
A Software Framework for Data Based
Analysis

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum politicarum

(Doktor der Wirtschaftswissenschaft)

im Fach Volkswirtschaft

eingereicht an der

Wirtschaftswissenschaftlichen Fakultät

Humboldt-Universität zu Berlin

von

Dipl.-Vw. Markus Krätzig

geboren am 16.11.1974 in Berlin

Präsident der Humboldt-Universität zu Berlin:

Prof. Dr. Jürgen Mlynek

Dekan der Wirtschaftswissenschaftlichen Fakultät:

Prof. Dr. Joachim Schwalbach

Gutachter:

1. Prof. Dr. Helmut Lütkepohl

2. Prof. Dr. Bettina Berendt

eingereicht am: 21.12.2004

Tag der mündlichen Prüfung: 04.02.2005



Zusammenfassung

Es wird das Software Framework JStatCom vorgestellt, welches die Enwick-
lung von leistungsfähigen grafischen Benutzerschnittstellen für Daten-basierte
Analysemethoden wesentlich vereinfacht, wobei der Schwerpunkt auf Methoden
der Ökonometrie, insbesondere der Zeitreihenanalyse liegt. Das Konzept besteht
darin, sämtliche wiederkehrenden Aufgaben mit Hilfe von Java-Klassen zu lösen,
sowie die Ausführung von speziellen Algorithmen an externe Programme, wie
z.B. Gauss oder Matlab, zu delegieren. Auf diese Weise können schon existie-
rende Prozeduren aus verschiedenen Programmiersprachen wiederverwendet wer-
den. Weiterhin wird die ökonometrische Anwendungssoftware JMulTi beschrie-
ben, die auf Basis dieses Frameworks erstellt wurde.

Schlagwörter:
Zeitreihenanalyse, Wissenschaftliches Rechnen, Software Entwicklung, JMulTi



Abstract

This work presents the software framework JStatCom which is geared towards
the development of powerful graphical user interfaces for data based analysis
methods, especially for econometrics and time series analysis. The concept is
to solve all recurring tasks with the help of Java classes and to delegate the exe-
cution of special algorithms to external programs, for example Gauss or Matlab.
This way it is possible to reuse already existing procedures written in different
programming languages. Furthermore, the econometric software JMulTi will be
presented which has been developed with the help of this framework.

Keywords:
time series analysis, scientific computing, software engineering, JMulTi



Table of Contents

List of Figures xvi

List of Tables xviii

Abbreviations xix

Acknowledgements xxi

1 From Algorithms towards an integrated Framework 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 JStatCom and JMulTi . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Access to Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Using an Execution Engine . . . . . . . . . . . . . . . . . 7

1.3.2 Using Libraries and Toolkits . . . . . . . . . . . . . . . . 9

1.3.3 Including Graphics . . . . . . . . . . . . . . . . . . . . . 11

1.3.4 Integrating available Tools . . . . . . . . . . . . . . . . . 13

1.4 JStatCom in comparison to other Approaches . . . . . . . . . . . 14

1.4.1 MulTi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2 Observations on Entropy and Software Reuse . . . . . . . 14

1.4.3 The MMM Project . . . . . . . . . . . . . . . . . . . . . 16

1.4.4 The OmegaHat Project . . . . . . . . . . . . . . . . . . . 18

1.4.5 Creating GUI’s with Matlab . . . . . . . . . . . . . . . . 19

1.4.6 Creating interactive Programs with Ox . . . . . . . . . . . 20

1.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 How to read this Thesis . . . . . . . . . . . . . . . . . . . . . . . 24

iv



TABLE OF CONTENTS v

2 A Motivating Example 26
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 A Step-by-Step Example . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 System Requirements for this Example . . . . . . . . . . 27
2.2.2 Step 1: Download/Install the Java Software Development

Kit (J2SE SDK) . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Step 2: Download/Install the Eclipse IDE and some Plug-ins 28
2.2.4 Step 3: Download JStatCom and unpack it . . . . . . . . 29
2.2.5 Step 4: Create an Eclipse Project . . . . . . . . . . . . . . 30
2.2.6 Step 5: Create a new Package and a new Class . . . . . . 31
2.2.7 Step 6: Layout the GUI with the Visual Editor . . . . . . . 36
2.2.8 Step 7: Add an Action to the Execute Button . . . . . . . 45
2.2.9 Step 8: Add the Module to the Main Application Frame . 45
2.2.10 Step 9: Integrate Gauss Algorithm . . . . . . . . . . . . . 47
2.2.11 Step 10: Implement the Execute Routine . . . . . . . . . 50
2.2.12 Step 11: Check running Module . . . . . . . . . . . . . . 55

2.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Design and Implementation 58
3.1 Documenting a Software Architecture . . . . . . . . . . . . . . . 58
3.2 JStatCom System Overview . . . . . . . . . . . . . . . . . . . . 59
3.3 How Stakeholders Can Use the Documentation . . . . . . . . . . 60

3.3.1 Typical Development Steps . . . . . . . . . . . . . . . . . 61
3.4 Background, Rationale, and Design Constraints . . . . . . . . . . 63

3.4.1 Operational Context . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Key Data Management Features . . . . . . . . . . . . . . 64
3.4.3 Key User Interface Features . . . . . . . . . . . . . . . . 64
3.4.4 Key Interoperability Features . . . . . . . . . . . . . . . . 65
3.4.5 Key Design Features . . . . . . . . . . . . . . . . . . . . 66

3.5 JStatCom Architecture View Template . . . . . . . . . . . . . . . 69
3.6 View Packet 1: JStatCom . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 70
3.6.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 72
3.6.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



vi TABLE OF CONTENTS

3.6.4 Architecture Background . . . . . . . . . . . . . . . . . . 76
3.6.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 76

3.7 View Packet 2: Data Model . . . . . . . . . . . . . . . . . . . . . 76
3.7.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 76
3.7.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 77
3.7.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7.4 Architecture Background . . . . . . . . . . . . . . . . . . 79
3.7.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 79

3.8 View Packet 3: Type System . . . . . . . . . . . . . . . . . . . . 79
3.8.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 79
3.8.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 82
3.8.3 Architecture Background . . . . . . . . . . . . . . . . . . 83
3.8.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 85
3.8.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 86

3.9 View Packet 4: Data Event System . . . . . . . . . . . . . . . . . 86
3.9.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 86
3.9.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 87
3.9.3 Architecture Background . . . . . . . . . . . . . . . . . . 88
3.9.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 89
3.9.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 91

3.10 View Packet 5: Symbol Management . . . . . . . . . . . . . . . . 91
3.10.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 91
3.10.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 94
3.10.3 Architecture Background . . . . . . . . . . . . . . . . . . 95
3.10.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 96
3.10.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 100

3.11 View Packet 6: Symbol Event System . . . . . . . . . . . . . . . 101
3.11.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 101
3.11.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 102
3.11.3 Architecture Background . . . . . . . . . . . . . . . . . . 103
3.11.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 104
3.11.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 106

3.12 View Packet 7: Symbol Control . . . . . . . . . . . . . . . . . . 106
3.12.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 106



TABLE OF CONTENTS vii

3.12.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 110
3.12.3 Architecture Background . . . . . . . . . . . . . . . . . . 111
3.12.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 111
3.12.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 112

3.13 View Packet 8: Engine . . . . . . . . . . . . . . . . . . . . . . . 113
3.13.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 113
3.13.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 119
3.13.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.13.4 Architecture Background . . . . . . . . . . . . . . . . . . 122
3.13.5 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 125
3.13.6 Related View Packets . . . . . . . . . . . . . . . . . . . . 125

3.14 View Packet 9: Gauss . . . . . . . . . . . . . . . . . . . . . . . . 126
3.14.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 126
3.14.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 131
3.14.3 Architecture Background . . . . . . . . . . . . . . . . . . 132
3.14.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 133
3.14.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 135

3.15 View Packet 10: GRTE . . . . . . . . . . . . . . . . . . . . . . . 135
3.15.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 135
3.15.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 140
3.15.3 Architecture Background . . . . . . . . . . . . . . . . . . 140
3.15.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 143
3.15.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 143

3.16 View Packet 11: Ox . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.16.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 143
3.16.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 145
3.16.3 Architecture Background . . . . . . . . . . . . . . . . . . 146
3.16.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 149
3.16.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 150

3.17 View Packet 12: Stub . . . . . . . . . . . . . . . . . . . . . . . . 151
3.17.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 151
3.17.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 154
3.17.3 Architecture Background . . . . . . . . . . . . . . . . . . 155
3.17.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 156



viii TABLE OF CONTENTS

3.17.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 157
3.18 View Packet 13: MatLab . . . . . . . . . . . . . . . . . . . . . . 158

3.18.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 158
3.18.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 160
3.18.3 Architecture Background . . . . . . . . . . . . . . . . . . 160
3.18.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 161
3.18.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 162

3.19 View Packet 14: PCall . . . . . . . . . . . . . . . . . . . . . . . 162
3.19.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 162
3.19.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 164
3.19.3 Architecture Background . . . . . . . . . . . . . . . . . . 165
3.19.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 167
3.19.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 169

3.20 View Packet 15: Time Series . . . . . . . . . . . . . . . . . . . . 170
3.20.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 170
3.20.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 171
3.20.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.20.4 Architecture Background . . . . . . . . . . . . . . . . . . 173
3.20.5 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 176
3.20.6 Related View Packets . . . . . . . . . . . . . . . . . . . . 177

3.21 View Packet 16: List . . . . . . . . . . . . . . . . . . . . . . . . 177
3.21.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 177
3.21.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 180
3.21.3 Architecture Background . . . . . . . . . . . . . . . . . . 182
3.21.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 183
3.21.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 184

3.22 View Packet 17: Table . . . . . . . . . . . . . . . . . . . . . . . 184
3.22.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 184
3.22.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 186
3.22.3 Architecture Background . . . . . . . . . . . . . . . . . . 186
3.22.4 Related View Packets . . . . . . . . . . . . . . . . . . . . 187

3.23 View Packet 18: Selection . . . . . . . . . . . . . . . . . . . . . 187
3.23.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 187
3.23.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 190



TABLE OF CONTENTS ix

3.23.3 Architecture Background . . . . . . . . . . . . . . . . . . 190
3.23.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 191
3.23.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 192

3.24 View Packet 19: Calculator . . . . . . . . . . . . . . . . . . . . . 192
3.24.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 192
3.24.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 194
3.24.3 Architecture Background . . . . . . . . . . . . . . . . . . 195
3.24.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 195
3.24.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 196

3.25 View Packet 20: Components . . . . . . . . . . . . . . . . . . . . 196
3.25.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 196
3.25.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 197
3.25.3 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.25.4 Architecture Background . . . . . . . . . . . . . . . . . . 200
3.25.5 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 201
3.25.6 Related View Packets . . . . . . . . . . . . . . . . . . . . 204

3.26 View Packet 21: Application . . . . . . . . . . . . . . . . . . . . 204
3.26.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 204
3.26.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 208
3.26.3 Architecture Background . . . . . . . . . . . . . . . . . . 209
3.26.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 213
3.26.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 215

3.27 View Packet 22: Data Table . . . . . . . . . . . . . . . . . . . . . 215
3.27.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 215
3.27.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 219
3.27.3 Architecture Background . . . . . . . . . . . . . . . . . . 220
3.27.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 221
3.27.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 223

3.28 View Packet 23: Equation . . . . . . . . . . . . . . . . . . . . . . 223
3.28.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 223
3.28.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 225
3.28.3 Architecture Background . . . . . . . . . . . . . . . . . . 226
3.28.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 227
3.28.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 229



x TABLE OF CONTENTS

3.29 View Packet 24: Input/Output . . . . . . . . . . . . . . . . . . . 230
3.29.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 230
3.29.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 232
3.29.3 Architecture Background . . . . . . . . . . . . . . . . . . 233
3.29.4 Related View Packets . . . . . . . . . . . . . . . . . . . . 234

3.30 View Packet 25: Data Import System . . . . . . . . . . . . . . . . 235
3.30.1 Primary Presentation . . . . . . . . . . . . . . . . . . . . 235
3.30.2 Element Catalog . . . . . . . . . . . . . . . . . . . . . . 238
3.30.3 Architecture Background . . . . . . . . . . . . . . . . . . 239
3.30.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . 240
3.30.5 Related View Packets . . . . . . . . . . . . . . . . . . . . 241

3.31 Concluding Remarks about JStatCom . . . . . . . . . . . . . . . 241

4 JMulTi - A Reference Application of the Framework 245
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
4.2 General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
4.3 Modules of JMulTi . . . . . . . . . . . . . . . . . . . . . . . . . 248
4.4 How to read this Chapter . . . . . . . . . . . . . . . . . . . . . . 250
4.5 Initial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.5.2 Implemented Features . . . . . . . . . . . . . . . . . . . 252
4.5.3 Implementation Details . . . . . . . . . . . . . . . . . . . 256

4.6 VAR Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.6.2 Implemented Features . . . . . . . . . . . . . . . . . . . 265
4.6.3 Implementation Details . . . . . . . . . . . . . . . . . . . 272

4.7 VEC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
4.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 286
4.7.2 Implemented Features . . . . . . . . . . . . . . . . . . . 290
4.7.3 Implementation Details . . . . . . . . . . . . . . . . . . . 295

4.8 ARCH Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
4.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 299
4.8.2 Implemented Features . . . . . . . . . . . . . . . . . . . 301
4.8.3 Implementation Details . . . . . . . . . . . . . . . . . . . 304



TABLE OF CONTENTS xi

4.9 STR Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
4.9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 305
4.9.2 The Modelling Cycle . . . . . . . . . . . . . . . . . . . . 306
4.9.3 Implemented Features . . . . . . . . . . . . . . . . . . . 307
4.9.4 Implementation Details . . . . . . . . . . . . . . . . . . . 315

4.10 Nonparametric Analysis . . . . . . . . . . . . . . . . . . . . . . 316
4.10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 316
4.10.2 Implemented Features . . . . . . . . . . . . . . . . . . . 319
4.10.3 Implementation Details . . . . . . . . . . . . . . . . . . . 324

4.11 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

A Guide to Notation 331
A.1 Class Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

A.1.1 Elements and Inheritance . . . . . . . . . . . . . . . . . . 332
A.1.2 Components . . . . . . . . . . . . . . . . . . . . . . . . 334
A.1.3 Relations between Elements of Class Diagrams . . . . . . 335

A.2 Object Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 337
A.3 Use Case Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 337

B Documenting Modules with JavaHelp and JHelpDev 339
B.1 LaTeX and latex2html . . . . . . . . . . . . . . . . . . . . . . . 340
B.2 JHelpDev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
B.3 Integrating Helpsets with an Application . . . . . . . . . . . . . . 343

Bibliography 353

Selbständigkeitserklärung 354



List of Figures

1.1 A screenshot of a simple example module for Markov-Switching
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Class diagram for an interactive Ox program . . . . . . . . . . . . 21

2.1 Selecting a new Java project in the Eclipse IDE . . . . . . . . . . 30

2.2 Setting project name and directory . . . . . . . . . . . . . . . . . 31

2.3 Display of the new project testproject in the package explorer 32

2.4 Creating a new class . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Creating a new package . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Specifying the new class . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Generated Java code for a new class . . . . . . . . . . . . . . . . 35

2.8 Open class in visual builder tool . . . . . . . . . . . . . . . . . . 36

2.9 Initial display, frame needs to be resized . . . . . . . . . . . . . . 37

2.10 TestFrame after resize with title, properties at the bottom . . . . 38

2.11 TestFrame after a JPanel has been added . . . . . . . . . . . . 39

2.12 Setting layout manager to null, easier to handle for initial design 40

2.13 Selecting the TSSel component . . . . . . . . . . . . . . . . . . 41

2.14 TSSel component has been placed on the panel . . . . . . . . . . 42

2.15 Editing properties of TSSel component . . . . . . . . . . . . . . 43

2.16 Selecting the NumSelector component for number input . . . . . 44

2.17 Setting a validating range [1, 20] to the NumSelector component 44

2.18 Placing a JButton and creating an action . . . . . . . . . . . . . 45

2.19 Default action handler for execute button . . . . . . . . . . . . . . 46

2.20 Editing modules.xml to insert TestFrame to list of modules . . . 47

2.21 Adjusting the classpath in the app.bat script . . . . . . . . . . . 48

xii



LIST OF FIGURES xiii

2.22 Running application with new TestFramemodule, execute method
still needs to be coded . . . . . . . . . . . . . . . . . . . . . . . . 49

2.23 Open TestFrame in Java editor, more convenient for manual cod-
ing than visual editor . . . . . . . . . . . . . . . . . . . . . . . . 51

2.24 Hidden method body that should be expanded by clicking on ar-
row to the left . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.25 Red underline and symbol to the left indicating some compilation
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.26 A left mouse click on the error symbol gives a menu with possible
error fixes, the first option should be chosen here . . . . . . . . . 53

2.27 Implementation of the execute call . . . . . . . . . . . . . . . . . 54
2.28 Running module with output from computation . . . . . . . . . . 55
2.29 Symbol Control after the computation has finished . . . . . . . . 56

3.1 Use cases for JStatCom . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Context of the Data Model . . . . . . . . . . . . . . . . . . . . . 78
3.3 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Classes in Data Event System . . . . . . . . . . . . . . . . . . . . 86
3.5 Symbol Management . . . . . . . . . . . . . . . . . . . . . . . . 92
3.6 SymbolScope inheritance . . . . . . . . . . . . . . . . . . . . . . 93
3.7 Class structure of a hypothetical VAR frame . . . . . . . . . . . . 97
3.8 Snapshot of model objects and shared data with different scopes . 98
3.9 Classes in Symbol Event System . . . . . . . . . . . . . . . . . . 101
3.10 Tree related classes in Symbol Control . . . . . . . . . . . . . . . 107
3.11 Snapshot of objects in symbol tree . . . . . . . . . . . . . . . . . 108
3.12 GUI related classes in Symbol Control . . . . . . . . . . . . . . . 109
3.13 Screenshot of symbol frame with selected NARRAY . . . . . . . . . 112
3.14 Screenshot of symbol frame with selected DRANGE . . . . . . . . . 113
3.15 Engine classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.16 Engine inheritance . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.17 ConfigDialog with a DefaultConfigPanel . . . . . . . . . . 116
3.18 Engine client using abstract Engine and EngineTypes, but spe-

cific LoadTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.19 Context of the Engine system . . . . . . . . . . . . . . . . . . . . 122



xiv LIST OF FIGURES

3.20 Classes of the Gauss subsystem . . . . . . . . . . . . . . . . . . . 126
3.21 Gauss communication libraries . . . . . . . . . . . . . . . . . . . 127
3.22 Classes of the GRTE subsystem . . . . . . . . . . . . . . . . . . 135
3.23 Classes of the Ox subsystem . . . . . . . . . . . . . . . . . . . . 143
3.24 Classes of the Stub subsystem . . . . . . . . . . . . . . . . . . . 151
3.25 Classes of the MatLab subsystem . . . . . . . . . . . . . . . . . . 158
3.26 Classes of the PCall subsystem . . . . . . . . . . . . . . . . . . . 163
3.27 Classes of the Time Series subsystem . . . . . . . . . . . . . . . 171
3.28 Context of the Time Series subsystem . . . . . . . . . . . . . . . 174
3.29 Classes of the List subsystem . . . . . . . . . . . . . . . . . . . . 178
3.30 Screenshot of a TSList component with TSListPopup showing . 179
3.31 Classes of the Table subsystem . . . . . . . . . . . . . . . . . . . 184
3.32 Screenshot of a TSTable component . . . . . . . . . . . . . . . . 185
3.33 Screenshot of a TSSel component . . . . . . . . . . . . . . . . . 187
3.34 Screenshot of Time Series Calculator . . . . . . . . . . . . . . . . 192
3.35 Classes for input validating text fields . . . . . . . . . . . . . . . 197
3.36 Screenshot of NumSelector with an error message . . . . . . . . 201
3.37 Use cases for the Components system . . . . . . . . . . . . . . . 202
3.38 Specification of a NumSelector in a visual application builder . . 203
3.39 Classes of Application system . . . . . . . . . . . . . . . . . . . 205
3.40 Screenshot of TopFrame customized for the JMulTi application . 206
3.41 Classes of Data Table system . . . . . . . . . . . . . . . . . . . . 215
3.42 Screenshot of a NArrayTable . . . . . . . . . . . . . . . . . . . 216
3.43 Screenshot of NArrayTable with a special table renderer and

mouse click listener . . . . . . . . . . . . . . . . . . . . . . . . . 216
3.44 Screenshot of a SArrayTable . . . . . . . . . . . . . . . . . . . 217
3.45 Classes of Equation system . . . . . . . . . . . . . . . . . . . . . 223
3.46 Screenshot of VEC model coefficients estimates . . . . . . . . . . 224
3.47 Screenshot of VEC model exclusion restrictions on shortrun dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
3.48 Classes of Input/Output system . . . . . . . . . . . . . . . . . . . 230
3.49 Error message presented to the user . . . . . . . . . . . . . . . . 230
3.50 Screenshot of LogFrame with a detailed error message . . . . . . 231
3.51 Classes of Data Import system . . . . . . . . . . . . . . . . . . . 235



LIST OF FIGURES xv

3.52 Screenshot of ImportDataFrame with a TSImportPanel . . . 236
3.53 Screenshot of TSASCIIDialog . . . . . . . . . . . . . . . . . . . 237

4.1 Screenshot of workbench with autocorrelation panel . . . . . . . . 251
4.2 Screenshot of ADF unit root test panel . . . . . . . . . . . . . . . 252
4.3 Screenshot of Johansen cointegration test panel . . . . . . . . . . 253
4.4 Screenshot of Symbol Control for Initial Analysis . . . . . . . . . 258
4.5 Classes for Initial Analysis . . . . . . . . . . . . . . . . . . . . . 259
4.6 Screenshot of specification panel for the VAR analysis . . . . . . 261
4.7 Screenshot of estimation panel for the VAR analysis . . . . . . . . 262
4.8 Screenshot of manual/automatic subset specification for the VAR

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
4.9 Screenshot of SVAR model estimation . . . . . . . . . . . . . . . 263
4.10 Screenshot of Symbol Control system for VAR model . . . . . . . 264
4.11 Screenshot of panel for plotting recursive coefficients estimates . . 267
4.12 Screenshot of panel for computing bootstrapped Chow tests . . . . 268
4.13 Screenshot of forecast panel for VAR analysis . . . . . . . . . . . 269
4.14 Screenshot of bootstrap specification panel for VAR Impulse Re-

sponse Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
4.15 Screenshot of VAR Impulse Response Analysis panel . . . . . . . 270
4.16 Screenshot of VEC model selection . . . . . . . . . . . . . . . . 286
4.17 Screenshot of VEC estimation output in matrix form . . . . . . . 287
4.18 Screenshot of specifying restrictions on short-run dynamics for a

VEC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
4.19 Screenshot of specifying restrictions on the cointegration relation

of a VEC model . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
4.20 Screenshot of the dialog for specifying the estimation of the 1st

stage of a two stage VEC estimation procedure . . . . . . . . . . 290
4.21 Screenshot of panel for plotting recursive coefficients estimates . . 291
4.22 Screenshot of causality tests panel . . . . . . . . . . . . . . . . . 293
4.23 Screenshot of specification panel for SVEC estimation . . . . . . 294
4.24 Screenshot of a user message about long-run restrictions not being

taken into account with the currently selected estimation procedure 296
4.25 Screenshot of ARCH analysis module . . . . . . . . . . . . . . . 300



xvi LIST OF FIGURES

4.26 Screenshot of output for univariate GARCH(1, 1) estimation . . . 301
4.27 Screenshot of residual analysis for ARCH analysis . . . . . . . . 302
4.28 Screenshot of output for multivariate GARCH(1, 1) estimation . . 303
4.29 Screenshot of model selection for STR analysis . . . . . . . . . . 305
4.30 Screenshot of selecting subset restrictions for AR parts of STR

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
4.31 Screenshot of test for nonlinearity . . . . . . . . . . . . . . . . . 308
4.32 Screenshot of grid search to find starting values . . . . . . . . . . 310
4.33 Screenshot of panel for STR estimation . . . . . . . . . . . . . . 311
4.34 Screenshot of dialog to set restrictions for STR estimation . . . . 312
4.35 Screenshot of graphical analysis panel . . . . . . . . . . . . . . . 312
4.36 Screenshot of residual analysis panel . . . . . . . . . . . . . . . . 314
4.37 Screenshot of model selection for the nonparametric analysis . . . 317
4.38 Screenshot of model estimation for the nonparametric analysis . . 319
4.39 Screenshot of forecasts for the nonparametric analysis . . . . . . . 320
4.40 Screenshot of surface plot for conditional mean . . . . . . . . . . 321
4.41 Screenshot of conditional mean together with Bonferroni CIs . . . 322
4.42 Screenshot of text output after lag selection finished . . . . . . . . 328

A.1 Classes and inheritance . . . . . . . . . . . . . . . . . . . . . . . 332
A.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
A.3 Relations among classes . . . . . . . . . . . . . . . . . . . . . . 335
A.4 Object diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
A.5 Use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 338

B.1 Screenshot of a TOC editor component . . . . . . . . . . . . . . . 342
B.2 Screenshot of a help viewer . . . . . . . . . . . . . . . . . . . . . 343



List of Tables

3.1 Typical development steps . . . . . . . . . . . . . . . . . . . . . 63
3.2 Primary Presentation of JStatCom . . . . . . . . . . . . . . . . . 71
3.3 Resources for MatLab engine, Windows . . . . . . . . . . . . . . 72
3.4 Elements of JStatCom . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 Primary Presentation of Data Model . . . . . . . . . . . . . . . . 77
3.6 Elements of the Data Model . . . . . . . . . . . . . . . . . . . . 78
3.7 Elements of the Type System . . . . . . . . . . . . . . . . . . . . 83
3.8 Elements of the Data Event System . . . . . . . . . . . . . . . . . 88
3.9 Elements of the Symbol Management . . . . . . . . . . . . . . . 95
3.10 Elements of the Symbol Event System . . . . . . . . . . . . . . . 102
3.11 Elements of the Symbol Control . . . . . . . . . . . . . . . . . . 110
3.12 Primary Presentation of Engine system . . . . . . . . . . . . . . . 113
3.13 Elements of Engine system . . . . . . . . . . . . . . . . . . . . . 121
3.14 Resources for Gauss engine . . . . . . . . . . . . . . . . . . . . . 130
3.15 Elements of Gauss system . . . . . . . . . . . . . . . . . . . . . 131
3.16 Resources for GRTE engine, Windows . . . . . . . . . . . . . . . 138
3.17 Resources for GRTE engine, Linux/Solaris . . . . . . . . . . . . . 140
3.18 Elements of GRTE system . . . . . . . . . . . . . . . . . . . . . 140
3.19 Resources for Ox engine, all operating systems . . . . . . . . . . 145
3.20 Elements of Ox system . . . . . . . . . . . . . . . . . . . . . . . 145
3.21 Type conversion between JStatCom and Ox . . . . . . . . . . . . 148
3.22 Type conversion between C-types and Stub engine, all properties

that are not mentioned must not be set or set to false . . . . . . . 153
3.23 Resources for Stub engine, Windows and Linux/Solaris . . . . . . 154
3.24 Elements of Stub system . . . . . . . . . . . . . . . . . . . . . . 155

xvii



xviii LIST OF TABLES

3.25 Resources for MatLab engine . . . . . . . . . . . . . . . . . . . . 159
3.26 Elements of MatLab system . . . . . . . . . . . . . . . . . . . . 160
3.27 Elements of PCall system . . . . . . . . . . . . . . . . . . . . . . 164
3.28 Subsystems of Time Series . . . . . . . . . . . . . . . . . . . . . 170
3.29 Elements of Time Series system . . . . . . . . . . . . . . . . . . 173
3.30 Elements of List system . . . . . . . . . . . . . . . . . . . . . . . 182
3.31 Elements of Table system . . . . . . . . . . . . . . . . . . . . . . 186
3.32 Elements of Selection system . . . . . . . . . . . . . . . . . . . . 190
3.33 Elements of Calculator system . . . . . . . . . . . . . . . . . . . 194
3.34 Primary Presentation of Components . . . . . . . . . . . . . . . . 196
3.35 Elements of Components system . . . . . . . . . . . . . . . . . . 200
3.36 Resources for the Application system . . . . . . . . . . . . . . . 207
3.37 Elements of Application system . . . . . . . . . . . . . . . . . . 208
3.38 Elements of Data Table system . . . . . . . . . . . . . . . . . . . 220
3.39 Elements of Equation system . . . . . . . . . . . . . . . . . . . . 226
3.40 Elements of Input/Output system . . . . . . . . . . . . . . . . . . 233
3.41 Elements of Data Import system . . . . . . . . . . . . . . . . . . 239

4.1 Modules of JMulTi . . . . . . . . . . . . . . . . . . . . . . . . . 249
4.2 Shared components . . . . . . . . . . . . . . . . . . . . . . . . . 299



Abbreviations

AC Autocorrelation
ARCH Autoregressive Conditional Heteroskedasticity
API Application Programming Interface
CI Confidence Interval
DLL Dynamic Link Library
EC Error Correction
GLS Generalized Least Squares
GUI Graphical User Interface
HTML Hypertext Markup Language
IDE Integrated Development Environment
JNI Java Native Interface
JRE Java Runtime Environment
LGPL Lesser General Public License
LM Lagrange Multiplier
ML Maximum Likelihood
OS Operating System
PAC Partial Autocorrelation
PDF Portable Document Format
STR Smooth Transition Regression
SVAR Structural Vector Autoregression
UML Unified Modelling Language
UR Unit Root
URL Uniform Resource Locator
VAR Vector Autoregression
VE Visual Editor

xix



xx Abbreviations

VEC Vector Error Correction
VB Visual Basic
XML Extendable Markup Language
XP Extreme Programming



Acknowledgements

The early stages of this work were carried out in the PhD program of “Applied
Microeconomics” of the Humboldt-Universität zu Berlin and completed at the the
Sonderforschungsbereich 373 (SFB 373) as well as in the Chair of Econometrics.
I am thankful for financial support granted by the German Research Foundation
(DFG), as well as for the excellent work conditions provided by the School of
Business and Economics of the Humboldt-Universität zu Berlin.

I would like to point out that this work would not have been possible without
the continued support of my supervisor, Prof. Dr. Helmut Lütkepohl, who always
provided valuable feedback and comments which contributed greatly to the final
outcome. He was the first user of the developed software and thus assisted with its
birth and its introduction to a wider audience. In addition, Prof. Bettina Berendt
assisted me to improve the thesis by providing the perspectives of a computer
scientist, not an econometrician. I thank her for her time and consideration.

Many econometricians have contributed their code to this system and I would
like to thank, in random order, Prof. Rolf Tschernig, Dr. Ralf Brüggemann, Dr.
Carsten Trenkler, Prof. Helmut Herwartz, Dmitri Boreiko, Christian Kascha, Ste-
fan Lundbergh (Ph.D.), and Markku Lanne (Ph.D.) for their support and the fruit-
ful collaboration. Among the participants of a particularly instructive workshop
held in March 2003 in Florence were Dr. Kirstin Hubrich, Prof. Jörg Breitung,
Maria Eleftheriou, Aaron Mehrotra, and Sebastian Watzka. I would also like to
thank them for giving a profound feedback to the author.

This thesis is based on previous work by Dr. Alexander Benkwitz, who initi-
ated this project and created the first prototypes. I greatly enjoyed working with
him and due to the open exchange of results and knowledge I was able to continue
the project after his departure from the SFB 373.

xxi



xxii Acknowledgements

I would also like to thank Prof. Timo Teräsvirta for his comments upon the re-
search after he kindly invited me for a stay at the Stockholm School of Economics.
Last, but certainly not least, I greatly appreciated the 8-months of hospitality at the
European University Institute in Florence where I was able to conduct my work
in an inspiring atmosphere surrounded by the beautiful Tuscan hills.



Chapter 1

From Algorithms towards an
integrated Framework

Let your workings remain a mystery.

Just show people the results.

(Lao-Tse)

1.1 Problem Description

Modern econometrics relies heavily on the use of computer software to analyse
empirical data, as well as to run simulations to investigate the properties of tests
and estimators. Complex mathematical algorithms need to be applied to data that
is either randomly sampled or that has been observed as the realization of some
stochastic process and that is stored in a file or in some database. Researchers who
want to perform a certain type of analysis with up-to-date methods basically have
two options. By employing standard software packages for econometric analysis,
like Eviews or Oxmetrics, they could use a wide range of methods very effectively.
The other option would be to take some programming language for statistics, for
example Gauss, Ox, Octave, Matlab, or R, and to write or reuse programs that can
do the analysis.

The pros and cons of both approaches are quite obvious. If a standard software
is used, there is typically well developed graphical user interface (GUI) support,

1



2 Chapter 1. From Algorithms towards an integrated Framework

and the implemented methods are ready to use. However, if some method is miss-
ing that is not provided by the respective vendor, extra programming is needed.
Although most standard packages also provide a programming interface, it is then
usually more effective to apply one of the well established languages for statistics,
because often there is already code available which can be reused. Thus standard
software lacks flexibility and the possibility to program extensions easily.

By using a programming language for statistics, one has a lot more flexibility
to program algorithms. But this approach requires familiarity with the respective
language and the resulting programs are usually script-based. This means that it
is less convenient and more troublesome to use these algorithms compared to a
software with a GUI for interactive modelling. Often even the programmer her-
self has problems getting a script running that she has not touched for a while.
Furthermore, model building in econometrics is typically a multi-step procedure
with a number of different algorithms involved. With a script-based approach
combining these procedures can become quite a complex undertaking. It always
requires text editing of sometimes lengthy source code. Furthermore, documenta-
tion is often quite sloppy, which requires to investigate the algorithms themselves
to know exactly how parameters need to be prepared and what the contents of the
results are. Another problem is that the authors of these algorithms usually see
themselves rather as Scientists instead of Programmers and they often do not re-
flect very much about software engineering techniques. The result is that software
reuse is often limited to reusing single procedures written in some script language
for statistics. More complex interactions or object-oriented design is only applied
by experienced developers and can still not be considered a mainstream technique
in that area.

One of the central contributions of the proposed software architecture JStat-
Com is that it can be used to increase software reuse, because it provides config-
urable standard components for recurring tasks as well as mechanisms to use code
that has been written already in special languages for statistics.1 By applying that
approach one can develop reliable, feature-rich applications with relatively little
effort. More generally, this was one of the major goals of object-oriented pro-
gramming, but it needs domain specific application frameworks to bring this idea

1The URL for the framework JStatCom is www.jstatcom.com.



1.2. JStatCom and JMulTi 3

to live. JStatCom is such a framework for data based analysis, especially time
series econometrics.

To summarize, the big disadvantage of using special purpose languages to
program algorithms for statistics and econometrics is that it often requires special
knowledge to reuse them. It is not a solution that can be applied by empirical
researchers easily because it often involves time consuming programming or at
least adjustments in the source code. This leads to a situation where methods are
not being used because they are not part of a standard software and programming
is not an option due to resource or knowledge constraints. However, these methods
may have been programmed and might already be part of some software library. It
would therefore be good to improve the usability of these algorithms by providing
a relatively simple way to create user-friendly interfaces for them.

1.2 JStatCom and JMulTi

The aim of this work is to present an approach to creating software for that purpose
which is based on the first version of the application framework JStatCom. This
software was developed by the author and is based on previous work by Benkwitz
(2002), who implemented an early version of JStatCom which was capable to
communicate with the Gauss software only. He set up the concept of having
a separate Java interface together with a communications interface to an external
execution engine, a term borrowed from the MMM project (Günther et al. (1997)).

In its current version the framework has been generalized to provide the ca-
pabilities to work with a number of computational engines with very different
features. It is argued that by now any relevant engine can be used if a communi-
cations interface for external procedure calls is provided by the vendor or by other
parties. The system has been further generalized to represent new data types, like
dates and sample ranges. Many build-in variation points allow to adjust the frame-
work to different modelling situations. For this, a new abstract engine system, as
well as a different internal data management had to be implemented for JStatCom,
which also affected many components for GUI design. Therefore the whole sys-
tem was rewritten to cope with the more general requirements. Furthermore, all
classes and methods have been thoroughly documented and a complete API spec-



4 Chapter 1. From Algorithms towards an integrated Framework

Figure 1.1: A screenshot of a simple example module for Markov-Switching mod-
els

ification has been generated which can be used by developers. It should also be
mentioned that regression testing has been applied for all features of JStatCom
that can automatically be checked via assertions.

On top of it the software JMulTi was developed which is an application that
is based on JStatCom.2 It is also described already in Benkwitz (2002), but since
then many new features have been added. Of course it had to be adjusted in many
ways because the underlying framework has been changed. Chapter 4 describes
the current state of JMulTi. The author has developed the modules Initial Analysis,
STR, ARCH, and Nonparametric Analysis. But due to the change in the underlying

2The URL for the application JMulTi is www.jmulti.de.



1.2. JStatCom and JMulTi 5

structure, also the VAR and VEC modules have been almost completely rewritten.
Furthermore, various new features have been added to these modules compared
to the version in 2002. A help system was also integrated which is based on
the JavaHelp system. It has been generated with the tool JHelpDev which has
been developed by the author, see Appendix B. In general the software JMulTi is
now much more user-friendly, has many more econometric features, and is more
reliable. It is slowly getting accepted by the econometric community. The web-
statistics for the release 3.11 08/24/04 state that the software has been downloaded
about 1800 times in less than 4 months. On average the homepage of JMulTi
is visited by about 40 different users every day. It is reportedly being used for
teaching as well as for empirical research.

Because major parts of this thesis present the software framework JStatCom, it
mainly addresses developers who intend to program graphical user interfaces for
mathematical algorithms. The work investigates the requirements for such a soft-
ware and describes solutions to the typical problems that appear in that context. It
tries to adopt to the situation where Scientists develop algorithms from their do-
main specific knowledge and work closely together with Programmers who apply
the framework to program GUIs for those procedures. Both roles can also be filled
by a single person. The latter scenario is not uncommon, examples are Harald Uh-
lig’s Toolkit (Uhlig (1999)) or James Davidson’s Time Series Modelling software.3

However, JStatCom makes it possible that scientists develop their algorithms in a
way they are familiar with, and a Java programmer can focus on designing a GUI
for them. This way the development process can become more efficient because
all participants may use their specific expertise. It is not required that a scientist
needs to program in Java and learn about application development. On the other
hand the programmer does not need to have a deep domain specific knowledge to
implement the GUI with JStatCom.

Figure 1.1 shows a screenshot of a relatively simple module that has been
programmed with this software.4 Without describing any details in this place,

3The URL of the software is http://www.timeseriesmodelling.com.
4The module estimates a Markov-Switching AR model with a variable mean and two regimes.

The transition probabilities are assumed to be constant, as well as the variances and the autore-
gressive parameters. It is possible to reproduce the results presented in Hamilton (1989) with this
code. The GUI for this provides an interface to load the data, set the sample, specify the number



6 Chapter 1. From Algorithms towards an integrated Framework

one can see that there are GUI components for specifying the input for some
algorithm. The output of the underlying computation is presented in a text area.
It will be shown how modules of similar type can be created in a straightforward
way in Java with the help of JStatCom. Domain specific algorithms might be
reused even if they are written in another language. The language that has been
used in the example for the screenshot was Ox.

Although there already exist a number of solutions to this task, the strength of
the presented approach lies in its flexibility and the high level of code reuse that
can be achieved. It also promotes an object-oriented design that allows to cre-
ate scalable applications that do not tend to become much more complicated and
error-prone as more features are added, and thus reducing the entropy problems
(Bianchi et al. (2001)).

A very general description of the problems that occur when developing soft-
ware for scientific computing is given by Morven Gentleman in Boisvert and Tang
(2001, preface). The author mentions that often complex software systems are
created by scientists rather than software engineers. This can lead to the common
situation that best practices in software engineering are ignored or not recognized,
and that projects can suffer from this deficiency. The lifetime of scientific appli-
cations is often measured in decades, although the code is under constant change.
Therefore it might well pay off to introduce some modern programming concepts,
like for example unit and regression testing, into scientific software development.

An observation that can be made in areas that heavily depend on the use of
complex mathematical algorithms is that large and powerful libraries for math,
statistics and graphics are created in different programming languages, but that
there is a lack of an integrating framework that seeks to make those procedures
accessible in a user-friendly way. So far there are only isolated solutions for cer-
tain problems, as for example described in Ashworth et al. (2003), but no attempt
has been made to standardize the creation of GUI’s for mathematical applications
in a more general context. One exception is the web based approach MMM which
was developed as an architecture to share algorithms and computing resources via
the internet. User interaction was done via a browser interface.

of AR lags and estimate the model.



1.3. Access to Algorithms 7

However, this solution was still not convenient enough for users and was there-
fore not widely used for empirical analysis. The presented software framework JS-
tatCom tries to fill this gap by defining classes that are especially designed to link
between existing math libraries and a graphical user interface. It is not focussed
on new algorithms for math and statistics, but concentrates on convenient user in-
terface components, an efficient variable bookkeeping system and on a powerful
and extendable data model. The main target of the software is the desktop com-
puter, instead of a distributed computing environment, although it is conceptually
not limited to a local environment. A special feature of JStatCom is that existing
code from popular matrix oriented languages can easily be reused without even
changing it. The software makes every attempt to be both, developer- and user-
friendly. This is mainly achieved by providing standardized ways to develop and
test applications based on it. JStatCom suggests a certain class design that can
be applied to many different modelling situations. This way the developer can
always apply a very similar class structure, although the underlying models might
be quite different. How this can work in practise is described in Chapter 4.

It has to be mentioned that a framework can never be developed successfully
without using it in a real world application, see for example Venners (2002).
Hence, JStatCom contains all general solutions that have been found when de-
veloping JMulTi, the first application that is based on it.

1.3 Access to Algorithms

This section describes which options exist to use JStatCom together with an ex-
ternal execution engine, a Java library, or a native library to get access to already
implemented algorithms for a given problem.5

1.3.1 Using an Execution Engine

The framework in its current state does not depend on a special engine anymore,
like for example GAUSS, but can communicate with a number of different pro-
grams. In principle it is now possible to integrate any kind of execution engine

5The term native is used to describe operating system dependent binary resources.



8 Chapter 1. From Algorithms towards an integrated Framework

that has a programming interface for calling procedures provided by that engine.
Such interfaces exist for many packages used for scientific and engineering pro-
gramming, such as

• GAUSS (Vinod (2000))

• MatLab (Cribari-Neto and Jensen (1997))

• Ox (Cribari-Neto and Zarkos (2003)), free for academic use

• Mathematica (Rose and Smith (2002))

• R (Cribari-Neto and Zarkos (1999)), GNU open-source project

• Maple (Hutton (1995))

• Xplore (Härdle et al. (1995))

• Octave (Eddelbuettel (2000)), GNU open-source project

The references link to articles describing how the respective product is used for
statistics and econometrics. Most packages are published under a commercial
license, but there is also a number of high quality open-source tools available, of
which especially the R project is becoming increasingly popular.6

The use of an external engine has the advantage that most problems related to
numerical accuracy, performance and the availability of efficient algorithms and
libraries of high level functions can be delegated to an already existing and well
established package. In addition to that, users of that package are already familiar
with the respective scripting language and can use it efficiently to implement their
algorithms. JStatCom does not make the attempt to compete with any of those
products, but aims at enhancing their value by providing support for the creation of
very flexible GUI’s. This way it can be used to create stand-alone applications that
could even incorporate code from different packages, say, GAUSS, MatLab, and
Ox, just to name some of the most popular software tools used in econometrics.
The disadvantage of using a separate program for the numerical computations is
that the portability of the resulting application is reduced, compared to that of a

6The URL of the R project is www.r-project.org.



1.3. Access to Algorithms 9

100% pure Java program. This is because the communication between the Java
side and the external engine can only be done efficiently by using operating system
specific functions, also called native methods, thus limiting one of the greatest
advantages of the Java language. However, this limitation can in principle be
overcome by providing communications schemes for different operating systems,
if the respective engine allows this.

1.3.2 Using Libraries and Toolkits

Apart from an external execution engine, there is also an increasing amount of
programming libraries and tool sets that can be used for various numerical calcu-
lations. As the Java programming language is gradually gaining acceptance also
for high performance numerical computing, see for example Boisvert et al. (2001)
for a discussion and Bull et al. (2001) for benchmark comparisons, there are by
now various Java packages available that can be used for statistics and economet-
rics. Problems that still remain when developing numerical libraries for Java are
summarized and evaluated in Boisvert et al. (1998), most of them are still valid
today. Nevertheless, the authors give an optimistic outlook that a combination
of new language features and optimized compiler performance will provide fur-
ther improvements. Among the needed enhancements are support for complex
numbers with the same performance as for primitive types (Wu et al. (1999))
and a multidimensional array package (Moreira et al. (2001)). These issues are
addressed by the Java Grande forum and have led to a number of proposals for
changes in the language specification as well as new extensions for numeric li-
braries.7 By now there already exist a number of libraries relevant for statistical
computing that can readily be used.

Among the most comprehensive linear algebra packages for Java are:8

• COLT, a toolkit for high performance computing

7The URL of the Java Grande forum is www.javagrande.org.
8The links to the homepages of the mentioned projects can be found at

math.nist.gov/javanumerics.



10 Chapter 1. From Algorithms towards an integrated Framework

• JAMA, a Java matrix toolkit that was proposed as a standard implementa-
tion for a matrix package by NIST 9 and MathWorks 10

• JLAPACK, translates LAPACK Fortran routines to Java (Anderson et al.
(1999), Doolin and Dongarra (1997))

• JADE, various additions to the default Java environment, including linear
algebra classes

• Java Numerical Toolkit, preliminary proposal for a numerical library by the
Java Numerics Working Group

• JMSL - numerical library for Java, a suite with a large collection of math
and statistics functions under a commercial license.

For JStatCom these developments have been encouraging, because using calls
to a Java numerical library would be the most natural way to incorporate complex
math algorithms to a Java application. As opposed to using a native execution
engine, this does not affect portability, meaning that applications could be run on
all platforms for which a JRE exists. In addition, deployment would be much
easier, because no extra resources from other languages must be shipped, like for
example Ox compiled classes or GAUSS gcg files.

Apart from employing an external execution engine or a Java numerical li-
brary, JStatCom also provides support for calling native libraries directly without
the need to write a dedicated Java wrapper for each function via the JNI interface
(Liang (1999)), see Section 3.17. This opens the door to use existing and well es-
tablished libraries for numerical computing, originally written in C or FORTRAN
for high performance calculations, like for example the numerical recipes toolkit
(Press et al. (2002)). However, using this scheme again leads to the portability
problem mentioned earlier, because of the necessary native calls. Apart from that,
it introduces pointer manipulations to the Java implementation. Pointers are direct
references to memory locations through which the contents of the virtual mem-
ory of a running application can be accessed and modified without further checks.

9The National Institute of Standards and Technology, www.nist.gov.
10The URL is www.mathworks.com.



1.3. Access to Algorithms 11

Pointer manipulations and pointer arithmetic (Deitel and Deitel (2002, chap. 5))
can offer great performance gains, but are often the cause of subtle programming
errors. Although in JStatCom the mentioned pointer operations are almost com-
pletely hidden behind a standard interface, it can make applications less stable and
exposes them to the possibility of sudden crashes, if an error in one of the native
calls happens. Therefore another advantage of the Java language, automatic array
bounds checking and the absence of memory protection errors, is given up for the
sake of greater flexibility if this type of method call is used.

How the algorithms for the actual computations are implemented is left to the
developer. The decision will mostly be based on what resources are available
to solve a concrete problem. In the case of JMulTi, there existed a large code
base of GAUSS libraries for various econometric methods, which was the reason
to develop the respective interface first. In the meantime, there where requests
to implement methods written in other languages as well. This has led to the
described generalizations in the communications scheme as well as in the data
structure.

1.3.3 Including Graphics

So far the possibilities of implementing numerical calculations have been consid-
ered. One very important aspect of data based analysis is the graphical representa-
tion of data and results in a quality that allows it to be used for publications. There
are again several options that are available for JStatCom which focus on reusing
existing solutions. The creation of a new graphics engine would be beyond the
scope of this project and is not considered as an option.

First, if an execution engine is used, then the respective language usually sup-
ports the creation of graphics of various types. In general this functionality can be
used in the same way as the numerical functions. However, as graphics calls often
require extra packages, create temporary files, and can be configured in various
ways, there are sometimes small deviations from the calling procedure without
graphics. These differences depend on the respective engine and will be explained
in the next chapter for each case. In JMulTi the graphics features of the GAUSS
execution engine have been used.



12 Chapter 1. From Algorithms towards an integrated Framework

A second option to create graphics from within JStatCom is to use a special
graphics engine for that purpose. One possibility would be the program Gnu-
plot.11 It can create various kinds of 2D and even 3D plots and is currently used
by the Octave statistical program for displaying graphics. It is also mentioned
in Cribari-Neto and Zarkos (2003) as a possible alternative to the Ox graphics
engine. Gnuplot is open-source and runs on all major operating systems. There
exist several programming interfaces to enable calls from other applications to
Gnuplot. These features make it a reasonable candidate for a statistical graphics
engine. Currently Gnuplot is not used directly by JStatCom, because it would
require a specific communications interface that works with temporary files. But
it can be employed by the Ox program to display graphics with the Ox package
gnudraw.12 In this case the Ox communications interface as described in Section
3.16 could be used.

Like for numerical libraries, the best solution would be to have a 100% pure
Java implementation of a graphics engine. This would keep portability intact and
it would simplify deployment. One of the most promising solutions is jfreechart.13

It is again an open-source project that aims at the development of a feature-rich
graphics engine for Java programs. Except 3D surface plots, it can create most
kinds of graphs that are relevant for statistical analysis, also with the possibility
to configure the display interactively. Out of these reasons, jfreechart would be
another good option for displaying graphics from within JStatCom. This library
is not integrated in the framework yet, but can of course be used in the Java code
without special support by JStatCom. However, it would be helpful to provide
adapter classes that simplify the creation of standard plots and that work well
with the internal data management system of the framework. These possibilities
will be further investigated in the future.

11The URL of the gnuplot project is www.gnuplot.info.
12Charles Bos has developed this package which is available from his homepage

www.tinbergen.nl/˜cbos.
13The URL of the jfreechart project is www.jfree.org.



1.3. Access to Algorithms 13

1.3.4 Integrating available Tools

It was shown that for all special tasks related to data based analysis there already
exist tools that can be reused. What is missing is a framework that can be used to
combine the libraries and toolkits of choice efficiently. JStatCom tries to do just
this. By having the possibility to use many different computational engines and/or
numerical libraries, the framework is usable for a wide range of applications.

Another feature that is provided by JStatCom, is support for creating helpsets
for user interface components. As a help system should give users an idea of how
the underlying procedures operate, a high degree of formalization is often neces-
sary for the help text, for example to describe the theory of estimating a Smooth
Transition Regression Model (Teräsvirta (2004)). Current help authoring systems
lack explicit support for math typing. It seemed logical to rely on the well estab-
lished standard solution LaTeX that many researchers are already familiar with.
Together with latex2HTML, a software to convert TeX documents to the HTML
format, and the developed tool JHelpDev it is now possible to reuse LaTeX doc-
uments to create a state-of-the-art JavaHelp system (Sun Microsystems (2003))
efficiently, see Appendix B.14

As JStatCom and JMulTi have been developed to be used for econometric
analysis, especially multiple time series analysis, JStatCom contains data types
and user interface components that are useful in that context. However, the frame-
work is not restricted to be used for time series analysis exclusively, but can be
augmented and customized for various environments. A strong emphasis of this
thesis is to show all directions in which JStatCom can be extended without chang-
ing the current class structure and without breaking binary compatibility with pre-
vious editions.

It was an important goal to make the framework accessible to users who do
have some knowledge in programming, but little or no background in software
engineering. This means that it should be easy to create simple applications. On
the other hand, JStatCom should also support the creation of larger, more complex
programs. It is hoped that the proposed set of solutions is simple yet flexible
enough to meet these competing requirements.

14The URL for the help authoring tool JHelpDev is jhelpdev.sourceforge.net.



14 Chapter 1. From Algorithms towards an integrated Framework

1.4 JStatCom in comparison to other Approaches

As empirical research in econometrics can only be done with specialized software
packages, this project is not the first attempt to provide methods with an intuitive
GUI. Other approaches to create applications for statistics and econometrics ex-
ist. The following section describes some of these solutions and relates them to
JStatCom.

1.4.1 MulTi

One of the earliest projects that adopted this approach was MulTi 1.0 (Haase et al.
(1992)). It already employed GAUSS as a computing engine but used special lan-
guage features to implement a graphical user interface on top of it. The program
had a rich set of features and even implemented VARMA modelling capabilities
(Lütkepohl (1991, chap. 6)) that are still unique among econometric packages.
With the introduction of GAUSS for Windows, the support for GUI commands
ceased, and thus rendering further development of MulTi 1.0 impossible. How-
ever, there were also limitations in the design of the software, letting the cost curve
of additional changes and maintenance become very steep. Therefore the project,
although very successful at that time, was cancelled.

1.4.2 Observations on Entropy and Software Reuse

An observation from the experiences with MulTi 1.0 and similar projects is that
entropy limits the lifetime of such software by making it literally impossible
to maintain and extend an existing system with a reasonable effort after it has
grown beyond a certain size. If important project members leave the development
process, this often means the end of lifetime. Benkwitz (2002) identified the rea-
sons for this phenomenon in the context of econometric software by the lack of
object-oriented engineering principles, and, in case of GUI based applications, the
mangling of GUI and algorithm code. The latter is often the simplest and fastest
way to create working prototypes, but it is only suitable for small projects with
a limited number of features. He promotes a clear separation between the GUI
and math code, as already argued in Liu et al. (1995). This is in line with well



1.4. JStatCom in comparison to other Approaches 15

established software engineering standards. An abstract model for that program-
ming paradigm is the Model-View-Controller architectural pattern that promotes
the separation of data, rendering of data and the translation of user interactions
into model changes (Eckstein et al. (1998), Sun Microsystems (2002)).

There are a number of other problems that increase entropy of software pro-
jects. One is the lack of documentation which makes it often hard for new project
members to understand an existing system. Maybe even more severe is accumu-
lated complexity and cross-references between various components of the system
that are difficult to trace back. In a procedural programming context this means
that there are large monolithic procedures, as well as many global variables that
might be modified in different parts of the program. Making the step towards
object-oriented programming does not necessarily mean that those problems will
be eliminated. In fact, they may become even worse, because class structures can
become extremely hard to understand. This may happen due to bad initial design
and due to a lack of refactoring during the development process (Fowler (1999)).
Although an object-oriented approach is often conceptually better than using pro-
cedural programming techniques, it usually requires a deeper understanding of
how to design, implement and extend such a system properly. It uses a number of
abstract concepts that many researchers are not familiar with. This leads to a com-
mon dilemma with code written for scientific applications: there exist many good
algorithm implementations, but there is a lack of structure and therefore limited
reuse. One of the promises made by the object-oriented programming paradigm
was that there would be an increase of software reuse. However, reusability of
object-oriented systems is often limited, see for example Pree (1997). It is not a
natural property of such a system, to quote Gamma et al. (1995):

Designing object-oriented software is hard, and designing reusable

object-oriented software is even harder.

It takes a lot of experience to design a reusable object-oriented system. A
reusable class can almost never be designed from scratch, but is the result of a
stepwise refinement process. In that respect, a simple procedural programming
approach often gives better results in terms of reusability, if only more or less
isolated algorithms are considered. This is, how reuse works best in scientific



16 Chapter 1. From Algorithms towards an integrated Framework

computing, because the conceptional overhead of understanding the relationships
between many classes is usually greater, than just calling a procedure of a library
that takes a number of parameters and returns a specified result. To summarize,
designing reusable object-oriented systems is hard and too time consuming for
many researchers. Designing reusable algorithms is much easier, because they
are often closer to the real problem and do not require many software specific
abstractions. But especially for creating applications with GUI components, a
procedural approach leads to the mentioned entropy problems. However, GUI
components can increase the usability of many procedures and are sometimes
even necessary, because of the complexity of the underlying procedures.

The proposed solution is to split the development of algorithms and GUI code
and to keep the two strictly separated. This way, algorithms do not necessarily
have to be object-oriented, but the GUI system would be, thus being extendable
and maintainable also for larger projects. The software providing the GUI would
preferably be a framework which is defined as a set of reusable classes that make
up a reusable design for a class of software (Johnson and Foote (1988), Deutsch
(1989)). That means that it already provides a structure as well as key functionality
for applications in a certain problem domain. The designer of an application can
reuse not only classes, but the whole design of the framework and concentrate on
specific aspects of his implementation.

In the following, other, more recent approaches than MulTi 1.0 will be de-
scribed, focussing on how the different solutions achieve the goal of creating an
extendable software system.

1.4.3 The MMM Project

Although the already mentioned MMM project has meanwhile been cancelled, it
bore some similarities to JStatCom and is interesting to look at. It was intended
as a general interface to various different execution engines that can run methods
for statistical computations. These methods could be provided by statisticians,
who use their favourite programming environment to create them, thus adopting
to the habits of algorithm reuse. The goal was to provide a general interface that
allows to combine a growing number of statistical procedures easily. All services



1.4. JStatCom in comparison to other Approaches 17

were provided via the World Wide Web in a distributed environment. The user
could access these services via a browser interface. The use of Java to create
more sophisticated user interfaces was considered as well. Therefore the goals
of MMM were comparable to those of JStatCom, although a great focus was on
platform independence and the availability of the service via the Internet. The
reason was that MMM should eventually be used as a platform for component
leasing on the Web (Riessen et al. (2000)). As compared to JStatCom, similar
problems had to be solved:

• communication to different engines via a unique interface

• providing each engine with the necessary libraries and configuration infor-
mation needed to run properly

• transforming data to a format understandable by the respective execution
engine

• providing the capability to combine arbitrary methods

• saving intermediate results, maintaining the state of the analysis

• making it easy to check in new methods

The solution to all these problems is not trivial in a local environment, but is truly
complex in a distributed environment where potentially many requests have to be
dealt with at the same time. Security issues are a severe problem, because users
can basically control the execution of methods on a server which is a potential
danger, if security holes in an engine implementation can be exploited. Apart
from the purely technical challenges, it seems at least questionable whether it is
possible to achieve a satisfactory standard of the user interface. The reason was
that the MMM approach introduced a great deal of flexibility, but at the same time
it put the burden of how to combine different methods in a meaningful way on
the user. Just providing a way to call different algorithms is certainly not enough,
because there is a lack of methodology. Furthermore, it imposes restrictions on
the interfaces of the statistical procedures that have to be combined. For exam-
ple, some statistical test routine might take residuals as a matrix with dimensions



18 Chapter 1. From Algorithms towards an integrated Framework

T × K, but the output from the estimation routine might be K × T , where T de-
notes the number of observations in a sample and K the number of variables in
a regression. Sometimes lag truncated series are assumed for an estimation rou-
tine, otherwise the raw data. These small differences can cause a major headache
and can significantly decrease the acceptance of such a system. Taking the ex-
periences with MMM into account, JStatCom makes fewer promises, but tries to
adopt to the requests of potential users who need a user-friendly software for ap-
plying advanced numerical methods. Like with the MMM approach, it is possible
to combine different engines and arbitrary algorithms. However, the difference is
that the set of available methods and the order, in which these methods can be
executed, must be defined by the programmer. The user should only be given the
choice between procedures that are meaningful in a certain context. Given that the
approach taken with JStatCom works well in a non-distributed environment, one
could think about ways to combine it with network services, if there is any need
for such a feature.

1.4.4 The OmegaHat Project

An interesting open-source project to develop statistical software is OmegaHat.15

It was started in 1998. The project provides a language that is very similar to
the Java programming language, but that can be used interactively. This means
that expressions can be evaluated and executed directly on a command prompt.
Most statistical programming environments are interactive. The special feature
of OmegaHat is that the language can serve as an integrating framework, or an
umbrella system that uses various different tools via a single language interface.
It provides interfaces to the statistical programming languages R, S and S-plus.
OmegaHat is therefore not just another statistical language, but a programming
environment with similar goals as JStatCom. However, the latter has a clear fo-
cus on GUI interface components and provides a reusable design for statistical
applications. The OmegaHat language could be used by JStatCom to access an
execution engine, thus serving as a layer between the GUI interface and the ex-
ecution engine. Therefore it might be a great resource for various tools that can

15The URL of the OmegaHat project is www.omegahat.org.



1.4. JStatCom in comparison to other Approaches 19

be used with JStatCom, because one of the goals of the OmegaHat project is to
develop Java packages for statistical computing.

1.4.5 Creating GUI’s with Matlab

Matlab is one of the leading commercial solutions for numerical calculations in
statistics and engineering. The language can be used not only for programming
algorithms and calling graphics, but also to create graphical user interface com-
ponents. Together with the Matlab Compiler, it is possible to create stand-alone
applications with a graphical user interface. In fact, this approach is used for many
useful tools used in statistics and economics, for example Uhlig (1999). Although
the solution is often very convenient and serves the needs of many researchers, its
capabilities to create and maintain more complex GUIs are restricted. Matlab pro-
vides the development tool GUIDE for the purpose of designing user interfaces.
It is comparable to visual builder tools for Java or other languages. However,
the system provides far less components and is less flexible as compared to Java
Swing, for example. Although simple applications can be created quickly, in-
creasingly complex projects tend to be hard to extend and maintain because the
GUI components are not defined as objects or components. Therefore it is not eas-
ily possible to split a complex GUI into several smaller components that can then
be plugged together. Instead, the approach tends to create large monolithic files
where various callback methods are defined, which are invoked from the GUI
controls. There is no straightforward way to disentangle a complex application
into smaller components that are relatively independent of each other. As a conse-
quence, this can lead to the cancellation of otherwise successful projects or it can
limit the potential to extend an already existing modelling toolkit. Another result
of using this scheme is that Matlab applications tend to be dialog driven, because
this is a way to combine several simpler GUIs in a single program to achieve the
desired functionality. The reason is that there are no containers available that can
hold many panels simultaneously which can be accessed via menu items, for ex-
ample. Instead, new dialogs appear which hold the GUIs for different parts of a
program. This may result in an unsatisfactory user experience as it clearly limits
the possibilities for designing a GUI according to current standards.



20 Chapter 1. From Algorithms towards an integrated Framework

JStatCom could be an alternative solution to create stand-alone programs, us-
ing procedures originally coded in Matlab and compiled with the Matlab Com-
piler. In this case, no GUI programming with Matlab would be necessary. Projects
using this approach can expect to be extendable and maintainable, even if many
features are implemented, given that some general design rules are followed.
There are no limitations in the programming of the user interface other than those
that the Java language imposes. Matlab routines could even be combined with
code from other languages. The drawback is that some Java programming would
be necessary, instead of using only Matlab functions. For very simple applica-
tions, this effort would not pay off, but for simple GUI’s there are no problems
with Matlab either.

There are also other statistical packages that provide language features to cre-
ate graphical user interfaces, for example Xplore with so called Quantlets. The
main critics of these systems is always the same, they are great to create simple
dialogs or wizards, but they are not optimal for the creation of more complex in-
terfaces, or even applications with lots of features. JMulTi is an example for a
software that could not have been created with only the help of the available tools.

1.4.6 Creating interactive Programs with Ox

Ox is a matrix oriented programming languages that introduces object-orientation
to algorithm coding (Doornik (2002a)). In that respect it differs from other solu-
tions and provides the potential to create even reusable object-oriented systems.
The software provides an API that makes it possible for external applications to
call predefined procedures and to create objects. This feature is exploited by JS-
tatCom, and it is therefore possible to use Ox code together with the GUI building
capacities of the framework.

An extension of Ox is OxPack (Doornik and Ooms (2001)). Together with
GiveWin, a graphical front-end that provides general functionality for all GUI
modules, it can be used to create graphical interfaces to a model. The difference
to the previously described approaches is that here an object-oriented approach
was taken to provide GUI functionality. It is necessary to subclass the ModelBase
class which is then used by OxPack to set up the display of the user interface for



1.4. JStatCom in comparison to other Approaches 21

the created model. Figure 1.2 shows the relationship of the relevant classes for
a hypothetical Smooth Transition Regression (STR) modelling class in a UML
diagram. For clarity, the representation of those classes is simplified, not all public
methods are shown. The UML notation is a widely accepted standard to describe
software systems, see Booch et al. (1999) for an exhaustive discussion.

STRModelBase

OxPack

ModelBase

+ IsCrossSection
+ ReceiveModel
+ Estimate

<<use>>

Figure 1.2: Class diagram for an interactive Ox program

Subclassing means that all functionality from a superclass is inherited, but that
behaviour can be redefined by providing different implementations for certain pro-
cedures. The signature of these procedures does not change by overwriting them.
A subclass can always be used instead of a superclass, because it is an instance
of that class. Therefore OxPack can take the inherited class STRModelBase as
an argument to set up the user interface according to the definitions laid out in
that class. These definitions describe what kinds of user interface components
are used, which estimation routines are possible, the name of the model and var-
ious other settings. Once understood, this approach can be used to create user
interfaces to different models in a fairly standardized way. It even provides the
option to define HTML helpsets, a feature that is also implemented for JStatCom
modules.

By applying this way of creating user interfaces for econometric models, it is
easy to separate algorithms and GUI related code, because the ModelBase class is
only used to define which algorithms are called according to the user specification.



22 Chapter 1. From Algorithms towards an integrated Framework

The actual code for the econometric procedures should be defined in different
classes that are independent of the interface definition and that could even be used
by other user-defined models.

There is only one problem with this approach. Between ModelBase and its
subclasses must exist a is-a relationship. This means, that every new model must
be a special case of the general model allowed for in ModelBase. The ModelBase
class is therefore designed to be a generalization of all potential models used in
econometrics. It defines so called virtual methods that can be overriden by its
subclasses. All of these methods are executed by the OxPack class in a predefined
order which always starts with the model formulation and ends with the model
estimation. It is also possible to define the steps that should be carried out after-
wards, among which are typically diagnostic tests and the graphical analysis of
the estimated model.

Although this scheme allows to incorporate many econometric models and can
simplify development greatly, it is also obvious that it restricts the applicability of
the design to compatible modelling situations only. Models that require a different
GUI behaviour or that belong to a different problem domain might not fit into that
framework. Apart from that, the behaviour of the user interfaces that can be cre-
ated is pretty much predetermined by the OxPack class. Following the definition
in Gamma et al. (1995) the used design pattern is a Template Method. A conse-
quence of using this pattern is that the sequence of calls cannot be altered, but only
the behaviour of the single steps. This means that the flexibility of this approach
to create interactive GUI’s for various different models is limited. For example,
there is no way to incorporate special GUI components to further simplify certain
tasks. One can think of a clickable matrix display for selecting restrictions for
tests or estimation. There is also no way to set up an event-based communication
between different components such that the behaviour of the program is adjusted
dynamically according to the selected model or the available data.

The more general problem behind this is discussed in Bloch (2001, item 15).
Inheritance is a powerful concept, but it creates static relationships between classes
and should be used only, when a true is-a relationship exists between the super-
class and its subclasses. An alternative concept that can often replace inheritance
constructs is composition. Composition means that a class is not an ancestor of an-



1.5. Concluding Remarks 23

other class, but that it keeps just a reference to that class to get access to the needed
functionality. Applied to the design used by Ox, this means that limitations stem
from the fact, that not every model should be derived from the ModelBase class.
An alternative would be to use a composition approach, where different classes
or components provide the necessary functionality to create a GUI. This scheme
could be used by arbitrary model implementations. In fact, this is exactly what JS-
tatCom does. There is much more freedom to design model interfaces, but there
is also less predefined structure.

1.5 Concluding Remarks

From the foregoing discussion I would like to draw a number of conclusions. First,
there exist many tools that can be used to convey a data based analysis. There are
interactive programming environments and there are libraries and toolkits, some
of them are implemented in Java. Although a lot of effort is invested in program-
ming new algorithms, it seems that the design of user friendly interfaces lacks
behind. Therefore it was natural to invest some effort into developing a general
solution that could potentially make use of the available tools, thus avoiding to
“reinvent the wheel” by any means.

Second, the comparison to other approaches to create GUI applications for
data based analysis showed some deficiencies of current solutions. Either the
created application will suffer from entropy, like for example with Matlab based
programs, or it will not be flexible enough to allow for the implementation of arbi-
trary models, like with the Ox based approach. I described, how JStatCom seeks
to avoid these problems by applying best practices in current software engineer-
ing. How this has been implemented and could in fact be applied for real-world
projects will be described in the remaining chapters.

A final remark is on the use of the Java language. Benkwitz (2002) has already
given a number of arguments, why this was a reasonable choice. Taking the ongo-
ing developments into account that have led to further performance improvements
and a growing number of libraries, also for numerical computing and graphics, his
reasoning can only be reconfirmed. Other numerical tools, for example Matlab,
also rely on Java when it comes to user interface creation. JStatCom does not only



24 Chapter 1. From Algorithms towards an integrated Framework

implement user interface components, but also a complete internal data manage-
ment system. Lightweight programming languages, like VB, would not have been
an appropriate platform to build such a system on. The potential alternative would
only have been C++, or the newer C#. C++ itself offers too many features that
are a constant source of errors. Furthermore, it does not have automated mem-
ory management, imposing the burden of allocating and deallocating memory on
the developer. A superior solution to C++ would be Microsoft’s C# language.
It has some slight advantages over Java, simply because experiences from using
Java have been taken into account when it was developed. But Java is not a static
language, hence some of the critics are already addressed with the current release
J2SE 5.0. Apart from that, a major drawback of using C# is that GUI applications
written with this system can only be run on the Windows operating system. True
portability of complex graphical applications is a feature that is almost unique to
Java. Therefore JStatCom can in principle be used on any operating system that is
Java enabled. However, if native libraries are used for engine communication or
library calls, these specific features would not be portable.

1.6 How to read this Thesis

In this first chapter, the developed solution was compared to other approaches
and is put into a broader context. It was shown that most concepts have been
used before in similar situations, but with different results. The potential uses of
JStatCom were explored and the framework was related to existing solutions.

The second chapter provides a detailed step-by-step example for how to use
the framework to create a GUI module for a statistical test. The described scenario
is relatively simple but quite common for econometrics. It should be possible
to reproduce the example with only little knowledge in the Java programming
language.

In the third chapter, a detailled description of the software architecture will be
given. Certain implementation aspects will be explained when necessary. The aim
of this chapter is to document JStatCom for potential developers and maintainers.
It should be mentioned that reading all of this chapter is not required to start
programming with JStatCom. However, developers should get an overview of the



1.6. How to read this Thesis 25

available systems. They could use this text like a reference manual where only the
needed parts are read when required. The specification of the Java programming
interface of the framework is the API documentation. It can be found on the
web under www.jstatcom.com. Having this documentation at hand can help to
understand the description of certain classes better.

The fourth and last chapter provides examples of what can be done with JStat-
Com. It will describe the reference application JMulTi from a developer’s point
of view with a focus on how certain solutions could be achieved with the help of
the framework.

The text should be understandable to statisticians and econometricians, there-
fore technical terms that are familiar to computer scientists are explained when
they occur for the first time. Appendix A has a guide to the UML notation that
has been used throughout the text. However, a general understanding of basic
programming concepts is assumed.



Chapter 2

A Motivating Example

2.1 Introduction

This chapter gives an introductory example on how to use the software framework
JStatCom. It should serve as a motivation for the architecture documentation in
Chapter 3. The example demonstrates, how a graphical user interface for a statis-
tical test could be implemented. This is a relatively simple but realistic scenario.
The underlying algorithm is implemented in the Gauss programming language
which is quite common for econometrics. Readers who consider using the soft-
ware framework for similar purposes are encouraged to follow the described steps
and try it out.

The example uses the Eclipse Integrated Development Environment (IDE)
which is an open-source project sponsored by IBM. This software is very pop-
ular in the Java community, also because it is freely available. But it should be
stressed that this is just one tool among others and that the use of JStatCom is by
no means related to any specific software development tool. Although not recom-
mended, a simple text editor for Java coding would also be sufficient. Because this
example should be reproducible, every step is documented including the setup of a
project for the Eclipse IDE. Experienced Java developers can certainly skip those
sections. Furthermore, it should be mentioned that the example is done under the
Windows XP operating system.

26



2.2. A Step-by-Step Example 27

2.2 A Step-by-Step Example

The example will implement a GUI for the univariate ARCH-LM test (Engle
(1982)). This test is based on fitting an ARCH(q) model to the estimation residuals
ût,

û2
t = β0 + β1û2

t−1 + · · · + βqû2
t−q + errort, (2.1)

where the βi denote fixed coefficients, and checking the null hypothesis

H0 : β1 = · · · = βq = 0 vs. H1 : β1 , 0 or . . . or βq , 0.

Under normality assumptions the LM test statistic is obtained from the coefficient
of determination, R2, of the regression (2.1):

ARCHLM(q) = TR2.

It has an asymptotic χ2(q) distribution if the null hypothesis of no conditional
heteroskedasticity holds. There is also an F version of this test that is based on
the corresponding Wald statistic.

One can see that the test regression 2.1 is uniquely determined by specifying
the residual vector ût together with the lag length q. A GUI for that test should
therefore allow the user to select a time series and an integer number greater than
zero. The test algorithm should then compute the test regression as well as both
test statistics. It should also return the corresponding p-values to enable the user
to quickly decide whether the null hypothesis is rejected or not, without the need
to look up the critical values in some table. The Gauss code for this is given in
Section 2.2.10.

2.2.1 System Requirements for this Example

• Windows 2000/XP

• working Gauss installation version 3.2 or higher

Although the Java part of JStatCom can be run on almost any platform, this
demonstration requires an installed Gauss. The communication scheme between



28 Chapter 2. A Motivating Example

Gauss and Java has only been implemented for the Windows operating system.
However, Gauss code could also be executed on other platforms with the help of
the Gauss Runtime Engine (GRTE), which is a special Gauss distribution provided
by Aptech. The GRTE allows for royalty free redistribution of compiled Gauss
code that can be executed without an installed Gauss, thus enabling developers to
ship stand-alone applications to their customers. JStatCom distinguishes between
Gauss and the GRTE, although the two engines can execute the same Gauss code.
But to develop with the GRTE one has to purchase a specific license first, therefore
it would not be a very good candidate for this introductory example. At least, it is
more likely to have a working Gauss installation available.

It should be mentioned that the Gauss installation is only required to incorpo-
rate external code. But this example can also be run without this specific algorithm
implementation. In this case the procedure for the test should be implemented in
Java, which is also an option. Therefore readers are nevertheless encouraged to
follow the remaining steps to get an idea about the workings of JStatCom.

2.2.2 Step 1: Download/Install the Java Software Development
Kit (J2SE SDK)

Because Java code needs to be compiled and the created binary files (classes) must
be executed with the Java Virtual Machine (JVM), it is necessary to download and
install the current J2SE SDK from Sun, the URL is www.java.sun.com.1 This
software is also required to run the Eclipse IDE software, because it is written in
the Java programming language as well. The installation follows a standard setup
routine and should pose no problems.

2.2.3 Step 2: Download/Install the Eclipse IDE and some Plug-
ins

As already mentioned, the Eclipse IDE is just a suggestion for use as a develop-
ment tool. One of the great strengths of the Java platform is that there is excellent

1The most recent release is J2SE 5.0. With this version the term SDK (Software Development
Kit) changed to JDK (Java Development Kit).



2.2. A Step-by-Step Example 29

tool support. Therefore it would equally be possible to apply other tools with very
similar steps.

First the IDE needs to be downloaded from www.eclipse.org/downloads. There
are usually many different packages for various purposes available which might
be a bit confusing. At the time of this writing the needed package is
eclipse-SDK-3.0.1-win32.zip.2 It is likely that the version number will al-
ready have changed when reading this text. The software just needs to be un-
packed to some directory and will install itself when it is first started.

Because programming with JStatCom typically involves the layout of GUIs,
a visual interface builder can speed up development significantly. Such a tool is
not part of the standard Eclipse package, but can be installed as a plug-in. The
following additional packages need to be downloaded from
www.eclipse.org/tools. The names of the relevant archives are given in brackets,
although the version numbers are likely to have changed already:

• EMF (emf-sdo-runtime-2.0.1.zip)

• GEF (GEF-SDK-3.0.1.zip)

• VE (VE-runtime-1.0.1.1.zip)

Installing those plug-ins merely requires to unpack the archives to the Eclipse
installation directory and to restart the IDE. All mentioned tools can be down-
loaded free of charge.

2.2.4 Step 3: Download JStatCom and unpack it

The last required download is the JStatCom software framework itself, which can
be found under www.jstatcom.com. The archive jstatcom win-1.0.zip just
needs to be extracted to some folder. By default it creates a directory jstatcom.
It is recommended to rename this directory to something more descriptive for the
respective project. For the current example the name testproject is used.



30 Chapter 2. A Motivating Example

Figure 2.1: Selecting a new Java project in the Eclipse IDE

2.2.5 Step 4: Create an Eclipse Project

In the following it is assumed that JStatCom is located in the directory
c:\testproject. Now the Eclipse software should be started, the option to
change the workspace directory can be ignored. At first startup a help screen is
presented, it can be closed. The first step should be to create a new Java project
via File - New. The resulting dialog is presented in Figure 2.1. When Next

is pressed Figure 2.2 is shown where the project name should be given, as well
as the directory with the resources. The created project can then be seen in the
package browser, see Figure 2.3. All jar archives in the project directory have
automatically been included in the build class path, for example jstatcom.jar,
jama.jar, junit.jar, etc.. By default, all classes that will be compiled go in a
subdirectory bin. But no classes have been created so far.

2This is the current version as of December 12, 2004.



2.2. A Step-by-Step Example 31

Figure 2.2: Setting project name and directory

2.2.6 Step 5: Create a new Package and a new Class

Programming with Java usually starts with creating a class. The class to create
for this example should hold the GUI for the test and should itself be a so called
internal frame. This is a special component that is displayed as a window within
a desktop application.

Before a new class can be created, the IDE software requires to define a di-
rectory with the source code to compile. It will look for Java source files only
there and compiles them when changes are made. Figure 2.4 shows the menu that
appears on a right mouse click over the project name testproject. By selecting
Source Folder a small dialog will appear asking for the directory name which can
freely be chosen, but is typically src.

Afterwards the same menu should be used over the just created src folder,
but this time with the option Package to create a new Java package. The dialog for
this is shown in Figure 2.5. It is not strictly required to define packages, but it is



32 Chapter 2. A Motivating Example

Figure 2.3: Display of the new project testproject in the package explorer

good programming practice. The standard for this is the reverse domain name of
the organization or firm that develops the Java code. Here com.myorg was used
as a placeholder. As a starting point one could also use a descriptive name, like
testproject. It can be changed at a later stage easily.

Now everything is prepared to create the first Java class. Again, the right
mouse menu should be used, this time over the newly created package
src/com.myorg with the Class option. Figure 2.6 shows the dialog to specify
the class to create. The name of the class can freely be chosen, but class nam-
ing conventions for Java suggest that it should consist of nouns, each of them
beginning with a capital letter, for example TestFrame. As a second step it is im-
portant to choose the superclass that the new class inherits from. By default this is
just Object, the top-level superclass of all classes in Java. However, some more
functionality is needed because the class should be a frame holding the GUI for
the test. Therefore one should select the class ModelFrame with the help of the



2.2. A Step-by-Step Example 33

Figure 2.4: Creating a new class

Browse button in the superclass field. It is then necessary to remove the default
Object entry first and type in the first letters of ModelFrame. The dialog will
immediately display all possible options. Figure 2.6 shows the result. All other
options can be left unchanged.

After finishing the dialog, a Java editor window with the code for the newly
created class is shown, see Figure 2.7. Also, the new file is added to the package
browser in the source directory src under the Java package name com.myorg.
The class TestFrame is a subclass of ModelFrame, which is a component from
the JStatCom system. The generated code is very short, because the new class
does not yet define own methods or fields. It inherits all functionality from its
superclass. One should consider documenting the header of TestFrame with
some remarks about the function of this component.



34 Chapter 2. A Motivating Example

Figure 2.5: Creating a new package

Figure 2.6: Specifying the new class



2.2. A Step-by-Step Example 35

Figure 2.7: Generated Java code for a new class



36 Chapter 2. A Motivating Example

2.2.7 Step 6: Layout the GUI with the Visual Editor

Figure 2.8: Open class in visual builder tool

After having set up the skeleton of the new module, the GUI should be laid out
with the help of the visual editor (VE) that has been installed via the mentioned
plug-ins.

To use the VE tool in Eclipse, it is first necessary to close the Java editor
window that is currently showing TestFrame.java. Afterwards the same file
should be opened again in the VE by right clicking over the file TestFrame.java
in the package explorer and selecting Visual Editor, see Figure 2.8.

After invoking this operation, it might take a while until the VE is set up,
because this is a computationally intense operation. The initial display is shown
in Figure 2.9. There is an area at the top where the actual state of the GUI is shown
as it would look like during runtime. The frame is displayed with its minimal size
in the beginning. The Java editor underneath shows the code that is generated by
the VE, which is nothing so far. After all, the VE is just a code generating tool
and it is also possible to do manual adjustments by editing the Java code directly.
On the right edge there is the so called Palette which provides access to many
standard Java components that can be picked and placed in the VE. It can also
be used to access all components provided by the JStatCom framework, although
those are not displayed with an icon but must be chosen via the button Choose

Bean from the palette.



2.2. A Step-by-Step Example 37

Figure 2.9: Initial display, frame needs to be resized

Having introduced the basic features of the VE, editing can be started by resiz-
ing the frame with the mouse and choosing a title. The title can be set by clicking
in the header of the frame, or by directly editing the properties of that component.
For that purpose, there exists the property editor of the VE, see Figure 2.10 at the
bottom. It should be noted that most properties do not need to be changed from
their default value, but the title property has been set to TestFrame, lacking more
innovative ideas here. By changing the size of the frame with the mouse, the size
property is automatically changed. Properties are used to customize components
and help to speed up programming, especially for GUI layout.

Now that the TestFrame has a title and a proper size, it is required to add a
panel to hold all other components. Therefore one should select the class JPanel



38 Chapter 2. A Motivating Example

Figure 2.10: TestFrame after resize with title, properties at the bottom



2.2. A Step-by-Step Example 39

Figure 2.11: TestFrame after a JPanel has been added



40 Chapter 2. A Motivating Example

Figure 2.12: Setting layout manager to null, easier to handle for initial design

from the palette and place it in the frame. Because panels are container elements,
they can be found under the Swing Containers tab, see Figure 2.11. Adding a
JPanel is not a very exciting operation, because visually nothing changes. It
is just an empty container. However, by looking at the Java editor one can see
that some code has been generated and the property editor is now showing the
properties of the added JPanel.

Now a small technicality is required to avoid confusions when adding new
components to the panel. By default every panel has a layout manager which
computes how components are being placed inside the container. It also adjusts
their size and placement when the container is resized. The default manager for
the JPanel is a FlowLayout. However, for this example layout management
should not be discussed and it is easier to switch it off for the initial design. There-
fore the property editor should be used to set the layout property of this panel to
null as shown in Figure 2.12.

Having prepared the panel to hold the components, one should now select
the class TSSel from the palette via the Choose Bean button. Figure 2.13 shows
the selection dialog. After clicking OK the component can be placed on the panel
inside the frame. If the enclosing frame is still not big enough, it should be resized
again. After finishing this operation the new component is part of the TestFrame,
see Figure 2.14.

The chosen component is part of the JStatCom framework and is used to select
variables for time series models. It provides also a range of useful functions via



2.2. A Step-by-Step Example 41

Figure 2.13: Selecting the TSSel component

a right click popup menu over the selected variables. Furthermore, the sample
range can be adjusted. This way, complex functionality is integrated in the testing
frame which demonstrates the advantages of component based development.

However, there are some properties that need to be set to the TSSel compo-
nent with the help of the component editor. Because the class is used to select
variables, it is necessary to define under which name the data objects are stored in
the so called symbol table. JStatCom provides a mechanism to share data between
components, a feature that is, for example, also available for Matlab GUI build-
ing in a somewhat similar way with the Matlab guidata function. This is only
mentioned to show that similar problems arise also in other systems for GUI pro-
gramming. For JStatCom, data objects must be identified via names in the symbol
table. Therefore the property editor should be used to set these names, see Figure



42 Chapter 2. A Motivating Example

Figure 2.14: TSSel component has been placed on the panel

2.15. When the TSSel component is selected in the VE one can start editing the
properties allDataName, allStringsName, and dateRangeName. The chosen
names for this example are Y, Y NAMES, and DATE RANGE respectively.

After finishing the setup of the selection component, one still needs to add the
remaining components. JStatCom provides the special text field NumSelector to
select numbers. It should be selected and placed to the panel in the same manner
as the TSSel component, see Figure 2.16.

One of the features of the number selection component is that it is easily possi-
ble to set a validating range with the help of the property editor. From Figure 2.17
it can be seen how the property rangeExpr is set to the string [1, 20]. When-
ever the user specifies a lag length outside this range, an error message would
appear. Furthermore, the precision of the display is set to 0 by default, which
means that only integer values are shown with no decimal digits.



2.2. A Step-by-Step Example 43

Figure 2.15: Editing properties of TSSel component

By now it should be clear how components can be added to the GUI. The
remaining parts are a JLabel with the string Lags, a JButton with Execute
on it, and a ResultField to display results. The latter component is provided
by JStatCom, whereas the first two are standard Swing classes and can be found
directly on the palette under Swing Components. All components should be
resized and placed according to the preferences of the developer. The text of the
JLabel and the Execute button can be set by clicking on the component with the
mouse or by using the property editor and changing the text property.

One should not forget to save the file TestFrame.java after adding compo-
nents. This can easily be done by pressing the Ctrl-S key combination. Saving
a Java source file in the IDE automatically invokes the compilation.



44 Chapter 2. A Motivating Example

Figure 2.16: Selecting the NumSelector component for number input

Figure 2.17: Setting a validating range [1, 20] to the NumSelector component



2.2. A Step-by-Step Example 45

2.2.8 Step 7: Add an Action to the Execute Button

Figure 2.18: Placing a JButton and creating an action

After the basic layout of the GUI is finished, it is necessary to program an
action that is invoked when the Execute button is pressed. Without this, nothing
would happen at all. The VE also supports this task via a menu that appears on
a right click over the button, see Figure 2.18. The item Events - actionPerformed

should be chosen to install a default action to that component.

Figure 2.19 shows the Java code that has been generated by this operation.
There is an actionPerformed method which just prints out some default string.
This method must later be programmed ’by hand’ to gather the input from the
GUI controls, to call the external Gauss procedure, and to print the results.

2.2.9 Step 8: Add the Module to the Main Application Frame

Before it is described how the algorithm for the ARCH-LM test is invoked one
would probably like to check what has been accomplished so far. Therefore the
module is integrated in the JStatCom application framework and can be run. For



46 Chapter 2. A Motivating Example

Figure 2.19: Default action handler for execute button

this, no further Java programming is required, only two configuration files need to
be adjusted.

Figure 2.20 shows the file modules.xml in the text editor of the IDE. It should
be opened via the right mouse menu. The format of that file is XML and it already
contains some example entries which have been commented out. To integrate the
newly created module without extra Java programming, the line

<Module class="com.myorg.TestFrame"/>

should be added and the file should be saved. Note that the slash at the end is
needed. Afterwards the file app.bat has to be edited to add the location of the
classes to the classpath, see Figure 2.21. The folder with the compiled classes is
bin by default, therefore the line

SET CP = bin;%CP%

must be added. Finally, one can now start the application by clicking on the
file app.bat from outside the IDE software. It will invoke the application and
the module can be accessed via the menu item Modules. Figure 2.22 shows the
running program. The module is shown together with the default data import
frame, which is a standard feature of JStatCom. Although nothing happens yet



2.2. A Step-by-Step Example 47

Figure 2.20: Editing modules.xml to insert TestFrame to list of modules

when Execute is clicked, except that some string is printed to the standard output,
there are already a lot of features available provided by the framework.

For example, it is possible to import datasets, to use the time series calcula-
tor for combining variables with arithmetic operations, and to edit and transform
series that have been read in. It is also possible to create dummy variables conve-
niently. In the module TestFrame one can select variables, and the text field for
the number of lags validates input according to the interval set. All this general
functionality is provided by JStatCom and it is now up to the developer to use this
infrastructure for implementing calls to specific algorithms.

2.2.10 Step 9: Integrate Gauss Algorithm

After having programmed the GUI in Java, one has to prepare the Gauss code
with the algorithm. JStatCom provides a communications interface to an installed
Gauss, but the code has to be compiled as a gcg file first and it has to be put in
a special location. The Gauss procedure to compute the ARCH-LM test (Engle
(1982)) is given in the code example. Typically, this procedure already exists and



48 Chapter 2. A Motivating Example

Figure 2.21: Adjusting the classpath in the app.bat script

is provided by a researcher who has domain-specific knowledge. The Java pro-
grammer does not necessarily need to know the inner workings of the algorithm,
but she must of course understand its interface and how to design the GUI for it.
The interface of a GAUSS procedure includes the name, the arguments, and the
return values. It must be clear how the input parameters have to be assembled and
what the procedure gives back.

/**

* ARCH-LM test (Engle 82).

*

* resid - Tx1 vector with residuals

* q - number of lags to include in test regression

*

* result - Chi2_stat˜prob_chi2˜F_stat˜prob_F

*/

proc(1) = archlm_mytest(resid, q);

local y,ylags,Tnew,b,sigma,rsq,f,XX,r,prob_chi,prob_F;

y = (resid - meanc(resid))ˆ2;

ylags = shiftr((ones(1,q) .*. y)’,seqa(1,1,q),-exp(20))’;

ylags = delif(ylags,ylags[.,cols(ylags)] .== -exp(20));

Tnew = rows(ylags);

y = y[rows(y)-Tnew+1:rows(y)];

ylags = ones(rows(ylags),1)˜ylags;

b = inv(ylags’ylags)*ylags’*y;

sigma = (y-ylags*b)’(y-ylags*b)/rows(y);

rsq = 1-sigma/((y - meanc(y))’(y - meanc(y))/rows(y));

XX = ylags’ylags;



2.2. A Step-by-Step Example 49

Figure 2.22: Running application with new TestFrame module, execute method
still needs to be coded

R = zeros(q,1) ˜ eye(q);

F = (R*b)’inv(R*inv(XX)*R’)*(R*b) / (q*sigma);

prob_F = cdffc(F,q,rows(ylags)-rows(b));

prob_chi= cdfchic(rows(ylags)*rsq,q);

retp(rows(ylags)*rsq˜prob_chi˜F˜prob_F);

endp;

It is assumed that the code is stored in the file mytest.src. This file should
be put in the subdirectory jgauss/src of the project directory. There are also
some other source files which are needed by the communications library. One
should be aware that Gauss procedure names should be unique across all files,
therefore the name archlm mytest was chosen. The convention is that the file-
name is used as a suffix to the descriptive name of the procedure.

As a last step, one must compile the source code together with the other files in
the directory to a file jgauss.gcg. This could be done manually with Gauss, but



50 Chapter 2. A Motivating Example

JStatCom provides the batch script jgauss gcg.bat to make it easier to com-
pile also a large number of source files. For this the file jgauss/compile.xml
has to be edited:

<?xml version="1.0" encoding="UTF-8"?>

<GCGSet xmlns="java:com.jstatcom.engine.gauss" gcgfile="jgauss.gcg">

<GCGSet$SRCFile filename="src/jmplot.dec"/>

<GCGSet$SRCFile filename="src/jgauss.src"/>

<GCGSet$SRCFile filename="src/jgrte.src"/>

<GCGSet$SRCFile filename="src/tools.src"/>

<GCGSet$SRCFile filename="src/plot.src"/>

<GCGSet$SRCFile filename="src/mytest.src"/>

</GCGSet>

Only the last line has been added. By clicking on jgauss gcg.bat all
source files are compiled and the file jgauss/jgauss.gcg is being created.
When the batch script is started first it is likely that some settings for the Gauss
software have to be set. Those settings could also be set manually in the file
jgauss/engine config.xml. JStatCom needs to know the correct version num-
ber and the location of the Gauss executable.

2.2.11 Step 10: Implement the Execute Routine

Now that the Gauss procedure archlm mytest is recognized by the Gauss engine,
it is possible to implement the Java call to that procedure. It should be mentioned
that JStatCom has its own data model to represent numbers, matrices, strings,
string arrays, dates, and date ranges. All data classes start with the prefix JSC,
which is short for JStatCom. For example, JSCNArray represents an m×n number
array, whereas JSCInt stores an integer scalar. The basic steps for the execute call
are:

1. Get Gauss engine instance

Engine engine = EngineTypes.GAUSS.getEngine();



2.2. A Step-by-Step Example 51

Figure 2.23: Open TestFrame in Java editor, more convenient for manual coding
than visual editor

2. Retrieve the input data objects (// starts a Java comment)

// retrieves shared symbol by name

JSCNArray y = global().getSymbol("Y").getJSCNArray();

// creates new integer object with the selected lags

JSCInt lags = new JSCInt("LAGS", getNumSelector().getIntNumber());

3. Create an empty data object for the result of the computation

JSCNArray result = new JSCNArray("TESTRESULT");

4. Call the Gauss procedure

// call the procedure with input and output parameters

engine.call("archlm_mytest", new JSCData[]{y, lags},

new JSCData[]{result});



52 Chapter 2. A Motivating Example

Figure 2.24: Hidden method body that should be expanded by clicking on arrow
to the left

Figure 2.25: Red underline and symbol to the left indicating some compilation
problem

5. Display the result and set it to the symbol table

getResultField().append(result.display());

global().set(result);

Some manual Java programming is required here. This is done more easily
with the Java editor instead of the visual editor in the IDE. Therefore the VE
should be closed and the Java editor should be opened via the right click menu
over the TestFrame.java file, see Figure 2.23. It should be noted that by default
this method is hidden in the editor and should be expanded first, see Figure 2.24.
When editing is started, one could use the automatic expansion mechanism by
pressing the Ctrl-Space keys together. If any typos occur, the editor indicates
this by underlining the respective element and showing an error symbol at the
left edge, see Figure 2.25. Often problems occur because a class name is only



2.2. A Step-by-Step Example 53

Figure 2.26: A left mouse click on the error symbol gives a menu with possible
error fixes, the first option should be chosen here

recognized after it has been imported. However, by clicking on the error symbol
one can easily fix those problems automatically, see Figure 2.26. The full method
body is seen in Figure 2.27.



54 Chapter 2. A Motivating Example

Figure 2.27: Implementation of the execute call



2.2. A Step-by-Step Example 55

2.2.12 Step 11: Check running Module

Figure 2.28: Running module with output from computation

Now that everything has been programmed, the module should be checked
again via clicking on the app.bat script. After a time series has been imported
and selected, a click on the Execute button will invoke the computation and the
result will be printed to the text area. The resulting numbers include the Chi-
squared and F statistics together with the corresponding p-values, see Figure 2.28.
Furthermore, the result has been set to the symbol table of the module. This can
be checked with the Symbol Control which is accessible via the Control menu,
see Figure 2.29.

Another small customization of the new application could be done by editing
the file app.properties in the project directory. It is possible to change the
title, the splash screen, the version number, as well as the about information of the
software.



56 Chapter 2. A Motivating Example

Figure 2.29: Symbol Control after the computation has finished

2.3 Final Remarks

This example should have motivated the use of JStatCom, although it has only
scratched the surface of what can be done with the framework. The module that
has been programmed could still be refined in several ways. There should be an
input check before the procedure call is actually carried out. Output formatting
could be improved as well. Furthermore, one should use a layout manager to make
the GUI look more professional, especially when it is being resized. Another
important point is that the module consists of only one class, which is appropriate
for this simple example, but which should be changed if more features are to be
added. In that case one should consider creating a separate class which only holds
the panel. It could then be added to the frame. If more features are implemented,
the frame could get a tabbed pane or a menu bar, and it could hold many panels
instead of just one.

An important point is that the execute routine in its current form is defined
inside the GUI class. In general this is not recommended and JStatCom provides
the so called PCall system to encapsulate the calling logic in separate classes. This
has the advantage that the procedure calls could be maintained separately and that
they could also be used independently of the GUI classes.



2.3. Final Remarks 57

Chapter 4 gives a number of advanced programming examples with JStatCom
together with guidelines for object-oriented design with that system. However,
having this introductory example running is a good starting point for many possi-
ble enhancements.



Chapter 3

Design and Implementation

3.1 Documenting a Software Architecture

This chapter contains the architecture documentation of JStatCom. Although
there exist many ways to document software systems, reaching from very for-
mal approaches, like Acme (Garlan et al. (2000)), to purely textual descriptions,
it seems that common standards are emerging and are being adopted, for example
IEEE (2000). However, given the range of different possible notations, these doc-
umentation standards cannot be seen as strict rules, but rather as a rationale that
should help to record all relevant aspects of a system in a form that is accessible
to project stakeholders.

A general problem of non trivial software systems is, that they cannot be un-
derstood by using just a single view or abstraction, but only by applying a number
of different perspectives. Sometimes it is important to understand how different
components of the system collaborate, sometimes the focus is on the class struc-
ture of a module. It is also of interest who is addressed by the documentation,
because it makes a difference whether a general overview is given to a customer or
whether a new developer is introduced to the inner workings of a subsystem. The
UML language provides graphical constructs to represent many different views
into a complex software system (Booch et al. (1999)). It is possible to describe
almost every feature of the framework graphically, but that would render the re-
sulting diagrams very complex and thus useless as a way to communicate only

58



3.2. JStatCom System Overview 59

relevant aspects of the architecture. Therefore software documentation must fo-
cus on the important details and relations in each view. An up-to-date discussion
of this topic is given in Clements et al. (2003), and this chapter will follow the
suggestions given there. A short overview of the used UML constructs can be
found in the appendix.

The documentation of JStatCom consists of several views. Each of them fo-
cuses on specific details of the system and is organized into further view packets
that chunk information on different areas of the system. However, first it is neces-
sary to provide information that binds all different views together, and to lay out
a roadmap on how to use the documentation.

3.2 JStatCom System Overview

JStatCom is a software framework for data based analysis that can be used to
develop applications for econometrics and statistics. This chapter describes how
the software is implemented and how it can be used and extended. Developers do
not necessarily need to understand every aspect of the system to build applications
with it, but only the main concepts. An indispensable source of information is the
API documentation, which conforms to the requirements for class specifications
(Berard (1993)).

This framework is an object-oriented system that consists of classes imple-
mented in Java, therefore applications using it should preferably be written in
Java as well. It can be used with several external execution engines to which it
provides a standardized communications interface. Alternatively, one could apply
Java libraries for the numerical computations. JStatCom itself does not contain
advanced numerical algorithms but serves as an architectural layer that can con-
nect different libraries and toolkits. Its intended use is the creation of graphical
user interfaces, but parts of it might also be used by non-graphical Java applica-
tions. The framework has a data model to represent types commonly needed in
scientific computing, like numbers and arrays. This data model is supported by
various components to display and manipulate its contents. One may also extend
this model by defining new types. However, these extensions are not the standard
usage of the framework.



60 Chapter 3. Design and Implementation

I will therefore distinguish between two basic activities:

• Usage - the standard case; functionality of JStatCom is accessed via the
API; requires only a basic understanding of the framework’s inner workings
and average programming skills in Java

• Extension - the advanced case; functionality of JStatCom is altered by over-
writing certain classes, or new functionality is added by providing addi-
tional components or classes; requires a good understanding of the related
mechanisms within the framework and more advanced programming skills

Extension guarantees that the framework can also adopt to situations, where no
standard solution exists yet. However, some simple extensions might occur quite
often, for example if a new renderer for the contents of a data table is defined.
More advanced examples would be to define a new data type that is recognized
by the internal data management system or a whole new engine communications
scheme. In principle these extensions could be integrated in the core framework,
if they are of general enough interest. Extension and Usage correspond to the
terms white-box reuse and black-box reuse respectively (Pree (2000)).

3.3 How Stakeholders Can Use the Documentation

Here the roles that stakeholders might have are listed together with a description
on how to use this software documentation to address the relevant concerns.

• GUI Developer: For GUI development, it is necessary to understand the
components that are provided by the framework, as well as the data model
and the engine communication. Section 3.3.1 describes the typical devel-
opment steps together with the most important related view packets that
should be consulted. In addition to the software architecture documenta-
tion, the API specification is the most valuable source of information. The
latter contains very detailed information on how to use specific classes and
interfaces, but is not very good at providing an overview of the system.



3.3. How Stakeholders Can Use the Documentation 61

• Scientist: Algorithms for a problem can be developed largely independently
of JStatCom. However, it is necessary to have a basic understanding of the
engine communications scheme that will be applied. Reading the respective
view packet for the applied execution engine should be sufficient. It is im-
portant to know, which data types are supported, how output can be handled
and how the algorithms can be invoked from the framework.

• Framework Developer: To maintain and extend parts of JStatCom, a thor-
ough understanding of all involved modules is required. Therefore all view
packets that contain the module under consideration should be read.

3.3.1 Typical Development Steps

Creating applications with JStatCom consists of a number of steps that are often
similar. Table 3.1 gives an overview of the basic methodology and links to the
view packets (VP) that provide further details for each step. Not all mentioned
view packets are always relevant, but only if the respective functionality is actually
needed. View packets that are not mentioned have been left out, because they are
less likely to be directly used by the GUI developer. However, for advanced usage
scenarios they might well be included too. This overview should only serve as a
starting point.

It is assumed that an IDE is used that supports Java development. Using such
a tool is not required, but it increases productivity dramatically, especially when
projects grow and get more complex. There are commercial and open-source tools
available from which one can choose freely. Excellent, cost efficient tool support
is one of the advantages of using the Java language.

Task Documentation

1 download and unpack JStatCom JStatCom (VP 1)



62 Chapter 3. Design and Implementation

2 set up a Java project with your
favourite IDE, put jstatcom.jar
and all jar archives from the jars
subdirectory in the classpath that is
used by the development tool

IDE specific documentation and
homepage of JStatCom

3 create the top level component by
subclassing ModelFrame, choose an
appropriate name and title, and com-
pile it (typically done automatically
by IDE)

Symbol Management (VP 5)

4 put the fully qualified classname
of the new module frame in the
file modules.xml and start the
application with the batch file
app.bat/app.sh

Application (VP 21)

5 implement all panels, use subclasses
of ModelPanel if access to shared
data is needed

Symbol Management (VP 5),
Symbol Event System (VP 6),
Selection (VP 18),
Components (VP 20),
Data Table (VP 22),
Equation (VP 23)

6 implement calls to the possibly exter-
nal modules implementing the math
algorithms, put all procedure mod-
ules that are used in the engine-
specific subdirectory, set up and run
sets of automated unit tests for all en-
gine calls

Data Model (VP 2),
Type System (VP 3),
Engine (VP 8),
specific engines (VP 9-13),
PCall (VP 14),
Time Series (VP 15)



3.4. Background, Rationale, and Design Constraints 63

7 create a deployable version, possibly
with a build script, the simplest way
would be to zip the project directory

ANT tool documentation1

Table 3.1: Typical development steps

One should also provide documentation for the user as a helpset. The add-
on tool JHelpDev, which is described in Appendix B, can be used to create a
JavaHelp set from a directory with HTML files. It can then easily be integrated in
the application, even with context-sensitive help. How this is done is described in
Chapter 4. Together with Latex2html or other converters, one could write the help
system completely in Latex, which is especially useful if many formulas are used.

3.4 Background, Rationale, and Design Constraints

This section records the requirements aspects of JStatCom that have led to the
major architectural decisions. Most of the feature requests resulted from the ex-
periences when developing the software JMulTi.

3.4.1 Operational Context

JStatCom is expected to be used in a wide range of data based analysis applica-
tions. Therefore it must be flexible enough to be extended or customized to adopt
to different environments. It must not make strong assumptions about the structure
of the scientific models to be used, about domain-specific data types, the format of
import files, or how numerical algorithms are implemented. The framework must
be easy to use, because it should be applied by scientists, instead of professional
software developers. A strong emphasis is put on GUI creation. JStatCom should
provide a variety of components that can be plugged together with the support
of visual programming tools. The data model must interact with the GUI com-
ponents in a standardized fashion. Data processing must support collection and

1The URL for the ANT build tool is ant.apache.org.



64 Chapter 3. Design and Implementation

specification of input data, preliminary transformations and validity checking, as
well as convenient output representation and formatting.

3.4.2 Key Data Management Features

In order to support a wide range of different data types, JStatCom should rely on
a metadata model. Core attributes are standardized for all data types. Each data
type may define additional attributes. New types can be dynamically added to the
system.

To facilitate GUI design, components within a certain scope must have access
to a common shared data repository. This would decouple the modules belong-
ing to one scientific model by reducing the number of direct dependencies among
them. On the other hand, access to the shared data must be confined to the com-
ponents within a distinct modelling context. For example, panels for estimation,
residual analysis and structural analysis in a VAR modelling context share com-
mon data from the model specification via a shared data repository. Components
from other models, say from an STR model, do not have access to that repository,
instead they use their own data pool. This requires the concept of defining scopes
for different data repositories.

Furthermore, the data model must interact with the GUI components via events
to notify interested listeners about changes in the underlying value. These changes
might trigger various actions, for example updating a display or enabling/disabling
some element of the user interface.

Another desirable feature would be to represent the state of all shared data
repositories in a graphical component. This could be used to inspect intermediate
results or to export some variable to a file. It can also help with debugging. Such a
data control system must work automatically without any additional programming
effort.

3.4.3 Key User Interface Features

The user interface components must support key tasks involved in specifying,
estimating, and evaluating statistical models. Special requirements are input vali-
dation against range bounds, adequate rendering and editing of the used types, as



3.4. Background, Rationale, and Design Constraints 65

well as efficient representation of potentially large data arrays. All components
must be highly configurable and must support the use of visual programming
tools. For this reason a component model must be adopted, which is JavaBeans
for Java components. There must be sufficient default functionality provided to
set up a new application quickly. However, it must also be possible to change
existing default behaviour according to specific needs.

Another requirement is the availability of domain-specific user components
for a certain class of models. JStatCom provides a distinct variable selection
mechanism for time series models. However, usage of these components is not
required, instead custom components can be applied.

A general mechanism for project management, as well as data import from
files is required and must be supported by the user interface. This mechanism
must be flexible, because applications might require different file formats and will
store a different set of project settings.

Because algorithms for data based analysis often can fail if the input has spe-
cial features, errors resulting from a computation are not unlikely. Therefore a
powerful automated error handling and logging scheme must be provided to give
detailed feedback about potential causes of failure.

3.4.4 Key Interoperability Features

Because scientific algorithms may be programmed in various ways, JStatCom
must operate with many different software products to enable scientists to inte-
grate a rich set of features without the need to rewrite complex algorithms. In
order to keep programming with JStatCom simple, a generalized interface to call
procedures from different sources must be implemented. This interface should
hide purely technical aspects of the respective calling mechanism from users of
the framework.

Furthermore, input and results of procedure calls must conform to the internal
data model, without the need to transform data to engine-specific types.

Applications based on JStatCom should be portable to a number of different
operating systems. This should be achieved by the choice of the programming
language, but it must as well be supported by the engine communications schemes.



66 Chapter 3. Design and Implementation

Especially in scientific environments, the Linux and Unix family of operating
systems is quite popular, therefore those systems should be supported in addition
to Windows.

3.4.5 Key Design Features

Conceptional Simplicity

The framework should be adopted by scientists, rather than software engineers.
Therefore conceptual simplicity is required when programming with it. This can
be achieved by providing not only the needed functionality, but also a reusable
design, which can be adopted by any application in the problem domain. This is
the essential benefit of using a framework. It relieves developers from the complex
task of setting up a new class model for every application. Instead, distinct design
guidelines can be followed, which are standardized ways to proceed when setting
up a new application. If the guidelines are used, then all applications based on the
framework will have a similar structure, thus reducing the conceptional burden to
understand and maintain them.

JStatCom design guidelines should help developers especially with the fol-
lowing tasks:

• defining, managing and documenting scientific models with potentially many
variables

• creating well structured, maintainable GUI components

• using shared data repositories with appropriate scopes

• programming calls to algorithms that can be reused internally and that are
easily testable with JUnit

• defining test cases and managing a growing set of automated unit tests

• managing modules for different models

• creating and integrating help documents for scientific models



3.4. Background, Rationale, and Design Constraints 67

Testability

Programming errors are not the exception, they occur all the time. Modern pro-
gramming environments make it extremely easy to find and correct syntactical and
semantic errors. However, logical errors are often hard to detect. In current soft-
ware engineering practice, a widely used strategy to guard against programming
errors is to use unit tests, see Beck (1999) for a motivating and very informal intro-
duction. Except in trivial cases, tests cannot prove the absence of errors, as Dijk-
stra (1969) pointed out. They nevertheless help to discover errors very quickly,
especially if they are run automatically after every change in the software. This
so-called regression testing is extremely helpful to find errors that have been intro-
duced by a refactoring or after new features have been added. The strategy leads
to a path, where code can be changed and extended without breaking existing fea-
tures. A feature is defined here as functionality that is tested according to a given
specification which must be agreed on before.

Most tests are based on simple assertions, meaning that the actual state of a
variable is compared to its assumed state. For an algorithm, this could mean that
the result of a computation for a given test dataset is compared to the already
known correct results. The most important aspect is that the test is automatically
run together with all other tests whenever changes are made. With the introduction
of the JUnit framework, this automated testing has become much more convenient
and effective.2 An example test class could look like:

public class TestMatrix extends junit.framework.TestCase {

public void testRank(){

int rank = Umatrix.rank(new double[0][0]);

assertEquals(rank, 0);

rank = Umatrix.rank(new double[][]{{0, 1}});

assertEquals(rank, 1);

rank = Umatrix.rank(new double[][]{{1, 2},{3, 4}});

assertEquals(rank, 2);

}

}

where TestCase is part of the mentioned JUnit framework.
2The URL for the framework JUnit is junit.sourceforge.net.



68 Chapter 3. Design and Implementation

In the testRankmethod, the result of a rank routine is checked for the several
inputs including special cases, like an empty matrix. It would also be possible to
add more methods starting with test, which could contain assertions for other
functions. The unit testing framework can then be used to automatically run all
those tests and report whenever an assertion failed. It is part of all modern IDEs
and running tests is typically only a matter of a single mouse click. An assertion
failure indicates that the expected state differs from the actual state, which is either
an error in the test itself or in the tested class. One should always fix those errors
immediately. If an error is detected that is not checked with a test, for example it
was reported by a user, it should be fixed and a test case should be set up. This
way, the error is guaranteed not to be introduced again. The reason for the success
of this strategy of permanent testing is that it is simple and quick enough to set
up and maintain even large numbers of test cases, which makes testing an integral
part of the development process and is not secretly avoided instead. Last but not
least, testing can be fun, because it gives developers much more confidence in
the created code. It is also a way for customers to validate certain features of a
software product.

However, the design of the classes has to support the task of executing these
unit tests. Although a number of solutions exist to run automated tests for GUI
components by simulating user behaviour, it is inherently tedious to set up these
tests. Therefore, most GUI components are still tested manually, which is always
time consuming and error-prone. This is another reason to separate the code for
scientific algorithms and graphical user interfaces. The algorithms can only be
tested automatically in a reasonably efficient way if they can be called indepen-
dently.

The scientific procedures in applications based on JStatCom must be automat-
ically testable, because complex algorithms have to be checked against a number
of different inputs. Algorithms are often changed to meet certain criteria. Due to
the inherent complexity this is a constant source of errors. Automated unit test-
ing can greatly help to discover errors that break existing functionality, although
it cannot prove procedures to be correct. However, a reasonable choice of test
cases, made up by someone who has a deep domain specific knowledge, is often
an excellent guard against programming errors.



3.5. JStatCom Architecture View Template 69

The use of testing to validate functionality of software might seem very vague,
because first it depends on well-chosen test cases, and second it does not guaran-
tee that a specific function does not fail under special circumstances. A rigorous
solution would be to prove the software is correct. This requires to represent the
modules under investigation in a formal description language, which can then be
verified with an automated theorem prover. A promising project, increasing the
feasibility of these procedures with respect to programs written in Java is Bali
(Oheimb (2001)). By using this methodology it would be possible to prove cer-
tain features of a software to be correct. However, the used methods are highly
formalized and still require a considerable effort by experts with knowledge in
mechanical theorem proving. They are not likely to be adopted for applications in
the considered domain in the near future.

3.5 JStatCom Architecture View Template

This section describes the structure of the presented documentation. Each JStat-
Com view is presented as a number of related view packets. A view packet is
a small, relatively self-contained bundle of information about a particular part of
the system or the system as a whole. Two view packets are related to each other
as parent/child if one shows a refinement of the information of the other.

This documentation follows a standard template to present each view in a ho-
mogeneous form. The views are organized in sections with the following subsec-
tions:

1. Primary Presentation: Shows the main elements and their relationships that
belong to the view packet. It should depict the important aspects of the
respective view.

2. Element Catalog: Contains a detailed list of all elements that belong to the
presented subsystem together with their responsibilities and the correspond-
ing implementation units.

3. Context: Presents how the system depicted in the view packet is related to
its environment. This can be the interaction with users or clients, but also



70 Chapter 3. Design and Implementation

with other subsystems of JStatCom. This section only appears if the context
for a subsystem is further refined compared to the context of the parent.

4. Architecture Background: Explains how important design decisions came
to be and reflects on potential alternatives and why they were rejected. The
reasons recorded here can be used to justify the current design. This section
can also contain further in-depth information on the features of the system
under consideration.

5. Usage Example: Provides the user with a demonstration that makes explicit
use of the respective subsystem. This section only appears if appropriate
and if it helps to better understand the system. Most often, examples will be
code fragments written in the Java programming language.

6. Related View Packets: This section will name other view packets that are
related to the one being described in a parent/child capacity.

3.6 View Packet 1: JStatCom

This is the top level view into the framework. It gives an overview of the system
as a whole. All subsequent views can be considered as children of this view that
split the framework into smaller, intellectually manageable pieces that will itself
be recursively refined.

3.6.1 Primary Presentation

The primary presentation shows, how JStatCom is decomposed into five different
subsystems. A subsystem is a portion of the system that can meaningfully be
considered separately from other parts. It must exhibit some coherent, useful
functionality (Clements et al. (2003, p. 62)).

General Resources needed by JStatCom

The framework uses a number of resources that are either required at runtime,
for documentation purposes, for testing, or to create deployable software ver-



3.6. View Packet 1: JStatCom 71

System Segment

JStatCom Data Model

Components

Input/Output

Time Series

Engine

Table 3.2: Primary Presentation of JStatCom

sions. Table 3.3 lists the resources that are not specific to any subsystem, but
are needed for general tasks. The child view packets describe further resources
that are needed to run a distinct subsystem. If the respective subsystem is not
used, those resources can also be deleted and do not have to be shipped with ap-
plications that are based on JStatCom.

Resource Usage

files in working directory of JStatCom

doc/ Directory contains the Java API documentation of all
classes that are part of the framework. Is a set of
HTML files.

jars/ 3rd party Java libraries that are required to run JStat-
Com are stored in this subdirectory. The contained
JAR archives must be put in the classpath for compil-
ing and running applications based on JStatCom.

jstatcom.jar The JStatCom JAR archive. Contains all classes, the
default help system, and images. Must be in the class-
path for compiling and running applications based on
JStatCom.



72 Chapter 3. Design and Implementation

build.xml Default build file that can be used with the ANT tool
to create a deployable application. It compiles all Java
sources in the src subdirectory and creates a JAR
archive with the name app.jar. It provides a reason-
able default, but should be adjusted for each specific
application.

manifest.mf The default manifest file that is put in the JAR archive
of the application to be deployed. It contains infor-
mation about the classpath and the main class that in-
vokes the application. Should be adjusted for each
specific application.

testdata/ Directory that holds several files that are used by unit
tests for checking data import functions.

unittests/ Directory with batch files that invoke various unit
tests to check the functionality of JStatCom. Tests
for special engine implementations are separated and
should only be executed, if the requirements for run-
ning that engine are met and if this engine is applied.
For running the tests for the Gauss engine, a Gauss
installation is necessary, for example.

Table 3.3: Resources for MatLab engine, Windows

3.6.2 Element Catalog

Table 3.4 contains the elements of the framework with their name, the implemen-
tation unit and their responsibility. Most elements contain further subsystems,
which are denoted by bold face entries. All modules are visible across the entire
system.



3.6. View Packet 1: JStatCom 73

Element Name
Implementation Units
(com.jstatcom)

Element Responsibility

Data Model
model

model.control

util

parser

Contains the Type System to define domain-specific
data types and the Data Event System to inform lis-
teners about changes in a data object. The Symbol
Management is used to share data objects across dif-
ferent components and the Symbol Event System
can be used to notify listeners about value changes
in a symbol. The Symbol Control provides graphical
components to access the state of the symbol man-
ager.

Input/Output
io

util

Contains classes to support file handling and the Data
Import System. It also provides a logging facility.

Time Series
ts

parser

util

This module collects all classes that are especially de-
signed for time series analysis. There are types to
represent dates, date ranges and series. It contains the
subsystems List, Selection, Table and Calculator for
specific tasks.

Components
component

table

equation

This module provides the GUI components that can
be used to display and edit data objects as well as to
gather user information. The Data Table subsystem
contains configurable tables for number arrays and
string arrays. The top level application frame is pro-
vided in the Application subsystem, and the Equa-
tion system is used to display GUI objects for models
in matrix notation.



74 Chapter 3. Design and Implementation

Engine
engine

engine.gauss

engine.grte

engine.stub

engine.mlab

engine.ox

Contains the abstract engine communications system
that hides engine specific implementation details from
clients. Subsystems implement the abstract scheme
for concrete engines: Gauss, GRTE, MatLab, Stub
and Ox. It also has the PCall system for procedure
calls.

Table 3.4: Elements of JStatCom

3.6.3 Context

Figure 3.1 shows the context of the framework together with the roles that poten-
tial users can have. Typically there is someone with domain specific knowledge,
who is called Scientist, and somebody who develops the Java GUI with JStat-
Com, called the GUI Developer. Only the latter person must interact with the
framework. The scientist needs to communicate closely with the developer to lay
out the requirements and to set up tests for the software. The GUI developer can
focus on the Java side, taking the algorithms as given. User testing should be done
mainly by the scientist to make sure that the software meets the requirements. JS-
tatCom serves as an architectural layer that handles all tasks that are common to
applications in the given problem domain. Thus it supports the Java developer
in incorporating the procedures quickly, in laying out the GUI with specialized
components, setting up a help system and managing sets of automated unit tests.

The advantage of this approach is that it is possible, but not necessary, to di-
vide the responsibilities for developing software for analysis modules. This is
helpful because this way the GUI programming could be delegated to somebody
who does not need to have a deep domain specific knowledge, because she can
rely on the algorithm implementations that are already available. Scientists who
want to promote their methods by developing easy-to-use programs for potential
users could work together with people who have a background in Java program-
ming. JStatCom greatly facilitates this interaction. Other approaches typically



3.6. View Packet 1: JStatCom 75

GUI Developer

Scientist

JStatCom

Implement automated 
unit tests for procedures 

Integrate helpsystem

Implement calls 
to algorithms

Create deployable 
release

Create GUI for 
science model

documentation
Define requirements
and tests

implementations

<< communicate >>

1..*

1..*

 

 

 

 

 

 

 

 
 

 

 

  

  

 

Figure 3.1: Use cases for JStatCom

rely on developers playing both roles at the same time. It is argued that notice-
able efficiency gains can be achieved by splitting the development process in the
described way, because the participants in a project can do what they know best.

How this scenario works in practise can only be evaluated from experiences
with the development of modules for the application JMulTi, because so far no
other programs have been created with the help of JStatCom. However, the rapid
development of JMulTi would never have been possible without this interaction
between various scientists and the GUI programmer. This is proven by the fact
that major parts of the involved GAUSS algorithms were in fact programmed by



76 Chapter 3. Design and Implementation

researchers independently of the Java development. It is also obvious that without
JStatCom many of the existing modules now available in JMulTi would never
have been created because none of the participating scientists could have done
this alone with a reasonable effort. Experience has shown that scientists play an
important role not only in providing the algorithms, but also in testing the resulting
GUI, and in providing documentation which can be used in a help system. It
is hoped that JStatCom will be used for other projects as well, especially when
several methods should be combined and complex user interfaces are needed.

3.6.4 Architecture Background

During ongoing work with JStatCom, several distinct responsibilities have been
identified, which were then organized into different subsystems. These responsi-
bilities broadly correspond to the main requirements for the architecture described
in Section 3.4. Although these subsystems are not independent of each other, they
can be maintained and extended separately, because they focus on different as-
pects of the system. Furthermore, all identified segments have a coherent internal
structure that separates them from the other subsystems.

3.6.5 Related View Packets

• Parent: View Packet 1: JStatCom

• Children:

– View Packet 2: Data Model

3.7 View Packet 2: Data Model

3.7.1 Primary Presentation

Table 3.5 shows the five subsystems that the Data Model consists of.



3.7. View Packet 2: Data Model 77

System Segment

Data Model Type System

Data Event System

Symbol Management

Symbol Event System

Symbol Control

Table 3.5: Primary Presentation of Data Model

3.7.2 Element Catalog

Table 3.6 describes the responsibilities of the elements of the Data Model. The
Type System, Data Event System, Symbol Management and the Symbol Event
System are implemented in the same Java package.

Element Name
Implementation Units
(com.jstatcom)

Element Responsibility

Type System
model

util

Contains classes to represent the used data types. An
event model is implemented to notify listeners about
changes in data values.

Data Event System
model

Manages event notification to listeners about changes
in data objects.

Symbol Management
model

Manages sharing of data objects across different com-
ponents in a standardized way. Represents data as
variables in a collection.

Symbol Event System
model

Manages event notification to listeners about changes
in symbols.



78 Chapter 3. Design and Implementation

Symbol Control
model.control

Provides components to access all data objects that
are shared via the Symbol Management.

Table 3.6: Elements of the Data Model

3.7.3 Context

Figure 3.2 shows the use cases for the Data Model. The actors are the other
subsystems that use the Data Model to carry out several tasks. It can be seen that
all other subsystems rely on the services provided by the Data Model.

Data Model

Represent values used as
parameters for procedure calls

Share data with 
other components

React to changes 
in data values

Change value of 
a data object

Represent results
from parser run

Represent 
project data

(De)serialize 
data objects

Engine
 
 

Component

Input/Output

 

 

 

 

  
 

 

 
 

 

 

 

 

Figure 3.2: Context of the Data Model



3.8. View Packet 3: Type System 79

3.7.4 Architecture Background

JStatCom needs to represent data internally, because it maintains inputs and re-
sults of mathematical computations. Furthermore, it must be easy to let data ob-
jects interact with GUI components that display or change the underlying values.
The data objects that are used within JStatCom on the Java side must conform
to the types that are used by a specific engine. The idea is to have a consistent
data management system within the framework that can contain various different
types to adjust to any potential modelling situation. When external procedures
are called, those types must be converted to and from the respective types of the
engine. Another requirement was to let the user of the system access the state of
the variables that are used internally. This can be helpful for debugging, but also
for making it possible to inspect intermediate results, or values that are not part
of the default output. It can also be used to export this data to files. The three
subsystems address those issues separately.

3.7.5 Related View Packets

• Parent: View Packet 1: JStatCom

• Children:

– View Packet 3: Type System

– View Packet 4: Data Event System

– View Packet 5: Symbol Management

– View Packet 6: Symbol Event System

– View Packet 7: Symbol Control

3.8 View Packet 3: Type System

3.8.1 Primary Presentation

The Java language offers various ways to represent data of different types, for ex-
ample matrices could be stored in double arrays. However, for JStatCom the core



80 Chapter 3. Design and Implementation

JSCData
<< interface >>

+name():String
+type():JSCTypes
+clear():void
+isEmpty():boolean
+copy():JSCData
+isEqual(o:JSCData):boolean
+addJSCDataListener(evtListener:JSCDataListener,evtType:JSCDataEventTypes):void
+setJSCProperty(type:JSCPropertyTypes,val:Object):void
+getJSCProperty(type:JSCPropertyTypes):Object

JSCInt

+intVal():int
+setVal(a:int):void

JSCNumber

+doubleVal():double
+setVal(a:double):void

JSCNArray

+doubleArray():double[][]
+rows():int
+cols():int
+setVal(a:double[][]):void

JSCString

+string(): 
+setVal(a:String):void

JSCSArray

+stringArray():String[][]
+rows():int
+cols():int
+setVal(a:String[][]):void

JSCVoid

+setVal(a:Object):void

JSCDate

+setVal(a:TSDate):void
+getTSDate():TSDate

JSCDRange

+setVal(a:TSDateRange):void
+getTSDateRange():TSDateRange

Figure 3.3: Type System

classes and types that the language provides are not sufficient, because they lack
a number of features. The Type System must be extendable to represent types
that are special to a certain problem domain, for example dates. Furthermore,
it should be possible to store each data object permanently to an XML file and
retrieve it from there, a feature which is called serialization. Another important
feature would be to make all type classes thread-safe. This is a technical require-
ment for multi-threaded applications, otherwise the state of type instances could
become unpredictable when they are accessed by multiple threads. To facilitate
the interaction between the Data Model and GUI components, the Type System



3.8. View Packet 3: Type System 81

must also provide event-based notification about changes in the underlying data.
JStatCom uses a metadata model to achieve a high degree of flexibility. Core

attributes are standardized for all data types by defining a very general interface
JSCData, which all specific types must implement. This interface only specifies
methods that are common to all potential types. Any specialized functions to
access or modify the contents of data objects are defined in implementations of
the interface. Type related code and interfaces are therefore strictly separated.

Figure 3.3 shows the complete interface and all types that are currently imple-
mented. For the sake of clarity, only very few methods of the actual data classes
are given, a complete documentation can be found in the API documentation. One
of the advantages of having an interface JSCData that all types implement is that
it is possible to store instances of different types in a single array JSCData[].
This can greatly simplify method signatures and it is used by the Engine system,
see Section 3.13, to provide a standardized Engine.call method that takes two
arbitrary data arrays as parameters for input and output. Each engine can then
check the elements of these arrays for their type via JSCData.type and handle
them accordingly, a mechanism that is completely hidden from engine clients.

Variable Names

In JStatCom every data object has a name. As a general convention throughout
the framework, variable names can contain letters, numbers and ’ ’ but must
start with a non number. To illustrate, invest, invest and i2 would be valid
names, whereas 2i, gov exp or cons+inv would be invalid. This is enforced
wherever variable names can be set within the program. Variable names are case
insensitive, meaning that two variable names which differ only in the case of one
or more letters are considered equal.



82 Chapter 3. Design and Implementation

3.8.2 Element Catalog

Class Name Responsibility

com.jstatcom.model

JSCData Interface that defines the general contract for all im-
plemented types.

JSCTypes Enumeration of all data types.

JSCPropertyTypes Abstract class to be subclassed if special properties
for data classes should be defined.

JSCConstants Helper class that defines commonly used constants.
It is also used to enforce the variable names
conventions.

JSCDate Implementation of JSCData that represents a date
type.

JSCDRange Implementation of JSCData that represents a range
defined by two dates.

JSCSArray Implementation of JSCData that represents an n×m

array of strings.

JSCString Implementation of JSCData that represents a single
string.

JSCNArray Implementation of JSCData that represents an n×m

array of double numbers.

JSCNumber Implementation of JSCData that represents a double
number.

JSCInt Implementation of JSCData that represents an integer
number.



3.8. View Packet 3: Type System 83

JSCVoid Implementation of JSCData that represents a refer-
ence to an arbitrary object.

NumberRange Represents an interval defined by two real numbers.
It does not have a corresponding type yet.

NumberRangeTypes Enumeration of all possible interval types.

com.jstatcom.util

NumberRangeParser Parser that assembles number range objects from an
input string.

com.jstatcom.util

UMath Holds static utility methods for special math
operations.

UMatrix Holds static utility methods for various simple matrix
operations.

UString Holds static utility methods for string operations.

UStringArray Holds static utility methods for various simple string
array operations.

Table 3.7: Elements of the Type System

3.8.3 Architecture Background

The implemented data types are mainly responsible to facilitate interaction with
GUI components and to operate as storage units, instead of carrying out com-
putations on them directly. For example, the JSCNArray class is a basic matrix
class for JStatCom, but it does not try to compete with existing Java matrix im-
plementations for linear algebra calculations. The benefit is that the interfaces of
all types are kept quite simple. However, data can easily be moved from JSCData
types to instances of specialized math classes. But typically sophisticated linear



84 Chapter 3. Design and Implementation

algebra calculations are done with the employed external engine, which is espe-
cially suited and optimized for that purpose. Another effect of the taken solution
is that instances of JSCData cannot change their type anymore after they have
been created. This introduces a form of type-safety for data objects within the
framework.

An alternative to the chosen metadata model would have been to use one gen-
eral VALUE class that can take on different states, depending on what type of data
is stored. This has the advantage that VALUE instances could always be treated
uniformly, but it tends to create a monolithic class with many unrelated functions
for different data types. The presented approach still offers the possibility to treat
JSCData instances uniformly, but only with respect to their interface, which is
quite general. However, the benefits clearly outweigh this drawback, especially
because this approach allows to have an arbitrarily rich type system.

An advantage of the taken solution is that the system can be extended with
arbitrary new types in a very straightforward manner without interfering with ex-
isting types by just creating new realizations of JSCData. However, defining a
new type for the core framework is not a trivial task, because the new class should
be thread-safe, it must inform listeners about changes in the data, it must be XML
serializable and it must be well-documented and tested. If necessary, there should
also be GUI components to access and modify the contents of a type. Future en-
hancements of JStatCom could include types of complex numbers and arrays, or
types for arbitrary precision numbers and big integers. Even multi-dimensional
arrays could be considered.

Another special feature of the Type System is that every data object must have
a name. This convention was chosen, because it helps to identify variables during
runtime. Especially when error messages are created, it is often extremely useful
to have the name of the variable that was involved. Each instance of JSCData
should be viewed as a named storage container.

A requirement for the Data Model was that it can be used in a multi-threaded
environment, because it is often desirable to let computationally intensive proce-
dures run in their own thread, which might lead to the situation where data objects
are modified from different threads. This has implications for all methods that
access mutable data. For an exhaustive discussion of the consequences, especially



3.8. View Packet 3: Type System 85

for thread-safe programming with Java, see Lea (2000). Therefore all access to
mutable data is synchronized and data objects can be used from multiple threads
safely.

Lastly, it was important to provide means to store and restore JSCData in-
stances to and from files. This is done via the XML serialization mechanism
provided by the JADE toolset. The feature could later be used by a project man-
agement system to store model settings permanently in a standardized way.

3.8.4 Usage Example

This example creates instances of three different types, JSCNArray, JSCDate and
JSCInt. The variable y could, for example, represent some data for a univari-
ate AR model the variable start could be the starting date, and lags could
be the number of lags. Although these three variables represent different data
types, they can be put together in an array of type JSCData, because they all
implement this interface. It is often very helpful to treat different data types uni-
formly as JSCData, for example, the Engine.call(String procName, args
JSCData[], retArgs JSCData[]) method takes data arrays as arguments for
input and return parameters. However, if more specific functionality than defined
in the JSCData interface is needed, a cast to the specific type is necessary after-
wards.

// data instances of various types are created

JSCNArray y = new JSCNArray("yData",

new double[]{2.3, 1.9, 3.3, 5.5, 3.4});

JSCDate start = new JSCDate("start", new TSDate(1960, 1, 4));

JSCInt lags = new JSCInt("p", 1);

// all data can be treated uniformly as JSCData

JSCData[] args = new JSCData[]{y, start, lags};

...

// if the concrete implementation is needed, casting is necessary

// but the type can be checked before

JSCTypes type = args[0].type();



86 Chapter 3. Design and Implementation

if (type == JSCTypes.NARRAY){

JSCNArray yRef = (JSCNArray) args[0];

// prints the value 2.3 to the standard output

System.out.println(yRef.doubleAt(0,0));

}

3.8.5 Related View Packets

• Parent: View Packet 2: Data Model

• Children: none

3.9 View Packet 4: Data Event System

3.9.1 Primary Presentation

JSCDataEvent

+ getType ():JSCDataEventTypes
+ getSource ():JSCData

<< interface >>
JSCDataListener

+ valueChanged (evt
 

:JSCDataEvent):void

AbstractJSCData

+ addJSCDataListener (evtListener :JSCDataListener,evtType :JSCDataEventTypes):void
+ removeJSCDataListener (evtListener :JSCDataListener):void

<< interface >>
JSCData

<< enumeration >>
JSCDataEventTypes

+ EMTPY_STATE  :JSCDataEventTypes
+ VALUE_CHANGED :JSCDataEventTypes

*

*

 

1

 
1

Figure 3.4: Classes in Data Event System

The Data Event System is used to notify listener objects about changes in
JSCData instances. Listeners must implement the JSCDataListener interface.



3.9. View Packet 4: Data Event System 87

If a change in the data value of a data object occurs, a JSCDataEvent of a certain
type is created and the method JSCDataListener.valueChanged of the listener
interface of all registered listener objects is called with the event parameter. The
listener can then inspect this event and invoke some action. The types that events
can have are defined in the enumeration class JSCDataEventTypes. The types
EMTPY STATE and VALUE CHANGED are available. The first event type should
be used by JSCData implementations when a data object changed its state from
empty to not empty or vice versa. The second event should be used whenever
value changes occur, including changes in the empty state. The rationale behind
this is given in Section 3.9.3. An abstract default implementation of the JSCData
interface that manages adding and removing of listeners is in AbstractJSCData.
Concrete JSCData implementations should therefore inherit from
AbstractJSCData to reuse this default functionality.

3.9.2 Element Catalog

Class Name Responsibility

com.jstatcom.model

JSCData Interface that defines the general contract for all im-
plemented types.

JSCDataListener Interface to be implemented by listeners to events
fired by data objects.

JSCDataEvent Events of this class are used to notify
JSCDataListener objects.

JSCDataEventTypes Enumeration of all possible types that a
JSCDataEvent can have.

JSCDataEventSupport Support class for listener management.



88 Chapter 3. Design and Implementation

AbstractJSCData Abstract implementation of the JSCData interface
which provides default functionality for handling of
the different listeners.

Table 3.8: Elements of the Data Event System

3.9.3 Architecture Background

The Data Event System is an essential part of the JStatCom Data Model, because
it provides a way to inform objects about changes in data values. It is an example
of the classical Observer pattern. The listeners just need to register with a data
object and do not need to know anything about each other, nor where the change in
the data value actually was made from. Thus, objects can communicate via events
and are further decoupled. If another component should be added to or removed
from the list of listeners to a certain data object, this would not affect the other
listeners at all. An event driven data model is especially helpful to use data values
in conjunction with GUI components, which need to update their state according
to changes in the underlying data. However, this is especially addressed by the
Symbol Event System, described in Section 3.11, but the Data Event System is
the prerequisite for it.

A common problem with event driven systems is that inefficient updates might
occur. This happens when listeners are informed about changes that are not rel-
evant for them. Usually these updates are just ignored, because listeners should
check whether the condition for taking an action is met. But it can have seri-
ous performance implications, either if there are many listeners that have to be
informed, or if wrong updates occur very often, or if it is costly to generate no-
tifications. For the problem domain of JStatCom it might occur that listeners are
informed when the value of a data object changed, but that the action is only
taken when the object changed its state from empty to not empty or vice versa.
Other changes are ignored. This can lead to inefficiency, because listeners receive
updates too often and, furthermore, it can also be expensive to generate those
updates.



3.9. View Packet 4: Data Event System 89

A common solution to this problem is to define specific event types that the
listeners can register for. For this reason the Data Event System defines the
JSCDataEventTypes class, which holds the two event types EMTPY STATE and
VALUE CHANGED. If listeners just register to EMTPY STATE events, then they are
only informed when the empty state of the data object changes, but not if the
value changes to some other value.

This has another effect which may improve performance even more. It can
be quite costly for data objects to generate VALUE CHANGED events, because those
events are only generated if a true value change has actually occurred. For some
data types, like potentially large number arrays, it can be necessary to compare
every single element to make sure that no change has occurred, like for example
when JSCNArray.setValue(double[][] arg) is called. But these data ob-
jects only need to check this, if there are any listeners registered to the
VALUE CHANGED event type. Otherwise this potentially costly check is simply
skipped. If only EMTPY STATE listeners are registered, the only thing that needs to
be checked is whether the object changes its empty state, which is always a cheap
operation. Thus, by defining different types of events and letting listeners receive
only the relevant updates, the efficiency of the event handling can be improved,
because fewer updates are done and time consuming checks may be skipped. Im-
plementations of the JSCData interface should make use of the features provided
by the Data Event System, especially if they become part of the core framework.

3.9.4 Usage Example

The code example demonstrates the usage of the Data Event System. However, if
the action that should be taken on a change in the data value is somehow related
to a graphical user interface component, one should rather use the Symbol Event
System to install listeners. The reason for this will be explained in Section 3.11.

Here a JSCNArray is instantiated that could hold the residuals of an OLS
regression, for example. Then a listener object resListener is created by an
inner class that implements the interface JSCDataListener. The method
valueChanged defines, what action is going to be taken, if the underlying data
object is either empty or not empty. This can easily be inspected via the



90 Chapter 3. Design and Implementation

isSourceEmpty method of JSCDataEvent. It can be seen that the listener only
needs to be informed when the empty state of the residual data object changes.
Therefore it registers with the parameter JSCDataEventTypes.EMPTY STATE.
This has the advantage that updates occur only when the empty state changes,
and that the residual object does not need to compare values if it has been set to
just some other value without changing its empty state. The last line of the code
example invokes clear on the data object, which would inform resListener
that residuals has changed from not empty to empty, because all data has been
deleted. It should be noted that it does not matter for resListener, where the
clear method is invoked from.

One could also install other listeners that take different actions, without affect-
ing already existing listeners. This shows that event based communication greatly
helps to reduce direct dependencies among classes, but it can also be seen that it
can become difficult to predict all effects of a change in some variable if there are
many listeners in various different code locations. Therefore, in more complex
applications, one should think of organizing listeners in a single Mediator class
that is especially dedicated to that purpose.

// array holding residuals from an estimation

JSCNArray residuals = new JSCNArray("res",

new double[]{2.3, 1.9, -3.3, 5.5, -3.4});

// create a listener object

JSCDataListener resListener = new JSCDataListener(){

public void valueChanged(JSCDataEvent evt){

if (evt.isSourceEmpty())

// do some action, because source was empty

else

// do some action, because source was not empty

};

};

// register listener to residuals

residuals.addJSCDataListener(resListener,

JSCDataEventTypes.EMPTY_STATE);

// empty residuals, listener will take action

residuals.clear();



3.10. View Packet 5: Symbol Management 91

3.9.5 Related View Packets

• Parent: View Packet 2: Data Model

• Children: none

3.10 View Packet 5: Symbol Management

3.10.1 Primary Presentation

The Symbol Management system is used to treat data objects that were created
with the Type System as variables and to share them across different components
in a standardized way. Figure 3.5 gives an overview. It consists of the class
SymbolTable, which is an aggregation of an arbitrary number of Symbol in-
stances. Each symbol object represents exactly one instance of JSCData. Symbol
objects are identified via their name in a symbol table, which operates as a shared
data repository. Via the symbol table it is possible to access the symbol elements
and finally the actual data values. Symbols can be understood as pointers to data
objects. The referenced values, instances of JSCData, can be changed efficiently
during runtime. A symbol can hold any data type on creation, but afterwards it is
not possible to change the type anymore. For example, if a symbol was initialized
to point to a JSCInt, then a runtime exception would be generated when trying
to set it to a JSCString. This introduces a form of type-safety to the Symbol
Management.

JStatCom offers a way to limit the visibility of symbol tables to only com-
ponents that belong to one model. Furthermore, it is possible to share data on
different levels, which is somewhat similar to global and local variables. For this,
the interface SymbolScope is provided. Implementations of this interface have
access to symbol tables on three different levels: global, upper and local. Every
symbol table keeps a reference to the next higher symbol table in the hierarchy de-
fined by implementations of SymbolScope. The top level symbol table has only
a null reference instead. This mechanism can be very helpful to organise shared
data within an analysis module. Data that is global can be accessed from all child



92 Chapter 3. Design and Implementation

<< interface >>
SymbolScope

+ global ():SymbolTable
+ upper ():SymbolTable
+ local ():SymbolTable

SymbolTable

+set(a:JSCData):void
+get(a:JSCTypeDef):JSCData

Symbol

+ type :JSCTypes

+ getJSCData():JSCData
+ setJSCData(a:JSCData):void

<< interface >>
JSCData *

1

 

 

 *

1

0..1

Figure 3.5: Symbol Management

components that implement the SymbolScope interface via a call to global.3 But
sometimes also finer grained sharing can be helpful. A class can use a local sym-
bol table to share data in a symbol table that is accessible via local from within
itself, and upper from within its child components. Thus it can share variables on
a lower level that is not visible to components that are parents or siblings in the
component hierarchy, thus avoiding to put too many variables in the global table.
This feature is especially useful in complex systems with many shared variables.

To be more specific, Figure 3.6 shows, how the SymbolScope interface is im-
plemented by components of the model. It should be noted that the implementing
components must make sure that the correct symbol tables are referenced. Devel-
opers can rely on the two default implementations ModelFrame and ModelPanel
which should be used as superclasses for all panels that need access to shared
variables. These classes make sure that the correct symbol tables are referenced
according to the component hierarchy imposed by the GUI design.

3The terms child and parent are defined here in terms of the component hierarchy of GUI
classes in Java Swing. Two components have a parent/child relation if the parent component con-
tains the child component. For example, if a panel ResAnalysis contains the panels DiagPanel
and SpectrumPanel than these two panels are called children of ResAnalysis which is the
parent.



3.10. View Packet 5: Symbol Management 93

Every model should therefore be implemented with a ModelFrame as the top
level component. This can be the starting point for any application based on JS-
tatCom. A ModelFrame is typically a composition of a number of ModelPanel
components. Both classes provide access to the Symbol Management system and
can use it to set and retrieve variables. The SymbolScope interface imposes a
hierarchical ordering of symbol tables. The ModelFrame and ModelPanel im-
plementations of this interface use the GUI component hierarchy for this. Symbol
tables are assigned as follows:

SymbolScope
 

<< interface >>

ModelFrameModelPanel

 

*

Figure 3.6: SymbolScope inheritance

• ModelFrame - top level component, global, local and upper are equiv-
alent and return the top level symbol table

• ModelPanel

– local - returns the symbol table created by this panel

– upper - searches the component hierarchy upwards until an instance
of SymbolScope is found and returns the result of a call to local on
the component found; if no parent instance of SymbolScope exists,
this.local is used

– global - searches the component hierarchy upwards until an instance
of SymbolScope is found and returns the result of a call to global



94 Chapter 3. Design and Implementation

on the component found; if this instance is a ModelPanel, it will
search itself for the next higher component, and so on, typically the
global table defined in ModelFrame is reached; if no parent instance
of SymbolScope exists, this.local is used

It should be noted that this process is done automatically. Developers should
only understand that ModelPanels can be used to define access scopes. One
could also think of other possible implementations of SymbolScope, reflecting
different hierarchical schemes.

3.10.2 Element Catalog

Class Name Responsibility

com.jstatcom.model

Symbol Represents a variable with a certain type and name.

SymbolScope An interface to be implemented by components that
provide access to a hierarchy of symbol tables. Used
by ModelFrame and ModelPanel.

SymbolTable Contains a sorted collection of Symbol objects that
can easily be accessed.

JSCTypeDef Defines a variable with a name, a type and an optional
description. Can be used to retrieve symbols from a
symbol table.

Scope Typesave enumeration containing all existing scope
types, namely global, local and upper.

ModelFrame An internal frame that can be used as top level con-
tainer for modules in the JStatCom framework. It
holds the global symbol table that can be accessed by
all child components.



3.10. View Packet 5: Symbol Management 95

ModelPanel A panel to be used by components that need access to
the symbol table hierarchy.

Table 3.9: Elements of the Symbol Management

3.10.3 Architecture Background

The Type System introduces various ways to store and manipulate data of differ-
ent kind. However, a common problem when designing applications for complex
models is that various classes and GUI components need to share data stored in
instances of JSCData. For example, when a VAR model is analysed, then there
are variables that define the state of the model, like lags, subset restrictions, data
for endogenous, exogenous and deterministic variables, and so on. The user in-
terface is typically broken up into several components that handle different mod-
elling steps, like specification, estimation, diagnostics, and forecasting. All these
components need to have access to the model state. It would certainly not be
a good idea to exchange data directly between these components, because this
would create unnecessary dependencies among them. Another anti pattern is of
course to rely on global data, because this would break data encapsulation, one
of the principles of object-oriented programming. More generally speaking, by
referencing variables directly one would also unnecessarily create dependencies
between classes that could be avoided by using the Symbol Management system.
The reason is that if variables would be referenced, a compile-time dependency
would be created which establishes a static relation between classes. The Symbol
Management system instead only creates references at runtime by inspecting the
GUI hierarchy. This is much more flexible because it allows to use one component
together with different classes, thus facilitating reuse. The component must only
know the names of the symbols to look up in the respective table. The reference
to the symbol table will only be established when the GUI is shown.



96 Chapter 3. Design and Implementation

In the application JMulTi this has been done for components that are needed
in various different contexts, for example for the panel that computes a kernel
density estimation. Each instance of that component references different variables
which it retrieves from the respective symbol table via their names.

The SymbolTable can represent the state of arbitrary models as an aggre-
gation of symbols of different types. The data representation and the sharing
mechanism are standardized and can be reused for any modelling situation. If
the available types are not specific enough, user-defined extensions of the Type
System could be considered. The Symbol Management system would not need
to be changed in any way to handle new types, because it treats variables uni-
formly as JSCData. Therefore, it is quite easy to share model data among GUI
components that are part of a certain scientific analysis module.

3.10.4 Usage Example

Figure 3.7 sketches, how classes for a VAR model interface could be laid out
with ModelFrame and ModelPanel. The top level component for the model is
VARFrame which is composed of a panel for model specification and a panel for
residual analysis. The latter is itself composed of a panel for diagnostic tests.
Each panel can access the Symbol Management system easily, because it inherits
the access methods local, upper, global from SymbolScope.

A snapshot of the object structure at runtime is presented in Figure 3.8. The
entities of the diagram are now objects instead of classes. It can be seen that
the instance frame of the class VARFrame has a link to a symbol table global.
This is usually the place to store variables that should be shared by all panels
that a certain model frame is composed of. It cannot be accessed by panels from
other model frames, at least not by default. In a VAR context, the global symbol
table should contain the selected data and lags, estimated coefficients, standard
deviations, names of variables, etc.. Model panels, like panel1 for specification
and panel2 for residual analysis, have access to the global symbol table via their
global method. However, a further refinement is that data can also be shared on
lower levels. For example, it might be that some data is shared by panels belong-
ing to the residual analysis only, which are children of ResAnPanel. Therefore



3.10. View Packet 5: Symbol Management 97

VARFrame

VARSpecPanel

ModeFrame

ModelPanel
ResAnPanel

DiagTestsPanel

SymbolScope
1

1

1
1

1

1

Figure 3.7: Class structure of a hypothetical VAR frame

the respective symbol table local2 can be accessed via the upper method by
panel21, the object to hold the diagnostic tests interface. But panels might also
use a symbol table to store variables that are not used by other components, for ex-
ample test statistics and p-values of diagnostic tests might go to local21. This
data need not to be shared, but it might still be reasonable to put it in a local sym-
bol table. However, the local symbol table of a panel is the upper symbol table of
child components, thus local2 can be accessed by panel21.

Storing data in symbol tables is not only meaningful when variables should be
shared, but it can also be used to publish the results in the Symbol Control system
(see Section 3.12), which is another subsystem of JStatCom that provides access
to variables that are currently used. It presents a tree view of the symbol table
hierarchy and it has components to display and export all symbols that have been
put in one of the symbol tables.



98 Chapter 3. Design and Implementation

frame :VARFrame

global :SymbolTable

panel1 :VARSpecPanel local1 :SymbolTable

panel2 :ResAnPanel local2 :SymbolTable

panel21 :DiagTestsPanel local21 :SymbolTable

Figure 3.8: Snapshot of model objects and shared data with different scopes

The following small Java code example should demonstrate the workings of
the Symbol Management system. It corresponds to the class diagram in Fig-
ure 3.7, but only sketches the contents of the concrete implementations. The
VARFrame binds all panels together and should provide a mechanism to navi-
gate between them. VARSpecPanel should contain a mechanism to select series
and to specify lags. The Components subsystem provides classes for that pur-
pose. As a placeholder for this, only a JSCString with the estimation method
is stored globally. The ResAnPanel sets the names of the residual series locally
in its setResidNames method. Thus, they can be accessed by child panels, like
DiagTestsPanel. The method DiagTestsPanel.executeTests invokes the
test procedures. The respective input parameters can easily be retrieved by their
names from the global and upper symbol tables. The actual tests would typically
be invoked via the Engine system, which is described in the next section.

// top level class, contains various panels

public class VARFrame extends ModelFrame {

private ResAnPanel resAnalPanel;



3.10. View Packet 5: Symbol Management 99

private VARSpecPanel vARSpecPanel;

...

public VARFrame(){

super("VARFrame");

// add menubar or tabbed pane

// add panels

}

} // end VARFrame

// panel for model specification

public class VARSpecPanel extends ModelPanel {

...

// sets estimation method as JSCString to global table,

// variable is shared by all ModelPanel children

private void setEstimationMethod(){

global().set(new JSCString("EstimationMethod", "OLS"));

}

} // end VARSpecPanel

// panel for residual analysis, contains ModelPanel children

public class ResAnPanel extends ModelPanel {

public DiagTestsPanel diagTestsPanel;

...

// constructor

public ResAnPanel(){

super();

// add child panels, maybe with a tabbed pane

}

// set the names of the residuals in local table

// local table is upper table for child ModelPanels

private void setResidNames(){

local().set(new JSCSArray("ResNames",

new String[]{"u1", "u2", "u3"}));

}

} // end ResAnPanel



100 Chapter 3. Design and Implementation

// ModelPanel to carry out diagnostic tests

public class DiagTestsPanel extends ModelPanel {

...

// gets estimation method from global table

// and residual names from upper table

private void executeTests(){

JSCString estMeth = global().getSymbol("EstimationMethod")

.getJSCString();

JSCSArray resNames = upper().getSymbol("ResNames").getJSCSArray();

... // invoke procedure via Engine system

}

} // end DiagTestsPanel

This code should only give an idea of how the Symbol Management sys-
tem could be used. It has the advantage that there are fewer direct connections
between components. DiagTestsPanel, for example, does not know anything
about VARSpecPanel, although it uses variables that were set by this panel. The
code sketch here uses plain strings to define variables. This is suitable only for
small applications, because one might easily mix up names, especially if there are
many variables. A much better way is to create a separate class with the defini-
tions of all shared variables in a certain scope. The framework supports this with
the class JSCTypeDef, which can be used to define variables with their name, the
type and an optional description. Using this way of defining shared data helps
greatly to manage even large GUI systems with many variables. It is part of the
design guidelines to build extendible applications with JStatCom.

3.10.5 Related View Packets

• Parent: View Packet 2: Data Model

• Children: none



3.11. View Packet 6: Symbol Event System 101

3.11 View Packet 6: Symbol Event System

3.11.1 Primary Presentation

Symbol

<< interface >>
SymbolListener

+ valueChanged (evt :SymbolEvent ):void

SymbolEventTypes

+ EMPTY_STATE  :SymbolEventTypes
+ VALUE_CHANGED :SymbolEventTypes

<< interface >>
JSCDataListener

<< interface >>
JSCData

SymbolEvent

+ getSource ():Symbol
+ getType ():SymbolEventTypes

 

1

 
*

 

1

*

*
 

1

Figure 3.9: Classes in Symbol Event System

The Symbol Event System is used to notify listeners about changes in a Symbol
object. A symbol changes when the value of the referred JSCData object is mod-
ified, or if a new JSCData object is set with a different value. Symbols imple-
ment the JSCDataListener interface and are informed about changes in the
underlying data object via the Data Event System. The type and the name of
a symbol can never change after it has been created. Listeners that want to be
informed about symbol changes need to implement the SymbolListener inter-
face and they must register with the symbol object. Whenever a change occurs,
the valueChanged method of the SymbolListener interface is called with an
event parameter. The event is of type SymbolEvent and can be used by the lis-
tener to inspect the source and type of the event and the value before and after the
change. Typically, listeners retrieve the symbol from a symbol table and register
themselves with that object.



102 Chapter 3. Design and Implementation

All event notifications that are created by instances of Symbol are synchro-
nized with the Swing Event Dispatching Thread, unlike events fired by JSCData
objects. This guarantees that any GUI related activity resulting from a change in a
symbol is executed within that thread, even if the change in the symbol was orig-
inated from another thread. This is important, because otherwise unpredictable
behaviour of the graphical user interface could result. This makes the Symbol
Event System an adapter between the Data Event System and the GUI, because
the underlying computations might run in different threads, but any GUI related
methods must run in the single Event Dispatching Thread. For this reason, devel-
opers should use the Symbol Event System rather than the Data Event System for
listeners in graphical applications.

3.11.2 Element Catalog

Class Name Responsibility

com.jstatcom.model

SymbolEvent Events of this class are used to notify
SymbolListener objects.

SymbolEventTypes Enumeration of all possible types that a
SymbolEvent can have.

SymbolListener Interface to be implemented by listeners to events
fired by symbol objects.

SymbolEventSupport Support class for listener management.

Table 3.10: Elements of the Symbol Event System



3.11. View Packet 6: Symbol Event System 103

3.11.3 Architecture Background

On first glance, the Symbol Event System and the Data Event System seem to
have the same purpose - notification of interested listeners about changes in data
values. However, symbols are not exactly equivalent to data values. They merely
keep a reference to some data object, which might change during the lifetime of
a symbol. A listener to a symbol is informed, when the referenced data object
changes its value, or when the reference changes to point to another data object
(of the same type) with a different value. If a listener would register directly with
a data object, then it would only be informed about changes in the symbol as
long as the symbol references the same object. But typically, listeners need to be
informed about changes in shared data values, which are represented by symbols,
therefore they should listen to symbols rather than data objects.

Actually, the first version of the Symbol Management did not have the distinc-
tion between data objects and symbols. There was no Symbol Event System, only
data events. Data objects were stored directly in the symbol table. The drawback
was that once a data object was stored, the reference to it could not be changed
anymore. This had the effect that it was not possible to just replace the reference
of an element in the symbol table to point to a different data object, because all
listeners to the first object would have lost the connection to the new element in
the symbol table. Instead, the values of the new data object had to be copied to the
already existing object, a potentially costly operation. The current system is more
efficient, because the actual value and the reference to the symbol is separated
between a JSCData and a Symbol object. The value of a symbol can efficiently
be changed by just pointing to a new data object, without additional copying. The
only drawback of this system is that event handling becomes rather complex, be-
cause listeners can either register directly with data objects, or with symbols.

Another important aspect of the separation between the Data Event System
and the Symbol Event System is that sometimes the synchronization with the
mentioned Event Dispatching Thread is not desirable in a multi-threaded appli-
cation. In fact, it can make event notification among different threads impossible.
Therefore only the Symbol Event System is synchronized with this thread, but not
the Data Event System.



104 Chapter 3. Design and Implementation

To summarize, although the concept of a symbol and, as a consequence, the in-
troduction of the Symbol Event System seems a bit complicated in the beginning,
it solves some subtle problems related to performance and concurrency. Therefore
it is an inevitable part of the Data Model in JStatCom. However, the complexity
can be reduced for the developer, if the Symbol Event System is used by default
and the Data Event System is seen as the mechanism that is only required in the
background.

3.11.4 Usage Example

The use of the Symbol Event System is demonstrated with a code example that
sketches possible implementations of an estimation panel and a residual analysis
panel for a VAR analysis. In the class EstimatePanel, a type definition RES for
the symbol holding the estimated model residuals is created. This should be the
preferred way to define variables, although a simple string would also have been
possible. But it would lack type information and a description.

In the estimate method, the residuals are created and set to the global sym-
bol table. This way, they are shared with all other components that are part of
the VAR frame, like the residual analysis. It should be noted that the symbol is
retrieved via global().get(RES) by using the type definition. This also sets
the description of the symbol, which can then be accessed by the Symbol Con-
trol system. Especially if there are many variables, symbol descriptions can be an
important piece of information for maintaining and using the software.

The residual analysis panel ResAnPanel uses the estimated model residuals
by accessing the global symbol table together with the type definition
EstimatePanel.RES.4 The code example demonstrates, how a SymbolListener
is created and attached to that symbol. Updates occur only, when the estimated
residuals change their empty state. Typically, the listener would cause the panel
to be disabled if there are no residuals available, or activate it otherwise.

4In the current Java release 5.0, this would simplify to RES, if EstimatePanel is statically
imported. The source code would become shorter and clearer.



3.11. View Packet 6: Symbol Event System 105

// panel for model estimation

public class EstimatePanel extends ModelPanel{

// type definition for residual symbol, better than just

// using a string, has name, description and type

public static final JSCTypeDef RES = new JSCTypeDef("residuals",

JSCTypes.NARRAY, "estimated VAR residuals");

// some estimation is done here

private void estimate(){

// array holding residuals from an estimation

// for this example an arbitrary array is created

JSCNArray residuals = new JSCNArray("res",

new double[]{2.3, 1.9, -3.3, 5.5, -3.4});

// gets global symbol table

// gets symbol defined by RES

// sets values to estimated residuals (listeners are informed)

global().get(RES).set(residuals);

}

}

// residual analysis panel, needs to check

// whether estimation output is there

public class ResAnPanel extends ModelPanel{

// initializes this panel, attaches listeners

private void initialize(){

// symbol listener that does something if the

// symbol for estimated residuals is empty or not

SymbolListener listener = new SymbolListener(){

public void valueChanged(SymbolEvent evt){

if (evt.isSourceEmpty())

// do some action, because source was empty

else

// do some action, because source was not empty

};

}



106 Chapter 3. Design and Implementation

// gets global symbol table

// gets symbol with estimated residuals

// attaches listener to EMPTY_STATE events only

global().get(EstimatePanel.RES).addSymbolListener(listener,

SymbolEventTypes.EMPTY_STATE);

}

}

It can be seen that the Symbol Event System allows to change the state of GUI
components according to the state of the variables of a model easily. However,
as with the Data Event System, it can be hard to predict the effect of a change in
one symbol, if there are many listeners attached. If a complex modelling frame is
created, its behaviour could be difficult to understand. A possible solution to this
would be to keep all listeners in a special location, for example a single class. It
also helps to define listeners always in the same place within classes, for example
in the initialize method.

3.11.5 Related View Packets

• Parent: View Packet 2: Data Model

• Children: none

3.12 View Packet 7: Symbol Control

3.12.1 Primary Presentation

The Symbol Control System is used to represent the hierarchy of symbol tables to-
gether with their associated symbols in a tree structure. This is illustrated in Figure
3.10. Whenever a symbol table is created, a corresponding SymbolTableTreeNode
is added to the SymbolTree by default. It is put under its parent symbol table
node. Because every symbol table keeps a reference to its parent, a tree structure
is defined. Top level symbol tables without a parent table are added to the root of
the SymbolTree. How parent and child tables are related is defined by implemen-
tations of SymbolScope, which was described in Section 3.10. It should be clear



3.12. View Packet 7: Symbol Control 107

SymbolTree
<< Singleton >>

SymbolTreeNode

SymbolTableTreeNode SymbolTable

Symbol

 
*

 

1

 

1

 
*

1

*

1

0..1 
*

Figure 3.10: Tree related classes in Symbol Control

that typically there is only one instance of the class SymbolTree needed. This is
the definition of a Singleton.

Every SymbolTableTreeNode that is created from a SymbolTable contains
a SymbolTreeNode for each Symbol that is part of the symbol table. This way,
symbols are added as leafes under their respective parent node. To understand the
symbol tree better, a snapshot of a tree at runtime is presented in Figure 3.11. The
underlying modules are a VAR and a VECM frame. Only some symbol nodes
are shown for illustration. The VAR symbol table contains the variables Y for
endogenous data, LAGS for the number of lags, and RES for the estimated residuals.
Like in the previous examples, a panel for residual analysis is contained, which
has itself a local symbol table to store results that are not of interest to other
panels, like P VAL PORT, the p-values of a Portmanteau test. Analogous to the
VAR model, a global symbol table is also used for the VECM frame. Here only
the variable RANK for the number cointegration relations is added, together with
the respective residual analysis panel.



108 Chapter 3. Design and Implementation

TREE :SymbolTree

var :SymbolTableTreeNode

vec :SymbolTableTreeNode

resVAR :SymbolTableTreeNode

resVEC :SymbolTableTreeNode

Y :SymbolTreeNode

LAGS :SymbolTreeNode

RES :SymbolTreeNode

:SymbolTreeNode

RANK :SymbolTreeNode

Figure 3.11: Snapshot of objects in symbol tree

VAR and VECM modules are separated from each other in the example, be-
cause many of the underlying algorithms and GUI components are different for
those models. However, there are also shared classes and similar procedures. A
more detailed description of how this is implemented in the reference application
JMulTi is given in Chapter 4.

The most important aspect of the Symbol Control system is to provide access
to the described tree view at runtime via graphical user interface components.
Figure 3.12 shows the related classes. There is a single instance of the class
SymbolFrame, which holds the SymbolTree and instances of SymbolPanel.



3.12. View Packet 7: Symbol Control 109

SymbolFrame
<< Singleton >>

SymbolPanel

DefaultSymbolPanelJSCNArrayPanel JSCSArrayPanel

SymbolTree
<< Singleton >>

 
1..*

 

1

Figure 3.12: GUI related classes in Symbol Control

The symbol tree can be used to select the symbols from the hierarchy. It dis-
play symbols with their name and an icon for the type that the referenced data
has. The icons for the types are defined in the JSCTypes enumeration class.

The class SymbolPanel is an abstract class that has to be implemented by
special panels to display the values of data objects belonging to a certain type. The
default implementation is DefaultSymbolPanel, which is currently used for all
types, except NARRAY and SARRAY. It merely displays the value of the data object
in a text area. For the other types, special implementations of SymbolPanel have
been created. JSCNArray objects are displayed in a table with adjustable precision
and they can be exported to a file with several options. JSCSArray objects
are also displayed in a table and can be exported. If a new type is added to the
Type System and should be displayed, then by default the DefaultSymbolPanel
would be used, unless a special implementation of SymbolPanel has been set to
the SymbolFrame via its addSymbolPanelmethod. The abstract implementation
of symbol panel allows for this flexibility, which prepares the framework for future
extensions to the Data Model.



110 Chapter 3. Design and Implementation

3.12.2 Element Catalog

Class Name Responsibility

com.jstatcom.model.control

SymbolTree Singleton5tree that contains all symbol tables as par-
ent nodes and all Symbol elements as leafes.

SymbolTreeNode Treenode to be used with SymbolTree for displaying
Symbol objects.

SymbolTableTreeNodeTreenode to be used with SymbolTree for displaying
SymbolTable objects.

SymbolFrame A frame that holds the symbol table tree and the sym-
bol display.

SymbolPanel To be subclassed by all panels that are used in
SymbolFrame to display a certain data type.

DefaultSymbolPanel Default implementation of SymbolPanel to be used
for all types that do not have a distinct panel.

JSCNArrayPanel Panel to display and export symbols that represent
JSCNArray data objects.

JSCSArrayPanel Panel to display and export symbols that represent
JSCSArray data objects.

Table 3.11: Elements of the Symbol Control



3.12. View Packet 7: Symbol Control 111

3.12.3 Architecture Background

Via the Symbol Control it is possible to inspect the runtime structure of all symbol
tables and symbols in an efficient and convenient way. By default, every symbol
table that is created, will be added to the symbol tree. Typically, symbol tables are
part of the hierarchy defined by instances of ModelFrame and ModelPanel com-
ponents. However, via a constructor argument a symbol table can also be created
without automatically being added to the symbol tree. As already mentioned, the
Symbol Management system does not need to be changed if the Type System is
extended, which is a very likely scenario. The same is true for the Symbol Con-
trol. Maybe one wants to add a special SymbolPanel implementation for a new
type, but there is always the DefaultSymbolPanel, which is used automatically
if nothing else is specified. Thus, any new types would be displayed as well in the
tree view, and user-defined types could be handled in the same way as core types
that are already part of JStatCom.

3.12.4 Usage Example

The usage of the Symbol Control is demonstrated with a screenshot in Figure
3.13. It is mainly used as a readily available tool without special implications for
actual code development. This is, because adding symbol tables to the symbol
tree is done automatically. It can be seen that on the left side of the frame a
tree view with the symbol table nodes and symbol nodes is presented. Here, the
VECM frame is shown with some variables that have been set during the ongoing
analysis. Gray items mark that a symbol is empty. All visible symbols are of
type NARRAY, therefore the icons are all equal. In the upper part of the right
panel, the name, type and description of the selected symbol is shown. The actual
SymbolPanel implementation is in the lower part. It can be seen that the values of
the selected symbol are presented in a table and that there are buttons for exporting
the underlying data. These features would not make much sense for, say, a symbol
of type DRANGE. Therefore for symbols of this type, the default panel would be
used, as can be seen in Figure 3.14. It can also be seen, how different icons are
used with NARRAY, SARRAY, and DRANGE symbols.

5A Singleton is a class that has only a single instance.



112 Chapter 3. Design and Implementation

Figure 3.13: Screenshot of symbol frame with selected NARRAY

3.12.5 Related View Packets

• Parent: View Packet 2: Data Model

• Children: none



3.13. View Packet 8: Engine 113

Figure 3.14: Screenshot of symbol frame with selected DRANGE

3.13 View Packet 8: Engine

3.13.1 Primary Presentation

System Segment

Engine Gauss

GRTE

Ox

Stub

MatLab

PCall

Table 3.12: Primary Presentation of Engine system

This section introduces the abstract implementation of the Engine system for com-
municating with different execution engines. Any functionality that is specific to
a certain external software is implemented in subsystems of Engine, which are
shown in in Table 3.12. Typically these engines rely on external resources, which
means that extra software packages or libraries must be installed.



114 Chapter 3. Design and Implementation

<< interface >>
Engine

ConfigHolder << enumeration >>
ConfigKeys

+ defaultVal ():String
+ isValid (val:String ):String

<< enumeration >>
LoadTypes

ConfigDialog

+ showConfigDialog
 

(conf :ConfigHolder ):boolean

AbstractConfigPanel DefaultConfigPanel

EngineTypes

+ GAUSS :EngineTypes
+ GRTE :EngineTypes
+ OX:EngineTypes
+ STUB :EngineTypes
+ MLAB:EngineTypes
+ DIR_NAME :String

+ getEngine ():Engine
+ getConfigFile ():String

 

1

 1

 1

 

*

 

1

1 1

1

1

 

1

Figure 3.15: Engine classes

The main classes involved are part of the class diagram in Figure 3.15. The in-
terface Engine defines the general contract that engine implementations must sat-
isfy. Figure 3.16 shows the complete interface with all methods and all currently
implemented realizations. There is one Engine class in each communications
subsystem.

Each engine depends on several other classes which manage configuration set-
tings and the definition of constants that are needed by a specific engine. Config-
urations management is a challenging task, because each engine needs different
information about the computing environment. For example, the Gauss engine
needs version information, the location of the executable and the location of the
temporary directory. The Ox engine needs the location of the dynamic link library,
whereas the MatLab engine does not need any information. The Engine system
provides a mechanism to standardize the setting, storing and handling of those
properties. There is one instance of ConfigHolder for each engine type, which
retrieves the needed information from an XML file. It can also store changed set-



3.13. View Packet 8: Engine 115

<< interface >>
Engine

+ call (procName :String ,args :JSCData[],rtn :JSCData[]):void
+ isValid (type :JSCTypes):boolean
+ shutdown ():void
+ stop ():void
+ load (module :String ,loadType :LoadTypes ,args :JSCData[]):void

OxEngine GaussEngine MLabEngine StubEngine GRTEngine

Figure 3.16: Engine inheritance

tings to that file. The format of the settings file is always the same for each engine,
but it has different types of information stored in it. These types of information are
defined in the abstract class ConfigKeys, which must be implemented for each
engine subsystem to define configuration settings. Each setting is a constant with
a name, a default value (implementation of defaultVal) and a check for cor-
rectness (implementation of isValid). This system gives the required flexibility
to manage a different set of configuration settings for each engine. Typically this
information is retrieved from the ConfigHolder that belongs to a certain engine
type when the repective engine is initialized.

However, another part of the configurations management is that there might be
information missing or wrong and must be gathered directly from the user before
the engine can be executed. This is implemented via the ConfigDialog and
the AbstractConfigPanel. Whenever a correctness check of a ConfigKeys
instance fails, the mentioned dialog is presented with a panel to gather user input.
This panel must be of type AbstractConfigPanel and can be implemented by
the specific engine subsystems, because these GUI components depend on the
settings that are required by the specific engine. But a default implementation is
also provided with DefaultConfigPanel. An example of this panel is shown in
Figure 3.17, because the isValidmethod of GCG FILENAME, which is an instance



116 Chapter 3. Design and Implementation

of ConfigKeys for the GRTE engine, returned an error. The user is now asked to
correct the wrong file name jgrte0.gcg, otherwise the engine would refuse to
run and throw an exception. However, other engines with correct settings would
not be affected at all by this. This panel is always used when nothing else is
specified. It just presents a text view of the underlying configuration file. This is
of course less convenient for the user than a more customized panel, but it relieves
the developer from the task of implementing such a panel in the first place.

Figure 3.17: ConfigDialog with a DefaultConfigPanel

The task of mediating between configurations management, the setting of the
configurations panel for user input and initializing an engine instance, is left to
the class EngineTypes. It must be subclassed for each engine subsystem. Typi-
cally there is only a single instance of each engine needed, which is created and
referenced via the getEngine method of the EngineTypes class. The class can
also be used to check configurations settings jointly, because sometimes there are
certain combinations of otherwise valid single settings that are not allowed if used
together. Another task of EngineTypes is to keep an enumeration with refer-
ences to all implementations of itself in the engine subsystems, which can be seen
in Figure 3.15. But the latter function is just for convenience and clarity and not
at all needed for a new engine subsystem to run properly.



3.13. View Packet 8: Engine 117

Resource Management

Because JStatCom is designed to handle an arbitrary number of engines at the
same time, it is vital to separate the various additional resources in different loca-
tions. Those resources include the mentioned XML settings file, but also native
libraries for communications interfaces and the files that contain the actual algo-
rithms. Details differ for each engine subsystem and are described in the respec-
tive view packets. But the class EngineTypes provides a default for the resource
directory with the variable DIR NAME. All resources for an engine should go into
a subdirectory starting with ’j’, followed by the name of that engine which is
set in the respective engine implementation, for example jgauss, jgrte, jox. In
the same way, the configurations file is found. The default location is set in the
method EngineTypes.getConfigFile, which returns the file name
engine config.xml in the mentioned subdirectory DIR NAME. However, the use
of these conventions depends on the implementations of engine subsystems. It
cannot be enforced but it is a reasonable way to organize the needed resources.

Differences and Similarities between Engines

The idea of the whole abstract Engine system was to create a standardized inter-
face, which is largely independent of the concrete implementations. Users should
only be confronted with the Engine interface to call arbitrary engines, thus hav-
ing to learn only a single API. However, this is a big challenge and experience
has shown that it is not fully achievable, because engines differ significantly in
terms of calling semantics. For example, the Ox engine allows to create objects
from classes, which is not supported by the Gauss engine. Although not impos-
sible, it would not seem reasonable to try to generalize all potential action types
in a unified interface. For this reason, the engine interface provides the parame-
trized function load to address these issues. The method takes a parameter of
type LoadTypes that defines the specific action to carry out.

Figure 3.18 gives a class diagram for an arbitrary client class that uses the
Engine system. For clarity, only two concrete engine implementations are dis-
played. The graphic shows that clients use the abstract class EngineTypes and
the interface Engine without knowing anything about the implementing classes



118 Chapter 3. Design and Implementation

EngineTypes

+OX:EngineTypes
+GRTE:EngineTypes

+getEngine():Engine

OxEngineType

GRTEngineType

<< interface >>
Engine

OxEngine

GRTEngine

LoadTypes

OxLoadTypes

+OXO:OxLoadTypes
+CLASS:OxLoadTypes
+VIEWER:OxLoadTypes

GRTELoadTypes

+GLOBAL:GRTELoadTypes
+GCG:GRTELoadTypes

Client

 
 
 

 

 

 

 

 

  

  

 
 

 
 

 

 

 

 

Figure 3.18: Engine client using abstract Engine and EngineTypes, but specific
LoadTypes

in the background. But clients must also use the load types that are especially
designed for the used engine to call the load method, thus implementation differ-
ences leak through the interface. However, this is not a severe complication, given
the amount of flexibility that is achieved. Any other differences between engines
are completely hidden from clients.

The solution found manages to integrate engines with very different charac-
teristics and calling conventions. Therefore it is likely that the system will also
allow to add communications interfaces to many software packages that might be
used for mathematical computations. Planned extensions are the integration of
R and Mathematica. This undertaking is supported by the fact that tool vendors
often supply programming interfaces to control the respective software from an
external application, examples are the Ox C-API, the Gauss Runtime Engine and
the J/Link package for Mathematica to name just a few.



3.13. View Packet 8: Engine 119

3.13.2 Element Catalog

Class Name Responsibility

com.jstatcom.engine

Engine Interface that all implemented concrete engines
must satisfy. Defines the general abstract function-
ality of an engine.

EngineTypes This class is a Mediator that binds the various
classes and resources together that belong to an en-
gine implementation. It also contains an enumera-
tion of all engine types that are implemented.

ConfigHolder This class is used by Engine instances to get all in-
formation that is necessary to run a specific engine.

ConfigKeys Enumeration of constants that define different
types of information needed for a certain engine
to run.

ConfigDialog A JDialog that collects configuration information
about the engine from the user.

AbstractConfigPanel This class should be subclassed by panels laying
out an input mask to collect configuration infor-
mation. It appears embedded in a ConfigDialog.

DefaultConfigPanel Default AbstractConfigPanel implementation
to provide a user input mask for all settings needed
to run an engine. It has an editable view to the
XML version of the respective ConfigHolder.



120 Chapter 3. Design and Implementation

LoadTypes Abstract class for defining load parameters for a
certain engine. Load parameters should be im-
plemented as enumerations that are subclasses of
LoadTypes. Each load type stands for a specific
operation, like loading a library or creating a class.

CPtr An abstraction for a C pointer data type, used by
the Stub engine and the MatLab engine, from the
shared stubs example (Liang (1999)).

CFunc An abstraction for a C function pointer, from the
shared stubs example (Liang (1999)).

CMalloc A CPtr to memory obtained from the C heap via
a call to malloc, from the shared stubs example
(Liang (1999)).

Subsystems

Gauss Communications package for Gauss. The software
must be installed and runs in an extra process.

GRTE Communications package for the Gauss Runtime
Engine / Gauss Engine. Needs the respective ven-
dor specific resources together with a valid license.

Ox Communications package for Ox. The software
must be installed together with packages that are
needed for the modules to run.

Stub Allows to call compiled native libraries with a ba-
sic C-interface directly from Java without the need
to write a dedicated JNI wrapper.

MatLab Allows to call compiled MatLab libraries from .m

files directly from Java.



3.13. View Packet 8: Engine 121

PCall System to bundle procedure calls in a separate
caller class, which is an implementation of the
Command pattern. Can be used to run computa-
tions in an extra thread. Provides useful default
functionality to execute computations in a stan-
dardized way.

Table 3.13: Elements of Engine system

3.13.3 Context

The context of the Engine system is shown in Figure 3.19. Developers can use
the system to implement calls to various engines via a standardized interface. One
rather important aspect that is addressed by the PCall system is that the compu-
tations can easily be run in a new thread. This is helpful for GUI applications,
because otherwise the user interface would not be reactive until the computation
would have finished. Most users would consider this as unusual or erroneous be-
haviour. Moreover, it is one of the specific features of scientific calculations that
they might be time consuming.

Certain procedures in data driven applications may fail, if the data has specific
features. It is nearly impossible to guard against all possible errors with prelimi-
nary checks. Therefore a standard behaviour in case of such errors is an important
aspect of the Engine system. It should give helpful feedback to the user as well as
the developer, and the system should not crash but allow for correcting the error,
leaving the running application in a consistent state. This is also addressed by the
PCall system in conjunction with engine implementations.

How users can adjust engine settings was already described in the previous
section. This is achieved via the configurations management of the Engine system.

Another desired behaviour of the Engine system is that users can stop lengthy
running computations safely. However, this can not always be achieved, because it
must be supported by the underlying communications system, which is typically
vendor supplied. The Engine system does support this feature in general, but



122 Chapter 3. Design and Implementation

Engine

Implement call to procedures
from external engine(s)

Load external modules with 
algorithm implementations

Stop running
engine task

Adjust engine
settings for local
environment

Create new thread
for a computation

Ensure standard behaviour and
informative feedback for user
in case of failure

Developer

Application User

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3.19: Context of the Engine system

specific engines might veto requests to stop a running procedure, simply because
there is no way to stop it.

3.13.4 Architecture Background

The Engine system was designed with two main goals in mind: First, it should
be easy to use for the GUI developer, who wants to implement calls to proce-
dures that could even be written in different programming languages, and second,
it should provide a framework to integrate arbitrary new engine implementations.
It was therefore important to model as many similarities that engines for the given



3.13. View Packet 8: Engine 123

problem domain can have in an abstract implementation, and to leave all differ-
ences to the special implementations for each engine. This has led to the current
scheme with the Engine system and the specialized subsystems. The basic idea
behind this separation was, that GUI developers and framework developers would
benefit from it. Ideally, the GUI developer only needs to know the workings of the
abstract system, thus reducing the burden of learning a different API for each sys-
tem, making the resulting code easier to maintain and understand. Furthermore,
the framework developer could reuse much of the general functionality, for exam-
ple the configurations management, if he wants to implement a communications
subsystem to a new engine. The following paragraphs describe, to which extent
these goals have been met.

To achieve this, it was necessary to design a common interface Engine which
generalizes the functionality that an external execution engine can have. This in-
terface was subject to many modifications until it has reached the current version.
The reason was that it was not general enough in the beginning to cover all varia-
tions that different engines could have. For example, in one of the earlier versions
separate methods for writing data, executing methods and reading data were part
of it. But this was only driven by the Gauss communications interface, which
was based on the assumption that the engine runs in a separate process. When
the other engines were implemented, it became clear that this separation is just
a special case of the more general call method that is currently implemented.
Another aspect of calling convenience was that the engine system must interact
with the Data Model. Therefore input and return parameters are given as arrays
of JSCData. Here the design of the Type System with the very general metadata
interface has proven to be extremely useful, because only one call method is
needed to cope with all possible procedure definitions.

Another method that was initially part of the interface was called start. But
for certain engines this method would have no meaning, therefore it was removed
from the interface. The Gauss process is now started when necessary, no client
invocation is needed. However, the shutdown method is often helpful to clean up
tasks, when the main application is exited. It can be used to remove temporary
files, for example. For some engines, like the MatLab engine, shutdown is just
empty and does nothing.



124 Chapter 3. Design and Implementation

A further variation between engines is that they could accept different data
types for the call method. For example, the Gauss and GRTE engines could
potentially handle parameters with complex numbers, whereas the Ox engine does
not support complex numbers. Although the complex data type does not exist
yet as a JSCData implementation, it could be a plausible extension of the Type
System in the future. Therefore the Engine System must be able to adopt to it in
a consistent way. For this reason, the Engine interface has the isValid method,
which should be called before any data is processed, because it checks whether
the JSCData instances used as parameters can be handled by the implementing
engine.

The discussed methods can all perfectly hide implementation details from de-
velopers. However, there are severe differences between engines that cannot be
completely hidden behind an interface. There is a lot of flexibility needed to load
different module types or to invoke special operations, like creating classes. This
has already been described in Section 3.13.1. For this reason it was necessary to
create a parametrized function load, which changes their behaviour according to
the load parameter that is given. Therefore developers need to know the imple-
menting engine and the semantics of the load function, because it depends on the
used parameter. But typically the number of special operations is limited for each
engine. An alternative would have been to find generalizations for each operation
and make it part of the interface. But this would have messed up the interface with
methods that are only relevant for some engines, making it harder to understand.
It is argued that the current solution is the best compromise between flexibility
and clarity, given the requirement that the framework should be able to potentially
integrate every external engine.

Portability

Applications based on JStatCom are usually written in Java and are therefore
portable to most operating systems. But if a certain engine is used, portability
is restricted to the operating systems that are supported by that engine. Limita-
tions stem from the fact that usually system specific dynamic link libraries are
required. Those dlls might only be available to a certain operating system. JStat-



3.13. View Packet 8: Engine 125

Com provides the source code of communications libraries that could potentially
be compiled on other operating systems. This is done for the Ox engine, for
example. However, some communications libraries make heavy use of operating
system specific functions that are not available on other operating systems. There-
fore they cannot be compiled on these systems and the source code is therefore
not shipped. This is the case for the Gauss engine libraries.

3.13.5 Usage Example

Usage examples of the Engine system always rely on a certain implementation of
the abstract system. Code examples are therefore given in the child view packets
that describe specific subsystems. How a completely new engine communications
subsystem could be set up should also become clearer by inspecting the already
implemented engines, thus this is delegated to the child views as well. The reader
should notice that the class structure of all engine subsystems is very similar. This
is a very nice result, which shows how the abstract Engine system can be adopted
to various special cases. However, the challenging part of a new engine commu-
nications scheme is often to establish the link between the external software or
library and JStatCom. Although there are also patterns or best practises that can
be observed, this will not be discussed in detail. In any case, it does require a solid
knowledge of C/C++ programming and in the JNI.

3.13.6 Related View Packets

• Parent: View Packet 1: JStatCom

• Children:

– View Packet 9: Gauss

– View Packet 10: GRTE

– View Packet 11: Ox

– View Packet 12: Stub

– View Packet 13: MatLab

– View Packet 14: PCall



126 Chapter 3. Design and Implementation

3.14 View Packet 9: Gauss

3.14.1 Primary Presentation

GaussEngine

GaussEngineType
<< Singleton >>

GaussLoadTypes
<< enumeration >>

+ GCG :GaussLoadTypes
+ LIB :GaussLoadTypes
+ SYS :GaussLoadTypes
+ GLOBAL :GaussLoadTypes

GaussConfigPanel

GCGSet

LIBSet

GaussConfigKeys
<< enumeration >>

+ EXE_LOCATION :GaussConfigKeys
+ TEMP_DIR :GaussConfigKeys
+ GCG_FILENAME  :GaussConfigKeys
+ GAUSS_VERSION  :GaussConfigKeys

 1

 1

1

*

1

*

Figure 3.20: Classes of the Gauss subsystem

The Gauss subsystem is used to link between JStatCom and the Gauss for
Windows software by Aptech. Supported software versions are 3.2 to 6.0. The
communications libraries run only under the Windows operating system. Figure
3.20 shows the participating classes.

The class GaussEngine is a realization of the Engine interface. Via its call
method it is possible to make calls to procedures that are defined in Gauss libraries
or compiled .gcg files. Special Gauss modules can be loaded via the load func-
tion with one of the parameters defined in GaussLoadTypes.

The configurations management for Gauss uses the enumeration class
GaussConfigKeys to define the types of information that are needed. Not all con-
stants are shown in the diagram, but just the most important ones, like the location
and version of the Gauss executable, the temporary directory, and the file con-
taining the compiled Gauss code. This subsystem also provides a special version
of AbstractConfigPanel to gather missing information from the user, which



3.14. View Packet 9: Gauss 127

is GaussConfigPanel. It is more convenient than the DefaultConfigPanel,
especially because the settings are very likely to be changed when the system is
used for the first time.

GaussEngineType is the class that handles initialization of the GaussEngine
and that binds the other classes together. It also provides joint tests of the config-
uration settings, for example whether the Gauss version fits with the specified
executable.

Two special purpose classes are LIBSet and GCGSet. Those are used by
GaussEngine to create a set of libraries from source files and to compile Gauss
sources into a single .gcg file.

Resources needed by the Gauss engine

jgauss.dll glm.dll

Shared Memory File

GAUSS ProcessJAVA Process

Synchronization

Figure 3.21: Gauss communication libraries

The basic components that enable the Gauss communication are shown in Fig-
ure 3.21. On the Java side, a process is started that is typically an application based
on the JStatCom framework. When the Gauss engine is used, the native library



128 Chapter 3. Design and Implementation

jgauss.dll is loaded. This library spawns the Gauss process and sets up the
environment for it. The Gauss software must be installed for this to work. When
Gauss is started, it must load the library glm.dll to enable the interprocess
communication.

One problem with this approach is that there are two processes running, which
have separate virtual memory. But it is necessary to transfer data between the two
processes in both directions. To accomplish this efficiently, a shared memory area
is used, which can be accessed via the two loaded dlls. This is a standard way of
establishing interprocess communication, but it relies heavily on operating system
specific functions. Furthermore, it is crucial to synchronize read and write access
to the shared memory area to prevent memory corruption. Synchronization is also
necessary when the Gauss process is initialized and when procedures are called.
The Java side needs to wait until the procedure has finished and it needs to be
notified to stop waiting.

The library jgauss.dll is used by the Java side, but it can also call back Java
methods. This is done, when Gauss writes something to the standard output. It is
then redirected to the standard output of the Java application to make it possible
to read it while the application is running.

Further details of the communications system are omitted here, because it is
not relevant for the developer using the framework. However, it is important to
know about the resources that are shipped with JStatCom to enable the Gauss
communication. Table 3.14 gives an overview of all files and how they are used.

Resource Usage

files in working directory of JStatCom

jgauss gcg.bat Batch file to compile source files to a
single .gcg file, using the settings file
jgauss/compile.xml.

jgauss lib.bat Batch file to create Gauss libraries using the set-
tings file jgauss/lib.xml.



3.14. View Packet 9: Gauss 129

files in subdirectory jgauss

engine config.xml Holds all necessary information for running the
Gauss subsystem. It can be edited manually or via
the GaussConfigPanel.

compile.xml Configuration settings for compiling a .gcg file
from the Gauss sources. Defines the name of the
output file and lists all input files. Must be edited
manually. Already contains default procedures for
plotting which might be helpful.

lib.xml Configuration settings for creating Gauss libraries
from Gauss sources. Defines the name of each li-
brary and respective input files. Must be edited
manually. Already contains default library for
plotting which might be helpful.

jgauss.gcg Compiled Gauss sources. This file is loaded by
Gauss on initialization.

gaussXX.cfg Gauss configuration settings required by the com-
munications libraries. XX is a placeholder for the
Gauss version.

pqgrun.cfg Graphics settings file. Required by the communi-
cations libraries.

jgauss1.dll Native library that is loaded by the Java side to link
to an instance of Gauss 3.2.

jgauss2.dll Native library that is loaded by the Java side to link
to an instance of Gauss 3.5, 3.6, 4.0, 5.0 or 6.0.

glm1.dll Native library that is loaded by the Gauss side if
the version is 3.2.



130 Chapter 3. Design and Implementation

glm2.dll Native library that is loaded by the Gauss side if
the version is 3.5, 3.6, 4.0, 5.0 or 6.0.

src/jgauss.src Gauss code that is loaded when the Gauss process
is started. It is required to read/write string arrays
from/to the shared memory area.

src/extern.dec Optional Gauss sources which might be used. De-
fines graphics globals from pgraph as external.
Must be used for library creation if those globals
are used.

src/jgrte.src Gauss source that should be compiled into the
.gcg file if the GRTE is used with it.

src/plot.src Gauss sources with some helpful plot commands.
Can optionally be used.

src/jmplot.dec Gauss sources with global variables that are used
to adjust plot settings. Can optionally be used.

src/tools.src Gauss sources with some helpful support methods.
Can optionally be used.

src/ All other Gauss source files should be stored in
that subdirectory. They can either be used via
the Gauss library system or via loading a com-
piled .gcg file. It is also possible to change that
subdirectory.

dlib/ Any native shared libraries that might be used
by the Gauss procedures should be stored in that
subdirectory.

Table 3.14: Resources for Gauss engine



3.14. View Packet 9: Gauss 131

3.14.2 Element Catalog

Class Name Responsibility

com.jstatcom.engine.gauss

GaussEngine Links to an instance of the software package
Gauss. The software must be installed on the same
machine and runs in an extra process.

GaussEngineType Initializes the GaussEngine, sets the
GaussConfigPanel and does configuration
checking.

GaussLoadTypes Enumeration of specific constants to define load
operations for the Gauss engine.

GaussConfigPanel An implementation of the
AbstractConfigPanel to create a user in-
put mask for configuration information related to
running the Gauss program.

GaussConfigKeys Enumeration of all constants that define the Gauss
environment.

GCGSet Stores information to compile a Gauss .gcg file
from the source files.

LIBSet Stores information to create the Gauss .lcg files
from the source files.

Table 3.15: Elements of Gauss system



132 Chapter 3. Design and Implementation

3.14.3 Architecture Background

The Gauss subsystem was the first communications system that was developed
for JStatCom. It is already described in Benkwitz (2002). Since then it has been
refactored to work with the new Data Model and to conform to the abstract En-
gine system. Because the communication to Gauss 3.2 and higher versions are
very different, the required libraries have been separated in jgauss1.dll and
jgauss2.dll and glm1.dll, glm2.dll respectively. This was, because the
communication to newer Gauss releases runs with the batch version of Gauss,
which is called tgauss.exe under Windows.

However, the interprocess communication poses some performance problems,
which are caused by the way the processes are synchronized. It takes a fixed
amount of time until the Java process is notified about the end of a procedure call.
Because this problem lies in the behaviour of the Gauss batch mode, it cannot
be solved by adjusting the communications libraries. As a result, computations
take longer, especially if many single procedure calls are involved. This does not
mean that the algorithms are executed slower, but the user experience is like that.
The solution is to use a different scheme to execute Gauss procedures. A ven-
dor supplied software is the Gauss Runtime Engine, which solves the mentioned
performance problems. It is described in Section 3.15. This system also has the
advantage, that the user does not need to have the Gauss software installed.

However, the Gauss system is by no means obsolete, because it serves as a
platform to test and debug Gauss procedures in the first place, before the final
.gcg file is compiled for the GRTE system. This is especially convenient, if
the Gauss system is used in the so called DEBUG mode. The DEBUG flag can
easily be set as a command line option when an application based on JStatCom is
started. This results in a much more verbose output and it affects the behaviour of
the Gauss engine. If DEBUG is true:

1. the load function together with the load parameter GaussLoadTypes.LIB
loads a Gauss library, instead of using the compiled .gcg file

2. it is possible to edit the Gauss source files directly, changes take effect im-
mediately without restarting the application if no new procedures are de-
fined



3.14. View Packet 9: Gauss 133

3. all input and return parameters together with the name of the procedure are
printed in the log output when the call method is invoked

If DEBUG is false:

1. the load function together with the load parameter GaussLoadTypes.LIB
is ignored, nothing happens

2. changes in the source files only take effect after the .gcg file is compiled
and the application is restarted

3. log output is only generated in case of errors

It should be noted that the libraries must first be created with the tool
jgauss lib.bat before they can be loaded. The tool jgauss gcg.bat can be
used to compile the .gcg file. Due to these features, the Gauss system is still in
use, but mainly for development purposes. It can be used by anyone who has the
Gauss software installed. When the GRTE system is applied instead, changes in
the Gauss sources can only be made by the owner of the license of the respective
Runtime Engine. This is somewhat restrictive, because it makes it difficult for
several developers to work on the Gauss code, because changes can not easily
be tested. However, if the final release is created, the GRTE is clearly a better
solution, also because it runs not only under the Windows OS, but on Linux and
Solaris as well. Due to the use of the Engine interface, it is possible to develop
first for the Gauss system and switch then to the GRTE system by only changing
the engine implementation that is used. The two engines have similar behaviour,
except that the load function with the mentioned LIB parameter is ignored by
the GRTE system. This interoperability supports the strategy to use both systems
together, one for development and the other for deployment.

3.14.4 Usage Example

The following code example demonstrates a standard call to the Gauss engine. It
is assumed that a library res has been created before with the procedure
proc(1)=nonnorm res(res). The input parameter is a vector of residuals and



134 Chapter 3. Design and Implementation

the function returns the test statistic and p-value of a Jarque-Bera test of non-
normality. It should be noted that the load method is only executed, when the
DEBUG parameter is set to true. Otherwise the method does nothing. In that
case, the procedure definition must be part of a compiled .gcg file that is loaded
when the Gauss engine is initialized. The default name for that file is jgauss.gcg
in the jgauss subdirectory. The name can also be changed by editing the
jgauss/engine config.xml file.

// gets Engine instance

Engine gauss = EngineTypes.GAUSS.getEngine();

// initialize output

JSCData[] rtnArray = new JSCData[] { new JSCNArray("outMat")};

// generate some input data

JSCData[] inputArray = new JSCData[] { new JSCNArray("inMat",

UMatrix.rndu(100,1))};

// load the Gauss library "res", it must exist

gauss.load("res", GaussLoadTypes.LIB, null);

// call the function "nonnorm_res" defined in library "res"

gauss.call("nonnorm_res", inputArray, rtnArray);

// print the resulting array with test statistic and p-value

System.out.println(rtnArray[0].display());

The code could also be executed with the GRTE engine, by just replacing the
first line with

// gets Engine instance

Engine gauss = EngineTypes.GRTE.getEngine();

...

The load function would always be ignored in this case. It can be seen that
switching between the development engine (Gauss) and the deployment engine
(GRTE) can easily be done. In the application JMulTi this is adjusted with a
command line option and according to that setting either Gauss or the GRTE is
used, which is as easy as changing a single line of code. However, this is not



3.15. View Packet 10: GRTE 135

possible between engines that execute different code, like Ox and Matlab. But the
general interface makes using these rather different engines still very similar, thus
hiding implementation details from the developer.

3.14.5 Related View Packets

• Parent: View Packet 8: Engine

• Children: none

3.15 View Packet 10: GRTE

3.15.1 Primary Presentation

GRTEngine

GRTEType
<< Singleton >>

GRTELoadTypes
<< enumeration >>

+ GCG  :GRTELoadTypes
+ GLOBAL  :GRTELoadTypes

GRTEConfigKeys
<< enumeration >>

+ DO_JGRTE_INIT  :GRTEConfigKeys
+ GAUSSAPI_SYSLIBNAME   :GRTEConfigKeys
+ GCG_FILENAME  :GRTEConfigKeys
+ GRAPHICS_DIR  :GRTEConfigKeys

 

1

1

*

1

*

Figure 3.22: Classes of the GRTE subsystem

The GRTE subsystem is used to execute procedures written in the Gauss pro-
gramming language from applications based on JStatCom. It is available for Win-
dows, Linux and Solaris. A port to the AIX OS is theoretically possible. All par-
ticipating classes are presented in Figure 3.22. The class GRTEngine implements
the Engine interface, GRTEType subclasses EngineTypes and the two remaining



136 Chapter 3. Design and Implementation

enumeration classes define load types and configuration keys. The GRTE engine
is based on the vendor supplied Gauss Runtime Engine, which can be shipped to-
gether with the application. Thus, unlike with the Gauss communication, the user
does not have to have an additional software package installed.

The GRTE engine and the Gauss engine can execute Gauss code in very sim-
ilar ways. However, the details of the underlying implementations differ sub-
stantially. The GRTE runs in the same process as the Java application, therefore
interprocess communication is not required. The engine manages the type con-
version between the Data Model in JStatCom and the corresponding Gauss data
objects.

Resources needed by the GRTE engine

To run the GRTE engine, several native libraries and resources are needed. They
differ among the operating systems that the application should be run on. Tables
3.16 and 3.17 list all files that must be shipped with applications that use the GRTE
via JStatCom. If an application does not use the GRTE, the listed files do not need
to be shipped and can be deleted.

Resource Usage

files in working directory of JStatCom

mtengrt.dll

opnx32.dll

pthreadvc.dll

Dynamic link libraries provided by the GRTE.
Need to be located in the library search path, there-
fore they reside in the working directory instead of
the jgrte subdirectory.

files in subdirectory jgrte

engine config.xml Holds all necessary information for running the
GRTE subsystem. It can be edited manually or via
the DefaultConfigPanel.

jgrte.gcg Compiled Gauss code that is loaded on
initialization.



3.15. View Packet 10: GRTE 137

jgrte.src Source code that should be compiled into the file
jgrte.gcg. It contains test methods which are
used by the unit tests for the GRTE engine. Fur-
thermore it defines the method initJGRTE, which
is executed on initialization. This is important for
graphics display on the Windows OS and for load-
ing any dynamic link libraries that might be used
by the Gauss procedures.

flexlm/gauss.lic License file with which the GRTE engine runs. It is
vendor provided and the compiled file jgrte.gcg
is validated against it. If the compilation is done
with different engine or with an ordinary Gauss
version, the GRTE would refuse to run with that
.gcg file.

dlib/jgrte.dll Dynamic link library that exports the function
showLastGraphic. It is loaded on initializa-
tion (see also jgrte.src) and required to display
graphics correctly.

dlib/ Any native shared libraries that might be used
by the Gauss procedures should be stored in that
subdirectory.



138 Chapter 3. Design and Implementation

cmx20.dll

complex.fnt

compobj.dll

gauss.cfg

gauss.dll

gaussjavaapi5 0rt.dll

import.dll

microb.fnt

readme.txt

simgrma.fnt

simplex.fnt

symbol.gpc

vwr.exe

xls.dll

Resources that are supplied by the GRTE system.

Table 3.16: Resources for GRTE engine, Windows

Resource Usage

files in working directory of JStatCom

libmtengrt.so Dynamic link libraries provided by the GRTE.
Need to be put in the library search path.

files in subdirectory jgrte

engine config.xml Holds all necessary information for running the
GRTE subsystem. It can be edited manually or via
the DefaultConfigPanel.

jgrte.gcg Compiled Gauss code that is loaded on initializa-
tion. Must be compiled under Linux/Solaris.



3.15. View Packet 10: GRTE 139

jgrte.src Source code that should be compiled into the file
jgrte.gcg. It contains test methods which are
used by the unit tests for the GRTE engine. Fur-
thermore it defines the method initJGRTE, which
is executed on initialization. This is important for
loading any dynamic link libraries that might be
used by the Gauss procedures.

complex.fnt

GaussJavaApi5 0RT.so

libgauss.so

libmtengrt.so

libmteng.so

microb.fnt

simgrma.fnt

simplex.fnt

symbol.gpc

Resources that are supplied by the GRTE system.

FLEXlm/gauss.lic License file with which the GRTE engine runs. It is
vendor provided and the compiled file jgrte.gcg
is validated against it. If the compilation is done
with different engine or with an ordinary Gauss
version, the GRTE would refuse to run with that
.gcg file.

dlib/libjgrte.so Dynamic link library that exports the function
showLastGraphic. The implementation is empty
but provided for compatibility with the Windows
version, which requires it to display graphics. It is
loaded on initialization (see also jgrte.src).



140 Chapter 3. Design and Implementation

dlib/ Any native shared libraries that might be used
by the Gauss procedures should be stored in that
subdirectory.

Table 3.17: Resources for GRTE engine, Linux/Solaris

3.15.2 Element Catalog

Class Name Responsibility

com.jstatcom.engine.grte

GRTEngine Links to the Gauss Runtime Engine and conforms
to the Engine interface.

GRTEType Initializes the GRTEngine and does configuration
checking.

GRTELoadTypes Enumeration of specific constants to define load
operations for the GRTE.

GRTEConfigKeys Enumeration of all constants that define the GRTE
environment.

Table 3.18: Elements of GRTE system

3.15.3 Architecture Background

The GRTE subsystem uses the vendor supplied Gauss Runtime Engine by Aptech.
Because this software is available for a number of operating systems, applications
based on it are not limited to a single OS anymore. However, different resources
must be shipped and therefore different versions of JStatCom are available. The
Java part stays always identical.



3.15. View Packet 10: GRTE 141

As compared to the Gauss system, the GRTE solves the mentioned perfor-
mance problems and removes the restriction that Gauss must be installed before.
However, there is also a drawback. Whereas running procedures can be stopped
with the Gauss system, this is not possible with the GRTE anymore. The reason
is that this is not supported by the programming interface for the Gauss Runtime
Engine. It is hoped that this feature will be added in future releases of that soft-
ware. Therefore any attempt to stop running GRTE computations results in an
UnsupportedOperationException.

The GRTE system, as provided by Aptech, has a C-API, which can be called
directly by applications written in C or C++. To call the exported functions from
Java, a JNI wrapper library is required. Luckily this has been provided as well.
The task of the class GRTEngine is therefore to serve as an Adapter between the
Gauss Java API and the JStatCom system. The extra Java classes that are supplied
by Aptech are in the archive jars/GaussAPI5 0.jar.

Graphics with the GRTE

The functionality of the Gauss graphics engine can also be used with the GRTE,
but for the correct working some measures have to be taken. On Windows the
viewer has to be invoked directly via a call to an external library. Whenever
a graphics window should be displayed, the call dllcall showLastGraphic;
must be put in the Gauss code. On Linux/Solaris this is not required, but the loca-
tion of the graphics directory should be adjusted to point to a directory with write
permission. In any case, the method initJGRTE defined in jgrte.src should
be called on initialization. This is done by default and can be adjusted with the
setting DO JGRTE INIT in the configuration file
jgrte/engine config.xml. It should also be mentioned that if native libraries
are used from the Gauss procedures, these libraries must be loaded on GRTE ini-
tialization. This should also be done in the method initJGRTE.

To summarize, the following steps should be taken, when graphics are created
from the Gauss code or when extra native libraries are used. They can be ignored
completely if this is not planned.



142 Chapter 3. Design and Implementation

1. put the line dllcall showLastGraphic; after a graphics window is cre-
ated in the Gauss code, for example after each call to xy or after endwind
if several windows are created before the graphics is shown

2. avoid overwriting the ptek parameter by calling graphset because this
would reset the setting for the graphics output file

3. adjust the file jgrte.src to load additional dynamic link libraries in the
initJGRTE method, for example put the line
dlibrary jgrte, mylib1, mylib2;

4. compile the .gcg file from the Gauss sources including the file jgrte.src,
which defines the method initJGRTE

5. set DO JGRTE INIT to true in the file jgrte/engine config.xml, this is
the default

Whenever a graphics window should be displayed on Windows, the resulting
.tkf file is copied to a temporary file, which is then shown with the vwr.exe
viewer. This viewer software is in the jgrte resource directory. For other op-
erating systems, this special graphics handling is not required, because there the
resulting files are in postscript and are automatically shown with the ghostview
viewer software. However, this software must be installed on Linux or Solaris and
must be found under that very name.

Portability

The Gauss Runtime Engine is available for the operating systems Windows, Linux,
Sun Solaris and AIX. Therefore JStatCom could run with that engine on all of
those systems. However, it is necessary to compile the .gcg file and the JNI
wrapper dll required by the Gauss Java-API on the respective OS. The source
code is not shipped with JStatCom, but is part of the Gauss Java-API distribution
provided by Aptech.



3.16. View Packet 11: Ox 143

3.15.4 Usage Example

Because the usage of the Gauss engine and the GRTE engine are very similar, the
example in Section 3.14.4 also applies.

3.15.5 Related View Packets

• Parent: View Packet 8: Engine

• Children: none

3.16 View Packet 11: Ox

3.16.1 Primary Presentation

OxEngine

OxEngineType
<< Singleton >>

OxLoadTypes
<< enumeration >>

+ CLASS  :OxLoadTypes
+ OXO  :OxLoadTypes
+ VIEWER  :OxLoadTypes

OxConfigKeys
<< enumeration >>

+ OX_DLL  :OxConfigKeys
+ GRAPH_VIEWER  :OxConfigKeys

1

*
 

1

1

*

Figure 3.23: Classes of the Ox subsystem

With the Ox subsystem it is possible to instantiate Ox classes from Java and to
execute member functions on them. It is required that the Ox software (Doornik
and Ooms (2001)) is installed on the computer. The location of the Ox dynamic
link library must be given in the settings file jox/engine config.xml.

Figure 3.23 presents the classes of the Ox subsystem. The class OxEngine is
the realization of the Engine interface, OxEngineType manages initialization of



144 Chapter 3. Design and Implementation

the engine instance, and the two enumeration classes OxLoadTypes and
OxConfigKeys define constants for the load procedure and for configuration set-
tings.

The communication to the Ox software is set up with the help of the Ox C-API,
which is especially designed for that purpose. JStatCom provides the dynamic link
library jox to link between that C-API (Doornik (2002b)) and the Java side via
JNI. This library is loaded by the Java application when the Ox engine is used
for the first time. Unlike the Gauss communication, Ox does not run in a separate
process, therefore interprocess communication is not required. Due to a limitation
in the public Ox C-API, it is not possible to stop running Ox procedures.

Resources needed by the Ox engine

There are several non Java resources required to run the Ox subsystem. The cen-
tral part of the communications interface is the dynamic link library jox. This
library can be compiled from the source code that is shipped as well. Compilation
might be necessary when the Ox engine should be run on an operating system for
which no precompiled binary is provided yet, like AIX for example.

Resource Usage

files in subdirectory jox

engine config.xml Holds all necessary information for running the Ox
subsystem. It can be edited manually or via the
DefaultConfigPanel.

jox.dll (Windows)
jox.so (Linux/Solaris)

The compiled dynamic link library that links Java
with Ox via a JNI wrapper.

test.ox Ox class that is required for running unit tests to
check Ox engine functions.

testextern.ox Ox procedure that is required for running unit tests
to check Ox engine functions.



3.16. View Packet 11: Ox 145

test.oxo Compiled Ox code to run the unit tests for the Ox
engine.

jox src/* Contains source code and a Makefile to compile
the jox dynamic link library that links Java with
Ox via a JNI wrapper.

Table 3.19: Resources for Ox engine, all operating systems

3.16.2 Element Catalog

Class Name Responsibility

com.jstatcom.engine.ox

OxEngine Links to the Ox software and conforms to the
Engine interface.

OxEngineType Initializes the OxEngine and does configuration
checking.

OxLoadTypes Enumeration of specific constants to define load
operations for the Ox engine.

OxConfigKeys Enumeration of all constants that define the Ox
environment.

Table 3.20: Elements of Ox system



146 Chapter 3. Design and Implementation

3.16.3 Architecture Background

The Ox implementation of the Engine system supports the following basic func-
tions:

• loading of one or more modules (.ox or .oxo files) with class definitions
and static functions

• creating an instance of a class which is then the set to be the current object

• calling member functions of the current object with input arguments and
return parameters of compatible types

This set of operations imposes several restrictions on the use of the Ox engine.
First, it is not possible to call a static function defined in a module directly from
Java. This is, because there is no API function provided that retrieves the address
of a function by its name. Therefore it is necessary to define an Ox class with the
needed member functions. It is then possible to create an instance of that Ox class
from Java and call the provided methods. This approach can always be used to
call static functions via adapter methods laid out in an Ox class.

Another limitation is that only one Ox object is referenced at a time. Whenever
a new object is created, this is set to be the current object and all methods would
be called on that one, until a new object is created. However, the Ox interface is
not meant to manage the interaction of various Ox classes from Java. Instead one
should think of it as an entry point to an Ox module via a single class. This class
is similar to the main method of an Ox program. The used pattern is a Facade,
because the Ox class used by the Java side can serve as an interface to a possibly
complex system of Ox classes.

Furthermore, it is not possible to use all available Ox types in the methods
that should be called from Java. One is restricted to numbers, arrays, strings
and string arrays, which can be converted to and from Ox. Object references,
function pointers or mixed type Ox arrays cannot be used. If Ox methods with
these parameters must be called, the input arguments must be prepared within the
wrapper class that connects Java and Ox.



3.16. View Packet 11: Ox 147

The limitations discussed should not be severe in most cases. The system still
provides a lot of flexibility and it should be possible to connect about any Ox
module to a JStatCom GUI.

A last remark is on the use of graphics functions in Ox modules. These func-
tions can only be linked with the Ox professional version when Ox is used via its
C-API. But it is possible to install and use the GnuDraw package for Ox, which
can be used to provide the graphics functions instead. The external software Gnu-
Plot is also required. It is a powerful open-source tool, which is published under
the GNU license.

Type conversion between Ox and JStatCom

Not all types that can be used within the framework have a corresponding Ox type.
More generally, every engine uses a subset of all available types in JStatCom.
However, a rich set of types on the Java side can make programming much clearer
and tends to reduce the amount of code necessary to accomplish certain tasks.
Table 3.21 shows, how types are converted to Ox values. This is always necessary,
if procedures from an Ox module are called with input and return parameters.
Type conversion is handled automatically by the Ox engine. There is only one
limitation. It is currently not possible to produce an OX ARRAY with mixed types
from within Java, like {"y", 0, 3}. This is needed for the Selectmethod of the
Ox Database class. A workaround is to provide a wrapper class, which provides
an Adapter to match the Java and the Ox side. This will be shown in the advanced
example later on.

JStatCom
Type

Represented Value Corresponding Ox Type

JSCInt integer value OX INT

JSCNumber double value OX DOUBLE

JSCNArray double array OX MATRIX

JSCString string OX STRING



148 Chapter 3. Design and Implementation

JSCSArray string array n × 1: OX ARRAY filled
with n OX STRING values
n × m: OX ARRAY with
n OX ARRAY values, each
of them filled with m

OX STRING values

JSCVoid reference to any Java ob-
ject, especially domain spe-
cific user-defined types, can
be useful together with the
Symbol Management to share
data across components

none

JSCDate time series date none

JSCDRange range marked by two time se-
ries dates

none

Table 3.21: Type conversion between JStatCom and Ox

Portability

If Ox is used as an engine, a wide range of different systems are supported. How-
ever, it is necessary to use the correct version of the dynamic link library that
manages the link between the C-API and Java via the JNI. But it poses no prob-
lems to compile this library for a number of operating systems. Applications
based on JStatCom that use the Ox engine can therefore be run on any platform
that is supported by Ox. If GnuPlot is used for the graphics, this poses no further
restrictions, because it is also available for all major operating systems.



3.16. View Packet 11: Ox 149

3.16.4 Usage Example

A small code example demonstrates a typical call to the Ox engine via the Engine
interface. It is assumed that the used modules exist in the OxEngine resource
directory jox. The Ox engine also needs to know the location of the dynamic link
library that contains the functions used by the Ox C-API. On Windows this library
is named oxwin.dll, on Linux oxl.so.3. It must be set in the configuration file
jox/engine config.xml with the OXDLL key.

For this introductory example, a very simple Ox class is assumed. It should be
defined in jox/mymodule.ox, relative to the JStatCom installation folder.

#include <oxstd.h>

class MyClass{

decl a, x;

MyClass(const arg);

setX(const x);

getX();

}

MyClass::MyClass(const arg){

a = arg;

}

MyClass:setX(const x){

this.x = x;

}

MyClass:getX(){

return x;

}

The Java code might then be:

// gets Engine instance

Engine ox = EngineTypes.OX.getEngine();

// puts mymodule.ox(o) in Ox workspace, no arguments

ox.load("mymodule", OxLoadTypes.OXO, null);



150 Chapter 3. Design and Implementation

// another load call, equivalent to decl x = new MyClass(3);

ox.load("MyClass", OxLoadTypes.CLASS,

new JSCData[]{new JSCInt("arg", 3)});

// call to member function: x.setX(3.4)

ox.call("setX", new JSCData[]{new JSCNumber("x", 3.4)}, null);

// initialize result with an empty number object

JSCNumber result = new JSCNumber("result");

// call to member function: x.getX()

ox.call("getX", null, new JSCData[]{result});

// result.doubleVal() == 3.4 now

It can be seen that the load function is used in different ways, according to
the load parameter. First the Ox module is loaded with load type OXO. Then an
object is created from the class MyClass that is defined in the loaded module. The
load type is CLASS then. This time the function also takes an array of JSCData
objects as arguments for the object construction. One might argue that the load
function is used for very different purposes here and that the semantics of that
method changes completely. This actually contradicts the idea of an interface
method, which should define a certain behaviour that is independent of the re-
spective implementation. However, this is the point where engine differences are
captured and it adds the required flexibility to the abstract Engine system. Reality
bites here.

3.16.5 Related View Packets

• Parent: View Packet 8: Engine

• Children: none



3.17. View Packet 12: Stub 151

3.17 View Packet 12: Stub

3.17.1 Primary Presentation

StubEngine

StubEngineType
<< Singleton >>

StubLoadTypes
<< enumeration >>

+ SYSLIB  :StubLoadTypes
+ USERLIB  :StubLoadTypes

CSignTypes
<< enumeration >>

+ BYREF  :CSignTypes
+ FLOAT  :CSignTypes
+ VECTOR  :CSignTypes

 1

1

*

1

*

Figure 3.24: Classes of the Stub subsystem

The Stub subsystem can be used to make calls to compiled native libraries with
an exported C-API directly from Java. Those libraries are typically created from
C, C++ or Fortran code. Thus, it does not require a specific software product to be
used as an engine, but only the respective compiler for the programming language.
The major advantage of using this engine is that it is not necessary anymore to
write a dedicated JNI wrapper library which links the native library with the Java
side. Furthermore, it is also not required to provide any Java wrapper classes that
use native methods. Therefore the Stub engine greatly simplifies calling native
code from applications based on JStatCom.

Figure 3.24 shows the classes that are part of the Stub subsystem. It is not
necessary to set any engine specific configuration options, therefore there is no
subclass of ConfigKeys in this subsystem. The configuration file
engine config.xml is also not needed. The class CSignTypes is a subclass
of JSCPropertyTypes that was defined in the Data Model. It can be used to set



152 Chapter 3. Design and Implementation

additional properties in JSCData objects to model the signature of the C functions
that are to be called.

The engine can load dynamic link libraries which export functions with a C-
style signature. Table 3.22 lists the conversion rules for the JSCData parame-
ters. It is important to understand, how data objects are converted to C-types,
because this defines the signature of the native function to call. For example,
if a C-function takes a float as an input or return parameter, then the corre-
sponding JStatCom data object must contain this information. However, there is
no JSCType that represents a float, only double by JSCNumber and int by
JSCInt. To overcome this limitation, the Type System can be used to set special
properties in JSCData objects via the interface method setJSCProperty. This
can be used to put certain information in a data object that might be needed by
engines or other components. The property does not affect the behaviour of the
data object at all, but it might affect the behaviour of components using it. The
Stub engine uses this system to add the needed information to the JSCNumber
object. One could set the CSignTypes.FLOAT property to true and would there-
fore tell the Stub engine to convert the value to a float on the C side. The class
CSignTypes is an enumeration of property types for the Stub engine. It allows
to model many common C-types that are closely related to their JStatCom coun-
terparts. However, not all types can be represented and therefore not all native
functions can be called directly. But it should be relatively easy to write a wrap-
per in C that can be called from the Stub engine and that serves as an Adapter to
other C-functions that use different types.

C-Type Corresponding JStatCom Type and Properties

int JSCInt

&int JSCInt with BYREF == true

float JSCNumber with FLOAT == true

&float JSCNumber with FLOAT == true and BYREF == true

double JSCNumber



3.17. View Packet 12: Stub 153

&double JSCNumber with BYREF == true

double* JSCNArray with VECTOR == true

float* JSCNArray with VECTOR == true and FLOAT == true

double** JSCNArray

float** JSCNArray with FLOAT == true

char* JSCString

char** JSCSArray with VECTOR == true

char*** JSCSArray

Table 3.22: Type conversion between C-types and Stub en-
gine, all properties that are not mentioned must not be set or
set to false

Resources needed by the Stub engine

The Stub engine requires additional resources to handle calls to the external li-
braries. They are listed in Table 3.23.

Resource Usage

files in working directory of JStatCom

disp win i386.dll (Windows)
libdisp sparc.so (Solaris)
libdisp linux i386.so (Linux)

Dynamic link library that is loaded when
the Stub engine is initialized. It searches
the C-function and assembles the function
call.



154 Chapter 3. Design and Implementation

files in subdirectory jstub

stubtest.dll (Windows)
stubtest.so (Solaris)
stubtest.so (Linux)

Library for executing unit tests to check
the operation of the Stub engine.

sharedstubs/* Source code with Makefile to compile the
required library.

Table 3.23: Resources for Stub engine, Windows and
Linux/Solaris

Portability

The Stub engine can be run on all systems for which the required dispatcher dll
can be compiled. However, the code is not easily portable among different archi-
tectures, but requires rewriting the Assembler part. For JStatCom this has been
done for the Linux operating system.

3.17.2 Element Catalog

Class Name Responsibility

com.jstatcom.engine.stub

StubEngine Manages calls to methods defined in native li-
braries with a basic C-interface.

StubEngineType Initializes StubEngine.

StubLoadTypes Enumeration of specific constants to define load
operations for the Stub engine.



3.17. View Packet 12: Stub 155

CSignTypes Enumeration that defines property types for
JSCData objects that can be used to model the sig-
nature of exported C functions.

Table 3.24: Elements of Stub system

3.17.3 Architecture Background

First it should be mentioned that the so called “Shared Stubs Example” (Liang
(1999)) is used to handle calls to native dlls. It consists of the Java classes CPtr,
CMalloc and CFunc which are part of the general Engine system. They are also
used by the MatLab subsystem. For those classes to interact with native libraries,
a special JNI wrapper library is needed. This dll finds the procedure to call by
its name and assembles a call from the given parameters. For this to work with-
out knowing the explicit signature of the function to call at compile time, the
actual function call is implemented directly in Assembler. Assembler is a low
level language which can be used to directly address the memory of a process. It
is machine dependent, because it uses the memory addressing used for a certain
computer architecture. Versions of this library are currently available for Win-
dows (i386), Linux (i386) and Solaris (Sun Sparc). Porting this library to other
systems as well would require to implement the Assembler part for the respective
architecture.

JStatCom uses this “Shared Stubs” system and provides a way to use it easily
via the Engine interface. All parameters must be specified in an array of JSCData
objects. As already mentioned, related C-types can be set via the CSignTypes
properties. This is important, because the exact signature must be defined. An-
other peculiarity of this engine is that there is at most one return argument, because
C-functions can only return a single parameter. If the return type is an array, it has
to be initialized already with its correct size, because there is no way to get size
information from the returned C pointer. By default, scalar input parameters are
called call-by-value and array arguments call-by-reference. By using the BYREF
property, also scalar arguments can be called by reference. Whenever a parame-



156 Chapter 3. Design and Implementation

ter is used call-by-reference, the Stub engine updates the input parameter after the
call has finished, because those parameters can be modified by the C function call.
This is a common way to deal with multiple return parameters.

Using the Stub engine introduces pointer operations to the Java language. If
wrong parameters are specified for a procedure or if arrays are not initialized with
the correct size parameters, memory errors could occur. This would crash the Java
application inevitably. Therefore careful testing is necessary when native code is
called directly. However, the dangers and pitfalls of pointer operations are always
inherent when C-code is called. The Stub engine only provides a way to use these
procedures as well, it cannot prevent misspecification that leads to crashes. The
only additional problem that it introduces is that the functions to be called are
not checked at compile time, because they are assembled at runtime. Therefore
it might happen that a C function is called with parameters of the wrong type or
with a wrong number of parameters. This could also result in application crashes,
therefore the use of unit tests to check calls made with the Stub engine is strongly
encouraged.

3.17.4 Usage Example

The use of the Stub engine is demonstrated with a little example. It is possible to
load system libraries that are in the library search path of the application, as well
as user defined libraries. The two load types SYSLIB and USERLIB correspond to
these operations. User defined libraries are searched in the jstub subdirectory.

In the example, a system library is loaded. The name of that library differs
among operating systems, therefore the OS is determined first. Then the library
is loaded, the input and output parameters are specified and the function sin is
called. Calling this method via the Stub engine does not make much sense, be-
cause the Java language also provides trigonometric functions in its math package.
However, this is just to demonstrate the workings of that system. A more likely
usage scenario would be to call algorithms from the Numerical Recipies library
(Press et al. (2002)).



3.17. View Packet 12: Stub 157

// Which OS are we running on?

String osName = System.getProperty("os.name");

String libm;

if (osName.equals("SunOS") || osName.equals("Solaris"))

libm = "libm.so";

else if (osName.equals("Linux"))

libm = "libm.so.6";

else

libm = "msvcrt.dll"; // Windows

// get Engine instance

Engine stub = EngineTypes.STUB.getEngine();

// load a system library, must be in library search path

stub.load(libm, StubLoadTypes.SYLIB, null);

// initialize input and output parameters

JSCNumber input = new JSCNumber("num", 2.3);

JSCNumber output = new JSCNumber("sin_num");

// call sin(2.3) via loaded system library

stub.call("sin", new JSCData[]{input},

new JSCData[]{output});

// output.doubleVal() == 0.745705212 now

3.17.5 Related View Packets

• Parent: View Packet 8: Engine

• Children: none



158 Chapter 3. Design and Implementation

3.18 View Packet 13: MatLab

3.18.1 Primary Presentation

MLabEngine

MLabEngineType
<< Singleton >>

MLabLoadTypes
<< enumeration >>

+ EXE  :MLabLoadTypes
+ SYSLIB  :MLabLoadTypes
+ USERLIB  :MLabLoadTypes 1

1

*

Figure 3.25: Classes of the MatLab subsystem

The MatLab subsystem is used to call dlls that have been compiled with the
Matlab compiled from .m files. To do this, a license of the Matlab software
together with the compiler is required. Figure 3.25 shows the classes of that
system. No configuration options are required, therefore there is no subclass of
ConfigKeys. The configuration file engine config.xml is also not needed.

Resources needed by the MatLab engine

Because the MatLab subsystem needs to interact with native dlls, it makes use of
the same library as the Stub engine. Further resources manage type conversion
and are used to check the functionality of the engine.

Resource Usage

files in working directory of JStatCom



3.18. View Packet 13: MatLab 159

disp win i386.dll (Windows)
libdisp sparc.so (Solaris)
libdisp linux i386.so (Linux)

Because the Matlab engine uses the
“Shared Stubs Example”, it requires the
dll to manage the link between native li-
braries and the Java side.

files in subdirectory jmlab

jmlab.dll Dynamic link library that is loaded when
the MatLab engine is initialized. It
manages the type conversion between
JSCData objects and Matlab mxArray
values.

jmlabpath.dll Dynamic link library that is loaded when
the MatLab engine is initialized. It sets
the library search path, such that the dlls
in the subdirectory jmlab are found.

jmlab src/ Directory with source code to compile the
required libraries jmlab and jmlabpath
for other operating systems.

mlabtest.dll Dynamic link library that is needed to run
the unit tests for the MatLab engine.

bin/

toolbox/

Resources provided by Matlab to deploy
compiled dlls from .m files.

src/ .m files that have been used for the
unittests. Also serves as an example.

Table 3.25: Resources for MatLab engine



160 Chapter 3. Design and Implementation

Portability

In principle it is possible to run the MatLab subsystem on every operating system
for which a Matlab compiler version exists and on which the Stub engine runs.
Currently this is possible for Windows, Linux and Sun Solaris. However, because
I did not have access to Matlab versions for the latter two operating systems, only
the relevant source code is shipped. Compilation and testing has not yet been
done.

3.18.2 Element Catalog

Class Name Responsibility

com.jstatcom.engine.mlab

MLabEngine Manages calls to methods defined in native li-
braries created with the MatLab compiler from .m
files.

MLabEngineType Initializes MLabEngine.

MLabLoadTypes Enumeration of specific constants to define load
operations for the MatLab engine.

Table 3.26: Elements of MatLab system

3.18.3 Architecture Background

The MatLab engine can be viewed as a special case of the Stub engine, because it
is designed to call very specific C functions. This is due to the fact that the MatLab
compiler generates C code from .m files with a distinct API. The procedures to be
called take types of MatLab mxArray classes as arguments. Therefore the main
task of the MatLab engine is to manage the type conversion between JStatCom
types and the MatLab types in both directions. This is done with the help of the



3.18. View Packet 13: MatLab 161

jmlab dll. The mapping between types is pretty straightforward and does not
require extra properties as in the Stub subsystem.

However, there is one restriction. Double indexed JSCSArray data objects
are always transformed to a vector of strings when they are used as arguments
for MatLab procedures. All other JStatCom data types can be represented equiv-
alently by mxArray objects.

The use of graphics functions in compiled MatLab dlls is theoretically pos-
sible, but does not work in a satisfactory way. Tests failed to invoke graphics
windows repeatedly. It might well be that this behaviour will change with future
MatLab versions. A workaround is to call a compiled executable via the EXE load
parameter that carries out graphics presentation. For this to work, a file with the
data to print must have been created before and the name of that file must be given
as an argument when the executable is called.

It is also important to ship all relevant Matlab resources in the jmlab subdi-
rectory that are needed to run compiled libraries without a Matlab installation.

3.18.4 Usage Example

The usage of the MatLab subsystem is best demonstrated with a little example.
First the file mylib.m is written in the Matlab language with a very simple OLS
regression. The function ols just returns the estimators. This file could directly
be invoked with the Matlab software.

function [b] = ols(y, x)

b = inv(x’*x)*x’*y;

// end of mylib.m

In a second step, the .m file is converted to C code and compiled. For this,
the Matlab compiler is required, which is an extra package in the Matlab software
family. It is necessary to invoke the following command from within Matlab or
from the command prompt:

mcc -B csharedlib:mylibdll mylib

This creates the new dll mylibdll with an operating system specific suffix.
There are also several other intermediate files generated, but only the final library



162 Chapter 3. Design and Implementation

is needed. It must be copied to the subdirectory jmlab in the JStatCom working
directory. A Java application could then use the MatLab engine to load this dll
and to call the ols method easily:

// get Engine instance

Engine mlab = EngineTypes.MLAB.getEngine();

// initialize input and return parameters for regression

JSCNArray y = new JSCNArray("y", UMatrix.rndu(100,1));

JSCNArray x = new JSCNArray("x", UMatrix.ones(100,1));

JSCNArray b = new JSCNArray("b");

// load library mylibdll

mlab.load("mylibdll", MLabLoadTypes.USERLIB, null);

// call ols function

mlab.call("ols", new JSCData[] { y, x },

new JSCData[] { b });

// print estimated coefficients

System.out.println(b.display);

3.18.5 Related View Packets

• Parent: View Packet 8: Engine

• Children: none

3.19 View Packet 14: PCall

3.19.1 Primary Presentation

Unlike the other subsystems of Engine, the PCall system does not provide another
communications interface to an external software or library, but is used to manage
computation requests in a standardized way. The participating classes are shown



3.19. View Packet 14: PCall 163

#output :StringBuffer

+ engine ():Engine
#runCode ():void
#finalCode ():void

<< interface >>

+ finished (pcall : ):void
+ queued (pcall : ):void
+ started (pcall : ):void
+ success(pcall : ):void

*

*

Figure 3.26: Classes of the PCall subsystem

in Figure 3.26. The core class is PCall, which is an abstraction for a procedure
call. This abstract class should be subclassed to implement specific calls, like for
example VAR estimation, the computation of a test statistic, or plotting autocor-
relation functions. The implementing class encapsulates the calling logic, as well
as input checking and output presentation. Furthermore, the PCall system allows
to run commands in an extra background thread, such that the GUI still remains
reactive, even if lengthy computations are executed.

Subclasses of PCall must implement the abstract methods runCode, and
engine. Output formatting should typically be done in the method finalCode.
Instances of that class can be started via execute. In this case they run in the
background thread. However, there is not a new thread for every call, but the caller
objects are queued and executed one after the other in a single worker thread. Al-
ternatively, the run method can be called to execute them directly in the same
thread as the calling method. The PCall class also provides a standardized way
to handle errors that may occur in computations. In this case a message is pre-
sented to the user and error information is logged. Instances of PCall can be
configured by setting various properties or by overwriting superclass methods in
subclasses.



164 Chapter 3. Design and Implementation

The other element of the PCall system is an event system that can be used to
inform listeners about changes in the state of a PCall object. Classes that need
to be informed must implement the interface PCallListener and register with
the caller object. The methods of the interface are called, when the call is queued,
started, finished and successfully finished. Typically listeners are only interested
in one of those state changes, the most common are success and finished. The
convenience class PCallAdapter provides empty default implementations of all
interface methods. Listeners can inherit it and overwrite only those methods that
are relevant for them.

3.19.2 Element Catalog

Class Name Responsibility

com.jstatcom.engine

PCall Encapsulates procedure calls to carry out compu-
tational tasks. It can optionally be executed in a
single worker thread.

PCallListener Interface to be implemented by listeners that want
to be informed about changes in the status of
PCall objects.

PCallAdapter An empty convenience implementation of
PCallListener.

DefaultPCallControl Default component for displaying status informa-
tion about procedure calls.

Table 3.27: Elements of PCall system



3.19. View Packet 14: PCall 165

3.19.3 Architecture Background

Initially, JStatCom did not have a separate system to handle computation requests.
Instead, it was integrated in the original Gauss engine implementation and could
be invoked directly from instances of GaussPanel, the predecessor of the current
ModelPanel. But programming experience as well as design patterns strongly
encouraged to separate the distinct responsibilities. The PCall system can now be
used independently of GUI components and it could also be used without applying
any of the Engine subsystems. However, it provides some methods that support
interaction with engines, because those systems are typically used together. The
important thing is that it encapsulates algorithm calls in separate, reusable classes
that can independently be invoked and automatically be tested. It is thus an exam-
ple of the Command pattern.

The PCall system uses the concurrency pattern Worker Thread, which is de-
scribed in Lea (2000), thus there is only one background thread which executes
queued PCall instances one after the other. An alternative would have been to
create a new thread for each caller object, possibly by applying the Thread Pool

pattern. However, in an analysis the sequence of calls is often important and can
cannot be changed. For example, the residual analysis for an augmented Dickey-
Fuller (ADF) regression (Dickey and Fuller (1979)) can only reasonably be done
after the model has been estimated. A likely scenario would be that the ADF re-
gression is implemented in a class ADFCall, and the diagnostic tests for residual
autocorrelation in a a class PortmanteauCall. Both classes inherit from PCall.

By default, the PCall system starts executing the next thread when one call
has finished, no matter whether this call was successful or erroneous. If the calls
do not depend on each other, this behaviour is desirable. But in the case of the
considered ADF residual analysis, the hypothetical PortmanteauCall should
only be executed, if ADFCall finished successfully and the residuals are available.
The PCall system provides two possibilities to cope with this requirement:

Via the add method

The instance of PortmanteauCall could be added to the ADFCall instance via
its add(PCall call) method. Every added call is executed only, if the original



166 Chapter 3. Design and Implementation

call has finished successfully. If errors occur in one of the added calls, the re-
maining procedures are executed anyway. The only problem with this approach
is that the PortmanteauCall object must be created before ADFCall is exe-
cuted, thus the residuals are not available on object construction yet. One could
use a reference to the data object that will keep the residuals that are to be es-
timated, but if strict input parameter checks are done on object creation already,
the PortmanteauCall object could not be created. One must be aware of these
potential problems. An example code snipped could look as follows:

PCall job = new ADFCall(y, lags, testVersion);

job.setSymbolTable(local());

PCall jobPort = new PortmanteauCall(

local().get(ADFTestCall.ADF_RESIDS).getJSCNArray(),

portmanLags);

job.add(jobPort);

job.execute();

First the ADFCall object is created with endogenous data, the number of lags
and the test version (constant, trend, seasonal dummies). It is assumed here that
the ADF call stores the residuals in the local symbol table with the type definition
ADFTestCall.ADF RESIDS. The symbol table is set to the job object, because
it needs to know where to store the results. A reference to the data object with
the residuals is retrieved from there via the get method. On object creation of
the portmanteau call this data object does not yet contain the estimated residuals,
but is empty or contains previously estimated disturbances. The Portmanteau call
object also takes a lag parameter. After it has been created, jobPort is added
to job, which means that it is only executed if job finished successfully. As a
last step, the ADF call is invoked, which means that it is actually queued in the
background thread for execution.

Via the event system

A way that involves slightly more code but works always, is to rely on the PCall
event system. This has the advantage that the outcome of the original call is
available when the other caller objects are created. One could also invoke different



3.19. View Packet 14: PCall 167

calls, depending on the state of the results. As an example, the same ADF call as
before is implemented with the event system:

PCall job = new ADFCall(y, lags, testVersion);

job.setSymbolTable(local());

job.addPCallListener(new PCallAdapter() {

public void success() {

PCall jobPort = new PortmanteauCall(

local().get(ADFTestCall.ADF_RESIDS).getJSCNArray(),

portmanLags);

jobPort.execute();

}

job.execute();

Here a listener is created that acts when the estimation call finished success-
fully. Therefore it overrides only the method success of PCallAdapter. In this
method it creates the call to the Portmanteau test. This listener is then registered
with the job object. Only when the ADF call finishes ok, the success method of
the listener is invoked, and the Portmanteau call is created an executed.

3.19.4 Usage Example

The following code example finishes the discussion of the PCall system. It shows
the class SPTestCall, which implements a call to the Schmidt-Phillips unit root
test (Schmidt and Phillips (1992)) via the GRTE engine. It is assumed that the
Gauss procedure to be called is named sptest.

// class extends PCall

public final class SPTestCall extends PCall {

// type definition for result data object

public static final JSCTypeDef SP_RESULT =

new JSCTypeDef("SP_RESULT",JSCTypes.NARRAY,"SP test Z(rho)˜Z(tau)");

private int lags = 0;

private JSCNArray y = null;

private JSCNArray result = null;



168 Chapter 3. Design and Implementation

// constructor with arguments

public SPTestCall(JSCNArray y,int lags) {

setName("SP Test");

this.lags = lags;

this.y = y;

}

// here the output formatting is done

protected void finalCode() {

// just print test statistic

output.append(FArg.sprintf("value of SP test statistic: %.4f\n",

new FArg(result.doubleAt(0, 0))));

}

// here the procedure is called

protected void runCode() {

// previous results are cleared first

if (getSymbolTable() != null)

getSymbolTable().get(SP_RESULT).clear();

// initialize result object

result = (JSCNArray) SP_RESULT.getInstance();

// call sptest

engine().call("sptest", new JSCData[]{y,new JSCInt("lags", lags)},

new JSCData[] { result });

// set result in symbol table

if (getSymbolTable() != null)

getSymbolTable().set(result);

}

// returns GRTE engine

public Engine engine(){

return EngineTypes.GRTE.getEngine();

}

}

This class can then be invoked from GUI or other components that set the input
parameters and that present the results to the user. An example client ModelPanel
could use the following code:



3.20. View Packet 15: Time Series 169

PCall job = new SPTestCall(y, 2);

job.setSymbolTable(local());

job.execute();

The variable y is assumed to hold the series to be tested. The result is then
stored in the local symbol table under SPTestCall.SP RESULT. Another feature
of the PCall system is that the contents of its output buffer are appended to the
output holder component, if one has been set via the method setOutHolder.
Typically this is an instance of the class ResultField, which is part of the
Components view, see Section 3.25. Most GUI components that invoke proce-
dures have an instance of ResultField to present text output of computations.
They can inform the procedure call objects about this component. The call object
would then print the output to that component. The modification of the above
client code is just:

ResultField resultField = new ResultField();

... // result field is added to the GUI, omitted for clarity

PCall job = new SPTestCall(y, 2);

job.setSymbolTable(local());

job.setOutHolder(resultField);

job.execute();

For a description of all details of the PCall system, the API documentation
should be consulted.

3.19.5 Related View Packets

• Parent: View Packet 8: Engine

• Children: none



170 Chapter 3. Design and Implementation

System Segment

Time Series List

Table

Selection

Calculator

Table 3.28: Subsystems of Time Series

3.20 View Packet 15: Time Series

3.20.1 Primary Presentation

The Time Series system provides domain-specific functionality to develop appli-
cations for time series econometrics that are based on the JStatCom framework.
Figure 3.27 shows the participating classes, Table 3.28 the child systems.

Time series are represented by the class TS, which holds the data, the name, the
type of the series, the sample range and a reference to the project. For representing
dates and date ranges, the classes TSDate and TSDateRange are used. Often it is
necessary to create those objects from a string representation, for example 1960
Q1. The class to manage parsing date strings is the TSDateParser.

As already described in the Type System (Section 3.8), both classes also have a
corresponding data type that implements the JSCData interface, namely JSCDate
and JSCDateRange.

Any time series that is to be analysed can be added to the single instance of
TSHolder. It is a shared repository that can be accessed by any component of
the system. Typically the List subsystem is used to display all time series that are
currently in the TSHolder.

A time series can have different types which are defined in the enumeration
class TSTypes. For econometrics, the types deterministic, endogenous and ex-

ogenous are relevant. The types enumeration also defines an icon for each type.
This icon can be used by components to indicate the type property of the displayed



3.20. View Packet 15: Time Series 171

TS

+ name ():String
+ range ():TSDateRange
+ values ():double[]

<< Singleton >>
TSHolder

+ getTS(name :String ):TS

TSDate

+ mainPeriod ():int
+ subPeriod ():int

TSDateRange

+ lowerBound ():TSDate
+ upperBound ():TSDate

TSProject

+ getDescription ():String

TSDateParser

TSTypes
<< enumeration >>

+ DETERMINISTIC  :TSTypes
+ ENDOGENOUS  :TSTypes
+ EXOGENOUS  :TSTypes

+ getIcon ():Icon 

*

1

*

1

*

Figure 3.27: Classes of the Time Series subsystem

time series.
Finally, instances of TSProject contain information that is common for a set

of time series. Currently this is only the description for a dataset. A project also
holds references to all TS objects that belong to it.

3.20.2 Element Catalog

Class Name Responsibility

com.jstatcom.ts

TS Represents a time series with the observations, the
date of the first observation, the name, and the
project a series belongs to.



172 Chapter 3. Design and Implementation

TSDate Representation of a time series date with a main
period, a subperiod, and a frequency.

TSDateRange Range defined by two TSDate objects.

TSHolder Holds all available time series at runtime.

TSProject Holds project information, currently this is only
the description.

TSTypes Enumeration of property types that time series can
have.

com.jstatcom.parser

TSDateParser Parser that assembles TSDate objects from an in-
put string.

com.jstatcom.util

UData Utility class with static helper methods mostly for
time series analysis.

subsystems

List Subsystem that manages the representation of all
available time series in a list view. This list has sev-
eral components attached to it that can be used to
invoke different actions on the selected time series.

Table Subsystem that represents one or more time se-
ries in a table view. Used to display and edit data
values.

Selection Subsystem that manages the selection of time se-
ries for modelling.



3.20. View Packet 15: Time Series 173

Calculator Subsystem that provides the simple language
TSCalc to invoke various operations on a set of
time series.

Table 3.29: Elements of Time Series system

3.20.3 Context

Figure 3.28 presents the usage context of the Time Series system. Users of ap-
plications based on JStatCom access its functionality via several special purpose
GUI components that help the user accomplish the tasks shown in the diagram.
Those components are described in greater detail in the child subsystems. De-
velopers use this system to represent dates and date ranges, as well as to create
special time series objects.

3.20.4 Architecture Background

The Time Series system contains abstractions that are especially helpful for econo-
metrics. During development with JStatCom it turned out that the classes TSDate
and TSDateRange are used most often. For many procedures it is necessary to de-
fine a point in time or a time interval. Orginially these had to be done via indices,
which was extremely tedious and error prone. The abstractions for dates and date
ranges make those operations much more convenient. Because they are also part
of the Type System (Section 3.8), instances of these objects can easily be shared
among components. It should also be noted that the date and date range classes
are immutable, which means that instances of these classes can never be changed.
Immutable classes have many advantages, for a complete discussion, see Bloch
(2001), Item 13.

Direct access to TS objects is often not required, because the data values are
typically already represented as JSCNArray objects, and can be retrieved via the
Symbol Control (Section 3.12). The subsystem Selection manages the selection
of data and stores the results in the global symbol table. Therefore, developers
typically only interact with the Data Model. It should also be noted that every



174 Chapter 3. Design and Implementation

User

time series

Select variables 
for model

Select sample
 range

Select order 
of variables

Transform 
time series

Create 
new series

Delete, rename, 
change propertiesExport datasets

to files

Inspect, edit
data values

Select dates, date ranges
for procedures

Represent time series, 
dates and date ranges

Create special series
objects (seasonal dummies)

<<include>>

<<include>>

GUI for model selection
 

GUI Developer

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

Figure 3.28: Context of the Time Series subsystem



3.20. View Packet 15: Time Series 175

time series is identified via its name. The naming conventions are the same as for
the Type System that have been described in Section 3.8.1.

The class TSDateParser defines how dates can be created from a string rep-
resentation. More generally, a parser is an object that recognizes the elements of
a language and translates it into a meaningful result. A language is a set of strings
(Metsker (2001)). The code for this parser has been automatically generated via
the JavaCC tool from a grammar definition.6 This is a standard way of creating
parser classes for Java, and the approach has been used several times during the
development of JStatCom. The special package com.jstatcom.parser holds
all generated parsers. The use of JavaCC for generation of any non trivial parsers
is strongly encouraged, because it tends to give very reliable results. Problems
typically result from logical errors in the grammar definition and can be detected
and resolved much easier than by inspecting the source code.

The following two sections describe the “language” that is used for defining
dates and date ranges. It is used by components that are part of the Selection
subsystem to translate user input to date or date range objects in a reliable way.

Date Specification

Dates are objects that are defined by a main period, a frequency and a sub period.
All three pieces of information must be retrieved from the input. The following
formats are recognized, where D stands for the main period, S for the sub period
and F for the frequency or periodicity:

• D S/F, for example 1960 1/6. This format is always possible and used as
default format if no special identifier for the frequency is defined.

• D ’Q’ S, for example 1960 Q 1. This format is used for quarterly data.

• D ’M’ S, for example 1960 M 11. This format is used for monthly data.

• D, for example 1960. This format is used for annual data.

• D [’I’,’II’], for example 1960 II. This format is used for half-yearly
data.

6The URL of JavaCC is javacc.dev.java.net.



176 Chapter 3. Design and Implementation

• D.S, for example 1960.1. This format is just for input convenience and can
be used when the program knows the frequency already from the context,
which is often the case.

Range of Dates

The parser for date ranges is included in the method TSDateRange.valueOf,
which takes a string argument to parse. The input string must contain two comma
separated date strings, optionally enclosed by angular brackets. For the date
strings, the above mentioned rules apply. Examples are:

• [1960 Q1, 1982 Q4]

• 1970 M12, 1980 M1

• 1, 100

3.20.5 Usage Example

As a little motivation, the code example demonstrates how date and date range
objects can be created easily. Here two date objects are created and a range is
constructed from them. Finally, the number of observations of the range is com-
puted. There are many more helpful functions available. One should consult the
API documentation for a full account.

// different ways to create a date representation

TSDate date0 = new TSDate(1960, 1, 4);

TSDate date1 = new TSDate.valueOf("1970 Q3");

// create new range 1960 Q1, 1970 Q3

TSDateRange range = new TSDateRange(date0, date1);

// gets number of observations for sample (T = 43)

int T = range.numOfObs();



3.21. View Packet 16: List 177

3.20.6 Related View Packets

• Parent: View Packet 1: JStatCom

• Children:

– View Packet 16: List

– View Packet 17: Table

– View Packet 18: Selection

– View Packet 19: Calculator

3.21 View Packet 16: List

3.21.1 Primary Presentation

The List subsystem manages the representation of all time series that are elements
of the Singleton instance of TSHolder in a list view. The classes of that system
are shown in Figure 3.29. TSList is the central component of the List subsys-
tem. It is a subclass of the standard javax.swing.JList class, and provides
special cusomizations for the needs of time series analysis. Figure 3.30 shows
this component during runtime. It displays the loaded time series by their names
and tags their properties with icons, which are defined in the already mentioned
TSTypes enumeration. The TSList class is supported by several other classes
that handle mouse events and key events. A special mouse event triggers the
popup menu. There are default listeners installed that are shared by each instance
of TSList. This is to ensure a consistent behaviour of the list view, because typi-
cally it appears several times in an application. However, the default listeners can
be replaced as well.

The class DefaultTSListPopup is also shown in action in Figure 3.30. It
is a menu that consists of items that invoke actions, as well as submenus that
contain action items themselves. The actions typically operate on the selected
time series in the underlying TSList. All actions are enumerated in the class
TSActionTypes. Diagram 3.29 only displays three of them for clarity. It is pos-
sible to define own action types and to add them to the DefaultTSListPopup.



178 Chapter 3. Design and Implementation

TSList

+ getSelectedTS ():TS[]

TSMenuTypes
<< enumeration >>

+ SET_TSTYPE  :TSMenuTypes

+ addTSAction (action :TSActionTypes ):void

TSActionTypes
<< enumeration >>

+ DELETE  :TSActionTypes
+ RENAME  :TSActionTypes
+ TRANSFORM  :TSActionTypes

DefaultTSKeyListener
<< Singleton >>

DefaultTSListPopup
<< Singleton >>

+ addTSAction (action :TSActionTypes ):void
+ addTSMenu (menu :TSMenuTypes ):void

DefaultTSMouseListener
<< Singleton >>

 1  1

 

1

 

*

1

*

1

*

 

*

 

*

Figure 3.29: Classes of the List subsystem

This extends the default behaviour for lists used in a specific application. In Figure
3.30 an extension to the default popup menu is the Plot menu item. It is not part
of the default actions, because its implementation in the shown example depends
on the availability of the GRTE engine, which cannot always be assumed for all
applications based on JStatCom. This is, because if developers want to program
with the GRTE to integrate their own Gauss code, they need to own a license of
that software. Furthermore, the GRTE might not be available for the platform to
run the application on, for example if the target platform would be a Mac OS.



3.21. View Packet 16: List 179

Figure 3.30: Screenshot of a TSList component with TSListPopup showing

In the same way as actions can be added, it is possible to define and add new
submenus to the default popup and to fill them with specific action items. It should
be mentioned that the List subsystem is usually not used directly for building
applications for time series analysis. Instead, the TSSel class of the Selection
system is applied, which uses the List subsystem for displaying the available time
series. However, it is still important to understand it, if the default behaviour of
the List system should be changed. It is of course also relevant for maintainers of
the framework.



180 Chapter 3. Design and Implementation

3.21.2 Element Catalog

Class Name Responsibility

com.jstatcom.ts

TSList Provides a list view of all available time series.

DefaultTSMouseListener Default mouse listener that is shared among all
instances of TSList. Currently this listener does
nothing, because no special mouse behaviour is
attached to a time series list (only popup menu
triggering). The class might be extended in the
future to allow for a configuration of the standard
behaviour. The default listener can also be re-
placed via TSList.setTSMouseListener for
single instances of TSList.

DefaultTSKeyListener Default key event listener that is shared among
all instances of TSList. Currently it listens to
KeyEvent.VK DELETE events and deletes all se-
lected series. The class might be extended in the
future to allow for a configuration of the stan-
dard behaviour. The default listener can be also
replaced via TSList.setTSKeyListener for
single instances of TSList.

DefaultTSListPopup Configurable default popup menu that is trig-
gered when the right mouse button is clicked
over a TSList. It is shared among all instances
of TSList. It is possible to add extra menus and
actions that will appear in all list instances that
use it. The default popup can also be replaced via
TSList.setTSListPopup for single instances
of TSList.



3.21. View Packet 16: List 181

TSActionTypes Enumeration class with action instances that de-
fine items in the shared DefaultTSListPopup.
This class can be subclassed to define other
actions that should appear in the list popup
menu by default. Those actions should then be
added at program start to the default popup via
DefaultTSListPopup.addTSAction.

TSMenuTypes Enumeration class with JMenu instances that de-
fine menus in the shared DefaultTSListPopup.
This class can be subclassed to define other
menus that should appear in the list popup menu
by default. Typically a menu contains instances
of TSActionTypes. Those menus should then
be added at program start to the default popup
via DefaultTSListPopup.addTSMenu.

TSDummyDialog A dialog for creating dummy variables. It also
invokes the desired action and adds the created
time series to the underlying TSList.

TSEditDialog This component provides editing capabilities for
selected time series in a TSList.

TSTransDialog Dialog for specification of basic time series
transformations. It also invokes the desired trans-
formation and adds the created time series to the
underlying TSList.

TSDescDialog Dialog for entering a description for a project,
before it is saved to a .dat file.



182 Chapter 3. Design and Implementation

TSListAccessor Interface used by TSList to enable/disable com-
ponents accessing it. Only for internal use,
currently implemented by TSActionTypes and
TSMenuTypes to change its enabled state accord-
ing to the selection state of the list.

Table 3.30: Elements of List system

3.21.3 Architecture Background

The List system plays a central role for providing GUI components that facilitate
time series analysis. It is used for selecting variables and for invoking various
actions on the selected series. Whenever the user needs to choose from a set of
series, typically the List system is involved.

When the system was designed, it became clear that there are several potential
extension points where developers might want to add or remove features. There-
fore some effort has been invested to provide a relatively simple way to change
the default behaviour of the list, as well as to change the behaviour for single list
instances to deviate from the default. The solution was to use configurable and
shared default instances of the relevant listeners and involved components. This
is also more efficient than to provide a new instance of those classes for every list
that is created. So far, only the DefautlTSListPopup class can be configured by
adding and removing actions or menus. However, DefaultTSMouseListener
and DefaultTSKeyListener seem to be reasonble choices that do not necessar-
ily need to be changed. Those classes might also be extended in the future to allow
for changing the default behaviour.

In any case, it is also possible to not use the default classes and to replace
them with own implementations for certain instances of TSList. For example, it
is somtimes useful not to have a popup menu. This can easily be achieved by using
the TSList.setTSPopup method with a null argument. All other list instances
would not be affected by this customization, because the default behaviour would
remain the same.



3.21. View Packet 16: List 183

3.21.4 Usage Example

The following example demonstrates the definition of a new TSActionTypes in-
stance, which is then added to the DefautlTSListPopup, thus changing the de-
fault behaviour of the list view. This customization should be done at application
start. The example is taken from the JMulTi application, which is described in
greater detail in Chapter 4.

First, the class TSActionTypes is subclassed to implement the plot function-
ality. The method doAction is invoked when the popup menu is clicked with the
underlying TSList instance as argument. This way, the method can get access
to the selected time series, making it easy to invoke the plot action. The details
of the plot implementation are omitted here. One might ask, why this action is
not part of the default implementation. The answer is, because it relies on an
external engine, which is not visible from the presented code snipped. However,
it might become part of the default implementation, if a powerful enough Java
library is found to invoke the plot independently of any external resources. The
most promising candidate for this is the jfreechart library.

// implementation of a new action that invokes a plot

public final class TSPlotAction extends TSActionTypes {

// Singleton instance

public static final TSPlotAction TSPLOT = new TSPlotAction("Plot");

// constructor

private TSPlotAction(String name) {

super(name);

}

public void doAction(TSList tsList) {

TS[] sel = tsList.getSelectedTS();

// invoke plotting of all selected series

...

// details omitted for clarity

}

}

The new plot action TSPlotAction.TSPLOT can then be added to the shared
instance of DefaultTSListPopup at program start via:



184 Chapter 3. Design and Implementation

DefaultTSListPopup.getSharedInstance().addTSActionAt(

TSPlotAction.TSPLOT,

2);

This way, all list views would automatically get the Plot item at index 2 in the
popup menu of the TSList.

3.21.5 Related View Packets

• Parent: View Packet 15: Time Series

• Children: none

3.22 View Packet 17: Table

3.22.1 Primary Presentation

TSTable

+ setTS(ts:TS[]):void

TSTableModel

+ setTS(ts:TS[]):void
+ getStartTSDate ():TSDate

TSTableScrollPane

 

1

Figure 3.31: Classes of the Table subsystem

The Table system is used to display a set of time series in a spreadsheet that can
optionally be edited. Figure 3.31 presents the participating elements. It consists
of the class TSTable and a special table model TSTableModel. An array of time
series objects can easily be set for display via the method TSTable.setTS. The
special features of this table are that the time series are automatically merged to
a range that covers all observations of all displayed series. This way, one can



3.22. View Packet 17: Table 185

Figure 3.32: Screenshot of a TSTable component

display and edit time series with different sample ranges jointly. Furthermore,
the precision can be adjusted, and a default popup menu over the table allows to
change the display on the fly.
TSTableScrollPane is a customized subclass of the standard JScrollPane

that manages the display of a row and column header for the displayed time series.
A screenshot of the Table subsystem components is given in Figure 3.32. Here it
is embedded in the time series editor, which is a component from the Selection
subsystem. All selected time series are shown and can be edited. The editor
also provides a search option, which uses the findRowIndexOf method of the
TSTableModel.



186 Chapter 3. Design and Implementation

3.22.2 Element Catalog

Class Name Responsibility

com.jstatcom.ts

TSTable A configurable table view of one or more time
series with editing capabilities. It uses the
TSTableModel to represent the underlying data.

TSTableModel A table model to be used with the TSTable
component for representing merged time series
data. The model takes an array of time series
with possibly different time ranges, but equal sub
periodicities.

TSTableScrollPane A special JScrollPane to work with TSTable
components as viewports that provides a row
header with time and index, and a column header
with the names of the displayed series.

Table 3.31: Elements of Table system

3.22.3 Architecture Background

The Table subsystem handles the specific needs for displaying and editing time
series. It follows the standard Model-View-Controller pattern, which separates
representation, display, and control of the data. The class TSTable manages dis-
play and control, whereas the class TSTableModel stores the underlying data and
informs the presentation component about updates. This scheme follows standard
practise for designing components that are based on the Java Swing component
framework.



3.23. View Packet 18: Selection 187

3.22.4 Related View Packets

• Parent: View Packet 15: Time Series

• Children: none

3.23 View Packet 18: Selection

3.23.1 Primary Presentation

Figure 3.33: Screenshot of a TSSel component

The Selection subsystem contains components that are especially useful to
gather user input for time series analysis procedures. It consists of the time series



188 Chapter 3. Design and Implementation

selector, the date selector, and the date range selector. Figure 3.33 shows the first
of these three components, which is the most complex one and actually contains a
TSDateRangeSelector instance. The selection classes are all components ac-
cording to the JavaBeans specification (Sun Microsystems ( 1997)), making it
easy to plug them together with other components with the help of a graphical
programming tool. The latter should be part of the employed IDE. This means
that instances of those classes can be configured with various different options
which affect the behaviour of the respective component at runtime.

Time Series Selector

Once a dataset has been read in, the single variables can be accessed via instances
of the TSSel class. All time series appear in a TSList, which is part of the selec-
tor. The behaviour of the TSList has been described in Section 3.30. It allows to
select variables and invoke actions on them via the right click popup menu. This
is a typical example of object composition, because the time series selector has a
TSList, instead of subclassing it to get access to the functionality. Especially for
GUI design the advantages of object composition become very obvious, but they
translate equally to the design of non graphical classes.

The time series selector is used to select the set of variables, the order of the
variables, and the time range for the various econometric methods and models.
The selection mechanism can be adjusted to its context, which means, for exam-
ple that for unit root tests only one variable can be selected, whereas for VAR
modelling the number of variables is not restricted. The respective setting of the
TSSel bean is setOneEndogenousOnly, which is false by default, but can be
set to true to allow only selection of a single endogeous variable.

Sometimes the ordering of the variables is important for a model or analysis.
The selector uses the order in which the variables have been clicked on. For mul-
tiple selection it is necessary to hold either the Shift or the Ctrl button pressed,
while the mouse is clicked over a series. The selected variables are displayed in
the correct order in the control area of the selector after the selection has been
confirmed.



3.23. View Packet 18: Selection 189

The time range of the selection can be adjusted by editing the respective text
field, which is an instance of TSDateRangeSelector. The valid range is the
largest common range of all selected time series, where NaN missing values have
been automatically truncated from the beginning and the end of each series. The
smallest legal range must contain two observations. Once a range selection is
made, this selection is kept as long as it is valid. The maximum possible range
can easily be set via a button. This mechanism enables the user to keep an edited
time range as long as possible, but allows a quick switch back to the maximum
range as well.

Date Selector

The date selection component is used, whenever the user should select a single
point in time, for example to specify the impulse time of a dummy variable. It
uses the date format that has been described earlier in Section 3.20.4. The in-
put is validated against an enclosing range if one has been set. Descriptive error
messages help the user to correct misspecifications.

Date Range Selector

The date range selection component is very similar to the date selector, but it takes
two comma separated date strings as input and assembles a date range object from
it. This can also be validated against an enclosing range. Error messages direct
the user in case of wrongly specified range strings.



190 Chapter 3. Design and Implementation

3.23.2 Element Catalog

Class Name Responsibility

com.jstatcom.ts

TSSel Configurable selection tool for time series. It man-
ages the selection of endogenous, exogenous and
deterministic variables and builds the correspond-
ing data objects to be reused by other components
via the symbol table. Selection is only allowed for
series with the same periodicity and at least 2 ob-
servations time overlap.

TSDateSelector Component for display and selection of a single
TSDate. It takes an input string and validates it
against a parser and a defined TSDateRange.

TSDateRangeSelector Component for display and selection of a
TSDateRange. It interprets an input string and val-
idates it against a parser and a defined range.

Table 3.32: Elements of Selection system

3.23.3 Architecture Background

All three classes of the Selection subystem are meant to facilitate creating GUIs
for time series procedures. They are high level components that make use of the
services provided by other subsystems. Especially the TSSel class can only work
in conjunction with the Data Model, because it creates a number of JSCData
objects, which are then automatically stored in the global or upper symbol table.
This way it is possible that other components can easily access the selection made
by this component via the Symbol Management system.



3.23. View Packet 18: Selection 191

3.23.4 Usage Example

The time series selector is an indispensable part of GUIs for time series analysis,
therefore its use is demonstrated with a small code example. One should notice
that this component does not necessarily need to be configured manually, but that
visual programming tools can be used instead. For a comprehensive description
of all possible configuration options, one should refer to the API documentation.

// creates instance

TSSel sel = new TSSel();

// sets the names of the symbols under which

// the variables names are stored in the global symbol table

sel.setEndogenousStringsName("Y_names");

sel.setExogenousStringsName("X_names");

sel.setDeterministicStringsName("D_names");

// sets the names of the symbols under which

// the data objects are stored in the global symbol table

sel.setEndogenousDataName("Y");

sel.setExogenousDataName("X");

sel.setDeterministicDataName("D");

// sets the name of the symbol under which

// the selected sample range is stored in the global symbol table

sel.setDateRangeName("SAMPLE_RANGE");

The names for the various data objects should be chosen according to the mod-
elling context. They will appear under that name in the Symbol Control system.
For more complex GUIs it is strongly suggested to use a separate class for defin-
ing all global variables as instances of JSCTypeDef. One should then reference
those type definitions for the configuration of the TSSel component. Otherwise
one can easily introduce errors by just changing a variable name in one place, but
forgetting to change it in another place that refers to it as well.



192 Chapter 3. Design and Implementation

3.23.5 Related View Packets

• Parent: View Packet 15: Time Series

• Children: none

3.24 View Packet 19: Calculator

Figure 3.34: Screenshot of Time Series Calculator

3.24.1 Primary Presentation

The time series calculator is a very flexible tool to create new variables by com-
bining existing time series with arithmetic operations and functions. It provides



3.24. View Packet 19: Calculator 193

the mini language TSCalc that operates with one dimensional arrays and scalars.
The operation is as follows:

1. First one has to select the variables to be combined in the time series selec-
tor.

2. The names appear in the list Available Variables and are put into the
variable space of the calculator.

3. One can write one or more commands to the command area and execute
them with Execute or Ctrl+E. Newly created variables appear in the list
of available variables.

4. Finally the selected variables in Available Variables can be added to
the workspace with Add Selected.

The syntax of TSCalc is very easy, only a few simple rules apply:

• New variables can be defined with with
newvariable = some expression;.

• Several commands can be executed at once by separating them with ’;’.

• Allowed operators are ’+’, ’-’, ’*’, ’/’, as well as ’|’ to append one
vector to another.

• The content of a variable can be printed out by just writing the variable
name to the command line.

• The conventions for variable names hold as described in Section 3.8.1.

• All array operations are applied element wise.

• TSCalc understands exponential notation, for example, 1.234e-3 is parsed
to valid number.

By double clicking on a variable in the list, the name appears in the command
window and can be combined with commands from the calculator. Apart from
basic arithmetic operations, TSCalc provides a range of other functions, like min,



194 Chapter 3. Design and Implementation

max, lagn, log, stdc, meanc, rndn, ones, trend. For a complete list of pos-
sible operators and functions, one should consult the help system. In case there
are syntax errors, a descriptive message is printed to the output window. If the
selection in the time series selector is changed, the workspace of the calculator is
overwritten. Variables that have not been added to the workspace are lost.

3.24.2 Element Catalog

Class Name Responsibility

com.jstatcom.ts

TSCalculatorPanel A GUI component for the CalcEngine parser. It
makes it possible to create new time series by com-
bining existing ones with arithmetic operations and
functions.

TSCalculator A component that combines the
TSCalculatorPanel with a TSSel component to
select the time series available for transformation.

TSCalcFrame Frame containing the TSCalculator. This com-
ponent can be used as a stand-alone container
that provides time series calculation features with
TSCalc.

com.jstatcom.parser

CalcEngine A parser for the arithmetic language TSCalc.

CalcFunctions Enumeration that holds all functions that can be
used by CalcEngine. Can easily be extended with
new function definitions.

Table 3.33: Elements of Calculator system



3.24. View Packet 19: Calculator 195

3.24.3 Architecture Background

The time series calculator is typically used as a ready made component that should
be part of any application for time series analysis. It is integrated in the TopFrame,
which will be described in detail in Section 3.25. Therefore, developers usually
do not need to interact with the Calculator component directly, it is right in place
by default. However, it is also possible to reuse either the TSCalculatorPanel
or the CalcEngine alone. This could be useful if expressions in the TSCalc
language are to be interpreted independently of the calculator component, or if a
selection tool other than TSSel is to be used. Object composition gives a great
deal of flexibility here to cope with various programming situations.

3.24.4 Usage Example

The use of the TSCalc language without the graphical calculator component is
easily demonstrated with the following code snippet:

// init parser

CalcEngine parser = new CalcEngine();

// set a variable available for operations

parser.putVariable("s", new double[] { 123, 140, 110, 124});

// holds results

double[] result;

try {

// parse a string in the TSCalc language

parser.parseString("d = s|120;log_d=log(d )");

// get the result

result = parser.getVariable("log_d");

} catch (ParseException ex) {

// deal with wrong input

ex.printStackTrace();

}

The parser can be used to invoke various operations on number vectors that
are relevant for time series analysis, but also for data based analysis in general.



196 Chapter 3. Design and Implementation

3.24.5 Related View Packets

• Parent: View Packet 15: Time Series

• Children: none

3.25 View Packet 20: Components

3.25.1 Primary Presentation

System Segment

Components Application

Data Table

Equation

Table 3.34: Primary Presentation of Components

The Components system holds classes that are either themselves GUI com-
ponents or that support user interface programming with JStatCom. The more
self contained classes are directly part of the system, whereas more complex class
structures are organized in subsystems. Table 3.34 shows the three child systems
of which each contains several classes that together provide a certain type of func-
tionality for GUI programming within the framework.

Figure 3.35 shows a class diagram of selected components that are all used for
gathering and validating user input with a text field. The abstract class
IValTextField provides a default implementation for the validating behaviour.
Subclasses need to implement the actual validating algorithm, and must provide
specific methods for the data type to be displayed. The NumSelector class can
also be used to interact directly with the Symbol Management system to display
and edit the value of a JSCInt or JSCNumber represented by an instance of
Symbol. A screenshot of this often used component is given in Figure 3.36 after
the user tried to specify a value outside the allowed range.



3.25. View Packet 20: Components 197

IValTextField

+ validateInput ():String
+ handleError (msg  

 
:String ):void

NumRangeSelector

+ getNumberRange ():NumberRange

NumSelector

+ getNumber ():double

VarNameSelector

+ getVarName ():String

Figure 3.35: Classes for input validating text fields

It should be noted that also the classes TSDateSelector and
TSDateRangeSelector from the Time Series system inherit the validating be-
haviour from IValTextField. This guarantees a consistent behaviour of all those
components throughout the framework. In general, all classes of the Components
system extend the behaviour of default Java Swing classes for the specific needs
of data based analysis. This makes GUI development a lot faster and the resulting
programs tend to contain fewer errors, because they can be build from well tested
units. The use of these components is therefore strongly encouraged whenever
appropriate.

3.25.2 Element Catalog

Class Name Responsibility

com.jstatcom.component



198 Chapter 3. Design and Implementation

SymbolDisplay This text area displays the string value of a given
data object defined by a symbol. It updates its dis-
play whenever the symbol changes.

StdMessages Contains static methods to invoke simple confirm
dialogs that are used to standardize messages of
different types throughout JStatCom.

IValTextField Abstract class that performs input validation be-
fore input focus is permanently moved away to en-
sure that no action is carried out, before input has
been checked.

NumSelector Subclass of IValTextField for number input that
is automatically checked against a NumberRange
object.

NumRangeSelector Subclass of IValTextField for text input of a
range specified by two komma separated num-
bers that is automatically checked against another
NumberRange object.

VarNameSelector Subclass of IValTextField to verify an input
string against the rules for valid variable names
throughout JStatCom.

NumberFormatTypes Holds formatters that are used by JStatCom
components to guarantee a consistent formatting
behaviour.

MultiLineLabel Label component that can display text with more
than one line.

MatrixBorder This border puts angular brackets [ ] around a
component.



3.25. View Packet 20: Components 199

AutoEnableMenu A JMenu that gets enabled if at least one of its
menu items becomes enabled.

OutHolder Interface to be implemented by components that
hold text output assembled by PCall objects..

SystemOutHolder Simple implementation of the OutHolder inter-
face that redirects output to System.out.

ResultField Implementation of OutHolder that provides a
scrollable text area for presenting output in text
form.

ResultFieldPopup A popup menu especially designed to work with
the ResultField component. It can be used to
clear, print, and save the contained text.

Card Interface to be implemented by components that
are used together with CardDisplayPanel and
that should be informed when they are shown or
hidden.

CardDisplayPanel An alternative to the standard Swing CardPanel
that can be used in conjunction with
CardPanelAction to display components
on demand as well as to notify them when they are
either shown or hidden.

CardPanelAction An action for the task of showing a component in a
CardDisplayPanel. Can be used to create Card
instances on demand from their class name.

CheckBoxList A special JList that renders its items as selectable
JCheckBox components. Useful for selection of
boolean properties for a dynamicly changing set of
objects.



200 Chapter 3. Design and Implementation

CompSettings Specifies settings for components used throughout
JStatCom for consistency.

subsystems

Application Holds the main application frame and related
classes with useful default functionality, like data
import, time series calculator, modules manage-
ment, help system, status display, logging facility,
and the symbol control frame. It can be configured
with external property files or via subclassing.

Data Table Subsystem to display the array data objects
JSCNArray and JSCSArray in tables with various
editing and display options.

Equation Subsystem to represent dynamic equations graphi-
cally with their parameters and variable names.

Table 3.35: Elements of Components system

3.25.3 Context

The Components system contains many classes that users directly interact with.
They are the general building blocks of the graphical user interfaces for scientific
models. More specific components are found in respective subsystems, like for
example in the Time Series system. Figure 3.37 shows the uses of the Components
system for two different actors, users and developers. The use cases for the user
define the type of components that are needed. GUI developers use the system
typically with visual programming tools to effectively layout user interfaces.

3.25.4 Architecture Background

Component-based development is one of the current paradigms in software devel-
opment (Pree (1997)). The distinction between a component and a class is not very



3.25. View Packet 20: Components 201

Figure 3.36: Screenshot of NumSelector with an error message

sharp, all elements of the Components system are Java classes. However, they
conform to the JavaBeans specification, which allows to visually compose them
into composite components and applications using graphical application builder
tools. Following Halloway (2002), the definition of a component is given as an
independent unit of production and deployment that is combined with other com-
ponents to assemble an application. JStatCom uses this concept in various ways
to support a modern approach to programming.

It is not only the preferred way to build the GUI elements of an application,
but with the Engine system it also treats algorithms written in other languages as
well as external engines as components. The advantage of using a component ar-
chitecture is that one can reuse and combine independent binary units to develop
applications much more rapidly than if the respective features would need to be
reimplemented. Reusability is therefore achieved not only for classes of the Java
language, but also for other software units that provide key functionality for the
given problem domain. Typical problems of this approach are related to deploy-
ment of those binaries, possible version conflicts and interface incompatibilities.
Especially the Application subsystem uses a component approach to load indepen-
dent modules via definitions set in a configuration file, which will be described in
greater detail in Section 3.26.

3.25.5 Usage Example

As a representative example, Figure 3.38 shows the specification of a component
for number selection in a visual GUI builder. First, the component was selected



202 Chapter 3. Design and Implementation

GUI Developer

User

components

Select numbers, number ranges,
variables names

See and edit array objects

Switch between modules

Invoke Help

See, save, print results in text form

See and edit parameters of complex
dynamic systems, like VAR/VECM models

Create main application frame

Create GUIs for 
model specification

of computations

Integrate help, also
context sensitive

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 
 

 

Figure 3.37: Use cases for the Components system

from a list of available beans and placed on a JPanel, which is rendered as the
gray area. The property editor to the right can then be used to easily configure
the behaviour of that component. Many options are displayed, but mostly only
very few need to be changed from their default. Some of the specific options
for the NumSelector are highlighted with a red cross in the graphic. The initial
number is set via the number property, the allowed range can directly be given via
the rangeExpr or numberRange property, where rangeExpr allows to input the
range intuitively as a string, instead of using a reference to a NumberRange object.
The setting intType specifies whether the resulting number would be stored as
a JSCInt or a JSCNumber instance in the symbol table. However, in the current
setting this option has no effect, because the component does not store its state in



3.25. View Packet 20: Components 203

Figure 3.38: Specification of a NumSelector in a visual application builder

a symbol. For this to happen, the symbolName option would have to be set, which
is not shown in the picture, but appears further down in the property sheet. All
other options are left unchanged for the example. It is also possible to program
this manually. The following piece of code shows what is actually generated by
the builder tool:

// initialization method for a number selector

private NumSelector getNumSelector() {

if (numSelector == null) {

numSelector = new NumSelector();

numSelector.setBounds(29, 30, 77, 21);

numSelector.setRangeExpr("[0,20]");

numSelector.setNumber(2.0);

}

return numSelector;

}

This method is part of a class that subclasses JPanel here and is invoked



204 Chapter 3. Design and Implementation

on initialization. The rest of the code is omitted for clarity. In a similar way, all
graphical components in JStatCom can be used and configured. Typically the GUI
builder tool is employed to do the initial layout. Later changes are then often done
by hand, especially if they do not affect how the component is placed and sized.

3.25.6 Related View Packets

• Parent: View Packet 1: JStatCom

• Children:

– View Packet 21: Application

– View Packet 22: Data Table

– View Packet 23: Equation

3.26 View Packet 21: Application

3.26.1 Primary Presentation

The Application subsystem is one of the entry points for developers using JStat-
Com. Figure 3.39 shows the participating classes. It should be mentioned that the
classes in the lower part of the diagram are elements of other subsystems. This
reflects the main task of the Application system, namely providing a ready made
frame with access to various features of the framework. GUI developers can reuse
this to easily embed newly created modules without having to worry about data
import, modules management, help system access, symbol control, status display
of engine requests, access to the time series calculator, and logging. The system
also provides a default splash screen and about information which can be config-
ured easily for the respective application. In later stages also project management
will be integrated on the framework level. The main application frame can be seen
in Figure 3.40. It has been customized for the software JMulTi and several mod-
ules have been loaded. They are available via the selected menu and are displayed
with their name and an icon.



3.26. View Packet 21: Application 205

TopFrame

+ VERSION  :String
+ TITLE  :String
+ ABOUTINFO  :String
+ ABOUTIMAGE  :String

+ skeleton
 

():void

LogFrame

TSCalcFrame

SymbolFrame

ImportDataFrame

TopFrameAboutBox SplashScreen

<< Singleton >>
DefaultPCallControl

JHelpAction

 

1

 

1

 

1

 

1

 

1

 

1

modules.xml

app.properties

Figure 3.39: Classes of Application system

With the Application system, GUI developers can concentrate on creating
modules for specific science models without having to worry about the general
infrastructure of their application. Moreover, the system standardizes the appear-
ance of applications based on JStatCom and reduces the need for ad hoc solutions
for recurring tasks. However, it is also obvious that this system is likely to be
changed or extended by developers. Therefore very likely changes, like the im-
age for the splash screen, the title of the application, or the about information,
can be done by just editing the property file app.properties. A very important
feature is to easily integrate new modules. This can be done by editing the file
modules.xml. This way, typical adjustments can be done without changing the
Java code at all.



206 Chapter 3. Design and Implementation

Figure 3.40: Screenshot of TopFrame customized for the JMulTi application

To start the application, calling the mainmethod of TopFrame is required. For
convenience, this can easily be done with the app.bat/app.sh script, which also
needs to set the classpath for all modules that are to be loaded.

Resources needed by the Application system

The mentioned configuration files are the resources that are required by the Ap-
plication system. One should notice that the app scripts to start the program are
useful for development because they can easily be adjusted. But for the final
deployment version this way of starting a Java application is not state-of-the-art
anymore. One should rather create a jar archive with a manifest file that points
to the class containing the main method. For the default case this would be



3.26. View Packet 21: Application 207

com.jstatcom.component.TopFrame. There is a file MANIFEST.mf with these
settings in the working directory of JStatCom. The jar archive should be created
with the ANT tool using the settings in the file build.xml. Typically this can
easily be invoked from within an IDE. The user could then start the application by
simply double clicking on that jar archive without having a console window ap-
pearing. Another way of starting the program would be to create a system specific
executable with the help of external tools, but this is not discussed here.

Resource Usage

files in working directory of JStatCom

modules.xml XML file that holds definitions for all modules that
should be loaded by the Application system.

help context.xml XML file to set the help IDs for context-sensitive
help that can automatically be displayed for certain
components.

app.bat (Windows)
app.sh (Linux/Unix)

Helper script to start the application by invoking the
mainmethod of TopFrame. The classpath might need
to be adjusted to include all required classes.

app.properties Property file to set the version, the title, the logo
image, and the about information for an application
based on JStatCom.

Table 3.36: Resources for the Application system



208 Chapter 3. Design and Implementation

3.26.2 Element Catalog

Class Name Responsibility

com.jstatcom.component

TopFrame A configurable component that should be used
as the main frame for applications based on JS-
tatCom. Provides default functionality for load-
ing data, the module management, the time series
calculator, a logging window, the symbol control
frame and a status display.

TopFrameReference Holds a globally accessible reference to the top
frame of the application. Needed by modal dialogs
to appear on top of the application frame.

TopFrameAboutBox Default dialog with information about the
software.

Module Represents a module to be used with TopFrame.
Helper class to enable module configuration via an
XML file.

SplashScreen A windows that is shown when starting applica-
tions based on JStatCom.

JHelpAction Helper class that facilitates use of the JavaHelp
system.

JHelpContextMgr Manages the mapping between IDs for
context-sensitive help topics and the respec-
tive components.

Table 3.37: Elements of Application system



3.26. View Packet 21: Application 209

3.26.3 Architecture Background

The Application system was developed to provide easy access to many features of
JStatCom without the need to write a lot of code. Because the basic idea of using
a framework is to reuse a general design, the TopFrame component was created
to relieve the developer from the burden of always starting from scratch when
designing new modules. This concept is not new and can for example be seen
in the GiveWin/OxPack econometric software package as well. Developers only
need to implement a subclass of ModelBase, which is then automatically inte-
grated in an application framework with rich default functionality, like reading in
data and project management. The same pattern can often be found in framework
approaches, like for example in the Eclipse project, where a standard application
frame can be extended with plug-in modules. Thus, module developers can focus
on specific problems in a given context.

To support this, a true component based programming approach is required,
because the Application system has to gather information about which modules
to load and about its own appearance from external resources. This information is
not known at compile time, but is only retrieved when the program is started. The
emphasis of the runtime context is typical of component development. Therefore
the module extension mechanism must make certain assumptions about the type
of the modules to load and must also provide ways to deal with missing or wrong
modules. Because it does not know about the modules at compile time, many
checks done by the compiler are bypassed and have to be done at runtime instead.

Defining Modules

A module for JStatCom is just defined as a subclass of the standard Swing class
javax.swing.JInternalFrame, nothing more. This is a very general definition
that does not make any further assumptions, than that the module is a component
that can be displayed in a desktop panel. But typically, modules are subclasses of
ModelFrame, which is itself a subclass of JInternalFrame, because it sets up
the global symbol table for child panels as described in Section 3.10. A special
case of a module is just a helpset. In this case, no component is displayed but the
specified JavaHelp set is dynamically loaded at program start and can be accessed



210 Chapter 3. Design and Implementation

via the help system together with all other helpsets. To load modules via the
module extension mechanism, a new entry in the file modules.xml should be
made. This way, no Java code is required to set up new menu items and actions.
It is also not required to load the corresponding helpset manually. The module
definition file is written in the XML language, the de facto standard for structured
documents. The advantage of using XML is that standard parsers can be reused
and that it is easy to retrieve the desired information from such a document. The
only drawback might be that it looks slightly less familiar than simpler text files
for settings. However, it bears similarities to HTML and is getting more and more
common. An example module definition file could look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<TopFrame$XMLRep xmlns="java:com.jstatcom.component" name="JMulTi">

<Module helpset="helpset/jstatcom/jstatcom.hs"/>

<Module class="de.jmulti.initanal.InitAnalFrame"

helpset="helpset/initanal/InitAnal.hs"/>

<Module class="de.jmulti.vecm.VECM"

helpset="helpset/vecmodels/VECM.hs"

method="getInternalFrame"/>

</TopFrame$XMLRep>

Each module must be put in a new tag Module with several possible attributes
that can take on certain values. Each value is defined as a string that must be put
in double quotes. Attributes can be used as follows:

• class - If the module is not just a helpset, this attribute takes the fully quali-
fied classname of the module to load. The class must be a subclass of
javax.swing.JInternalFrame. If the method property is not set, then
the default constructor is used to create an instance of the given class. The
class must be in the classpath of the application, otherwise it would not be
found by the class loader.

• method - Sometimes modules provide a certain static initializer method
that returns an instance of the underlying class. If such a method should



3.26. View Packet 21: Application 211

be called instead of the default constructor, this attribute has to be set with
the method name. The method to be called must be static, it must take no
arguments, and it must return an instance of the module class. This attribute
is ignored if no class attribute is set.

• helpset - Can be used to set the helpset that is loaded dynamically via the
JavaHelp system. It will be merged with the other helpsets at program start.
It can also be used without a class attribute. The helpset must be in the
JavaHelp format and it has to be located in the resource directory of the
application. Typically it is part of the jar archive of the application, or it is
in a subdirectory of the working directory.

Setting Properties

Some small adjustments can be made in the file app.properties, which is in
the default Java property format. It is used to define some information about the
respective program that can easily be changed without modifying the Java code.
The values for each setting must be put on one line, even if it might become very
long. Linebreaks must be indicated with a \n. The default settings are:

VERSION = 1.0

TITLE = JStatCom

ABOUTIMAGE = /images/splashdefault.gif

ABOUTINFO = www.jstatcom.com\n\nA. Benkwitz & M. Krätzig 2000-2004

• VERSION - Holds a string describing the release. It appears in the splash
screen at program start and in the about box.

• TITLE - Holds the title of the application which appears in the top level
frame.

• ABOUTIMAGE - Points to an image that is displayed in the splash screen
and in the about box. The suggested size is 350 x 250 px.

• ABOUTINFO - String containing author and copyright information, as
well as credits, project homepage, etc.



212 Chapter 3. Design and Implementation

Managing Context-Sensitive Help

Modern help systems offer the possibility to easily navigate to a help topic that
describes a certain component by just clicking with the mouse on the GUI when
it is in context-sensitive help mode. If a so called help ID has been set before for
that component, the corresponding topic is displayed. Otherwise, the default help
page is shown, typically the one that was last visited. Of course it helps users if
IDs for many components are set. JStatCom offers a way to maintain the mapping
between components and IDs in an external XML file help context.xml. This
has the advantage that help IDs can be set in a single place, and that no Java code
has to be changed when IDs change or components are added to the application.
The class that uses this file and manages the components and IDs is the single-
ton JHelpContextMgr. Every component that wants to use this service needs
to register with that class. However, to further simplify the required coding, all
instances of ModelPanel are automatically registered with the help context man-
ager on object construction. Typically, context-sensitive help is required only for
subclasses of ModelPanel, therefore this basically eliminates the need to register
components manually, except for special cases in which other classes are used.

The only step that has to be done manually is to edit the file help context.xml.
Each component is identified with its class name and takes the help ID as the tar-
get for the help topic to display. Help IDs are defined in JavaHelp sets and can
be retrieved easily with the tool JHelpDev, see Appendix B. An example context
definition file is:

<?xml version="1.0" encoding="UTF-8"?>

<JHelpContextMgr xmlns="java:com.jstatcom.component">

<JHelpContextMgr$ContextID class="com.jstatcom.io.TSImportPanel"

helpid="jmulti.impdata"/>

<JHelpContextMgr$ContextID class="de.jmulti.var.VAREstCoeffPanel"

helpid="varmodels.node2"/>

<JHelpContextMgr$ContextID class="de.jmulti.var.VARSubSetPanel"

helpid="varmodels.node4"/>

</JHelpContextMgr>

The format is again XML. Each entry must start with the string
JHelpContextMgr$ContextID and can take the following attributes:



3.26. View Packet 21: Application 213

• class - This attribute takes the fully qualified classname of the component
that corresponds to a help topic. Typically, classes are of type ModelPanel,
which are the containers that hold input specification GUIs for calling sci-
entific procedures.

• helpid - The help ID that defines the topic to be displayed when the mouse
is clicked on an instance of the class that has been set. The mouse has to be
in context-sensitive help mode, which is a special option in the default help
menu of TopFrame.

Subclassing TopFrame

Much emphasis has been put on being able to do likely changes of the Application
system without the need to write any Java code. However, if more costumization
is required, like adding new menus or menu items to the default frame, subclassing
TopFrame is necessary. Most methods can be overwritten. Also, there is a special
method extrawhich is empty by default and could be implemented by subclasses
to add additional features. To initialize the subclass of TopFrame, the method
skeleton needs to be called. A code example is given in the usage section.

3.26.4 Usage Example

This example shows, how one could subclass TopFrame to put a new item in the
Control menu. This should invoke a panel to configure plot settings for the Gauss
engine system. It is not part of the default implementation, because it assumes the
availability of that engine. When TopFrame is overwritten, the new class should
be invoked instead. Therefore, in the app script the class name should be replaced
with the name of the subclass, which is MyApp. Otherwise, the changes would
have no effect, because the new class would never be used. All other configura-
tions options that have been described in the previous section are still used, unless
the respective methods are directly overwritten.

The code shows the whole class MyApp that inherits from TopFrame. The
method extra is empty in the superclass and can safely be overwritten to add
special configurations. Here it is used to create a new item with an attached action



214 Chapter 3. Design and Implementation

that is then added to the Control menu. It is also important to provide a static
main method, which creates an instance of the newly defined class and calls the
skeletonmethod of the superclass. Without this, the mainmethod of TopFrame
would be called, which only creates a TopFrame instance and no changes would
be visible.

// subclass TopFrame

public final class MyApp extends TopFrame {

// empty superclass method is overwritten

protected void extra() {

// create new menu item

JMenuItem item = new JMenuItem("Global GAUSS Graphics Settings");

item.addActionListener(

new AbstractAction("Global GAUSS Graphics Settings") {

public void actionPerformed(ActionEvent evt) {

... invoke plot configuration dialog

}

});

// add item to control menu from superclass at position 0

getControlMenu().add(item, 0);

}

// method that starts the application

public static void main(String[] args) {

try {

MyApp myFrame = new MyApp();

// call skeleton

myFrame.skeleton();

} catch (Throwable exception) {

System.err.println("Exception occurred in main()");

exception.printStackTrace();

}

}

}

For a detailed documentation of all methods that can be overwritten, the API
documentation of TopFrame should be used.



3.27. View Packet 22: Data Table 215

3.26.5 Related View Packets

• Parent: View Packet 20: Components

• Children: none

3.27 View Packet 22: Data Table

3.27.1 Primary Presentation

JSCAbstractDataTable

+ setJSCData(data :JSCData):void
+ getJSCData():JSCData

BorderTable JSCAbstractTableModel

+ getJSCData():JSCData

<< enumeration >>
JSCCellRendererTypes

+ COEFF_DEFAULT  :JSCCellRendererTypes
+ SUBSET_01  :JSCCellRendererTypes

<< enumeration >>
JSCMouseListenerTypes

+ DIAG_01NEGINF  :JSCMouseListenerTypes
+ SUBSET_01  :JSCMouseListenerTypes

<< enumeration >>
JSCPopupTypes

+ CLICK_01  :JSCPopupTypes
+ :JSCPopupTypes

JSCNArrayTable

+ getJSCNArray():JSCNArray
+ setPrecision (prec :int ):void
+ setNumberRange (range :NumberRange ):void

JSCSArrayTable

+ getJSCSArray():JSCSArray

JSCNArrayTableModel

JSCSArrayTableModel

 

0..1

 

1

 

1

 

0..1

 

0..1

1

*

1

*

1

*

Figure 3.41: Classes of Data Table system

The Data Table system can be applied to display and edit array data objects that
are part of the Type System of JStatCom. Currently, the data types representing
arrays are JSCNArray and JSCSArray. The system extends the functionality of
the default Java Swing table components to meet the special needs for rendering
and modifying number and string arrays.

Figure 3.41 shows the classes which are part of the Data Table system. A
general class BorderTable is used for the purely technical reason to let tables



216 Chapter 3. Design and Implementation

Figure 3.42: Screenshot of a NArrayTable

Figure 3.43: Screenshot of NArrayTable with a special table renderer and mouse
click listener

respect borders, which is not the case for the default JTable. The abstract class
JSCAbstractDataTable manages the general functionality of all potential data
tables, but it must be subclassed by concrete implementations for the respective
array types. The two implementations that are available are JSCNArrayTable and
JSCSArrayTable. Each of them has special features for the data type to display.

In a similar way, the underlying table model is first defined in an abstract
class JSCAbstractTableModel and then further specified in the concrete models
JSCSArrayTableModel and JSCNArrayTableModel, which are used with their
respective tables. The distinction between a component for view and control and
a class representing the underlying model follows standard Swing patterns and is
an example of Model-View-Controller design.

A special feature of the Data Table system is that it provides great flexibility
to adjust the view and controller behaviour of tables. The view can be changed
by setting specific cell renderers that define how values are actually displayed on
screen. It can be set via the method setCellRenderer of



3.27. View Packet 22: Data Table 217

Figure 3.44: Screenshot of a SArrayTable

JSCAbstractDataTable. The class that helps to define those renderers and that
also provides an enumeration of specified cell renderers is
JSCCellRendererTypes. For example, it might be useful to display number
values not as digits, but as symbols that mark special values. This might be re-
quired for tables that represent restriction matrices that only take zeros and ones,
for example. The renderer can also be used to change the background color of
some cells to indicate that they cannot be edited. Figures 3.42 and 3.43 show
screenshots of tables for number arrays with different renderers. In Figure 3.42,
the default renderer for numbers is used with a number precision of 4 digits. Fig-
ure 3.43 displays a table that uses a special renderer that displays ’*’, ’1’ and
’0’ for the values Infinity, 1, and 0 respectively. The values zero and one indi-
cate restrictions on the underlying coefficients, whereas Infinity is a code for an
unrestricted coefficient that has to be estimated. Figure 3.44 presents a screenshot
of a JSCSArrayTable. Typically most configuration options for tables are used
only for number tables, because the default behaviour of string array tables does
not need to be changed often.

The controller defines how values represented by the underlying model can be
changed. The standard way of modifying those values would be to edit the values
directly in theirs cells with a text editor component. This is the default behaviour
if tables are set to be editable. However, sometimes it is much more convenient to
change many or all values of a table simultaneously, or to just switch between a
given set of values that cells can take. The Data Table system provides two classes
to support these adjustments.

JSCPopupTypes is a class that can be used to define popup menus that invoke
actions on the underlying table. It also contains an enumeration of already imple-
mented popup menus for the default case and for special purposes. One can set the
menu to be used via the method setTablePopup of JSCAbstractDataTable.



218 Chapter 3. Design and Implementation

The default menu for number tables can be used to change the precision of the dis-
played numbers. One can also switch between exponential notation and decimal
notation. If this menu is used, the underlying values are not changed at all, but just
the way how they are rendered. It is also possible to use a popup menu that sets
all data cells of the underlying table to certain values instead. This could be use-
ful for tables representing restriction matrices, if one wants to change all values
efficiently with a single mouse click. The popup can also be removed completely
by setting it to null.

Another class that might be employed to change the controller behaviour of
data tables is JSCMouseListenerTypes, which can be set via
setMouseListener of JSCAbstractDataTable. As is indicated by the name,
this class helps to specify mouse listeners. Like the other enumerations, it defines
specified listeners that can be reused. Mouse listeners allow to attach an action to
a certain mouse behaviour. For number tables, the most common action would be
to change a value to the next valid one from a given set, when the mouse is clicked
on a cell. A typical set of values is {0, 1}. By clicking on the cells, the displayed
values would just switch between those two values. It is important to note that
the table should not be editable in this case, because then the mouse click would
also bring up a text editor and the editing behaviour would be somewhat strange.
By setting the mouse listener to null, no specific action would be attached to the
underlying table.

Whenever data tables are used, they should be put in a scrollpane container.
This makes sure that all values can be accessed, even if the data table gets too
large to be displayed completely. In this case, scrollbars would appear. A special
scrollpane for the Data Table system is provided via JSCDataTableScrollPane.
It is recommended to use this class instead of the default JScrollPane, because
it provides some helpful methods for displaying row and column headers, as can
be seen in Figures 3.42, 3.43, and 3.44. It also adjusts its size and the position
of the scrollbars differently than the default scrollpane, and it allows to specify a
maximum number of columns and rows to be displayed before starting to scroll.
However, the use of that component is by no means mandatory.

The Data Table system works closely together with the Type System and the
Symbol Management. Data tables can display the values represented by symbols



3.27. View Packet 22: Data Table 219

from a symbol table. In the same way, row headers and column headers of data
table scrollpanes can show values from symbol tables. This way, data tables can be
used to display values stored in symbols, and they update automatically whenever
the values of those symbols change. In the same way, they can be used to change
the values of the underlying symbols via their controller behaviour. Therefore this
system provides very efficient ways of interacting with array data. Programming
with it simplifies otherwise complex user interaction.

3.27.2 Element Catalog

Class Name Responsibility

com.jstatcom.table

NumberDisplayTable Interface for components that display numbers and
that can be configured how the value should be
printed.

BorderTable Subclass of JTable that respects the border set.

BorderTableBorder Most inner border for BorderTable.

JSCAbstractDataTable Abstract table to be subclassed by tables for data
arrays, like JSCSArray and JSCNArray.

JSCAbstractTableModelA table model to be used with
JSCAbstractDataTable instances.

JSCCellRendererTypes Enumeration with different cell renderers for the
JSCAbstractDataTable which can be used in
different modeling contexts, for example to display
coefficients matrices or subset matrices.

JSCDataTable-

ScrollPane

Special scrollpane to be used with data tables.



220 Chapter 3. Design and Implementation

JSCDataTable-

ScrollPaneLayout

A ScrollPaneLayout to be used with the
JSCDataTableScrollPane.

JSCMouseListenerTypesA MouseListener to be used with a
JSCAbstractDataTable that reacts to
mousePressed events and double clicks.

JSCNArrayTable Implementation of JSCAbstractDataTable for
JSCNArray data objects.

JSCNArrayTableModel Implementation of JSCAbstractTableModel for
JSCNArray data objects.

JSCPopupTypes Enumeration of different popups that can be used
by data tables.

JSCSArrayTable Implementation of JSCAbstractDataTable for
JSCSArray data objects.

JSCSArrayTableModel Implementation of JSCAbstractTableModel for
JSCSArray data objects.

Table 3.38: Elements of Data Table system

3.27.3 Architecture Background

Like most parts of JStatCom, the Data Table system was designed with flexibility
and extendibility in mind. Flexibility was achieved with providing various ways of
customizing display and editing behaviour of data tables. This was a requirement
especially for number arrays, because they are used in various different situations
to specify input, as well as to show results.

Extendibility means that all options can be expanded with further implementa-
tions to meet special needs that cannot be anticipated. For example, the enumera-
tions JSCMouseListenerTypes, JSCPopupTypes, and JSCCellRendererTypes
can be subclassed to define new types with the behaviour required for a spe-



3.27. View Packet 22: Data Table 221

cial situation. Furthermore, it means that the Data Table system could work to-
gether also with new data types that might be added in the future without chang-
ing its general design. A new table implementation would require to subclass
JSCAbstractDataTable, as well as JSCAbstractTableModel.

3.27.4 Usage Example

The Data Table components JSCSArrayTable, JSCNArrayTable, and
JSCDataTableScrollPane can efficiently be used with graphical builder tools.
It is also possible to code “by hand”, but especially layout issues are tedious to
handle that way. The following steps are typical:

1. Create some container, most often a ModelPanel, or simply a JPanel.

2. Place a JSCDataTableScrollPane on top of it.

3. Choose a JSCSArrayTable or JSCNArrayTable and place it inside that
scrollpane. The choice of the table depends on whether a number or a string
array should be displayed.

4. Adjust special settings for the scrollpane and for the data table via the prop-
erty editor provided by the builder tool.

The code that is generated could look like the following. The resulting com-
ponent actually corresponds to Figure 3.43.

private JSCNArrayTable dataTableB = null;

private JSCDataTableScrollPane dataTableScrollPaneB = null;

private ModelPanel panel = null;

...

// initializes data table

private JSCNArrayTable getDataTableB() {

if (dataTableB == null) {

dataTableB = new JSCNArrayTable();

dataTableB.setCellRenderer(JSCCellRendererTypes.DIAG_01M1NEGINF);

dataTableB.setTablePopup(null);

dataTableB.setMouseListener(JSCMouseListenerTypes.DIAG_0NEGINF);



222 Chapter 3. Design and Implementation

dataTableB.setEditable(false);

dataTableB.setSymbolName("B_MATRIX");

return dataTableB;

}

// initializes scrollpane

private JSCDataTableScrollPane getDataTableScrollPaneB() {

if (dataTableScrollPaneB == null) {

dataTableScrollPaneB = new JSCDataTableScrollPane();

dataTableScrollPaneB.setColumnHeaderShowing(true);

dataTableScrollPaneB.setMinimumVisibleColumns(5);

dataTableScrollPaneB.setMinimumVisibleRows(5);

dataTableScrollPaneB.setViewportView(getDataTableB());

dataTableScrollPaneB.setColumnHeaderSymbolName("Ny");

return dataTableScrollPaneB;

}

// initializes component, adds scrollpane with table to panel

private initialize(){

...

panel.add(getDataTableScrollPaneB());

...

}

In the method getDataTableB a number array table is created and configured.
A special cell renderer is set, the table popup is removed, and a mouse listener is
installed. For more details on the used types, the API documentation should be
consulted. Furthermore, the table is set to non editable, meaning that it can only
be changed via the installed mouse listener. Finally, a symbol name is set, which
is retrieved from the global symbol table. The table displays the values stored
there, and changes in the table are written to that symbol.

The method getDataTableScrollPaneB sets up the enclosing scrollpane
with a column header. A minimum of 5 rows and columns will be displayed be-
fore starting to scroll. This affects the minimum size required by this component.
Lastly, the symbol name to be displayed in the column header is set. It must point
to a symbol of type SARRAY. In the example, it holds the names of the selected



3.28. View Packet 23: Equation 223

endogenous variables, as can be seen in Figure 3.43. In the initialize method,
the scrollpane is added to the underlying container, which is a ModelPanel here.
It should be noted that typically there is more code for layout and for other com-
ponents, like buttons, text fields, etc. This is omitted here for clarity.

3.27.5 Related View Packets

• Parent: View Packet 20: Components

• Children: none

3.28 View Packet 23: Equation

3.28.1 Primary Presentation

EqTerm

EqTermDefault

EqTermLHS

EqTermAR

EqTermEC

EqPanel

VarNamesVector CoeffTable

 
*

 

1..2

 

* 

1

 

1

 

1

 

1

EqLayout

 

1

Figure 3.45: Classes of Equation system



224 Chapter 3. Design and Implementation

Figure 3.46: Screenshot of VEC model coefficients estimates

Figure 3.47: Screenshot of VEC model exclusion restrictions on shortrun dynam-
ics

For representing dynamic models intuitively, JStatCom provides the Equa-
tion subsystem. It can be used to display (V)AR and VEC models, but also
simple equations or systems of equations. Figures 3.46 and 3.47 show screen-
shots of equations at runtime. The classes of that system are presented in Figure
3.45. EqPanel is a subclass of the standard JPanel with a special layout man-
ager EqLayout that manages the display of potentially large equations with many
terms. Therefore, EqPanel should always be used as a container for equation
terms instead of JPanel , especially when the number of displayed parts varies
dynamically.

The equations can be build from several available equation terms that all in-
herit from the abstract class EqTerm. The class EqTermDefault is a simple equa-
tion term that has one instance of VarNamesVector and one CoeffTable. The
variable names vector is a subclass of JSCSArrayTable, whereas the coefficients
table subclasses JSCNArrayTable. Each default equation term displays variable
names together with the corresponding coefficients. It can also be adjusted to only
show the variable names.



3.28. View Packet 23: Equation 225

The class EqTermDefault can also be used to compose more complex equa-
tion terms for special situations. So far, the following classes are implemented:

1. EqTermAR - An equation term that can have many default terms, each of
them representing lagged variables and the corresponding coefficients. The
starting lag can be adjusted.

2. EqTermEC - A special equation term to represent the long term equilib-
rium in a VEC model. It has up to two default terms, one for endoge-
nous variables, and one for the restricted deterministics. It also has another
CoeffTable for the loading parameters. It can be seen in Figure 3.46.

3. EqTermLHS - The equation term that should be used on the left hand side
of an equation. Typically, it only displays the endogenous variables, but it
might also display structural coefficients as well. It inherits from
EqTermDefault to overwrite some standard settings.

The Equation system is build on top of the Data Table system, because it
needs to display arrays of numbers and strings. Therefore, it also provides great
flexibility to set special renderers, mouse listeners, and popup menus. Figure 3.47
shows an equation with a renderer that displays symbols for special values. It also
has a mouse listener attached that switches between restricted and unrestricted if
the mouse clicks on a cell. A popup menu can be used to set whole matrices to a
certain value for more efficient editing.

3.28.2 Element Catalog

Class Name Responsibility

com.jstatcom.equation

CoeffTable Subclass of JSCNArrayTable to display coeffi-
cients of a model.

EqLayout Layout to be used with EqPanel.



226 Chapter 3. Design and Implementation

EqPanel Panel to be used as the container for all EqTerm
components.

EqTerm Abstract superclass for all equation term
components.

EqTermAR Implementation of EqTerm that represents one or
more lags of a (Vector) AR model.

EqTermDefault Default implementation of EqTerm.

EqTermEC A special equation term for the error correction
term in a VEC model.

EqTermLHS Equation term to be used for the left hand side of
an equation.

SubMatModel Table column model for the CoeffTable.

VarNamesVector Displays variable names with or without a time in-
dex to indicate a certain lag, e.g. invest(t-1).

Table 3.39: Elements of Equation system

3.28.3 Architecture Background

The Equation system uses composition to build more complex equation terms
from basic default terms. One of the technical problems to solve was to provide a
convenient layout for equations with potentially many terms. They have to wrap
properly on screen if they get too large to be displayed. The main work for this has
been done already by Benkwitz (2002). Layout management does not depend on
the concrete implementation classes, but uses the methods defined in the abstract
class EqTerm. Therefore, it would not need to be changed if new terms are added
in the future. One could imagine, for example, having as part of an equation a
term defining some function that is common in a certain problem domain.



3.28. View Packet 23: Equation 227

Using the Equation system can greatly help users to understand the under-
lying model very quickly without the need to check the helpsystem first. More
importantly, it can simplify otherwise very complex user input significantly. For
example, the specification of parameter restrictions in models with many vari-
ables can be very tedious, especially if there are many restrictions to set. Other
programs use text based mechanisms for this, which is also more troublesome to
set up from a programmers point of view.

Like the Data Table system, this subsystem also works closely together with
the Type System and the Symbol Management. The variable names and coef-
ficients have to be specified via the names of the corresponding symbols in a
symbol table of a given scope. It is also possible to specify symbols holding sub-
set restrictions that have been set for coefficients. The information contained in
these matrices can be used by the renderer to display the underlying coefficient
differently, for example with a symbol ’---’. It can also be used to prevent the
mouse listener from changing that coefficient. Various possibilities are possible
for different modelling situations.

3.28.4 Usage Example

Using the equation system is most efficient with a visual builder tool, although its
use is not required. The basic steps are:

1. Use an EqPanel as a container for equation terms.

2. Add all needed equation terms in the wanted order. The left hand side term
is always displayed first.

3. Adjust the symbol names and possibly other options for the used equation
terms. Consult the API documentation for a complete description of all
properties.

The code which might be generated by a builder tool could look like the fol-
lowing. It is part of a class that holds an instance of EqPanel with a simple
equation that is used for specifying restrictions.



228 Chapter 3. Design and Implementation

private EqTermAR endogenousLagged = null;

private EqTermLHS lhs = null;

private EqPanel equationPanel = null;

// setup AR part

private EqTermAR getEndogenousLagged() {

if (endogenousLagged == null) {

endogenousLagged = new EqTermAR();

endogenousLagged.setRendererCoeff(

JSCCellRendererTypes.SUBSET_01);

endogenousLagged.setStartLag(1);

endogenousLagged.setTablePopup(null);

endogenousLagged.setMouseListenerCoeff(

JSCMouseListenerTypes.SUBSET_01);

endogenousLagged.setEditable(false);

endogenousLagged.setSymbolNameVariables("Ny");

endogenousLagged.setSymbolNameLags("lags");

endogenousLagged.setSymbolNameCoeff("Ay");

}

return endogenousLagged;

}

// setup left hand side

private EqTermLHS getLHS() {

if (lhs == null) {

lhs = new EqTermLHS();

lhs.setTablePopup(null);

lhs.setSymbolNameVariables("Ny");

}

return lhs;

}



3.28. View Packet 23: Equation 229

// setup panel for all terms

private EqPanel getEquationPanel() {

if (equationPanel == null) {

equationPanel = new EqPanel();

equationPanel.add(getLHS());

equationPanel.add(getEndogenousLagged());

}

return equationPanel;

}

In the method getEndogenousLagged, an AR equation term is initialized.
The time index starts with t − 1. A special renderer is installed to show symbols
instead of number values. A mouse listener manages switching between the valid
values 0 and 1 on mouse clicks. Like with data tables, the term is set to be not
editable, because editing is done via mouse clicks instead. The popup is removed
by setting it to null. Finally, the names for the symbols in the global symbol table
holding the lags, the coefficients, and the names of the variables are specified. As
soon as these symbols change their values, the equation display is updated.

In a similar way, the method getLHS sets up the left hand side term. For this
component only the variable names have to be specified. In getEquationPanel
all equation terms are added to an EqPanel instance, which should then itself be
added to some component.

As always when symbol names are specified, one should notice that it is a
good idea to define those names in a single place with instances of JSCTypeDef
to keep track of each variable definition.

3.28.5 Related View Packets

• Parent: View Packet 20: Components

• Children: none



230 Chapter 3. Design and Implementation

3.29 View Packet 24: Input/Output

3.29.1 Primary Presentation

RedirectOutput

+ start (log :Logger ):void
+ start (file :File):void
+ stop

 
():void

LogFrame

Logger

+ append (msg :String ):void
+ showLog (show :boolean ):void

 

 

0..1

Figure 3.48: Classes of Input/Output system

Figure 3.49: Error message presented to the user

The Input/Output system manages tasks related to importing datasets and log-
ging. An important task in applications for data based analysis is to provide a
mechanism that deals with detailed error information. Errors might occur due to
programming errors in the Java code, but they can also result from wrongly speci-
fied input for external procedures. The error message would then be generated by
the engine that is used. Typically, errors should result in a message presented to
the user. This can be a dialog, as seen in Figure 3.49, or a text output in the result
area. However, it often does not make much sense to show all available informa-
tion to the user, because it is too long and sometimes cryptic to non programmers



3.29. View Packet 24: Input/Output 231

Figure 3.50: Screenshot of LogFrame with a detailed error message

and might therefore confuse them. On the other hand, most of the time it is the
only source of information for the developer to fix an error on the basis of a user
response.

JStatCom provides a simple solution to this problem by offering a way to
redirect all output that goes to System.out and System.err also to a logging
component. This component must implement the Logger interface and can be
set at program start via the RedirectOutput class. Programmers who want to
send messages to the logging system can then use the standard ways of coding
print statements, like System.out.println. No extra commands are needed.
Figure 3.48 shows the related classes. The Logger interface has the method
appendwhich is used to append output and error messages. The method showLog
should make the component visible. A default implementation of this component
is LogFrame which is shown in Figure 3.50. As can be seen in the screenshot,
it is used to collect normal status messages, as well as detailed error information



232 Chapter 3. Design and Implementation

that can help developers. The corresponding user message in Figure 3.49 contains
much less information. The error message is generated here by the PCall class
that was involved in the procedure call. It helps to standardize error statements and
to trace back the cause of problems quickly. The text field in the logging compo-
nent uses the ResultField class, which allows to easily save the log messages
to a file which can be attached to an error report. If the Application subsystem
with the default TopFrame implementation is used, redirection of output is auto-
matically done at program start. The logging component is then available via a
menu. In this case, no extra programming is needed to interact with the logging
system, except writing error and status messages to System.out or System.err.
Output redirection can also be used with a log file that should then be specified at
program start.

Furthermore, the system contains the class FileSupport with various helper
methods to save text files, and to create file choosers for selecting input and out-
put files for different tasks. Importing data is a more complex task that involves
several classes. It is handled by the Data Import subsystem.

3.29.2 Element Catalog

Class Name Responsibility

com.jstatcom.io

Logger Simple interface to be implemented by compo-
nents that process log strings.

FileSupport Support for convenient file selection.

LogFrame Frame that can be used as a log area for various
kinds of messages.

RedirectOutput Helper class to redirect stdout and stderr to a log
file and/or a logging component.



3.29. View Packet 24: Input/Output 233

Subsystems

Data Import System Manages importing data from files with different
formats. Can be adjusted to load various kinds of
data sets.

Table 3.40: Elements of Input/Output system

3.29.3 Architecture Background

During the development of JStatCom and the application JMulTi the importance
of a standardized yet easy to use error reporting system became more and more
obvious. Often user response is relatively vague and errors are therefore hard
to trace back to their origin without detailed information, like for example the
stack trace of exceptions that have been thrown. Therefore the logging system
was introduced and users should always be encouraged to attach its output when
errors are reported. Experience has shown that this discloses the source of errors
almost immediately in most cases, thus reducing the time needed for reproducing
problems, which is often the most time consuming part of fixing errors.

However, the logging system is only the way of collecting those messages eas-
ily. It has to be supported by programmers in such a way, that enough information
is provided to be useful for debugging. This means, for example that exceptions
that might occur in the program should never be just caught and ignored. By
printing the stack trace, they will appear in the log area and can reveal impor-
tant information. It also means that when exceptions are created and thrown, they
should always contain relevant information about the source of the error. An ex-
ample from the UMatrix class is the following method that can be used to create
an identity matrix of a certain dimension:

public static double[][] eye(int dim) {

if (dim < 0)

throw new IllegalArgumentException(

"Dimension argument " + dim + " < 0.");



234 Chapter 3. Design and Implementation

double[][] d = new double[dim][dim];

for (int i = 0; i < dim; i++)

d[i][i] = 1;

return d; }

If, for some reason, a negative dimension argument is given, an exception is
thrown. The message will include the wrong argument and why the exception
was raised. If this message is caught somewhere, the handler should just print the
stack trace of the raised exception which would then also appear in the log area.
The information given there about the wrong argument, together with the stack
trace that reveals information from which method eye was called, might already
be sufficient to know the source of the error.

One might ask, why this somewhat ad hoc logging system is used instead
of the existing logging API provided by the standard Java library since version
1.4. The reason is just that the benefits of using that API are not quite clear
in the current problem domain. Experience has shown that the use of well pre-
pared error messages together with stack traces of exceptions is appropriate for
the current purpose. More importantly, the use of the logging API would require
extra code to produce logging messages. As already mentioned, the current sys-
tem does not require any extra code, except the usual System.out.println and
System.err.println commands that programmers use anyway. Other advan-
tages of the logging API, like fine grained logging levels, more detailed time in-
formation, and a higher flexibility of specifying handlers, are not really needed at
the moment. However, programmers can of course use the logging API together
with the current system without any problems. Generated log messages would by
default also appear in the LogFrame, unless special handlers are used.

3.29.4 Related View Packets

• Parent: View Packet 1: JStatCom

• Children:

– View Packet 25: Data Import System



3.30. View Packet 25: Data Import System 235

3.30 View Packet 25: Data Import System

3.30.1 Primary Presentation

AbstractImportPanel

+ importData ():void

ImportHandler

+ getData (type :ImportTypes ):JSCData
+ importData (file :File):boolean

ImportTypes

+ type ():JSCTypes
+ name ():String

<< enumeration >>
TSImportTypes

+ DATA  :TSImportTypes
+ DESCRIPTION  :TSImportTypes
+ STARTDATE  :TSImportTypes
+ VARNAMES  :TSImportTypes

TSASCIIHandler
<< Singleton >>

TSExcelHandler
<< Singleton >>

TSExcelDialogTSASCIIDialog

ImportDataFrame

+ setImportPanel (panel :AbstractImportPanel ):void
+ importData ():void

TSImportPanel

1

*

 

 
1

 
1

 

1

Figure 3.51: Classes of Data Import system

The Data Import system is typically not used by programmers directly, except
if they plan to extend it with their own dataset definition. However, this presenta-
tion should show possible extension points.

An important part of any data based analysis system is to convert data being
stored in files of some format to the data representation that is used internally by
the software. This process involves parsing data files and assembling the result-
ing output in a way that is appropriate for the given problem domain. For time



236 Chapter 3. Design and Implementation

Figure 3.52: Screenshot of ImportDataFrame with a TSImportPanel

series analysis, this would mean to create a set of time series and add them to
the TSHolder from the Time Series system. However, one could also imagine
other ways of assembling the output for different problem domains. Therefore,
the Data Import system provides an abstract layer which does not make any as-
sumptions about the structure of the underlying dataset nor the format in which
the data is stored. It only assumes that all elements of a dataset can be represented
as instances of JSCData. Concrete implementations will then define the specific
details that are needed to handle data of a certain type.

Figure 3.51 shows the classes of that system. The class ImportDataFrame
is just an internal frame that should hold the user interface components needed
to import data of some type. How that GUI is designed is not specified in this
class, but in an instance of AbstractImportPanel instead. This abstract class
must be subclassed to provide the required functionality. The import data frame



3.30. View Packet 25: Data Import System 237

Figure 3.53: Screenshot of TSASCIIDialog

component can be configured with the method setImportPanel to tell it which
panel implementation to use. This defines the abstract layer for the GUI part of
importing data. Figure 3.52 shows a screenshot of it with a panel for importing
time series data.

The actual logic for parsing files and assembling datasets is also specified in an
abstract layer. Each file handler should implement the interface ImportHandler.
Parsing data from a file would then be invoked via importData, whereas the ele-
ments of the assembled dataset can then be accessed via getData. Each element
of a dataset is identified via an instance of ImportTypes.

The two abstract layers are sufficiently flexible to handle any file format and
any dataset structure. However, they allow to use that system via some very simple
interface methods. All that is needed to invoke a specific import mechanism is
to set the panel to use with ImportDataFrame and to invoke the importData
method of that frame. Actually, the Application subsystem does exactly this in
the TopFrame component. Data import is invoked via a menu item. The default
import panel is that for time series analysis, but it could be replaced as well.



238 Chapter 3. Design and Implementation

For time series analysis, this system has been implemented to assemble time
series data from ASCII and Excel files. The two implementations of the
ImportHandler interface are TSASCIIHandler and TSExcelHandler. They
are invoked from TSImportPanel according to the used file name suffix, which
provides the GUI for reading in time series data. Both handlers parse data files dif-
ferently, and they can also ask the user for additional information via the dialogs
TSASCIIDialog, which is shown in Figure 3.53, and TSExcelDialog. Although
the reading of files in different formats involves completely different techniques,
the data for time series analysis must always contain the same types of informa-
tion. Those are declared in the enumeration TSImportTypes, which just defines
all elements of a valid dataset. One could easily imagine to add more handlers
to parse also other file formats, but the assembled results must always contain the
elements laid out in this type definition. This way, they can be accessed from the
TSImportPanel which creates instances of TS and adds them to TSHolder.

3.30.2 Element Catalog

Class Name Responsibility

com.jstatcom.io

AbstractImportPanel Abstract panel for general import data
functionality.

ImportHandler Interface to be implemented by classes that initiate
parsing of data files and the creation of datasets.

ImportDataFrame The frame containing the import data functionality.

ImportTypes Enumeration of constants that define different
types of elements that belong to a certain dataset.

TSASCIIDialog A dialog for gathering user information if an
ASCII file is read in.



3.30. View Packet 25: Data Import System 239

TSASCIIHandler Import handler for ASCII data files that either con-
tain only the data points or that are in the .dat
format.

TSExcelDialog A dialog for gathering user information if an Excel
file is read in.

TSExcelHandler Import handler for Excel data files.

TSImportPanel Panel for importing and displaying data files for
time series analysis.

TSImportTypes Enumeration defining the elements of an imported
dataset to be used for time series analysis.

Table 3.41: Elements of Data Import system

3.30.3 Architecture Background

The design of the Data Import system was driven by two obvious extension points.
First, it is likely that new handlers are being defined to parse different file for-
mats to some dataset. Therefore it seemed reasonable to standardize the general
layout of those handlers with an interface ImportHandler. The class that in-
vokes the handlers, usually an AbstractImportPanel subclass, can then eas-
ily switch between different implementations according to the file format that is
selected. The invoked methods are always the same, and therefore the calling
method does not need to change when the underlying parser changes. This is a
typical application of the Strategy pattern. The currently implemented strategies
are TSASCIIHandler and TSExcelHandler.



240 Chapter 3. Design and Implementation

The other extension point is that there might also be the need to create a com-
pletely new dataset definition that is not compatible with the already implemented
time series specification. For example, one could imagine to have an extended
specification for cross sectional data, where each series is indexed via time and
via a label defining the section it belongs to. This could then be used in a special
selection mechanism, especially if a large number of sections is being considered.

3.30.4 Usage Example

To summarize, creating a new parser for an existing dataset specification requires
to create another implementation of ImportHandler and to tell the respective
import panel when to use it. This can either be done via a user dialog, or via inter-
preting the file name suffix of the selected data file. The latter might be ambiguous
though.

Creating a new dataset specification usually involves subclassing
AbstractImportPanel for the GUI, as well as the creation of at least one han-
dler realization. The elements of a dataset should be declared in an enumeration
that subclasses ImportTypes. This way, datasets get a clear structure and are
easy to understand.

A small code snippet demonstrates the usage of the time series import han-
dlers. Originally, this code is part of the class TSImportPanel. It shows the
mechanism of parsing different formats and retrieving the assembled information
afterwards:

ImportHandler handler = null;

String fName = "datafile.dat";

// select handler according to file name suffix

if (fName.toLowerCase().endsWith("xls"))

handler = TSExcelHandler.getInstance();

else

handler = TSASCIIHandler.getInstance();



3.31. Concluding Remarks about JStatCom 241

// import data

if (!handler.importData(file))

return;

// get imported elements via types

JSCNArray data = (JSCNArray) handler.getData(

TSImportTypes.DATA);

JSCDate startDate = (JSCDate) handler.getData(

TSImportTypes.STARTDATE);

JSCSArray varNames = (JSCSArray) handler.getData(

TSImportTypes.VARNAMES);

JSCString description = (JSCString) handler.getData(

TSImportTypes.DESCRIPTION);

...

The example imports data from a file datafile.dat. First the appropriate
handler is selected and the singleton instance is referenced. In this case, the
TSASCIIHandler is selected. Via importData the parsing is invoked. Finally,
all elements of the loaded dataset are retrieved from the handler as instances of
JSCData. The flexibility of the Type System helps to represent each part with an
appropriate type. What is missing here is how instances of time series are created
and how they are further processed.

3.30.5 Related View Packets

• Parent: View Packet 24: Input/Output

• Children: none

3.31 Concluding Remarks about JStatCom

One of the main goals of creating the framework JStatCom was to provide a so-
lution to support the creation of GUI applications for data based analysis that is
applicable to a wide range of usage scenarios and that leaves always room for ex-
tensions. The design was done in the hope that it can reduce the need for ad hoc



242 Chapter 3. Design and Implementation

solutions for tasks that occur in literally any application for data based analysis.
The description of potential extension points should have pointed interested de-
velopers in the right directions.

Another very important goal was to reduce the initial effort to create running
applications with the help of JStatCom. GUI developers should not be mislead by
the fact that almost all systems can be changed and customized. A lot of effort
has been put in providing reasonable default values and to make it possible to
create a simple module in a few steps. However, as programming experience
grows and projects get larger, the framework should still support even challenging
development tasks.

The current state of JStatCom can be considered as a core package where all
packages are required to let it run. But there are still a few things that have to be
added to support development of really full featured and professional applications.
First, this is project management, which should allow users to store the state of a
model in a file and retrieve it easily from there. Of course, this could be imple-
mented independently of JStatCom in applications using it. But considering that
this is not a trivial task, it would be nice to have it as another system on the frame-
work level. This would feature a common XML project file format which could
then be adjusted to store specific settings for applications based on JStatCom. The
details for each model must then be specified for each module, but it helps a lot
if there is already a general infrastructure. Some design decisions that have been
made had this vision of a project management system already in mind. For exam-
ple, it is possible to store all JSCData instances in XML files, even whole symbol
tables can easily be serialized and deserialized. This mechanism together with the
Symbol Management system will help to make it relatively easy to define project
settings and to restore them from files if symbol tables are used to represent the
state of a model.

Another very desirable extension would be to have a feature-rich Java based
graphics engine. This is, because creating graphics via external engines is often
somewhat troublesome and does not result in a consistent user experience.



3.31. Concluding Remarks about JStatCom 243

Developing such a graphics engine is beyond the scope and also against the
spirit of this project, but there are already quite powerful toolkits that can be
reused. A good candidate is the already mentioned jfreechart library which ap-
pears to have a very active developer community and is constantly being im-
proved.

Finally, it is always possible to use the extension points of the framework to
add new functionality, like for example new data types, more parsers for data
import, other engine implementations, or special GUI components. It is argued
that JStatCom is a very flexible solution to design GUIs for algorithms that can
be used to analyse data. However, the drawback against other solutions is that
some amount of Java programming is needed. This might be considered being
too complicated, especially by researchers who want to do the GUI development
themselves. Often they prefer to work with a programming language they already
know, for example Matlab. However, it is hoped that JStatCom is used in projects
where more complex GUIs are required and where the offered flexibility is needed.
Its big advantage is that it is based on a standard technology that is supported by
various tools and rich documentation. Furthermore, Java is being taught in many
introductory courses on programming and informatics and it should not be too
difficult to find people capable of filling the role of the GUI developer.

To ensure that JStatCom is being further developed, maintained, and sup-
ported, a possible solution would be to turn it into an open-source project. This
can be used to attract other developers to join the development team. However,
this must also be supported by tools because joint development poses coordina-
tion costs. The infrastructure for hosting such projects is available for free at
sourceforge.net. This site offers various features that are essential if many devel-
opers need to work jointly, for example version control, release management, bug
tracking, discussion forums, etc..

The author has already gained some experience with hosting and maintaining
an open-source project with the software JHelpDev.7 Because JStatCom might be
of general interest to the Java community, a better alternative to sourceforge.net

7JHelpDev is hosted at sourceforge under jhelpdev.sourceforge.net. The project is led by the
author and by now there are two registered developers who have contributed to the integration of
a number of features, for example a smart automatic table of contents generation algorithm.



244 Chapter 3. Design and Implementation

would be to host the project at java.net. This platform offers similar services than
sourceforge but is more specific to Java. Therefore it might be easier to promote
JStatCom there and to find fellow developers. This might also be a solution that
allows the author to step back from this project when others have taken over.
However, first it needs to be migrated there and published to the community.

So far the response to presentations of JStatCom was very positive, especially
by researchers who have experience with programming GUIs for their modules.
There is definitely a request for supporting this task. This can also be seen from
the fact that recently a somewhat similar project has been started at the men-
tioned java.net site which is called JDesktop Network Components (JDNC).8 In
the project description it is written:

The goal of the JDesktop Network Components (JDNC) project is
to significantly reduce the effort and expertise required to build rich,
data-centric, Java desktop clients for J2EE-based network services.

From this goal it can be seen that there is a need for frameworks that support
the creation of GUIs for applications that need to represent data. As compared to
JDNC, JStatCom has a stronger focus on writing user interfaces for algorithms.
However, there are overlapping goals and JStatCom can certainly benefit from
components provided by JDNC. Because both projects are written in Java it would
be straightforward to integrate JDNC classes.

Because JStatCom was designed to be usable not only for time series analysis
and econometrics, it should be an attractive choice also for developers in other
problem domains, for example in engineering. For this it will probably be nec-
essary to add support for new file formats to import data of other types than time
series. It is argued that JStatCom is a good starting point for programming analy-
sis tools quickly. Its data management and GUI capabilities should be general
enough to satisfy the needs of developers in various fields.

8The JDNC project homepage is jdnc.dev.java.net.



Chapter 4

JMulTi - A Reference Application of
the Framework

4.1 Introduction

The framework JStatCom that has been described in the previous chapter was
developed from the experiences gained while creating the software JMulTi. Orig-
inally, that software was designed as a convenient GUI to complex and difficult
to use econometric procedures written in Gauss, that were not available in other
packages. Because this concept has proved to be quite fruitful, JMulTi has evolved
to a comprehensive modelling environment for multiple time series analysis.

As the software was getting more and more complex, it also became clear that
it could only be maintained on a long term basis, if sound software engineering
principles would be followed. It was also obvious that the software concept would
certainly be a useful approach for many related applications as well. This has mo-
tivated the development of the framework JStatCom, which was already initiated
by Benkwitz (2002).

The current chapter describes the application JMulTi in some detail from a de-
velopers point of view, and, to a lesser extent, from a user’s viewpoint. Because so
far this software is the only program that uses JStatCom, not counting showcase
examples, the discussion of its design might help developers to layout and create
their own modules. The benefit of using a framework is also that applications

245



246 Chapter 4. JMulTi - A Reference Application of the Framework

based on it have a very similar structure. Therefore, the design of JMulTi mod-
ules can almost serve as a blueprint for other modules as well. Furthermore, the
subsystems that have actively been used will be referenced throughout this chap-
ter. After all, the following descriptions should show what can be accomplished
with the framework. The author has initiated the development of all modules cur-
rently in JMulTi, except VAR and VEC. However, also these parts of the program
where enhanced with various features and have been almost completely rewritten.
Details about the underlying econometric procedures will not be in the focus of
this text. For this, the help system of JMulTi can be consulted, as well as the
comprehensive reference Lütkepohl and Krätzig (2004).

It should be mentioned that JMulTi has meanwhile become a software that is
actively used for empirical research and teaching. Due to response by users it was
possible to improve the program over time and to fix various errors. Particularly
instructive was a workshop organized in March 2003 in Florence which gave a
profound feedback to the author, thus pointing to many enhancements.

4.2 General Setup

The general usage of JMulTi is pretty much predetermined by the layout of the
framework JStatCom. The software makes use of the Application system (Section
3.26). Functionality that belongs together is summarized in modules. Each mod-
ule appears in its own internal frame and can be used separately. One can identify
two levels of interaction:

• General functions - Those tasks are implemented on the framework level
and are shared by all modules. They include the symbol control system
(Section 3.12), the time series calculator (Section 3.24), the data import
system (Section 3.30), the log frame (Section 3.29), as well as the help
system. In future versions this will also include project management and
services related to graphics.



4.2. General Setup 247

• Module specific functions - Each module provides a GUI to a certain set
of procedures that follow a common theme. The modules make use of the
services provided by the framework, for example, they use the data that has
been imported. Modules are otherwise largely independent of each other.

This basic layout of JMulTi is similar to the design of the Oxmetrics family of
econometric software. Like JStatCom, the GiveWin framework provides a general
infrastructure that can be extended with specialized modules. It is an interesting
observation that this similarity has appeared, although the two systems have been
developed independently. Therefore, it is identified as a useful pattern for data
based analysis. However, JStatCom is a more general development framework
than GiveWin/OxPack, because it allows more freedom to design the individual
modules and to operate with different engines.

It is also worth thinking about the term Reusability in the context of the soft-
ware JMulTi. For JStatCom, reuse was one of the main design goals for all classes
and subsystems. But applications that are based on JStatCom can provide reusable
components themselves. However, software reuse is typically not one of the main
aspects anymore, because it requires considerably more effort in terms of doc-
umentation and class design. Therefore, reusability is often a mere side effect
of application development. What is more important, is to avoid repeating code
within the application. This often requires internal reuse of classes which is much
easier to achieve than external reuse, because the usage scenarios are more clearly
defined. External reuse means that parts of JMulTi could programmatically be
invoked from within another software. For example, one could imagine that the
VAR estimation procedure would be called from another Java application, thus
making this routine available in other packages as well.

JMulTi does reuse classes internally for tasks that occur in similar or only
slightly modified ways in several parts of the program. For example, several tests
for residual analysis are used a couple of times across different modules. It would
certainly be bad design if those procedure calls were always implemented again.
Therefore the PCall system (Section 3.19) was used to encapsulate those proce-
dure calls in separate classes that can be used from different components easily.



248 Chapter 4. JMulTi - A Reference Application of the Framework

4.3 Modules of JMulTi

Having described the very general design of JMulTi which is imposed by the
underlying framework, this section gives an overview of the modules that are
actually being implemented.

First, it should be mentioned that JMulTi uses the GRTE (Section 3.15) or
the Gauss engine (Section 3.14). All modules rely on the external resources that
have been described in the respective parts of the architecture documentation. The
default mode for JMulTi is to work with the GRTE. The Gauss engine is only used
for development and debugging purposes. It is possible to switch between those
two engines via the command line option -DGRTE="true" or "false".

Table 4.1 presents all modules that have been implemented so far. They will
be described in greater detail in the remaining sections of this chapter. The user
of JMulTi is expected to start a time series analysis by applying the module Initial

Analysis to investigate basic properties of the data and to decide on stationarity of
the single series, as well as to test possible cointegration relations. Afterwards,
the user might choose one of the other analysis modules to specify and estimate
certain models.

The table also lists the implementation units for each module. All classes
have the common prefix de.jmulti and are grouped in packages with descriptive
names. It can be seen that proc and tools are used by all modules. Those
packages contain classes and components that are reused internally. The proc
package holds all PCall implementations for each procedure call that is being
made in JMulTi.



4.3. Modules of JMulTi 249

Analysis Module
Implementation Units
(de.jmulti)

Description

Initial
initanal

tools

proc

Entry point for time series modelling. Provides a
workbench panel with descriptive statistics, spectrum,
autocorrelation, and kernel density analysis. Offers a
range of unit root and cointegration tests.

VAR
var

tools

proc

Specification and estimation of full and subset VAR
models with impulse response analysis, diagnostic
checks, forecasting, and more. Also offers the pos-
sibility to estimate SVAR models.

VEC
vecm

tools

proc

Specification and estimation of VEC models with im-
pulse response analysis, diagnostic checks, forecast-
ing, and more. Also offers the possibility to estimate
SVEC models.

ARCH
arch

tools

proc

Allows to estimate univariate volatility processes with
different error distribution assumptions and ARCH,
GARCH or TGARCH specifications. Multivariate
MGARCH estimation is possible as well.

STR
str

tools

proc

Specification and estimation of STR models, as well
as nonlinearity tests. All parts of the estimated STR
model can be plotted.

Nonparametric
cafpe

tools

proc

Allows to specify, estimate, and analyze univariate
nonparametric time series models for the conditional
mean and the conditional volatility of a stochastic
process. Forecasting is possible as well.

Table 4.1: Modules of JMulTi



250 Chapter 4. JMulTi - A Reference Application of the Framework

It would always be possible to add newly defined modules without interfering
with the existing ones, given that there are no compatibility issues with the un-
derlying external resources. If the new modules are also making use of the GRTE
engine, then all Gauss sources should be compiled into a single .gcg file. This
means that there must not be any naming conflicts with the procedure names or
global variables.

4.4 How to read this Chapter

The following sections describe each module from different viewpoints. Readers
should get an idea of what a module is meant for, and they should also learn how
the module was built by making use of the features provided by JStatCom. Like in
the previous chapter, it has been found to be useful to stick to a general structure:

1. Overview: Describes the general usage context of the module, typically
with screenshots.

2. Implemented Features: Gives a detailed account on the functionality that
is provided by the module. This is helpful from a users point of view to
evaluate the software in terms of applicability for her purposes.

3. Implementation Details: Describes selected solutions for the implementa-
tion of certain features. This section should be helpful for developers, be-
cause it might relate to what they are trying to accomplish. It also links to
relevant sections of the architecture documentation. In some cases, code
examples are used.

4.5 Initial Analysis

4.5.1 Overview

The Initial Analysis consists of tasks that are typical for the beginning of any time
series analysis. First, the user should get an idea of the data to be analyzed. This
can be done via checking plots, descriptive statistics, autocorrelation functions,



4.5. Initial Analysis 251

spectrum, and kernel density estimates. Direct dependencies between two series
could be investigated with crossplots. Figure 4.1 shows the textual output of the
computation of the AC and PAC functions for a selected series.

Figure 4.1: Screenshot of workbench with autocorrelation panel

Another important part of the analysis should be to check the stationarity prop-
erties of the series used for a model. This can be done via the unit root test panel,
which is shown in Figure 4.2. There is a range of test procedures that can be
applied, and a selection box allows to switch between panels for different tests.

When there is actually instationarity being discovered, cointegration tests might
help to determine, whether a stable long run relationship exists between the series.
The number of those relations can be determined as well. The outcome of this test
can help to decide which model to use for the further analysis. Figure 4.3 has a
screenshot of one of the implemented cointegration tests.



252 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.2: Screenshot of ADF unit root test panel

4.5.2 Implemented Features

Workbench

• Plots - This panel can be used to configure plots of the selected variables in
several ways, including indexed and standardized plots.

• Descriptive Statistics - Shows mean, minimum, maximum, standard devi-
ation and variance of the selected series. It also computes the Jarque-Bera
tests (Jarque and Bera (1987)) and ARCH-LM tests (Engle (1982)) for each
series.

• Autocorrelation - Computes the AC and PAC functions of the selected
time series up to a maximum lag order. The results can either be plotted
or printed.

• Spectrum - The ACs of a stationary stochastic process may be summarized



4.5. Initial Analysis 253

Figure 4.3: Screenshot of Johansen cointegration test panel

compactly in the spectral density function. It is defined as

fy(λ) = (2π)−1
∞∑

j=−∞

γ je−iλ j = (2π)−1

γ0 + 2
∞∑
j=1

γ j cos(λ j)

 (4.1)

where i =
√
−1 is the imaginary unit, λ ∈ [−π, π] is the frequency and the

γ j are the autocovariances of yt. In JMulTi this function can be estimated
and either be plotted or printed.

• Kernel Density Estimation - With this panel, it is possible to estimate the
kernel density function of the selected series with a number of different
kernels. The result can either be plotted or printed. Further options are
computation of the first derivative of the estimated density, standardization
of the selected series, computation of the density for a generated standard
normal variable for comparisons, as well as adjusting the range and the
bandwidth for the kernel estimator.



254 Chapter 4. JMulTi - A Reference Application of the Framework

• Crossplots - Sometimes it is useful to investigate the direct relationship
between two variables. Crossplots offer an intuitive graphical tool to look
at comovements between two different variables. It may also be helpful
to compare the plot with a simple OLS regression line, as well as with a
nonparametric estimate.

Unit Root Tests

• Augmented Dickey-Fuller (ADF) - A panel for specifying the ADF test
(Dickey and Fuller (1979)). It computes the test regression and presents
the estimation results, the critical values and the test statistic, as well as the
number of lags suggested by the information criteria AIC (Akaike (1973)),
HQ (Hannan and Quinn (1979)), SC (Schwarz (1978)), and FPE (Akaike
(1969)).

• HEGY - Computes the HEGY test to check for seasonal unit roots in quar-
terly (Hylleberg et al. (1990)) and monthly (Franses (1990)) time series.
The panel presents the results of the test regression, critical values and test
statistics. As with the ADF test, the lags suggested by the information cri-
teria are given as well.

• Unit root test with structural break - Computes a unit root test allowing
for a level shift in the mean that follows a certain shift function (Saikkonen
and Lütkepohl (2002), Lanne et al. (2002)). It can also be used to find
the break point first. The panel shows the results of the test regression, the
critical values, and the test statistic. As with the ADF and HEGY tests, the
lags suggested by the information criteria are given as well.

• Residual Analysis - For the ADF, HEGY, and unit root test with struc-
tural break, diagnostic tests for the estimated residuals are provided. They
include plotting the residuals, plotting the AC and PAC functions, the Port-
manteau test (Ljung and Box (1978)), as well as the Jarque-Bera and ARCH-
LM tests.



4.5. Initial Analysis 255

• Schmidt-Phillips - This panel computes a unit root test allowing for the
presence of a deterministic linear trend, as proposed by Schmidt and Phillips
(1992). The output contains the test statistic, as well as critical values.

• KPSS - A test for the null hypothesis of stationarity (Kwiatkowski et al.
(1992)). The panel computes the test statistic with either only an intercept,
or an intercept and a trend as deterministic part. Critical values are presented
as well.

Cointegration Tests

• Johansen - Computes the Johansen trace test (Johansen (1995)) to deter-
mine the cointegration rank of a set of I(1) variables, see Figure 4.3. It can
be executed with three different specifications for the deterministic part:

– Unrestricted mean term and no linear trend

– Constant and linear trend

– Trend orthogonal to cointeration relations

The test panel also allows to restrict the selected deterministic variables to
the EC term. Because the lag order of the underlying VAR model must be
specified, information criteria can be used to choose the correct number.
The critical values as well as the p-values of all Johansen trace tests are ob-
tained by computing the respective response surface according to Doornik
(1998) if there are no breaks, or according to Johansen et al. (2000) if there
are up to 2 breaks. If the p-value cannot be computed for a given model,
then only the test statistic is presented.

• Saikkonen & Lütkepohl - Computes the S&L cointegration test (Saikko-
nen and Lütkepohl (2000, b, c)) which first estimates the deterministic term
by a GLS procedure and subtracts it from the original series afterwards.
Then a Johansen type test is applied to the adjusted series. Like the Jo-
hansen test, it can be executed with three different specifications for the



256 Chapter 4. JMulTi - A Reference Application of the Framework

deterministic part. The lag order may be specified with the help of informa-
tion criteria. The p-values for the test statistics are generated with a response
surface according to Trenkler (2004).

4.5.3 Implementation Details

By looking at the three Figures 4.1, 4.2, and 4.3, a similar pattern for the GUI
design of those panels can be found. There is always a selection panel, some con-
trols for input specification, and a text area for showing the generated output of
a procedure. This is a common theme for many panels in JMulTi. The frame-
work JStatCom greatly facilitates the creation of such user interfaces, because it
provides specialized components for it.

The selection mechanism is always handled by a TSSel component, see Sec-
tion 3.23 for a description. This class is typically used at least once in each of the
modules for time series analysis, because variables always need to be selected for
a model. For the unit root tests, it is adjusted to allow for the selection of only one
endogenous variable, because the underlying models are univariate. This is differ-
ent for selecting variables for the cointegration tests, because here a VAR system
can be specified. But exogenous variables are disabled in this setting, because
they are not supported by the test routines.

The text output from the procedures is always presented with an instance of the
ResultField class, see Section 3.25. It holds the generated output and provides
a helpful popup menu for saving, clearing, printing, and adjusting the font size.

Another important component that is visible in all three screenshots is the
NumSelector textfield, see Section 3.25. It appears whenever users should input
numbers and provides input checks that can also be used to validate against some
interval. In the Initial Analysis, most number inputs are lags for the underlying
regressions. Therefore the number input fields take integer values. A different
behaviour of that component is seen in the panel for kernel density estimation,
where the bandwidth can be set manually. This field takes a real number up to a
precision of 0.1, which is sufficient for that case.

Figure 4.3 also shows a CheckBoxList, see Section 3.25, which is used to
select boolean properties for a number of objects. Although this could in principle



4.5. Initial Analysis 257

also be done with a default list, the checkbox list is a more intuitive way of doing
this. Furthermore, the selection of the contained items is kept even if elements
are being removed or added, which is different from the default behaviour of a
javax.swing.JList.

To summarize, it should be clear that the components provided by JStatCom
help to develop GUIs rapidly, because they can bring complex functionality into
the application. It should also be mentioned that the Symbol Management system
is an integral part of programming with these components, especially with the
TSSel class. The workings of it have been described in Section 3.12. Having
this system working in the background relieves the GUI developer from the task
of thinking about how to exchange variables between the components involved.
It suffices to set the names of the variables under which the selection component
stores the data in the symbol table. Other components can then easily retrieve the
values from there.

Figure 4.4 shows a screenshot of the symbol control frame at runtime with
the contents of the global symbol table for the Initial Analysis, as well as the
local symbol table for the ADF test. It can be seen that the selected variables are
all stored in the global symbol table. For the unit root tests this is UR DRANGE,
UR ENDDATA, UR ENDNAMES. These are used by all unit root test panels. Each
specific test panel stores its results in a local symbol table. This is not really
needed for the program to run, but should bring some transparency to the potential
user. This way, for example, the estimated residuals from the ADF regression can
be exported. They are stored under the variable ADF RESIDS. One could ask here,
why the selection for unit root tests is stored in the global table, because it is not
of interest for cointegration tests or the workbench analysis panels. The answer is
that it would have been equally possible to split the symbol table hierarchy into
separate branches. This was not done, simply because there are only relatively
few variables that are actually being shared. However, for more complex GUIs
this would be a better solution.



258 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.4: Screenshot of Symbol Control for Initial Analysis

Organization of Classes

Figure 4.5 gives an overview of the classes that are used for the Initial Analysis.
The top level component of that module is InitAnalFrame. It contains three
panels that hold the analysis parts. The graphic only reveals more details for the
CointPanel. It holds a TSSel component for selection and a container that itself
has the two panels for the cointegration tests. Each of those panels uses a PCall
subclass to invoke the test procedures. All relations are compositions, which is
typical for GUI design. The class organization was done in a way that each class
gets a distinct functionality, and that it is not overloaded with too many features.
As an extreme case, one could also have put all panels in a single class, but that
would not have been good class design, because it would have led to a system that
is hard to maintain and extend. However, designing class structures for GUIs is
normally very straightforward. The simple proposed rules are:



4.5. Initial Analysis 259

CointPanel

InitAnalFrame

UnitRootPanel

WorkbenchPanel

CointTestContainer TSSel

JohansenPanel SLCointPanel

 

1

 

1

 

1

 

1

 

1

 

1

JohCointTestCall

+ JOH_RESULT  :JSCTypeDef

SLCointTestCall

+ SL_RESULT  :JSCTypeDef

 

1

Figure 4.5: Classes for Initial Analysis

• Create a separate class for each GUI that has a specific task. Those tasks
can typically easily be identified, for example executing the ADF test, the
Johansen test, etc..

• Put the panels together in appropriate container panels. For example, all
panels for unit root tests and cointegration tests are put in a container panel
that allows to choose which test panel to use.



260 Chapter 4. JMulTi - A Reference Application of the Framework

• Implement the procedure calls by using the Engine and PCall systems, see
Sections 3.13 and 3.19. Invoke those calls from the GUI panels for the
respective procedures, usually via an Execute button.

The last point needs some more explanation. So far, only the GUI compo-
nents were described. However, the procedures must be invoked somehow from
the specification panels. JStatCom supports this via the Engine and PCall systems.
Developers should always subclass PCall to implement a procedure call for each
of the invoked algorithms. This class provides many features that are useful in that
context, like using an extra thread to run, a standardized error handling scheme,
support for listeners, interaction with a status display, and more. By creating an
extra class for each procedure call, it is possible to test those calls automatically
without the need to start the GUI component first. Although this seems to be a
mere technicality, it can greatly help to deliver quality modules and to improve the
code. A second advantage is that calling logic and output formatting are separated
from the GUI components and can therefore separately be maintained. Further-
more, procedure calls that are in extra classes can also be called from different
parts of the GUI. This is what is meant by internal reuse. In the Initial Analysis,
the diagnostic checks for the residuals always use the same procedure calls, al-
though they are invoked from three different test panels, namely ADF, HEGY and
UR test with structural break. Those calls are also used by other modules when di-
agnostic checks for univariate models are carried out. Therefore all caller classes
are organized in the package de.jmulti.proc, whereas the module specific GUI
components go into distinct packages, like de.jmulti.initanal.

The two PCall classes from Figure 4.5 also have publicly accessible variable
definitions SL RESULT and JOH RESULT. Those fields are instances of JSCTypeDef
and define the name, type, and description under which the test results are stored
in the symbol table. Which symbol table is actually used must be set by the invok-
ing GUI component. In the current case, this is the local symbol table, because
the test results are not processed by any other panels, but should be shown in
the Symbol Control for transparency. In the same way, all procedure call objects
in the Initial Analysis define how the computed results are stored. This should
also be the preferred way for any new caller class to specify variables holding the



4.6. VAR Analysis 261

results. However, the only exception is when the number of computed data ob-
jects is large. In that case it will pay off to use a separate class with the variable
definitions.

Some components are also of interest to other modules, for example the pan-
els for computing the spectrum and the kernel density estimation. They are ap-
plied in all other modules for the residual analysis. For this reason, those com-
ponents can be reused as a whole, meaning GUI panel and procedure call class.
All components that are to be reused internally are summarized in the package
de.jmulti.tools. Component reuse is very effective, because it allows to incor-
porate complex functionality quickly. However, the components must be flexible
enough to be adjusted to slightly different modelling situations.

4.6 VAR Analysis

4.6.1 Overview

Figure 4.6: Screenshot of specification panel for the VAR analysis



262 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.7: Screenshot of estimation panel for the VAR analysis

Finite order VAR models can be specified, estimated, analyzed and used for
forecasting in JMulTi. The module allows to analyse VAR models of the form

yt = A1yt−1 + · · · + Apyt−p + B0xt + · · · + Bqxt−q +CDt + ut, (4.2)

where yt = (y1t, . . . , yKt)′ is a vector of K observable endogenous variables, xt =

(x1t, . . . , xMt)′ is a vector of M observable exogenous or unmodelled variables, Dt

contains all deterministic variables, and ut is a K-dimensional unobservable zero
mean white noise process. Deterministic variables may contain a constant, a linear
trend, seasonal dummy variables, as well as user specified dummy variables. All
basic properties of the model, like variables, sample range, lags, can be selected
in the specification panel, see Figure 4.6.

The Ai, B j and C are parameter matrices of which the elements are estimated.
JMulTi presents the estimation output in an intuitive form via a matrix display that
resembles the mathematical notation given in Equation (4.2), see Figure 4.7.

To help to determine the lag order p of the VAR model, model selection cri-
teria can be applied. They are also available via the specification panel (Figure
4.6). Furthermore, various restrictions can be imposed on the parameter matri-
ces. In particular, zero restrictions can be set via the Subset Specification panel in
JMulTi, which is presented in Figure 4.8. It is possible to set subset restrictions



4.6. VAR Analysis 263

Figure 4.8: Screenshot of manual/automatic subset specification for the VAR
analysis

Figure 4.9: Screenshot of SVAR model estimation

manually via mouse clicks over the respective elements of the parameter matrices,
but there is also the option to apply a range of model reduction strategies to find
zero restrictions automatically according to a selected criterion (Brüggemann and
Lütkepohl (2001)).

It should be noted that the general VAR model in Equation (4.2) nests the uni-
variate AR model with just a single endogenous variable. Thus the VAR analysis
module can also be used for AR models.

The VAR module provides GUI panels for all modelling steps that can be ac-
cessed via the menubar of the module frame, as can be seen at the top of Figure
4.6. The general idea of the underlying methodology is that model building is
a stepwise process that can partly be automated, but that is steered by the ex-
perienced user. Therefore, JMulTi supports the user in choosing the appropriate



264 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.10: Screenshot of Symbol Control system for VAR model

model by offering information criteria for the choice of the optimal lag lengths,
as well as more sophisticated subset search procedures, which automatically find
zero restrictions in a model. Figure 4.8 presents the panel for applying model
reduction strategies.

Once the model is estimated, see Figure 4.7, further analysis steps can be
taken. But first, the model should be checked against various possible misspeci-
fications with the help of the residual and the stability analysis panels. Also, the
presence of ARCH effects can be analysed. The structural analysis can then be
employed to convey an impulse response analysis, as well as a forecast error vari-
ance decomposition and causality tests. To identify and trace structural shocks,
the SVAR analysis is available. Figure 4.9 shows the specification panel for the
SVAR model estimation. Finally, forecasting of the levels and the undifferenced
series is provided as an option to the user.



4.6. VAR Analysis 265

It should be noted that all analysis panels rely on results from the estimation,
like the estimated residuals, the covariance matrix, etc.. Thus, the modelling steps
are done separately with only one model being analysed at a time. The global sym-
bol table of the Symbol Management system is used to share data that needs to be
accessed by different panels. Figure 4.10 shows the symbols that are shared, as
well as symbols that are local to the SVAR analysis panel. The variable that is cur-
rently selected is U HAT, which holds the estimated residuals from the regression.
Those residuals, for example, must be accessed by the panels for diagnostic tests
to check against misspecifications in the estimated model. Data that only needs to
be visible to one panel can be put in the local symbol tables to make it accessible
via the Symbol Control system for data export. The variables SVAR A MATRIX
and SVAR B MATRIX hold the matrices of restrictions on the structural parame-
ters. They are only used by the SVAR analysis panel and therefore go in the local
symbol table for the component with the name SVARABMODELPANEL.

4.6.2 Implemented Features

Specification

All relevant parameters of Equation (4.2) can be selected with the help of the
specification panel (Figure 4.6). Furthermore, zero restrictions on the coefficients
can be set manually or by applying model reduction strategies with the subset
specification panel (Figure 4.8).

Model Checking

To guard against misspecification, JMulTi provides a range of model checking
tools that should be used to test whether assumptions of the underlying model
are violated. Assumptions about the residuals can be checked with the Residual
Analysis, parameter constancy can be investigated with the Stability Analysis.
The ARCH Analysis may be used to model the volatility process of the estimated
residuals.



266 Chapter 4. JMulTi - A Reference Application of the Framework

• Residual Analysis

– Diagnostic tests - A range of diagnostic tests can be applied to the
estimated residuals of a VAR model. The Portmanteau test and the
Breusch-Godfrey LM test (Edgerton and Shukur (1999)) check for
remaining autocorrelation. Multivariate tests for nonnormality sug-
gested by Doornik and Hansen (1994) and Lütkepohl (1991, Chapter
4) can be used. A multivariate ARCH-LM test is available as well
(Doornik and Hendry (1997, Sec. 10.9.2.4)).

– Plot/Add - The estimated residuals can be plotted and optionally be
standardized or squared before. It is also possible to add them to the
dataset again if they should be used as a variable for a new model.

– Correlation - The AC and PAC functions can be plotted and printed
for the residuals. It is also possible to compute the crosscorrelations
of the residual series together with the exact asymptotic confidence
intervals as described in Lütkepohl (1991), Sec. 4.4.2, for stable, un-
restricted VARs and Sec. 5.2.9 for stable VARs with parameter con-
straints.

– Spectrum - It is possible to show the spectrum of the available resid-
uals, see also Section 4.5.2.

– Kernel Density - For all estimated residual series, kernel density es-
timates can be computed and plotted or printed. It is also possible to
compare the densities with that of a generated normal random variable.

• Stability Analysis - The assumption of parameter constancy may be checked
with a number of different test procedures.

– Recursive parameter estimates - Recursive parameter estimates are
obtained by simply estimating the model using only data for t = 1, . . . , τ
and letting τ vary from some small value to T , the end of the original
sample. Here the same estimation method is used which is also used
for the full sample estimation. The series of estimates together with



4.6. VAR Analysis 267

Figure 4.11: Screenshot of panel for plotting recursive coefficients estimates

two-standard error bands are then plotted and can convey useful infor-
mation on the relative importance of new observations that are added
to the sample. Because there may be many coefficients to be plotted,
JMulTi provides an intuitive way to select single coefficients or matri-
ces via mouse clicks or via a small popup menu, see Figure 4.11.

– Recursive residuals - The so-called recursive residuals are standard-
ized 1-step forecast errors from a model estimated on the basis of data
up to period τ−1. They are computed for the individual equations of a
vector model separately. JMulTi allows to plot them and to adjust the
coverage probability of the confidence intervals.

– CUSUM tests - JMulTi computes the CUSUM and CUSUM-of-squares
tests (Brown et al. (1975)) and plots the resulting test statistics for each
period together with the confidence intervals. If the test statistic falls
outside the interval bounds, this is evidence against structural stability
of the underlying model.

– Chow tests - Figure 4.12 shows the panel for specifying break-point
(BP), sample-split (SS) and Chow forecast (CF) tests. It is either pos-
sible to compute the tests for a known breakpoint, or for all possible
breakpoints within a given range. The p-values are computed by ap-
plying a bootstrap procedure (Candelon and Lütkepohl (2000)). In
Figure 4.12 the tests were computed for a range of which every 6th



268 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.12: Screenshot of panel for computing bootstrapped Chow tests

date was considered as a break date. Because bootstrap procedures
tend to be very time consuming, the selection of only a subset of all
possible break dates may reduce the required computing time signifi-
cantly.

• ARCH Analysis - The ARCH analysis module is available for the estimated
residuals of VAR models, but it is also provided as a stand-alone module to
model the volatility of selected series of a dataset directly. It is described in
more detail in Section 4.8.

Forecasting

After a model was estimated the forecast panel is accessible from the menu, see
Figure 4.13. Forecasts are based on conditional expectations, assuming indepen-
dent white noise disturbances. Because in practise the true parameters of the VAR
model are unknown, forecasts are based on the estimated parameters, see (Lütke-
pohl (1991, Sec. 3.5)).



4.6. VAR Analysis 269

It is possible to generate level forecasts given that the model was estimated
in levels, as well as level forecasts given that the underlying series is in first dif-
ferences. The values for the exogenous and deterministic variables have to be
supplied for the forecast period, whereas for the endogenous variables the fore-
casts are used recursively. JMulTi uses a suitable heuristic to extrapolate the de-
terministic variables, which may contain a constant, a linear trend, and seasonal
dummies. Shift dummies are set to the value they have at time T , whereas im-
pulse dummies are set to 0 for all forecast periods. Exogenous variables cannot
be extrapolated in a standardized way, therefore they have to be user specified. If
the actual exogenous series from the dataset holds observations for the forecast
period, these values are automatically used.

Figure 4.13: Screenshot of forecast panel for VAR analysis



270 Chapter 4. JMulTi - A Reference Application of the Framework

Structural Analysis

Figure 4.14: Screenshot of bootstrap specification panel for VAR Impulse Re-
sponse Analysis

Figure 4.15: Screenshot of VAR Impulse Response Analysis panel

• Causality Tests - Two types of causality tests are implemented in JMulTi,
tests for Granger-causality and tests for instantaneous causality. Those tests
can be applied even before the VAR model is estimated, but after the vari-
ables, lag order and subset restrictions have been selected.



4.6. VAR Analysis 271

• Impulse Response Analysis - Impulse response analysis can be used to
analyze the dynamic interactions between the endogenous variables of a
VAR(p) process, treating the exogenous and deterministic variables as fixed.
In JMulTi it is possible to create orthogonalized impulse responses based
on an innovation of size one standard deviation in the transformed model
as well as forecast error variance impulse responses based on a unit inno-
vation in the original model. To construct confidence intervals around the
computed impulse responses, JMulTi provides several bootstrap methods,
which are the Standard percentile interval (Efron and Tibshirani (1993)),
Hall’s percentile interval (Hall (1992)), and Hall’s studentized interval.

Because the bootstrap may be very time consuming and can also be adjusted
with several options, it is presented in a separate panel, see Figure 4.14. The
user can select the bootstrap method, the number of repetitions, the Confi-
dence Interval (CI) coverage, as well as the seed. She might then choose an
appropriate interval for the actual display from the generated bootstrapped
CIs.

• Forecast Error Variance Decomposition (FEVD) - FEVDs are popular
tools for analysing VAR models. They are interpreted as the percentage
contribution of variable j to the h-step forecast error variance of variable
k. In JMulTi one may select the variables which should be decomposed.
The decomposition is presented as a plot, which displays the contributions
of each variable to the FEV of the selected variable in a bar diagram. Text
output is also provided.

SVAR

The SVAR (structural vector autoregressive) model may be used to identify the
shocks that can then be traced in an impulse response analysis by imposing re-
strictions on the matrices A and B in the model form

Ayt = A∗1yt−1 + · · · + A∗pyt−p + B∗0xt + · · · + B∗qxt−q +C∗Dt + Bεt (4.3)



272 Chapter 4. JMulTi - A Reference Application of the Framework

Here the structural errors εt are assumed to be white noise with (0, IK). The coeffi-
cient matrices are structural coefficients which may be different from the reduced
form coefficients in (4.2). But the reduced form model has to be specified before
the SVAR analysis can be applied. In the SVAR analysis only restrictions for A

and B can be added. The reduced form residual ut is recovered from the structural
model as ut = A−1Bεt so that Σu = A−1BB′A−1′.

• AB-Model Estimation - JMulTi offers three versions of the AB model, an
A model where B = IK , a B model where A = IK , and a general AB model
where restrictions can be placed on both matrices. Figure 4.9 shows the
panel by which the restrictions can be set and which is used to start the ML
estimation (Amisano and Giannini (1997)).

• Blanchard-Quah Estimation - In the Blanchard-Quah model A = IK and
the matrix of long-run effects

(IK − A1 − · · · − Ap)−1B

is assumed to be lower-triangular. If this model is chosen, restrictions are
imposed automatically and the model can be estimated directly. If stan-
dard errors for the estimated long-run coefficients are desired, they can be
computed by a bootstrap.

• Impulse Response Analysis, FEVD - Once an SVAR model was estimated
the IRA and FEVD panels are activated and can be used to investigate the
impact of the structural shocks.

4.6.3 Implementation Details

The VAR analysis module is a good showcase for the use of many subsystems of
JStatCom in a demanding scenario with many panels, many variables and com-
plex user interaction. This section will describe aspects of its implementation.
Most of the solutions presented for the VAR module are also applied in the other
analysis modules, which are VECM, STR, ARCH, and Nonparametric Analysis.
Therefore the implementation sections for the remaining sections will be much



4.6. VAR Analysis 273

shorter, because basically the same problems had to be solved as in the VAR part.
But this is also congruent with the idea of the underlying framework JStatCom,
which tries to provide a design that can be applied to a wide range of modelling
situations.

The VAR analysis module is significantly different from the Initial Analysis,
because the availability of its panels depends on the actual modelling state. This
is not the case for the Initial Analysis, because there only independent algorithms
are applied and all panels are accessible at any time. As a contrast, in the VAR
analysis the model estimation and the availability of the estimated parameters is a
prerequisite for most subsequent modelling steps, like residual analysis, forecast-
ing, etc.. Those panels are disabled until the required variables are not empty.

For this reason, the module must provide ways to adjust its behaviour accord-
ing to the current state of the model. Furthermore, because there is always a single
model being analyzed, there must be absolutely no ambiguity about which speci-
fication belongs to the currently displayed coefficients. This means that whenever
a different model is specified by changing the variables, the sample, or the number
of lags, all estimated parameters must be reset and the analysis must start from the
beginning.

The described requirements have motivated some of the subsystems now being
part of JStatCom, like the Symbol Event system. It soon became clear that the
most consistent way to adjust the availability of certain modelling panels, mostly
by enabling/disabling menu items, is achieved if the state of the required variables
in the shared symbol table is checked. An alternative would have been to lay out
specific ways to proceed in an analysis with a predefined sequence of steps, like in
a wizard application. However, the current approach allows for more flexibility in
the design of the user interface, as well as in the user interaction that is allowed for.
The user can freely choose in which way he wants to proceed with the analysis, the
module just makes sure that the requirements are met. Technically this is achieved
via installing listeners to the symbols of interest.



274 Chapter 4. JMulTi - A Reference Application of the Framework

The Symbol Event System

There is no specific class representing a VAR model in JMulTi. Instead, the mod-
ule uses the global symbol table of the VAR frame to store all variables that are
needed to represent a model. Therefore, changes in the model always correspond
to changes in the data objects referenced by symbols. It is argued that every model
can be represented by a set of symbols in a symbol table. Therefore this scheme
is also used for all other modules, thus establishing a standard design which can
be understood more easily than ad hoc solutions for each model class.

Consequently, if GUI components need to be in a consistent state with the
model, they can use services provided by the Data Model, especially the Symbol
Management (Section 3.10) and the Symbol Event system (Section 3.11). For
example, the residual analysis depends on the availability of the estimated residual
series, which are stored in the global symbol table of the VAR frame under the
name U HAT. The underlying data object is empty in the beginning and whenever
a new model is specified. As soon as the VAR estimation is finished successfully,
U HAT is filled with the actual values and changes its state from empty to not empty.
The best way to enable or disable the menu item Residual Analysis according the
the empty state of U HAT is to install a SymbolListener that listens to exactly
those changes in that symbol. This listener is informed only when the empty
state changes, and it can then change the state of the menu item accordingly. The
following code example demonstrates this:

private JMenuItem resAn_menuItem;

...

SymbolListener listener = new SymbolListener(){

public void valueChanged(SymbolEvent evt){

resAn_menuItem.setEnabled(!evt.isSourceEmpty());

};

}

global().getSymbol("U_HAT").addSymbolListener(listener,

SymbolEventTypes.EMPTY_STATE);

Here it is assumed that the variable resAn menuItem holds a reference to the
menu item Residual Analysis of the VAR frame. A symbol listener is first created
which sets the enabled property of resAn menuItem to true if the symbol event



4.6. VAR Analysis 275

evt is not empty and vice versa. The created listener must then be registered with
one or more symbols. In this case, the symbol U HAT is retrieved from the global
symbol table and the listener is installed. It should be noted that for performance
reasons it is only informed when the empty state changes. Other changes are
ignored.

A good place to install listeners that enable or disable menu items, and thereby
access to modelling panels, is the module frame itself. The reason is that from
within that class one typically has access to all menu items because they are de-
clared there as private fields.

It can also be the case that the individual panels update their internal state ac-
cording to the state of the shared symbols. They might install listeners themselves
in the respective panel classes. For example, the SVAR panel updates the state
of the restriction matrices whenever the dimension of the VAR process changes.
However, such changes might as well be done when the component is actually
being shown, because otherwise they are simply irrelevant. In this case a sym-
bol listener would not be needed, but rather the shown method of ModelPanel
could be overridden and a CardPanelDisplay could be used as the container
for all modelling panels. Whenever a panel would be shown or hidden, the shown
method of that panel would be called with a boolean parameter, thus appropriate
actions could be taken when needed.

Handling many Variables

It has been mentioned that the VAR model is represented by a set of symbols in
a global symbol table. It actually consists of 37 globally shared variables, most
of them being required by several modelling panels. This number also includes
symbols for the names of the variables belonging to different types, restriction
matrices, the sample range with and without lag truncation, as well as the esti-
mated parameters, etc.. It has been argued earlier, see Section 3.10.4, that if many
variables are used it is strongly recommended to create a separate class with all
type definitions. Those type definitions should be declared as public static
final fields referencing JSCTypeDef instances. This way they can be accessed
from all panels of a module frame.



276 Chapter 4. JMulTi - A Reference Application of the Framework

For the users of the Gauss programming language, this type definition is some-
what similar to declaring global variables for a library in a .dec file to keep track
of them. However, there is a significant difference here. In Gauss the global
variables are directly declared, whereas in JStatCom this is just the type defini-
tion. Access to the symbols and the underlying data values can only be done if
there is also access to the respective symbol table. Type definitions can be un-
derstood as keys which can be used with a shared data repository. All panels of
a module frame have access to the globally shared symbol table for that module,
but not panels from other modules, although all classes can access the type de-
finitions because they are typically public. This restricts access to variables to
classes that belong to a certain module. The code example shows parts of the class
VARConstants that declares all type definitions for the shared variables:

public final class VARConstants {

/**

* Covariance matrix of estimated coefficients no divided by T.

*/

public static final JSCTypeDef cv_par_Def = new JSCTypeDef(

"cv_Coeff",

JSCTypes.NARRAY,

"Covariance matrix of estimated coefficients.");

/**

* The estimated residuals.

*/

public static final JSCTypeDef u_hat = new JSCTypeDef(

"u_hat",

JSCTypes.NARRAY,

"Estimated residuals.");



4.6. VAR Analysis 277

/**

* Names of endogenous variables.

*/

public static final JSCTypeDef Ny_Def = new JSCTypeDef(

"Ny",

JSCTypes.SARRAY,

"Names of endogenous variables.");

/**

* Lag truncated endogenous data.

*/

public static final JSCTypeDef y_Def = new JSCTypeDef(

"y",

JSCTypes.NARRAY,

"Lag truncated endogenous data.");

/**

* Sample range with lag truncation.

*/

public static final JSCTypeDef T1_Def = new JSCTypeDef(

"T1",

JSCTypes.DRANGE,

"Sample range with lag truncation.");

...

It should be noted that the programmer has to make sure that each name is
unique, because symbols are stored under the name of the type definition. The
naming conventions for variables in JStatCom must be followed (Section 3.8.1)
and names are case insensitive. One might argue that one could as well have used
the unique type definitions directly as keys without depending on the names be-
ing unique. From a pure programming perspective this would indeed have some
advantages, but then referencing variables with names would not be possible any-
more. But this is an intuitive way to start programming with the Symbol Man-
agement system without the need to have type definitions, which is completely
appropriate for simple applications. The solution found is therefore a compro-
mise between intuitive usage for beginners and more powerful concepts for ad-



278 Chapter 4. JMulTi - A Reference Application of the Framework

vanced developers who need to handle heavy loads of variables. An example
shows how globally shared variables can be accessed from within an instance of a
ModelPanel:

// access via the type definitions

JSCDRange drange = global().get(VARConstants.T1_Def).getJSCDRange();

// access to the same symbol via the name (not recommended here)

JSCDRange drange1 = global().getSymbol("T1").getJSCDRange();

It is recommended to add a description to each type definition. If the definition
is used to retrieve variables from a symbol table, the description is automatically
set and displayed in the Symbol Control for the selected symbol. This greatly
helps users to understand what is being stored in the symbols. It is also a good
idea to add the description to the code comment for each variable, because it is
then added to the JavaDoc documentation automatically when the javadoc tool is
applied.1

To summarize, having a separate class that holds public static final
type definitions for the globally shared variables is always recommended. The
name of that class can freely be chosen, but the suggested convention is to use
the module name followed by the word Constants, for example VARConstants,
VECMConstants, STRConstants, etc.. Because the type definitions represent the
model being analysed, they should carefully be documented. It is of particular im-
portance to know exactly what is stored in each variable to avoid confusion and
to make maintenance and extensions more convenient. For example, it should
be documented whether lags are specified for the levels or the 1st differences of
the series, or whether a matrix with observations is already lag truncated or not.
These small differences are often the cause of subtle programming errors that are
hard to detect, and missing documentation is often the main cause for it. In the
VEC analysis module, there are 84 variables being shared, and the importance of
following these guidelines becomes even more obvious.

1The homepage of the javadoc API documentation tool for the Java language is
java.sun.com/j2se/javadoc.



4.6. VAR Analysis 279

Components

Having described how panels can react to changes in the model and how many
variables should be dealt with, there are also some advanced GUI components
which should help presenting output and gathering user input. For the Initial
Analysis it has already been mentioned that the classes TSSel, ResultField,
and NumSelector are frequently used. The same is true for all analysis modules,
but there are also other systems being applied, in particular Data Table (Section
3.27) and Equation (Section 3.28).

Figure 4.13 shows an example of the use of the Data Table system for the
forecast panel. It can be seen that the deterministic variables for the forecast
period have been extrapolated and the values are shown in a JSCNArrayTable.
It is possible to edit the presented values, because the user might want to adjust
certain deterministic variables in special cases manually. Furthermore, the data
table is embedded in a JSCDataTableScrollPane which manages the display
of an appropriate row and column header. The row header shows the date and the
column header the variable name for each series. JStatCom makes it relatively
easy to setup and update this quite complex component.

public class ForecastPanel extends ModelPanel{

private JSCNArrayTable detTable = null;

private JSCDataTableScrollPane detScroll = null;

...

private JSCNArrayTable getDetTable() {

if (detTable == null) {

detTable = new JSCNArrayTable();

detTable.setPrecision(0);

detTable.setSymbolScope(Scope.LOCAL);

detTable.setSymbolName("DetForecast");

}

return detTable;

}



280 Chapter 4. JMulTi - A Reference Application of the Framework

private JSCDataTableScrollPane getDetScroll() {

if (detScroll == null) {

detScroll = new JSCDataTableScrollPane();

detScroll.setRowHeaderShowing(true);

detScroll.setColumnHeaderShowing(true);

detScroll.setViewportView(getDetTable());

detScroll.setSymbolScope(Scope.LOCAL);

detScroll.setRowHeaderSymbolName("ForecastPeriod");

detScroll.setColumnHeaderSymbolName("DetVarNames");

}

return detScroll;

}

// overwrites shown method that is called when this

// panel is shown or hidden in a CardPanelDisplay

public void shown(boolean isShown) {

if (isShown) {

JSCNArray det = new JSCNArray("DetForecast");

//... compute deterministics for forecast period

JSCSArray detNames = new JSCNArray("DetVarNames");

//... determine names of deterministics

JSCSArray time = new JSCNArray("ForecastPeriod");

//... create array with date strings

local().set(det);

local().set(detNames);

local().set(time);

}

}

...

}

First, one should bear in mind that many of the options set in the methods
getDetScroll and getDetTable are automatically generated if a visual com-
position editor is used. Thus manual programming is required only for the shown
method. The deterministic data for the forecast is only updated when the compo-



4.6. VAR Analysis 281

nent is being displayed, therefore the shown method of ModelPanel was over-
written. It is called when a CardDisplayPanel is used as the container for all
panels belonging to a certain analysis. This is just one way of doing it, one could
as well install a symbol listener or invent other ways of triggering that computa-
tion.

By using setSymbolScope the setup of the data table and the embedding
scrollpane was done in a way that the local symbol table is used . Therefore, if the
data objects in that symbol table with the names ”DetForecast”, ”ForecastPeriod”,
and ”DetVarNames”change, the data table and the row and column headers of the
scrollpane are automatically adjusted. For this reason, the shown method must
create the respective data objects according to the model state and set them to the
local symbol table via the method local().set.

In the same way, the restriction matrices for the SVAR estimation panels are
set up and updated, see Figure 4.9. But there the default renderer of the data
tables have been changed, the right mouse popup menu has been disabled, and a
mouse click listener has been installed. The underlying code looks as shown in
the following where the part for the update is omitted:

private JSCNArrayTable dataTableA = null;

private JSCDataTableScrollPane scrollPane = null;

...

private JSCNArrayTable getDataTableA() {

if (dataTableA == null) {

dataTableA = new JSCNArrayTable();

dataTableA.setSymbolScope(Scope.LOCAL);

dataTableA

.setCellRenderer(JSCCellRendererTypes.DIAG_01M1NEGINF);

dataTableA.setTablePopup(null);

dataTableA

.setMouseListener(JSCMouseListenerTypes.DIAG_01NEGINF);

dataTableA.setEditable(false);

dataTableA.setSymbolName("A_MATRIX");

}

return dataTableA;

}



282 Chapter 4. JMulTi - A Reference Application of the Framework

private JSCDataTableScrollPane getDataTableScrollPaneA() {

if (scrollPane == null) {

scrollPane = new JSCDataTableScrollPane();

scrollPane.setMinimumVisibleColumns(5);

scrollPane.setMinimumVisibleRows(5);

scrollPane.setViewportView(getDataTableA());

scrollPane.setColumnHeaderShowing(true);

scrollPane.setColumnHeaderSymbolName(VARConstants.Ny_Def.name);

}

return scrollPane;

}

In the method getDataTableA a data table is created with a special mouse
click listener and an appropriate renderer. They are taken from the enumerations
JSCCellRendererTypes and JSCMouseListenerTypes. Like in the previous
example, the symbol scope is set to local and a name for the symbol is set. If
the user changes the restrictions, the underlying symbol is automatically updated.
The data table scrollpane is initialized in the method
getDataTableScrollPaneA. It only shows a column header with the variable
names, but no row header. This is disabled by default, but the column header is
switched on via setColumnHeaderShowing(true). The scrollpane also sets
the name of the symbol that holds the variable names to display. Here it can be
seen that the global symbol table is used and the shared variable definitions are
referenced via VARConstants.Ny Def. However, the method
setColumnHeaderSymbolName does not take the type definition as an argument,
but the actual name of that variable. Therefore the argument must be
VARConstants.Ny Def.name, which is a reference to the string ”Ny”in that
case.

Display of Equations

Figures 4.7, 4.8, and 4.11 show how VAR models are presented in a form that
resembles the mathematical notation from Equation (4.2). This is useful to display
complex output in a very intuitive way, as well as to gather user input that is
directly related to the coefficients of a model. JStatCom provides the Equation



4.6. VAR Analysis 283

system (Section 3.28) for that purpose. It appears in the VAR module to present
estimation output, to let the user select zero restrictions for the coefficients, as
well as to select the coefficients for the recursive estimation. The Equation system
is also used in the VEC and STR analysis modules.

Because equations are used for different tasks, the behaviour of the Equation
system must be adjusted. To present the estimated coefficients, numbers have
to be shown with the possibility to adjust the precision of the display via a popup
menu. Editing is not allowed. For the selection of subset restrictions it is necessary
to install a mouse listener that changes the values to the next valid value from
a given set. At the same time a special cell renderer should be installed that
paints numbers as symbols, for example a ’*’ to denote an unrestricted coefficient.
Furthermore, a popup menu for changing the precision would not make sense in
that context. Therefore one would like to disable it, or replace it with a menu
allowing to change the values for whole matrices. JStatCom supports all these
tasks with the Equation system, which is build on top of the Data Table system.
Therefore the flexibility in setting arbitrary renderers, mouse listeners, and popup
menus is also available for the equation components. A code example has been
given in Section 3.28.4.

Input of Dates and Date Ranges

For some procedures user specified dates or date ranges have to be specified. Fig-
ure 4.12 shows the panel for specifying the Chow test for either a single date
or all dates that fall in a certain range. JStatCom provides the two components
TSDateSelector and TSDateRangeSelector for that purpose. They are de-
scribed in Section 3.23. The panel for the Chow test is a good example on how
to use these components, because typically the range that can legally be specified
depends on the selected model. For this reason, the selection components must be
dynamically adjusted to validate the user input according to the requirements of
the underlying procedure. It usually does not make sense to set a static range that
is used for input validation because it would need to change for every model. In
the presented panel the range of the date selection component is updated when-
ever the component is shown. Therefore the shown method was overwritten. The
panel is used inside a CardPanelDisplay which calls this method whenever a



284 Chapter 4. JMulTi - A Reference Application of the Framework

child component is being shown or hidden. Parts of the actual implementation of
that panel are presented in the following code:

public class ChowTestPanel extends ModelPanel {

private TSDateRangeSelector testRange = null;

private TSDateRangeSelector getTestRange() {

if (testRange == null)

testRange = new TSDateRangeSelector();

return testRange;

}

public void shown(boolean isShown){

if (!isShown)

return;

// the sample range

TSDateRange range = global().get(VARConstants.T1_Def)

.getJSCDRange().getTSDateRange();

// number of obervations

int nr = range.numOfObs();

// First possible: cols(y)*py + cols(x)*(px+1)

// + cols(d) + cols(y) + 1

int py = global().get(VARConstants.py_Def).getJSCInt().intVal();

int px = global().get(VARConstants.px_Def).getJSCInt().intVal();

int K = global().get(VARConstants.y_Def).getJSCNArray().cols();

// degrees of freedom are one less than 1st possible

int degfree =

py * K

+ (px+1)*global().get(VARConstants.x_Def).getJSCNArray().cols()

+ global().get(VARConstants.d_Def).getJSCNArray().cols()

+ K;

// special case when py == 0

degfree = (py == 0) ? ++degfree : degfree;



4.6. VAR Analysis 285

// get the start date

TSDate start = range.lowerBound();

TSDate firstPossibleDate = start.addPeriods(degfree);

// creates new range

TSDateRange newRange = new TSDateRange(firstPossibleDate,

nr - degfree - 1);

// sets range to selection component

getTestRange().setEnclosingRange(newRange);

getTestRange().setTSDateRange(newRange);

}

}

It can be seen that the date range selector is initialized in the method
getTestRangewithout explicitly setting a validation range. The range is adjusted
in the shown method which returns immediately if the component is hidden, be-
cause in that case isShown would be false. What follows is an algorithm that
computes the first and last possible break dates and sets this as the enclosing range
for the date range selection component. The formula for the required degrees of
freedom is stated in the code comment. But to compute these dates for the selected
model, the panel needs to retrieve all relevant information from the global symbol
table. It uses the type definitions from the class VARConstants to reference the
symbols from the global symbol table which is accessed via the global method.
This way the lags, the dimension of the VAR model, the number of exogenous
and deterministic variables, the number of observations, and the actual start date
are retrieved and can be used to create a new TSDateRange object which is then
used as the new enclosing range. It is also set to be the displayed range because
often users want to apply the test over all possible break dates, therefore this is a
reasonable default.

This more advanced example has shown how components might be used in
a dynamically changing modelling environment. Although the underlying algo-
rithms can get quite complex, it is argued that programming is made much easier
with JStatCom by having a standard framework that can be applied to various
different situations.



286 Chapter 4. JMulTi - A Reference Application of the Framework

4.7 VEC Analysis

4.7.1 Overview

Figure 4.16: Screenshot of VEC model selection

The general setup of a VECM allowed for in JMulTi is of the form

Γ0∆yt = α[β′ : η′]

 yt−1

Dco
t−1

 + p∑
i=1

Γi∆yt−i +

q∑
j=0

B jxt− j +CDt + ut, (4.4)

where yt = (y1t, . . . , yKt)′ is a vector of K observable endogenous variables, xt =

(x1t, . . . , xMt)′ is a vector of M observable exogenous variables, Dco
t contains all

deterministic terms included in the cointegration relations and Dt contains all re-
maining deterministic variables. The Γi, B j and C are parameter matrices with
suitable dimensions. The residual vector ut in Equation (4.4) is assumed to be a
K-dimensional unobservable zero mean white noise process with positive definite
covariance matrix E(utu′t) = Σu.

Figure 4.16 shows the specification panel for the VEC module. Deterministic
variables may be constants, linear trends, seasonal dummy variables as well as



4.7. VEC Analysis 287

Figure 4.17: Screenshot of VEC estimation output in matrix form

user specified other dummy variables. It should be mentioned here that dummy
variables can be created easily with the help of the TSSel component and the
respective item in the popup menu of the time series list.

A single deterministic term cannot appear in both Dt and Dco
t so that the two

vectors have to contain mutually exclusive terms. As can be seen in Figure 4.16
it is possible to select the deterministic variables that should appear only in Dco

t

via a CheckBoxList. All selected deterministic variables appear in that list with
their name.

The parameter matrices α and β have dimensions (K × r) and they have to
have rank r. They specify the long-run part of the model with β containing the
cointegrating relations and α representing the loading coefficients. The column
dimension of η is also r. Like in the VAR module the estimated VEC model
is presented to the user in matrix form which directly relates to the notation in
Equation (4.4). This helps to avoid any ambiguities about the model that was
actually estimated.

The cointegrating rank r has to be specified by the user. It must be in the range
1 ≤ r ≤ K − 1. Cointegration tests for determining the cointegrating rank are
available in the Initial Analysis part of JMulTi, see Section 4.5.2. The number of



288 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.18: Screenshot of specifying restrictions on short-run dynamics for a
VEC model

lagged differences of the endogenous variables, p, may be chosen with the help of
model selection criteria.

Various restrictions can be imposed on the parameter matrices. In particular,
it is necessary to impose restrictions to ensure an identified model form which can
be estimated. Generally, (4.4) is a structural form which can only be estimated if
identifying restrictions are imposed. If Γ0 is specified to be an identity matrix, the
model becomes a reduced form. It is possible to impose zero restrictions on the
short-run parameters Γi, B j and C, as well as on the loading coeffients α via the
subset specification panel in Figure 4.18. Like in the VAR module it is possible to
apply a model reduction strategy to find zero restrictions automatically.

Furthermore, it is possible to test and set restrictions on the cointegrating re-
lations. The parameter matrices α and β have dimensions (K × r) and they have
to have rank r. They specify the long-run part of the model with β containing the
cointegrating relations and α representing the loading coefficients. The column
dimension of η is also r and its row dimension corresponds to the dimension of
Dco

t . The notation

β∗ =

 β
η


will be used in the following and the row dimension of β∗ will be denoted by K∗.



4.7. VEC Analysis 289

Figure 4.19: Screenshot of specifying restrictions on the cointegration relation of
a VEC model

Hence, β∗ is a (K∗ × r) matrix. Restrictions on the cointegration relations may
have the form

vec(β∗
′

(K∗−r)) = Hη + h (4.5)

and can be estimated with the S2S procedure (Lütkepohl and Krätzig (2004, Chap-
ter 3)). HereH is a fixed matrix, h a fixed vector and η a vector of free parameters.
These restrictions may be formulated alternatively as

Rvec(β∗
′

(K∗−r)) = r, (4.6)

where R is a (J × (K∗ − r)r) matrix and r is a J-dimensional vector, as before.
Figure 4.19 shows the panel that can be used to specify and test restrictions that
are specified in the implicit form of Equation (4.6). For the actual estimation the
implicit form must be converted to the explicit form defined by Equation (4.5).
The conversion is done via the method UData.imp2ExpRes and takes R and r as
parameters, giving back an array with three NArray data objects holdingH , η and
h. The UData class is part of JStatCom and has been mentioned in Section 3.20.
This class also contains a few other helpful methods which should be checked
with the help of the API documentation.

VEC modelling in JMulTi is a step by step procedure, where each task is re-
lated to a special panel. Once a model has been estimated, the diagnostic tests as
well as the stability analysis, structural analysis, SVEC estimation, and forecast-



290 Chapter 4. JMulTi - A Reference Application of the Framework

ing use the results from the estimation. If changes in the model specification are
made by the user, these results are deleted and the model has to be reestimated.
In other words, only results related to one model at a time are kept in the sys-
tem. Hence, there should be no confusion regarding the model setup while going
through the analysis.

4.7.2 Implemented Features

This section lists the features that are part of the VEC module. The general struc-
ture is very similar to that of the VAR analysis, although the underlying algorithms
are often different. However, many GUI specification panels look the same.

Specification

Figure 4.20: Screenshot of the dialog for specifying the estimation of the 1st stage
of a two stage VEC estimation procedure



4.7. VEC Analysis 291

All parameters of the VEC model defined in Equation (4.4) can be set in the
specification panel (Figure 4.16). Furthermore, restrictions on the long-run and
short-run parameters may be set (Figures 4.18, 4.19). It is also possible to select
the estimation procedure. The available options are Johansen, S2S, and two stage.
For the two stage procedure one can further specify how the EC term is estimated
via a dialog, see Figure 4.20. Options include to set the cointegration relation to a
fixed vector or to estimate only parts of it. The specification panel also includes the
option to compute the optimal endogenous lagged differences that are suggested
by the information criteria.

Model Checking

Figure 4.21: Screenshot of panel for plotting recursive coefficients estimates

Model checking in VEC models is quite similar to the implementation in VAR
models. Assumptions about the residuals can be checked with the Residual Analy-
sis, parameter constancy may be investigated with the Stability Analysis, and the
multivariate ARCH Analysis can be applied to model the volatility process of the
estimated residuals.

• Residual Analysis -

– Diagnostic tests - A range of diagnostic tests can be applied to the
estimated residuals of a VEC model. The underlying algorithms are
slightly different from the VAR case, but the specification panel looks
exactly the same. The Portmanteau test and an LM test check for



292 Chapter 4. JMulTi - A Reference Application of the Framework

remaining autocorrelation. Multivariate tests for nonnormality sug-
gested by Doornik and Hansen (1994) and Lütkepohl (1991, Chapter
4) can be used. A multivariate ARCH-LM test is available as well
(Doornik and Hendry (1997, Sec. 10.9.2.4)).

– Further options - Plot/Add, Correlation, Spectrum, Kernel Density
behave exactly as in the VAR module, see Section 4.6.2.

• Stability Analysis - As in the VAR part the assumption of parameter con-
stancy may be checked with a number of different test procedures.

– Recursive parameter estimates - Figure 4.21 shows the panel for
specifying the recursive parameter estimates of a VEC model. It looks
very similar to Figure 4.11 for the VAR model, but here the EC term
is part of the equation. It is possible to select recursive estimates for
the loading parameters α as well.

– Recursive Eigenvalues - For VEC models without parameter restric-
tions and without exogenous variables the eigenvalues from a reduced
rank regression which are also used in the cointegration rank tests can
be computed recursively by the Johansen estimation procedure (Jo-
hansen (1995)). Hansen and Johansen (1999) propose recursive statis-
tics for the stability analysis of VEC models which are partly available
in JMulTi.

– Chow tests - The Chow test panel is similar to the one for the VAR
analysis, except that for the test routine the VEC estimation procedure
is used.

• ARCH Analysis - Multivariate ARCH analysis of the estimated residuals
is possible for the VEC model. The ARCH analysis module is described in
more detail in Section 4.8.

Forecasting

Forecasting with VEC models is based on the levels VAR form and is implemented
in JMulTi as for VAR models.



4.7. VEC Analysis 293

Structural Analysis

Figure 4.22: Screenshot of causality tests panel

• Causality Tests - Once a model without exogenous variables is specified,
the causality analysis can be accessed. The endogenous variables are shown
in the list. One can select from 1 up to K − 1 variables. The respective H0

hypothesis then appears on the panel, see Figure 4.22. Tests for Granger-
causality and tests for instantaneous causality are implemented.

• Impulse Response Analysis, FEVD - Impulse response analysis and FEVD
of VEC models is based on the levels VAR form and is implemented in
JMulTi as for VAR models, see Section 4.6.2.

SVEC

The SVEC (structural vector error correction) model can be used to identify the
shocks to be traced in an impulse response analysis by imposing restrictions on



294 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.23: Screenshot of specification panel for SVEC estimation

the matrix of long-run effects of shocks and the matrix B of contemporaneous
effects of the shocks.

The matrix B is defined such that ut = Bεt in (4.4) and, assuming that (4.4) is
in reduced from, the matrix of long-run effects of the ut residuals is

Ξ = β⊥

α′⊥(IK −

p−1∑
i=1

Γi)β⊥


−1

α′⊥.

Hence, the long-run effects of ε shocks are given by

ΞB.

rk(Ξ) = K − r and, hence, ΞB has rank K − r. Thus, the matrix ΞB can have at
most r columns of zeros. Hence, there can be at most r shocks with transitory
effects (zero long-run impact) and at least k∗ = K − r shocks have permanent
effects. Due to the reduced rank of the matrix, each column of zeros stands for
only k∗ independent restrictions. k∗(k∗ − 1)/2 additional restrictions are needed to
exactly identify the permanent shocks and r(r − 1)/2 additional contemporaneous
restrictions identify the transitory shocks. For examples see Breitung et al. (2004).
JMulTi has a facility to impose restrictions on B and ΞB, see Figure 4.23. The
matrix on the left hand side sets the restrictions for B, the one to the right is for
restricting ΞB.

• Impulse Response Analysis, FEVD - Once a SVEC model was estimated
the IRA and FEVD panels are activated and can be used to investigate the
impact of the structural shocks.



4.7. VEC Analysis 295

4.7.3 Implementation Details

It has been mentioned in Section 4.6.3 of the VAR module description that basi-
cally the same problems that have been discussed there appear in all other analysis
modules. As can be seen by comparing the screenshots presented for the VAR and
VEC modules, there are many similarities between the implementations. For ex-
ample, VEC modelling is also implemented as a step-by-step procedure where one
model is analysed at a time. Thus the state of the panels depends on the state of
the underlying model and the availablility of estimation results. This is handled in
the same manner as before by using the Symbol Management and Symbol Event
systems.

However, listener management reaches a level of complexity that was dealt
with by factoring out separate classes that implement the SymbolListener in-
terface. For example, there is a class that listens to a number of symbols just to
handle how menus are enabled and disabled. Another distinct listener class man-
ages how the subset restriction matrices are assembled and reset according to the
selected lags, the variables, and the cointegration rank. A third listener handles
how observation matrices are put together because this depends on many settings,
among which are the selection of deterministic variables that appear only in the
EC term. It is also necessary to reset the estimation results whenever one of the
model settings changes to avoid ambiguities. However, despite these quite chal-
lenging tasks, the Symbol Event system proved to be a sound basis for managing
the required interaction between the GUI and the data model. It just required
some more planning for the specific cases. For this, some experience with object-
oriented programming is needed, one should especially be aware that classes do
not acquire too many responsibilities. For example, simple listeners might be de-
fined in some method of a model panel, but as soon as the listener itself gets large
and has many different tasks to handle, one should consider writing a separate
class for it. This is exactly what has been done for the VEC module. But it is
important to note that the systems provided by JStatCom are still the basis for the
design.



296 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.24: Screenshot of a user message about long-run restrictions not being
taken into account with the currently selected estimation procedure

The VEC module is in many ways more complex than the VAR module, be-
cause there are more options to specify for the estimation and there are also dif-
ferent estimation procedures available. For certain specifications it is necessary to
use a specific procedure, because otherwise it cannot be estimated in the desired
way. For example, restrictions on long-run parameters are only taken into account
if the S2S estimation option is set, either as a one-stage procedure or as the first
stage of a two-stage estimation. Other estimation routines would ignore those
restrictions. Furthermore, restrictions on the short-run parameters, as well as ex-
ogenous variables are only taken into account if a two-stage procedure is selected.
The user still might want to compare the results of different estimation procedures,
therefore adjusting those options automatically might lead to unwanted surprises.
Instead, the user is informed with a text message (Figure 4.18) or a dialog box
(Figure 4.24). However, user dialogs tend to interrupt the flow of interaction and
should only be used in cases where it seems crucial to inform the user. In other
cases one might consider text messages appearing in a status bar or in labels.
Those messages can be ignored by the experienced user. This is done, for ex-
ample, to indicate in the selection panel whether restrictions on the cointegration
relations are set or not, see Figures 4.16 and 4.20.

Having more options for the estimation and a more complex model setup leads
to a significant increase in the number of shared variables in the global symbol
table, which is 84 instead of 37 for the VAR module. The need to define and
document all variables carefully in the class VECMConstants is obvious in that



4.7. VEC Analysis 297

case. However, the system is able to handle this level of complexity, and it is easy
to retrieve the needed estimation results for all panels that are used for subsequent
modelling steps, for example

// gets the standard deviations of the estimated

// beta vector for the endogenous variables

global().get(VECMConstants.SD_beta_Def)

// gets the standard deviations of the estimated

// beta vector for the deterministic variables

// that are restricted to the EC term

global().get(VECMConstants.SD_beta_d_Def)

The Symbol Control provides another helpful tool to check what is actually
stored. It can also be very useful for initial debugging.

By looking at the screenshots of the panels, one can also see several exam-
ples of the Equation system. It is used to present the estimation results in matrix
form, to select subset restrictions on the short-run parameters, to set predefined
coefficients for the cointegration relation (Figure 4.20), as well as to select the
coefficients for the recursive estimation (Figure 4.21). In all cases, the equation
terms have to be adjusted by setting special renderers, mouse listeners, and popup
menus. The Data Table system is also used in various cases, for example to specify
the restriction matrices for the SVEC estimation (Figure 4.23).

The intense use of these quite complex components demonstrates their usabil-
ity for various tasks. It shows that software reuse with JStatCom can lead to a
substantial gain in productivity for the programmer, and it is argued that the sys-
tems mentioned are flexible enough to be applied also in other problem domains
than time series analysis. The need to present matrices with strings and numbers
to the user appears in many applications that have to gather user input for complex
algorithms.

It has been mentioned earlier that the package de.jmulti.tools contains
components that are shared by different modules. Because the VAR and VEC
modules have many user interface panels in common, it was worthwhile to design
several components for shared use. However, because these panels need access
to the global data of the estimated model, they must be told which model is used.



298 Chapter 4. JMulTi - A Reference Application of the Framework

This is because the variable definitions for VAR and VEC models are different.
Furthermore, some of those components are also used by other modules. The
big advantage of sharing GUI classes is that they have to be laid out only once.
Especially for complex GUIs this is a significant pay off. Another advantage is
that reusing components tends to establish common standards for GUI design,
because the user interfaces for similar tasks look exactly the same in all different
modules. A deviation from that would certainly be considered not professional.
All shared components are presented in Table 4.2.

Class Name Responsibility

de.jmulti.tools

CausalityPanel Panel for causality tests.

ChowTestPanel GUI for Chow test specification.

CorrPanel Correlation analysis panel for estimated residuals.

FEVDPanel Panel for computing the FEVD.

ForecastPanel Forecast panel.

ForecastUndiffConfig Dialog that is part of the forecast panel to specify
forecasts of undifferenced series.

IRABootCIPercPanel Panel for setting bootstrap options for Efron &
Hall percentiles.

IRABootCIStudPanel Panel for setting bootstrap options for studentized
Hall percentiles.

IRAComputePanel GUI for computing impulse responses and boot-
strapped CIs.

IRADisplayPanel Panel to manage plots and display of computed IR
and CIs.



4.8. ARCH Analysis 299

KernDensPanel GUI for kernel density analysis, shared by all mod-
ules.

MultDiagTests Panel for specifying multivariate diagnostic tests
for VAR and VEC residual analysis.

PlotAddResPanel Panel to add and plot estimated residuals.

SpectrumPanel GUI for spectrum analysis.

SubsetSpecPanel Panel to select model reduction strategy for VAR
and VEC.

Table 4.2: Shared components

As a final remark, one should also notice that all procedure calls in the VEC
module are encapsulated in subclasses of PCall and are therefore separated from
the GUI components. All calls are put in the package de.jmulti.proc. Because
there are many algorithms involved, it is important to maintain them in a stan-
dardized way. The PCall system (Section 3.19) provides the developer with the
required services.

4.8 ARCH Analysis

4.8.1 Overview

A simple parametric model allowing for univariate modelling of time varying
volatility is the ARCH(q) (Engle (1982)) process ut with conditional variance σ2

t :

ut = ξtσt, ξt iid N(0, 1), (4.7)

σ2
t = ω + γ1u2

t−1 + γ2u2
t−2 + . . . + γqu2

t−q (4.8)

= z′tθ (4.9)



300 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.25: Screenshot of ARCH analysis module

The definition states that the second order moment of ut is given conditional on an
information set containing especially the history of the process. In the compact
notation (4.9) zt = (1, u2

t−1, . . . , u
2
t−q)′ and θ = (ω, γ1, . . . , γq)′. The q + 1 vector θ

collects the parameters of interest. The generalization of the ARCH process is the
so-called generalized ARCH (GARCH) process (Bollerslev (1986)). To allow for
different impacts of lagged positive and negative innovations threshold GARCH
models have been introduced by (Glosten et al. (1993)).

Multivariate GARCH models are a conceptually straighforward generaliza-
tion of univariate models. Problems stem from the fact that a very large parameter
space is involved, posing analytical and computational problems. The representa-
tion being in JMulTi is the BEKK form (Baba et al. (1990)) in its simplest form
with N = p = q = 1. The estimation is implemented for a GARCH(1, 1) model,
see (Herwartz (2004)) for a more detailled description.



4.8. ARCH Analysis 301

4.8.2 Implemented Features

The ARCH module allows to specify univariate and multivariate models for the
time varying volatility. They appear in different panels which can be selected via
a menu from the ARCH module frame. The specification panel for univariate
ARCH models is shown in Figure 4.25.

Univariate ARCH Models

Figure 4.26: Screenshot of output for univariate GARCH(1, 1) estimation

• Estimation - In JMulTi the basic ARCH(q), GARCH(q, p) and
TGARCH(q, p) models can be estimated up to orders q = 5 and
q = p = 2, respectively. Maximum likelihood estimation can be performed
under the assumptions of conditional normality, a conditional t−distribution
or a conditional GED (Harvey (1990)). Consequently one has to specify the
basic model, the lag-lengths, and the assumed conditional distribution.

The output (Figure 4.26) consists of the parameter values (where gamma
denotes the parameters of lagged errors and beta denotes the parameters of
lagged variances), the respective t-values, the variance-covariance matrix,
and the value of the log likelihood function.



302 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.27: Screenshot of residual analysis for ARCH analysis

• Diagnostics - The estimated residuals ξ̂t can be analyzed to check whether
the required assumptions are met, see Figure 4.27. Available tools are a test
for no remaining ARCH (Lundbergh and Teräsvirta (2002)), the ARCH-LM
test, plots of the AC and PAC functions of the squared residuals, Jarque-
Bera tests for nonnormality, as well as plots of the estimated standard devi-
ation process.

• Kernel Density Estimation - Kernel density estimates can be done on the
estimated residuals with a number of different kernels. It is also possible
to compare the estimated densities with that of a generated normal random
variable.



4.8. ARCH Analysis 303

Figure 4.28: Screenshot of output for multivariate GARCH(1, 1) estimation

Multivariate ARCH Models

Multivariate GARCH(1, 1) models can be specified for dimensions of 2, 3, and
4 variables. The model is estimated with a quasi maximum likelihood (QML)
estimator under normality assumption. As an option it is possible to compute the
exact QML t-ratios which require to evaluate the 1st and 2nd order derivatives of
the Gaussian likelihood function analytically. The latter is left as an option to the
user because the computation might be quite time consuming.

• Estimation - The output (Figure 4.28) consists of the parameter values
(where gamma denotes the parameter matrices of lagged errors and beta
denotes the parameter matrix of lagged variances), the respective t-values,
and the value of the log likelihood function. Furthermore, the modulus of



304 Chapter 4. JMulTi - A Reference Application of the Framework

the eigenvalues of the polynomial describing the unconditional mean of the
covariance process are given to check for covariance stationarity.

• Diagnostics - To check whether the residuals meet the required assump-
tions, a number of multivariate diagnostic tests can be applied. Available
are the Portmanteau test, the ARCH-LM test, plots of the AC and PAC
functions of the residuals, Jarque-Bera tests for nonnormality, as well as
plots of the estimated standard deviation process. It is also possible to plot
estimated univariate GARCH(1, 1) processes together with the multivariate
variance processes to analyse the differences.

• Kernel Density Estimation - Kernel density estimates can be done for each
of the estimated residual series ξ̂t.

4.8.3 Implementation Details

The ARCH module is implemented in a similar way as the other analysis modules.
Variables can be selected with the TSSel tool, estimation results are stored in the
global symbol table, and all subsequent panels for model checking and graphical
analysis are activated when the required data objects are changing their state to
not empty. Interaction between the underlying model and the GUI is done via the
Symbol Management and Symbol Event systems. The NumSelector component
is used frequently for number input.

It should be noted that an alternative way to the number selection component
provided by JStatCom is to use the standard component JComboBox to select
valid values from a list. This can be seen in Figure 4.25, where the lags, as well
as the error distributions and the model specification are selected with the help
of this component. This is always appropriate if there is only a small number of
available options. For the univariate ARCH module this is the case, because the
number of lags is restricted.

It has been mentioned earlier that the ARCH module is not only available as
a stand-alone frame, but also as part of the VAR and VEC modules to analyse the
estimated residuals from those models. This is another example of internal com-
ponent reuse. The panels holding the univariate and multivariate ARCH analysis



4.9. STR Analysis 305

tools can also be used independently of the module frame. They might be put in
all other analysis frames. In this case, there would be no TSSel component in-
cluded, because the variables for the estimation are the estimated residuals which
do not have to be selected. Of course, it is necessary to tell the panel the names
of the required variables in the global symbol table that should be used as input
for the ARCH estimation. This is done via setting properties of those panels. The
rest of the analysis if handled internally within the ARCH panels via local symbol
tables, because the residuals from the estimation of the volatility process are of no
interest to any other panels and should therefore not be put in the global symbol
table.

4.9 STR Analysis

4.9.1 Overview

Figure 4.29: Screenshot of model selection for STR analysis



306 Chapter 4. JMulTi - A Reference Application of the Framework

The standard STR model with a logistic transition function allowed for in
JMulTi has the form

yt = φ
′zt + θ

′ztG(γ, c, st) + ut, ut ∼ iid(0, σ2)

G(γ, c, st) =

1 + exp{−γ
K∏

k=1

(st − ck)}

−1

, γ > 0

where zt = (w′t , x′t)′ is an ((m + 1) × 1) vector of explanatory variables with
w′t = (1, yt−1, . . . , yt−p)′ and x′t = (x1t, . . . , xkt)′. φ and θ are the parameter vectors
of the linear and the nonlinear part respectively. The transition function G(γ, c, st)
depends on the transition variable st, the slope parameter γ and the vector of loca-
tion parameters c. In JMulTi only the most common choices for K are available,
K = 1 (LSTR1) and K = 2 (LSTR2). The transition variable st can be part of zt

or it can be another variable, like for example st = t (trend).

4.9.2 The Modelling Cycle

The modelling cycle suggested by the implementation in JMulTi consists of the
three stages: specification, estimation and evaluation.

1. Specification starts with setting up a linear model that forms a starting point
for the analysis. It can be modelled by using the VAR framework. The
second part of the specification involves testing for nonlinearity, choosing
st and deciding whether LSTR1 or LSTR2 should be used.

2. Estimation involves finding appropriate starting values for the nonlinear es-
timation and estimating the model.

3. Evaluation of the model usually includes graphical checks as well as various
tests for misspecification, such as error autocorrelation, parameter noncon-
stancy, remaining nonlinearity, ARCH and nonnormality.



4.9. STR Analysis 307

Figure 4.30: Screenshot of selecting subset restrictions for AR parts of STR model

4.9.3 Implemented Features

Specifying the AR Part

The first step of the specification of an STR model is to select the linear AR
model to start from. The selection mechanism allows to choose one endogenous
variable yt and an arbitrary number of exogenous (xt) and deterministic variables,
see Figure 4.29. The maximum lag order for yt and xt determines the number
of lags to include. Lags of yt and xt can be excluded again via setting subset
restrictions as is shown in Figure 4.30. A constant is always included, seasonal
dummies can be added via a button. Because the linear part must be stationary,
there is no option to include a trend.

Transition Variable The transition variable st must be part of the selected vari-
ables or lags of these variables if it is not a trend. If st is not part of zt, then it can
be excluded from zt via setting subset restrictions. One can also set st = t in later
stages, in that case it does not have to be included.

Smooth Trend It is possible to specify a smooth trend model

yt = φ0 + θ0G(γ, c, t) + ut

by just including yt with zero lags and specifying TREND as st in the estima-
tion. The subset panel allows to impose exclusion restrictions on the selected
variables by just clicking on the corresponding parameter and setting it to 0. To
find those restrictions one could apply a subset search routine implemented in the
VAR model part of JMulTi.



308 Chapter 4. JMulTi - A Reference Application of the Framework

The excluded variables can still be used as transition variables but they are
excluded from both, the linear and nonlinear parts, by setting φi = θi = 0. Other
restrictions on the parameter space can be set in later stages of the analysis.

Testing Linearity

Figure 4.31: Screenshot of test for nonlinearity

The test can be used to check, whether there is a nonlinearity of the STR type
in the model (Figure 4.31). It also helps to determine the transition variable and
whether LSTR1 or LSTR2 should be used. The following auxiliary regression is
applied if st is an element of zt:

yt = β
′
0zt +

3∑
j=1

β′jz̃ts
j
t + u∗t (4.10)

whith zt = (1, z̃t)′. In case st is not part of zt:

yt = β
′
0zt +

3∑
j=1

β′jzts
j
t + u∗t



4.9. STR Analysis 309

The null hypothesis of linearity is H0 : β1 = β2 = β3 = 0. In JMulTi this linear
restriction is checked by applying an F test. It is denoted in the output with the F

symbol.

All potential transition variables can be selected in the respective table. The
test is then executed for each of the candidates and the variable with the strongest
test rejection (the smallest p-value) is tagged with the symbol ∗. This can be used
as a decision rule for choosing an appropriate st, especially if the differences are
big.

It is also possible to carry out the linearity test under further restrictions about
θ. A variable can be excluded from the nonlinear part if θi = 0. In the linearity test
this can be taken into account by setting elements of β j = 0. In JMulTi this can be
done by selecting elements from the respective table. If all variables are excluded
from the nonlinear part, then the test cannot be computed for st that are part of zt.
However, it still works for transition variables not contained in zt, for example t.

Once linearity has been rejected, one has to choose whether an LSTR1 or an
LSTR2 model should be specified. The choice can be based on the test sequence:

1. test H04 : β3 = 0

2. test H03 : β2 = 0|β3 = 0

3. test H02 : β1 = 0|β2 = β3 = 0

The test is based on the same auxiliary regression (4.10) as the linearity test.
In JMulTi the corresponding F-statistics of the null hypothesis H04,H03,H02 are
denoted by F4, F3, F2. The choosen model is explicitly stated. However, if the
test sequence does not provide a clear-cut choice between the alternatives, it is
sensible to fit both, an LSTR1 and LSTR2 model and decide on the evalutation
stage. This can be done by looking at the information criteria or at the residual
sums of squares.

Finding Initial Values

The parameters of the STR model are estimated by a nonlinear optimization rou-
tine. For the algorithm to work it is important to use good starting values. The



310 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.32: Screenshot of grid search to find starting values

gridsearch (see Figure 4.32) creates a linear grid in c and a log-linear grid in γ.
For each value of γ and c the residual sum of squares is computed. The values
that correspond to the minimum of that sum are taken as starting values. It should
also be noted that in order to make γ scale-free, it is divided by σ̂K

s , the Kth power
of the sample standard deviation of the transition variable.

Estimation of Parameters

Once good starting values have been found, the unknown parameters c, γ, θ, φ can
be estimated by using a form of the Newton-Raphson algorithm to maximize the
conditional likelihood function.

The following types of restrictions are available for estimation:

1. θi = −φi the corresponding parameter will disappear if G(γ, c, st) = 1

2. φi = 0 the corresponding parameter will disappear if G(γ, c, st) = 0

3. θi = 0 the variable will only enter the linear part

A variable can only be selected for one of those restrictions. Figure 4.34 shows
the dialog for setting the restrictions for the estimation.



4.9. STR Analysis 311

Figure 4.33: Screenshot of panel for STR estimation

The starting values, parameter estimates, standard deviations, t-values and p-
values are displayed for the estimated model separated for the linear and the non-
linear part. The covariance is computed by

Σ̂β̃ = 2σ̃2 [t]
[
δ2S
δβδβ′

]−1
∣∣∣∣∣∣∣
β̃

The following statistics are given as well:

1. AIC, SC, HQ

2. R2 and adjusted R2

3. variance and standard deviation of st

4. variance and standard deviation of estimated residuals

Figure 4.33 shows the panel holding the GUI to specify the estimation, as well
as the output from the computations.



312 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.34: Screenshot of dialog to set restrictions for STR estimation

Graphical Analysis

Figure 4.35: Screenshot of graphical analysis panel

Various parts of the estimated STR model can easily be plotted (Figure 4.35).
This can help to detect problems in the residuals quickly and to illustrate the esti-
mation results.

The estimated residuals

ũt = yt − φ̃
′zt + θ̃

′ztG(γ̃, c̃, st)

can be plotted in various ways. It is also possible to add them to the dataset. They
will appear as a new variable with the name str resids in the time series list.



4.9. STR Analysis 313

It is possible to plot against t:

1. the transition function G(γ̃, c̃, st)

2. the fitted series φ̃′zt + θ̃
′ztG(γ̃, c̃, st)

3. the original series yt

4. the nonlinear part θ̃′ztG(γ̃, c̃, st)

5. the linear part φ̃′zt

6. the transition variable st

It is also possible to plot the transition function as function of transition vari-
able:

G(st) =

1 + exp{−γ̃
K∏

k=1

(st − c̃k)}

−1

with K = 1 for LSTR1 or K = 2 for LSTR2.

Checking Misspecification

The quality of the estimated nonlinear model should be checked against misspec-
ification like in the linear case, see Figure 4.36. The tests for STR models are
generalizations of the corresponding tests for misspecification in linear models.

Test for No Error Autocorrelation The test is a special case of a general test
described in Godfrey (1988) and has been discussed in its application to STR
models in Teräsvirta (1998). The procedure is to regress the estimated residuals
ũt on lagged residuals ũt−1 . . . ũt−q and the partial derivatives of the log-likelihood
function with respect to the parameters of the model. The test statistic is then

FLM = {(S S R0 − S S R1)/q}/{S S R1/(T − n − q)}

where n is the number of parameters in the model, S S R0 the sum of squared resid-
uals of the STR model and S S R1 the sum of squared residuals from the auxiliary
regression.



314 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.36: Screenshot of residual analysis panel

Test for No Remaining Nonlinearity After the STR has been fitted, it should
be checked whether there is remaining nonlinearity in the model. The test as-
sumes that the type of the remaining nonlinearity is again of the STR type. The
alternative can be defined as:

yt = φ
′zt + θ

′ztG(γ1, c1, s1t) + ψ′ztH(γ2, c2, s2t) + ut

where H is another transition function and ut ∼ iid(0, σ2). To test this alternative
the auxiliary model:

yt = β
′
0zt + θ

′ztG(γ1, c1, s1t) +
3∑

j=1

β′jz̃ts
j
2t + u∗t

is used. The test is done by regressing ũt on (z̃′t s2t, z̃′t s2
2t, z̃

′
t s

3
2t)
′ and the partial

derivatives of the log-likelihood function with respect to the parameters of the
model. The null hypothesis of no remaining nonlinearity is that β1 = β2 = β3 = 0.
The choice of s2t can be a subset of available variables in zt or it can be s1t.
It is also possible to exclude certain variables from the second nonlinear part by



4.9. STR Analysis 315

restricting the corresponding parameter to zero. The resulting F statistics are given
in the same way as for the test on linearity.

Test for Parameter Constancy This is a test against the null hypothesis of con-
stant parameters against smooth continous change in parameters. The alternative
can be written as follows:

yt = φ(t)′zt + θ(t)′ztG(γ, c, st) + ut, ut ∼ iid(0, σ2)

where
φ(t) = φ + λφHφ(γφ, cφ, t∗)

and
θ(t) = θ + λθHθ(γθ, cθ, t∗)

with t∗ = t/T and ut ∼ iid(0, σ2). The null hypothesis of no change in parameters
is γθ = γφ = 0. The parameters γ and c are assumed to be constant. The following
nonlinear auxiliary regression is used:

yt = β
′

0zt +

3∑
j=1

β′jzt(t∗) j +

3∑
j=1

β′j+3zt(t∗) jG(γ, c, st) + u∗t

In JMulTi the F-test results are given for three alternative transition functions

H(γ, c, t∗) =

1 + exp{−γ
K∏

k=1

(t∗ − ck)}

−1

−
1
2
, γ > 0

with K = 1, 2, 3 respectively and assuming that γθ = γφ.

Furthermore, the ARCH-LM and Jarque-Bera tests are available.

4.9.4 Implementation Details

The STR module again has a similar design to the other analysis modules. The
Equation system is used to select subset restrictions (Figure 4.30). A challenging
task for the STR module was to provide intuitive selection mechanisms for the
transition variable, as well as for the various possible restrictions. For this, the



316 Chapter 4. JMulTi - A Reference Application of the Framework

Data Table system was applied extensively with JSCSArrayTable instances,
see Figures 4.31, 4.34, 4.32, 4.33. It is also applied in two more dialogs for
the diagnostic tests that are not shown. Those tables show the variables that are
eligible for selection by their names. The underlying logic of the module manages
how the SARRAY data objects with the names are actually assembled according
to the selected model. Although it required some effort to develop the needed
algorithms for handling all possible selections and to translate them to the correct
indices which can be handled by the underlying Gauss algorithms, it should be
noted that also in this case the Symbol Management and Symbol Event systems
provide the basis for triggering these algorithms and for exchanging data objects
between various panels.

Because there are as many as 36 globally shared variables, it was again nec-
essary to use a separate class for the variable definitions. The technique has been
described earlier for the VAR module, see Section 4.6.3. The STR module also
reuses PCall classes for several diagnostic tests that are also employed in all
other analysis modules. Internal reuse with the help of the PCall system makes
life easier here as well.

4.10 Nonparametric Analysis

4.10.1 Overview

The nonparametric analysis module in JMulTi allows to specify, estimate, and
analyse nonparametric time series models and use them for forecasting. It covers
exclusively models for univariate stochastic processes {yt}t≥1. In the basic non-
parametric heteroskedastic nonlinear autoregressive (NAR) model it is assumed
that the stochastic process {yt} is generated by the process

yt = µ(xt) + σ(xt)ξt (4.11)

where xt = (yt−i1 , yt−i2 , . . . , yt−im)′ is the vector of all m correct lagged values,
i1 < i2 < · · · < im, and the ξt’s, t = im + 1, im + 2, . . ., denote a sequence of i.i.d.
random variables with zero mean and unit variance. The functions µ(xt) and σ(xt)



4.10. Nonparametric Analysis 317

Figure 4.37: Screenshot of model selection for the nonparametric analysis

denote the conditional mean and volatility function, respectively. JMulTi also
allows the conditional volatility function σ(·) to have lags different from those of
the conditional mean function.

In addition to the NAR model there are three seasonal extensions: the sea-
sonal nonlinear autoregressive (SNAR) model, the seasonal dummy nonlinear
autoregressive (SDNAR) model, and the seasonal shift nonlinear autoregressive
(SHNAR) model. For a comprehensive description of the underlying models, see
Tschernig (2004).

A special feature of this module is the automatic selection of all relevant lags
for the chosen model according to a specific criterion and a maximum number of
lags. This is especially helpful for nonparametric modelling to reduce the impact
of the “curse of dimensionality”, which means that the rate of convergence of the
estimates decreases with the number of explanatory variables in the model. For
this reason it is important to select parsimonious models.

During the modelling process and for model evaluation, it can be useful to ad-
ditionally employ linear lag selection methods. This can be done in JMulTi for the



318 Chapter 4. JMulTi - A Reference Application of the Framework

linear counterparts of the above mentioned models. These include: the autoregres-
sive (AR) model, the periodic autoregressive (PAR) model, the seasonal dummy
linear autoregressive (SDAR) model, and the seasonal shift linear autoregressive
(SHAR) model.

Before beginning a nonparametric analysis, one should be aware that all non-
parametric methods that are implemented in JMulTi are developed for stochastic
processes that are stationary and show a quick enough decay of stochastic depen-
dence between observations with an increasing time span.

The basic modelling steps implied by this analysis module are

1. Prior Data Transformations - The first step in nonparametric modelling is
to transform the time series such that it becomes stationary and β-mixing.
The latter implies that the stochastic dependence between observations of
different time points decreases fast enough with the distance between obser-
vations. This can be done with standard tools provided by JStatCom, like
the Time Series Calculator (see Section 3.24) and the TSSel component.

2. Model and Lag Selection - An endogenous variable can be selected and
automatic selection procedures can be applied to find the relevant lags.

3. Estimation - If a nonparametric model was specified before, it is possible
to estimate the conditional mean of the process at each time t with the local
linear estimator.

4. Model Checking - It is possible to check the model against misspecification
like in the VAR and VEC modules with a number of diagnostic tests and
other tools.

and potentially

5. Volatility Analysis - it is possible to specify and estimate the process for
the conditional volatility after the conditional mean was estimated. Model
checking tools are provided as well.

6. Forecasting - One can compute one-step ahead forecasts and conduct rolling
over predictions.



4.10. Nonparametric Analysis 319

Figure 4.38: Screenshot of model estimation for the nonparametric analysis

4.10.2 Implemented Features

This analysis module is geared towards nonparametric time series modelling, al-
though it can also be used to specify linear models with the lag selection based on
the standard information criteria AIC, SC, HQ, and FPE. When linear models are
specified, it is not possible to use the estimation panel. One could switch to the
VAR analysis module instead to estimate a model with the selected lags. However,
the linear models can still be used for forecasting. The nonparametric volatility
analysis is available for them as well.

Model Selection

The starting point for the analysis is to select a single stationary variable with
the already well known time series selector, see Figure 4.37. Afterwards one can
choose an appropriate nonparametric or linear model for which the lag selection
should be carried out. If the selected series has quarterly or monthly periodicity
then seasonal models are available for selection, otherwise not.



320 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.39: Screenshot of forecasts for the nonparametric analysis

The lag selection evaluates the selected criterion for all possible models that
have a fixed number of lags and a largest possible lag. The criterion, the maximum
number of included lags, as well as the largest candidate lag can be adjusted. The
model with the lowest criterion value is suggested to the user.

Available criteria for the lag selection of nonparametric models are the As-
ymptotic Final Prediction Error (AFPE) and the Corrected Asymptotic Final Pre-
diction Error (CAFPE). The CAFPE is a correction to improve the finite sample
behaviour of the AFPE and is less vulnerable to overfitting (Tschernig and Yang
(2000)). If a linear model is selected then the already mentioned standard infor-
mation criteria can be used.

Estimation

If a nonparametric model was selected (NAR, SNAR, SDNAR, or SHNAR) and
the lags are already specified, local linear estimation of the conditional mean can
be carried out with the estimation panel, see Figure 4.38. It is possible to select
the desired lag structure and to evaluate the model at a grid and at a selected
point. The nonparametric estimation is typically presented as a plot which is



4.10. Nonparametric Analysis 321

Figure 4.40: Screenshot of surface plot for conditional mean

three-dimensional if there are two free lags, see Figure 4.40. When the selected
model includes more lags, then fixed values have to be chosen for the remaining
lags. The user can select which lags should be selected for the axes of the graph. It
is also possible to plot confidence intervals if there is only one free lag, as shown
in Figure 4.41. In this case all other lags, if available, have to be set to fixed values.

Further options of the estimation panel include editing of the selected lags to
estimate other models, choosing the kernel bandwidth, adjusting the number of
grid points for each lag, as well as miscellaneous plot options.

Model Checking

To check the assumptions about the residuals of the model, similar tools that have
already been presented in the VAR and VEC analysis modules can be applied. It is



322 Chapter 4. JMulTi - A Reference Application of the Framework

Figure 4.41: Screenshot of conditional mean together with Bonferroni CIs

possible to plot the residuals, to compute the AC and PAC functions, as well as to
display the spectrum and kernel density estimates. The Portmanteau, ARCH-LM,
Jarque-Bera, and Godfrey (1988) diagnostic tests are also available.

Forecasting

After a linear or nonparametric model has been specified, the forecast panel is
activated as soon as the optimal lag structure has been found. With the help of this
panel the user can either conduct rolling over, out-of-sample forecasts, or one-step
ahead forecasts.

Rolling-over, out-of-sample forecasts For these forecasts one splits the data
set into a sample for estimation which contains the first T ′ values and a sample
of the remaining T − T ′ values for out-of-sample forecasting. The first forecast
is computed for yT ′+1 based on all observations available up to time T ′. In the
next step one forecasts yT ′+2 based on the sample {y1, . . . , yT ′+1}. This procedure is
iterated until T − 1 observations are used and yT is forecasted. One then computes



4.10. Nonparametric Analysis 323

the rolling over one-step ahead prediction error

PE =
1

T − T ′

T∑
j=T ′+1

(̂
y j − y j

)2
. (4.12)

The use of rolling over predictions is to allow out-of-sample comparisons of
the model with other models. For example, one may compare the out-of-sample
performance of a NAR model with its linear AR counterpart. Therefore, rolling
over predictions can also be conducted for all linear models. Rolling over, out-of-
sample predictions can also be computed for all seasonal models: SNAR, SDNAR
and SHNAR.

One-step ahead forecast The nonparametric one-period ahead forecast for a
time series is obtained by estimating f (xT+1) where this estimate is computed
using the settings specified in the lag selection panel and the estimation panel
respectively. The prediction interval is stated as well in the output window.

Conditional Volatility Analysis

It is possible to model the conditional volatility σ(·) nonparametrically after the
conditional mean has been estimated. For this, the NAR and SDNAR models are
available with the lag selection criteria AFPE and CAFPE. Lag selection for the
conditional variance function is required, because in practice the lags in σ2(·) may
differ from those in µ(·). The selected model for σ(·) can then be estimated in a
similar way than the model for the conditional mean with the respective panel.
The residual analysis is activated after the estimation and it has the same features
as the model checking panel for the residuals from the estimation of µ(·). Note
that if the conditional mean function and the conditional volatility function of the
NAR model are correctly specified, the estimated ξt’s should look like an i.i.d.

sequence with mean 0 and variance 1.

It should be mentioned that the volatility analysis panel is also available before
the conditional mean has been estimated. But in this case lag selection can only
be done with the option that µ(·) = 0.



324 Chapter 4. JMulTi - A Reference Application of the Framework

4.10.3 Implementation Details

The implementation of the nonparametric analysis module is based on a design
that is similar to the other modules. Again, a TSSel component is applied to se-
lect the variable, and the model is represented by a set of symbols that are globally
shared in the symbol table for the model frame. The variable definitions are de-
clared in an extra class CAFPE constants because there are 43 shared symbols
that are required by different panels.

A challenge for this module was to adjust the set of available models accord-
ing to the variable selection and to enable/disable the panels for subsequent steps.
Seasonal models are available only for data with quarterly and monthly frequen-
cies. For other frequencies these options should not be displayed. The following
code shows how this was accomplished:

public class CAFPESel extends ModelPanel{

private JComboBox modelBox = null;

// array with all model names

private static final String[] modelKeys = new String[]{

"Heteroskedastic nonlinear autoregressive (NAR model)",

"Seasonal nonlinear autoregressive (SNAR) model",

"Seasonal dummy nonlinear autoregressive (SDNAR) model",

"Seasonal shift nonlinear autoregressive (SHNAR) model",

"Linear autoregressive (AR) model",

"Periodic autoregressive (PAR) model",

"Seasonal dummy linear autoregressive (SDAR) model",

"Seasonal shift linear autoregressive (SHAR) model",

"Seasonal nonlinear autoregressive (SNAR12) model",

"Seasonal shift nonlinear autoregressive (SHNAR12) model",

"Periodic autoregressive (PAR12) model",

"Seasonal shift linear autoregressive (SHAR12) model",};

// gets model selection combobox

private JComboBox getModel() {

if (modelBox == null)

modelBox = new javax.swing.JComboBox();

return modelBox;

}



4.10. Nonparametric Analysis 325

// to be called when this class is created

private void initialize(){

....

global().get(CAFPE_constants.DRANGE).addSymbolListener(

new SymbolListener() {

public void valueChanged(SymbolEvent evt) {

getModel().removeAllItems();

getModel().addItem(modelKeys[0]);

getModel().addItem(modelKeys[4]);

if (evt.getSource().isEmpty())

return;

int period = evt.getSource().getJSCDRange()

.getTSDateRange().subPeriodicity();

if (period == 4) {

getModel().addItem(modelKeys[1]);

getModel().addItem(modelKeys[2]);

getModel().addItem(modelKeys[3]);

getModel().addItem(modelKeys[5]);

getModel().addItem(modelKeys[6]);

getModel().addItem(modelKeys[7]);

}

if (period == 12) {

getModel().addItem(modelKeys[8]);

getModel().addItem(modelKeys[9]);

getModel().addItem(modelKeys[10]);

getModel().addItem(modelKeys[11]);

}

}

});

}

The example presents parts of the class CAFPESel that is used as the panel
for model specification. From the declaration part of the class it can be seen
that a String array modelKeys with the names of all models is created. The
method getModel initializes a combobox component that holds all options and



326 Chapter 4. JMulTi - A Reference Application of the Framework

can be used to select a model, see Figure 4.37. In the initialize method of
this class a SymbolListener is installed that listens to changes in the selected
sample range symbol DRANGE. This variable has been declared in the mentioned
class CAFPE constants and it holds all information about the selected sample
range, in particular the periodicity of the selected series. On a change in that
variable, the listener removes all elements from the combobox and first adds the
model options that do not depend on the selected periodicity, which are NAR and
AR. Then it retrieves the frequency of the series. If this is 4 or 12, corresponding
to quarterly or monthly data, it adds the seasonal models that could be used in
these cases. This way the user is only presented with valid options.

However, if components adjust their behaviour dynamically this has always
the potential for confusion, because the underlying algorithm might not be obvi-
ous to the user. Therefore it should at least be documented in the help system.
An alternative would have been to keep all possible options and to present a mes-
sage to the user if an inappropriate model was chosen, which is sometimes a less
elegant but more comprehensible solution to similar problems.

Like in the ARCH analysis module, the standard javax.swing.JComboBox
component, which is not part of JStatCom, has been used frequently to let the user
select one element from a relatively small set of options. The Data Table system
has been applied in the estimation panel (Figure 4.38) to let the user edit the values
of lags that should be fixed for the estimation. The dimensions of the presented
matrices change according to the selected lag structure. This interaction was also
developed with the help of listeners.

A special implementation detail of this analysis module is that the text output
from the procedures has not been generated in Java, but has been assembled in
the Gauss procedures. The GUI just uses the name of a temporary file as an
input parameter for the underlying Gauss procedure and reads the contents of that
file after the call has finished. The contents of the output file are then set to the
instance of ResultField. Another feature is that the output text fields are shown
in an extra tab of a tabbed panel because the generated text is quite long. How this
was implemented is shown in the code snippet:



4.10. Nonparametric Analysis 327

private OutHolder resultField = null;

private JTabbedPanel tabbedPane = null;

...

private void execute(){

final File outFile = new File(JSCConstants.getSystemTemp()

+ "/cafpe_sel_out");

// creates instance of lag selection call

PCall job = ... // takes outFile as argument for procedure

// set output text field

job.setOutHolder(resultField);

// add listener

job.addPCallListener(new PCallAdapter() {

public void success() {

tabbedPane.setSelectedIndex(1);

}

public void finished(PCall pCall) {

outFile.delete();

}

});

job.execute();

}

}

This code is part of the class for the selection panel. The execute method is
called when the respective button is clicked. A ResultField and a JTabbedPane
are part of this panel, the initialization methods are omitted here. In the execute
method first the file name outFile is generated with the help of the FileSupport
class. The method getSystemTemp gets the name of the temporary directory to
which all applications have write access. Then a caller object is created which
must take outFile as an argument, details are again left out. The job object is
then told which component to use for printing the results, which is resultField
in that case. How the contents of the output file are read back and set to the
text component after the computation is over is also handled by the job object.



328 Chapter 4. JMulTi - A Reference Application of the Framework

Finally, the calling panel installs a listener to the caller object to take some action
when the call finishes. For this the PCallAdapter class is subclassed, which has
been described in Section 3.19. The listener sets the selected tab to the output
field if the call finished successfully, see Figure 4.42. Therefore it overwrites the
method success. In any case it deletes the output file by overwriting finished.
Finally, the caller job is executed which means that it is queued for execution in
the background thread.

Figure 4.42: Screenshot of text output after lag selection finished

4.11 Outlook

The software JMulTi is an ongoing project that is now part of the newly created
National Research Center 649 “Economic Risk” at the Humboldt-Universität zu
Berlin in the project “Unit Root and Cointegration Methods” (C2). JStatCom will
serve as a platform to make the developed econometric methods available to other
researchers.



4.12. Conclusion 329

A general limitation of the software JMulTi is currently the lack of project
management. Therefore it is not possible to save the state of a model to a file, but
it is necessary to reproduce all specification steps when a certain model should
be restored. However, this is a feature that is being worked on and that can be
programmed on top of the existing implementation without the need for a general
redesign.

Another limitation is that the software uses the Gauss graphics engine which
does not allow to edit graphs that have been created. It would also be desirable to
store created graphs for a model as part of a project. As already mentioned, it is
likely that these features can be implemented when a Java graphics engine is used.

Of course there are also other econometric features that should be integrated
in the JMulTi software. For example, a module especially designed for univariate
time series analysis would be what many users would expect in such a software.

Further extensions include better support for importing data from various
sources. It is currently planned to make it possible to read in Gauss .fmt and
.dat files. Data export to these file formats as well as to Excel workfiles is also
being worked on. These features can be implemented on the framework level and
do not conflict with its current design.

A general problem is always the quality of the used algorithms in terms of
stability and performance. Experience shows that most errors occur in the algo-
rithms. This situation can be improved by consequently applying unit testing on
the caller classes. For this it is especially useful that test data can be stored in text
files which can easily be read into instances of JSCNArray. This makes it pos-
sible to use real data for unit testing and to check the results of the econometric
procedures via assertions.

4.12 Conclusion

It has been mentioned throughout the text that JStatCom provides standard solu-
tions to recurring tasks. The descriptions of the modules should have underlined
this statement by showing how problems occurring in quite different theoretical
models could be solved in similar ways on the basis of systems provided by JS-
tatCom. It is argued that this is a big advantage over other approaches, because



330 Chapter 4. JMulTi - A Reference Application of the Framework

it allows to implement a wide range of models with similar programming tech-
niques. Developers can therefore focus more on the algorithms, on the quality of
the presented GUI solutions, and on documentation, instead of inventing new so-
lutions for data import, selection, help system integration, and data representation
for every model they want to supply with a graphical user interface.

The chosen approach has successfully been used for the implementation of
several analysis modules with quite different behaviour. From these examples one
can see that it is general enough to be used for any other model in time series
analysis. Furthermore, the framework can also be used in other problem domains
where similar tasks have to be solved. The extension mechanisms provided by
JStatCom might be used to develop the required adjustments. For example, the
TSSel component is especially designed to select time series and might not be
applicable in other domains where the data has different properties.

It is therefore hoped that the software framework JStatCom will be used to im-
plement various tools to support empirical analysis by making up-to-date methods
available to the practitioner and to other researchers. The framework will also be
used to extend the functionality of existing modules in JMulTi and to develop new
modules for other models, thus making the software an even better candidate for
classroom use and research.



Appendix A

Guide to Notation

The description of the framework uses formal and informal graphical representa-
tions to illustrate important aspects of the system. Informal diagrams are screen-
shots that should give an intuitive idea about the operation of the discussed part
of the system. Formal diagrams use the UML modelling language (Booch et al.
(1999)) to describe classes, objects, and their relationships.1 They are also used
to show the context of a system in relation to its environment. Other represen-
tations include tables to describe the elements of a system together with a short
description of their responsibilities. Those tables are formal in a way that they list
all elements that have an is-part-of relationship to the subsystem under consider-
ation, and they are informal in the way responsibilities are described.

It is important to note that the notation should capture only selected aspects
that are relevant to understand the architecture. Therefore, the chosen UML dia-
grams often do not display all classes that are involved, and they typically show
only certain methods and fields, if any. Otherwise, the use of these diagrams
would be quite limited because they would simply get too big. Moreover, detailled
and complete information about all classes is given in the API documentation.

This architecture documentation does include only a small subset of all avail-
able diagram types in the UML. The focus is mostly on the static class structures,
and it is argued that this is the most relevant type of information for developers us-
ing JStatCom. However, information about behaviour and the allocation of related

1All diagrams in this thesis have been generated with the UML modelling software Poseidon
for UML 2.0, Community Edition. The URL for the software is www.gentleware.com.

331



332 Appendix A. Guide to Notation

resources is given in the textual description of some subsystems when necessary.
The following UML diagram types have been used:

• class diagram - Depicts classes, their structure, and relationships between
them. Elements are classes and interfaces. In some cases, also components
and instances of components are elements of class diagrams.

• object diagram - Presents a particular object structure at runtime. An object
is an instance of a class.

• use case diagram - Shows a set of use cases and actors and their relation-
ships. It depicts how a system interacts with its environment.

In the remaining sections, all elements of the used diagrams are described.

A.1 Class Diagrams

A.1.1 Elements and Inheritance

ConcreteClass

+ field :int

+ method (arg :int ):double

AbstractClass

+ abstractMethod ():void
+ concreteMethod ():void

ConcreteSubclassInterface

+ interfaceMethod ():void

RealisationClass

Figure A.1: Classes and inheritance



A.1. Class Diagrams 333

Figure A.1 shows different elements of a class diagram and the use of the in-

herits and realizes relations. The class ConcreteClass has an interface together
with an implementation. It is neither an interface nor an abstract class and objects
can be created directly by invoking its constructor. A class can have fields and
methods. Fields are shown in the first compartment, and methods are shown with
their signature in the second compartment. Mostly, only methods are presented,
because direct access to fields is a special case. Therefore, the first compartment
is often not shown at all.

• field - A ’+’ denotes that the field is publicly visible, a ’-’ denotes private
fields that can only be accessed from inside the class. The name of the field
is given first, followed by a ’:’ and the type. An underline marks that the
variable is static. This means that it is shared by all instances of the class it
belongs to, as opposed to nonstatic fields which belong to an object.

• method - A ’+’ denotes that the method is publicly visible, a ’-’ denotes
private methods that can only be accessed from inside the class. The name
of the method is given first, followed by the arguments with type and name
in brackets. After the ’:’, the return type is given. An underline marks that
the method is static. This means that it can be invoked without creating an
instance of the class it belongs to. Nonstatic method can only be invoked on
objects.

As opposed to concrete classes, there are also abstract classes. One cannot
create instances of abstract classes directly. They have to be subclassed first and
all methods declared as abstract have to be implemented. Abstract classes are
useful to provide default functionality that is shared by all implementing classes
and that can be factored out in a single class. At the same time, subclassing is
enforced to implement the varying parts. Typically, clients only need to interact
with the interface of an abstract class. AbstractClass is an example of such
a class. It has the abstract method abstractMethod and the concrete method
concreteMethod. Abstract classes and methods are indicated by the italicised
font.



334 Appendix A. Guide to Notation

Because abstract classes cannot be instantiated, they have to be subclassed.
The ConcreteSubclass is therefore an example of a class that inherits from
AbstractClass. It must provide an implementation for abstractMethod. The
inherits relation is shown by the arrow with a solid line.

It should be mentioned that this relation would also be possible between non
abstract classes and subclasses. However, because of the problems that inheritance
can cause, subclassing is typically allowed only for abstract classes, except in
special cases. Otherwise it is programmatically prohibited via the final keyword.
However, this is not visible from UML class diagrams. For a justification of this
relatively strict policy, see Bloch (2001), item 15.

Another very important element of class diagrams are interfaces. An inter-
face is nothing more but a set of methods that classes promise to implement in
a certain way. Interfaces never contain any concrete methods. Classes that im-
plement an interface are said to be realisations of it. The realises relationship is
denoted as an arrow with a dotted line. Interface and RealisationClass of
Figure A.1 are an example for this relation. Despite its conceptional simplicity,
interfaces are one of the most powerful constructs of the Java language. They
are heavily used throughout JStatCom to decouple interface definitions from their
actual implementations.

A.1.2 Components

Figure A.2: Components

Figure A.2 shows how components and instances of components can be rep-
resented with the UML. In the JStatCom architecture documentation those ele-
ments are occasionally shown together with classes or objects. The notion of
components is used to represent a process, a dynamic link library, or a file with



A.1. Class Diagrams 335

configuration information or algorithms. These are either represented as a com-
ponent, in case of a file on the disk, or as an instance of a component, for example
if a process is created from an executable file. Classes can have a dependency
relation to components.

A.1.3 Relations between Elements of Class Diagrams

Figure A.3: Relations among classes



336 Appendix A. Guide to Notation

Figure A.3 presents relations between classes that are not related to inheri-
tance. They are named and described in the following:

• dependency (pair 1) - Indicates that one class uses another class. This
means that the behaviour of the dependent class is affected by changes in
the independent class, but not vice versa. Typically, this means that the
other class is used in a method or is part of a method signature of the de-
pendent class. TimeSeries depends on TSDate because the date is part of
the constructor signature. It is used to determine the sample range. TSDate
does not depend on TimeSeries in any way.

• association (pairs 2, 3) - Structural relationship that describes a set of links
between instances of the involved classes. Typically, it means that instances
of a class keep zero, one, or many references to instances of another class.
The multiplicity is indicated with:

– ’*’ - any number, including zero

– ’1..*’ - any number, but at least one

– ’1’ - exactly one

– ’0..1’ - zero or one

The association can be directed or undirected. A direction is indicated with
an arrow. A SymbolTreeNode has exactly one reference to a Symbol,
but the symbol does not know anything about the tree node referencing
it. This is a directed association. An example of a bidirectional link is pair
3. Each Symbol can have an arbitrary number of SymbolListener in-
stances, whereas each listener can register itself to an arbitrary number of
symbols as well.

• aggregation (pair 4) - A special form of association that defines a whole-

part relationship between the aggregate and the part. It is indicated by an
empty diamond on the side of the aggregate. Because it is a specialization
of an association, the same rules for multiplicity apply. A SymbolTable
is an aggregation of zero, one, or many Symbol instances. To mark the



A.2. Object Diagrams 337

difference to a composition, one has to note that a symbol object can also
exist without the symbol table object that aggregates it.

• composition (pair 5) - A form of aggregation with strong ownership of the
parts by the whole. The aggregate is also called composite. The lifetime of
the parts finishes when the composite dies. The same rules for multiplicity
apply as for an association. A VARFrame has exactly one instance of a
VAREstPanel, which has no life outside the VAR frame. This means that
no other objects that are independent of the VAR frame keep references to
the estimation panel. GUI components are typical examples of composites.

A.2 Object Diagrams

Figure A.4: Object diagram

Object diagrams capture the runtime structure of instances of classes at a point
in time for real or prototypical cases. Figure A.4 shows two objects that are linked.
An instance of Symbol refers to a JSCInt data object.

As opposed to class diagrams, an object diagram might contain more than one
instance of a class appearing, whereas it would not make sense to have a class
appearing more than one time in a class diagram. Every object is defined by its
name and its type, which are separated by a ’:’. The relation between objects is
a link, which is an instance of an association.

A.3 Use Case Diagrams

Use case diagrams capture how a certain system is related to its environment. Fig-
ure A.5 shows an example. The elements are actors, use cases and packages. An
actor is a person or another system that interacts with the system under considera-
tion. The latter is often represented by a rectangular area, which is called package.



338 Appendix A. Guide to Notation

User

time series

select data for VAR model

select sample range

<<include>>

 

 

Figure A.5: Use case diagram

Use cases are certain behavioural elements that are invoked by the actor. A use
case can include other sub tasks that belong to it. Those subtasks might also be
included by other use cases as well. For example, selecting the variables for a
VAR model would include the task for selecting the sample range. For the JStat-
Com architecture documentation, use cases are employed to show the context of
a certain system, as suggested in Clements et al. (2003).



Appendix B

Documenting Modules with
JavaHelp and JHelpDev

”The JavaHelp system provides developers and authors a standard, fully-featured,

easy-to-use system for presenting online information to Java application users.

Providing a help system standard that is part of the Java platform relieves devel-

opers and authors of the task of inventing their own proprietary help systems.”

(JHelp User Guide)

Modern applications that claim to be professionally developed have to provide
users with a state-of-the-art help system. It must integrate well with the underly-
ing application, must be easy to browse and search, and should also be context-
sensitive. For Java, there exists the JavaHelp system which gives developers the
needed functionality. It is by now the de facto standard for help systems in Java
applications and replaces ad hoc solutions or simple PDF files.

The problem domain of data based analysis, especially empirical economet-
rics, requires yet another special feature of a help system. It must be possible for
authors to write documents with many mathematical formulas conveniently, and
to convert them easily to the required help format. Like most other help systems,
the JavaHelp system is based on HTML, meaning that the content has to be written
in that language.

339



340 Appendix B. Documenting Modules with JavaHelp and JHelpDev

It is clear that this is obviously not an optimal solution for coding mathematical
formulas, because they either have to be written in a textual form, or they have
to be converted to a graphics file that can be embedded in an HTML file. The
first approach simply does not look very well, the second solution depends very
much on how the graphics creation is handled. Therefore, direct help authoring in
HTML is tedious and not very effective.

B.1 LaTeX and latex2html

Because of the above mentioned problems, it is argued that help authoring must be
made more convenient to encourage developers or scientists to provide documen-
tation for their modules. This requires a standard approach to creating documents
in the problem domain that can be adopted without imposing further learning
costs. Most scientists write their texts in LaTeX and are familiar with that system.
The suggested solution is therefore to create help documents in LaTeX and use
the conversion tool latex2html for generating HTML files from it.1 It has been
found that this gives acceptable results. The workings of the latex2html tool is not
described here, but it is available on all major operating systems.

As an example, assuming that the file help.tex holds the main LaTeX file
for the helpsystem of a certain module, the following command could be used to
initiate the conversion:

latex2html -split 4 -link 1 -white -local_icons

-notransparent -address " " -noinfo help.tex

This would result in a sudirectory with HTML files and graphics. The com-
mandline options are not described here in detail, but can be checked with the
latex2html documentation.

1The URL for the software latex2html is www.latex2html.org.



B.2. JHelpDev 341

B.2 JHelpDev

When the first step is done and the HTML files are there, the actual helpset must
be created in the JavaHelp format. A helpset consists of several XML files:

• Map.jhm - defines mappings between so called target IDs and relative URLs
of the HTML files

• XXX.hs - the main configuration file of the helpset, specifies title and other
settings for the general appearance

• XXXIndex.xml - can be used to create an index with keywords that are
linked with target IDs

• XXXTOC.xml - defines the table of contents definition, each entry should
point to a target ID

XXX is a placeholder for the name of the helpset, for example VAR, VEC or STR.
It can be chosen freely.

The mentioned XML files can in principle be created by hand, but this is very
ineffective and error-prone. Therefore, tool support is needed to create the helpset
easily. Although there exist tools for creating JavaHelp sets, some of them freely
available, there is need for a special solution that automatically generates the map-
pings, and possibly the table of contents, from an existing set of HTML files. This
was the motivation to develop the software JHelpDev.2 Most other help authoring
tools focus on editing the HTML content files. JHelpDev does not provide HTML
editing capabilities at all, but just indexes files in a given directory tree and offers
editors for the table of contents and the help index. Thus, it can be used to create
a working JavaHelp set from the latex2html output with only a few mouse clicks.
Figure B.1 shows the table of contents editor of JHelpDev.

2 The URL for the software JHelpDev is jhelpdev.sourceforge.net. It is published under the
LGPL and is hosted as a sourceforge project. The main development was done by M. Krätzig,
recently some add-ons have been contributed by the registered developer J. Iry.



342 Appendix B. Documenting Modules with JavaHelp and JHelpDev

Figure B.1: Screenshot of a TOC editor component

The operation of the software is described in greater detail in the integrated
help system. But the general steps are the following:

• create a new project by telling the program which directory holds the HTML
files to be used

• once confirmed, JHelpDev automatically creates all required XML files,
including a default table of contents

• typically, the table of contents is edited to change the order and to add,
delete, or rename items

• an index can optionally be created with the index editor

• by clicking on Create All, the helpset is generated with the full text search
database



B.3. Integrating Helpsets with an Application 343

• the final result can always be checked via the View Help button

The whole project directory should then be copied into the resource directory
of the application, typically in a subdirectory helpsets/XXX. A screenshot of a
helpset that has been generated this way is shown in Figure B.2. It is actually part
of the JMulTi application.

Figure B.2: Screenshot of a help viewer

B.3 Integrating Helpsets with an Application

The standard way of integrating a helpset is to put it in the file modules.xml, as
described in the Application view package, see Section 3.26. The filename must
point to the relative location of the main configuration file XXX.hs. When the



344 Appendix B. Documenting Modules with JavaHelp and JHelpDev

application is started via the TopFrame class, all helpsets are created and dynam-
ically merged. Dynamic merging is a feature provided by the JavaHelp system. It
just results in a table of contents that contains the elements of all merged helpsets
together.

For the target IDs that are needed for setting up the context-sensitive help via
the file help context.xml, one should check the TOC editor in the JHelpDev
tool. For each element the target ID is shown as well. It is also possible to read
the Map.jhm or XXXTOC.xml files directly and to retrieve the IDs from there.

However, there is just one little problem. When creating context-sensitive
help, components are mapped to target IDs. A target is always unique when a
helpset is created, but it might not be unique anymore when several helpsets are
merged that use the same target IDs. In this case, the context-sensitive help might
point to the wrong topic. To avoid this, one has to note that JHelpDev generates
target IDs from the relative filenames of the HTML files. Therefore one should
pay attention to make these paths contain a descriptive directory name that is
unique for every helpset. For example, all HTML files for the VAR help could go
into a directory help/varhelp. The JHelpDev project directory might then be
help. In this case, all target IDs for the generated helpset would contain the string
varhelp, for example varhelp.node1, which can distinguish it from targets of
other helpsets. The problem is quite likely to occur, because the HTML files have
standardized names when they are created with latex2html. Putting them in a
subdirectory with a descriptive name will make the IDs unique.



Bibliography

Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the

Institute of Statistical Mathematics, 21:243–247.

Akaike, H. (1973). Information theory and an extension of the maximum likeli-
hood principle. In Petrov, B. and Csáki, F., editors, 2nd International Sympo-

sium on Information Theory, pages 267–281, Budapest. Académiai Kiadó.

Amisano, G. and C. Giannini (1997). Topics in Structural VAR Econometrics.
Springer, Berlin, 2nd edition.

Anderson, E. and Bai, Z. and Bischof, C. and Blackford, S. and Demmel, J. and
Dongarra, J. and Du Croz, J. and Greenbaum, A. and Hammarling, S. and
McKenney, A. and Sorensen, D. (1999). LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition.

Ashworth, M. and Allan, R.J. and Müller, C.J. and van Dam, H.J.J. and Smith,
W. and Hanlon, D. and Searly, B.G. and Sunderland, A.G. (2003). Graphical
user environments for scientific computing. Technical report, Computational
Science and Engineering Department, CCLRC Daresbury Laboratory, War-
rington.

Baba, Y. and Engle, R.F. and Kraft, D.F. and Kroner, K.F. (1990). Multivariate
simultaneous generalized ARCH. mimeo, UCSD.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1st edition.

Benkwitz, A. (2002). The Software JMulTi: Concept, Development and Applica-

tion in VAR Analysis. Dissertation, Humboldt-Universität zu Berlin.

345



346 BIBLIOGRAPHY

Berard, Edward V. (1993). Object Class Specification. In Essays on Object-

Oriented Software Engineering, pages 131–162. Simon & Schuster, Engle-
wood Cliffs, NJ.

Bianchi, A. and Caivano, D. and Lanubile, F. and Visaggio, G. (2001). Evaluat-
ing Software Degradation through Entropy. In Proc. 7th IEEE International

Software Metrics Symposium, pages 210–219, London.

Bloch, J. (2001). Effective Java. Addison-Wesley.

Boisvert, R.F. and Dongarra, J.J. and Pozo, R. and Remington, K.A. and Stewart,
G.W. (1998). Developing numerical libraries in Java. Concurrency: Practice

and Experience, 10(11-13):1117–1129.

Ronald F. Boisvert and José Moreira and Michael Philippsen and Roldan Pozo
(2001). Numerical Computing in Java. Computing in Science and Engineer-

ing, 3(2):18–24.

Boisvert, R. F. and Tang, P. T. P., editors (2001). The Architecture of Scientific

Software, IFIP TC2/WG2.5 Working Conference on the Architecture of Sci-

entific Software, October 2-4, 2000, Ottawa, Canada, volume 188 of IFIP

Conference Proceedings. Kluwer.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics, 31:307–327.

Booch, G. and Rumbaugh, J. and Jacobsen, I. (1999). The Unified Modeling

Language User Guide. Addison-Wesley.

Breitung, J. and Brüggemann, R. and Lütkepohl, H. (2004). Structural Vector
Autoregressive Modelling and Impulse Responses. In Lütkepohl, H. and
Krätzig, M., editors, Applied Time Series Econometrics. Cambridge Univer-
sity Press.

Brown, R. L. and Durbin, J. and Evans, J. M. (1975). Techniques for testing
the constancy of regression relationships over time. Journal of the Royal

Statistical Society B, 37:149–192.



BIBLIOGRAPHY 347

Brüggemann, R. and Lütkepohl, H. (2001). Lag selection in subset VAR models
with an application to a U.S. monetary system. In Friedmann, R., Knüppel,
L., and Lütkepohl, H., editors, Econometric Studies: A Festschrift in Honour

of Joachim Frohn, pages 107–128. LIT Verlag, Münster.

J. M. Bull and L. A. Smith and L. Pottage and R. Freeman (2001). Benchmarking
Java against C and Fortran for scientific applications. In Java Grande, pages
97–105.

Candelon, B. and Lütkepohl, H. (2000). On the reliability of Chow type tests
for parameter constancy in multivariate dynamic models. Discussion paper,
Humboldt-Universität Berlin.

Clements, P. and Bachmann, F. and Bass, L. and Garlan, D and Ivers, J. and Little,
R. and Robert, N and Stafford, J. (2003). Documenting software architecture:

views and beyond. Addison-Wesley.

Cribari-Neto, F. and Jensen, M. J. (1997). MATLAB as an Econometric Program-
ming Environment. Journal of Applied Econometrics, 12(6):735–44.

Cribari-Neto, F and Zarkos, S.G. (1999). R: Yet another econometric program-
ming environment. Journal of Applied Econometrics, 14:319–329.

Cribari-Neto, F. and Zarkos, S. G. (2003). Econometric and Statistical Computing
Using Ox. Computational Economics, 21:277–295.

Deitel, H. M. and Deitel, P.J. (2002). C++ How to Program. Prentice-Hall, 2nd
edition.

Deutsch, L. P. (1989). Design reuse and frameworks in the Smalltalk-80 system.
In Biggerstaff, T. J. and Perlis, A. J., editors, Software Reusability, Volume II:

Applications and Experience, pages 57–71. Addison-Wesley, Reading, MA.

Dickey, D. A. and Fuller, W. A. (1979). Estimators for Autoregressive Time Series
with a Unit Root. Journal of the American Statistical Association, 74:427–
431.

Edsger W. Dijkstra (1969). Structured programming. circulated privately.



348 BIBLIOGRAPHY

Doolin, D. M. and Dongarra, J. (1997). JLAPACK - Compiling LAPACK FOR-
TRAN to Java.

Doornik, J.A. (2002a). Object-oriented Programming in Econometrics and Sta-
tistics using Ox: A Comparison with C++, Java and C#. In Nielsen, S.,
editor, Programming Languages and Systems in Computational Economics

and Finance, pages 115–147. Dordrecht: Kluwer Academic Publishers.

Jurgen Doornik (2002b). Ox Appendices.

Doornik, J.A. and Ooms, M. (2001). Introduction to Ox. Timberlake Consultants
Press, London.

Doornik, J. A. (1998). Approximations to the asymptotic distributions of cointe-
gration tests. Journal of Economic Surveys, 12:573–593.

Doornik, J. A. and Hansen, H. (1994). A practical test of multivariate normality.
unpublished paper, Nuffield College.

Doornik, J. A. and Hendry, D. F. (1997). Modelling Dynamic Systems Using

PcFiml 9.0 for Windows. International Thomson Business Press, London.

Eckstein, R. and Lay, M. and Wood, D. (1998). JAVA Swing. O’Reilly.

Eddelbuettel, D. (2000). Econometrics with Octave. Journal of Applied Econo-

metrics, 15(5):531–542.

Edgerton, D. and Shukur, G. (1999). Testing autocorrelation in a system perspec-
tive. Econometric Reviews, 18:343–386.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman
& Hall, New York.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity, with estimates
of the variance of United Kingdoms inflations. Econometrica, 50:987–1007.

Fowler, M. (1999). Refactoring. Addison-Wesley.



BIBLIOGRAPHY 349

Franses, P. H. (1990). Testing for seasonal unit roots in monthly data. Econometric
Institute Report 9032A, Erasmus University Rotterdam.

Gamma, E. and Helm, R. and Johnson, R. and Vlissides, J. (1995). Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA.

David Garlan and Robert T. Monroe and David Wile (2000). Acme: Architectural
Description of Component-Based Systems. In Leavens, G. T. and Sitara-
man, M., editors, Foundations of Component-Based Systems, pages 47–68.
Cambridge University Press.

Glosten, L. and Jagannathan, R. and Runkle, D. (1993). Relationship between
the expected value and the volatility of the nominal excess return on stocks.
Journal of Finance, 48:1779–1801.

Günther, O. and Müller, R. and Schmidt, P. and Bhargava, H. and Krishnan, R.
(1997). MMM: A WWW-based approach for sharing statistical software
modules. IEEE Internet Computing, 1(3):59–68.

Godfrey, L.G. (1988). Misspecification Tests in Econometrics. Cambridge Uni-
versity Press, Cambridge.

Haase, K. and Lütkepohl, H. and Claessen, H. and Moryson, M. and Schneider, W.
(1992). MulTi: A Menue-Driven GAUSS Program for Multiple Time Series

Analysis. Universität Kiel, Kiel, Germany.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.

Halloway, Stuart Dabbs (2002). Component Development for the Java Platform.
developmentor series. Addison-Wesley.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary
time series and the business cycle. Econometrica, 57:357–384.

Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an
autoregression. Journal of the Royal Statistical Society, B41:190–195.



350 BIBLIOGRAPHY

Hansen, H. and Johansen, S. (1999). Some tests for parameter constancy in coin-
tegrated VAR-models. Econometrics Journal, 2:306–333.

Harvey, A. C. (1990). The econometric analysis of time series. Philip Allan,
Hemel Hempstead, 2nd edition.

Herwartz, H. (2004). Conditional Heteroskedasticity. In Lütkepohl, H. and
Krätzig, M., editors, Applied Time Series Econometrics. Cambridge Univer-
sity Press.

Härdle, W. and Klinke, S. and Turlach, B.A. (1995). Xplore: An Interactive Sta-

tistical Computing Environment. Springer-Verlag, Berlin.

Hutton, J (1995). The Maple Computer Algebra System: A Review. Journal of

Applied Econometrics, 10(3):329–337.

Hylleberg, S. and Engle, R. F. and Granger, C. W. J. and Yoo, B. S. (1990). Sea-
sonal Integration and Cointegration. Journal of Econometrics, 44:215–238.

IEEE (2000). IEEE Std 1471 Recommended Practice for Architectural Descrip-

tion. IEEE.

Jarque, C. M. and Bera, A. K. (1987). A test for normality of observations and
regression residuals. International Statistical Review, 55:163–172.

Johansen, S. (1995). Likelihood-based Inference in Cointegrated Vector Autore-

gressive Models. Oxford University Press, Oxford.

Johansen, S. and Mosconi, R. and Nielsen, B. (2000). Cointegration Analysis in
the Presence of Structural Breaks in the Deterministic Trend. Econometrics

Journal, 3:216–249.

Johnson, R. E. and Foote, B. (1988). Designing Reusable Classes. Journal of

Object-Oriented Programming, 1(2):22–35.

Kwiatkowski, D. and Phillips, P. C. B. and Schmidt, P. and Shin, Y. (1992). Testing
the null of stationarity against the alternative of a unit root: How sure are we
that the economic time series have a unit root? Journal of Econometrics,
54:159–178.



BIBLIOGRAPHY 351

Lanne, M. and Lütkepohl, H. and Saikkonen, P. (2002). Comparison of unit
root tests for time series with level shifts. Journal of Time Series Analysis,
23(6):667–685.

Lea, Doug (2000). Concurrent Programming in Java, Design Principles and Pat-

terns. Addison-Wesley, 2nd edition.

Liang, Sheng (1999). Java Native Interface. Addison-Wesley.

Liu, L.-M. and Montgomery, A.L. and Chan, K.K. and Muller, M.E. (1995). A
System-Independent Graphical User Interface for Statistical Software. Com-

putational Statistics and Data Analysis, 19:23–44.

Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time-series
models. Biometrika, 65:297–303.

Lundbergh, S. and Teräsvirta, T. (2002). Evaluating GARCH models. Journal of

Econometrics, 110:417–435.

Lütkepohl, H. (1991). Introduction to multiple time series analysis. Springer
Verlag, Berlin.

Lütkepohl, H. and Krätzig, M., editors (2004). Applied Time Series Econometrics.
Cambridge University Press, Cambridge.

Sun Microsystems (1.01-1997). JAVA Beans API Specification.

Sun Microsystems (2002). Model-View-Controller.

Sun Microsystems (2003). JavaHelp System.

Metsker, Steven John (2001). Building Parsers with Java. Addison-Wesley.

Jose E. Moreira and Samuel P. Midkiff and Manish Gupta (2001). Supporting
Multidimensional Arrays in Java.

Oheimb, David von (2001). Analyzing Java in Isabelle/HOL: Formalization,

Type Safety and Hoare Logic. PhD thesis, Technische Universität München.
http://www4.in.tum.de/∼{}oheimb/diss/.

http://www4.in.tum.de/~{}oheimb/diss/


352 BIBLIOGRAPHY

Pree, W. (1997). Component-Based Software Development - A new Paradigm
in Software Engineering? In Software-Concepts & Tools. Springer-Verlag,
Heidelberg/New York.

Pree, W. (2000). Hot-Spot-Driven Framework Development. In M. Fayad,
D. Schmidt, R. J., editor, Building Application Frameworks: Object-Oriented

Foundations of Framework Design. Wiley & Sons, New York.

Press, W.H. and Teukolsky, S.A. and Vetterling, W.T. and Flannery B.P. (2002).
Numerical Recipes. Cambridge University Press, 2nd edition.

Riessen, G. and Jacobsen, H.-A. and Günther, O. (2000). Component leasing on
the World Wide Web. Netnomics, 2:191–219.

Rose, C. and Smith, M. (2002). A Review of Mathematical Statistics with Mathe-
matica. Journal of the American Statistical Association, 97(460):1202–1203.

Saikkonen, P. and Lütkepohl, H. (2000). Testing for the cointegrating rank of a
VAR process with an intercept. Econometric Theory, 16:373–406.

Saikkonen, P. and Lütkepohl, H. (2002). Testing for a unit root in a time series
with a level shift at unknown time. Econometric Theory, 18:313–348.

Schmidt, P. and Phillips, P. C. B. (1992). LM tests for a unit root in the presence
of deterministic trends. Oxford Bulletin of Economics and Statistics, 54:257–
287.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics,
6:461–464.

Teräsvirta, T. (1998). Modeling economic relationships with smooth transtition
regressions. In Ullah, A. and Giles, D., editors, Handbook of Applied Eco-

nomic Statistics, pages 229–246. Dekker, New York.

Teräsvirta, T. (2004). Smooth Transition Regression Modelling. In Lütkepohl,
H. and Krätzig, M., editors, Applied Time Series Econometrics. Cambridge
University Press, Cambridge.



BIBLIOGRAPHY 353

Trenkler, C. (2004). Determining p-values for systems cointegration tests with a
prior adjustment for deterministic terms. mimeo, Humboldt-Universität zu
Berlin.

Tschernig, R. (2004). Nonparametric Time Series Modeling. In Lütkepohl, H. and
Krätzig, M., editors, Applied Time Series Econometrics. Cambridge Univer-
sity Press.

Tschernig, R. and Yang,L. (2000). Nonparametric lag selection for time series.
Journal of Time Series Analysis, 21(4). 457-487.

Uhlig, H. (1999). A Toolkit for Analysing Dynamic Stochastic Models easily.
In Marimom, R. and Scott, A., editors, Computational Methods for Study of

Dynamic Economies, chapter 3. Oxford University Press.

Venners, B. (2002). A Conversation with Effective Java Author, Josh Bloch. Java-
World.

Vinod, D. H (2000). Review of GAUSS for Windows, including its Numerical
Accuracy. Journal of Applied Econometrics, 15(2):211–220.

Peng Wu and Samuel P. Midkiff and Jose E. Moreira and Manish Gupta (1999).
Efficient Support for Complex Numbers in Java. In Java Grande, pages 109–
118.



Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig ohne fremde Hilfe verfaßt
und nur die angegebene Literatur und Hilfsmittel verwendet zu haben. Frühere
Begutachtungen dieser Arbeit existieren nicht.

Ich bezeuge durch meine Unterschrift, dass meine Angaben über die bei der Ab-
fassung meiner Dissertation benutzten Hilfsmittel, über die mir zuteil gewordene
Hilfe sowie über frühere Begutachtungen meiner Dissertation in jeder Hinsicht
der Wahrheit entsprechen.

Markus Krätzig
21.12.2004

354


	List of Figures
	List of Tables
	Abbreviations
	Acknowledgements
	From Algorithms towards an integrated Framework
	Problem Description
	JStatCom and JMulTi
	Access to Algorithms
	Using an Execution Engine
	Using Libraries and Toolkits
	Including Graphics
	Integrating available Tools

	JStatCom in comparison to other Approaches
	MulTi
	Observations on Entropy and Software Reuse
	The MMM Project
	The OmegaHat Project
	Creating GUI's with Matlab
	Creating interactive Programs with Ox

	Concluding Remarks
	How to read this Thesis

	A Motivating Example
	Introduction
	A Step-by-Step Example
	System Requirements for this Example
	Step 1: Download/Install the Java Software Development Kit (J2SE SDK)
	Step 2: Download/Install the Eclipse IDE and some Plug-ins
	Step 3: Download JStatCom and unpack it
	Step 4: Create an Eclipse Project
	Step 5: Create a new Package and a new Class
	Step 6: Layout the GUI with the Visual Editor
	Step 7: Add an Action to the Execute Button
	Step 8: Add the Module to the Main Application Frame
	Step 9: Integrate Gauss Algorithm
	Step 10: Implement the Execute Routine
	Step 11: Check running Module

	Final Remarks

	Design and Implementation
	Documenting a Software Architecture
	JStatCom System Overview
	How Stakeholders Can Use the Documentation
	Typical Development Steps

	Background, Rationale, and Design Constraints
	Operational Context
	Key Data Management Features
	Key User Interface Features
	Key Interoperability Features
	Key Design Features

	JStatCom Architecture View Template
	View Packet 1: JStatCom
	Primary Presentation
	Element Catalog
	Context
	Architecture Background
	Related View Packets

	View Packet 2: Data Model
	Primary Presentation
	Element Catalog
	Context
	Architecture Background
	Related View Packets

	View Packet 3: Type System
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 4: Data Event System
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 5: Symbol Management
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 6: Symbol Event System
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 7: Symbol Control
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 8: Engine
	Primary Presentation
	Element Catalog
	Context
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 9: Gauss
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 10: GRTE
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 11: Ox
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 12: Stub
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 13: MatLab
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 14: PCall
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 15: Time Series
	Primary Presentation
	Element Catalog
	Context
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 16: List
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 17: Table
	Primary Presentation
	Element Catalog
	Architecture Background
	Related View Packets

	View Packet 18: Selection
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 19: Calculator
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 20: Components
	Primary Presentation
	Element Catalog
	Context
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 21: Application
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 22: Data Table
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 23: Equation
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	View Packet 24: Input/Output
	Primary Presentation
	Element Catalog
	Architecture Background
	Related View Packets

	View Packet 25: Data Import System
	Primary Presentation
	Element Catalog
	Architecture Background
	Usage Example
	Related View Packets

	Concluding Remarks about JStatCom

	JMulTi - A Reference Application of the Framework
	Introduction
	General Setup
	Modules of JMulTi
	How to read this Chapter
	Initial Analysis
	Overview
	Implemented Features
	Implementation Details

	VAR Analysis
	Overview
	Implemented Features
	Implementation Details

	VEC Analysis
	Overview
	Implemented Features
	Implementation Details

	ARCH Analysis
	Overview
	Implemented Features
	Implementation Details

	STR Analysis
	Overview
	The Modelling Cycle
	Implemented Features
	Implementation Details

	Nonparametric Analysis
	Overview
	Implemented Features
	Implementation Details

	Outlook
	Conclusion

	Guide to Notation
	Class Diagrams
	Elements and Inheritance
	Components
	Relations between Elements of Class Diagrams

	Object Diagrams
	Use Case Diagrams

	Documenting Modules with JavaHelp and JHelpDev
	LaTeX and latex2html 
	JHelpDev
	Integrating Helpsets with an Application

	Bibliography
	Selbständigkeitserklärung

