
A GEOMETRIC INTERPRETATION OF REDUCTION IN THE

JACOBIANS OF Cab CURVES.
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Abstract. In this paper, we show that the reduction of divisors in the Ja-
cobian of a curve C can be performed by considering the intersections of a
suitable projective model of C with quadrics in projective space. We apply
this idea to certain projective model of elliptic and hyperelliptic curves on one
hand, and to the canonical model of Cab curves on the other hand, and we
generalize (and recover) some well known algorithms.
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0. Introduction

The Jacobian varieties J of smooth projective curves of genus g, over the field
k, with their natural group structure have always been an object of interest. First
studied from theoretical point of view, they are in present of a practical interest in
the construction of cryptosystems, based on the complexity of the discrete logarithm
problem in the group of their rational points in the case of small genus.

The most famous example is the case of genus 1, when C is an elliptic curve
isomorphic to J , and the group law is given by the well known “chord and tangent
law”. When C has genus greater than one, it is much more difficult to describe the
Jacobian variety; it is possible to use a very ample line bundle coming from the
theta divisor on J , but this gives an embedding in a projective space with dimension
exponential in the genus of C, a fact which probably forbids efficient calculations
over a projective model of J . To overcome this problem, we have to use another
representation for the points of the Jacobian variety.

Many algorithms share an arithmetic approach of the addition of divisors, using
the representations of Cab curves by smooth affine equations and the fact that
they have an unique point at infinity. Consequently the group J(k) is canonically
isomorphic to the ideal class group of the ring of regular functions over the affine
model, and this is a Dedekind ring. Representing the ideals as finite dimensional
modules over the ring k[x] allows the use of the tools from algorithmic number
theory. This approach has been applied to hyperelliptic curves in [3], superelliptic
curves in [5], and Cab curves in [7].

On the other hand, there are algorithms relying on a more geometrical point
of view; addition of divisors modulo linear equivalence is a particular case of a
more general process, namely reduction of divisors. If the curve C has a k-rational
point P∞, then any class of degree zero divisors modulo linear equivalence (i.e. any

point in J(k)) has a unique representative of the form D − dP∞, with D a divisor
of minimal degree d ≤ g, the so called reduction. For instance, addition in the
group of rational points of an elliptic curve is just reduction of divisors of the form
P + Q − 2P∞. A natural idea is then to try to generalize the chord and tangent
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law. It is shown in [4] that when C is a trigonal curve of genus three, one can use

intersections of the canonical model of C (in P
2
) with quadrics to reduce a divisor

E − 4P∞ to a divisor D − dP∞, d ≤ 3, and the same ideas are used for reduction
over trigonal curves of genus four in [2].

The aim of this paper is to show that this point of view can be used to perform
reduction in the Jacobian variety of any curve C (possessing a rational point). Con-
sidering the projective embeddings φ∆(C) of C associated to very ample divisors
of the form ∆ = δP∞, we isolate the properties of such an embedding that allow
us to reduce a given divisor considering the intersections of φ∆(C) with low degree
hypersurfaces in the ambient projective space. We show that this is always possible
when the embedding is projectively normal, in particular when ∆ is a canonical
divisor, or δ ≥ 2g + 1. Returning to the example of elliptic curves, we see that its
Weierstrass model is exactly its embedding associated to the divisor (2g + 1)P∞,
where P∞ is the 0 of the group law. A consequence of our results is that consid-

ering the embedding φ∆(C) of a curve C in P
g+1

via the divisor ∆ = (2g + 1)P∞,
and looking at the intersections of φ∆(C) with hyperplanes allows the reduction of
degree zero divisors of the form D− (g + 1)P∞; this seems a natural generalization
of the chord and tangent law.

We also pay attention to the canonical model of a (non hyperelliptic) curve; it
is also projectively normal, and allows us to use the geometrical interpretation of
Riemann Roch theorem, in order to determine whether a given divisor is reduced
or not, looking at its image via the canonical embedding. In the case of Cab curves,
we show that the divisor (2g − 2)P∞ (where P∞ is the unique point obtained after
desingularization of the point at infinity on the plane model of the curve) is a
canonical divisor. This observation, joint with the ideas explained above, shows
that this point of view is well suited for Cab curves, and replaces the algorithms in
[2], [4] in a more general context.

Another geometric approach of the addition in the Jacobian of a curve, based
on the theory of Grassmanian varieties can be found in ([8], [9]).

The paper is organized as follows: in section 1, we recall well known facts that
we use in the sequel; this includes properties of divisors and the Jacobian variety
of a curve, and also of its projective embeddings. Then we define reduced divisors,
give criterions for a divisor to be reduced and show that the reduction can be
performed considering the intersections of a suitable projective embedding of the
curve with hypersurfaces (cf. Lemma 1.4, Proposition 1.4). In section 2, we apply
our results to elliptic and hyperelliptic curves, and show that they reduced to well
known algorithms: the chord and tangent law and respectively the reduction part
of Cantor’s algorithm. In Proposition 2.1 we explain the reduction of a degree zero

divisor of the form D − (g + 1)P∞ by intersections with hyperplanes in P
g+1

. In
the last section, we apply our results to the canonical models of Cab curves; we give
a simple representative for the canonical divisor of such a curve, then we study the
canonical model, give a criterion from linear algebra to decide whether a divisor is
reduced or not, and discuss the reduction process on the Jacobian varieties of these
curves.

1. Reduction of divisors and intersections of curves with low

degree hypersurfaces.

We begin by setting some notations, and recalling some well known results. Let
C be a complete nonsingular curve of genus g, defined over the field k. In the
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following, we assume that C has a k-rational point P∞, that is C(k) 6= ∅. We
denote by KC the field of functions of C.

1.1. Basic facts about divisors. Recall that a divisor D ∈ Div(C) on C is a
formal sum of points D =

∑

nP P , where the sum is taken over C(k̄), and the
nP are almost all (that is all but a finite number) equal to zero; we denote by
deg(D) =

∑

nP its degree, and by Supp (D) := {P ∈ C(k̄), nP 6= 0} its support.
There is a partial ordering in Div(C): for any two divisors D =

∑

nP P and
D′ =

∑

n′

P P in Div(C), we have D ≥ D′ when nP ≥ n′

P for all P ∈ C(k̄). We
say that a divisor D is effective if D ≥ 0, where 0 is the zero divisor, and that it is
affine if its support doesn’t contain P∞.

If f is a function on C, recall that its divisor (f) = (f)0 − (f)∞ is the sum
of its zeroes and poles, counted with multiplicity; the divisor (f) has degree 0.
The principal divisors are the divisors of functions in KC ⊗ k̄. They form a group
Pr(C) isomorphic to P(KC ⊗ k̄). The set of divisors Div(C) is an abelian group. In
Div(C), the subset of degree 0 divisors forms a subgroup Div0(C), and the set of
principal divisors Pr(C) is a subgroup of Div0(C). We say that two divisors D and
D′ are linearly equivalent if their difference is in Pr(C); we denote this by D ∼ D′.
The group Pic0(C) is the group Div0(C)/Pr(C) of degree 0 divisors modulo linear
equivalence; in the following we denote by [D] the class in Pic0(C) of the divisor
D ∈ Div0(C).

Let G := Gal(k̄/k) be the absolute Galois group of k; since C is defined over k,
G acts on the points of C(k). In the following, the groups Div(C)(k) := Div(C)G,
Pr(C)(k) := Pr(C)G, Div0(C)(k) := Div0(C)G and Pic0(C)(k) := Pic0(C)G denote
the k-rational elements of the corresponding groups. Note that Div(C)(k) is not
equal to the group generated by C(k): points defined over an extension of k can
appear, if all their conjugates over k appear with the same multiplicity. On the
other hand, we have Pr(C)(k) = P(KC), as can be seen taking Galois cohomology
of the exact sequence:

0 → k̄∗ → (KC ⊗ k̄)∗ → Pr(C) → 0,

with respect to G, and remarking that by Hilbert theorem 90, we have H1(G, k̄∗) =
{1}.

Moreover, we have that Pic0(C)(k) ≃ Div0(C)(k)/Pr(C)(k); once more, take
Galois cohomology of the exact sequence above; we see that by Hilbert theorem
90, and since G is also the Galois group of the extension KC ⊗ k̄/KC, we have
H1(G, (KC ⊗ k̄)∗) = 0; on the other hand, the group H2(G, k̄∗) is canonically
isomorphic to the Brauer group of the finite field k, which is trivial. Thus the group
H1(G, Pr(C)) also vanishes. Finally, taking Galois cohomology of the sequence:

0 → Pr(C) → Div0(C) → Pic0(C) → 0

shows that Pic0(C)(k) ≃ Div0(C)(k)/Pr(C)(k).

1.2. Divisors on a curve and associated projective embeddings. To every
divisor D we can associate an invertible sheaf L(D) on C; we shall denote by l(D)
the dimension of the space of global sections

Γ(C,L(D)) = {f ∈ KC , D + (f) ≥ 0},

and we have Riemann-Roch theorem: if K is a canonical divisor on C (i.e. the
divisor of a differential form on C, of degree 2g − 2), we have

χ(L(D)) := l(D) − l(K − D) = deg(D) + 1 − g.
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The space P(Γ(C,L(D))) is in one to one correspondance with the (complete) linear
series |D| of effective divisors linearly equivalent to D via the map f 7→ (f)+D. The

linear series |D| associated to a divisor D define a morphism φD : C 7→ P
l(D)−1

;
the divisor D is very ample when this morphism is a closed immersion; in this case
the invertible sheaf L(D) is isomorphic to OφD(C)(1), and the linear series |D| is

the set of intersection divisors of φD(C) with the hyperplanes in P
l(D)−1

. Recall (cf
[6] IV.5.2) that a canonical divisor K is very ample when C is a non hyperelliptic

curve of genus g ≥ 2, and defines the canonical embedding φK(C) ⊂ P
g−1

. On
the other hand, any divisor of degree ≥ 2g + 1 is very ample (cf [6] IV.3.3.2), and

defines an embedding φD(C) ⊂ P
deg(D)−g

.

A closed subvariety X ⊂ P
n

is projectively normal for the given embedding if
its homogeneous coordinate ring is an integrally closed domain; in this case, the
natural map Γ(P

n
,OP

n(i)) → Γ(X,OX(i)) induced by taking global sections of the
following exact sequence of sheaves:

0 → IX(i) → OP
n(i) → OX(i) → 0

is surjective for all i ≥ 0; thus we get the following exact sequence of k-vector
spaces:

(1) 0 → Γ(P
n
, IX(i)) → Γ(P

n
,OP

n(i)) → Γ(X,OX(i)) → 0.

In the case X is the image φD(C) of a curve C as above, we can interpret this
exact sequence in the following way: the first piece is the k-vector space of homo-
geneous polynomials of degree i in k[X0, . . . , Xn] defining hypersurfaces containing
φD(C); the second is the k-vector space of all homogeneous polynomials of degree i
in k[X0, . . . , Xn], and the last one is the k-vector space of global sections of the in-
vertible sheaf L(iD), it corresponds as above to the linear series |iD| of intersection
divisors of φD(C) with hypersurfaces of degree i in P

n
.

Now it is a classical result of Enriques and Petri that the image of the canonical
embedding of a curve is projectively normal; on the other hand, if D is a divisor of
degree greater than or equal to 2g + 1, then φD(C) is also projectively normal (cf
[11] p. 55).

We end this paragraph by recalling a geometric interpretation of Riemann-Roch
theorem. For an effective divisor D, the geometric interpretation of l(K−D) is the

following: consider the canonical embedding of C in P
g−1

; then l(K − D) is the
dimension of the k-vector space of linear polynomials in k[X0, . . . , Xg−1] defining

hyperplanes in P
g−1

whose intersection divisor with φK(C) is greater or equal than
D.

1.3. Reduced divisors on a curve. Recall (cf [10]) that the Jacobian of C, JC

is the abelian variety representing the functor P 0
C : T 7→ P 0

C(T ) from schemes over
k to abelian groups, where P 0

C(T ) is the group of families of invertible sheaves on
C of degree 0 parametrized by T , modulo the trivial families. In particular, from
our assumption that C has a k-rational point P∞, the k rational points of J are
the elements of Pic0

C(k), i.e. the group of k-rational degree 0 divisors up to linear
equivalence (cf. [10] p. 168). It is in this group that we wish to make calculations;
we first need a lemma to give a more handy description of its elements.

Lemma 1.1. Let E ∈ Div0(C)(k) be a k-rational degree 0 divisor on C. There
is an affine effective k-rational divisor E′ of degree ≤ g on C such that E ∼
E′ − deg(E′)P∞.
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Proof: This is an application of Riemann-Roch theorem: consider the degree g
divisor F := E + gP∞; we clearly have l(F ) ≥ 1. If f ∈ l(F )\{0}, then the divisor
F ′ := (f) + F = (f) + E + gP∞ is effective of degree g. Let m∞ be its multiplicity
at P∞; then m∞ ≤ g, and the divisor E′ := F ′ −m∞P∞ satisfies the requirements
of the lemma. �

Thus every point in JC(k) can be represented by an affine effective divisor of
degree ≤ g. Note that this is a well-known fact, since the Jacobian of C is the
unique abelian variety birationnally equivalent to the g-th symmetric power of C,
C(g) (cf. [10] Remark 5.6). Unfortunately, if g ≥ 2, this birational equivalence is
not an isomorphism, and the above representation is not unique. Nevertheless, this
representation is unique if we ask E′ to be of minimal degree; the following lemma
is Theorem 1 of [5]

Lemma 1.2. Let E ∈ Div0(C)(k) be a k-rational degree 0 divisor on C. There is a
unique effective divisor E′ over k of minimal degree d ≤ g such that E ∼ E′−dP∞.

We can now define the reduction of a divisor:

Definition 1.1. Let E be a degree 0 divisor on C; the reduction of E is the unique
divisor, linearly equivalent to E, of the form E′−deg(E′)P∞, with E′ affine effective
of minimal degree. A divisor is called reduced if it is its own reduction.

We now give a condition for a divisor E − deg(E)P∞, E affine effective and
deg(E) ≤ g to be reduced

Lemma 1.3. Let E − eP∞, a degree 0 divisor, with E affine effective of degree
e ≤ g. It is not reduced if and only l(E) ≥ 2.

Proof: Assume first that E − eP∞ is not reduced: we can find a degree 0 divisor
E′−e′P∞, E′ affine effective, e′ < e, such that E′−e′P∞ ∼ E−eP∞, and a function
f on C such that (f) = E′ + (e − e′)P∞ − E. Thus f is a non constant function
in Γ(C,L(E)), and since E is effective, we get l(E) ≥ 2. Conversely, if l(E) ≥ 2,
we get a non constant function f in Γ(C,L(E)), thus having no pole at P∞. Set
f0 := f − f(P∞), and E′ := (f0) + E; since f0 is not constant, E 6= E′. Moreover
the divisor (f0) has positive multiplicity at P∞; we get E − eP∞ ∼ E′ − e′P∞ with
e′ < e, and E − eP∞ is not reduced. �

We give a geometric condition for a divisor E − deg(E)P∞, E affine effective
and deg(E) ≤ g to be reduced. In the case of hyperelliptic curves, it is well know
that such a divisor is reduced unless the support of E contains two points conju-
gate under the hyperelliptic involution. For nonhyperelliptic curves, the canonical
embedding and the geometric interpretation of Riemann-Roch theorem allow us to
characterise these divisors

Proposition 1.1. Let C be a nonhyperelliptic curve, and E − eP∞, a degree 0
divisor, with E affine effective of degree e ≤ g. It is not reduced if and only the

(projective) dimension of the intersection of hyperplanes H in P
g−1

such that H ·
φK(C) ≥ E is less than e − 1.

Proof: Assume E − eP∞ is not reduced. From lemma 1.3, l(E) ≥ 2. Thus
Riemann Roch theorem ensures l(K − E) > g − e. Recall the geometric interpre-
tation of the number l(K − E): it is the dimension of the space of hyperplanes

in P
g−1

whose intersection divisor with φK(C) is greater or equal than E. Thus
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these hyperplanes form a subspace WE of dimension greater than g − e in the dual

projective space P
g−1∗

; since the intersection of these hyperplanes is the subspace

of P
g−1

dual to WE , we get the result. Assume conversely that the dimension of
the space in the proposition is less than e − 1; then Riemann Roch theorem gives
l(E) ≥ 2, and this ends the proof of the proposition with the help of lemma 1.3. �

Finally, we describe the functions in Γ(C,L(E)), E affine effective of degree

e ≤ g such that E − eP∞ is not reduced, in terms of the hyperplanes in P
l(D)−1

,
D = dP∞ with d ≥ 2g + 1 or d = 2g − 2 if this is a canonical divisor. If L is a
linear polynomial in X0, . . . , Xl(D)−1, we denote by HL the associated hyperplane

in P
l(D)−1

.

Proposition 1.2. Let E − eP∞, E affine effective of degree e ≤ g a non reduced

divisor. Then there is an hyperplane H0 in P
l(D)−1

such that H0 ·φD(C) = E+E′ ≥
E. Let L0 be a linear polynomial defining H0; we have

Γ(C,L(E)) =

{

f =
L

L0
, HL · φD(C) ≥ E′

}

.

Proof: First note that if deg D ≥ 2g + 1, then l(D) ≥ g + 2, and there is an
hyperplane H0 as in the proposition. If D is a canonical divisor, this claim comes
from proposition 1.1. In any case, since E ≤ H0 · φD(C), we have Γ(C,L(E)) ⊂
Γ(C,L(H0 · φD(C))). Now the map

Γ(P
l(D)−1

,O
P

l(D)−1 (1)) → Γ(C,L(H0 · φD(C)))

is an isomorphism: it is surjective since φD(C) is projectively normal, and these
vector spaces have dimension l(D). It maps the linear polynomial L to the function
L
L0

. Finally, this function is in L(E) if and only if HL ·φD(C)−H0 ·φD(C)+E ≥ 0,

i.e. if and only if HL · φD(C) ≥ E′. �

1.4. Reduction and intersections with hypersurfaces. Here we fix once and
for all a divisor D = dP∞, d ≥ 2g +1 or d = 2g− 2 if D is a canonical divisor; note
that in any case the divisor D is very ample and the image φD(C) is projectively
normal. Our aim in this paragraph is to show that we can find the reduction of
a divisor E − deg(E)P∞ with E affine effective of degree deg(E) ≤ kd − g, by

considering intersections of φD(C) with hypersurfaces of degree k in P
l(D)−1

.

Lemma 1.4. Let E be an affine effective divisor of degree e ≤ kd− g. Then there

is a hypersurface QE of degree k in P
l(D)−1

such that:

QE · φD(C) ≥ E + (kd − g − e)P∞,

where QE · φD(C) is the intersection divisor of QE and C in P
l(D)−1

.

Proof: Since QE has degree k, the intersection divisor QE ·C is linearly equivalent
to kD, that is QE · φD(C) = kD + (f); thus the condition of the lemma can be
rewritten kD+(f) ≥ E +(kd−g−e)P∞, and we are reduced to look for a function
f in Γ(C,L((g + e)P∞ − E)), since D = dP∞.

Because of kD ≥ (g + e)P∞ − E, we certainly have the inclusion
Γ(C,L((g + e)P∞ − E) ⊂ Γ(C,L(kD)). From Riemann-Roch theorem, since
deg((g + e)P∞ − E) = g, we have l((g + e)P∞ − E)) ≥ 1. Let fE be a non
zero function in Γ(C,L((g + e)P∞ − E)) ⊂ Γ(C,L(kD)), and VE a preimage of fE

by the third arrow of:

0 → Γ(P
n
, IC(k)) → Γ(P

n
,OP

n(k)) → Γ(C,OC(k)) → 0.
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Clearly the hypersurface QE with homogeneous equation VE satisfies the require-
ments of the lemma. �

We now show that the reduction of divisors can be performed by considering
intersections of φD(C) with suitable hypersurfaces. We begin by divisors of the
form E − eP∞, e ≤ g. If this divisor is not reduced, then there is an hyperplane
HE such that HE ·φD(C) ≥ E (this follows from lemma 1.4 if d ≥ 2g +1, and from
proposition 1.1 if D is a canonical divisor). Then HE · φD(C) = E + E′; let HE′

be an hyperplane such that HE′ · φD(C) ≥ E′, and HE′ has maximal intersection
multiplicity with φD(C) at φD(P∞) among the hyperplanes having that property.

In the general case, let QE be an hypersurface as in lemma 1.4. By Bezout’s
theorem, the divisor QE · φD(C) has degree kd, and it can be written:

QE · φD(C) = E + E′ + (kd − g − e)P∞,

with E′ a divisor of degree g. Applying once more lemma 1.4, we see that there
exists an homogeneous polynomial VE′ of degree l ≤ 2 (l = 1 except if D is a
canonical divisor), defining a degree l hypersurface QE′ , such that QE′ · φD(C) ≥
E′ + (ld − 2g)P∞. We get QE′ · φD(C) = E′ + E′′ + (ld − g − e′′)P∞, with E′′ an
effective divisor of degree e′′ ≤ g on C.

Proposition 1.3. The divisor E′′ − e′′P∞ is linearly equivalent to E − eP∞.

Proof. We first show that these two divisors are linearly equivalent. First consider
the function vE := VE

Xk
0
; its divisor is:

(vE) = QE · C − kH0 · C = E + E′ − (g + e)P∞,

where H0 is the hyperplane with equation X0 = 0. Now the function vE′ := VE′

X2
0

has divisor:

(vE′) = QE′ · C − 2H0 · C = E′ + E′′ − (g + e′′)P∞.

Thus the function vE/vE′ has divisor (vE) − (vE′) = E − E′′ + (e′′ − e)P∞. �

The divisor E′′ − e′′P∞ is not necessarily reduced; let us show that we can

reduce it by considering the intersection of φD(C) with hyperplanes in P
l(D)−1

.
If it is reduced, there is nothing to do; else let H0 be an hyperplane such that
H0 · φD(C) = E′′ + F ′ ≥ E′′. Such an hyperplane exists from proposition 1.2. Let
H1 be the hyperplane such that H1·φD(C) ≥ F ′, and whose intersection multiplicity
with φD(C) at φD(P∞) is maximal; if we set H1 · φD(C) = F ′ + F + sP∞, with
deg(F ) = f , we have

Proposition 1.4. The divisor F − fP∞ is the reduction of E′′ − e′′P∞ (and of
E − eP∞).

Proof: As in the proof of proposition 1.3, we get that F − fP∞ is linearly
equivalent to E′′−e′′P∞ (their difference is H1 ·φD(C)−H0 ·φD(C)). On the other
hand, if E0−e0P∞ is the reduction of E′′−e′′P∞, we get a function f0 whose divisor
is E0+(e′′−e0)P∞−E′′. From the definition of reduced divisors, this is the function
in Γ(C,L(E′′)) with a zero of maximal order at P∞. From the description of the
functions of Γ(C,L(E′′)) in proposition 1.2, we get (f) = H1 ·φD(C)−H0 ·φD(C).

�
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2. The case of elliptic and hyperelliptic curves.

The aim of this section is to illustrate the results above in the case of elliptic and
hyperelliptic curves; note that in both cases, the canonical divisor is not very ample,
since it has degree 0 in the first case, and is a multiple of the g1

2 in the second (cf [6]
IV.5.2). Thus in both cases (assuming once again that our curves have a rational
point P∞), we use the projective embedding induced by the divisor (2g + 1)P∞,
which is always very ample, and whose image is projectively normal. We will see
that if we wish to reduce an effective divisor of degree g +1 to a linearly equivalent
effective divisor of degree g, our method reduces to the chord and tangent law in
the case of elliptic curves, and to the reduction part of Cantor’s algorithm (cf [3]
§4) in the hyperelliptic case.

2.1. Elliptic curves. Recall that in the case of an elliptic curve (of genus 1) having
a k-rational point P∞, the set JC(k) can be identified to C(k) via the one-to-one
correspondance P 7→ [P −P∞]; in fact the group law on C(k) is induced by the one
on JC(k): if we have [R − P∞] = [P − P∞] + [Q − P∞] in JC(k) for three points
P, Q, R in C(k), then setting R = P ⊕Q on C(k) defines a group law, for which the
identity is P∞. The aim of this paragraph is to explain that proposition 1.4 just
describes the well-known chord and tangent law.

Let C be a complete nonsingular curve of genus 1, with a rational point
P∞ ∈ C(k). The divisor D := 3P∞ is very ample, and since it is non special, we have

l(D) = 2 by Riemann-Roch theorem. Consequently the morphism φD : C → P
2

is

a closed immersion, and its image is a nonsingular cubic curve in P
2
. In this case

Proposition 1.4 can be rewritten as follows.

Proposition 2.1. Assume that D = (2g+1)P∞; then we can perform the reduction
of a divisor E − (g + 1)P∞, with E affine effective of degree g + 1 considering the

intersection of φD(C) with hyperplanes in P
g+1

.

Let E = P + Q be a divisor of degree 2; there is a hyperplane in P
2

(i.e. a line)
passing through P and Q (note that if P = Q we have to take the tangent line to

C at P ); it meets φD(C) at a third point E′. Now the line in P
2

passing through
E′ and P∞ is the “vertical” line with equation x = xE′ ; it meets C at a third point
E′′ with coordinates (xE′ , yE′), and E′′ − P∞ is the reduction of E − 2P∞.

To summarize what we have just said, we get: [E′′ − P∞] = [P + Q − 2P∞] =
[P − P∞] + [Q − P∞], i.e. via the identification above E′′ = P ⊕ Q; on the other
hand, the geometric process that we have described is just the natural way of adding
points on an elliptic curve, the chord/tangent law.

2.2. Hyperelliptic curves. An hyperelliptic curve is a curve C of genus g ≥ 2

such that there exists a morphism C → P
1

of degree 2. In other words, it is a curve
whose function field is a quadratic extension of the rational function field. Here we
restrict our attention to the curves having a plane affine model Caff with equation

y2 + h(x)y = f(x)

where h(x) is a polynomial of degree at most g, and f(x) a monic polynomial of
degree 2g + 1. Note that if the characteristic of k is not 2, we can take h(x) = 0.
We assume moreover that the affine model above is nonsingular; if h(x) = 0, this

reduces to ask f to have only simple roots in k, the algebraic closure of k.

The projective closure of Caff above in P
2

has a unique (singular) point at infinity,
which is rational over k; we shall denote it by P∞. From the theory of algebraic
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function fields of one variable, we get that the function x (resp. y) has a pole of
order 2 (resp. 2g + 1) at P∞. Thus we get

L((2g + 1)P∞) = Vect(1, x, . . . , xg, y).

Let us describe precisely φD(C), the embedding of C in P
g+1

induced by the divisor

D. Let X0, . . . , Xg+1 be a system of homogeneous coordinates in P
g+1

. A point with
coordinates (x, y) of the affine plane model is sent to the point with homogeneous

coordinates (1 : x : · · · : xg : y) in P
g+1

. The point at infinity is sent to the point
P∞ with homogeneous coordinates (0 : · · · : 0 : 1); moreover φD is an isomorphism
between Caff and φD(C)\{P∞}, and the hyperelliptic involution is the map on
φD(C) sending P (1 : x : · · · : xg : y) to σ(P )(1 : x : · · · : xg : −y).

Let us compute the intersection multiplicity Ii, 0 ≤ i ≤ g of the hyperplane
Hi with equation Xi = 0 with φD(C) at P∞. Since this point is not on Hg+1,
Ii is the multiplicity of P∞ in the divisor of the function Xi/Xg+1; via φD, this
function corresponds to xiy−1, whose order at P∞ is 2(g − i) + 1. Finally we get
Ii = 2(g − i) + 1.

We are now ready to apply the reduction procedure of Proposition 1.4. Assume
that we have two reduced divisors D1 − gP∞ and D2 − gP∞ with D1, D2 affine
effective of respective degree g. We wish to reduce the divisor D1 + D2 − 2gP∞;

from lemma 1.3, we can find a quadric Q in P
g+1

such that Q ·φD(C) ≥ D1 +D2 +
(g +2)P∞. The condition Q ·φD(C) ≥ (g +2)P∞ ensures that the only monomials
appearing in the homogeneous equation of Q are the Xi.Xj, Ii + Ij ≥ g + 2. From
the above computation of intersection numbers, we get that 2(i+ j) ≤ 3g. Via φD,
we see that we just have to consider polynomials in k[x, y] of the form c(x)+d(x)y,
with deg(c) ≤ 3g

2 and deg(d) ≤ g−1
2 . Once again, by Bezout’s theorem, we get an

effective divisor E′ of degree g such that Q.φD(C) = E′ + D1 + D2 + (g + 2)P∞.
Applying once more Lemma 1.3, we get an hypersurface H passing through P∞

(i.e. in which homogeneous equation the variable Xg+1 doesn’t appear), and E′′ an
effective divisor of degree g such that E′′−gP∞ is the reduction of D1+D2−2gP∞.
Note that in this case the last step is trivial: assume that E′ =

∑

niPi, with
Pi(1 : xi : · · · : xg

i : yi). Then we have E′′ = σ(E′) =
∑

niσ(Pi).

3. The case of Cab curves, a, b 6= 2.

3.1. Definition and first results. In this part, we begin by defining a large class
of curves, the Cab curves; then we compute their genus and their canonical divisor.

Definition 3.1. Let a, b be coprime integers; assume moreover that they are prime
to the characteristic of the base field k, and that a > b. A Cab curve is a curve
having an irreducible affine nonsingular plane model with equation:

Pab(x, y) =
∑

αijx
iyj = 0,

where the sum is taken over couples (i, j) ∈ {0, . . . , b}×{0, . . . , a} such that ai+bj ≤
ab, and αb0α0a 6= 0.

Let C be a Cab-curve, and Kab = k(x, y) be its function field; since a and b
are coprime integers, the extension Kab/k(x) ramifies totally above the point at
infinity; we get a unique pont, that we shall denote P∞ in the sequel. It is well
known that the genus of C is:

g =
(a − 1)(b − 1)

2
.



10 R. BLACHE, J. ESTRADA SARLABOUS, AND M. PETKOVA

Recall the notion of Weierstrass integers (cf. [1]): if C is a curve of genus g, and
P ∈ C(k) a k-rational point of C, then we have a sequence of 2g k-vector spaces:

k = Γ(C,L(0)) ⊂ Γ(C,L(P )) ⊂ · · · ⊂ Γ(C,L((2g − 1)P )),

the last one being of dimension g by Riemann-Roch theorem; considering the di-
mensions of these vector spaces, we have the following inequalities:

1 = l(0) ≤ l(P ) ≤ l(2P ) ≤ · · · ≤ l((2g − 1)P ) = g

Again by Riemann-Roch theorem, we have l(iP ) − l((i − 1)P ) ≤ 1; thus for g non
negative integers 0 = n0, . . . , ng−1 ≤ 2g − 1, we have l(iP ) = l((i − 1)P ) + 1 (i.e.
there is a function f ∈ Kab whose polar divisor (f)∞ is iP ). The sequence:

n0 := 0, n1 := b, . . . , ng−1, 2g, 2g + 1, . . .

is called the sequence of Weierstrass integers of C at P ; it is a semigroup in N. The
remaining g integers (for which we have l(iP ) = l((i − 1)P )) are called the gaps of
C at P .

In the case of Cab curves, we can easily describe the sequence of Weierstrass
integers at P∞

Lemma 3.1. The semigroup of Weierstrass integers at P∞ of a Cab-curve is Hab :=
aN + bN.

Proof: Since (x)∞ = aP∞, and (y)∞ = bP∞, we clearly see that Hab is contained
in the sequence of Weierstrass integers; moreover the functions on C whose only
pole is P∞ are the function of k[x, y] := Γ(C\{P∞},OC) = k[X, Y ]/(Pab), and the
above inclusion is in fact an equality. �

We can now use this result to give the last gap of C at P∞, and to determine
the canonical divisor of C.

Proposition 3.1. i) The g−1-th Weierstrass integer of C at P∞ is ng−1 = 2g−2;
ii) The last gap of C at P∞ is 2g − 1;
iii) Let K be a canonical divisor of C; we have: K ∼ (2g − 2)P∞.

Proof: i) From lemma 3.1, it is sufficient to show that 2g−2 ∈ aN+ bN. Since a
and b are coprime positive integers, we can write au − bv = 1, for some 0 < u < b,
0 < v < a. Thus

2g − 2 = ab − a − b − 1 = ab − (u + 1)a + (v − 1)b = (b − u − 1)a + (v − 1)b,

and we get the result.

ii) If we write 2g − 1 = (b − 1)a − b, all the other expressions of this integer
as a linear combination of a and b with integer coefficients are of the form ((1 −
n)b − 1)a + (na − 1)b, n ∈ Z; since a, b ≥ 3, the integers (1 − n)b − 1 and na − 1
cannot be simultaneously nonnegative, and the result follows from lemma 3.1 and
the discussion above.

iii) We apply Riemann-Roch theorem to the divisors (2g−2)P∞ and (2g−1)P∞:

l((2g − 2)P∞) − l(K − (2g − 2)P∞) = g − 1;

l((2g − 1)P∞) − l(K − (2g − 1)P∞) = g.

Since 2g − 1 is a gap for C at P∞, we have l((2g − 2)P∞) = l((2g − 1)P∞); on
the other hand, l(K − (2g − 1)P∞) = 0 as this divisor has degree −1. Thus we
get l(K − (2g − 2)P∞) = 1. But this last divisor has degree 0, hence it must
be the divisor of a rational function, and we obtain in this way the desired linear
equivalence. �
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3.2. Geometry of the plane and canonical models of a Cab curve. Let C

be a Cab-curve; we denote by φ(C) the projective closure (in P
2
) of the affine plane

model given in the definition; note that φ(C) has a unique point at infinity (the point
with homogeneous coordinates (1 : 0 : 0) since we assumed a > b), and that it is in
general singular, except if |a−b| ≤ 1. Remark that φ is the morphism defined by the
linear system corresponding to the sub-vector space Vect(1, x, y) ⊂ Γ(C,L(aP∞)).

Let φK(C) be the image of C by the projective embedding φK : C → P
g−1

in-
duced by the divisor (2g − 2)P∞ ∼ K. To be more precise, we set
Γ(C,L((2g − 2)P∞) =Vect(f0, . . . , fg−1), where the fi are monomials in x, y, or-
dered by increasing pole order at P∞ (note that vP∞

(fi) = ni, the
(i+1)-th Weierstrass integer). For each point P of the curve, its image is φK(P ) =
((teP f0)(P ) : · · · : (teP fg−1)(P )), where eP = −min(vP (f0), . . . , vP (fg−1)), and t
is a local parameter for C at P . Note that eP = 0 for all points of C except P∞;
then eP = 2g − 2. In particular the image of P∞ by this embedding is the point

PK,∞ := φK(P∞) with homogeneous coordinates (0 : · · · : 0 : 1) in P
g−1

.

We now describe a system of generators for the canonical ideal, i.e. the homo-
geneous ideal IC,K of φK(C) in k[X0, . . . , Xg−1]: following the work of Petri (cf.
[12]), we obtain that the canonical ideal is generated by the quadrics

XiXj = XkXl if ni + nj = nk + nl.

and a homogeneous polynomial Pab which is a quadric if C is not trigonal nor the
smooth plane quintic, a cubic else. In case it is a quadric, we can write it

Pab(Xi) =
∑

αijXrXs, for some r, s, such that nr + ns = ai + bj.

Now we have the isomorphism of affine curves:

φ : φ(C)\{P∞} → φK(C)\{PK,∞}
P = (x : y : 1) 7→ (1 : xiyj , ai + bj ≤ 2g − 2),

which is just the geometric version of the following isomorphism of k-algebras,
where I ′C,K is the ideal obtained from IC,K by dehomogenization with respect to
X0:

φ# : k[x1, . . . , xg−1]/I ′C,K → k[x, y]/(Pab)

xl 7→ xiyj , nl = ai + bj.

Note that this morphism is well defined since each of the Weierstrass integers
n0, . . . , ng−1 has a unique representation as an element of aN + bN.

We end this paragraph computing the intersection numbers at P∞ of φK(C)

with any hyperplane in P
g−1

Lemma 3.2. Let H be the hyperplane defined by the equation
a0X0 + · · · + ag−1Xg−1 = 0. We have:

IP∞
(Cab, H) = 2g − 2 − nl, l = max{i ∈ {0, . . . , g − 1}, ai 6= 0}.

Proof: It is well known that

IPK,∞
(H, φK(C)) = vP∞

(a0f0 + · · · + ag−1fg−1) + eP∞
,

where f0, . . . , fg−1 are the functions defining the projective morphism φK , and
eP∞

= 2g − 2 is as above; since vP∞
(fi) = ni, and these numbers are pairwise

distinct, we get the result. �
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3.3. Reduced divisors on Cab-curves. In this paragraph, we give a criterion
for deciding whether a divisor of degree ≤ g is reduced, using the geometric inter-
pretation of Riemann-Roch theorem on the canonical model; to such a divisor we
associate a matrix, which has maximal rank exactly when the divisor is reduced.

In order to do this, we recall the notion of an osculating plane for φK(C): the

k-th osculating space for φK(C) at P , Vk(P ), is the projective subspace of P
g−1

of minimal dimension such that Vk(P ) · φK(C) ≥ kP ; this is also the intersection

of the hyperplanes in P
g−1

intersecting φK(C) at P with multiplicity at least k.
Note that our definition is slightly different from the one in [13]; actually the two
definition coincide when the first k Weierstrass gaps at P are 0, 1, · · · , k − 1.

We need a system of points in P
g−1

spanning this space. Recall from [13] the
definition of Hasse derivatives; the i-th Hasse derivative, D(i), is defined on k[x]

by D(i)(
∑

ajx
j) :=

∑
(

j

i

)

ajx
j−i, and extends to k(x) and its separable extensions.

Then it is well know (cf. [13] Theorem 1.1) that the points with homogeneous
coordinates ((D(i)f0)(P ) : · · · : (D(i)fg−1)(P )), 0 ≤ i ≤ k − 1 span Vk(P ); in
particular Vk(P ) has dimension less than k − 1.

Proposition 3.2. Let D = m1P1 + · · · + mkPk − dP∞ be a degree 0 divisor on C
with d ≤ g, mi > 0 and Pi 6= Pj; then D is reduced if and only if the following
matrix



























f0(P1) · · · fg−1(P1)
... · · ·

...
(D(m1−1)f0)(P1) · · · (D(m1−1)fg−1)(P1)

... · · ·
...

f0(Pk) · · · fg−1(Pk)
... · · ·

...
(D(mk−1)f0)(Pk) · · · (D(mk−1)fg−1)(Pk)



























has rank d.

Proof: From the discussion preceding the proposition, we see that the points
whose homogeneous coordinates are the rows of the matrix above generate the

intersection of the hyperplanes in P
g−1

whose intersection divisor with φK(C) is
≥ m1P1 + · · · + mkPk. From Proposition 1.1 the divisor D is reduced if and only
if this intersection has dimension d− 1, and this is equivalent for the matrix above
to have rank d. �

3.4. Reduction process on Cab-curves. We now use the results of the preceding
sections to give a description of the reduction process for Cab-curves. Assume that
we have an affine divisor E (resp. E′) of degree g + 1 (resp. g) on C; from lemma
1.3, we can find a quadric QE such that QE · φK(E) ≥ E + (2g − 5)PK,∞ (resp.
QE ·φK(E) ≥ E +(2g− 4)PK,∞). We first look at the intersection of the canonical
model with quadrics, and reinterpret the conditions

IP∞
(QE , φK(C)) ≥ 2g − 5 (resp. 2g − 4).

By the lemma 3.2, this just means that the homogeneous equation of the quadric
Q contains just monomials XkXl such that:

IPK,∞
(XkXl, φK(C)) ≥ 2g − 5 (resp. 2g − 4)

⇔ IPK,∞
(Xk, φK(C)) + IPK,∞

(Xl, φK(C)) ≥ 2g − 5 (resp. 2g − 4)
⇔ 4g − 4 − (nk + nl) ≥ 2g − 5 (resp. 2g − 4)
⇔ nk + nl ≤ 2g + 1 (resp. 2g).
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Now the sequel of the reduction process takes place away from PK,∞, and we
can use the isomorphism φ to come back to the affine plane model. The former
condition reduces then (by the isomorphism φ#) to considering intersections of
φD(C) with curves defined by polynomials of the form:

∑

ij

cijx
iyj , ai + bj ≤ 2g + 1

for the first step, and for the second:
∑

ij

cijx
iyj , ai + bj ≤ 2g.

Remark 3.1. In [4], the case of Picard curves is treated; these are nonhyperelliptic

curves of genus 3, and their canonical model is in P
2
. In order to reduce degree 4

divisors, the authors use interpolating functions. Given E, a degree four divisor,
the interpolating function vE is just as in the proof of proposition 1.4 above: it is
constructed from the quadric QE. Note that from the discussion above, since here
2g + 1 = 7, the function vE is in Vect(1, x, y, x2, xy).

In [2], the authors discuss the case of trigonal curves of genus 4, with a plane

equation of the form y3 = p5(x). They use their canonical model in P
3

and the
geometric version of Riemann Roch theorem to give a unique representation of the
points of JC(k) in terms of affine effective divisors on C, then they use interpolating
functions to perform reduction in Div0(C)(k). Again, the quadrics presented here
coincide with these interpolating functions.

Example 3.1. We end this section with two examples illustrating the above reduc-
tion process.

Let C be the C43 curve with plane equation y4 = x3 + x, defined over F37; since
it has genus 3, its canonical model is just the projective closure of this model, with
equation Y 4 = X3Z+XZ3. The points P1(17 : 15 : 1), P2(27 : 11 : 1), P3(2 : 10 : 1)
and P4(11 : 10 : 1) are in C(F37), and the point at infinity is P∞(1 : 0 : 0). In the
sequel we give two degree zero divisors of the form D = E − 4P∞, the equations of
the hypersurfaces QE, QE′ , and the divisors E′′ of degree 3 such that E′′ − 3P∞ is
the reduction of D:

i) let D = P1 + P2 + P3 + P4 − 4P∞; the hypersurfaces QE and QE′ have
homogeneous equations respectively

QE : Z2 + XZ + 32Y Z + 11XY + 9Y 2 = 0; QE′ : 11Z2 + Y 2 = 0,

and we get E′′ = (11 : 27 : 1) + (2 : 27 : 1) + (2 : 10 : 1).
ii) let D = P1 + P2 + 2P4 − 4P∞; the hypersurfaces QE and QE′ have homo-

geneous equations respectively

QE : 4Z2 + 4XZ + 17Y Z + 7XY + 36Y 2 = 0; QE′ : 11Z2 + Y 2 = 0,

and we get E′′ = (11 : 10 : 1) + (2 : 27 : 1) + (11 : 27 : 1).
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