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Abstract

We propose a randomized gradient method for the handling of a convex function whose gradient
computation is demanding. The method bears a resemblance to the stochastic approximation family.
But in contrast to stochastic approximation, the present method builds a model problem.

The approach requires that estimates of function values and gradients be provided at the iterates.
We present a variance reduction Monte Carlo simulation procedure to provide such estimates in the case
of certain probabilistic functions.
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1 Introduction

We deal with approximate methods for the solution of smooth convex programming problems. First we
consider minimization over a polyhedron:

min φ(Tx) subject to Ax ≤ b, (1)

where φ : IRn → IR is a convex function whose gradient computation is demanding. The vectors are
x ∈ IRm, b ∈ IRr, and the matrices T and A are of sizes n × m and r × m, respectively. For the sake
of simplicity we assume that the feasible domain is not empty and is bounded. We then consider the
minimization of a linear cost function subject to a difficult convex constraint:

min cTx subject to Ăx ≤ b̆, φ(Tx) ≤ π, (2)

where the vectors c, b̆ and the matrix Ă have compatible sizes, and π is a given number.
The motivation for the above forms are the classic probability maximization and probabilistic constrained

problems, where φ(z) = − logF (z) with a logconcave distribution function F (z). In [7], an inner approxima-
tion was proposed for the probabilistic function. The approach proved easy to implement and invulnerable
to noise in gradient computation. – Noisy gradient estimates may yield iterates that do not improve much
on our current model. But we retain a true inner approximation, provided objective values at new iterates
are evaluated with appropriate accuracy.

Let us briefly overview a couple of closely related probabilistic programming approaches. – For a broader
survey, see [7] and references therein. – Given a distribution and a number p (0 < p < 1), a probabilistic
constraint confines search to the level set L(F, p) = { z |F (z) ≥ p } of the distribution function F (z). Prékopa
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[18] initiated a novel solution approach by introducing the concept of p-efficient points. z is p-efficient if
F (z) ≥ p and there exists no z′ such that z′ ≤ z, z′ 6= z, F (z′) ≥ p. Prékopa, Vizvári, and Badics
[20] consider problems with random parameters having a discrete finite distribution. They first enumerate
p-efficient points, and based on these, build a convex relaxation of the problem.

Dentcheva, Prékopa, and Ruszczyński [6] formulate the probabilistic constraint in a split form: Tx = z,
where z belongs to the level set L(F, p); and construct a Lagrangian dual by relaxing the constraint Tx = z.
The dual functional is the sum of two functionals that are respective optimal objective value functions of
two simpler problems. The first auxiliary problem is a linear programming problem, and the second one is
the minimization of a linear function over the level set L(F, p). Based on this decomposition, the authors
develop a method, called cone generation, that finds new p-efficient points in course of the optimization
process.

[7] focusses on probability maximization. A polyhedral approximation is constructed to the epigraph of
the probabilistic function. This is analogous to the use of p-efficient points, and the approach was motivated
by that concept. The dual problem is constructed and decomposed in the manner of [6], but the nonlinear
subproblem is easier. In [6], finding a new p-efficient point amounts to minimization over the level set
L(F, p). In contrast, a new approximation point in [7] is found by unconstrained minimization. Moreover, a
practical approximation scheme was developed in [7]: instead of exactly solving an unconstrained subproblem
occurring during the process, just a single line search was made in each case. Implementation based on this
approximation scheme proved quite robust, and a theoretic explanation for this behavior was also found.

In the present paper, we extend the approach of [7] to handling gradient estimates. We also propose simula-
tion schemes to obtain such estimates in case of probabilistic problems. We present the inner approximation
approach in an idealized setting:

Assumption 1 The function φ(z) is twice continuously differentiable, and the Hessian matrix satisfies

αI � ∇2φ(z) � ωI (z ∈ IRn)

with some α, ω ∈ IR (0 < α ≤ ω). Here I is the identity matrix, and the relation U � V between matrices
means that V − U is positive semidefinite.

In Sections 2 and 3 we present a brisk overview of the models and the column generation approach of [7].
In Section 4 we present the column-generation approach from a dual viewpoint, as a cutting-plane method.
(The dual viewpoint has the advantage that the cutting-plane method can be regularized, but we do not
consider regularization in this paper.)

The cutting-plane model of the dual approach – like the inner approximation of the primal one – is invul-
nerable to gradient computation errors. This feature facilitates the use of gradient estimates. In Section 5 we
extend the method in this direction. The motivation for applying gradient estimates was our computational
experience reported in [7]: most of the computation effort was spent in computing gradients. – In that com-
putational study we solved classic probability maximization problems; namely, we had φ(z) = − logF (z)
with a multivariate normal distribution function F (z). Given an n-dimensional normal distribution, a com-
ponent of the gradient ∇F (z) was obtained as the product of an appropriate (n − 1)-dimensional normal
distribution function value and a univariate normal density function value (see the formula in Section 6.6.4
of Prékopa’s book [19]). The numerical computation of multivariate normal distribution function values was
performed by Genz’s subroutine [11]. In our study, most of the computation time was spent in the Genz
subroutine. Most demanding were the gradient computations, each requiring n calls to the Genz subroutine.
– We conclude that easily computable estimates for the gradients are well worth using, even if the iteration
count increases due to estimation errors.

For the estimation of function values and gradients in case of a probabilistic objective, we present a
variance reduction Monte Carlo simulation procedure in Section 6. This procedure is applicable to gradient
estimation in case of normal, Dirichlet, and t-distributions.

In Section 7 we deal with the convex constrained problem (2). Well-known approximation schemes for
this problem consist of the solution of a sequence of problems of the form (1). We are going to show that
the approximation tools described in previous sections facilitate such a solution scheme in the present case.
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2 Problem and model formulation

In this section we formulate the dual problem and construct polyhedral models of the primal and dual
problems. We follow the construction in [7], details can be found in that paper. Though in [7], we exploited
monotonicity of the probabilistic objective and variable splitting was based on z ≤ Tx. In the present paper,
we apply the traditional form of variable splitting: Problem (1) will be written as

min φ(z) subject to Ax− b ≤ 0, z − Tx = 0. (3)

This problem has an optimal solution due to our assumption that on feasible domain of (1). Introducing
the multiplier vector −y ∈ IRr,−y ≥ 0 to the constraint Ax − b ≤ 0, and −u ∈ IRn to the constraint
z − Tx = 0, the Lagrangian dual of (3) can be written as

max {yT b− φ?(u)} subject to (y,u) ∈ D, (4)

where
D :=

{
(y,u) ∈ IRr+n | y ≤ 0, TTu = ATy

}
. (5)

According to the theory of convex duality, this problem has an optimal solution.

2.1 Polyhedral models

Suppose we have evaluated the function φ(z) at points zi (i = 0, 1, . . . , k); let us introduce the notation
φi = φ(zi) for respective objective values. An inner approximation of φ(.) is

φk(z) = min

k∑
i=0

λiφi such that λi ≥ 0 (i = 0, . . . , k),

k∑
i=0

λi = 1,

k∑
i=0

λizi = z. (6)

If z 6∈ Conv(z0, . . . ,zk), then let φk(z) := +∞. A polyhedral model of Problem (3) is

min φk(z) subject to Ax− b ≤ 0, z − Tx = 0. (7)

We assume that (7) is feasible, i.e., its optimum is finite. This can be ensured by proper selection of the
initial z0, . . . ,zk points. The convex conjugate of φk(z) is

φ?k(u) = max
0≤i≤k

{uTzi − φi}. (8)

As φ?k(.) is a cutting-plane model of φ?(.), the following problem is a polyhedral model of Problem (4):

max {yT b− φ?k(u)} subject to (y,u) ∈ D. (9)

2.2 Linear programming formulations

The primal model problem (6)-(7) will be formulated as

min
k∑
i=0

φiλi

such that λi ≥ 0 (i = 0, . . . , k),

k∑
i=0

λi = 1,

k∑
i=0

λizi −Tx = 0,

Ax ≤ b.

(10)
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The dual model problem (8)-(9), formulated as a linear programming problem, is just the LP dual of (10):

max ϑ + bTy

such that y ≤ 0,

ϑ + zTi u ≤ φi (i = 0, . . . , k),

−TTu +ATy = 0.

(11)

Let (λ0, . . . , λk, x ) and (ϑ, u, y ) denote respective optimal solutions of the problems (10) and (11) – both
existing due to our assumption concerning the feasibility of (7) and hence (10). Let moreover

z =

k∑
i=0

λizi. (12)

Observation 2 We have φk(z) =
k∑
i=0

φiλi = ϑ+ uTz.

The first equality follows from the equivalence of (10) on the one hand, and (6)-(7) on the other hand. The
second equality is a straight consequence of complementarity.

Observation 3 We have ϑ = −φ?k (u).

This follows from the equivalence between (11) on the one hand and (8)-(9) on the other hand.

Remark 4 A consequence of Observations 2 and 3 is φk(z) + φ?k (u) = uTz. This is Fenchel’s equality
between u and z, with respect to the model function φk(.).

3 Primal viewpoint: column generation

In [7], the probability maximization problem is solved by iteratively adding improving columns to the primal
model. In this section we give a brisk overview of the practical approximation scheme proposed in that
paper.

An optimal dual solution (i.e., shadow price vector) of the current model problem is (ϑ, u, y ). Given a
vector z ∈ IRn, we can add a new column in (10), corresponding to zk+1 = z. This is an improving column
if its reduced cost

ρ(z) := ϑ + uTz − φ(z) (13)

is positive. – It is easily seen that the reduced cost of z is non-negative. Indeed,

ρ(z) ≥ ϑ + uTz − φk(z) = 0 (14)

follows from φk(.) ≥ φ(.) and Observation 2.
In the context of the simplex method, the Markowitz rule is a well-known and often-used rule of column

selection. The Markowitz rule selects the vector with the largest reduced cost. Coming back to the present
problem (10), let

R := max
z

ρ(z). (15)

The column with the largest reduced cost can, in theory, be found by a steepest descent method applied to the
function −ρ(z). Though finding a near-optimal solution proved rather time-consuming in the computational
study of [7]. As a practical alternative, only a single line search was performed, starting from z. This simple
method proved effective and robust. Moreover, a theoretical explanation was also found for the efficiency of
the approach, based on the following well-known theorem:
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Theorem 5 Let Assumption 1 hold for the function f : IRn → IR. Let us minimize f(z) over IRn using a
steepest descent method, starting from a point z0. Let z1, . . . ,zj , . . . denote the iterates obtained by applying
exact line search at each step. Then we have

f
(
zj
)
−F ≤

(
1− α

ω

)j [
f
(
z0
)
−F

]
, (16)

where F = minz f(z).

Proof of this theorem can be found in, e.g., [22], [15]. The following corollary was obtained in [7]:

Corollary 6 Let β (0 < β � 1) be given. A finite (and moderate) number of steps with the steepest descent
method results a vector ẑ such that

ρ (ẑ) ≥ (1− β) R. (17)

This can be proven by substituting f(z) = −ρ(z), z0 = z in (16), and applying (14). Selecting j such that(
1− α

ω

)j ≤ β yields an appropriate ẑ = zj .

In view of the Markowitz rule mentioned above, the vector ẑ in Corollary 6 is a fairly good improving vector
in the column generation scheme.

In the computational study of [7], just a single line search was performed in each reduced cost maximiza-
tion; i.e., j = 1 according to the notation of Theorem 5. (Even this single line search was inexact, making a
limited number of steps in the direction of steepest ascent.) Our implementation proved reliable even with
this simple procedure.

In case of probabilistic functions, Assumption 1 does not hold for every z ∈ IRn. Our computational
experience in [7] was, however, that the probabilistic objectives were well conditioned over certain domains.
The iterates obtained by the above approximation procedure always remained in the respective safe domains.

Remark 7 To check near-optimality of the current solution, we can use the usual LP stopping rule: R
should be less than a fixed optimality tolerance. – For the present special linear programming problem (10),
this is not just a heuristic rule; as we show in the next section, R is actually a bound on the gap between the
respective optima of the model problem and the original convex problem.

If we have good estimates for α and ω in Assumption 1, then R can be estimated on the basis of Corollary
6. Hence the gap can be kept under effective control in course of the solution process.

If no reliable estimates for α and ω are known, then Corollary 6 is just a theoretical justification for
limiting the numbers of the line searches in each steepest ascent method. The column generation procedure
is terminated if ‖∇ρ(z)‖ is small. We can construct an upper bound of the final gap R using the gradient.

4 Dual viewpoint: cutting planes

The simplex method can be viewed as a cutting-plane method. This fact has been part of the professional
folklore ever since the simplex method became widely known. Simplex and cutting-plane methods are
parallelly discussed in Section 3.4 of Prékopa’s book [19]. A closer description of the present situation can
be found in [9], Section 4.

4.1 Dimension reduction

For the sake of simplicity, let us make

Assumption 8 The inequality system Ax ≤ b contains box constraints in the form of b ≤ x ≤ b, where
b, b ∈ IRr are given vectors (b ≤ b).
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I.e., we have

A =

 A′

I
−I

 and b =

 b′

b
−b

 . (18)

Let
µ(u) = min { −bTy | (y,u) ∈ D }. (19)

This function is defined for every u since TTu = ATy is solvable in y (y ≤ 0) due to A having the form (18).
We will formulate the dual problems using the function µ(u). For convenience, we transform the problems
into minimization forms. The original dual problem (4) assumes the form

min {φ?(u) + µ(u)}, (20)

and the model problem (9) assumes the form

min {φ?k(u) + µ(u)}. (21)

4.2 Cut generation

Let u be a minimizer of (21), in accordance with our notation in former sections. We are going to compute
an approximate support function to φ?(u) at u. This will be of the form

`(u) := uTz − φ (z) , (22)

with an appropriate vector z. We have `(u) ≤ φ?(u) for any u by the definition of φ?(u). We are going to
compute z such that φ?(u)− `(u) be relatively small.

Using support functions of the above form, a cutting-plane scheme for the problem (20) is easily imple-
mented. We build a polyhedral model φ?k(u) of φ?(u) – always adding the appropriate z vector to the dual
model as zk+1. On the other hand, we will work with µ(u) as a polyhedral model of itself. This is a workable
setup; the current model function can be minimized by just solving the linear programming problem (11) –
take into account Observation 3.

Coming back to the construction of the approximate support function (22), we wish to construct `(u)
whose graph cuts deeply into the epigraph of the model function φ?k(u). (Depth being measured at u.) I.e.,
we wish the following difference to be large:

`(u)− φ?k(u) = uTz − φ(z) − φ?k(u) = ρ(z), (23)

where the second equality follows from Observation 3. (This is a dual interpretation the reduced cost.)
Let Ψ? denote the minimum of (20). Let us further introduce the notation

Ψ := φ?k(u) + µ(u) and Ψ := φ?(u) + µ(u). (24)

Obviously we have Ψ ≤ Ψ? ≤ Ψ. As for the gap between the upper and the lower bound, we have

Ψ−Ψ = φ?(u)− φ?k(u) = max
z

ρ(z) = R, (25)

where the second equality follows from the definition of the conjugate function, and the third equality is in
accordance with our former notation.

In order to construct inexact cuts, let us consider a dual form of Corollary 6:

Proposition 9 Let β (0 < β � 1) be given. We can construct a linear function ˆ̀(u) such that

ˆ̀(u) ≤ φ?(u) holds for any u, and

ˆ̀(u) ≥ φ? (u)− βR.

In words: ˆ̀(u) is an approximate support function to φ?(u) at u. The difference between the function values
at the current iterate is bounded by the portion βR of the gap.
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Proof. According to Corollary 6, we can construct a vector ẑ such that (17) holds. Using this ẑ, let us

define ˆ̀(u) according to (22). Then we have

ˆ̀(u) = ρ (ẑ) + φ?k (u) due to (23)

≥ (1− β)R+ φ?k (u) due to (17)

= φ? (u)− βR due to (25).

(26)

5 Working with gradient estimates

In this section we show that the column generation scheme of [7] (sketched in Section 3), and the cutting-plane
scheme of Section 4 can be implemented as a randomized method using gradient estimates.

We wish to minimize −ρ(z) over IRn. Given z◦ ∈ IRn, let g◦ = −∇ρ(z◦).

Assumption 10 Let σ > 0 be given. We can construct a realization of a random vector G◦ satisfying

E (G◦) = g◦ and E
(
‖G◦ − g◦‖2

)
≤ σ ‖g◦‖2 . (27)

From (27) follows

E
(
‖G◦‖2

)
= E

(
‖G◦ − g◦‖2

)
+ ‖g◦‖2 ≤ (σ + 1) ‖g◦‖2 . (28)

Let us consider the following randomized form of Theorem 5:

Theorem 11 Let Assumption 1 hold for the function f : IRn → IR. Let us minimize f(z) over IRn. We
perform a steepest descent method using gradient estimates. (Given an iterate z◦, a gradient estimate G◦

is generated and a line search is performed in that direction.) We assume that gradient estimates at the
respective iterates are generated independently, and (27) - (28) hold for each of them.

Having started from the point z0, and having performed j line searches, let z1, . . . ,zj denote the respective
iterates. Then we have

E
[
f
(
zj
)]
−F ≤

(
1− α

ω(σ + 1)

)j (
f
(
z0
)
−F

)
, (29)

where F = minz f(z).

Proof. Let G0, . . . ,Gj−1 denote the respective gradient estimates for the iterates z0, . . . ,zj−1.
To begin with, let us focus on the first line search whose starting point is z◦ = z0. Here z◦ is a given (not

random) vector. We are going to adopt the usual proof of Theorem 5 to employing the gradient estimate
G◦ instead of the gradient g◦. From ∇2f(z) � ωI, it follows that

f (z◦ − tG◦) ≤ f (z◦) − t g◦ TG◦ +
ω

2
t2G◦ TG◦

holds for any t ∈ IR. Considering expectations in both sides, we get

E [f (z◦ − tG◦)] ≤ f (z◦) − t ‖g◦‖2 + ω
2 t

2 E
(
‖G◦‖2

)
≤ f (z◦) − t ‖g◦‖2 + ω

2 t
2 (σ + 1) ‖g◦‖2

according to (28). Let us consider the respective minima in t separately of the two sides. The right-hand
side is a quadratic expression, yielding minimum at t = 1

ω(σ+1) . Inequality is inherited to minima, hence

min
t

E [f (z◦ − tG◦)] ≤ f (z◦) − 1

2ω(σ + 1)
‖g◦‖2 . (30)
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For the left-hand side, we obviously have

E
[

min
t

f (z◦ − tG◦)
]
≤ min

t
E [f (z◦ − tG◦)] . (31)

(This is analogous to the basic inequality comparing the wait-and-see and the here-and-now approaches for
classic two-stage stochastic programing problems.)

Let z′ denote the minimizer of the line search in the left-hand side of (31), i.e., f (z′) = mint f (z◦ − tG◦).
(Of course z′ is a random vector since it depends on G◦.) Substituting this in (31) and comparing with (30),
we get

E [f (z′)] ≤ f (z◦) − 1

2ω(σ + 1)
‖g◦‖2 .

Subtracting F from both sides results

E [f (z′)]−F ≤ f (z◦)−F − 1

2ω(σ + 1)
‖g◦‖2 . (32)

Coming to the lower bound, a well-known consequence of αI � ∇2f(z) is

‖g◦‖2 ≥ 2α (f (z◦) −F)

(see the classic proof of Theorem 5). Combining this with (32), we get

E [f (z′)]−F ≤ f (z◦)−F − α

ω(σ + 1)
(f (z◦) −F) =

(
1− α

ω(σ + 1)

)
(f (z◦) −F) . (33)

As we have assumed that z◦ is a given (not random) vector, the right-hand side of (33) is deterministic, and
the expectation in the left-hand side is considered according to the distribution of G◦.

Let us now examine the (l+ 1)th line search ( for 1 ≤ l ≤ j − 1 ) where the starting point is z◦ = zl and
the minimizer is z′ = zl+1. Of course (33) holds with these objects also, but now both sides are random
variables, depending on the vectors G0, . . . ,Gl−1. (The expectation in the left-hand side is a conditional
expectation.) Let us consider the respective expectations of the two sides, according to the joint distribution
of G0, . . . ,Gl−1. As the random gradient vectors were generated independently, we get

E
[
f
(
zl+1

)]
−F ≤

(
1− α

ω(σ + 1)

)(
E
[
f
(
zl
)]
−F

)
, (34)

where the left-hand expectation is now taken according to the joint distribution of G0, . . . ,Gl. – This
technique of proof is well-known in the context of stochastic gradient schemes.

Finally, (29) follows from the iterative application of (34). �

Corollary 12 Let a tolerance β (0 < β � 1) and a probability p (0 < p � 1) be given. A finite (and
moderate) number of steps with the above randomized steepest descent method results a vector ẑ such that

P
(
ρ (ẑ ) ≥ (1− β)R

)
≥ 1− p.

I.e., with a high probability, ẑ is a fairly good improving vector in the column generation scheme.
Proof. Substituting f(z) = −ρ(z) and z0 = z in (29) and taking into account (14), we get

E
[
ρ
(
zj
)]
≥
(
1− %j

)
R

with % = 1 − α
ω(σ+1) . The gap R is obviously non-negative. In case R = 0, the starting iterate z0 = z of

the steepest descent method was already optimal, due to (14). In what follows we assume R > 0. A trivial
transformation results

E

[
1−

ρ
(
zj
)

R

]
≤ %j .
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By Markov’s inequality, we get

P

(
1−

ρ
(
zj
)

R
≥ β

)
≤ %j

β
,

and a trivial transformation yields

P
(
ρ
(
zj
)
≤ (1− β)R

)
≤ 1

β
%j .

Hence

P
(
ρ
(
zj
)
> (1− β)R

)
≥ 1− 1

β
%j .

Selecting j such that %j ≤ βp yields an appropriate ẑ = zj . �

Gradients of the function −ρ(z) have the form ∇φ(z) − u. As the procedure progresses, the difference
∇φ(ẑ)− u gets small. To satisfy the requirement (27) on variance, better and better estimates are needed.
We can control accuracy like in the deterministic column generation method of Section 3.

Remark 13 If we have good estimates for α and ω in Assumption 1, then R can be estimated on the basis
of Corollary 12. Otherwise Corollary 12 is just a theoretical justification for limiting the numbers of the line
searches in each steepest ascent procedure.

When the column generation scheme stops, we need to check the magnitude of the current gap. It may
happen that only a statistical verification is possible, on the basis of Assumption 10.

A dual form of the above corollary is

Proposition 14 Let a tolerance β (0 < β � 1) and a probability p (0 < p� 1) be given. We can construct

a random linear function ˆ̀(u) such that

ˆ̀(u) ≤ φ?(u) holds for any u, and

P
(

ˆ̀(u) ≥ φ? (u)− βR
)
≥ 1− p.

The proof is the same as that of Proposition 9, but use Corollary 12 instead of Corollary 6.

6 Easily computable estimates of function values and gradients

For the partial derivatives of any multivariate probability distribution function we have the general formula

∂F (z1, . . . , zn)

∂zi
= F (z1, . . . , zi−1, zi+1, . . . , zn| zi)fi(zi) (35)

where F (z1, . . . , zn) is the probability distribution function of the random variables ξ1, . . . , ξn, F (z1, . . . ,
zi−1, zi+1, . . . , zn| zi) is the conditional probability distribution function of the random variables ξ1, . . . , ξi−1,
ξi+1, . . . , ξn, given that ξi = zi and fi(z) is the probability density function of the random variable ξi (see
Formula (6.6.22) on the page 203 of Prékopa’s book [19]). From Formula (35) it follows that if the multivariate
probability distribution at issue has conditional probability distributions of its own type then we can calculate
the multivariate probability distribution function values and its partial derivatives by the same procedure.
Such type of multivariate probability distributions are for example the multivariate normal, the multivariate
t-distribution and the Dirichlet distribution.

Therefore in this section we present a variance reduction Monte Carlo simulation procedure for the
estimation of multivariate probability distribution function values, only. The procedure was proposed in
Szántai’s thesis [23], and quoted in Sections 6.5 and 6.6 of Prékopa’s book [19].
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This procedure can be applied to any multivariate probability distribution function. The only condition
is that we have to be able to calculate the one- and the two-dimensional marginal probability distribution
function values. Accuracy can easily be controlled by changing the sample size.

This way we can construct gradient estimates satisfying Assumption 10.

As we have
F (z1, . . . , zn) = P (ξ1 < z1, . . . , ξn < zn) = 1− P(A1 ∪ · · · ∪An),

where
Ai = {ξi ≥ zi} (i = 1, . . . , n),

we can apply bounding and simulation results for the probability of union of events.

6.1 Crude Monte Carlo simulation

If µ denotes the number of those events which occur out of the events A1, A2, . . . , An, then the random
variable

ν0 =

{
0, if µ = 0
1, if µ ≥ 1

obviously has expected value P = P(A1 ∪A2 ∪ · · · ∪An).

6.2 Monte Carlo simulation of the differences between the true probability
value and its respective second order Boole–Bonferroni bounds

For the probability P = P(A1 ∪A2 ∪ · · · ∪An) we have the so called second order Boole–Bonferroni bounds
(see Prékopa’s book [19]).

The lower bound is

L2 =
2

k∗ + 1
S1 −

2

k∗(k∗ + 1)
S2,

where

k∗ = 1 +

⌊
2S2

S1

⌋
.

The upper bound is

U2 = S1 −
2

n
S2.

In both cases S1 and S2 are the first resp. second order binomial moments of the random variable µ which
can be expressed also as

S1 =

n∑
i=1

P(Ai), S2 =
∑

1≤i1<i2≤n

P(Ai ∩Aj).

Then by applying the Poincare (sieve) formula we get for the differences between the probability value
P and its second order Boole–Bonferroni bounds

P − L2 = S1 − S2 + ...+ (−1)n−1Sn −
2

k∗ + 1
S1 +

2

k∗(k∗ + 1)
S2,

and

P − U2 = −S2 + ...+ (−1)n−1Sn +
2

n
S2.

10



So the random variables

νL2
=


0, if µ ≤ 1

n∑
i=1

(−1)i−1
(
µ
i

)
− 2

k∗+1

(
µ
1

)
+ 2

k∗(k∗+1)

(
µ
2

)
= 1

k∗(k∗+1) (µ− k
∗)(µ− k∗ − 1), if µ ≥ 2

and

νU2
=


0, if µ ≤ 1

n∑
i=2

(−1)i−1
(
µ
i

)
− 2

n

(
µ
2

)
= 1

n (µ+n) (1− µ) , if µ ≥ 2

have expected values P −L2 and P −U2. This way the transformed random variables νL2 +L2 and νU2 +U2

also have expected value P .

6.3 Monte Carlo simulation of the difference between the true probability value
and its Hunter–Worsley bound

The Hunter–Worsley upper bound for the probability P = P(A1 ∪A2 ∪ · · · ∪An) is defined as (see Prékopa’s
book [19]):

UHW = S1 −
∑

(i,j)∈T∗
P(Ai ∩Aj) ≥ P ,

where T ∗ is the maximum weight spanning tree in the complete graph with nodes {1, . . . , n} and edges
{{i, j}, 1 ≤ i, j ≤ n} and to node i the probability P(Ai) and to edge {i, j} the probability P(Ai ∩ Aj) is
assigned.

Then by applying the Poincare formula we get for the difference between the probability value P and its
Hunter–Worsley upper bound

P − UHW = −S2 + S3 − ...+ (−1)n−1Sn +
∑

(i,j)∈T∗
P(Ai ∩Aj).

If λ denotes the number of those Ai ∩Aj , (i, j) ∈ T ∗ events which occur in a random trial, then the random
variable

νHW =


0, if µ ≤ 1

n∑
i=2

(−1)i−1
(
µ
i

)
+ λ = 1− µ+ λ, if µ ≥ 2

has expected value P −UHW and so the transformed random variable νHW +UHW also has expected value
P .

6.4 Determination of the final estimation with minimal variance

Let us chose the random variables ν0, νHW + UHW and νL2
+ L2 and denote P̂ 0, P̂ 1, P̂ 2 the three different

estimations based on these. All of these are unbiased estimations of the probability value P . Let us estimate
the empirical covariances of these estimations in a simulation procedure:

Ĉ =

 ĉ00 ĉ01 ĉ02
ĉ01 ĉ11 ĉ12
ĉ02 ĉ12 ĉ22


If we introduce the new estimation

P̂ = w0P̂ 0 + w1P̂ 1 + w2P̂ 2

11



where w0 + w1 + w2 = 1, then it will be also an unbiased estimation of the probability value P . As P̂
has variance wT Ĉw, where wT = (w0, w1, w2), therefore the coefficients w0, w1, w2 resulting the minimal
variance estimation can be determined by the solution of the nonlinear programming problem:

min
w0+w1+w2=1

wT Ĉw.

As the gradient of wT Ĉw equals to 2wT Ĉ it is easy to see that the unknown values of w1, w2, w3, λ can
be determined by the solution of the following linear equation system:

ĉ00w0 + ĉ01w1 + ĉ02w2 −λ = 0,
ĉ01w0 + ĉ11w1 + ĉ12w2 −λ = 0,
ĉ02w0 + ĉ12w1 + ĉ22w2 −λ = 0,
w0 + w1 + w2 = 1,

(36)

representing the Karush-Kuhn-Tucker necessary condition.

6.5 Further Monte Carlo simulation algorithms

For the case of multivariate normal probability distribution there are other known Monte Carlo simulation
algorithms, see Deák [3], [4] and Ambartzumian et al [1]. Gassmann [10] combined Szántai’s general algorithm
and Deák’s algorithm into a hybrid algorithm. The efficiency of this algorithm was explored by Deák,
Gassmann and Szántai in [5].

7 Handling a difficult constraint

We are going to work out an approximation scheme for the solution of the convex constrained problem (2).
This scheme will consist of the solution of a sequence of problems of the form (1).

Let us consider the linear constraint set Ax ≤ b of Problem (1). The last constraint of this set is arx ≤ br,
where ar denotes the rth row of A, and br denotes the rth component of b. Assume that this last constraint
is a cost constraint, and let cT = ar denote the cost vector. We are going to consider a parametric form of
the cost constraint, namely, cTx ≤ d, where d ∈ IR is a parameter.

Let Ă denote the matrix obtained by omitting the rth row in A, and let b̆ denote the vector obtained by
omitting the rth component in b. Using these objects, let us consider the problem

min φ(Tx) subject to Ăx ≤ b̆, cTx ≤ d, (37)

with the parameter d ∈ IR. This parametric form of the unconstrained problem will be denoted by (1: br = d).
Let χ(d) denote the optimal objective value of Problem (37), as a function of the parameter d. This is

obviously a monotone decreasing convex function. Let I ⊂ IR denote the domain over which the function is
finite. We have either I = IR or I = [ d,+∞) with some d ∈ IR. Using the notation of the unconstrained
problem, we can say that χ(d) is the optimum of (1: br = d) for d ∈ I.

Coming to the constrained problem (2), we assume that the right-hand value π has been set by an expert,
on the basis of preliminary experimental information. We may assume π ∈ χ(I). Let d? ∈ I be a solution
of the equation χ(d) = π, and let l?(d) denote a linear support function to χ(d) at d?. Every decision maker
would set a right-hand side π that satisfies

Assumption 15 The support function l?(d) has a significant negative slope, i.e., l?′ � 0.

It follows that the optimal objective value of (2) is d?.

We are going to find a near-optimal d̂ ∈ I using an approximate version of Newton’s method. – The idea
of regulating tolerances in such a procedure occurs in the discussion of the Constrained Newton Method in
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[14]. Based on the convergence proof of the Constrained Newton Method, a simple convergence proof of
Newton’s method was reconstructed in [8]. We are going to adapt the latter to the present case.

A sequence of unconstrained problems will be solved with increasing accuracy. In course of this procedure,
we are going to build a single model φk(z) of the nonlinear objective φ(z). (I.e., k is ever increasing.) Given
an iterate d◦ ∈ I, we can estimate χ(d◦) by solving the current model problem (7: br = d◦). Using the
notation of the dual approach, let the optimum of the current model problem be −Ψ = −φ?k(u) − µ(u).
According to (25), we have −Ψ ≥ χ(d◦) ≥ −Ψ − R. If we can compute gradients of φ(z) then we can
construct an upper bound of the gap R, as mentioned in Remark 7. If we work with gradient estimates
then only a statistical estimation of final gap is possible, as mentioned in Remark 13. First we describe the
approximation scheme for the former case. In order to handle gradient estimates, we work out a randomized
version of the approximation scheme in Section 7.2.

7.1 A deterministic approximation scheme

In this section we consider the case when upper bounds can be constructed for the gap in the unconstrained
problem. Let d0, d1 ∈ I, d0 < d1 < d? be the starting iterates. – The sequence of the iterates will be strictly
monotone increasing, and converging to d? from below.

Near-optimality condition

Given a tolerance ε (π � ε > 0), let d̂ ∈ I be such that

d̂ ≤ d? and χ(d̂ ) ≤ π + ε. (38)

Let x̂ be an optimal solution of (37: d = d̂ ). Then x̂ is an ε-feasible solution of (2) with objective value d̂.

Exact feasible solutions of (2) have objective values not less than d? ≥ d̂.

Evaluation of χ(dj)

Given iterate dj ∈ I, dj ≤ d?, we are going to include the unknown value χ(dj) in a known interval whose
length is comparable to χ(dj)− π. Namely, we are going to find an upper bound χj such that

χj ≥ χ(dj) ≥ χj − δ (χj − π), (39)

where δ (0 < δ � 1
2 ) is a fixed tolerance.

Such χj is found by approximately solving the problem (37: d = dj) ≡ (1: br = dj). Let us use the
column generation / cutting plane schemes described in previous sections. The optimum of the current model
problem is always an upper bound for χ(dj). Let us stop the column generation / cutting plane procedure
when either of the following condition is satisfied:

(i) χj − π ≤ ε, or

(ii) Rj ≤ δ (χj − π),
(40)

where χj will be an upper approximation of χ(dj), and Rj will measure the quality of this approximation.
Namely, let χj be the optimum of the current model problem (7: br = dj). We have

χj ≥ χ(dj). (41)

Let moreover Rj be an upper estimate of the gap in the current model, i.e., of R. We have

χj − χ(dj) ≤ Rj . (42)

The tools described in Sections 3 and 4 allow us, in principle, to decrease Rj below any tolerance.

If (i) occurs then, taking into account (41), d̂ := dj satisfies the near-optimality condition (38).
If (ii) occurs then, taking into account (41)-(42), χj satisfies (39), yielding a usable approximation of

χ(dj).
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Finding successive iterates

Given j ≥ 1, assume that we have evaluated χ(dj−1) and χ(dj), as described in the previous section. We
are going to find dj+1. In order to do this, let us first consider the linear function lj(d) satisfying

lj(dj−1) := χj−1 ≥ χ(dj−1) and lj(dj) := χj − δ (χj − π) ≤ χ(dj), (43)

where the inequalities follow from (39). Due to the convexity of χ(d) and to Assumption 15, the above linear
function obviously has a negative slope l′j ≤ l?

′ � 0. Moreover lj(d) ≤ χ(d) holds for dj ≤ d.
The next iterate dj+1 will be the point where lj(dj+1) = π. Of course dj < dj+1 ≤ d? follows from the

observations above.

Convergence

Let the iterates d0, d1, . . . , ds and the linear functions l1(d), . . . , ls(d) be as defined above. We assume that
s > 1, and the procedure did not stop before step (s+ 1). Then we have

χj − π > ε (j = 0, 1, . . . , s). (44)

To simplify notation, let us introduce Lj(d) = lj(d)− π (j = 1, . . . , s). We transform (43) into

Lj(dj−1) = χj−1 − π and Lj(dj) = (1− δ)(χj − π) (j = 1, . . . , s), (45)

positivity of function values following from (44). Moreover, the derivatives satisfy

L′j = l′j ≤ l?′ � 0 (j = 1, . . . , s) (46)

due to the observations in the previous section.

Theorem 16 We have
γ(s−1)K L1(d1) ≥ Ls(ds), (47)

where 0 < γ � 1 and K is a positive number of moderate magnitude.

Proof. The following statements hold for j = 1, . . . , s− 1. From (45), we get

Lj+1(dj)

Lj(dj)
=

χj − π
(1− δ)(χj − π)

=
1

1− δ
. (48)

By definition, we have
Lj(dj) + (dj+1 − dj)L′j = Lj(dj+1) = 0.

It follows that dj+1 − dj =
Lj(dj)
|L′j |

. Using this, we get

Lj+1(dj) = Lj+1(dj+1) + (dj − dj+1)L′j+1 = Lj+1(dj+1) +
Lj(dj)

|L′j |
|L′j+1|.

Hence
Lj+1(dj)

Lj(dj)
=

Lj+1(dj+1)

Lj(dj)
+
|L′j+1|
|L′j |

. (49)

From (48), we have

1

1− δ
=

Lj+1(dj+1)

Lj(dj)
+
|L′j+1|
|L′j |

≥ 2

√
Lj+1(dj+1) |L′j+1|

Lj(dj) |L′j |
.
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(This is the well-known inequality between means.) It follows that(
1

2(1− δ)

)2

Lj(dj) |L′j | ≥ Lj+1(dj+1) |L′j+1|.

By induction, we get (
1

2(1− δ)

)2(s−1)

L1(d1) |L′1| ≥ Ls(ds) |L′s|. (50)

Dviding both sides by |L′s|, and substituting

γ :=

(
1

2(1− δ)

)2

, K :=
|L′1|
|l?′|

≥ |L
′
1|
|L′s|

,

we obtain (47). Here γ � 1 follows from the setting of the constant 0 < δ � 1
2 . K has a moderate magnitude

according to (46), eventually due to Assumption 15.

7.2 A randomized version of the approximation scheme

In this section we consider the case when gradient estimates are used in solving the unconstrained problems.
Only a statistical estimation of the gap R is possible, on the basis of Assumption 10. Let Rj denote our
upper estimate, in accordance with the notation used for the deterministic scheme. We may underestimate
the gap, meaning that (42) does not hold; and consequently the right-hand inequality of (39) may not hold.
The probability of such an occurrence can be kept low. In such exceptional cases, dj+1 > d? may occur.

Hence we need to check χ(dj+1) in the new iterate. If we can verify χ(dj+1) > π then we can proceed as
in the deterministic scheme. If we can verify χ(dj+1) < π then we can just step back to the previous iterate
dj and re-estimate the gap, possibly with a higher reliability. (The process may involve tightening of the
upper bound χj .)

It may happen that neither χ(dj+1) > π nor χ(dj+1) < π can be verified because χ(dj+1) is near to π.
The latter fact can also be verified, and in this case dj+1 can be considered a near-optimal solution to (2),
under mild additional assumptions on χ(.) and π.

8 Conclusion and discussion

In this paper we present the column-generation approach of [7] from a dual viewpoint, as a cutting-plane
method. Moreover we propose a randomized version of this method. There is an important contrast between
direct cutting-plane methods and the present approach. Direct cutting-plane methods for probabilistic
functions are difficult to implement due to noise in gradient computation. Even a fairly accurate gradient
may result a cut cutting into the epigraph of the objective function (especially in regions farther away from
the current iterate). One either needs sophisticated tolerance handling to avoid cutting into the epigraph –
see, e.g., [24], [16], [2] –, or else one needs a sophisticated convex optimization method that can handle cuts
cutting into the epigraph – see [26]. (Yet another alternative, developed for a different type of problem, is
perpetual adjustment of existing cuts to information revealed in course of the process; see [12].)

The present models are invulnerable to gradient computation errors. Noisy gradient estimates may yield
iterates that do not improve much on our current models. But we retain a true inner approximation of the
primal objective – or a true outer approximation of the dual objective –, provided objective values at new
iterates are evaluated with appropriate accuracy. This feature facilitates the use of gradient estimates. Our
randomized method bears a resemblance to the stochastic approximation family that goes back to [21] (see
[17], [13] for recent forms).

The use of gradient estimates may substantially decrease total computational effort, even though a
certain (moderate) accuracy is demanded in objective values. Computing a single component of a gradient
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vector will involve an effort comparable to that of computing an objective value, e.g., in case of probability
maximization under multivariate normal distribution of the random parameters.

The variance reduction Monte Carlo simulation procedure described in Section 6 was successfully applied
in the solution of jointly probabilistic constrained stochastic programming problems, see [24]. The situation
was similar to the present one; as the procedure progressed, higher and higher accuracy became necessary.

The approximation scheme of Section 7 consist of the solution of a sequence of problems of the form (1),
i.e., minimization of a convex objective over polyhedra. Suppose the problems in this sequence are solved
by the approximation approach described in previous sections. Then can we build a single model of the
nonlinear objective φ(z). I.e., the model built in course of the solution of problem Ps can be used as a
starting model for the solution of the successive problem Ps+1.

Future work

Our motivation for dealing with a difficult function was a probabilistic function F (z) = P(ξ < z), where
the random vector ξ has a logconcave distribution. The proposed approach can be extended to two-sided
probabilities of the type

P(z < ξ < z), (51)

where z and z are linear functions of the decision variables, i.e., we have z = Tx+ t and z = Tx+ t with
appropriate matrices T , T and vectors t, t. The Monte Carlo simulation procedures described in Section 6
can be applied by using

Ai = {ξi ≤ zi} ∪ {zi ≤ ξi} (i = 1, . . . , n).

Van Ackooij, Henrion, Möller and Zorgati [25] developed gradient formulas for two-sided probabilities (51)
in case of normal distributions. Analogous formulas can be developed for other multivariate probability
distributions.
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[6] D. Dentcheva, A. Prékopa, and A. Ruszczyński. Concavity and efficient points of discrete distributions
in probabilistic programming. Mathematical Programming, 89:55–77, 2000.

16
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