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Abstract

A multiplier bootstrap procedure for construction of likelihood-based

confidence sets is considered for finite samples and a possible model

misspecification. Theoretical results justify the bootstrap consistency

for a small or moderate sample size and allow to control the impact

of the parameter dimension p: the bootstrap approximation works if

p3/n is small. The main result about bootstrap consistency continues

to apply even if the underlying parametric model is misspecified under

the so called Small Modeling Bias condition. In the case when the true

model deviates significantly from the considered parametric family, the

bootstrap procedure is still applicable but it becomes a bit conservative:

the size of the constructed confidence sets is increased by the modeling

bias. We illustrate the results with numerical examples for misspecified

constant and logistic regressions.
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2 Bootstrap confidence sets under model misspecification

1 Introduction

Since introducing in 1979 by Efron (1979) the bootstrap procedure became one of the

most powerful and common tools in statistical confidence estimation and hypothesis test-

ing. Many versions and extensions of the original bootstrap method have been proposed

in the literature; see e.g. Wu (1986); Newton and Raftery (1994); Barbe and Bertail

(1995); Horowitz (2001); Chatterjee and Bose (2005); Ma and Kosorok (2005); Chen and

Pouzo (2009); Lavergne and Patilea (2013); Chen and Pouzo (2014) among many oth-

ers. This paper focuses on the multiplier bootstrap procedure which attracted a lot of

attention last time due to its nice theoretical properties and numerical performance. We

mention the papers Chatterjee and Bose (2005), Arlot et al. (2010) and Chernozhukov

et al. (2013) for the most advanced recent results. Chatterjee and Bose (2005) showed

some results on asymptotic bootstrap consistency in a very general framework: for esti-

mators obtained by solving estimating equations. Chernozhukov et al. (2013) presented

a number of non-asymptotic results on bootstrap validity with applications to special

problems like testing many moment restrictions or parameter choice for a LASSO proce-

dure. Arlot et al. (2010) constructed a non-asymptotical confidence bound in `s norm

( s ∈ [1,∞] ) for the mean of a sample of high dimensional i.i.d. Gaussian vectors (or

with a symmetric and bounded distribution), using the generalized weighted bootstrap

for resampling of the quantiles.

This paper makes a further step in studying the multiplier bootstrap method in the

problem of confidence estimation by a quasi maximum likelihood method. For a rather

general parametric model, we consider likelihood-based confidence sets with the radius

determined by a multiplier bootstrap. The aim of the study is to check the validity

of the bootstrap procedure in situations with a large parameter dimension, a limited

sample size, and a possible misspecification of the parametric assumption. The main

result of the paper explicitly describes the error term of the bootstrap approximation.

This particularly allows to track the impact of the parameter dimension p and of the

sample size n in the quality of the bootstrap procedure. As one of the corollaries,

we show bootstrap validity under the constraint “ p3/n -small”. Chatterjee and Bose

(2005) stated results under the condition “ p/n -small” but their results only apply to

low dimensional projections of the MLE vector. In the likelihood based approach, the

construction involves the Euclidean norm of the MLE which leads to completely different

tools and results. Chernozhukov et al. (2013) allowed a huge parameter dimension with

“ log(p)/n small” but they essentially work with a family of univariate tests which again

differs essentially from the maximum likelihood approach.

Another interesting and important issue is the impact of the model misspecification
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on the accuracy of bootstrap approximation. A surprising corollary of our error bounds

is that the bootstrap confidence set can be used even if the underlying parametric model

is slightly misspecified under the so called small modeling bias (SmB) condition. If the

modeling bias becomes large, the bootstrap confidence sets are still applicable, but they

become more and more conservative. (SmB) condition is given in Section 4 and it is

consistent with classical bias-variance relation in nonparametric estimation.

Our theoretical study uses the square-root Wilks (sq-Wilks) expansion from Spokoiny

(2012a), Spokoiny (2013) which approximates the square root likelihood ratio statistic

by the norm of the standardized score vector. Further we extend the sq-Wilks expansion

to the bootstrap log-likelihood and adopt the Gaussian approximation theory (GAR) to

the special case when the distribution of the Euclidean norm of a non-Gaussian vector is

approximated by the distribution of the norm of a Gaussian one with the same first and

second moments. The Gaussian comparison technique based on the Pinsker inequality

completes the study and allows to bridge the real unknown coverage probability and the

conditional bootstrap coverage probability under (SmB) condition. In the case of a

large modeling bias we state a one-sided bound: the bootstrap quantiles are uniformly

larger than the real ones. This effect is nicely confirmed by our simulation study.

Now consider the problem and the approach in more detail. Let the data sample Y =

(Y1, . . . , Yn)> consist of independent random observations and belong to the probability

space (Ω,F , IP ) . We do not assume that the observations Yi are identically distributed,

moreover, no specific parametric structure of IP is being required. In order to explain the

idea of the approach we start here with a parametric case, however the assumption (1.1)

below is not required for the results. Let IP belong to some known regular parametric

family {IPθ}
def
= {IPθ � µ0,θ ∈ Θ ⊂ IRp} . In this case the true parameter θ∗ ∈ Θ is

such that

IP ≡ IPθ∗ ∈ {IPθ}, (1.1)

and the initial problem of finding the properties of unknown distribution IP is reduced to

the equivalent problem for the finite-dimensional parameter θ∗ . The parametric family

{IPθ} induces the log-likelihood process L(θ) of the sample Y :

L(θ) = L(Y ,θ)
def
= log

{
dIPθ
dµ0

(Y )

}
and the maximum likelihood estimate (MLE) of θ∗ :

θ̃
def
= argmaxθ∈Θ L(θ). (1.2)

The asymptotic Wilks phenomenon Wilks (1938) states that for the case of i.i.d. obser-

vations with the sample size tending to the infinity the likelihood ratio statistic converges
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in distribution to χ2
p/2 , where p is the parameter dimension:

2
{
L(θ̃)− L(θ∗)

} w−→ χ2
p, n→∞.

Define the likelihood-based confidence set as

E(z)
def
=
{
θ : L(θ̃)− L(θ) ≤ z2/2

}
, (1.3)

then the Wilks phenomenon implies

IP
{
θ∗ ∈ E(zα, χ2

p
)
}
→ α, n→∞,

where z2α, χ2
p

is the (1−α) -quantile for the χ2
p distribution. This result is very important

and useful under the parametric assumption, i.e. when (1.1) holds. In this case the limit

distribution of the likelihood ratio is independent of the model parameters or in other

words it is pivotal. By this result a sufficiently large sample size allows to construct the

confidence sets for θ∗ with a given coverage probability. However, a possibly low speed

of convergence of the likelihood ratio statistic makes the asymptotic Wilks result hardly

applicable to the case of small or moderate samples. Moreover, the asymptotical pivotal-

ity breaks down if the parametric assumption (1.1) does not hold (see Huber (1967)),

and, therefore, the whole approach may be misleading if the model is considerably mis-

specified. If the assumption (1.1) does not hold, then the “true” parameter is defined by

the projection of the true measure IP on the parametric family {IPθ} :

θ∗
def
= argmaxθ∈Θ IEL(θ). (1.4)

The recent results by Spokoiny (2012a), Spokoiny (2013) provide a non-asymptotic ver-

sion of square-root Wilks phenomenon for the case of misspecified model. It holds with

an exponentially high probability∣∣∣∣√2
{
L(θ̃)− L(θ∗)

}
− ‖ξ‖

∣∣∣∣ ≤ ∆W '
p√
n
, (1.5)

where ξ
def
= D−10 ∇θL(θ∗) , D2

0
def
= −∇2

θIEL(θ∗) . The bound is non-asymptotical, the

approximation error term ∆W has an explicit form (the precise statement is given in

Theorem A.2, Section A.1, and it depends on the parameter dimension p , sample size

n , and the probability of the random set on which the result holds.

Due to this bound, the original problem of finding a quantile of the LR test statistic

L(θ̃) − L(θ∗) is reduced to a similar question for the approximating quantity ‖ξ‖ .

The difficulty here is that in general ‖ξ‖ is non-pivotal, it depends on the unknown

distribution IP and the target parameter θ∗ . Another result by Spokoiny (2012b) gives
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the following non-asymptotical deviation bound for ‖ξ‖2 : for some explicit constant

C > 0 it holds for x ≥ √p

IP
(
‖ξ‖2 ≥ IE‖ξ‖2 + Cx

)
≤ 2e−x

(the precise statement is given in Theorem A.3. This is a non-asymptotic deviation

bound, sharp in leading approximating terms, however, the critical values yielded by it

are too conservative for a valuable confidence set.

In the present work we study the multiplier bootstrap (or weighted bootstrap) pro-

cedure for estimation of the quantiles of the likelihood ratio statistic. The idea of the

procedure is to mimic a distribution of the likelihood ratio statistic by reweighing its

summands with random multipliers independent of the data:

L
ab
(θ)

def
=
∑n

i=1
log

{
dIPθ
dµ0

(Yi)

}
ui.

Here the probability distribution is taken conditionally on the data Y , which is denoted

by the sign
ab
. The random weights u1, . . . , un are i.i.d. with continuos c.d.f., indepen-

dent of Y and it holds for them: IE(ui) = 1 , Var(ui) = 1 , IE exp(ui) <∞ . Therefore,

the multiplier bootstrap induces the probability space conditional on the data Y . A

simple but important observation is that IE
ab
L
ab
(θ) ≡ IE

[
L
ab
(θ)
∣∣Y ] = L(θ) , and hence,

argmaxθ IE
ab
L
ab
(θ) = argmaxθ L(θ) = θ̃.

This means that the target parameter in the bootstrap world is precisely known and it

coincides with the maximum likelihood estimator θ̃ conditioned on Y , therefore, the

bootstrap likelihood ratio statistic L
ab
(θ̃

ab
) − L

ab
(θ̃)

def
= supθ∈Θ L

ab
(θ) − L

ab
(θ̃) is fully

computable and leads to a simple computational procedure for the approximation of the

distribution of L(θ̃)− L(θ∗) .

The goal of the present study is to show in a non-asymptotic way the consistency of the

described multiplier bootstrap procedure and to obtain an explicit bound on the error of

coverage probability. In other words, we are interested in non-asymptotic approximation

of the distribution of
{
L(θ̃)−L(θ∗)

}1/2
with the distribution of

{
L
ab
(θ̃

ab
)−L ab

(θ̃)
}1/2

.

So far there exist very few theoretical non-asymptotic results about bootstrap validity.

Important contributions are given in the works by Chernozhukov et al. (2013) and Arlot

et al. (2010). Finite sample methods for study of the bootstrap validity are essentially dif-

ferent from the asymptotic ones which are mainly based on weak convergence arguments.
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The main steps of our theoretical study are illustrated by the following scheme:

sq-Wilks
theorem

Gauss.
approx.

Y -world:

√
2L(θ̃)− 2L(θ∗) ≈ ‖ξ‖

w
≈ ‖ξ‖

≈ w Gauss.
compar. (1.6)

Bootstrap
world:

√
2L

ab
(θ̃

ab
)− 2L

ab
(θ̃) ≈ ‖ξ

ab
‖

w
≈ ‖ξ

ab
‖,

where ξ
ab def

= D−10 ∇θ
[
L
ab
(θ∗)− IE

{
L
ab
(θ∗)

∣∣Y }] ; compare with the definition (1.5) of

the vector ξ in the Y -world. The vectors ξ and ξ
ab

are zero mean Gaussian and

they mimic the covariance structure of the vectors ξ and ξ
ab
: ξ ∼ N(0,Var ξ) , ξ

ab
∼

N
(
0,Var{ξ ab ∣∣Y }) .

The upper line of the scheme corresponds to the Y -world, the lower line - to the

bootstrap world. In both lines we apply two steps for approximating the corresponding

likelihood ratio statistics. The first approximating step is the non-asymptotic square-root

Wilks theorem: the bound (1.5) for the Y case and a similar statement for the bootstrap

case, which is obtained in Theorem A.4, Section A.2.

The next step is called Gaussian approximation (GAR) which means that the dis-

tribution of the Euclidean norm ‖ξ‖ of a centered random vector ξ is close to the

distribution of the similar norm of a Gaussian vector ‖ξ‖ with the same covariance ma-

trix as ξ . A similar statement holds for the vector ξ
ab
. Thus, the initial problem of

comparing the distributions of the likelihood ratio statistics is reduced to the comparison

of the distributions of the Euclidean norms of two centered normal vectors ξ and ξ
ab

(Gaussian comparison). This last step links their distributions and encloses the approx-

imating scheme. The Gaussian comparison step is done by computing the Kullback-

Leibler divergence between two multivariate Gaussian distributions (i.e. by comparison

of the covariance matrices of ∇θL(θ∗) and ∇θL
ab
(θ∗) ) and applying Pinsker’s inequality

(Lemma 5.7). At this point we need to introduce the “small modeling bias” condition

(SmB) from Section 4.2. It is formulated in terms of the following nonnegative-definite

p× p symmetric matrices:

H2
0

def
=
∑n

i=1
IE
[
∇θ`i(θ∗)∇θ`i(θ∗)>

]
, (1.7)

B2
0

def
=
∑n

i=1
IE [∇θ`i(θ∗)] IE [∇θ`i(θ∗)]> , (1.8)

so that Var {∇θL(θ∗)} = H2
0 − B2

0 . If the parametric assumption (1.1) is true or if

the data Y are i.i.d., then it holds IE [∇θ`i(θ∗)] ≡ 0 and B2
0 = 0 . The (SmB)

condition roughly means that the bias term B2
0 is small relative to H2

0 . Below we show

that the Kullback-Leibler distance between the distributions of two Gaussian vectors
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ξ and ξ
ab

is bounded by p‖H−10 B2
0H
−1
0 ‖2/2 . The (SmB) condition precisely means

that this quantity is small. We consider two situations: when the condition (SmB)

is fulfilled and when it is not. Theorem 2.1 in Section 2 deals with the first case, it

provides the cumulative error term for the coverage probability of the confidence set

(1.3), taken at the (1− α) -quantile computed with the multiplier bootstrap procedure.

The proof of this result (see Section A.3) summarizes the steps of scheme (1.6). The

biggest term in the full error is induced by Gaussian approximation and requires the

ratio p3/n to be small. In the case of a “large modelling bias” i.e., when (SmB) does

not hold, the multiplier bootstrap procedure continues to apply. It turns out that the

bootstrap quantile increases with the growing modelling bias, hence, the confidence set

based on it remains valid, however, it may become conservative. This result is given in

Theorem 2.4 of Section 2. The problems of Gaussian approximation and comparison for

the Euclidean norm are considered in Sections 5.2 and 5.4 in general terms independently

of the statistical setting of the paper, and might be interesting by themselves. Section

5.4 presents also an anti-concentration inequality for the Euclidean norm of a Gaussian

vector. This inequality shows how the deviation probability changes with a threshold.

The general results on GAR are summarized in Theorem 5.1 and restated in Proposition

A.9 for the setting of scheme (1.6). These results are also non-asymptotic with explicit

errors and apply under the condition that the ratio p3/n to be small.

In Theorem 2.3 we consider the case of a scalar parameter p = 1 with an improved

error term. Furthermore in Section 2.1 we propose a modified version of a quantile

function based on a smoothed probability distribution. In this case the obtained error

term is also better, than in the general result.

Notations: ‖ · ‖ denotes Euclidean norm for vectors and spectral norm for matrices;

C is a generic constant. The value x > 0 describes our tolerance level: all the results

will be valid on a random set of probability ( 1 − Ce−x ) for an explicit constant C .

Everywhere we give explicit error bounds and show how they depend on p and n for

the case of the i.i.d. observations Y1, . . . , Yn and x ≤ C log n . More details on it are

given in Section 4.3.

The paper is organized as follows: the main results are stated in Section 2, their

proofs are given in Sections A.3, A.4 and A.5; Section 3 contains numerical results for

misspecified constant and logistic regressions. In Section 4 we give all the necessary

conditions and provide an information about dependency of the involved terms on n and

p . Section 5 collects some useful statements on Gaussian approximation and Gaussian

comparison.
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2 Multiplier bootstrap procedure

Let `i(θ) denote the parametric log-density of the i -th observation:

`i(θ)
def
= log

{
dIPθ
dµ0

(Yi)

}
,

then L(θ) =
∑n

i=1 `i(θ). Consider i.i.d. scalar random variables ui independent of Y

with continuous c.d.f., IEui = 1 , Varui = 1 , IE exp(ui) < ∞ for all i = 1, . . . , n .

Multiply the summands of the likelihood function L(θ) with the new random variables:

L
ab
(θ)

def
=
∑n

i=1
`i(θ)ui,

then it holds IE
ab
L
ab
(θ) = L(θ) , where IE

ab
stands for the conditional expectation given

Y :

IE
ab
(·) def

= IE(·|Y ), IP
ab
(·) def

= IP (·|Y ).

Therefore, the quasi MLE for the Y -world is a target parameter for the bootstrap world:

argmaxθ∈Θ IE
ab
L
ab
(θ) = argmaxθ∈Θ L(θ) = θ̃.

The corresponding quasi MLE under the conditional measure IP
ab

is defined

θ̃
ab def

= argmaxθ∈Θ L
ab
(θ).

The likelihood ratio statistic in the bootstrap world is equal to L
ab
(θ̃

ab
) − L ab

(θ̃) , where

all the elements: the function L
ab
(θ) and the arguments θ̃

ab
, θ̃ are known and available

for computation.

Let 1− α ∈ (0, 1) be a fixed desirable confidence level of the set E(z) :

IP (θ∗ ∈ E(z)) ≥ 1− α. (2.1)

Here the parameter z ≥ 0 determines the size of the confidence set. Usually we are

interested in finding a set of the smallest possible diameter satisfying this property. This

leads to the problem of fixing the minimal possible value of z such that (2.1) is fulfilled.

Let zα denote the upper α -quantile of the square-root likelihood ratio statistic:

zα
def
= min

{
z ≥ 0: IP

(
L(θ̃)− L(θ∗) > z2/2

)
≤ α

}
. (2.2)

This means, that zα is exactly the value of our interest. Estimation of zα leads to recov-

ering of the distribution of L(θ̃) − L(θ∗) . The multiplier bootstrap procedure consists

of generating a large number of independent samples {u1, . . . , un} and computing from
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them the empirical distribution function of L
ab
(θ̃

ab
) − L ab

(θ̃) . By this procedure we can

estimate z
ab
α , the upper α -quantile of

√
2L

ab
(θ̃

ab
)− 2L

ab
(θ̃) :

z
ab
α

def
= min

{
z ≥ 0: IP

ab (
L
ab
(θ̃

ab
)− L

ab
(θ̃) > z2/2

)
= α

}
. (2.3)

Theorem 2.1 (Validity of the bootstrap under a small modeling bias). Let the conditions

of Section 4 be fulfilled. It holds with probability ≥ 1 − 12e−x for z
ab
α ≥ max{2,√p} +

C(p+ x)/
√
n : ∣∣∣IP (L(θ̃)− L(θ∗) > (z

ab
α)2/2

)
− α

∣∣∣ ≤ ∆full, (2.4)

where ∆full ≤ C{(p+ x)3/n}1/8 in the case 4.3. An explicit definition of the error term

∆full is given in the proof (see (A.26), (A.27) in Section A.3).

The term ∆full can be viewed as a sum of the error terms corresponding to each step

in the scheme (1.6). The largest error term equal to C{(p+x)3/n}1/8 is induced by GAR.

This error rate is not always optimal for GAR, e.g. in the case of p = 1 or for the i.i.d.

observations (see Remark 5.2). In Theorems 2.3 and 2.5 the rate is C{(p+ x)3/n}1/2 .

In view of definition (1.3) of the likelihood-based confidence set Theorem 2.1 implies

the following

Corollary 2.2 (Coverage probability error). Under the conditions of Theorem 2.1 it

holds:

|IP {θ∗ ∈ E (z
ab
α)} − (1− α)| ≤ ∆full.

Remark 2.1 (Critical dimension). The error term ∆full depends on the ratio p3/n .

The bootstrap validity can be only stated if this ratio is small. The obtained error bound

seems to be mainly of theoretical interest, because the condition “ (p3/n)1/8 is small”

may require a huge sample. However, it provides some qualitative information about the

bootstrap behavior as the parameter dimension grows. Our numerical results show that

the accuracy of bootstrap approximation is very reasonable in a variety of examples.

In the following theorem we consider the case of a scalar parameter p = 1 . The

obtained error rate is 1/
√
n , which is sharper, than 1/n1/8 . Instead of the GAR for the

Euclidean norm from Section 5 we use here Berry-Esseen theorem (see also Remark 5.2).

Theorem 2.3 (The case of p = 1 , using Berry-Esseen theorem). Let the conditions of

Section 4 be fulfilled. It holds with probability ≥ 1− 12e−x for z
ab
α ≥ 1 + C(1 + x)/

√
n :∣∣∣IP (L(θ̃)− L(θ∗) > (z

ab
α)2/2

)
− α

∣∣∣ ≤ ∆B.E., full, (2.5)

where ∆B.E., full ≤ C(1 + x)/
√
n in the case 4.3. An explicit definition of ∆B.E., full is

given in (A.28) in Section A.3.
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Remark 2.2 (Bootstrap validity and weak convergence). The standard way of proving

the bootstrap validity is based on weak convergence arguments; see e.g. Mammen (1992),

van ver Vaart and Wellner (1996), Janssen and Pauls (2003), Chatterjee and Bose (2005).

If the statistic L(θ̃)− L(θ∗) weakly converges to a χ2 -type distribution, one can state

an asymptotic version of the results (2.4), (2.5). Our way is based on a kind of non-

asymptotic Gaussian approximation and Gaussian comparison for random vectors and

allows to get explicit error terms.

Remark 2.3 (Use of Edgeworth expansion). The classical results on confidence sets

for the mean of population states the accuracy of order 1/n based on the second order

Edgeworth expansion Hall (1992). Unfortunately, if the considered parametric model can

be misspecified, even the leading term is affected by the modeling bias, and the use of

Edgeworth expansion cannot help in improving the bootstrap accuracy.

Remark 2.4 (Choice of the weights). In our construction, similarly to Chatterjee and

Bose (2005), we apply a general distribution of the bootstrap weights ui under some

moment conditions. One particularly can use Gaussian multipliers as suggested by Cher-

nozhukov et al. (2013). This leads to the exact Gaussian distribution of the vectors ξ
ab

and is helpful to avoid one step of Gaussian approximation for these vectors.

Now we discuss the impact of modeling bias, which comes from a possible misspeci-

fication of the parametric model. As explained by the approximating diagram (1.6), the

distance between the distributions of the likelihood ratio statistics can be characterized

via the distance between two multivariate normal distributions. To state the result let us

recall the definition of the full Fisher information matrix D2
0

def
= −∇2

θIEL(θ∗) . For the

matrices H2
0 and B2

0 , given in (1.7) and (1.8), it holds H2
0 > B2

0 ≥ 0 . If the parametric

assumption (1.1) is true or in the case of an i.i.d. sample Y , B2
0 = 0 . Under the

condition (SmB) ‖H−10 B2
0H
−1
0 ‖ enters linearly in the error term ∆full in Theorem 2.1.

The first statement in Theorem 2.4 below says that the effective coverage probability

of the confidence set based on the multiplier bootstrap is larger than the nominal coverage

probability up to the error term ∆b, full ≤ C{(p+x)3/n}1/8 . The inequalities in the second

part of Theorem 2.4 prove the conservativeness of the bootstrap quantiles: the quantity√
tr{D−10 H2

0D
−1
0 } −

√
tr{D−10 (H2

0 −B2
0)D−10 } ≥ 0 increases with the growing modeling

bias.

Theorem 2.4 (Performance of the bootstrap for a large modeling bias). Under the

conditions of Section 4 except for (SmB) it holds with probability ≥ 1 − 14e−x for

z, z
ab
α ≥ max{2,√p}+ C(p+ x)/

√
n

1. IP
(
L(θ̃)− L(θ∗) > z2/2

)
≤ IP

ab (
L
ab
(θ̃

ab
)− L

ab
(θ̃) > z2/2

)
+∆b, full.
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2. z
ab
α ≥ z(α+∆b, full)

+

√
tr{D−10 H2

0D
−1
0 } −

√
tr{D−10 (H2

0 −B2
0)D−10 } −∆qf,1,

z
ab
α ≤ z(α−∆b, full)

+

√
tr{D−10 H2

0D
−1
0 } −

√
tr{D−10 (H2

0 −B2
0)D−10 }+∆qf,2.

The term ∆b, full ≤ C{(p + x)3/n}1/8 is given in (A.30) in Section A.4. The positive

values ∆qf,1, ∆qf,2 are given in (A.34), (A.33) in Section A.4, they are bounded from

above with (a2 + a2B)(
√

8xp + 6x) for the constants a2, a2B > 0 from conditions (I) ,

(IB) .

Remark 2.5. There exists some literature on robust (and heteroscedasticity robust)

bootstrap procedures; see e.g. Mammen (1993), Aerts and Claeskens (2001), Kline and

Santos (2012). However, up to our knowledge there are no robust bootstrap procedures

for the likelihood ratio statistic, most of the results compare the distribution of the

estimator obtained from estimating equations, or Wald / score test statistics with their

bootstrap counterparts in the i.i.d. setup. In our context this would correspond to the

noise misspecification in the log-likelihood function and it is addressed automatically by

the multiplier bootstrap. Our notion of modeling bias includes the situation when the

target value θ∗ from (1.4) only defines a projection (the best parametric fit) of the data

distribution. In particularly, the quantities IE∇θ`i(θ∗) for different i do not necessarily

vanish yielding a significant modeling bias. Similar notion of misspecification is used

in the literature on Generalized Method of Moments; see e.g. Hall (2005). Chapter 5

therein considers the hypothesis testing problem with two kinds of misspecification: local

and non-local, which would correspond to our small and large modeling bias cases.

An interesting message of Theorem 2.4 is that the multiplier bootstrap procedure

ensures a prescribed coverage level for this target value θ∗ even without small modeling

bias restriction, however, in this case the method is somehow conservative because the

modeling bias is transferred into the additional variance in the bootstrap world. The

numerical experiments in Section 3 agree with this result.

2.1 Smoothed version of a quantile function

This section briefly discusses the use of a smoothed quantile function. The (1 − α) -

quantile of

√
2L(θ̃)− 2L(θ∗) is defined as

zα
def
= min

{
z ≥ 0: IP

(
L(θ̃)− L(θ∗) > z2/2

)
≤ α

}
= min

{
z ≥ 0: IE 1I

{
L(θ̃)− L(θ∗) > z2/2

}
≤ α

}
.
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Introduce for x ≥ 0 and z,∆ > 0 the following function

g∆(x, z)
def
= g

(
1

2∆z

(
x2 − z2

))
, (2.6)

where g(·) ∈ C2(IR) is a non-negative function, which grows monotonously from 0 to

1 , g(x) = 0 for x ≤ 0 and g(x) = 1 for x ≥ 1 , therefore:

1I {x ≥ 1} ≤ g(x) ≤ 1I {x ≥ 0} ≤ g(x+ 1).

An example of such function is given in (5.9). In (5.10) it is shown

1I{x− z ≥ ∆} ≤ g∆(x, z) ≤ 1I(x− z ≥ 0) ≤ g∆(x, z +∆).

This approximation is used in the proofs of Theorems 2.1 and 2.4 in the part of Gaussian

approximation of Euclidean norm of a sum of independent vectors (see Section 5.2)

yielding the error rate (p3/n)1/8 in the final bound (Theorems 2.1, 5.1). The next result

shows that the use of a smoothed quantile function helps to improve the accuracy of

bootstrap approximation: it becomes (p3/n)1/2 instead of (p3/n)1/8 . The reason is

that we do not need to account for the error induced by a smooth approximation of the

indicator function.

Theorem 2.5 (Validity of the bootstrap in the smoothed case under (SmB) condition).

Let the conditions of Section 4 be fulfilled. It holds with probability ≥ 1 − 12e−x for

z ≥ max{2,√p}+ C(p+ x)/
√
n and ∆ ∈ (0, 0.22] :∣∣∣∣IEg∆(√2L(θ̃)− 2L(θ∗), z

)
− IE

ab
g∆

(√
2L

ab
(θ̃

ab
)− 2L

ab
(θ̃), z

)∣∣∣∣ ≤ ∆sm,

where ∆sm ≤ C{(p + x)3/n}1/2∆−3 in the case 4.3. An explicit definition of ∆sm is

given in (A.38), (A.39) in Section A.5.

The modified bootstrap quantile function reads as

z
ab
∆,α

def
= min

{
z ≥ 0: IE

ab
g∆

(√
2L

ab
(θ̃

ab
)− 2L

ab
(θ̃), z

)
= α

}
.

3 Numerical results

This section illustrates the performance of the multiplier bootstrap for some artificial

examples. We especially aim to address the issues of noise misspecification and of in-

creasing modeling bias. In all the experiments we took 104 data samples for estimation



spokoiny, v. and zhilova, m. 13

of empirical c.d.f. of

√
2L(θ̃)− 2L(θ∗) , 104 {u1, . . . , un} samples and 104 data samples

for the estimation of the quantiles of

√
2L

ab
(θ̃ ab)− 2L

ab
(θ̃) . All sample sizes are n = 50 .

It should be mentioned that the obtained results are nicely consistent with the theoretical

statements.

3.1 Computational error

Here we check numerically, how well the multiplier procedure works in the case of the

correct model. Let the i.i.d. data follow the distribution Yi ∼ N(2, 1) , i = 1, . . . , n . The

true likelihood function is L(θ) = −
∑n

i=1(Yi − θ)2/2.

Table 1 shows the effective coverage probabilities of the quantiles estimated using the

multiplier bootstrap. The second line contains the range of the nominal confidence levels:

0.99, . . . , 0.75 . The first left column describes the distribution of the bootstrap weights:

N(1, 1) or exp(1) . The 3-d and the 4-th lines show the frequency of the event: “the real

likelihood ratio ≤ the quantile of the bootstrap likelihood ratio”.

Table 1: Coverage probabilities for the correct i.i.d. model

Confidence levels

L(ui) 0.99 0.95 0.90 0.85 0.80 0.75

exp(1) 0.99 0.94 0.89 0.83 0.78 0.73

N(1, 1) 0.99 0.95 0.89 0.84 0.80 0.75

3.2 Constant regression with misspecified heteroscedastic errors

Here we show on a constant regression model that the quality of the confidence sets

obtained by the multiplier bootstrap procedure is not significantly deteriorated by mis-

specified heteroscedastic errors. Let the data be defined as Yi = 2 + σiεi , i = 1, . . . , n .

The i.i.d. random variables εi ∼ Lap(0, 2−1/2) are s.t. IE(εi) = 0 , Var(εi) = 1 . The

coefficients σi are deterministic: σi
def
= 0.5 {4− i (mod 4)} . The quasi-likelihood func-

tion is the same as in the previous experiment: L(θ) = −
∑n

i=1(Yi − θ)2/2 , i.e. it is

misspecified, since it corresponds to the i.i.d. standard normal distribution. Table 2

describes the 2 -nd experiment’s results similarly to the Table 1.
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Table 2: Coverage probabilities for the misspecified heteroscedastic noise

Confidence levels

L(ui) 0.99 0.95 0.90 0.85 0.80 0.75

exp(1) 0.98 0.93 0.87 0.82 0.77 0.72

N(1, 1) 0.98 0.94 0.88 0.83 0.78 0.73

3.3 Biased constant regression with misspecified errors

In the third experiment we consider biased regression with misspecified i.i.d. errors:

Yi = β sin(Xi) + εi, εi ∼ Lap(0, 2−1/2), i.i.d,

Xi are equidistant in [0, 2π].

Taking the likelihood function L(θ) = −
∑n

i=1(Yi − θ)2/2 yields θ∗ = 0 . Therefore,

the larger is the deterministic amplitude β > 0 , the bigger is bias of the mean constant

regression. We consider two cases: β = 0.25 with fulfilled (SmB) condition and β =

1.25 when (SmB) does not hold. Table 3 shows that for the large bias quantiles

yielded by the multiplier bootstrap are conservative. This conservative property of the

Table 3: Coverage probabilities for the misspecified biased regression

Confidence levels

L(ui) β 0.99 0.95 0.90 0.85 0.80 0.75

N(1, 1)
0.25 0.98 0.94 0.89 0.84 0.79 0.74

1.25 1.0 0.99 0.97 0.94 0.91 0.87

multiplier bootstrap quantiles is also illustrated with the graphs in Figure 3.1. They

show the empirical distribution functions of the likelihood ratio statistics L(θ̃) − L(θ∗)

and L
ab
(θ̃

ab
) − L ab

(θ̃) for β = 0.25 and β = 1.25 . On the right graph for β = 1.25 the

empirical distribution functions for the bootstrap case are smaller than the one for the

Y case. It means that for the large bias the bootstrap quantiles are bigger than the

Y quantiles, which increases the diameter of the confidence set based on the bootstrap

quantiles. This confidence set remains valid, since it still contains the true parameter

with a given confidence level.

Figure 3.2 shows the growth of the difference between the quantiles of L
ab
(θ̃

ab
)−L ab

(θ̃)

and L(θ̃)−L(θ∗) with increasing β for the range of the confidence levels: 0.75, 0.8, . . . , 0.99 .
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Figure 3.1: Empirical distribution functions of the likelihood ratios

Yi = 0.25 sin(Xi) + Lap(0, 2−1/2), n = 50 Yi = 1.25 sin(Xi) + Lap(0, 2−1/2), n = 50

empirical distribution function of L(θ̃)− L(θ∗) estimated with 104 Y samples

50 empirical distribution functions of L
ab
(θ̃

ab
)− L ab

(θ̃) estimated with 104

{ui} ∼ exp(1) samples

Figure 3.2: The difference
(

“Bootstrap quantile”− “Y -quantile”
)

growing with mod-

eling bias



16 Bootstrap confidence sets under model misspecification

3.4 Logistic regression with bias

In this example we consider logistic regression. Let the data come from the following

distribution:

Yi ∼ Bernoulli(βXi), Xi are equidistant in [0, 2], β ∈ (0, 1/2].

Consider the likelihood function corresponding to the i.i.d. observations:

L(θ) =
∑n

i=1

{
Yiθ − log(1 + eθ)

}
.

By definition (1.4) θ∗ = log{β/(1 − β)} , bigger values of β induce larger modeling

bias. The graphs below demonstrate the conservativeness of bootstrap quantiles. Here

we consider two cases: β = 0.1 and β = 0.5 . Similarly to the Example 3.3 in the case

of the bigger β on the right graph in Figure 3.3 the empirical distribution functions of

L
ab
(θ̃

ab
)− L ab

(θ̃) are smaller than the one for L(θ̃)− L(θ∗) .

Figure 3.3:

Yi ∼ Bernoulli(0.1Xi), n = 50 Yi ∼ Bernoulli(0.5Xi), n = 50

empirical distribution function of L(θ̃)− L(θ∗) estimated with 104 Y samples

50 empirical distribution functions of L
ab
(θ̃

ab
)− L ab

(θ̃) estimated with 104

{ui} ∼ exp(1) samples

4 Conditions

Here we state the conditions necessary for the main results. The conditions in Section

4.1 come from the general finite sample theory by Spokoiny (2012a), they are required
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for the results of Sections A.1 and A.2. Spokoiny (2012a) considers the examples of

i.i.d. setup, generalized linear model and linear median regression providing a check of

conditions from Section 4.1. The conditions in Section 4.2 are necessary to prove the

results on multiplier bootstrap from Section 2.

4.1 Basic conditions

Introduce the stochastic part of the likelihood process: ζ(θ)
def
= L(θ) − IEL(θ) , and its

marginal summand: ζi(θ)
def
= `i(θ)− IE`i(θ) .

(ED0) There exist a positive-definite symmetric matrix V 2
0 and constants g > 0, ν0 ≥ 1

such that Var {∇θζ(θ∗)} ≤ V 2
0 and

sup
γ∈IRp

log IE exp

{
λ
γ>∇θζ(θ∗)

‖V0γ‖

}
≤ ν20λ2/2, |λ| ≤ g.

(ED2) There exists a constant ω ≥ 0 and for each r > 0 a constant g2(r) such that

it holds for all θ ∈ Θ0(r) and for j = 1, 2

sup
γj∈IRp

‖γj‖≤1

log IE exp

{
λ

ω
γ>1 D

−1
0 ∇

2
θζ(θ)D−10 γ2

}
≤ ν20λ2/2, |λ| ≤ g2(r).

(L0) For each r > 0 there exists a constant δ(r) ≥ 0 such that for r ≤ r0 ( r0

comes from condition (A.1) of Theorem A.1 in Section A.1) δ(r) ≤ 1/2 , and for

all θ ∈ Θ0(r) it holds

‖D−10 D2(θ)D−10 − Ip‖ ≤ δ(r),

where D2(θ)
def
= −∇2

θIEL(θ) , Θ0(r)
def
= {θ : ‖D0(θ − θ∗)‖ ≤ r} .

(I) There exists a constant a > 0 s.t. a2D2
0 ≥ V 2

0 .

(Lr) For each r ≥ r0 there exists a value b(r) > 0 s.t. rb(r) → ∞ for r → ∞ and

∀θ : ‖D0(θ − θ∗)‖ = r it holds

−2 {IEL(θ)− IEL(θ∗)} ≥ r2b(r).

4.2 Conditions required for the bootstrap validity

(SmB) There exists a constant δ2smb ∈ [0, 1/8] such that it holds for all i = 1, . . . , n

and the matrices H2
0 , B2

0 defined in (1.7) and (1.8).

‖H−10 B2
0H
−1
0 ‖ ≤ δ

2
smb ≤ Cpn−1/2,
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(ED2m) For each r > 0 , i = 1, . . . , n , j = 1, 2 and for all θ ∈ Θ0(r) it holds for the

values ω ≥ 0 and g2(r) from the condition (ED2) :

sup
γj∈IRp

‖γj‖≤1

log IE exp

{
λ

ω
γ>1 D

−1
0 ∇

2
θζi(θ)D−10 γ2

}
≤ ν20λ

2

2n
, |λ| ≤ g2(r),

(L0m) For each r > 0 , i = 1, . . . , n and for all θ ∈ Θ0(r) there exists a constant

Cm(r) ≥ 0 such that

‖D−10 ∇
2
θIE`i(θ)D−10 ‖ ≤ Cm(r)n−1.

(L3m) For all θ ∈ Θ and i = 1, . . . , n it holds ‖D−10 ∇3
θIE`i(θ)D−10 ‖ ≤ C .

(IB) There exists a constant a2B > 0 s.t. a2BD
2
0 ≥ B2

0 .

(SD1) There exists a constant 0 ≤ δv ≤ Cp/n. such that it holds for all i = 1, . . . , n

with exponentially high probability∥∥∥H−10

{
∇θ`i(θ∗)∇θ`i(θ∗)> − IE

[
∇θ`i(θ∗)∇θ`i(θ∗)>

]}
H−10

∥∥∥ ≤ δ2v .
(Eb) The i.i.d. bootstrap weights ui have continuous c.d.f., and it holds for all i =

1, . . . , n : IE
ab
ui = 1 , Var

ab
ui = 1 ,

log IE
ab
exp {λ(ui − 1)} ≤ ν20λ2/2, |λ| ≤ g.

4.3 Dependence of the involved terms on the sample size and parameter

dimension

Here we consider the case of the i.i.d. observations Y1, . . . , Yn and x = C log n in order

to specify the dependence of the non-asymptotic bounds on n and p . Example 5.1 in

Spokoiny (2012a) demonstrates that in this situation g = C
√
n and ω = C/

√
n . then

Z(x) = C
√
p+ x for some constant C ≥ 1.85 , for the function Z(x) given in (A.3) in

Section A.1. Similarly it can be checked that g2(r) from condition (ED2) is proportional

to
√
n : due to independency of the observations

log IE exp

{
λ

ω
γ>1 D

−1
0 ∇

2
θζ(θ)D−10 γ2

}
=
∑n

i=1
log IE exp

{
λ√
n

1

ω/
√
n
γ>1 d

−1
0 ∇

2
θζi(θ)d−10 γ2

}
≤ n

λ2

n
C for |λ| ≤ g2(r)

√
n,



spokoiny, v. and zhilova, m. 19

where ζi(θ)
def
= `i(θ) − IE`i(θ) , d20

def
= −∇2

θIE`i(θ
∗) and D2

0 = nd20 in the i.i.d. case.

Function g2(r) denotes the marginal analog of g2(r) .

Let us show, that for the value δ(r) from the condition (L0) it holds δ(r) = Cr/
√
n .

For some θ

‖D−10 D2(θ)D−10 − Ip‖ = ‖D−10 (θ∗ − θ)>∇3
θIEL(θ)D−10 ‖

= ‖D−10 (θ∗ − θ)>D0D
−1
0 ∇

3
θIEL(θ)D−10 ‖

≤ r‖D−10 ‖‖D
−1
0 ∇

3
θIEL(θ)D−10 ‖ ≤ Cr/

√
n (by condition (L3m) ).

Similarly Cm(r) ≤ Cr in condition (L0m) .

If δ(r) = Cr/
√
n is sufficiently small, then the value b(r) from condition (Lr) can

be taken as C{1− δ(r)}2 . Indeed, by (L0) and (Lr) for θ : ‖D0(θ − θ∗)‖ = r

−2 {IEL(θ)− IEL(θ∗)} ≥ r2
{

1− δ2(r)
}
.

Therefore, if δ(r) is small, then b(r)
def
= C{1 − δ2(r)} ≈ const . Due to the obtained

orders the conditions (A.1) and (A.17) of Theorems A.1 and A.6 on concentration of the

MLEs θ̃, θ̃
ab

require r0 ≥ C
√
p+ x .

5 Approximation of distributions of `2 norms of sums ran-

dom vectors

Consider two samples φ1, . . . ,φn and ψ1, . . . ,ψn , each consists of centered independent

random vectors in IRp with nearly the same second moments. This section explains how

one can quantify the closeness in distribution between the norms of φ =
∑

iφi and of

ψ =
∑

iψi . Suppose that

IEφi = IEψi = 0, Varφi = Σi, Varψi = Σ̆i, i = 1, . . . , n.

Let also

φ
def
=
∑n

i=1
φi, ψ

def
=
∑n

i=1
ψi, (5.1)

Σ
def
= Varφ =

∑n

i=1
Σi, Σ̆

def
= Varψ =

∑n

i=1
Σ̆i. (5.2)

Also introduce multivariate Gaussian vectors φi,ψi which are mutually independent for

i = 1, . . . , n and

φi ∼ N (0, Σi), ψi ∼ N (0, Σ̆i),

φ
def
=
∑n

i=1
φi ∼ N (0, Σ), ψ

def
=
∑n

i=1
ψi ∼ N (0, Σ̆). (5.3)
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The bar sign for a vector stands here for a normal distribution. The following theorem

gives the conditions on Σ and Σ̆ which ensure that ‖φ‖ and ‖ψ‖ are close to each

other in distribution. It also presents a general result on Gaussian approximation of ‖φ‖
with ‖φ‖ .

Introduce the following deterministic values, which are supposed to be finite:

δn
def
=

1

2

n∑
i=1

IE
(
‖φi‖3 + ‖φi‖3

)
, δ̆n

def
=

1

2

n∑
i=1

IE
(
‖ψi‖3 + ‖ψi‖3

)
. (5.4)

Theorem 5.1. Assume for the covariance matrices defined in (5.2) that∥∥Σ̆−1/2ΣΣ̆−1/2 − Ip∥∥ ≤ 1/2, and tr
{(
Σ̆−1/2ΣΣ̆−1/2 − Ip

)2} ≤ δ2Σ (5.5)

for some δ2Σ ≥ 0 . The sign ‖ · ‖ for matrices denotes the spectral norm. Let also for

z, z ≥ 2 and some δz ≥ 0 |z − z| ≤ δz , then it holds for all 0 < ∆ ≤ 0.22

1.1.
∣∣IP (‖φ‖ ≥ z)− IP

(
‖ψ‖ ≥ z

)∣∣ ≤ 16δn∆
−3 +

∆+ δz
z

√
p/2 + δΣ/2

≤ 16δn∆
−3 + (∆+ δz)/

√
2 + δΣ/2

for z ≥ √p,

1.2. |IP (‖φ‖ ≥ z)− IP (‖ψ‖ ≥ z)| ≤ 16∆−3
(
δn + δ̆n

)
+

2∆+ δz
z

√
p/2 + δΣ/2

≤ 16∆−3
(
δn + δ̆n

)
+ (2∆+ δz)/

√
2 + δΣ/2

for z ≥ √p.

Moreover, if z, z ≥ max{2,√p} and max{δ1/4n , δ̆
1/4
n } ≤ 0.11 , then

2.1.
∣∣IP (‖φ‖ ≥ z)− IP

(
‖ψ‖ ≥ z

)∣∣ ≤ 1.55δ1/4n + δz/
√

2 + δΣ/2,

2.2. |IP (‖φ‖ ≥ z)− IP (‖ψ‖ ≥ z)| ≤ 1.55
(
δ1/4n + δ̆1/4n

)
+ δz/

√
2 + δΣ/2.

Proof of Theorem 5.1. The inequality 1.1 is based on the results of Lemmas 5.3, 5.6 and

5.7:

IP (‖φ‖ ≥ z)
by L. 5.3
≤ IP

(
‖φ‖ ≥ z −∆

)
+ 16∆−3δn

by L. 5.7
≤ IP

(
‖ψ‖ ≥ z −∆

)
+ 16∆−3δn + δΣ/2

by L. 5.6
≤ IP

(
‖ψ‖ ≥ z

)
+ 16∆−3δn + δΣ/2 + (δz +∆)z−1

√
p/2.

The inequality 1.2 is implied by the triangle inequality and the sum of two bounds: the

bound 1.1 for
∣∣IP (‖φ‖ ≥ z)− IP

(
‖ψ‖ ≥ z

)∣∣ and the bound∣∣IP (‖ψ‖ ≥ z)− IP
(
‖ψ‖ ≥ z

)∣∣ ≤ 16δ̆n∆
−3 +∆z−1

√
p/2,
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which also follows from 1.1 by taking φ := ψ , z := z . In this case Σ = Σ̆ and

δΣ = δz = 0 .

The second part of the statement follows from the the first part by balancing the

error term 16δn∆
−3 +∆/

√
2 w.r.t. ∆ .

Remark 5.1. The approximation error in the statements of Theorem 5.1 includes three

terms, each of them is responsible for a step of derivation: Gaussian approximation,

Gaussian comparison and anti-concentration. The value δΣ bounds the relation between

covariance matrices, δz corresponds to the difference between quantiles. δ
1/4
n comes

from the Gaussian approximation, under certain conditions this is the biggest term in

the expressions 2.1, 2.2 (cf. the proof of Theorem 2.1).

Remark 5.2. Here we briefly comment how our results can be compared with what is

available in the literature. In the case of i.i.d. vectors φi and Varφi ≡ Ip Bentkus

(2003) obtained the rate IE‖φi‖3/
√
n for the error of approximation supA∈A

∣∣IP (φ ∈
A)− IP (φ ∈ A)

∣∣ , where A is a class of all Euclidean balls in IRp . Götze (1991) showed

for independent vectors φi and their standardized sum φ :

δGAR ≤

C1
√
p
∑n

i=1 IE‖φi‖3/
√
n, p ∈ [2, 5],

C2p
∑n

i=1 IE‖φi‖3/
√
n, p ≥ 6,

where δGAR
def
= supB∈B

∣∣IP (φ ∈ B)− IP (φ ∈ B)
∣∣ and B is a class of all measurable

convex sets in IRp , the constants C1, C2 > 150 . Bhattacharya and Holmes (2010)

argued that the results by Götze (1991) might require more thorough derivation, they

obtained the rate p5/2
∑n

i=1 IE‖φi‖3 for the previous bound (and p5/2IE‖φ1‖3/n1/2

in the i.i.d. case). Chen and Fang (2011) prove that δGAR ≤ 115
√
p
∑n

i=1 IE‖φi‖3 for

independent vectors φi with a standardized sum. Götze and Zaitsev (2014) obtained the

rate IE‖φi‖4/n for i.i.d. vectors φi with a standardized sum but only for p ≥ 5 . See also

Prokhorov and Ulyanov (2013) for the review of the results about normal approximation

of quadratic forms.

Our results ensure the error of the Gaussian approximation of order 1.55δ
1/4
n ≤

1.31
{∑n

i=1 IE
(
‖φi‖3 + ‖φi‖3

)}1/4
. The technique used here is much simpler than in the

previous works, and the obtained bounding terms are explicit and only use independence

of the φi and ψi . However, for some special cases, the use of more advanced results on

Gaussian approximation may lead to sharper bounds. For instance, for an i.i.d. sample,

the GAR error rate δGAR =
√
p3/n by Bentkus (2003) is better then ours (p3/n)1/8 ,

and in the one-dimensional case Berry-Esseen’s theorem would also work better (see

Section 5.1). In those cases one can improve the overall error bound of the bootstrap

approximation by putting δGAR in place of the sum 16δn∆
−3 + ∆/

√
2 . Section 5.3
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comments how our results can be used to obtain the error rate
√
p3/n by using a

smoothed quantile function.

5.1 The case of p = 1 using Berry-Esseen theorem

Let us consider how the results of Theorem 5.1 can be refined in the case p = 1 using

Berry-Esseen theorem. Introduce similarly to δn and δ̆n from (5.4) the bounded values

δn,B.E.

def
=
∑n

i=1
IE|φi|3, δ̆n,B.E.

def
=
∑n

i=1
IE|ψi|3. (5.6)

Due to Berry-Esseen theorem by Berry (1941) and Esseen (1942) it holds

sup
z∈IR

∣∣IP (|φ| ≥ z)− IP
(
|φ| ≥ z

)∣∣ ≤ 2C0
δn,B.E.

(Varφ)3/2
, (5.7)

sup
z∈IR

∣∣IP (|ψ| ≥ z)− IP
(
|ψ| ≥ z

)∣∣ ≤ 2C0
δ̆n,B.E.

(Varψ)3/2
,

for the constant C0 ∈ [0.4097, 0.560] by Esseen (1956) and Shevtsova (2010).

Lemma 5.2. Under the conditions of Theorem 5.1 it holds

1.
∣∣IP (|φ| ≥ z)− IP

(
|ψ| ≥ z

)∣∣ ≤ 2C0
δn,B.E.

(Varφ)3/2
+
δΣ
2

+
δz√

2

1

z

≤ 2C0
δn,B.E.

(Varφ)3/2
+
δΣ
2

+
δz√

2

for z ≥ 1,

2. |IP (|φ| ≥ z)− IP (|ψ| ≥ z)|

≤ 2C0

{ δn,B.E.

(Varφ)3/2
+

δ̆n,B.E.

(Varψ)3/2

}
+
δΣ
2

+
δz√

2

1

z

≤ 2C0

{ δn,B.E.

(Varφ)3/2
+

δ̆n,B.E.

(Varψ)3/2

}
+
δΣ
2

+
δz√

2
for z ≥ 1. (5.8)

Proof of Lemma 5.2. Similarly to the proof of Theorem 5.1:

IP (|φ| ≥ z)
by (5.7)

≤ IP
(
|φ| ≥ z

)
+ 2C0(Varφ)−3/2δn,B.E.

by L. 5.7
≤ IP

(
|ψ| ≥ z

)
+ 2C0(Varφ)−3/2δn,B.E. + δΣ/2

by L. 5.6
≤ IP

(
|ψ| ≥ z

)
+ 2C0(Varφ)−3/2δn,B.E. + δΣ/2 + δzz

−12−1/2.

The analogous chain in the inverse direction finishes the proof of the first part of the

statement. The second part is implied by the triangle inequality applied to the first part

and again to it with φ := ψ and z := z .
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5.2 Gaussian approximation of `2 norm of a sum of independent vec-

tors

Lemma 5.3 (GAR with equal covariance matrices). For the random vectors φ and φ

defined in (5.1), (5.3), s.t. Varφ = Varφ , and for δn given in (5.4), it holds for all

z ≥ 2 and ∆ ∈ (0, 0.22] :

IP (‖φ‖ ≥ z) ≤ IP
(
‖φ‖ ≥ z −∆

)
+ 16∆−3δn,

IP (‖φ‖ ≥ z) ≥ IP
(
‖φ‖ ≥ z +∆

)
− 16∆−3δn.

Proof of Lemma 5.3. It holds for z ∈ IR IP (‖φ‖ ≥ z) = IE 1I {‖φ‖ ≥ z} . The main

idea of the proof is to approximate the discontinuous function 1I {‖φ‖ ≥ z} by a smooth

function f∆(φ, z) and then to apply the Lindeberg’s telescopic sum device. Let us

introduce a non-negative function g(·) ∈ C2(IR) , which grows monotonously from 0 to

1 :

g(x)
def
=



0, x ≤ 0,

16x3/3, x ∈ [0, 1/4],

0.5 + 2(x− 0.5)− 16(x− 0.5)3/3, x ∈ [1/4, 3/4],

1 + 16(x− 1)3/3, x ∈ [3/4, 1],

1, x ≥ 1.

(5.9)

It holds for all x ∈ IR 1I {x ≥ 1} ≤ g(x) ≤ 1I {x ≥ 0} . Hence, for the function f∆(φ, z)
def
=

g
(
(‖φ‖2 − z2)/(2z∆)

)
with z,∆ > 0 , it holds due to 1I {‖φ‖ ≥ z} = 1I

{(
‖φ‖2 − z2

)
/2 ≥ 0

}
:

1I {‖φ‖ ≥ z +∆} ≤ 1I
{
‖φ‖2 ≥ z2 + 2∆z

}
≤ f∆(φ, z) ≤ 1I {‖φ‖ ≥ z} . (5.10)

Due to Lemma 5.4 one can apply the Lindeberg’s telescopic sum device (see Lindeberg

(1922)) in order to approximate IEf∆(φ, z) with IEf∆(φ, z) . Define for k = 2, . . . , n−1

the following random sums

Sk
def
=

k−1∑
i=1

φi +

n∑
i=k+1

φi, S1
def
=

n∑
i=2

φi, Sn
def
=

n−1∑
i=1

φi.

The difference f∆(φ, z)− f∆(φ, z) can be represented as the telescopic sum:

f∆(φ, z)− f∆(φ, z) =
∑n

k=1

{
f∆(Sk + φk, z)− f∆(Sk + φk, z)

}
.

Due to Lemma 5.4 and the third order Taylor expansions of f∆(Sk+φk, z) and f∆(Sk+
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φk, z) w.r.t. the first argument at Sk , it holds for each k = 1, . . . , n :∣∣∣f∆(Sk + φk, z)− f∆(Sk + φk, z)−∇φf∆(Sk, z)
>(φk − φk)

− 1

2
(φk − φk)>∇2

φf∆(Sk, z)(φk + φk)
∣∣∣ ≤ C(∆, z)

(
‖φk‖3 + ‖φk‖3

)
/6,

where the value C(∆, z) is defined in (5.14). As Sk and φk − φk are independent,

IEφk = IEφk = 0 and Varφk = Varφk , we derive∣∣IEf∆(φ, z)− IEf∆(φ, z)
∣∣ =

∣∣∣∑n

k=1

{
IEf∆(Sk + φk, z)− IEf∆(Sk + φk, z)

}∣∣∣
≤ C(∆, z)

∑n

k=1
IE
(
‖φk‖3 + ‖φk‖3

)
/6

(by Def. (5.4)) = C(∆, z)δn/3. (5.11)

Combining the derived bounds, we obtain:

IP (‖φ‖ ≥ z +∆)
by (5.10)
≤ IEf∆(φ, z)

by (5.11)
≤ IEf∆(φ, z) +

C(∆, z)

3
δn

by (5.10)
≤ IP

(
‖φ‖ ≥ z

)
+

C(∆, z)

3
δn,

or IP (‖φ‖ ≥ z) ≤ IP
(
‖φ‖ ≥ z −∆

)
+C(∆, z −∆)δn/3. Interchanging the arguments φ

and φ implies the inequality in the inverse direction:

IP (‖φ‖ ≥ z) ≥ IP
(
‖φ‖ ≥ z +∆

)
− C(∆, z)δn/3.

Let us bound the constants C(∆, z) and C(∆, z −∆) for the function g(x) given above

in (5.9). |g′′(x)| ≤ 8 and |g′′′(x)| ≤ 32 for all x ∈ IR . By definition (5.14) it holds for

0 < ∆ ≤ 0.22 and z ≥ 2 :

C(∆, z) ≤ C(∆, z −∆) ≤ ∆−348. (5.12)

Lemma 5.4 (A property of the smooth approximant of the indicator). Let a func-

tion g(·) ∈ C2(IR) be non-negative, monotonously increasing from 0 to 1 s.t. g(x) =

0 for x < 0, g(x) = 1 for x ≥ 1 . It holds for all φ,φ0 ∈ IRp , z,∆ ≥ 0 , for the

Euclidean norm ‖ · ‖ and for the function

f∆(φ, z)
def
= g

(
1

2z∆
(‖φ‖2 − z2)

)
(5.13)∣∣∣f∆(φ0 + φ, z)− f∆(φ0, z)− φ>∇φf∆(φ0, z)− φ>∇2

φf∆(φ0, z)φ/2
∣∣∣

≤ C(∆, z)‖φ‖3/3!,
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where

C(∆, z)
def
=

1

∆3

(
1 + 2

∆

z

)1/2{(
1 + 2

∆

z

)
‖g′′′‖∞ + 3

∆

z
‖g′′‖∞

}
. (5.14)

Proof of Lemma 5.4. By the Taylor formula:

f∆(φ0 + φ, z) = f∆(φ0, z) + φ>∇φf∆(φ0, z) + φ>∇2
φf∆(φ0, z)φ/2 +R3,

where R3 is the 3-d order remainder term. Consider for γ ∈ IRp : ‖γ‖ = 1 and t ∈ R
the function f∆(φ0 + tγ, z) = g

(
1

2z∆(‖φ0 + tγ‖2 − z2)
)

. It holds

|R3| ≤
‖φ‖3

3!
sup

γ∈IRp, ‖γ‖=1
sup
t∈IR

∣∣∣∣d3f∆(φ0 + tγ, z)

dt3

∣∣∣∣ .
Now let us bound the third derivative d3

dt3
f∆(φ+ tγ, z) :

df∆(φ+ tγ, z)

dt
=
γ>(φ+ tγ)

z∆
g′
(

1

2z∆
(‖φ+ tγ‖2 − z2)

)
,

d2f∆(φ+ tγ, z)

dt2
=
{γ>(φ+ tγ)}2

(z∆)2
g′′
(

1

2z∆
(‖φ+ tγ‖2 − z2)

)
+

1

z∆
g′
(

1

2z∆
(‖φ+ tγ‖2 − z2)

)
,

d3f∆(φ+ tγ, z)

dt3
=
{γ>(φ+ tγ)}3

(z∆)3
g′′′
(

1

2z∆
(‖φ+ tγ‖2 − z2)

)
+ 3

γ>(φ+ tγ)

(z∆)2
g′′
(

1

2z∆
(‖φ+ tγ‖2 − z2)

)
.

Now we use that g′′(x) and g′′′(x) vanish if x < 0 or x ≥ 1 . The inequality 1
2z∆(‖φ+

tγ‖2 − z2) ≤ 1 implies in view of ‖γ‖ = 1 that

γ>(φ+ tγ) ≤ ‖φ+ tγ‖ ≤ (2z∆+ z2)1/2.

Therefore∣∣∣∣d3f∆(φ0 + tγ, z)

dt3

∣∣∣∣ ≤ 1

∆3

(
1 + 2

∆

z

)1/2{(
1 + 2

∆

z

)
‖g′′′‖∞ + 3

∆

z
‖g′′‖∞

}
.
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5.3 Results for the smoothed indicator function

Theorem 5.5 (Theorem 5.1 for a smoothed indicator function). Under the conditions

of Theorem 5.1 it holds for all δz ∈ [0, 1] and the function f∆(φ, z) defined in (5.13):

1.
∣∣IEf∆(φ, z)− IEf∆(ψ, z)

∣∣ ≤ 16

∆3
δn + 2

√
p
δz
z

+
√
p
δ2z
z2

+ δΣ

≤ 16

∆3
δn +

√
5δz + δΣ for z ≥ √p.

2. |IEf∆(φ, z)− IEf∆(ψ, z)| ≤ 16

∆3

(
δn + δ̆n

)
+ 2
√
p
δz
z

+
√
p
δ2z
z2

+ δΣ

≤ 16

∆3

(
δn + δ̆n

)
+
√

5δz + δΣ for z ≥ √p.

Remark 5.3. The approximating bounds above do not contain the term proportional

to ∆ unlike the bound in Theorem 5.1. This yields the smaller error terms for the case

of the smoothed indicator.

Proof of Theorem 5.5. The following inequality is proved in Lemma 5.3 (see the expres-

sion (5.11)):
∣∣IEf∆(φ, z)− IEf∆(φ, z)

∣∣ ≤ C(∆, z)δn/3 .

The function f∆(φ, z) is non-increasing in z :

df∆(φ, z)

dz
= − 1

2∆

(
1 +
‖φ‖2

z2

)
g′
(

1

2∆z

(
‖φ‖2 − z2

))
≤ 0.

The definition of f∆(φ, z) yields for z ≥ z , a
def
= z/z ≥ 1 and any φ

f∆(φ, z) ≤ f∆(φ, z) ≤ f∆(aφ, z),

0 ≤ f∆(φ, z)− f∆(φ, z) ≤ f∆(aφ, z)− f∆(φ, z). (5.15)

Lemma 5.8 yields for δz ≤ z(
√

3/2− 1) :

∣∣IEf∆(aφ, z)− IEf∆(φ, z)
∣∣ ≤ √p(z2

z2
− 1
)
≤ 2
√
p
δz
z

+
√
p
δ2z
z2

≤ (1 +
√

3/2)δz ≤
√

5δz for z ≥ √p.

Inequalities similar to (5.15) hold for z ≤ z and a
def
= z/z , therefore, by triangle inequal-

ity, bound (5.12) on C(∆, z) and Lemma 5.8:∣∣IEf∆(φ, z)− IEf∆(ψ, z)
∣∣ ≤ 16

∆3
δn + 2

√
p
δz
z

+
√
p
δ2z
z2

+ δΣ

≤ 16

∆3
δn +

√
5δz + δΣ for z ≥ √p.

The second part of the statement follows from triangle inequality applied to the first

inequality and again to the same one with φ := ψ and z := z .
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5.4 Gaussian anti-concentration and comparison by Pinsker’s inequal-

ity

Lemma 5.6 (Anti-concentration bound for `2 norm of a Gaussian vector). Let φ ∼
N (0, Σ) , φ ∈ IRp , then it holds for all z > 0 and 0 ≤ ∆ ≤ z :∣∣IP (‖φ‖ ≥ z +∆

)
− IP

(
‖φ‖ ≥ z

)∣∣ ≤ ∆
√
p/(z
√

2)

≤ ∆/
√

2 for z ≥ √p.

Proof of Lemma 5.6. It holds IP
(
‖φ‖ ≥ z +∆

)
= IP

(
‖φ∆‖ ≥ z

)
, where φ∆

def
= φ z

z+∆ .

The Kullback-Leibler divergence between IP1
def
= N (0, Σ) and IP2

def
= N

(
0, Σ z2

(z+∆)2

)
is

equal to

KL(IP1, IP2) = p
{

(∆/z)2 + 2(∆/z)− 2 log(1 +∆/z)
}
/2

≤ p(∆/z)2 for 0 ≤ ∆ ≤ z.

We use Pinsker’s inequality in the following form (see the book by Tsybakov (2009), pp.

88, 132): for a measurable space (Ω,F) and two measures on it IP1, IP2 :

sup
A∈F
|IP1(A)− IP2(A)| ≤

√
KL(IP1, IP2)/2. (5.16)

Therefore, it holds:∣∣IP (‖φ‖ ≥ z +∆
)
− IP

(
‖φ‖ ≥ z

)∣∣ ≤ √KL(IP1, IP2)/2 ≤ ∆
√
p/(z
√

2).

Lemma 5.7 (Comparison of the Euclidian norms of Gaussian vectors). Let ψ1 ∼
N (0, Σ1) and ψ2 ∼ N (0, Σ2) belong to IRp , and∥∥Σ−1/22 Σ1Σ

−1/2
2 − Ip

∥∥ ≤ 1/2, and tr
{(
Σ
−1/2
2 Σ1Σ

−1/2
2 − Ip

)2} ≤ δ2Σ ,
for some δ2Σ ≥ 0 . Then it holds

sup
z∈R

∣∣IP (‖ψ1‖ ≥ z
)
− IP

(
‖ψ2‖ ≥ z

)∣∣ ≤ δΣ/2.

Proof of Lemma 5.7. Let IP1 = N (0, Σ1) and IP2 = N (0, Σ2) . Denote G
def
= Σ

−1/2
2 Σ1Σ

−1/2
2 ,

then the Kullback-Leibler divergence between IP1 and IP2 is equal to

KL(IP1, IP2) = −0.5 log{det(G)}+ 0.5 tr{G− Ip}

= 0.5
∑p

j=1
{λj − log(λj + 1)} ,



28 Bootstrap confidence sets under model misspecification

where λp ≤ · · · ≤ λ1 are the eigenvalues the matrix G−Ip . By conditions of the lemma

|λ1| ≤ 1/2 , and it holds:

KL(IP1, IP2) ≤ 0.5
∑p

j=1
λ2j = 0.5 tr{(G− Ip)2} ≤ δ2Σ/2, (5.17)

which finishes the proof due to the Pinsker’s inequality (5.16).

Lemma 5.8 (Gaussian comparison, smoothed version). Let ψ1 ∼ N (0, Σ1) and ψ2 ∼
N (0, Σ2) belong to IRp , and for some δ2Σ ≥ 0 :∥∥Σ−1/22 Σ1Σ

−1/2
2 − Ip

∥∥ ≤ 1/2, and tr
{(
Σ
−1/2
2 Σ1Σ

−1/2
2 − Ip

)2} ≤ δ2Σ .
Then it holds for any function f(x) : IRp 7→ IR s.t. |f(x)| ≤ 1 :∣∣IEf(ψ1)− IEf(ψ2)

∣∣ ≤ δΣ .

Proof of Lemma 5.8. Let IP1 = N (0, Σ1) and IP2 = N (0, Σ2) . Due to |f(x)| ≤ 1 and

Pinsker’s inequality (5.16) it holds:∣∣IEf(ψ1)− IEf(ψ2)
∣∣ ≤ ∫

IRp

|f(x)| · |dIP1(x)− dIP2(x)|

≤
∫
IRp

|dIP1(x)− dIP2(x)| ≤ 2
√

KL(IP1, IP2)/2.

Finally, as in (5.17), 2
√

KL(IP1, IP2)/2 ≤ δΣ .

A Appendix

This section contains proofs of the main results from Section 2. Due to the scheme (1.6)

the key ingredients are:

• the square-root Wilks approximation for the Y -world (Theorem A.2),

• the square-root Wilks approximation for the bootstrap world (Theorem A.4),

• the statement about closeness in distribution of the approximating terms ‖ξ‖ and

‖ξ ab‖ (Proposition A.9).

In Section A.1 we recall some results from the general finite sample theory by Spokoiny

(2012a), Spokoiny (2012b) and Spokoiny (2013), including the square-root Wilks approx-

imation in Y case. In Section A.2 we derive the necessary results from the finite sample

theory for the bootstrap world (including the square-root Wilks approximation). In Sec-

tion A.3 we adapt Theorem 5.1 (GAR for `2 norm of a sum of independent vectors) to

the setting of maximum likelihood estimation (Proposition A.9). The proofs of the main

results are given in Sections A.3, A.4 and A.5.
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A.1 Finite sample theory

Let us use the notations given in the introduction: L(θ) is the log-likelihood process,

which depends on the data Y and corresponds to the regular parametric family of

probability distributions {IPθ} . The general finite sample approach by Spokoiny (2012a)

does not require the true measure IP to belong to {IPθ} . The target parameter θ∗ is

defined as in (1.4) by projection of the true measure IP on {IPθ} . D2
0 denotes the full

Fisher information p×p matrix, which is deterministic, symmetric and positive-definite:

D2
0

def
= −∇2

θIEL(θ∗).

A centered p -dimensional random vector ξ denotes the normalised score:

ξ
def
= D−10 ∇θL(θ∗).

Introduce the following elliptic vicinity around the true point θ∗ :

Θ0(r)
def
= {θ : ‖D0(θ − θ∗)‖ ≤ r} .

The non-asymptotic Wilks approximating bound by Spokoiny (2012a), Spokoiny (2013)

requires that the maximum likelihood estimate θ̃ gets into the local vicinity Θ0(r0) of

some radius r0 > 0 with probability ≥ 1 − 3e−x , x > 0 . This is guaranteed by the

following concentration result:

Theorem A.1 (Concentration of MLE, Spokoiny (2013)). Let the conditions (ED0) ,

(ED2) , (L0) , (I) and (Lr) be fulfilled. If for the constant r0 > 0 and for the

function b(r) from (Lr) :

b(r)r ≥ 2
{
Zqf(x, IB) + 6ων0Z(x + log(2r/r0))

}
, r > r0 (A.1)

where the functions Z(x) and Zqf(x, IB) are defined respectively in (A.3) and (A.4), then

it holds

IP
(
θ̃ /∈ Θ0(r0)

)
≤ 3e−x.

The constants ω, ν0 and a come from the imposed conditions (ED0) – (I) (from Section

4). In the case 4.3 r0 ≥ C
√
p+ x .

The following result is one of the central in the general finite sample theory and is

crucial for the present study due to the scheme (1.6):
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Theorem A.2 (Wilks approximation, Spokoiny (2013)). Under the conditions of Theo-

rem A.1 for some r0 > 0 s.t. (A.1) is fulfilled, it holds with probability ≥ 1− 5e−x

∣∣∣2{L(θ̃)− L(θ∗)
}
− ‖ξ‖2

∣∣∣ ≤ ∆W 2(r0, x),∣∣∣√2
{
L(θ̃)− L(θ∗)

}
− ‖ξ‖

∣∣∣ ≤ ∆W(r0, x)

for

∆W(r, x)
def
= 3r {δ(r) + 6ν0Z(x)ω} , (A.2)

∆W 2(r, x)
def
=

2

3

{
2r + Zqf(x, IB)

}
∆W(r, x),

Z(x)
def
= 2
√
p+
√

2x + 4p(xg−2 + 1)g−1. (A.3)

In the case 4.3 it holds for r ≤ r0 :

∆W(r, x) = C
p+ x√
n
, ∆W 2(r, x) = C

√
(p+ x)3

n
.

The constants g and δ(r) come from the imposed conditions (ED0) , (L0) (from Sec-

tion 4), and the function Zqf(x, IB) , defined in (A.4), corresponds to the quantile function

of deviations of the random value ‖ξ‖ (see Theorem A.3 below).

The following theorem characterizes the tail behaviour of the approximating term

‖ξ‖2 . It means that with a bounded exponential moment of the vector ξ (condition

(ED0) ) its squared Euclidean norm ‖ξ‖2 has three regimes of deviations: sub-Gaussian,

Poissonian and large-deviations’ zone.

Theorem A.3 (Deviation bound for a random quadratic form, Spokoiny (2012b)). Let

condition (ED0) be fulfilled, then for g ≥
√

2 tr(IB2) it holds:

IP
(
‖ξ‖2 ≥ Z2

qf(x, IB)
)
≤ 2e−x + 8.4e−xc ,

where IB2 def
= D−10 V 2

0 D
−1
0 , λ(IB) is a maximum eigenvalue of IB2 ,

Z2
qf(x, IB)

def
=


tr(IB2) +

√
8 tr(IB4)x, x ≤

√
2 tr(IB4)/{18λ(IB)},

tr(IB2) + 6xλ(IB),
√

2 tr(IB4)/{18λ(IB)} < x ≤ xc,

|zc + 2(x− xc)/gc|2 λ(IB), x > xc,

(A.4)
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2xc
def
= 2xc(IB)

def
= µczc

2 + log det
(
Ip − µcIB2/λ(IB)

)
, (A.5)

zc
2 def

=
{
g2/µ2c − tr (IB2)/µc

}
/λ(IB),

gc
def
=
√
g2 − µc tr (IB2)/

√
λ(IB),

µc
def
= 2/3.

The matrix V 2
0 comes from condition (ED0) and can be defined as

V 2
0

def
= Var {∇θL(θ∗)} .

By condition (I) tr(IB2) ≤ a2p , tr(IB4) ≤ a4p and λ(IB) ≤ a2 . In the case 4.3

g = C
√
n , hence xc = Cn , and for x ≤ xc it holds:

Z2
qf(x, IB) ≤ a2(p+ 6x). (A.6)

A.2 Finite sample theory for the bootstrap world

Let us introduce the bootstrap score vector at a point θ ∈ Θ :

ξ
ab
(θ)

def
= D−10 ∇θζ

ab
(θ)

=
n∑
i=1

D−10 ∇θ`i(θ)(ui − 1).

Theorem A.4 (Bootstrap Wilks approximation). Under the conditions of Theorems A.1

and A.6 for some r0
2 ≥ 0 s.t. (A.1) and (A.17) are fulfilled, it holds with IP -probability

≥ 1− 5e−x

IP
ab(∣∣∣sup

θ∈Θ
2
{
L
ab
(θ)− L

ab
(θ̃)
}
− ‖ξ

ab
(θ̃)‖2

∣∣∣ ≤ ∆ ab
W 2(r0, x)

)
≥ 1− 4e−x,

IP
ab(∣∣∣√sup

θ∈Θ
2
{
L
ab
(θ)− L ab

(θ̃)
}
− ‖ξ

ab
(θ̃)‖

∣∣∣ ≤ ∆ ab
W(r0, x)

)
≥ 1− 4e−x.

where the error terms ∆
ab
W(r, x), ∆

ab
W 2(r, x) are deterministic and

∆
ab
W(r, x)

def
= 2∆W(r, x) + 36ν0rω1(r)Z(x),

∆
ab
W 2(r, x)

def
=

1

18

{
12r∆

ab
W(r, x) +∆

ab
W(r, x)2

}
.

∆W(r, x) and Z(x) are defined respectively in (A.2) and (A.3), and ω1(r) is given in

(A.12). For the case 4.3 and r ≤ r0 it holds:

∆
ab
W(r, x) = C

p+ x√
n

√
x, ∆

ab
W 2(r, x) = C

√
(p+ x)3

n

√
x.
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Proof of Theorem A.4. Let us consider the following random process in the bootstrap

world for θ,θ1 ∈ Θ0(r) :

A
ab
(θ,θ1)

def
= L

ab
(θ)− L

ab
(θ1)− (θ − θ1)>∇θL

ab
(θ1) +

1

2
‖D0(θ − θ1)‖2.

It holds A ab
(θ1,θ1) = 0 . Taylor expansion w.r.t. θ around θ1 implies :

A
ab
(θ,θ1) = (θ − θ1)>∇θA

ab
(θ1,θ1),

where θ1 is some convex combination of the vectors θ and θ1 . Therefore,

|A
ab
(θ,θ1)| ≤ ‖D0(θ − θ1)‖ sup

θ∈Θ0(r)

∥∥D−10 ∇θA
ab
(θ,θ1)

∥∥ (A.7)

≤ 2r sup
θ∈Θ0(r)

∥∥D−10 ∇θA
ab
(θ,θ1)

∥∥ . (A.8)

Now let us consider the normalized gradient process:

D−10 ∇θA
ab
(θ,θ1) = D−10 {∇θL

ab
(θ)−∇θL

ab
(θ1)}+D0(θ − θ1).

The deterministic part of it reads as:

D−10 ∇θIE
ab
A

ab
(θ,θ1) = D−10 {∇θL(θ)−∇θL(θ1)}+D0(θ − θ1).

Proposition 3.1 in Spokoiny (2013) implies due to the conditions (L0) , (ED2) , that the

following random event holds with IP -probability at least 1− e−x for all θ,θ1 ∈ Θ0(r)

and r ≤ r0 :

‖D−10 ∇θIE
ab
A

ab
(θ,θ1)‖ =

∥∥D−10 {∇θL(θ)−∇θL(θ1)}+D0(θ − θ1)
∥∥

≤ 2

3
∆W(r, x), (A.9)

where the deterministic error term ∆W(r, x) is given in (A.2).

Denote the stochastic part of D−10 ∇θA
ab
(θ,θ1) as follows:

Y
ab
(θ,θ1)

def
= D−10 {∇θA

ab
(θ,θ1)−∇θIE

ab
A

ab
(θ,θ1)}

=
n∑
i=1

D−10 {∇θ`i(θ)−∇θ`i(θ1)} (ui − 1).

In order to bound its norm’s supremum w.r.t. θ ∈ Θ0(r) for r ≤ r0 we use the idea from

the proof of Proposition 3.1 in Spokoiny (2013). Let us introduce the new parameters

υ
def
= D0(θ − θ∗) and υ1

def
= D0(θ1 − θ∗) , then

∇υY
ab
(υ,υ1) =

n∑
i=1

D−10 ∇
2
θ`i(θ)D−10 (ui − 1).
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Thus, we obtain a proper normalisation for ∇υY
ab
(υ,υ1) . Independency of u1, . . . , un

and Lemma A.5 imply with probability ≥ 1 − e−x for j = 1, 2 and ω1(r) given in

(A.12):

sup
γj∈IRp

‖γj‖=1

log IE
ab
exp

{
λ

ω1(r)
γ>1 ∇υY

ab
(υ,υ1)γ2

}
≤ λ2ν20

2
, |λ| ≤ g2(r).

This allows to apply Theorem A.3 from Spokoiny (2013) on a uniform bound for the

norm of stochastic process to ω−11 (r)Y
ab
(θ,θ1) . By the triangle inequality it holds for

r ≤ r0 :

IP
ab(

sup
θ,θ1∈Θ0(r)

‖Y
ab
(θ,θ1)‖ ≤ 12ν0rω1(r)Z(x)

)
≥ 1− e−x, (A.10)

where Z(x) is defined in (A.3). Collecting together the bounds (A.8), (A.9) and (A.10)

we obtain that the following bound holds with IP -probability at least 1− e−x :

IP
ab(

sup
θ,θ1∈Θ0(r)

|A
ab
(θ,θ1)| ≤ 4r {∆W(r, x)/3 + 6ν0rω1(r)Z(x)}

)
≥ 1− e−x

for r ≤ r0 .

Theorems A.6 and A.1 say that the maximum likelihood estimators θ̃
ab

and θ̃ get

into the local vicinity Θ0(r0) with exponentially high IP
ab
- and IP -probabilities corre-

spondingly. Therefore, taking θ = θ̃
ab

and θ1 = θ̃ in the last bound, we obtain with

dominating probability:∣∣∣∣L ab
(θ̃

ab
)− L

ab
(θ̃)− (θ̃

ab
− θ̃)>∇θL

ab
(θ̃) +

1

2
‖D0(θ̃

ab
− θ̃)‖2

∣∣∣∣
≤ 4r {∆W(r0, x)/3 + 6ν0r0ω1(r)Z(x)} .

Similarly bounds (A.9) and (A.10) imply:

1

2

∣∣∣‖ξ ab(θ̃)‖2 − 2(θ̃
ab
− θ̃)>∇θL

ab
(θ̃) + ‖D0(θ̃

ab
− θ̃)‖2

∣∣∣
=

1

2

∥∥D−10 ∇θL
ab
(θ̃)−D0(θ̃

ab
− θ̃)

∥∥2
≤ 2 {∆W(r0, x)/3 + 6ν0r0ω1(r)Z(x)}2 . (A.11)

Therefore it holds with IP -probablity at least 1− 4e−x :

IP
ab(∣∣L ab

(θ̃
ab
)− L

ab
(θ̃)− 1

2
‖ξ

ab
(θ̃)‖2

∣∣ ≤ ∆ ab
W 2(r0, x)

)
≥ 1− 4e−x,

∆
ab
W 2(r0, x)

def
= 4r {∆W(r0, x)/3 + 6ν0r0ω1(r)Z(x)}

+ 2 {∆W(r0, x)/3 + 6ν0r0ω1(r)Z(x)}2 .
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For the second bound of the statement we use the similar approach as in Theorem 2.3 in

Spokoiny (2013).

∣∣∣∣∣
√

2
{
L
ab
(θ̃

ab
)− L ab

(θ̃)
}
− ‖D0(θ̃

ab
− θ̃)‖

∣∣∣∣∣
≤

∣∣∣2{L ab
(θ̃

ab
)− L ab

(θ̃)
}
− ‖D0(θ̃

ab
− θ̃)‖2

∣∣∣
‖D0(θ̃

ab
− θ̃)‖

=

∣∣∣2A ab
(θ̃, θ̃

ab
)
∣∣∣

‖D0(θ̃
ab
− θ̃)‖

≤ sup
θ,θ1∈Θ0(r0)

|2A ab
(θ,θ1)|

‖D0(θ − θ1)‖

by (A.7)

≤ sup
θ,θ1∈Θ0(r0)

2
∥∥D−10 ∇θA

ab
(θ,θ1)

∥∥
by (A.9),
(A.10)

≤ 4∆W(r0, x)/3 + 24ν0r0ω1(r)Z(x).

This together with (A.11) imply the final statement.

Lemma A.5 (Check of the bootstrap equivalent of (ED2) ). Conditions (Eb) , (L0m)

and (ED2m) imply for each r > 0 , θ ∈ Θ0(r) , ‖γj‖ = 1 , j = 1, 2 and all |λ| ≤ g2(r)

with probability ≥ 1− e−x :

sup
γj∈IRp

‖γj‖=1

n∑
i=1

log IE
ab
exp

{
λ

ω1(r)
γ>1 D

−1
0 ∇

2
θ`i(θ)D−10 γ2(ui − 1)

}
≤ λ2ν20

2
.

where

ω1(r) = ω1
def
=

Cm(r)√
n

+ 2ων0
√

2x (A.12)

In the case 4.3 it holds for r ≤ r0 ω1(r) = Cr/n+ C
√
x/n .

Proof of Lemma A.5. Introduce the independent random scalar values for i = 1, . . . , n

and j = 1, 2 :

µi(θ,γj)
def
= γ>1 D

−1
0 ∇

2
θ`i(θ)D−10 γ2.
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It holds

n∑
i=1

log IE
ab
exp

{
λ

ω1
γ>1 D

−1
0 ∇

2
θ`i(θ)D−10 γ2(ui − 1)

}

=
n∑
i=1

log IE
ab
exp

{
λ

ω1
µi(θ,γj)(ui − 1)

}

≤ λ2ν20
2ω2

1

n∑
i=1

µ2i (θ,γj), (A.13)

here the inequality (A.13) follows from condition (Eb) if
∣∣λµi(θ,γj)∣∣ ≤ gω1 for all

i = 1, . . . , n , which is true due to the arguments below. Let us consider µi(θ,γj) , for

each θ ∈ Θ0(r) , i = 1, . . . n it holds:

∣∣µi(θ,γj)∣∣ ≤ ‖D−10 ∇
2
θIE`i(θ)D−10 ‖ (A.14)

+ ‖D−10

{
∇2
θ`i(θ)−∇2

θIE`i(θ)
}
D−10 ‖.

Condition (ED2m) , which is a stronger version of (ED2) , implies that for all i =

1, . . . , n , θ ∈ Θ0(r) and each r > 0 it holds with IP -probability ≥ 1− e−x

‖D−10

{
∇2
θ`i(θ)−∇2

θIE`i(θ)
}
D−10 ‖ ≤ 2ων0

(
2x

n

)1/2

. (A.15)

Indeed, by the exponential Chebyshev inequality for λ > 0

IP
(
ω−1‖D−10

{
∇2
θ`i(θ)−∇2

θIE`i(θ)
}
D−10 ‖ ≥ t

)
≤ IE exp

[
−λt+ ω−1λ‖D−10

{
∇2
θ`i(θ)−∇2

θIE`i(θ)
}
D−10 ‖

]
by (ED2m)

≤ exp
{
−λt+ λ2ν20/(2n)

}
, 0 < λ < g2(r)

≤ exp{−x},

here the last inequality holds under the assumption, that g2(r) is large enough. In the

case 4.3 it holds g2(r) = Cn1/2 , ω = Cn−1/2 and x = C log(n) ; t2 := 8ν20x/n implies

λt−λ2ν20/(2n)−x ≥ 0 for 0 < λ < g2(r) . For the deterministic term in (A.14) condition

(L0m) reads as:

‖D−10 ∇
2
θIE`i(θ)D−10 ‖ ≤

Cm(r)

n
. (A.16)
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Collecting the inequalities (A.13), (A.14), (A.15) and (A.16), we obtain:

n∑
i=1

log IE
ab
exp

{
λ

ω1
γ>1 D

−1
0 ∇

2
θ`i(θ)D−10 γ2(ui − 1)

}

≤ λ2ν20
2

1

ω1
2

{
Cm(r)√

n
+ 2ων0

√
2x

}2

Taking ω1 = ω1(r) as in (A.12) implies the necessary statement.

Theorem A.6 (Concentration of bootstrap MLE). Let the conditions of Theorems A.1

and A.8, (L0m) and (ED2m) be fulfilled. If the following holds for ω1(r) defined in

(A.12) and the IP -random matrix B2 def
= D−10 Var

ab {∇θL ab
(θ∗)}D−10

b(r)r ≥ 2
{
Zqf(x, IB) + Zqf(x,B) + 6ν0Z(x)ω1(r0)r0

}
(A.17)

+ 12ν0(ω + ω1(r))Z(x + log(2r/r0)) for r > r0,

then it holds with IP -probability ≥ 1− 3e−x

IP
ab (
θ̃
ab
/∈ Θ0(r0)

)
≤ 3e−x.

Proof of Theorem A.6. We use the idea by Spokoiny (2013): if

supθ∈Θ\Θ0(r0)

{
L(θ) − L(θ∗)

}
< 0 , then θ̃ ∈ Θ0(r0) . We apply it here for the the

bootstrap objects: L
ab
(θ)− L ab

(θ̃) and θ̃
ab
. Denote the stochastic part of the bootstrap

likelihood process as ζ
ab
(θ)

def
= L

ab
(θ)− IE ab

L
ab
(θ) . It holds

L
ab
(θ)− L

ab
(θ̃) = ζ

ab
(θ)− ζ

ab
(θ̃) + IE

ab
L
ab
(θ)− IE

ab
L
ab
(θ̃)

= ζ
ab
(θ)− ζ

ab
(θ̃) + L(θ)− L(θ̃)

=
{
ζ
ab
(θ)− ζ

ab
(θ̃)
}

+
{
L(θ)− L(θ∗)

}
+
{
L(θ∗)− L(θ̃)

}
.

Here the last summand
{
L(θ∗) − L(θ̃)

}
is non-positive by definition (1.2) of θ̃ . The

following bound follows from the proof of Theorem 2.1 in Spokoiny (2013):

IP

(
sup

θ∈Θ\Θ0(r0)

{
L(θ)− L(θ∗)

}
< %(r, x)r + rZqf(x, IB)− r2b(r)/2

)
≥ 1− 3e−x,

%(r, x)
def
= 6ν0Z(x + log(2r/r0))ω.

Due to Lemma A.5 the process ζ
ab
(θ)− ζ ab

(θ̃) satisfies the necessary conditions of The-

orem A.1 in Spokoiny (2013), and it holds for r ≥ r0

IP
ab(

sup
θ∈Θ0(r)

∣∣∣ζ ab
(θ)− ζ

ab
(θ̃)− (θ − θ̃)>∇θζ

ab
(θ̃)
∣∣∣ ≤ %1(r, x)r

)
≥ 1− e−x,

%1(r, x)
def
= 6ν0Z(x + log(2r/r0))ω1(r).
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By Lemma A.7 and Theorem A.8 it holds with dominating probability

sup
θ∈Θ0(r)

∣∣∣(θ − θ̃)>∇θζ
ab
(θ̃)
∣∣∣ ≤ r‖ξ

ab
(θ̃)‖

≤ r
{
‖ξ

ab
(θ∗)‖+ ‖ξ

ab
(θ̃)− ξ

ab
(θ∗)‖

}
≤ r

{
Zqf(x,B) + 6ν0Z(x)ω1(r0)r0

}
.

Finally we have:

sup
θ∈Θ\Θ0(r0)

{
L
ab
(θ)− L

ab
(θ̃)
}
≤ sup
θ∈Θ\Θ0(r0)

{
L(θ)− L(θ∗)

}
+ sup
θ∈Θ0(r),
r≥r0

{
ζ
ab
(θ)− ζ

ab
(θ̃)
}

≤ rZqf(x,B) + rZqf(x, IB) + %1(r, x)r

+ %(r, x)r− r2b(r)/2 + 6ν0Z(x)ω1(r0)rr0,

which implies the condition (A.17) in the statement.

Remark A.1. Condition (A.17) imposed for the bootstrap MLE concentration result is

stronger, than condition (A.1) for the concentration of Y - MLE, and (A.17) implies the

latter one.

The following lemma had already been derived in the proof of Theorem A.4: see the

bound (A.10). We formulate it separately, since it is used again in another statements.

Lemma A.7. Let the conditions of Lemma A.5 be fulfilled, then it holds with IP -

probability ≥ 1− e−x

IP
ab(

sup
θ∈Θ0(r)

‖ξ
ab
(θ)− ξ

ab
(θ∗)‖ ≤ ∆

ab
ξ (r, x)

)
≥ 1− e−x,

where

∆
ab
ξ (r, x)

def
= 6ν0Z(x)ω1(r)r

In the case 4.3 it holds for the bounding term.

∆
ab
ξ (r0, x) ≤ C

p+ x√
n

√
x.

Theorem A.8 (Deviation bound for the bootstrap quadratic form). Let conditions

(Eb) , (I) , (SD1) , (IB) be fulfilled, then for g ≥
√

2 tr(B2) it holds:

IP
ab (
‖ξ

ab
(θ∗)‖2 ≤ Z2

qf(x,B)
)
≥ 1− 2e−x − 8.4e−xc(B),
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where

B2 def
= D−10 V

2(θ∗)D−10 , V2(θ∗) def
= Var

ab
∇θL

ab
(θ∗), (A.18)

Zqf(x, ·) and xc(·) are defined respectively in (A.4) and (A.5). Similarly to (A.6) it holds

for x ≤ xc(B) :

Z2
qf(x,B) ≤ a

ab2(p+ 6x) (A.19)

for a
ab2 def

= (1 + δ2V)(a2 + a2B).

Proof of Theorem A.8. This result is the bootstrap equivalent of Theorem A.3. For the

Y -world it demands condition (ED0) to be fulfilled. Let us check whether the bootstrap

equivalent of (ED0) holds. It reads as follows: there exist constants g
ab
> 0, ν

ab
0 ≥ 1

such that for the positive-definite symmetric matrix V2(θ∗) it holds for all |λ| ≤ g
ab

sup
γ∈IRp

log IE
ab
exp

{
λ
γ> {∇θL

ab
(θ∗)−∇θIE

ab
L
ab
(θ∗)}

‖V(θ∗)γ‖

}
≤ ν

ab
0
2λ2/2.

By definition V2(θ∗) =
n∑
i=1
∇θ`i(θ∗)∇θ`i(θ∗)> . Let us introduce the independent IP -

random variables si(γ)
def
= γ>∇θ`i(θ∗)/‖V(θ∗)γ‖ for i = 1, . . . , n . It holds

∑n
i=1 s

2
i (γ) =

1 , hence max1≤i≤n |si| ≤ 1 . Condition (Eb) implies:

log IE
ab
exp

{
λ
γ> {∇θL

ab
(θ∗)−∇θIE

ab
L
ab
(θ∗)}

‖V(θ∗)γ‖

}

=
n∑
i=1

log IE
ab
exp {λsi(γ)(ui − 1)}

≤ ν0
2λ2

2

n∑
i=1

s2i (γ) = ν0
2λ2/2, |λ| ≤ g.

Thus the bootstrap equivalent for the condition (ED0) is fulfilled with the same con-

stants ν0, g , and the theorem’s statements holds as well as for Theorem A.3.

The inequality (A.19) follows from conditions (I) , (IB) , (SD1) and Bernstein

matrix inequality by Tropp (2012) (see Section A.6):

‖D−10 V
2
0 (θ∗)D−10 ‖ ≤ ‖D

−1
0 H0‖2(1 + δ2V) ≤ (1 + δ2V)(a2 + a2B).
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A.3 Proofs of Theorems 2.1 and 2.3

In order to justify theoretically the multiplier bootstrap procedure it has to be shown

that the approximating terms ‖ξ‖ and ‖ξ ab(θ̃)‖ from the Wilks Theorems A.2 and A.4

have nearly the same distributions. By Lemma A.7 the random values ‖ξ ab(θ∗)‖ and

‖ξ ab(θ̃)‖ are close to each other within the error term ≤ C(p+x)
√
x/n with exponentially

high probability, therefore, it is sufficient to compare the distributions of ‖ξ ab(θ∗)‖ and

‖ξ‖ . This is done in Proposition A.9 using the results on Gaussian approximation for

Euclidean norms from Section 5.

Let us introduce the multivariate normal vectors similarly to (5.3):

ξ ∼ N (0,Var ξ), ξ
ab
(θ∗) ∼ N (0,Var

ab
{ξ

ab
(θ∗)}). (A.20)

Let us also represent the vectors ξ and ξ
ab
(θ∗) as sums of the marginal score vectors ξi

and ξ
ab
i (θ∗) s.t. IEξi = IE

ab
ξ
ab
i = 0 :

ξi
def
= D−10 {∇θ`i(θ

∗)−∇θIE`i(θ∗)} ,

ξ
ab
i (θ∗)

def
= D−10 ∇θ`i(θ

∗){ui − 1}.

Their Gaussian analogs are

ξi ∼ N (0,Var ξi) and ξ
ab
i ∼ N (0,Var

ab
{ξ

ab
i (θ∗)}).

Similarly to (5.4) denote

δn
def
=

1

2

n∑
i=1

IE
(
‖ξi‖3 + ‖ξi‖3

)
,

δ̆n
def
=

1

2

n∑
i=1

IE
ab (
‖ξ

ab
i (θ∗)‖3 + ‖ξ

ab
i (θ∗)‖3

)
.

(A.21)

Proposition A.9 (Closeness of the c.d.f. of ‖ξ‖ and ‖ξ ab(θ∗)‖ ). If conditions (SmB)

and (SD1) are fulfilled, then it holds with probability ≥ 1 − e−x for all 0 < ∆ ≤ 0.22

and for all z, z > 2 s.t. |z − z| ≤ δz for some δz ≥ 0 :∣∣∣IP (‖ξ‖ ≥ z)− IP
ab
(‖ξ

ab
(θ∗)‖ ≥ z)

∣∣∣
≤ 16∆−3

(
δn + δ̆n

)
+

2∆+ δz
z

√
p

2
+

√
p

2

δ2V(x) + δ2smb

1− δ2V(x)

≤ 16∆−3
(
δn + δ̆n

)
+

2∆+ δz√
2

+
2
√
p

3

(
δ2V(x) + δ2smb

)
for z ≥ √p, δ2V(x) ≤ 1/4.
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Moreover, if z, z ≥ max{2,√p} and max{δ1/4n , δ̆
1/4
n } ≤ 0.11 , then

|IP (‖ξ‖ ≥ z)− IP
ab
(‖ξ

ab
(θ∗)‖ ≥ z)|

≤ 1.55
(
δ1/4n + δ̆1/4n

)
+

δz√
2

+
2
√
p

3

(
δ2V(x) + δ2smb

)
. (A.22)

Proof of Proposition A.9. We use Theorem 5.1 taking φ := ξ and ψ := ξ
ab
(θ∗) . Let us

check that the conditions (5.5) on the covariance matrices are fulfilled. By definitions

(1.7), (1.8) and (A.18)

Var ξ = D−10 H2
0D
−1
0 −D

−1
0 B2

0D
−1
0 ,

Var
ab
{ξ

ab
(θ∗)} = D−10 V

2(θ∗)D−10 .

Due to Theorem A.13 by Tropp (2012) (see Section A.6) it holds with probability ≥
1− e−x

‖H−10 V
2(θ∗)H−10 − Ip‖ ≤ δ2V(x), (A.23)

therefore, by Cauchy-Schwarz inequality

‖V−1(θ∗)H2
0V−1(θ∗)− Ip‖ ≤ δ2V(x)(1− δ2V(x))−1.

Condition (SmB) says that ‖H−10 B2
0H
−1
0 ‖ ≤ δ2smb , therefore, by the triangle inequality

it holds:

∥∥∥[Var
ab
{ξ

ab
(θ∗)}

]−1/2
Var{ξ}

[
Var

ab
{ξ

ab
(θ∗)}

]−1/2 − Ip∥∥∥ ≤ δ2V(x) + δ2smb

1− δ2V(x)

≤ 1/2

for δ2smb ≤ 1/8, δ2V(x) ≤ 1/4.

Now we are ready to collect all the obtained bounds together for the following
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Proof of Theorem 2.1. On a random set of probability ≥ 1− 12e−x it holds:

α
(Def. (2.3))

= IP
ab(√

2
{
L
ab
(θ̃

ab
)− L ab

(θ̃)
}
> z

ab
α

)
(Th.A.4)

≥ IP
ab (
‖ξ

ab
(θ̃)‖ > z

ab
α +∆

ab
W(r0, x)

)
(L.A.7)

≥ IP
ab (
‖ξ

ab
(θ∗)‖ > z

ab
α +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

)
(A.24)

(Prop.A.9)

≥ IP (‖ξ‖ > z
ab
α −∆W(r0, x))−∆full

(Th.A.2)

≥ IP

(√
2
{
L(θ̃)− L(θ∗)

}
> z

ab
α

)
−∆full, (A.25)

where the value ∆full comes from the bound (A.22) with δz := ∆W(r0, x) +∆
ab
W(r0, x) +

∆
ab
ξ (r0, x) :

∆full
def
= 1.55

(
δ1/4n + δ̆1/4n

)
+

2
√
p

3

(
δ2V(x) + δ2smb

)
+
{
∆W(r0, x) +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

}
/
√

2

(A.26)

By the similar arguments in the inverse direction we obtain the following inequality:∣∣∣IP(√2
{
L(θ̃)− L(θ∗)

}
> z

ab
α

)
− α

∣∣∣ ≤ ∆full.

Notice that inequality (A.22) from Proposition A.9, that we use here, requires max{δ1/4n , δ̆
1/4
n } ≤

0.11 .

Let us quantify, how the error term ∆full depends on p and n . In the case 4.3

random vectors ξi and ξ
ab
i (θ∗) satisfy the conditions of Theorems A.3 and A.8 corre-

spondingly. Hence ‖ξi‖, ‖ξ
ab
i (θ∗)‖ ≤ C

√
(p+ x)/n and δn, δ̆n ≤ C

√
(p+ x)3/n . Finally

we have in the case 4.3

∆full = C

{
(p+ x)3

n

}1/8

+ C
p+ x√
n

√
x + C

p+ x√
n
. (A.27)

Remark A.2. It is clear from expression (A.27), that the impact of the error term,

induced by the Gaussian approximation, is the biggest. The requirement for the ratio

(p+x)3/n to be small is imposed by our Gaussian approximation results (see also Remark

5.2 about the multivariate GAR).

Let us introduce for p = 1 similarly to (5.6) and (A.21)

δn,B.E.

def
=

n∑
i=1

IE|ξi|3, δ̆n,B.E.

def
=

n∑
i=1

IE
ab
|ξ

ab
i (θ∗)|3.
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Proof of Theorem 2.3. On a random set of probability ≥ 1− 12e−x it holds:

α
(Def. (2.3))

= IP
ab(√

2
{
L
ab
(θ̃

ab
)− L ab

(θ̃)
}
> z

ab
α

)
(Th.A.4)

≥ IP
ab (
‖ξ

ab
(θ̃)‖ > z

ab
α +∆

ab
W(r0, x)

)
(L.A.7)

≥ IP
ab (
‖ξ

ab
(θ∗)‖ > z

ab
α +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

)
(L. 5.2,Prop.A.9)

≥ IP (‖ξ‖ > z
ab
α −∆W(r0, x))−∆B.E., full

(Th.A.2)

≥ IP

(√
2
{
L(θ̃)− L(θ∗)

}
> z

ab
α

)
−∆B.E., full,

where the value ∆B.E., full comes from the bound (5.8) with δz := ∆W(r0, x)+∆
ab
W(r0, x)+

∆
ab
ξ (r0, x) , C0 ∈ [0.4097, 0.560] and

Var
ab
{ξ

ab
(θ∗)} ≥ {1− δ2V(x)}IEVar

ab
{ξ

ab
(θ∗)}

≥ 3

4
D−10 H2

0D
−1
0 for δ2V(x) ≤ 1/4

with probability ≥ 1− e−x (due to the bound (A.23)):

∆B.E., full
def
= 2C0

{
δn,B.E.

(Var ξ)3/2
+

δ̆n,B.E.

(IEVar
ab{ξ ab(θ∗)})3/2

(
2√
3

)3
}

(A.28)

+
1√
2

{
∆W(r0, x) +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

}
+

2

3

{
δ2V(x) + δ2ξ

}
≤ C

1 + x√
n

in the case 4.3.

The similar inequalities in the inverse direction finish the proof with the error term

A.4 Proof of Theorem 2.4 (large modeling bias)

Lemma A.10 (Lower bound for deviations of a Gaussian quadratic form). Let φ ∼
N (0, Ip) and Σ is any symmetric non-negative definite matrix, then it holds for any

x > 0

IP
(

trΣ − ‖Σ1/2φ‖2 ≥ 2
√
x tr(Σ2)

)
≤ exp(−x).

Proof of Lemma A.10. It is sufficient to consider w.l.o.g. only the case of diagonal matrix

Σ , since it can be represented as Σ = U> diag{a1, . . . , ap}U for an orthogonal matrix

U and the eigenvalues a1 ≥ · · · ≥ ap ; Uφ ∼ N (0, Ip) .
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By the exponential Chebyshev inequality it holds for µ > 0 , ∆ > 0

IP
(

trΣ − ‖Σ1/2φ‖2 ≥ ∆
)
≤ exp(−µ∆/2)IE exp

(
µ
{

trΣ − ‖Σ1/2φ‖2
}
/2
)
.

log IE exp
(
µ
{

trΣ − ‖Σ1/2φ‖2
}
/2
)
≤ 1

2

p∑
j=1

{µaj − log(1 + ajµ)} ,

therefore

IP
(

trΣ − ‖Σ1/2φ‖2 ≥ ∆
)
≤ exp

−1

2

µ∆+

p∑
j=1

{log(1 + ajµ)− µaj}


≤ exp

−1

2

µ∆− µ2 p∑
j=1

a2j/2


≤ exp

−∆2/

4

p∑
j=1

a2j


 .

If x := ∆2/
{

4
∑p

i=1 a
2
j

}
, then ∆ = 2

√
x
∑p

j=1 a
2
j .

Proof of Theorem 2.4. Due to the bound (A.24) it holds for z ≥ max{2,√p} + C(p +

x)/
√
n with probability ≥ 1− 5e−x

IP
ab(√

2
{
L
ab
(θ̃

ab
)− L ab

(θ̃)
}
> z

)
≥ IP

ab (
‖ξ

ab
(θ∗)‖ > z +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

)
.

Let us introduce the random vector ξ0
def
= (D−10 H2

0D
−1
0 )1/2(Var ξ)−1/2ξ . The bound

(A.23) implies with probability ≥ 1− e−x

tr

{(
(Var ξ0)

−1/2 Var
ab
{ξ

ab
(θ∗)} (Var ξ0)

−1/2 − Ip
)2}

≤ pδ4V(x). (A.29)

Applying statement 2.2 of Theorem 5.1 to the vectors ξ
ab
(θ∗) and ξ0 , we have with

probability ≥ 1− e−x

IP
ab (
‖ξ

ab
(θ∗)‖ > z +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

)
≥ IP (‖ξ0‖ > z−∆W(r0, x))−∆b, full

where

∆b, full
def
= 1.55

(
δ1/4n + δ̆1/4n

)
+

√
p

2
δ2V(x)

+
∆W(r0, x) +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

√
2

.

(A.30)
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By the definition of ξ0 it holds ‖ξ0‖ ≥ ‖ξ‖‖(Var ξ)1/2(D−10 H2
0D
−1
0 )−1/2‖−1 . Consider

the following matrix

Ṽ 2 def
= (D−10 H2

0D
−1
0 )−1/2(Var ξ)(D−10 H2

0D
−1
0 )−1/2

= (D−10 H2
0D
−1
0 )1/2

(
D0H

−2
0 V 2

0 H
−2
0 D0

)
(D−10 H2

0D
−1
0 )1/2

≤ (D−10 H2
0D
−1
0 )1/2

(
D0H

−2
0 D0

)
(D−10 H2

0D
−1
0 )1/2 (A.31)

= Ip,

here V 2
0

def
= Var{∇θL(θ∗)} ; the inequality (A.31) holds due to the definitions (1.7), (1.8)

and V 2
0 = H2

0 −B2
0 > 0 . Therefore ‖Ṽ 2‖ ≤ 1 and ‖ξ0‖ ≥ ‖ξ‖ . By (A.25)

IP
ab(√

2
{
L
ab
(θ̃

ab
)− L ab

(θ̃)
}
> z

)
≥ IP (‖ξ‖ > z−∆W(r0, x))−∆b, full

≥ IP

(√
2
{
L(θ̃)− L(θ∗)

}
> z

)
−∆b, full

with probability ≥ 1− 12e−x , which finishes the proof of the first part. For the second

part let us introduce ξ0 ∼ N (0, D−10 H2
0D
−1
0 ) s.t. Var ξ0 = Var ξ0 . Applying statement

2.1 of Theorem 5.1 to the vectors ξ
ab
(θ∗) and ξ0 , using the bound (A.29), we have with

probability ≥ 1− e−x

IP
ab (
‖ξ

ab
(θ∗)‖ > z +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

)
≥ IP

(
‖ξ0‖ > z

)
−∆G,1,

where

∆G,1
def
= 1.55δ̆1/4n +

∆
ab
W(r0, x) +∆

ab
ξ (r0, x)

√
2

+

√
p

2
δ2V(x).

By definition (A.20) ξ ∼ N (0,Var ξ) . Lemma A.10 and Theorem 1.2 by Spokoiny

(2012b) imply

IP
(
‖ξ‖ − ‖ξ0‖ ≥

√
tr(Var ξ)−

√
tr(Var ξ0) +∆qf,1

)
≤ 2e−x, (A.32)

IP
(
‖ξ‖ − ‖ξ0‖ ≤

√
tr(Var ξ)−

√
tr(Var ξ0)−∆qf,2

)
≤ 2e−x,
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where

∆qf,1
def
=
[
4x tr{(Var ξ0)

2}
]1/4

+ max
[
2
√

2x tr{(Var ξ)2}, 6x‖Var ξ‖
]1/2

,

∆qf,2
def
=
[
4x tr{(Var ξ)2}

]1/4
+ max

[
2

√
2x tr{(Var ξ0)

2}, 6x‖Var ξ0‖
]1/2

.

(A.33)

By conditions (I) , (IB)

∆qf,1 ≤
{√

4xp(a2 + a2B)
}1/2

+ amax
{√

8xp, 6x
}1/2

,

∆qf,2 ≤
{

4xpa4
}1/4

+
√
a2 + a2B max

{√
8xp, 6x

}1/2
.

(A.34)

Further, it holds on a random set with probability ≥ 1− 2e−x

IP
(
‖ξ0‖ > z

)
−∆G,1

= IP
(
‖ξ‖ > z + ‖ξ‖ − ‖ξ0‖

)
−∆G,1

(by (A.32))

≥ IP

(
‖ξ‖ > z +

√
tr(Var ξ)−

√
tr(Var ξ0) +∆qf,1

)
−∆G,1

(Th. 5.1)

≥ IP

(
‖ξ‖ > z−∆W(r0, x) +

√
tr(Var ξ)−

√
tr(Var ξ0) +∆qf,1

)
−∆G,1 −∆G,2

(Th.A.2)

≥ IP

(√
2
{
L(θ̃)− L(θ∗)

}
> z +

√
tr(Var ξ)−

√
tr(Var ξ0) +∆qf,1

)
−∆b, full,

where

∆G,2
def
= 1.55δ1/4n +

∆W(r0, x)√
2

,

∆b, full = ∆G,1 +∆G,2.

Hence, we obtain

IP
ab(√

2
{
L
ab
(θ̃

ab
)− L ab

(θ̃)
}
> z

)

≥ IP

(√
2
{
L(θ̃)− L(θ∗)

}
> z +

√
tr(Var ξ)−

√
tr(Var ξ0) +∆qf,1

)
−∆b, full.
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By definition (2.2) of (1− α) -quantile zα it holds:

z(α+∆b, full) ≤ z
ab
α +

√
tr(Var ξ)−

√
tr(Var ξ0) +∆qf,1,

and in addition √
tr(Var ξ)−

√
tr(Var ξ0) ≤ −

tr(D−10 B2
0D
−1
0 )

2
√

tr(D−10 H2
0D
−1
0 )
≤ 0.

The inverse inequalities are implied with the similar arguments:

IP
ab(√

2
{
L
ab
(θ̃

ab
)− L ab

(θ̃)
}
> z

)

≤ IP

(√
2
{
L(θ̃)− L(θ∗)

}
> z +

√
tr(Var ξ)−

√
tr(Var ξ0)−∆qf,2

)
+∆b, full.

And

z(α−∆b, full) ≥ z
ab
α +

√
tr(Var ξ)−

√
tr(Var ξ0)−∆qf,2.

A.5 Proof of Theorem 2.5 (the smoothed version)

Lemma A.11. For the function g∆(x, z) defined in (2.6), all ∆1 ∈ [0, x] and all C ≥ 1

it holds

g∆(x−∆1, z) ≥ g∆(x, z +∆1C)

Proof of Lemma A.11. By definition (5.9) of g(x)

max
x≥0
{g∆(x−∆1, z) = 0} = z +∆1,

max
x≥0
{g∆(x, z +∆1C) = 0} = z +∆1C.

For x ≥ z +∆1C it holds

g∆(x−∆1, z) = g

(
1

2∆z

{
(x−∆1)

2 − z2
})

≥ g

(
1

2∆(z +∆1C)

{
x2 − (z +∆1C)2

})
(A.35)

= g∆(x, z +∆1C).
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Indeed, the comparison in (A.35) reads as

(z +∆1C)(x−∆1 + z)(x−∆1 − z) (A.36)

∨ z(x+ z +∆1C)(x− z −∆1C).

Since C ≥ 1 , (x−∆1 − z) ≥ (x−∆1C − z) and it holds for the left side of (A.36):

(z +∆1C)(x−∆1 + z) = (zx+ z2 + 2∆1C) +∆1(xC −∆1C − z)

≥ (zx+ z2 + 2∆1C),

which is equal to the multiplier z(x+∆1C + z) in right side.

Proposition A.12 (Smooth analog of Proposition A.9). If conditions (SmB) and

(SD1) are fulfilled, then it holds for all 0 < ∆ ≤ 0.22 and for all z, z > 2 s.t.

|z − z| ≤ δz for some δz ∈ [0, 1] with probability ≥ 1− e−x :∣∣∣IEg∆ (‖ξ‖, z)− IE
ab
g∆ (‖ξ

ab
(θ∗)‖, z)

∣∣∣
≤ 16

∆3

(
δn + δ̆n

)
+ 2
√
p
δz
z

+
√
p
δ2z
z2

+
√
p
δ2V(x) + δ2smb

1− δ2V(x)

≤ 16

∆3

(
δn + δ̆n

)
+
√

5δz +
4
√
p

3

{
δ2V(x) + δ2smb

}
(A.37)

for z ≥ √p, δ2V(x) ≤ 1/4.

Proof of Proposition A.12. The conditions of Theorem 5.5 are fulfilled with the value

δΣ =
√
p
{
δ2V(x) + δ2smb

}
/
{

1− δ2V(x)
}

due to the proof of Proposition A.9.

Proof of Theorem 2.5. The following holds on a random set of probability ≥ 1− 12e−x :

IE
ab
g∆

(√
2
{
L
ab
(θ̃

ab
)− L ab

(θ̃)
}
, z

)
(Th.A.4)

≥ IE
ab
g∆

(
‖ξ

ab
(θ̃)‖ −∆

ab
W(r0, x), z

)
(L.A.7)

≥ IE
ab
g∆
(
‖ξ

ab
(θ∗)‖ −∆

ab
W(r0, x)−∆

ab
ξ (r0, x), z

)
(L.A.11)

≥ IE
ab
g∆
(
‖ξ

ab
(θ∗)‖, z +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

)
(Prop.A.12)

≥ IEg∆ (‖ξ‖, z−∆W(r0, x))−∆sm

(Th.A.2, L.A.11)

≥ IEg∆

(√
2
{
L(θ̃)− L(θ∗)

}
, z

)
−∆sm,
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where the term ∆sm comes from (A.37) with δz := ∆W(r0, x) +∆
ab
W(r0, x) +∆

ab
ξ (r0, x) :

∆sm
def
=

16

∆3

(
δn + δ̆n

)
+

4
√
p

3

{
δ2V(x) + δ2smb

}
+
√

5
{
∆W(r0, x) +∆

ab
W(r0, x) +∆

ab
ξ (r0, x)

}
.

(A.38)

By the similar inequalities in the inverse direction we get the statement proved. Due to

the arguments in the end of the proof of Theorem 2.1 it holds in the case 4.3

∆sm = C
1

∆3

{(p+ x)3

n

}1/2
+ C

p+ x√
n

√
x + C

p+ x√
n
. (A.39)

A.6 Bernstein matrix inequality

Consider the following symmetric p× p IP -random matrix and its expected value:

V2(θ∗) def
= Var

ab
(∇θL

ab
(θ∗)) =

n∑
i=1

∇θ`i(θ∗)∇θ`i(θ∗)>,

H2
0

def
= IEV2(θ∗) =

n∑
i=1

IE
[
∇θ`i(θ∗)∇θ`i(θ∗)>

]
.

Matrix V2(θ∗) equals to a sum of the independent random matrices ∇θ`i(θ∗)∇θ`i(θ∗)> .

Assuming the condition (SD1) to be fulfilled, we can refer to the result by Tropp

(2012) in order to get the concentration bound below. Let us previously introduce some

notations.

v2i (θ)
def
= H−10

{
∇θ`i(θ)∇θ`i(θ)> − IE

[
∇θ`i(θ)∇θ`i(θ)>

]}
H−10 ,

then

H−10 V
2(θ∗)H−10 =

n∑
i=1

v2i (θ
∗).

Define also

κ2
v

def
=
∥∥∥ n∑
i=1

IEv4i (θ
∗)
∥∥∥.

Theorem A.13 (Bernstein inequality for V2(θ∗) ). Let the condition (SD1) be fulfilled,

then it holds with probability ≥ 1− e−x :

‖H−10 V
2(θ∗)H−10 − Ip‖ ≤ δ2V(x),
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where the error term is defined as

δ2V(x)
def
=
√

2κ2
v {log(p) + x}+

2

3
δ2v {log(p) + x}

and is proportional to
√
{log(p) + x}/n in the case 4.3.

Proof. Due to Theorem 1.4 by Tropp (2012):

IP
(
‖H−10 V

2(θ∗)H−10 − Ip‖ ≥ t
)
≤ p exp

(
−t2

2κ2
v + 2δ2vt/3

)
.

For

x =
t2

2κ2
v + 2δ2vt/3

− log(p)

it holds:

IP
(
‖H−10 V

2(θ∗)H−10 − Ip‖ ≥ δ
2
V(x)

)
≤ e−x.

References

Aerts, M. and Claeskens, G. (2001). Bootstrap tests for misspecified models, with applica-

tion to clustered binary data. Computational statistics & data analysis, 36(3):383–401.

Arlot, S., Blanchard, G., and Roquain, E. (2010). Some nonasymptotic results on resam-

pling in high dimension. I. Confidence regions. Ann. Statist., 38(1):51–82.

Barbe, P. and Bertail, P. (1995). The weighted bootstrap, volume 98. Springer.

Bentkus, V. (2003). On the dependence of the Berry–Esseen bound on dimension. Journal

of Statistical Planning and Inference, 113(2):385–402.

Berry, A. C. (1941). The accuracy of the Gaussian approximation to the sum of inde-

pendent variates. Transactions of the american mathematical society, 49(1):122–136.

Bhattacharya, R. and Holmes, S. (2010). An exposition of Götze’s estimation of the rate of

convergence in the multivariate central limit theorem. arXiv preprint arXiv:1003.4254.

Chatterjee, S. and Bose, A. (2005). Generalized bootstrap for estimating equations. The

Annals of Statistics, 33(1):414–436.

Chen, L. H. and Fang, X. (2011). Multivariate normal approximation by Stein’s method:

The concentration inequality approach. arXiv preprint arXiv:1111.4073.



50 Bootstrap confidence sets under model misspecification

Chen, X. and Pouzo, D. (2009). Efficient estimation of semiparametric conditional mo-

ment models with possibly nonsmooth residuals. Journal of Econometrics, 152(1):46–

60.

Chen, X. and Pouzo, D. (2014). Sieve Wald and QLR Inferences on semi/nonparametric

conditional moment models.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2013). Gaussian approximations and

multiplier bootstrap for maxima of sums of high-dimensional random vectors. The

Annals of Statistics, 41(6):2786–2819.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of

Statistics, 7(1):1–26.

Esseen, C.-G. (1942). On the Liapounoff limit of error in the theory of probability.

Almqvist & Wiksell.

Esseen, C. G. (1956). A moment inequality with an application to the central limit

theorem. Scandinavian Actuarial Journal, 1956(2):160–170.

Götze, F. (1991). On the rate of convergence in the multivariate CLT. The Annals of

Probability, pages 724–739.

Götze, F. and Zaitsev, A. Y. (2014). Explicit rates of approximation in the CLT for

quadratic forms. The Annals of Probability, 42(1):354–397.

Hall, A. R. (2005). Generalized method of moments. Oxford University Press Oxford.

Hall, P. (1992). The bootstrap and Edgeworth expansion. Springer.

Horowitz, J. L. (2001). The bootstrap. Handbook of econometrics, 5:3159–3228.

Huber, P. (1967). The behavior of maximum likelihood estimates under nonstandard

conditions. Proc. 5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, 1,

221-233 (1967).

Janssen, A. and Pauls, T. (2003). How do bootstrap and permutation tests work? Annals

of statistics, pages 768–806.

Kline, P. and Santos, A. (2012). Higher order properties of the wild bootstrap under

misspecification. Journal of Econometrics, 171(1):54–70.

Lavergne, P. and Patilea, V. (2013). Smooth minimum distance estimation and test-

ing with conditional estimating equations: uniform in bandwidth theory. Journal of

Econometrics, 177(1):47–59.



spokoiny, v. and zhilova, m. 51

Lindeberg, J. W. (1922). Eine neue Herleitung des Exponentialgesetzes in der

Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 15(1):211–225.

Ma, S. and Kosorok, M. R. (2005). Robust semiparametric M-estimation and the

weighted bootstrap. Journal of Multivariate Analysis, 96(1):190–217.

Mammen, E. (1992). When does bootstrap work?, volume 77. Springer.

Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models.

The Annals of Statistics, pages 255–285.

Newton, M. A. and Raftery, A. E. (1994). Approximate bayesian inference with the

weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B

(Methodological), pages 3–48.

Prokhorov, Y. V. and Ulyanov, V. V. (2013). Some approximation problems in statistics

and probability. In Limit Theorems in Probability, Statistics and Number Theory,

pages 235–249. Springer.

Shevtsova, I. (2010). An improvement of convergence rate estimates in the Lyapunov

theorem. In Doklady Mathematics, volume 82, pages 862–864. Springer.

Spokoiny, V. (2012a). Parametric estimation. Finite sample theory. The Annals of

Statistics, 40(6):2877–2909.

Spokoiny, V. (2012b). Supplement to “Parametric estimation. Finite sample theory”.

Spokoiny, V. (2013). Bernstein-von Mises Theorem for growing parameter dimension.

arXiv preprint arXiv:1302.3430.

Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Foundations

of Computational Mathematics, 12(4):389–434.

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York.

van ver Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical

processes. Springer, New York.

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing

composite hypotheses. The Annals of Mathematical Statistics, 9(1):60–62.

Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression

analysis. The Annals of Statistics, 14(4):1261–1295+.



 
 
 
 

SFB 649 Discussion Paper Series 2014 

 
For a complete list of Discussion Papers published by the SFB 649, 

please visit http://sfb649.wiwi.hu-berlin.de. 
 

 
 
001 "Principal Component Analysis in an Asymmetric Norm" by Ngoc Mai 

Tran, Maria Osipenko and Wolfgang Karl Härdle, January 2014. 

002 "A Simultaneous Confidence Corridor for Varying Coefficient Regression 

with Sparse Functional Data" by Lijie Gu, Li Wang, Wolfgang Karl Härdle 

and Lijian Yang, January 2014. 

003 "An Extended Single Index Model with Missing Response at Random" by 

Qihua Wang, Tao Zhang, Wolfgang Karl Härdle, January 2014. 

004 "Structural Vector Autoregressive Analysis in a Data Rich Environment: 

A Survey" by Helmut Lütkepohl, January 2014. 

005 "Functional stable limit theorems for efficient spectral covolatility 

estimators" by Randolf Altmeyer and Markus Bibinger, January 2014. 

006 "A consistent two-factor model for pricing temperature derivatives" by 

Andreas Groll, Brenda López-Cabrera and Thilo Meyer-Brandis, January 

2014. 

007 "Confidence Bands for Impulse Responses: Bonferroni versus Wald" by 

Helmut Lütkepohl, Anna Staszewska-Bystrova and Peter Winker, January 

2014. 

008 "Simultaneous Confidence Corridors and Variable Selection for 

Generalized Additive Models" by Shuzhuan Zheng, Rong Liu, Lijian Yang 

and Wolfgang Karl Härdle, January 2014. 

009 "Structural Vector Autoregressions: Checking Identifying Long-run 

Restrictions via Heteroskedasticity" by Helmut Lütkepohl and Anton 

Velinov, January 2014. 

010 "Efficient Iterative Maximum Likelihood Estimation of High-

Parameterized Time Series Models" by Nikolaus Hautsch, Ostap Okhrin 

and Alexander Ristig, January 2014. 

011 "Fiscal Devaluation in a Monetary Union" by Philipp Engler, Giovanni 

Ganelli, Juha Tervala and Simon Voigts, January 2014. 

012 "Nonparametric Estimates for Conditional Quantiles of Time Series" by 

Jürgen Franke, Peter Mwita and Weining Wang, January 2014. 

013 "Product Market Deregulation and Employment Outcomes: Evidence 

from the German Retail Sector" by Charlotte Senftleben-König, January 

2014. 

014 "Estimation procedures for exchangeable Marshall copulas with 

hydrological application" by Fabrizio Durante and Ostap Okhrin, January 

2014. 

015 "Ladislaus von Bortkiewicz - statistician, economist, and a European 

intellectual" by Wolfgang Karl Härdle and Annette B. Vogt, February 

2014. 

016 "An Application of Principal Component Analysis on Multivariate Time-

Stationary Spatio-Temporal Data" by Stephan Stahlschmidt, Wolfgang 

Karl Härdle and Helmut Thome, February 2014. 

017 "The composition of government spending and the multiplier at the Zero 

Lower Bound" by Julien Albertini, Arthur Poirier and Jordan Roulleau-

Pasdeloup, February 2014. 

018 "Interacting Product and Labor Market Regulation and the Impact of 

Immigration on Native Wages" by Susanne Prantl and Alexandra Spitz-

Oener, February 2014. 

 
 

 
 

 

SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 

SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 



  SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 

SFB 649 Discussion Paper Series 2014 

 

For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

 
 
019 "Unemployment benefits extensions at the zero lower bound on nominal 

interest rate" by Julien Albertini and Arthur Poirier, February 2014. 

020 "Modelling spatio-temporal variability of temperature" by Xiaofeng Cao, 

Ostap Okhrin, Martin Odening and Matthias Ritter, February 2014. 

021 "Do Maternal Health Problems Influence Child's Worrying Status? 

Evidence from British Cohort Study" by Xianhua Dai, Wolfgang Karl 

Härdle and Keming Yu, February 2014. 

022 "Nonparametric Test for a Constant Beta over a Fixed Time Interval" by 

Markus Reiß, Viktor Todorov and George Tauchen, February 2014. 

023 "Inflation Expectations Spillovers between the United States and Euro 

Area" by Aleksei Netšunajev and Lars Winkelmann, March 2014. 

024 "Peer Effects and Students’ Self-Control" by Berno Buechel, Lydia 

Mechtenberg and Julia Petersen, April 2014. 

025 "Is there a demand for multi-year crop insurance?" by Maria Osipenko, 

Zhiwei Shen and Martin Odening, April 2014. 

026 "Credit Risk Calibration based on CDS Spreads" by Shih-Kang Chao, 

Wolfgang Karl Härdle and Hien Pham-Thu, May 2014. 

027 "Stale Forward Guidance" by Gunda-Alexandra Detmers and Dieter 

Nautz, May 2014. 

028 "Confidence Corridors for Multivariate Generalized Quantile Regression" 

by Shih-Kang Chao, Katharina Proksch, Holger Dette and Wolfgang 

Härdle, May 2014. 

029 "Information Risk, Market Stress and Institutional Herding in Financial 

Markets: New Evidence Through the Lens of a Simulated Model" by 

Christopher Boortz, Stephanie Kremer, Simon Jurkatis and Dieter Nautz, 

May 2014. 

030 "Forecasting Generalized Quantiles of Electricity Demand: A Functional 

Data Approach" by Brenda López Cabrera and Franziska Schulz, May 

2014. 

031 "Structural Vector Autoregressions with Smooth Transition in Variances – 

The Interaction Between U.S. Monetary Policy and the Stock Market" by  

Helmut Lütkepohl and Aleksei Netsunajev, June 2014. 

032 "TEDAS - Tail Event Driven ASset Allocation" by Wolfgang Karl Härdle, 

Sergey Nasekin, David Lee Kuo Chuen and Phoon Kok Fai, June 2014. 

033 "Discount Factor Shocks and Labor Market Dynamics" by Julien Albertini 

and Arthur Poirier, June 2014. 

034 "Risky Linear Approximations" by Alexander Meyer-Gohde, July 2014 

035 "Adaptive Order Flow Forecasting with Multiplicative Error Models" by 

Wolfgang Karl Härdle, Andrija Mihoci and Christopher Hian-Ann Ting, 

July 2014 

036 "Portfolio Decisions and Brain Reactions via the CEAD method" by Piotr 

Majer, Peter N.C. Mohr, Hauke R. Heekeren and Wolfgang K. Härdle, July 

2014 

037 "Common price and volatility jumps in noisy high-frequency data" by 

Markus Bibinger and Lars Winkelmann, July 2014 

038 "Spatial Wage Inequality and Technological Change" by Charlotte 

Senftleben-König and Hanna Wielandt, August 2014 

039 "The integration of credit default swap markets in the pre and post-

subprime crisis in common stochastic trends" by Cathy Yi-Hsuan Chen, 

Wolfgang Karl Härdle, Hien Pham-Thu, August 2014 

 

 

 



  SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 

SFB 649 Discussion Paper Series 2014 

 

For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

 
 
040 "Localising Forward Intensities for Multiperiod Corporate Default" by 

Dedy Dwi Prastyo and Wolfgang Karl Härdle, August 2014. 

041 "Certification and Market Transparency" by Konrad Stahl and Roland 

Strausz, September 2014. 

042 "Beyond dimension two: A test for higher-order tail risk" by Carsten 

Bormann, Melanie Schienle and Julia Schaumburg, September 2014. 

043 "Semiparametric Estimation with Generated Covariates" by Enno 

Mammen, Christoph Rothe and Melanie Schienle, September 2014. 

044 "On the Timing of Climate Agreements" by Robert C. Schmidt and 

Roland Strausz, September 2014. 

045 "Optimal Sales Contracts with Withdrawal Rights" by Daniel Krähmer and 

Roland Strausz, September 2014. 

046 "Ex post information rents in sequential screening" by Daniel Krähmer 

and Roland Strausz, September 2014. 

047 "Similarities and Differences between U.S. and German Regulation of the 

Use of Derivatives and Leverage by Mutual Funds – What Can Regulators 

Learn from Each Other?" by Dominika Paula Gałkiewicz, September 

2014. 

048 "That's how we roll: an experiment on rollover risk" by Ciril Bosch-Rosa, 

September 2014. 

049 "Comparing Solution Methods for DSGE Models with Labor Market 

Search" by Hong Lan, September 2014. 

050 "Volatility Modelling of CO2 Emission Allowance Spot Prices with Regime-

Switching GARCH Models" by Thijs Benschop, Brenda López Cabrera, 

September 2014. 

051 "Corporate Cash Hoarding in a Model with Liquidity Constraints" by Falk 

Mazelis, September 2014. 

052 "Designing an Index for Assessing Wind Energy Potential" by Matthias 

Ritter, Zhiwei Shen, Brenda López Cabrera, Martin Odening, Lars 

Deckert, September 2014. 

053 "Improved Volatility Estimation Based On Limit Order Books" by Markus 

Bibinger, Moritz Jirak, Markus Reiss, September 2014. 

054 "Strategic Complementarities and Nominal Rigidities" by Philipp König, 

Alexander Meyer-Gohde, October 2014. 

055 "Estimating the Spot Covariation of Asset Prices – Statistical Theory and 

Empirical Evidence” by Markus Bibinger, Markus Reiss, Nikolaus Hautsch, 

Peter Malec, October 2014. 

056 "Monetary Policy Effects on Financial Intermediation via the Regulated 

and the Shadow Banking Systems" by Falk Mazelis, October 2014. 

057 "A Tale of Two Tails: Preferences of neutral third-parties in three-player 

ultimatum games" by Ciril Bosch-Rosa, October 2014. 

058 "Boiling the frog optimally: an experiment on survivor curve shapes and 

internet revenue" by Christina Aperjis, Ciril Bosch-Rosa, Daniel 

Friedman, Bernardo A. Huberman, October 2014. 

059 "Expectile Treatment Effects: An efficient alternative to compute the 

distribution of treatment effects" by Stephan Stahlschmidt, Matthias 

Eckardt, Wolfgang K. Härdle, October 2014. 

060 "Are US Inflation Expectations Re-Anchored?" by Dieter Nautz, Till 

Strohsal, October 2014. 

 

 

 

 

 

 



  SFB 649, Spandauer Straße 1, D-10178 Berlin 

http://sfb649.wiwi.hu-berlin.de 

 

This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 

SFB 649 Discussion Paper Series 2014 

 

For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

 
 
061 "Why the split of payroll taxation between firms and workers matters for 

macroeconomic stability" by Simon Voigts, October 2014. 

062 "Do Tax Cuts Increase Consumption? An Experimental Test of Ricardian 

Equivalence" by Thomas Meissner, Davud Rostam-Afschar, October 

2014. 

063 "The Influence of Oil Price Shocks on China’s Macro-economy : A 

Perspective of International Trade" by Shiyi Chen, Dengke Chen, 

Wolfgang K. Härdle, October 2014. 

064 "Whom are you talking with? An experiment on credibility and 

communication structure" by Gilles Grandjean, Marco Mantovani, Ana 

Mauleon, Vincent Vannetelbosch, October 2014. 

065 "A Theory of Price Adjustment under Loss Aversion" by Steffen Ahrens, 

Inske Pirschel, Dennis J. Snower, November 2014. 

066 "TENET: Tail-Event driven NETwork risk" by Wolfgang Karl Härdle, 

Natalia Sirotko-Sibirskaya, Weining Wang, November 2014. 

067 "Bootstrap confidence sets under model misspecification" by Vladimir 

Spokoiny, Mayya Zhilova, November 2014. 

 

 

 

 
 


	AA_Frontpage
	multbootst_DP
	Introduction
	Multiplier bootstrap procedure
	Smoothed version of a quantile function

	Numerical results
	Computational error
	Constant regression with misspecified heteroscedastic errors
	Biased constant regression with misspecified errors
	Logistic regression with bias

	Conditions
	Basic conditions
	Conditions required for the bootstrap validity
	Dependence of the involved terms on the sample size and parameter dimension

	Approximation of distributions of 2 norms of sums random vectors
	The case of p=1 using Berry-Esseen theorem
	Gaussian approximation of 2 norm of a sum of independent vectors
	Results for the smoothed indicator function
	Gaussian anti-concentration and comparison by Pinsker's inequality

	Appendix
	Finite sample theory
	Finite sample theory for the bootstrap world
	Proofs of Theorems 2.1 and 2.3 
	Proof of Theorem 2.4 (large modeling bias)
	Proof of Theorem 2.5 (the smoothed version)
	Bernstein matrix inequality


	ZZ_Endpage

