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Abstract

In this paper the numerical approximation of solutions of Itô stochastic
delay differential equations is considered. We construct stochastic linear
multi-step Maruyama methods and develop the fundamental numerical
analysis concerning their Lp-consistency, numerical Lp-stability and Lp-
convergence. For the special case of two-step Maruyama schemes we derive
conditions guaranteeing their mean-square consistency.

1 Introduction

We consider n-dimensional systems of Itô stochastic delay differential equations
with m driving Wiener processes and Q commensurate discrete lags of the form

X(s)
∣∣∣t
0

=

∫ t

0

F (s, X(s), X(s− τ2), · · · , X(s − τQ)) ds (1)

+

∫ t

0

G(s, X(s), X(s − τ2), · · · , X(s − τQ)) dW (s) , for t ∈ [0, T ],

X(t) = Ψ(t) for t ∈ J, where J := [−τM∗, 0]. (2)

Here the lags satisfy τq = τMq, τ ∈ R, Mq ∈ N, q = 2, . . . , Q, the value M∗ in J
is defined as max(M2, . . . , MQ) and M1 = 0 and thus τ1 = 0.
In many areas of science there has been an increasing interest in the investigation
of stochastic delay differential equations (SDDEs), in particular, in the combined
effects of noise and delay in dynamical systems. The use of delay equations in
modelling deterministic dynamical systems in the natural sciences has a long his-
tory, see e. g., [27] for various examples. References concerning the application
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of SDDEs in biology are e. g. to infectious diseases [5] and plankton popula-
tions [47], the recent review article [7] contains a section on stochastic models.
In biophysics SDDEs are used to model for example delayed visual feedback
systems [6, 29] and human postural sway [13, 41]. Several authors have stud-
ied stochastic oscillator ensembles with delayed coupling [17, 23, 26, 50]. These
can be interpreted as mean-field models of coupled biological oscillators, such
as groups of chorusing crickets, flashing fireflies and cardiac pacemaker cells. In
physics often laser dynamics with delayed feedback are investigated [10, 15, 32],
as well as the dynamics of noisy bi-stable systems with delay [33, 48]. One of
the reduced conceptual stochastic differential equation models for a qualitative
understanding of the El Niño phenomenon in climate dynamics relies on a delay
effect caused by Kelvin wave reflection [3],[11]. In engineering science SDDEs
arise e. g. as a problem in ship stability [25, 46] and often as control problems
[18, 40]. In financial mathematics SDDEs appear in volatility models of stock
markets [12, 21]. From a (stochastic) dynamical systems point of view, SDDEs
display a range of interesting properties, such as multi-stability [26], noise in-
duced bifurcations [28] and oscillations [1] and stochastic resonance [14, 31, 39].
For some general background on (deterministic and stochastic) delay differential
equations we refer to e. g., [20, 30, 36].
This work consists of two parts. In the first part (Sections 2 and 3) we present a
convergence theory for stochastic linear multi-step Maruyama methods (SLM-
MMs) applied to SDDEs. In [9] we considered general stochastic linear multi-
step methods (SLMMs) applied to stochastic ordinary differential equations
(SODEs). We analysed the mean-square convergence properties of these methods
and their relation to mean-square consistency and mean-square zero-stability. In
the current work we restrict the class of methods to SLMMMs only containing
the Wiener process increments, but extend the results in two directions: first, we
apply the SLMMMs to SDDEs. Mean-square convergence analysis for one-step
methods applied to SDDEs has been carried out in [2, 8]. Second, we prove that
the results also hold in the Lp-norms with p ≥ 1. For one-step methods applied
to SODEs the corresponding result has been obtained in [44].
In the second part (Section 4) we derive conditions for the mean-square consis-
tency, i.e. we choose p = 2, for stochastic linear two-step Maruyama schemes
applied to a simple scalar SDDE with a single lag and one driving Wiener pro-
cess. These conditions allow to determine the parameters for the stochastic part
from the parameters of the deterministic scheme and reduce to those of the un-
derlying deterministic schemes when there is no noise. The main tool in these
computations is the Itô-formula for SDDEs derived in [22], which we provide for
the simple case considered. Due to the appearance of stochastic integrals with
non-adapted integrands, the derivation of the Itô-formula relies on Malliavin cal-
culus. The former is an unexpected feature of the analysis of SDDEs, which are
intrinsically adapted processes. For the convenience of the reader we thus give
a heuristic sketch of the derivation of the Itô-formula in Appendix B. The Itô-
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formula derived in [22] holds for the general case of SDDEs considered in Sections
2 and 3 and the consistency conditions for stochastic linear two-step Maruyama
schemes are valid for the general case, too.

2 Definitions and preliminary results

Let (Ω,F , {Ft}t∈[0,T ], P) be a complete probability space with the filtration {Ft}t∈[0,T ]

satisfying the usual conditions (that is, it is increasing and right-continuous, and
each {Ft}, t ∈ [0, T ] contains all P-null sets in F). Let W (t) = (W1(t), . . . , Wm(t))T

be an m-dimensional standard Wiener process on that probability space.
Throughout the article let |.| denotes the Euclidean norm in R

n, 〈·, ·〉 its in-
duced scalar product and ‖ · ‖ the corresponding induced matrix norm. The
Lp-norm of a vector-valued Lp-integrable random variable Z ∈ Lp(Ω, Rn) will
be denoted by ‖Z‖Lp := (E |Z|p)1/p, where E is expectation with respect to
P. The drift and diffusion function are given as F : [0, T ] × (Rn)Q → R

n

and G = (G1, . . . , Gm) : [0, T ] × (Rn)Q → R
n×m, respectively. The initial path

Ψ(t) : J → R
n is assumed to be a continuous and F0-measurable random variable

such that (E sups∈J |Ψ(s)|p)1/p < ∞. We assume that there exists a path-wise
unique strong solution X(·) of (1).
We define a family of meshes on the interval T := [0, T ] with a uniform step h
with

hNτ = τ, hN ≤ T, h(N + 1) > T, Nτ , N ∈ N, (3)

such that

T N
h := {t0 < t1 < t2, · · · < tN} ⊆ T , t� = � · h, � = 0, . . . , N . (4)

We denote by Jh the correspondingly discretized initial interval where Jh ⊆ J .
In our discussion of numerical methods we will denote by Y (tn) the approximation
of the solution X(tn) of (1) at some point tn in T N

h . Further, as an abbreviation,
{Ytn} will denote the evaluation of the lag terms (Y (tn), Y (tn−τ2), · · · , Y (tn−τQ))
at tn ∈ T N

h . We require given initial values Y (t0), . . . , Y (tk−1) ∈ Lp(Ω, Rn) such
that Y (t�) is Ft�-measurable for � = 0 . . . , k−1. For simplicity the values on the
initial interval will be taken as Y (t�) := Ψ(t�) for t� ∈ Jh.
Thus we consider a stochastic linear k-step Maruyama method (setting α0 = 1),
which for � = k, . . . , N, takes the form

k∑
j=0

αj Y (t�−j) = h
k∑

j=0

βj F (t�−j, {Yt�−j
}) +

k∑
j=1

γj G(t�−j, {Yt�−j
}) I t�−j ,t�−j+1 . (5)

Here I t,t+h = (I t,t+h
r )m

r=1 denotes the vector of increments of the Wiener process,

where I t,t+h
r =

∫ t+h

t
dWr(s) = Wr(t + h) − Wr(t).



MULTI-STEP METHODS FOR SDDES 4

We emphasize that an explicit discretization is used for the diffusion term. For
β0 = 0, the SLMMM (5) is explicit, otherwise it is drift-implicit.
We give an example of the two-step Maruyama methods (5).

Example 2.1 This is a stochastic variant of the implicit two-step BDF method,
which we have termed BDF2-Maruyama method, applied to Equation (1). For
� = 2, . . . , N, it takes the form

Y (t�) −
4

3
Y (t�−1) +

1

3
Y (t�−2) = h

2

3
F (t�, Y (t�), Y (t�−M2·Nτ ), . . . , Y (t�−MQ·Nτ ))

+

m∑
r=1

Gr(t�−1, Y (t�−1), Y (t�−1−M2·Nτ ), . . . , Y (t�−1−MQ·Nτ )) I t�−1,t�
r

− 1

3

m∑
r=1

Gr(t�−2, Y (t�−2), Y (t�−2−M2·Nτ ), . . . , Y (t�−2−MQ·Nτ )) I t�−2,t�−1
r .

One has the parameters α0 = 1, α1 = −4
3
, α2 = 1

3
, β0 = 2

3
, β1 = β2 = 0,

γ1 = 1, γ2 = −1
3
.

We will consider Lp-convergence of SLMMMs in the sense discussed in Milstein
[34, 35] (p = 2) and others [43].

Definition 1 We call the SLMMM (5) for the approximation of the solution of
the SDDE (1) Lp-convergent if the global error X(t�) − Y (t�) satisfies

max
�=1,...,N

‖X(t�) − Y (t�)‖Lp → 0 as h → 0,

we say it is Lp-convergent with order γ (γ > 0) if the global error satisfies

max
�=1,...,N

‖X(t�) − Y (t�)‖Lp ≤ C · hγ, (6)

with a constant C > 0 which is independent of the step-size h, but may depend
on the length of the interval [0, T ] and the initial data. In addition to (6) we also
consider the stronger condition

(E max
�=1,...,N

|X(t�) − Y (t�)|p )
1
p ≤ C · hγ . (7)

In the following we will define what we understand by local errors and refer to
[9] for a discussion of this concept in the area of numerics for SODEs.

Definition 2 We define the local error of the SLMMM (5) for the approxima-
tion of the solution X of the SDDE (1), for � = k, . . . , N , as

L� :=

k∑
j=0

αjX(t�−j) − h

k∑
j=0

βj F (t�−j , X(t�−j), X(t�−j − τ2), · · · , X(t�−j − τQ))

−
k∑

j=1

γj

m∑
r=1

Gr(t�−j , X(t�−j), X(t�−j − τ2), · · · , X(t�−j − τQ)) I
t�−j ,t�−j+1
r . (8)
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We aim to conclude Lp-convergence from local properties of the SLMMM by
means of numerical stability in the Lp sense. Numerical stability concerns the
influence of perturbations of the right-hand side of the discrete scheme on the
global solution of that discrete scheme. Sources of perturbations may be the local
error, round-off errors or defects in the approximate solution of implicit schemes.
The Lp stability estimate of the global error is based on the Lp-norm and on the
conditional p-th mean of the perturbations. In the case of one-step schemes and
p = 2 this appears e.g. in [2, 49], we refer in particular to the discussion in [34,
Chapter 1.4] or [35, Chapter 1.1.4]. We remark that in the case of k-step schemes
the conditional p-th mean has to be taken with respect to the σ-algebra Ft�−k

.

In the subsequent analysis we also consider the following discrete system, the
perturbed form of (5), for � = k, . . . , N

k∑
j=0

αj Ỹ (t�−j)

= h

k∑
j=0

βj F (t�−j , {Ỹt�−j
}) +

k∑
j=1

γj

m∑
r=1

Gr(t�−j , {Ỹt�−j
}) I

t�−j ,t�−j+1
r + D�, (9)

with values Ỹ (t�) = Y (t�) + D� for � = 0, . . . , k−1. We suppose that the per-
turbations D� are Ft�-measurable and that D� ∈ Lp(Ω, Rn) for � = 0, . . . , k−1.

On the interval J we allow perturbations of the initial function such that Ψ̃(s) =
Ψ(s) + D(s), s ∈ J , where sups∈J ‖D(s)‖Lp < ∞. Slightly abusing notation, we
write D� for D(t�), t� ∈ Jh.

Remark 2.2 It is useful to represent the perturbations in the form

D� = R� + S� =: R� +
k∑

j=1

Sj,�−j+1, � = k, . . . , N,

where each Sj,� is Ft� measurable with E(Sj,�|Ft�) = 0 .

(10)

This repesentation is not unique. A particularly useful one is given by

R∗
� = E(D�|Ft�−k

), S∗
� = D� − R∗

� ,

S∗
j,�−j+1 = E(D� − R∗

� −
∑k

i=j+1 S∗
i,�−i+1|Ft�−j+1

), j = k, k − 1, . . . , 1 .
(11)

For further discussions of these representations we refer to Remark 2.5 in [9].

Now we give the precise definition of Lp-stability and consistency that we consider
in this paper.

Definition 3 We call the SLMMM (5) numerically Lp-stable if there exist
constants h0 > 0 and S > 0 such that for all step-sizes h < h0 and for all Ft�
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measurable perturbations D� ∈ Lp(Ω, Rn) (� = 0, . . . , N) and all their representa-
tions (10), the following inequality holds

max
�=0,...,N

‖Y (t�) −Ỹ (t�)‖Lp

≤ Sp

{
sup
s∈J

‖D(s)‖Lp + max
�=0,...,k−1

‖D�‖Lp + max
�=k,...,N

(‖R�‖Lp

h
+

‖S�‖Lp

h1/2

)}
, (12)

where (Y (t�))
N
�=1 and (Ỹ (t�))

N
�=1 are the solutions of the SLMMM (5) and the

perturbed discrete system (9), respectively. In addition to (12), we consider the
stronger inequality

(E max
�=1,...,N

|Y (t�) −Ỹ (t�)|p )
1
p

≤ Sp

{
sup
s∈J

‖D(s)‖Lp + max
�=0,...,k−1

‖D�‖Lp +
(E max

�=k,...,N
|R�|p )

1
p

h
+ max

�=k,...,N

‖S�‖Lp

h1/2

}
, (13)

We refer to Sp as the stability constant and to (12) and (13) as stability inequal-
ities.

Definition 4 We call the SLMMM (5) for the approximation of the solution of
the SDDE (1) Lp-consistent if the local error L� satisfies

h−1 ‖E(L�|Ft�−k
)‖Lp → 0 for h → 0, and h−1/2 ‖L�‖Lp → 0 for h → 0.

We call the SLMMM (5) for the approximation of the solution of the SDDE (1)
Lp-consistent of order γ (γ > 0), if the local error L� satisfies

‖E(L�|Ft�−k
)‖Lp ≤ c̄ · hγ+1 , and ‖L�‖Lp ≤ c · hγ+ 1

2 , � = 1, . . . , N ,

with constants c , c̄ > 0 only depending on the SDDE and its solution.

We remind the reader that consistency is only concerned with the local error. In
the case that we disregard other sources of errors in (9) we only have to deal with
perturbations D� = L�.
We adapt the following Lemma from [9, Lemma 2.8]. Its proof consists of obvious
modifications of the arguments in the proof of [9, Lemma 2.8].

Lemma 2.3 The SLMMM (5) is Lp-consistent of order γ , if

‖R�‖Lp ≤ c̄ · hγ+1 , and ‖S�‖Lp ≤ c · hγ+ 1
2 , � = 1, . . . , N ,

for any representation (10) of the local error D� = L�. The SLMMM (5) is
Lp-consistent of order γ , if and only if

‖R∗
�‖Lp ≤ c̄ · hγ+1 , and ‖S∗

� ‖Lp ≤ c · hγ+ 1
2 , � = 1, . . . , N ,

where the representation (11) is chosen for the local error D� = L�.
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For further reference we state the following definitions and results.

Definition 5 A function F : [0, T ]×(Rn)Q → R
n satisfies a uniform Lipschitz

condition with respect to ξq, q = 1 . . . , Q, if there exists a positive constant LF ,
such that for all t ∈ [0, T ] and all ξq, ηq ∈ R

n, q = 1 . . . , Q

|F (t, ξ1, ξ2, · · · , ξQ) − F (t, η1, η2, · · · , ηQ)| ≤ LF

Q∑
q=1

|ξq − ηq|. (14)

A function G : [0, T ]× (Rn)Q → R
n×m satisfies a uniform Lipschitz condition

with respect to ξq, q = 1 . . . , Q, if there exists a positive constant LG, such that
for all t ∈ [0, T ] and all ξq, ηq ∈ R

n, q = 1 . . . , Q

‖G(t, ξ1, ξ2, · · · , ξQ) − G(t, η1, η2, · · · , ηQ)‖ ≤ LG

Q∑
q=1

|ξq − ηq|. (15)

Let Cs−1,s denote the class of all functions from [0, T ] × (Rn)Q to R
n having

continuous partial derivatives up to order s−1 with respect to the first variable and
continuous partial derivatives up to order s with respect to the other Q variables.
Let CK denote the class of functions y from [0, T ] × (Rn)Q to R

n that satisfy a
linear growth condition in the form

|y(t, x1, . . . , xQ)| ≤ K(1 +

Q∑
j=1

|xj |2)
1
2 , ∀t ∈ [0, T ], ∀xj ∈ R

n, j = 1, . . . , Q. (16)

Definition 6 The characteristic polynomial of (5) is given by

ρ(ζ) = αkζ
k + αk−1ζ

k−1 + . . . + α0. (17)

The SLMM (5) is said to fulfil Dahlquist’s root condition, if i) the roots of
ρ(ζ) lie on or within the unit circle, and ii) the roots on the unit circle are simple.

Lemma 2.4 (A discrete version of Gronwall’s lemma) Let a�, � = 1, . . . , N , and
C1, C2 be nonnegative real numbers and assume that the inequalities

a� ≤ C1 + C2
1

N

�−1∑
i=1

ai, � = 1, . . . , N,

are valid. Then we have max
�=1,...,N

a� ≤ C1 exp(C2).
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3 Global properties of stochastic LMMs

In this section we will first establish the solvability of the recurrence equations
(9) (and thus of (5)), then we will discuss numerical stability and Lp-convergence
of the SLMMM (5). For a discussion of numerical stability in the deterministic
and stochastic setting we refer to [9].
We now turn to the solvability of the recurrence equations. It is obvious that every
iterate Y (t�), Ỹ (t�), � ≥ k of the recurrence equations (5) and (9), respectively,
can be obtained explicitly, if the right-hand sides of (5) and (9) do not depend on

Y (t�), Ỹ (t�). This happens if either the parameter β0 = 0 or if the memory term
in (1) is a pure delay term and does not itself depend on the current time instance.
In these cases the recurrence equations (5) and (9) have unique solutions. In the
case of implicit systems we need to consider the solvability of the systems of
nonlinear equations (5) and (9). In addition, we have to verify that the Lp-norm
of the iterates exists. (The straightforward extension to fully implicit systems
would serve as an example were the Lp-norm of the iterates does not exist.)

Theorem 3.1 Suppose that β0 �= 0 and the drift-coefficient F satisfies (14) and
assume that 2 h β0 LF < 1. Then the perturbed discrete scheme (9) and,
in consequence, the SLMMM (5) have a unique solution. If, in addition the
coefficient G satisfies (15), then the Lp-norm of the iterates exists.

Proof: The proof of the theorem follows the line of proofs used in the determin-
istic analysis of numerical schemes for DDEs [4] and stochastic linear multi-step
schemes [9].

We now formulate our main theorem on numerical stability.

Theorem 3.2 The stochastic linear multi-step Maruyama method (5) is numer-
ically Lp-stable for every continuous F and G satisfying (14) and (15), respec-
tively, if and only if its characteristic polynomial ρ(ζ) (17) satisfies Dahlquist’s
root condition given in Definition 6.

We postpone the proof to Appendix A.

With the powerful notion of numerical Lp-stability, together with Lp-consistency
the Lp-convergence follows almost immediately.

Theorem 3.3 An Lp-consistent SLMMM (5) for the approximation of the so-
lution of SDDE (1) is Lp-convergent for all continuous F and G satisfying (14)
and (15), respectively, if and only if it is numerically Lp-stable. If, in addition,
it is Lp-consistent with order γ > 0 , then the SLMMM (5) is Lp-convergent with
order γ .

The proof follows with obvious modifications the proof of Theorem 3.3 in [9].
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4 Two-step-Maruyama schemes for scalar SDDEs

In this section we consider the scalar case of Equation (1) with a single lag τ , i.e.
Q = 2, M1 = 0, M2 = 1 and a single driving Wiener process, i.e. Equation (1)
becomes for t ∈ [0, T ]

X(s)
∣∣∣t
0

=

∫ t

0

F (s, X(s), X(s− τ)) ds +

∫ t

0

G1(s, X(s), X(s − τ)) dW1(s) . (18)

The reason for using this basic equation is that we would like to keep the notation
as simple as possible. In order to derive consistency conditions we will apply an
Itô-formula to F and G1, where the former is much more complex in the delayed
case. We refer to [22] for the development of the Itô-formula in the delayed case
and for several useful results. The methods we investigate are stochastic linear
two-step-Maruyama schemes. Thus we have for � = 2, . . . , N

2∑
j=0

αjY (t�−j) = h
2∑

j=0

βj F (t�−j, Y (t�−j), Y (t�−j − τ))

+

2∑
j=1

γj G1(t�−j, Y (t�−j), Y (t�−j − τ)) I
t�−j ,t�−j+1

1 . (19)

For sufficiently smooth drift and diffusion coefficients F and G1 Theorem 3.2 ap-
plies and, choosing p = 2, the two-step scheme (19) is mean square stable if the
coefficients α0, α1, α2 satisfy Dahlquist’s root condition. Then the scheme (19) is
mean-square convergent of some order γ, if it is mean-square consistent of that or-
der. Thus we will be concerned with mean-square consistency of the above scheme
and derive order conditions in terms of the coefficients α0, α1, α2, β0, β1, β2, γ1, γ2.
In general, the mean-square order of convergence will be not higher than 1

2
, since

the only information about the driving noise process that the Maruyama-type
schemes include are the Wiener increments. We note that the simple Euler-
Maruyama method would suffice to obtain the same order of convergence. How-
ever, convergence is an asymptotic property, i.e. it holds for h → 0 and a result
concerning the order of convergence may not provide sufficient information about
the size of the actual error that arises for reasonable choices of the step-size. In
particular when one considers equations with a small noise term as in [9], one
may find that the influence of the noise is not dominant and properties of the
methods in the deterministic setting are recovered to some extent.
In the first part of this section we present the Itô-formula for functions of the
form of F and G1. An informal sketch of its derivation can be found in Appendix
B. In the second part we derive consistency conditions for the two-step scheme
(19) applied to the SDDE (18). We establish a representation of the local error
L� in terms of certain multiple stochastic integrals obtained by the Itô-Taylor
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expansion. It turns out that consistency is guaranteed under the usual conditions
for deterministic order 1 and additional conditions that determine the stochastic
method parameters γ1 and γ2.

4.1 An Itô-formula

For a function φ(t, x, z) in C1,2,2 we denote with φt, φx, φz, φxx, etc. first and
second order derivatives with respect to t, x, z. Further we abbreviate the evalu-
ation of a function φ(s, X(s), X(s−τ)) at s by φ

∣∣
s
. The Itô formula for a function

φ(t, x, z) in C1,2,2 and the solution X of (18) for a, b ∈ [0, T ], b > a, reads

φ(b, X(b), X(b − τ)) = φ(a, X(a), X(a − τ))

+

∫ b

a

φt

∣∣
s
+ φx

∣∣
s
· F
∣∣
s
+

1

2
φxx

∣∣
s
· G2

1

∣∣
s
ds +

∫ b

a

φx

∣∣
s
· G!

∣∣
s
dW1(s) (20)

+
1

2

∫ b−τ

a−τ

φzz

∣∣
s
· G2

1

∣∣
s
ds +

{ ∫ b−τ

a−τ

φz

∣∣
s+τ

· F
∣∣
s

ds (21)

+

�

�

�

�

b−τ∫
a−τ

φz

∣∣
s+τ

· G1

∣∣
s
δW1(s) +

∫ b−τ

a−τ

φzx

∣∣
s+τ

· G2
1

∣∣
s
ds (22)

+

∫ b−τ

a−τ

φzx

∣∣
s+τ

G1

∣∣
s

(∫ s+τ

0

DsF
∣∣
r

dr +

∫ s+τ

0

DsG1

∣∣
r

dW1(r)
)

ds (23)

+

∫ b−τ

a−τ

φzz

∣∣
s+τ

G1

∣∣
s

(∫ s

0

DsF
∣∣
r

dr +

∫ s

0

DsG1

∣∣
r

dW1(r)
)

ds
}
. (24)

The terms appearing in (20) are those present in the Itô-formula for an SODE.
If the lower bound a − τ of some of the integrals is less than 0 then it is to be
replaced by 0. In the second order terms Ds denotes the Malliavin derivative
(see e.g. [37]). The framed integral in (22) is a Skorokhod integral due to the
term X(s + τ) in the integrand. All terms in curly brackets are derived from the
framed sum in (56) in Appendix B.
In the heuristic exposition in Appendix B we indicate the main steps in the
derivation of the Itô-formula above. The mathematically rigorous derivation can
be found in the fundamental work [22].
We introduce operators Λ0, Λ1, Λτ

0, ΛS and ΛM , applied to a function φ(t, x, z)
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by

Λ0φ = φt + φxF +
1

2
φxxG

2 , Λ1φ = φxG , (25)

Λτ
0φ
∣∣
s

= φz

∣∣
s+τ

· F
∣∣
s

+
1

2
φzz

∣∣
s
· G2

∣∣
s

+ φzx

∣∣
s+τ

· G2
∣∣
s
, (26)

ΛSφ
∣∣
s

= φz

∣∣
s+τ

· G
∣∣
s
, (27)

ΛMφ
∣∣
s

= φzx

∣∣
s+τ

G
∣∣
s

(∫ s+τ

0

DsF
∣∣
r

dr +

∫ s+τ

0

DsG
∣∣
r

dW (r)
)

+φzz

∣∣
s+τ

G
∣∣
s

(∫ s

0

DsF
∣∣
r

dr +

∫ s

0

DsG
∣∣
r

dW (r)
)

. (28)

We denote multiple Wiener integrals and the Skorokhod integral by

Ia,b;τ1,...,τj
r1,r2,...,rj

(φ) =

∫ b−τ1

a−τ1

∫ s1−τ2

a−τ2

. . .

∫ sj−1−τj

a−τj

φ
∣∣
sj

dWr1(sj) . . . dWrj
(s1), (29)

Sa,b;τ
1 (φ) =

∫ b−τ

a−τ

φ
∣∣
s
δW1(s) , (30)

where ri ∈ {0, 1, . . . , m} and dW0(s) = ds. If φ ≡ 1 we omit the argument
(φ). Using the operators and the notation introduced above we can write the
Itô-formula as

φ(b, X(b), X(b − τ)) = φ(a, X(a), X(a − τ)) (31)

+ Ia,b;0
0 (Λ0φ) + Ia,b;0

1 (Λ1φ) + Ia,b;τ
0 (Λτ

0φ) + Sa,b;τ
1 (ΛSφ) + Ia,b;τ

0 (ΛMφ) .

Applying the Itô-formula (31) with φ taken as the drift coefficient F and the
diffusion coefficient G1 and s ∈ [t�−j , t�−j+1], j = 1, 2, yields

F (s, X(s), X(s − τ)) = F (t�−j, X(t�−j), X(t�−j − τ)) + I
t�−j ,s;0
0 (Λ0 F )

+ I
t�−j ,s;0
1 (Λ1 F ) + I

t�−j ,s;τ
0 (Λτ

0F ) + S
t�−j ,s;τ
1 (ΛSF ) + I

t�−j ,s;τ
0 (ΛMF ), (32)

G1(s, X(s), X(s− τ)) = G1(t�−j, X(t�−j), X(t�−j − τ)) + I
t�−j ,s;0
0 (Λ0G1)

+ I
t�−j ,s;0
1 (Λ1G1) + I

t�−j ,s;τ
0 (Λτ

0G1) + S
t�−j ,s;τ
1 (ΛSG1) + I

t�−j ,s;τ
0 (ΛMG1). (33)

Over each interval [t�−2, t�] we evaluate the drift function F in (19) three times,
at t�−2, t�−1 and t�. We now trace back the values of the drift coefficient at t�−1
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and t� to the point t�−2 and obtain

F (t�−1, X(t�−1), X(t�−1 − τ)) = F (t�−2, X(t�−2), X(t�−2 − τ)) + I
t�−2,t�−1;0
0 (Λ0F )

+I
t�−2,t�−1;0
1 (Λ1F ) + I

t�−2,t�−1;τ
0 (Λτ

0F ) + S
t�−2,t�−1;τ
1 (ΛSF ) + I

t�−2,t�−1;τ
0 (ΛMF ),(34)

F (t�, X(t�), X(t� − τ)) = F (t�−2, X(t�−2), X(t�−2 − τ)) + I
t�−2,t�−1;0
0 (Λ0F )

+ I
t�−2,t�−1;0
1 (Λ1F ) + I

t�−2,t�−1;τ
0 (Λτ

0F ) + S
t�−2,t�−1;τ
1 (ΛSF ) + I

t�−2,t�−1;τ
0 (ΛMF )

+ I
t�−1,t�;0
0 (Λ0F ) + I

t�−1,t�;0
1 (Λ1F ) + I

t�−1,t�;τ
0 (Λτ

0F ) + S
t�−1,t�;τ
1 (ΛSF )

+ I
t�−1,t�;τ
0 (ΛMF ). (35)

Further, the SDDE (18) implies the identities

X(t�−1) − X(t�−2) =

t�−1∫
t�−2

F (s, X(s), X(s− τ)) ds +

t�−1∫
t�−2

G1(s, X(s), X(s− τ)) dW1(s)

= h F (t�−2, X(t�−2), X(t�−2 − τ)) + I
t�−2,t�−1;0,0
00 (Λ0F ) + I

t�−2t�−1;0,0
10 (Λ1F )

+ I
t�−2,t�−1;τ,0
00 (Λτ

0F ) + I
t�−2,t�−1;0
0 (S

t�−2,s;τ
1 (ΛSF )) + I

t�−2,t�−1;τ,0
00 (ΛMF )

+ G1(t�−2, X(t�−2), X(t�−2 − τ))I
t�−2,t�−1;0
1 + I

t�−2,t�−1;0,0
01 (Λ0G1) + I

t�−2t�−1;0,0
11 (Λ1G1)

+ I
t�−2,t�−1;τ,0
01 (Λτ

0G1) + I
t�−2,t�−1;0
1 (S

t�−2,s;τ
1 (ΛSG1)) + I

t�−2,t�−1;τ,0
01 (ΛMG1) , (36)

and, using additionally (34),

X(t�) − X(t�−1) =

∫ t�

t�−1

F (s, X(s), X(s− τ)) ds +

∫ t�

t�−1

G1(s, X(s), X(s − τ)) dW1(s)

= h
{
F (t�−2, X(t�−2), X(t�−2 − τ)) + I

t�−2,t�−1;0
0 (Λ0F ) + I

t�−2,t�−1;0
1 (Λ1F )

+ I
t�−2,t�−1;τ
0 (Λτ

0F ) + S
t�−2,t�−1;τ
1 (ΛSF ) + I

t�−2,t�−1;τ
0 (ΛMF )

}
+ I

t�−1,t�;0,0
00 (Λ0F ) + I

t�−1t�;0,0
10 (Λ1F )

+ I
t�−1,t�;τ,0
00 (Λτ

0F ) + I
t�−1,t�;0
0 (S

t�−1,s;τ
1 (ΛSF )) + I

t�−1,t�;τ,0
00 (ΛMF )

+ G1(t�−1, X(t�−1), X(t�−1 − τ))I
t�−1,t�;0
1 + I

t�−1,t�;0,0
01 (Λ0G1) + I

t�−1,t�;0,0
11 (Λ1G1)

+ I
t�−1,t�;τ,0
01 (Λτ

0G1) + I
t�−1,t�;0
1 (St�1,s;τ

1 (ΛSG1)) + I
t�−1,t�;τ,0
01 (ΛMG1) . (37)

4.2 Consistency conditions

To analyse the local error L� of the scheme (19) for the SDDE (18) and to achieve a
suitable representation (10) we want to derive appropriate Itô-Taylor expansions,
where we take special care to separate the multiple stochastic integrals over the
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different subintervals of integration. For the SDDE (18) we have the following
result.

Lemma 4.1 Assume that the coefficients F and G1 of the SDDE (18) belong
to the class C1,2,2 with Λ0F, Λ0G1, Λ1F, Λ1G1, Λ

τ
0F, Λτ

0G1, ΛSF, ΛSG1, ΛMF and
ΛMG ∈ CK . Then the local error (8) of the stochastic 2-step scheme (19) allows
the representation

L� = R◦
� + S◦

1,� + S◦
2,�−1, � = 2, . . . , N, (38)

where R◦
� , S

◦
j,�, j = 1, 2 are Ft�-measurable with E(S◦

j,�|Ft�−1
) = 0 and

R◦
� =

[ 2∑
j=0

αj

]
X(t�−2) +

[
2α0 + α1 −

2∑
j=0

βj

]
hF (t�−2, X(t�−2), X(t�−2−τ))+R̃◦

� ,

S◦
1,� =

[
α0 − γ1

]
G1(t�−1, X(t�−1), X(t�−1 − τ))I

t�−1,t�
1 + S̃◦

1,�,

S◦
2,�−1 =

[
(α0 + α1) − γ2

]
G1(t�−2, X(t�−2), X(t�−2 − τ))I

t�−2,t�−1

1 + S̃◦
2,�−1

with
‖R̃◦

�‖L2 = O(h2), ‖S̃◦
1,�‖L2 = O(h), ‖S̃◦

2,�−1‖L2 = O(h). (39)

Corollary 4.2 Let the coefficients F and G1 of the SDDE (18) satisfy the as-
sumptions of Lemma 4.1 and suppose they are Lipschitz continuous in the sense
of (14) and (15), respectively. Let the coefficients of the stochastic linear two-
step Maruyama scheme (19) satisfy Dahlquist’s root condition and the consistency
conditions

2∑
j=0

αj = 0, 2α0 + α1 =

2∑
j=0

βj, α0 = γ1, α0 + α1 = γ2. (40)

Then the global error of the scheme (19) applied to (18) allows the expansion

max
�=2,N

‖X(t�) − Y (t�)‖L2 = O(h1/2) + O(max
�=0,1

‖X(t�) − Y (t�)‖L2) .

Proof: (of Corollary 4.2) By Lemma 4.1 we have the representation (38) for
the local error. Applying the consistency conditions (40) yields

R◦
� = R̃◦

� , S◦
1,� = S̃◦

1,�, S◦
2,�−1 = S̃◦

2,�−1, � = 2, . . . , N.

As the scheme (19) satisfies Dahlquist’s root condition, it is numerically stable
in the mean-square sense. Now the assertion follows from the estimates (39) by
means of the stability inequality (12).
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Proof: (of Lemma 4.1) To derive a representation of the local error in the form
(38) we evaluate and resume the deterministic parts at the point (X(t�−2), t�−2)
and separate the stochastic terms carefully over the different subintervals [t�−2, t�−1]
and [t�−1, t�]. This ensures the independence of the random variables. It does
make the calculations more messy, though. By rewriting

2∑
j=0

αjX(t�−j) = α0

(
X(t�)−X(t�−1)

)
+(α0+α1)

(
X(t�−1)−X(t�−2)

)
+
( 2∑

j=0

αj

)
X(t�−2),

we can express the local error (8) as

L� = α0

(
X(t�) − X(t�−1)

)
+ (α0 + α1)

(
X(t�−1) − X(t�−2)

)
+

2∑
j=0

αjX(t�−2)

−h

2∑
j=0

βj F (t�−j, X(t�−j), X(t�−j − τ))

−
2∑

j=1

γj G1(t�−j , X(t�−j), X(t�−j − τ)) I
t�−j ,t�−j+1

1 .

Inserting the expansions (36), (37), (34) and (35) into the local error formula and
reordering the terms, yields

L� =
[ 2∑

j=0

αj

]
X(t�−2) +

[
2α0 + α1 −

2∑
j=0

βj

]
h F (t�−2, X(t�−2), X(t�−2 − τ)) + R̃◦

�

+
[
α0 − γ1

]
G1(t�−1, X(t�−1), X(t�−1 − τ)) I

t�−1,t�;0
1 + S̃◦

1,�

+
[
(α0 + α1) − γ2

]
G1(t�−2, X(t�−2), X(t�−2 − τ)) I

t�−2,t�−1;0
1 + S̃◦

2,�−1,

where

R̃◦
� = α0

{
hI

t�−2,t�−1;0
0 (Λ0F ) + I

t�−1,t�;0
00 (Λ0F ) + h I

t�−2,t�−1;τ
0 (Λτ

0F )

+I
t�−1,t�;τ,0
00 (Λτ

0F ) + h I
t�−2,t�−1;τ
0 (ΛMF ) + I

t�−1,t�;τ,0
00 (ΛMF )

}
+ (α0 + α1)

{
I

t�−2,t�−1;0
00 (Λ0F ) + I

t�−2,t�−1;τ,0
00 (Λτ

0F ) + I
t�−2,t�−1;τ,0
00 (ΛMF )

}
− h β0

{
I

t�−2,t�−1;0
0 (Λ0F ) + I

t�−1,t�;0
0 (Λ0F ) + I

t�−2,t�−1;τ
0 (Λτ

0F )

+I
t�−1,t�;τ
0 (Λτ

0F ) + I
t�−2,t�−1;τ
0 (ΛMF ) + I

t�−1,t�;τ
0 (ΛMF )

}
− h β1

{
I

t�−2,t�−1;0
0 (Λ0F ) + I

t�−2,t�−1;τ
0 (Λτ

0F ) + I
t�−2,t�−1;τ
0 (ΛMF )

}
, (41)
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S̃◦
1,� = α0

{
I

t�−1,t�;0,0
10 (Λ1F ) + I

t�−1,t�;0
0 (S

t�−1,s;τ
1 (ΛSF ))

+ I
t�−1,t�;0,0
01 (Λ0G1) +

�

�

�

�
I

t�−1,t�;0,0
11 (Λ1G1)

+ I
t�−1,t�;τ,0
01 (Λτ

0G1) +
�

�

�

�
I

t�−1,t�;0
1 (S

t�−1,s;τ
1 (ΛSG1)) + I

t�−1,t�;τ,0
01 (ΛMG)

}
− h β0

{
I

t�−1,t�;0
1 (Λ1F ) + S

t�−1,t�;τ
1 (ΛSF )

}
, (42)

S̃◦
2,�−1 = h(α0 − β0 − β1)I

t�−2,t�−1;0
1 (Λ1F ) + h α0 S

t�−2,t�−1;τ
1 (ΛSF )

+ (α0 + α1)
{
I

t�−2,t�−1;0,0
10 (Λ1F ) + I

t�−2,t�−1;0
0 (S

t�−2,s;τ
1 (ΛSF ))

+ I
t�−2,t�−1;0,0
01 (Λ0G1) +

�

�

�

�
I

t�−2,t�−1;0,0
11 (Λ1G1)

+ I
t�−2,t�−1;τ,0
01 (Λτ

0G1) +
�

�

�

�
I

t�−2,t�−1;0
1 (S

t�−2,s;τ
1 (ΛSG1)) + I

t�−2,t�−1;τ,0
01 (ΛMG1)

}
− h (β0 + β1) S

t�−2,t�−1;τ
1 (ΛSF ). (43)

The estimates (39) are derived by means of Lemmata 2.1 and 2.2 in [34], applied
to the integrals containing the operators Λ0 and Λ1. The main ingredients in the
proofs of those Lemmata are the Hölder inequality and the Itô isometry. With
obvious modifications these Lemmata can be adapted to estimate the integrals
containing the operator Λτ

0. Combining these modifications and similar computa-
tions as in Lemma 5.1 in [22] yield the estimates for the integrals containing the
operator ΛM . In particular one obtains bounds on the integrand by applying the
chain rule for weak derivatives ([37, Prop. 1.2.2]) and Propositions 3.1 and 3.3 in
[22], which provide estimates on weak derivatives of the solution of (18). For the
estimates of the Skorokhod integrals we proceed similarly, additionally using the
formula for the covariance between two Skorokhod integrals ([37, Section 1.3.1]).
The framed terms in (42) and (43) determine the order O(h).

Remark 4.3 Corollary 4.2 holds, in particular, for the Θ-Maruyama method,
which is of the form (19) with k = 1, α0 = 1, α1 = −1, β0 = Θ, β1 = 1−Θ and
γ1 = α0 = 1.

A Proof of Theorem 3.2

Proof: Necessity: This part can be proved as in the deterministic case,
i. e. we take the equation X ′(t) = 0, then F and G satisfy obviously (14)
and (15). We then follow in principle the proof of [16, Thm.6.3.3].

Sufficiency: Since the SLMM (5) contains the stochastic part related to the
diffusion G, we can not rely on the theory of difference equations and the rep-
resentations of their solutions. Instead, we will follow the route of rewriting the
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k-step recurrence equation as a one-step recurrence equation in a higher dimen-
sional space (see e.g. [19, Chap.III.4],[42, Chap.8.2.1]). The proof follows the
proofs of Theorem 3.2 in [9] and Theorem 3.1 in [44].

For Y (t�) and Ỹ (t�) being the solutions of (5) and (9), respectively, let the n-

dimensional vector E� be defined as the difference Y (t�) − Ỹ (t�). We have with
E0, . . . , Ek−1 ∈ Lp(Ω, Rn) for � = k, . . . , N, the recursion

E� = −
k∑

j=1

αj E�−j + h

k∑
j=0

βj ∆F�−j︸ ︷︷ ︸
=:∆φ�

+

k∑
j=1

γj ∆G�−j I t�−j ,t�−j+1

︸ ︷︷ ︸
=:∆ψ�

−D�, (44)

where
∆F�−j := F (t�−j, {Yt�−j

}) − F (t�−j , {Ỹt�−j
}) ,

∆G�−j := G(t�−j, {Yt�−j
}) − G(t�−j, {Ỹt�−j

}).

We rearrange this k-step recursion in the space Lp(Ω, Rn) to a one-step recursion
in Lp(Ω, Rk×n). Together with the trivial identities E�−1 = E�−1, . . . E�−k+1 =
E�−k+1 and using the n-dimensional unit matrix In and the k × k-matrix A with

A =

⎛⎜⎜⎜⎝
−α1 · · · · · ·−αk

1 0
. . .

. . .

1 0

⎞⎟⎟⎟⎠ ,

we obtain⎛⎜⎜⎜⎝
E�

E�−1
...

E�−k+1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=: E�

=

⎛⎜⎜⎜⎝
−α1In · · · · · ·−αkIn

In 0
. . .

. . .

In 0

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=: A=A⊗In

⎛⎜⎜⎜⎝
E�−1

E�−2
...

E�−k

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=: E�−1

+h

⎛⎜⎜⎜⎝
∆φ�

0
...
0

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=: ∆Φ�

+

⎛⎜⎜⎜⎝
∆ψ�

0
...
0

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=: ∆Ψ�

+

⎛⎜⎜⎜⎝
−D�

0
...
0

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=: D�

or, in compact form

E� = AE�−1 + h ∆Φ� + ∆Ψ� + D� , � = k, . . . , N

and Ek−1 = (−Dk−1,−Dk−2, . . . ,−D0)
T , where E� ∈ Lp(Ω, Rk×n), � = k−1, . . . , N .

The vector Ek−1 consists of the perturbations to the initial values. We now trace
back the recursion in E� to the initial vector Ek−1. For � = k, . . . , N we have



MULTI-STEP METHODS FOR SDDES 17

E� = AE�−1 + h ∆Φ� + ∆Ψ� + D�

= A(AE�−2 + h ∆Φ�−1 + ∆Ψ�−1 + D�−1) + h ∆Φ� + ∆Ψ� + D�

= A2 E�−2 + h (∆Φ� + A∆Φ�−1) + (∆Ψ� + A∆Ψ�−1) + (D� + AD�−1)
...

= A�−k+1 Ek−1 + h
�−k∑
i=0

Ai ∆Φ�−i +
�−k∑
i=0

Ai ∆Ψ�−i +
�−k∑
i=0

Ai D�−i

= A�−k+1 Ek−1 + h
�∑

i=k

A�−i ∆Φi +
�∑

i=k

A�−i ∆Ψi +
�∑

i=k

A�−i Di .

Due to the assumption that Dahlquist’s root condition is satisfied and standard
arguments (see e.g. [19, Chap.III.4,Lemma 4.4] or [24, Lemmas B.3,B.10] there
exists a vector norm |.|∗ on R

k×n with a subordinate matrix norm ‖.‖∗ such that
in this norm we have ‖A‖∗ = ‖A⊗In‖∗ ≤ 1. Further, due to the norm equivalence
on finite-dimensional spaces there are constants c1, c2 > 0 such that

c1|X |pp ≤ |X |p∗ ≤ c2|X |pp ∀X ∈ R
k×n ,

where |X |pp =
∑k

j=1 |xj |p, for X = (xT
1 , . . . , xT

k )T and |.| denotes the Euclidean

norm on R
n . In the case of a vector of the form X =(xT , 0, . . . , 0)T the expression

|X |pp obviously reduces to |x|p.
In the remainder of the proof all constants are properly chosen to fulfill the
inequalities.

We now apply |�|p∗ to estimate |E�|p∗ and, later, max
ν=k,...,�

E (|Eν|p∗) and E ( max
ν=k,...,�

|Eν |p∗).
We start with

|E�|p∗ ≤ 4p−1
{
|A�−k+1Ek−1|p∗︸ ︷︷ ︸

1)

+ |
�∑

i=k

A�−i∆Φi|p∗︸ ︷︷ ︸
2)

+ |
�∑

i=k

A�−i∆Ψi|p∗︸ ︷︷ ︸
3)

+ |
�∑

i=k

A�−iDi|p∗︸ ︷︷ ︸
4)

}
.

(45)
For the term labelled 1) we have for � = k, . . . , N

|A�−k+1Ek−1|p∗ ≤ |Ek−1|p∗ . (46)
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For the term labelled 2) we have

hp|
�∑

i=k

A�−i∆Φi|p∗ ≤ hp(� − k + 1)p−1
�∑

i=k

|A�−i∆Φi|p∗ ≤ hpNp−1
�∑

i=k

|∆Φi|p∗

≤ T p

N
c2

�∑
i=k

|∆φi|p ≤ T p

N
c2 (k+1)p−1

�∑
i=k

k∑
j=0

|βj |p |∆Fi−j |p

≤ T p

N
c2 (k+1)p−1

�∑
i=k

k∑
j=0

|βj|p
(
LF

Q∑
q=1

|Ei−j−Mq·Nτ |
)p

≤ T p

N
c2 (k+1)p−1 Lp

F Qp−1
�∑

i=k

k∑
j=0

|βj|p
Q∑

q=1

|Ei−j−Mq·Nτ |p .

To deal with the implicit term |β0|p|E�|p we need to take it out of the above triple
sum. Obviously this term is not present for explicit methods. The implicit term
occurs exactly once for i = � in the outer sum and j = 0 in the middle sum and
q = 1 in the inner sum. When i = �, we can shift the indices, such that all other
terms (other than |β0|p|E�|p ) can be subsumed into terms with i < �. Further,
with M∗ = max(M2, . . . , MQ), for every index i = k, . . . , � − 1 in the outer sum
there can occur terms |Ej |p with the index j between i−k−M∗Nτ and i . However,
every |Ei|p with i < � occurs only a finite number of times, at maximum say Mk,Q

times. The indices emphasise that this number only depends on k and Q, not on
the step-size h. With cβ := maxj=0,...,k |βj |p and C1 := T p c2 (k+1)p−1 Lp

F Qp−1 we
then have

hp |
�∑

i=k

A�−i∆Φi|p∗ ≤
1

N
C1

{
|β0|p |E�|p + cβ Mk,Q

�−1∑
i=−M∗Nτ

|Ei|p
}

=
1

N
C1

{
|β0|p |E�|p + cβ Mk,Q

(
k−1∑

i=−M∗Nτ

|Di|p +
�−1∑
i=k

|Ei|p
)}

≤ 1

N
C1

{ |β0|p
c1

|E�|p∗ + cβ Mk,Q

(
k−1∑

i=−M∗Nτ

|Di|p +
1

c1

�−1∑
i=k

|Ei|p∗

)}
. (47)

After inserting this and the estimate (46) into inequality (45) we subtract the
term containing |E�|p∗ from both sides. If necessary we choose a bound h0 on the
step-size such that for all h < h0, or rather 1

N
< h0 , we have

1

N
4p−1 C1

|β0|p
c1

≤ 1

2
.
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Multiplying by 2 we obtain a new inequality for |E�|p∗ :

|E�|p∗ ≤ 2 · 4p−1
{
|Ek−1|p∗ +

1

N
C1cβ Mk,Q

(
k−1∑

i=−M∗Nτ

|Di|p +
1

c1

�−1∑
i=k

|Ei|p∗

)

+ |
�∑

i=k

A�−i∆Ψi|p∗︸ ︷︷ ︸
3)

+ |
�∑

i=k

A�−iDi|p∗︸ ︷︷ ︸
4)

}
. (48)

We will now treat the term labelled 3). For that purpose we introduce the
notation ∆Ψj,i := ((γj ∆Gi I

ti,ti+1)T , 0, . . . , 0)T . Using this we can write

∆Ψi = ((

k∑
j=1

γj ∆Gi−j I ti−j ,ti−j+1)T , 0, . . . , 0)T =

k∑
j=1

∆Ψj,i−j .

We now reorder the last term above such that we have a sum of terms where each
term contains all multiple Wiener integrals over just one subinterval. For this,
we subsume under Mi, i = 0, . . . , � − 1 all terms of the form Aν∆Ψj,i. Then

�∑
i=k

A�−i∆Ψi =

�−1∑
ν=0

Mν , (49)

and every Mi consists of maximally k terms, e.g. for i = � − k one has

M�−k = A0∆Ψk,�−k + A1∆Ψk−1,�−k + . . . + Ak−1∆Ψ1,�−k

For i > � − k and i < k − 1 there are even less terms. For the convenience
of notation we set ∆Ψj,i =: 0 for the terms that do not occur. Using Hölder’s
inequality and ‖A‖∗ = 1 we can estimate

|Mi|p∗ ≤ kp−1
k∑

j=1

|∆Ψj,i|p∗ ≤ kp−1c2

k∑
j=1

|∆Ψj,i|pp .

Every ∆Ψj,i−j is Fti−j+1
-measurable and E(∆Ψj,i−j|Fti−j

) = 0. Thus every Mi is
Fti+1

-measurable and E(Mi|Fti) = 0, for i = 0, . . . , � − 1. We now observe that

the discrete parameter process {M� :=
∑�−1

ν=0 Mν ,Ft�}N
�=0 is a martingale and has

finite p-th order moments. The Burkholder-Davis-Gundy inequality (cf. e.g. [45,
VII.3] or [30, I.1.7]) then yields the following estimate

E ( max
i=0,...,�−1

|
i∑

ν=0

Mν |p∗ ) ≤ Bp E (
�−1∑
i=0

|Mi|2∗ )
p
2 ≤ Bp �

p
2
−1

�−1∑
i=0

E |Mi|p∗

for � = 1, . . . , N and with some universal constant Bp. We thus obtain
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E ( max
µ=k,...,�

|
µ∑

i=k

A�−i∆Ψi|p∗ ) = E ( max
µ=k,...,�

|
µ−1∑
ν=0

Mν |p∗ ) ≤ E ( max
i=0,...,�−1

|
i∑

ν=0

Mν |p∗ )

≤ Bp �
p
2
−1

�−1∑
i=0

E |Mi|p∗ ≤ Bp �
p
2
−1 kp−1 c2

�−1∑
i=0

k∑
j=1

E |∆Ψj,i|pp

= Bp �
p
2
−1 kp−1 c2

�−1∑
i=0

k∑
j=1

E |γj ∆Gi I ti,ti+1 |p

= Bp �
p
2
−1 kp−1 c2 cγ

�−1∑
i=0

E |∆Gi I ti,ti+1|p (with cγ :=
k∑

j=i

|γj|p)

≤ Bp �
p
2
−1 kp−1 c2 cγ

�−1∑
i=0

E ‖∆Gi‖p
E|I ti,ti+1 |p

≤ Bp �
p
2
−1 kp−1 c2 cγL

p
G

�−1∑
i=0

E

(
Q∑

q=1

|Y (ti−Mq·Nτ ) − Ỹ (ti−Mq·Nτ )|
)p

E |I ti,ti+1|p

≤ Bp �
p
2
−1 kp−1 c2 cγ Lp

GQp−1

�−1∑
i=0

Q∑
q=1

E|Y (ti−Mq·Nτ ) − Ỹ (ti−Mq·Nτ )|p E |I ti,ti+1|p

≤ Bp �
p
2
−1 kp−1 c2 cγ Lp

G Qp−1m
p
2 (

p(p−1)

2
)

p
2 h

p
2

�−1∑
i=0

Q∑
q=1

E|Ei−Mq·Nτ |p

:= (� h)
p
2
−1h C2

�−1∑
i=0

Q∑
q=1

E |Ei−Mq·Nτ |p

≤ T
p
2
−1 T

N
C2

�−1∑
i=0

Q∑
q=1

E |Ei−Mq·Nτ |p :=
1

N
C3

�−1∑
i=0

Q∑
q=1

E |Ei−Mq·Nτ |p .

Again, with M∗ = max(M2, . . . , MQ), for every index i = 0, . . . , � − 1 there can
occur terms E|Ej |p with the index j between i − M∗ · Nτ and i. However, every
E|Ei|p with i < � occurs only a finite number of times, at maximum say again
Mk,Q times. We then have

E ( max
ν=k,...,�

|
ν∑

i=k

A�−i∆Ψi|p∗ ) ≤ 1

N
C3 Mk,Q

�−1∑
i=−M∗·Nτ

E |Ei|p

≤ 1

N
C3 Mk,Q

(
k−1∑

i=−M∗·Nτ

E |Di|p +
1

c1

�−1∑
i=k

E |Ei|p∗

)
. (50)
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Applying E maxν=k,...,� to both sides of (48) and inserting (50) we obtain

E max
ν=k,...,�

|Eν|p∗ ≤ 2 · 4p−1
{

E|Ek−1|p∗ (51)

+
1

N
(C1cβ + C3)Mk,Q

(
k−1∑

i=−M∗Nτ

E|Di|p +
1

c1

�−1∑
i=k

E|Ei|p∗

)
+ E max

ν=k,...,�
|

ν∑
i=k

Aν−iDi|p∗
}
.

We have |Ek−1|p∗ ≤ 1
c1
|Ek−1|pp = 1

c1

k−1∑
i=0

|Di|p. Thus (51) becomes

E max
ν=k,...,�

|Eν|p∗ ≤ 2 · 4p−1
{ k−1∑

i=0

E|Di|p(
1

c1
+

1

N
(C1cβ + C3) Mk,Q)

+
1

N
(C1cβ + C3) Mk,Q

( −1∑
i=−M∗Nτ

E|Di|p +
1

c1

�−1∑
i=k

E|Ei|p∗

)
+ E max

ν=k,...,�
|

ν∑
i=k

Aν−iDi|p∗
}

≤ 2 · 4p−1
{ k−1∑

i=0

E|Di|p(
1

c1
+

1

N
(C1cβ + C3) Mk,Q)

+
1

N
(C1cβ + C3) Mk,Q

(
M∗Nτ sup

s∈J
E|D(s)|p +

1

c1

�−1∑
i=k

E|Ei|p∗

)

+E max
ν=k,...,�

|
ν∑

i=k

Aν−iDi|p∗
}

≤ C4

k−1∑
i=0

E|Di|p + C5 sup
s∈J

E|D(s)|p + 2 · 4p−1
E max

ν=k,...,�
|

ν∑
i=k

Aν−iDi|p∗

+
1

N
C6

�−1∑
i=k

E max
ν=k,...,i

|Eν |p∗

with properly chosen constants C4, C5, C6. We now apply Lemma 2.4 with a� :=
0, � = 1, . . . , k − 1 and a� := E max

ν=k,...,�
|Eν|p∗, � = k, . . . , N , and obtain the

intermediate result

E max
ν=k,...,N

|Eν |p∗

≤ eC6

{
C4

k−1∑
i=0

E|Di|p + C5 sup
s∈J

E|D(s)|p + 2 · 4p−1
E max

ν=k,...,N
|

ν∑
i=k

Aν−iDi|p∗
}

≤ Ŝ
{

max
i=0,...,k−1

E|Di|p + sup
s∈J

E|D(s)|p + E max
ν=k,...,N

|
ν∑

i=k

Aν−iDi|p∗
}

. (52)
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It remains to deal with the term labelled 4) (in (48)), i.e. the perturbations Di

in Di. We decompose Di, and, analogously, Di into

Di = Ri + Si = Ri +
k∑

j=1

Sj,i−j+1, Di = Ri + Si = Ri +
k∑

j=1

Sj,i−j+1,

where Sj,i−j+1 is Fti−j+1
-measurable with E(Sj,i−j+1|Fti−j

) = 0 for i = k, . . . , N

and j = 1, . . . , k. Proceeding in the same way as in (49) we subsume under M̃i

all the terms of the form AνSj,i occuring in 4.). Then we have

ν∑
i=k

Aν−iDi =

ν∑
i=1

M̃i +

ν∑
i=k

Aν−iRi , (53)

and {
∑ν

i=1 M̃i,Ft�}N
�=0 is a martingale and has finite p-th order moments. For the

martingale part of (53) we apply again the Burkholder-Davis-Gundy inequality
(cf. e.g. [45, VII.3] or [30, I.1.7]) and obtain

E ( max
ν=k,...,N

|
ν∑

i=1

M̃i|p∗ ) ≤ Bp E (

N∑
i=1

|M̃i|2∗ )
p
2 ≤ Bp N

p
2
−1

N∑
i=1

E|M̃i|p∗

≤ Bp N
p
2
−1

N∑
i=1

kp−1

k∑
j=1

E|Sj,i|p∗

≤ Bp N
p
2
−1kp−1c2

N∑
i=1

k∑
j=1

E|Sj,i|p

= Bp N
p
2
−1kp−1c2

N∑
i=k

E

k∑
j=1

|Sj,i−j+1|p

≤ Bp N
p
2
−1kp−1c2Cp

N∑
i=k

E|Si|p

=: C7 N
p
2
−1

N∑
i=k

E|Si|p

≤ C7 N
p
2 max

i=k,...,N
E|Si|p.

For the other part of (53) we obtain

E max
ν=k,...,N

|
ν∑

i=k

Aν−iRi|p∗ ≤ Np−1
E

N∑
i=k

|Aν−iRi|p∗ = Np−1
E

N∑
i=k

|Ri|p∗

≤ Np
E max

i=k,...,N
|Ri|p∗

≤ c2N
p
E max

i=k,...,N
|Ri|p .
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Together, this yields

E max
ν=k,...,N

|
ν∑

i=k

Aν−iDi|p∗ = E max
ν=k,...,N

|
ν∑

i=1

M̃i +
ν∑

i=k

Aν−iRi|p∗

≤ 2p−1
{
E max

ν=k,...,N
|

ν∑
i=1

M̃i|p∗ + E max
ν=k,...,N

|
ν∑

i=k

Aν−iRi|p∗
}

≤ 2p−1
{
C7N

p
2 max

i=k,...,N
E|Si|p + c2N

p
E max

i=k,...,N
|Ri|p

}
≤ 2p−1

{
C7

T
p
2

h
p
2

max
i=k,...,N

E|Si|p + c2
T p

hp
E max

i=k,...,N
|Ri|p

}
.

Inserting this into the intermediate result (52) we have

E max
ν=k,...,N

|Eν |p∗ ≤ Ŝ
{

max
i=0,...,k−1

E|Di|p + sup
s∈J

E|D(s)|p + E max
ν=k,...,N

|
ν∑

i=k

Aν−iDi|p∗
}

≤ Ŝ
{

max
i=0,...,k−1

E|Di|p + sup
s∈J

E|D(s)|p

+2p−1
{
C7

T
p
2

h
p
2

max
i=k,...,N

E|Si|p + c2
T p

hp
E max

i=k,...,N
|Ri|p

}}
.

Finally, we estimate |Eν |p ≤ |Eν|p∗ and take the p-th root to obtain the final esti-
mate

(E max
�=1,...,N

|E�|p )
1
p

≤ Sp

{
sup
s∈J

‖D(s)‖Lp + max
�=0,...,k−1

‖D�‖Lp +

(E max
�=k,...,N

|R�|p )
1
p

h
+ max

�=k,...,N

‖S�‖Lp

h1/2

}
. (54)

We have now proved the validity of the stronger stability inequality (13). The
proof of the weaker estimate (12) is similar.

B Heuristic justification of the Itô-formula

With heuristic we mean, that we omit all details concerning modes of convergence,
conditions on the appearing functions and proofs. We refer to the major work
[22] for these details. Here, within the limitations of this paper, we would like to
explain the terms appearing in the Itô-formula in the lines (21) to (24).
Take a partition of the interval [t0, t] as {t0, t1, . . . , tN}, with t0 < t1 < . . . < tN =
t and set ∆tn = tn − tn−1, t̃n = tn−1 + δn(tn − tn−1), δn ∈ (0, 1), ∆X(tn) =

X(tn)−X(tn−1) and X̃(tn) = X(tn−1) + γtn(X(tn) −X(tn−1)), γtl ∈ (0, 1), γtl
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random. We continue to use the abbreviation φ
∣∣
s

to indicate the evaluation of

a function φ at s. If we evaluate at an intermediate value t̃n, X̃(tn), we write

φ(t̃, ., .)
∣∣
tn−1

, φ(., X̃, .)
∣∣
tn−1

or = φ(., ., X̃τ)
∣∣
tn−1

. We then apply the deterministic

Taylor-formula to

φ(t, X(t), X(t− τ)) − φ(t0, X(t0), X(t0 − τ))

=
N∑

n=1

φ
∣∣
tn
− φ(tn−1, X(tn), X(tn − τ)) + φ(tn−1, X(tn), X(tn − τ)) − φ

∣∣
tn−1

=
N∑

n=1

φt(t̃, ., .)
∣∣
tn
∆tn +

N∑
n=1

φx

∣∣
tn−1

∆X(tn) +
N∑

n=1

1

2
φxx(., X̃, .)

∣∣
tn−1

(∆X(tn))2 (55)

+

N∑
n=1

1

2
φzz(., ., X̃τ )

∣∣
tn−1

(∆X(tn − τ))2 +
N∑

n=1

φz

∣∣
tn−1

∆X(tn − τ) (56)

+
N∑

n=1

1

2
φxz(., X̃, X̃τ ) (∆X(tn))(∆X(tn − τ)) + ’higher order terms’. (57)

The terms in (55) are those appearing in the Taylor expansion for the non-delay
Itô formula and they will converge to (20). The second order terms in (56) and
(57) will converge to the first integral in (21) and to 0, respectively.
For the framed term in (56) we have

N∑
n=1

φz

∣∣
tn−1

∆X(tn − τ) =

N∑
n=1

φz

∣∣
tn−1

×
{∫ tn−τ

tn−1−τ

F
∣∣
s
ds +

∫ tn−τ

tn−1−τ

G
∣∣
s
dW (s)

}
.

Now
N∑

n=1

φz

∣∣
tn−1

{∫ tn−τ

tn−1−τ
F
∣∣
s
ds
}

converges to
∫ t−τ

t0−τ
φz

∣∣
s+τ

F
∣∣
s

ds , the first inte-

gral within the curly brackets in (21).
The ‘obvious’ limit of the second term would be

∫ t−τ

t0−τ
φz

∣∣
s+τ

G
∣∣
s

dW (s) , however,

then the integrand φz(s + τ, X(s + τ), X(s))G
∣∣
s

is not adapted to the filtration
generated by the Wiener process on the interval [tn−1−τ, tn−τ ], thus the integral∫ tn−τ

tn−1−τ
φz

∣∣
s+τ

G
∣∣
s
dW (s) would be a non-anticipating integral and not longer an

Itô integral. At this point the application of the Malliavin calculus becomes
necessary. The idea developed in [22] is to use a property of the Skorohod integral,
i.e., a formula for the Skorohod integral of a process multiplied by a random
variable ([38, Thm. 3.2], [37, Eq. 1.49 in Chapter1]) and an application of this
formula yields

φz

∣∣
tn−1

tn−τ∫
tn−1−τ

G
∣∣
s
dW (s) =

tn−τ∫
tn−1−τ

G
∣∣
s
φz

∣∣
tn−1

dW (s) +

tn−τ∫
tn−1−τ

Ds(φz

∣∣
tn−1

)G
∣∣
s

ds.
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With the chain rule for weak derivatives ([37, Prop. 1.2.2]) one obtains

Ds(φz

∣∣
tn−1

) = φzx

∣∣
tn−1

DsX(tn−1) + φzz

∣∣
tn−1

DsX(tn−1 − τ)

where the Malliavin derivative of X is given by

DsX(t) = G
∣∣
s
1I{s≤t} +

∫ t

0

DsF
∣∣
r

dr +

∫ t

0

DsG
∣∣
r

dW (r) .

Summarizing the last three formulas, we arrive at

N∑
n=1

φz

∣∣
tn−1

∫ tn−τ

tn−1−τ

G
∣∣
s

dW (s) =

N∑
n=1

{ tn−τ∫
tn−1−τ

φz

∣∣
tn−1

G
∣∣
s

dW (s)

︸ ︷︷ ︸
1)

+

tn−τ∫
tn−1−τ

φzx

∣∣
tn−1

1I{s≤tn−1}G
2
∣∣
s
ds

︸ ︷︷ ︸
2)

+

tn−τ∫
tn−1−τ

φzz

∣∣
tn−1

1I{s≤tn−1−τ}G2
∣∣
s

ds

︸ ︷︷ ︸
3)

+

tn−τ∫
tn−1−τ

φzx

∣∣
tn−1

tn−1∫
0

DsF
∣∣
r

dr G
∣∣
s
ds

︸ ︷︷ ︸
4)

+

tn−τ∫
tn−1−τ

φzx

∣∣
tn−1

tn−1∫
0

DsG
∣∣
r

dW (r) G
∣∣
s
ds

︸ ︷︷ ︸
5)

+

tn−τ∫
tn−1−τ

φzz

∣∣
tn−1

tn−1−τ∫
0

DsF
∣∣
r

dr G
∣∣
s
ds

︸ ︷︷ ︸
6)

+

tn−τ∫
tn−1−τ

φzz

∣∣
tn−1

tn−1−τ∫
0

DsG
∣∣
r

dW (r) G
∣∣
s
ds

︸ ︷︷ ︸
7)

}
.

The sum of integrals denoted by 1) converges to the framed Skorokhod integral
in (22), the term 2) converges to the second integral in (22). The term 3) is equal
to 0. The sums of the terms 4) and 5) converge to (23), those in 6) and 7) to
(24).
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