split approximation at the time level t = tn, cf. [3].
We have the operators :

Ã|Ω\Ω2
(ci,j)k =

{
A(ci,j)k for k ∈ {0, . . . , p1}

0 for k ∈ {p1 + 1, . . . , p} (18)

Ã|Ω1∩Ω2
(ci,j , ci,j+1)k =

{
A((ci,j + ci,j+1)/2)k for k ∈ {p1 + 1, . . . , p2}

0 for k ∈ {p2 + 1, . . . , p} (19)

Ã|Ω\Ω1
(ci,j)k =

{
0 for k ∈ {0, . . . , p2}

A(ci,j)k for k ∈ {p2 + 1, . . . , p} (20)

Similar are the assignments for operator B.

B̃|Ω\Ω2
(ci,j)k =

{
B(ci,j)k for k ∈ {0, . . . , p1}

0 for k ∈ {p1 + 1, . . . , p} (21)

B̃|Ω1∩Ω2
(ci,j , ci,j+1)k =

{
B((ci,j + ci,j+1)/2)k for k ∈ {p1 + 1, . . . , p2}

0 for k ∈ {p2 + 1, . . . , p} (22)
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B̃|Ω\Ω1
(ci,j)k =

{
0 for k ∈ {0, . . . , p2}

B(ci,j)k for k ∈ {p2 + 1, . . . , p} (23)

Dicretisation of the operators

The discretization of the operators is given as :

A(ci,j)k = D/(∆x)2(−(ci,j)k+1 + 2(ci,j)k − (ci,j)k−1)

−v/∆x((ci,j)k − (ci,j)k−1) (24)

B(ci,j)k = λ(ci,j)k . (25)

7 Error analysis and convergence of the combined

method

Theorem 2. Let us consider the nonlinear operator-equation in a Banach space
X

∂tc(t) = A1 c(t) + A2 c(t) + B1 c(t) + B2 c(t), 0 < t ≤ T ,

c(0) = c0 ,

where A1, A2, B1, B2, A1 + A2 + B1 + B2 : X → X are given linear operators
being generators of the C0-semigroup and c0 ∈ X is a given element. Then the
iteration process (6)–(9) is convergent and the rate of the convergence is one.
We obtain the iterative result : ‖ei,j(t)‖ ≤ Kτn‖ei−1,j−1(t)‖, where τn = tn+1 −
tn.

Proof. Let us consider the iteration (6)–(9) on the sub-interval [tn, tn+1]. We
consider the case of the exact initial-conditions given as ci,j(t

n) = c0, a general-
ization is also possible. So for the error function ei,j(t) := c(t) − ci,j(t) we have
the relations

∂tei,j(t) = A1 ei,j(t) + A2 ei,j−1(t) + B1 ei−1,j(t) + B2 ei−1,j−1(t),

ei,j(t
n) = 0 , (26)

∂tei+1,j(t) = A1 ei,j(t) + A2 ei,j−1(t) + B1 ei+1,j(t) + B2 ei−1,j−1(t),

ei+1,j(t
n) = 0 , (27)

∂tei,j+1(t) = A1 ei,j(t) + A2 ei,j+1(t) + B1 ei+1,j(t) + B2 ei−1,j−1(t),

ei,j+1(t
n) = 0 (28)

and

∂tei,j(t) = A1 ei,j(t) + A2 ei,j+1(t) + B1 ei+1,j(t) + B2 ei+1,j+1(t),

ei,j(t
n) = 0 , (29)
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for t ∈ [tn, tn+1], i, j = 0, 2, 4, . . ., with e0,0(0) = 0 and e−1,0(t) = e0,−1(t) =
e−1,−1(t) = c(t).

In the following we use the notations X4 for the product space ×4
i=1X enabled

with the norm ‖(u1, u2, u3, u4)
t‖ = maxi=1,...,4{‖ui‖} (ui ∈ X, i = 1, . . . , 4). The

elements Ei(t), Fi(t) ∈ X4 and the linear operator A : X4 → X4 are defined as
follows

Ei,j(t) =




ei,j(t)
ei+1,j(t)
ei,j+1(t)

ei+1,j+1(t)


 , A =




A1 0 0 0
A1 B1 0 0
A1 B1 A2 0
A1 B1 A2 B2


 ,

Fi,j(t) =




A2 ei,j−1(t) + B1 ei−1,j(t) + B2 ei−1,j−1(t)
A2 ei,j−1(t) + B2 ei−1,j−1(t)

B2 ei−1,j−1(t)
0


 . (30)

Using the notations (30), the relations (26)–(29) can be written in the form

∂tEi,j(t) = AEi,j(t) + Fi,j(t), t ∈ [tn, tn+1],

Ei,j(t
n) = 0.

(31)

We estimate the right hand side Fi,j(t) in the following Lemma :

Lemma 1. For Fi,j(t) it holds

||Fi,j(t)|| ≤ C||ei−1,j−1(t)|| .

Proof. We have the following norm

||Fi,j(t)|| = max{||Fi,j,1(t)||, ||Fi,j,2(t)||, ||Fi,j,3(t)||, ||Fi,j,4(t)||}.
Each term can be estimated as:

||Fi,j,1(t)|| = ||A2 ei,j−1(t) + B1 ei−1,j(t) + B2 ei−1,j−1(t)|| ≤ C1||ei−1,j−1(t)||
||Fi,j,2(t)|| = ||A2 ei,j−1(t) + B2 ei−1,j−1(t)|| ≤ C2||ei−1,j−1(t)||
||Fi,j,3(t)|| = ||B2 ei−1,j−1(t)|| ≤ C3||ei−1,j−1(t)||

Based on the theorem of Fubini, see [1], for decoupable operators, we obtain:
||eĩ,j̃(t)|| ≤ ||ei−1,j−1||, for ĩ = {i− 1, i} and j̃ = {j − 1, j}.
Hence,

||Fi,j(t)|| ≤ C||ei−1,j−1(t)||,
where C is the maximum value of C1, C2 and C3.

Using the variations of constants formula, the solution of the abstract Cauchy
problem (31) with homogeneous initial condition can be written as

Ei,j(t) =

∫ t

tn

exp(A(t − s))Fi,j(s)ds, t ∈ [tn, tn+1].
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(See, e.g. [2].) Hence, using the denotation

‖Fi,j‖∞ = supt∈[tn,tn+1] ‖Fi,j(t)‖ ,

and taking into account Lemma 1, we have

‖Ei,j(t)‖ ≤ ‖Fi,j‖∞
∫ t

tn

‖exp(A(t − s))‖ds

≤ C ‖ei−1,j−1(t)‖
∫ t

tn

‖exp(A(t − s))‖ds, t ∈ [tn, tn+1].

(32)

Due to our linearity assumptions for the operators, A is a generator of the
one-parameter C0 semigroup (A(t))t≥0. Since (A(t))t≥0 is a semigroup therefore
the so called growth estimation

‖ exp(At)‖ ≤ K̃ exp(ωt); t ≥ 0 , (33)

holds with some numbers K̃ ≥ 0 and ω ∈ IR, see [2].

– Assume that (A(t))t≥0 is a bounded or exponentially stable semigroup, i.e.
(33) holds with some ω ≤ 0. Then obviously the estimate

‖ exp(At)‖ ≤ K̃; t ≥ 0 ,

holds, and considering (32), we have the relation

‖Ei,j(t)‖ ≤ Kτn‖ei−1,j−1(t)‖, t ∈ [tn, tn+1]. (34)

– Assume that (A(t))t≥0 has an exponential growth with some ω > 0. Inter-
grating (33) yields

∫ t

tn

‖exp(A(t − s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (35)

where

Kω(t) =
K̃

ω
(exp(ω(t − tn)) − 1) , t ∈ [tn, tn+1] ,

and hence

Kω(t) ≤ K̃

ω
(exp(ωτn) − 1) = K̃τn + O(τ2

n) , (36)

where τn = tn+1 − tn.

The estimations (34), (35) and (36) result in

‖Ei,j(t)‖ ≤ Kτn‖ei−1,j−1(t)‖,

where K = K̃ · C for both cases.
Taking into account the definition of Ei,j(t) and the norm ‖ · ‖, we obtain

‖ei,j(t)‖ ≤ Kτn‖ei−1,j−1(t)‖,
which proves our statement.
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Remark 1. We can generalise our results for n decomposed domains. We obtain
the same results for the generalised semi-group A : Xn → Xn.

Remark 2. We require the double amount of iterations due to the 2 partitions
(i.e. i for time, j for space). Also, for higher order accuracy more amount of work
is needed, e.g. 2(2m + 1) iterations for O(τ 2m+1) accuracy.

8 Numerical Results

In this section we will present the numerical results from the solution of the
convection-diffusion-reaction equation using several variations of the proposed
methods in comparison with already known classical methods.

8.1 First numerical example

We consider the one-dimensional convection-reaction-diffusion equation

∂tu + v∂xu − ∂xD∂xu = −λu , in Ω × (T0, Tf ) , (37)

u(x, 0) = uex(x, 0) , (Initial-Condition) , (38)

u(x, t) = uex(x, t) , on ∂Ω × (T0, Tf ) , (39)

where Ω × [T0, Tf ] = [0, 150]× [100, 105].
The exact solution is given as

uex(x, t) =
u0

2
√

Dπt
exp(− (x − vt)2

4Dt
) exp(−λt) . (40)

The initial condition and the Dirichlet boundary conditions are defined using
the exact solution (40) at starting time T0 = 100 and with u0 = 1.0. We have
λ = 10−5, v = 0.001 and D = 0.0001.

8.2 Solution using classical methods

A-B splitting combined with Schwarz wave form relaxation method In
order to solve the model problem using overlapping Schwarz wave form relaxation
method, we divide the domain Ω in two overlapping sub-domains Ω1 = [0, L2]
and Ω2 = [L1, L], where L1 < L2, and Ω1

⋂
Ω2 = [L1, L2] is the overlapping

region for Ω1 and Ω2.
To start the wave form relaxation algorithm we consider first the solution of

the model problem (47) over Ω1 and Ω2 as follows

vt = Dvxx − νvx − λv over Ω1 , t ∈ [T0, Tf ]
v(0, t) = f1(t) , t ∈ [T0, Tf ]
v(L2, t) = w(L2, t) , t ∈ [T0, Tf ]
v(x, T0) = u0 x ∈ Ω1,
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wt = Dwxx − νwx − λw over Ω2 , t ∈ [T0, Tf ]
w(L1, t) = v(L1, t) , t ∈ [T0, Tf ]
w(L, t) = f2(t) , t ∈ [T0, Tf ]
w(x, T0) = u0 x ∈ Ω2,

where v(x, t) = u(x, t)|Ω1
and w(x, t) = u(x, t)|Ω2

.
Then the Schwarz wave form relaxation is given by

vk+1
t = Dvk+1

xx − νvk+1
x − λvk+1 over Ω1 , t ∈ [T0, Tf ]

vk+1(0, t) = f1(t) , t ∈ [T0, Tf ]
vk+1(L2, t) = wk(L2, t) , t ∈ [T0, Tf ]
vk+1(x, T0) = u0 x ∈ Ω1,

(41)

wk+1
t = Dwk+1

xx − νwk+1
x − λwk+1 over Ω2 , t ∈ [T0, Tf ]

wk+1(L1, t) = vk(L1, t) , t ∈ [T0, Tf ]
wk+1(L, t) = f2(t) , t ∈ [T0, Tf ]
wk+1(x, T0) = u0 x ∈ Ω2.

(42)

For the solution of (41) and (42) we will apply the sequential operator split-
ting method (A-B splitting). For this purpose we divide each of these two equa-

tions in terms of the operators A = D ∂2

∂x2 − ν ∂
∂x

and B = −λ. The splitting
scheme for each of them is given in the following form:

∂u∗(x, t)

∂t
= D u∗

xx − ν u∗
x , with u∗(x, tn) = u0 , (43)

∂u∗∗(x, t)

∂t
= −λu∗∗(t) , with u∗∗(x, tn) = u∗(x, tn+1) , (44)

where u∗(x, t) = u∗∗(x, t) = u1 , on ∂Ω × (0, T ), are the Dirichlet-Boundary-
Conditions for the equations. The solution is given as u(x, tn+1) = u∗∗(x, tn+1).
We obtain an exact method because of commuting operators.

For the discretization of equation (43) we apply the finite-difference method
for the spatial discretization and the implicite Euler method for the time dis-
cretization. The discretization is given as

1

tn+1 − tn
(u∗(xi, t

n+1) − u∗(xi, t
n)) (45)

= D
1

h2
i

(−u∗(xi+1, t
n+1) + 2u∗(xi, t

n+1) − u∗(xi−1, t
n+1))

− ν
1

hi

(u∗(xi, t
n+1) − u∗(xi−1, t

n+1)) ,

with u∗(x1, t
n) = u∗(x2, t

n) = u0 and u∗(x0, t
n) = u∗(xm, tn) = 0

u∗∗(x, t) = exp(−λ(t − tn) u∗(x, tn+1) , (46)

where hi = xi+1 − xi and we assume a partition with m-nodes.

We are interested in specifying the error between the solution obtained with
the above described algorithm and the exact solution. We provide a variety of
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results for several sizes of space- and time-partition, and also for various overlap
sizes. Precisely, we treat the cases h = 1, 0.5, 0.25 as spatial step-size, ∆t =
5, 10, 20 as time step. The considered subdomains are Ω1 = [0, 60] and Ω2 =
[30, 150] and Ω1 = [0, 100] and Ω2 = [30, 150], with overlap sizes 30 and 70,
respectively. Both the approximated and the exact solution are evaluated at
the end-time t = 105. The errors given in Table 1 are the maximum errors
that occurred over the whole space domain, i.e. they are calculated using the
∞−norm for vectors.

time-step err err err err err err

∆t = 5 2.24e − 3 1.28e − 3 2.21e − 4 2.20e − 4 1.99e − 5 1.97e − 5

∆t = 10 2.61e − 3 2.56e − 3 3.02e − 4 3.01e − 4 4.34e − 5 4.29e − 5

∆t = 20 2.81e − 3 2.73e − 3 5.22e − 4 5.14e − 4 5.66e − 4 4.88e − 4

overlap 30 70 30 70 30 70

space-step h = 1 h = 0.5 h = 0.25

Table 1. Error for the scalar convection diffusion reaction-equation using the classical
method for two different sizes of overlapping 30 and 70.

8.3 Solution using the proposed method

For the solution of (37)–(39) with the combined time-space iterative splitting

method we divide again the equation in terms of the operators A = D ∂2

∂x2 − ν ∂
∂x

and B = −λ. We will utilize the proposed scheme (14)–(25).
The index k = 0, 1, . . . p is associated with the subdomains, i.e. for k =

0, . . . , p/2 we are working on Ω1 and for k = p/2 + 1, . . . , p on Ω2. For the first
set of values for k we have actually only the effect of the restrictions of the
operators A and B on Ω1. Similarly, the second set of values for k indicates the
action of the restrictions of both operators on Ω2. The outline of the method
in Section 6, which is also adopted here, is given without loss of generality
for a subdomain-determining value k = p/2, just for an overview. This crucial
value is determined appropriately according to the three cases of the overlapping
subdomains, which we examine in our experiments.

The indices i and j are related to the time- and space-discretization, respec-
tively. For every k = 0, . . . , p/2 and for every interval of the space-discretization
we solve the appropriate problems on Ω1, for every interval of the time-discretization.
Similarly for k = p/2 + 1, . . . , p on Ω2.

From a software development point of view, the above described numerical
scheme can be realized with three ”for” loops. The first, outer loop is for all
values of k. After this loop there exists a control for k, which discriminates two
cases for k < p/2 and for k ≥ p/2 + 1, and sets up the data of the algorithm
appropriately for Ω1 or Ω2, respectively. The second, middle loop is running for
all values of i and the third, inner loop is for all values of j.
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By a closer examination of the scheme (14)–(17), taking into account the def-
initions (18)–(23), we observe that the problems to be solved in the innermost
loop are of the form ∂tc = Ac + Bc, c(x, tn) = cn, where c appears with appro-
priate indices i and j. These problems are solved with suitable modification and
implementation of the iterative operator splitting scheme (4)–(5). The notion of
the iterative process takes place in both time- and space-dimensions.

We are interested again in specifying the error between the solution obtained
with the above described algorithm and the exact solution. We provide the same
variety of results as in the previous subsection, so that a comparison between
the proposed and classical methods can be established. Both the approximated
and the exact solution are evaluated at the end-time t = 105. The errors given in
the following tables are the maximum errors that occurred over the whole space
domain, i.e. they are calculated using the ∞−norm for vectors. The results are
given in Table 2.

time-step err err err err err err

∆t = 5 1.47e − 2 3.49e − 3 2.13e − 4 1.54e − 4 6.49e − 6 8.29e − 6

∆t = 10 2.26e − 2 7.46e − 3 2.22e − 4 2.15e − 4 3.47e − 5 3.37e − 5

∆t = 20 4.39e − 2 1.20e − 2 5.21e − 4 4.53e − 4 5.42e − 4 3.21e − 4

overlap 30 70 30 70 30 70

space-step h = 1 h = 0.5 h = 0.25

Table 2. Error for the scalar convection diffusion reaction-equation using the proposed
method for two different sizes of overlapping 30 and 70.

8.4 Second numerical example

We consider the two-dimensional convection-reaction-diffusion equation

∂tu + v∂xu − ∂xDx∂xu− ∂yDy∂yu = −λu , in Ω × (T0, Tf ) ,

u(x, y, 0) = uex(x, y, 0) , (Initial-Condition) ,

u(x, y, t) = uex(x, y, t) , on ∂Ω × (T0, Tf ) ,

where Ω × [T0, Tf ] = [0, 150]× [0, 150]× [100, 105].
The exact solution is given as

uex(x, y, t) =
u0

4
√

Dxπt
√

Dyπt
exp(− (x − vt)2

4Dxt
) exp(− y2

4Dyt
) exp(−λt) .(47)

The initial condition and the Dirichlet boundary conditions are defined using
the exact solution (47) at starting time T0 = 100 and with u0 = 1.0. We have
λ = 10−5, v = 0.001 and Dx = 0.0001, Dy = 0.0005.

In order to develop the computer algorithms for this second example, we work
absolutely similarly to the first example. We generalize the adopted scheme for
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one spatial dimension of the first example to a new scheme with two spatial
dimensions for the second example. The actual difference is that in this case we
decompose both domains of Ω, Ωx = [0, 150] and Ωy = [0, 150], in two over-
lapping sub-domains Ωx,1 = [0, L2] and Ωx,2 = [L1, L], where L1 < L2, and
Ωx,1

⋂
Ωx,2 = [L1, L2] is the overlapping region for Ωx,1 and Ωx,2. We work

similarly for Ωy,1 and Ωy,2. In order to test the algorithms, we select the same
overlap sizes in both spatial dimensions x and y, which is the number that ap-
pears in the row ”overlap” of the following two tables. Again, we demonstrate a
comparison between the classical method combining A-B splitting with overlap-
ping Schwarz wave form relaxation (Table 3) and our new proposed combined
time-space iterative splitting method (Table 4).

time-step err err err err err err

∆t = 2.5 1.67e − 3 1.13e − 3 1.95e − 4 1.84e − 4 1.13e − 5 1.21e − 5

∆t = 5 2.32e − 3 2.10e − 3 2.76e − 4 2.82e − 4 3.98e − 5 3.84e − 5

∆t = 10 2.45e − 3 2.18e − 3 4.77e − 4 4.86e − 4 5.39e − 4 4.27e − 4

overlap 30 70 30 70 30 70

space-step h = 1 h = 0.5 h = 0.25

Table 3. Error for the second example using the classical method for two different
sizes of overlapping 30 and 70.

time-step err err err err err err

∆t = 2.5 1.43e − 3 1.02e − 3 1.74e − 4 1.32e − 4 1.01e − 5 8.22e − 6

∆t = 5 2.19e − 3 1.83e − 3 2.54e − 4 2.38e − 4 3.74e − 5 3.52e − 5

∆t = 10 2.31e − 3 2.02e − 3 4.59e − 4 4.62e − 4 5.17e − 4 4.08e − 4

overlap 30 70 30 70 30 70

space-step h = 1 h = 0.5 h = 0.25

Table 4. Error for the second example using the proposed method for two different
sizes of overlapping 30 and 70.

9 Conclusions and Discussions

We present decomposition methods for differential equations based on iterative
and non-iterative methods. The classical idea is to decouple time and space
and apply separate decomposition methods, which are for space the overlapping
Schwarz wave form relaxation method and for time the A-B operator splitting
method. The new method combines the time and space and applies for both
the iterative operator-splitting method. We prove the convergence and show its
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stability. The verification of the new method is done by comparing with the
traditional domain decomposition and lower order time splitting method. The
results show more accurate solutions with respect to time and space. We im-
prove the new method by more overlapping. In the future the iterative operator
splitting method can be generalized for multi-dimensional problems and also for
non-smooth and nonlinear problems in time and space.
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