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Abstract 

I 

Abstract 

In chloroplasts, primary transcripts are subjected to a number of processing events. These 

events play important roles in the regulation of gene expression and are extensively 

controlled by protein factors, especially by RNA-binding proteins. 

Chloroplast splicing factor MatK is related to prokaryotic group II intron maturases. 

Nicotiana tabacum MatK interacts with its home intron trnK and six additional group IIA 

introns. In this study, binding sites of MatK were narrowed down to varying regions of its 

group II targets by RIP-seq in Nicotiana tabacum. The results obtained demonstrate that 

MatK has gained versatility in RNA recognition relative to its bacterial ancestors. MatK 

thus exemplifies how a maturase could have gained the ability to act in trans on multiple 

introns during the dispersion of the group II introns through the eukaryotic genome early 

in the eukaryote evolution. 

Quantitative investigation and mathematical modeling of the expression of MatK and its 

targets revealed a complex pattern of possible feedback regulatory interactions. In this 

study, one possible feedback regulation mechanism was ruled out by the analysis of 

polysome associated transcripts. 

Stable binding of proteins to specific RNA sites and subsequent degradation of the 

unprotected RNA regions can result in small RNA, footprint of the RNA binding protein. 

Such footprints were identified by examining small RNA datasets of Chlamydomonas 

reinhardtii. Two of the sRNAs correspond to the 5’ ends of mature psbB and psbH 

mRNAs. Both sRNAs are dependent on Mbb1, a nuclear-encoded TPR (Tetratrico-

peptide repeat) protein. The two sRNAs have high similarity in primary sequence, and 

both are absent in the mbb1 mutant. This suggests that sRNAs at the 5’ ends of 

chloroplast mRNAs identified here generally represent the binding sites of proteins, 

which function in RNA processing and RNA stabilization in Chlamydomonas chloroplast. 

 

Key words: Chloroplast, Group II intron maturase, RNA binding protein, small 

RNA 





Zusammenfassung 

II 

Zusammenfassung 
In Chloroplasten durchlaufen primäre Transkripte eine großen Anzahl von bzw. 

Reifungsprozesse. Diese Ereignisse spielen eine wichtige Rolle bei der Regulation der 

Genexpression und sind im Wesentlichen durch Proteinfaktoren, insbesondere RNA-

Bindeproteine, reguliert. 

Der plastidäre Spleißfaktor MatK zählt zu den prokaryotischen Gruppe-II-Intron. MatK 

aus Nicotiana tabacum interagiert mit seinem Heimatintron trnK und sechs weiteren 

Gruppe IIA Introns. In dieser Untersuchung, MatK-Bindestellen konnten 

unterschiedlichen Regionen der Gruppe-II-Introns zugewiesen werden mit RIP-seq in 

Nicotiana tabacum. Die vorliegenden Ergebnisse zeigen, dass MatK im Vergleich zu 

seinen bakteriellen Vorfahren an Vielseitigkeit in der RNA-Erkennung gewonnen hat. 

MatK zeigt somit beispielhaft, wie eine Maturase die Fähigkeit erworben haben könnte, 

in trans auf mehrere Introns zu wirken. 

Quantitative Untersuchung und mathematische Modellierung der Expression von MatK 

und dessen Zielen offenbart ein komplexes Muster möglicher regulatorischer Feedback-

Mechanismen. In dieser Studie konnte ein möglicher Feedback- Mechanismus durch 

Analyse von polysomal gebundenen Transkripten ausgeschlossen werden. 

Stabile Bindung von Proteinen an spezifische RNA-Bindestellen und anschließender 

Abbau der ungeschützten RNA kann zu Akkumulation von kleinen RNAs (sRNAs) 

führen. Solche Footprints von RNA-Bindeproteinen wurden durch die Untersuchung von 

Datensätzen kleiner RNAs in Chlamydomonas reinhardtii identifiziert. Zwei der sRNAs 

entsprechen den 5' Enden der reifen psbB und psbH mRNAs. Beide sRNAs sind abhängig 

von Mbb1, einem TPR (Tetratrico-peptide repeat) Protein. Die beiden sRNAs besitzen 

eine hohe Ähnlichkeit in ihrer Primärsequenz und fehlen in der mbb1 Mutante. Dies legt 

nahe, dass auch andere der hier identifizierten sRNAs an 5' Enden plastidärer mRNAs 

Protein-Bindestellen repräsentieren, die für die korrekte RNA-Prozessierung und RNA-

Stabilisierung in Chlamydomonas Chloroplasten erforderlich sind. 

Schlagwörter: Chloroplasten, Gruppe II Intron Maturase, RNA-bindende Protein, 

kleine RNA 
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Introduction 

1. Introduction 

1.1 Post-transcriptional regulation of gene expression in chloroplast 

RNA molecules in plastids undergo a series of multiple-level post-transcriptional 

processing steps including splicing, 5’ and 3’ maturation, editing and finally degradation. 

Together with transcription and translation, these post-transcriptional steps regulate the 

gene expression in different layers rapidly and precisely (Deshpande et al. 

1997; Baginsky and Gruissem 2002; Garcia-Andrade et al. 2013). RNA-binding proteins 

(RBPs) play diverse roles in these levels of post- transcriptional processes. With the 

exception of one chloroplast encoded factor-MatK, all RBPs are encoded in the nuclear 

genome and are posttranslationally imported into the chloroplasts. 

1.2 Intergenic processing of plastid RNAs 

The RNA population in plastids encompasses both primary and processed transcripts. 

Many genes are primarily transcribed in the form of polycistronic transcripts, a property 

of plastids’ endosymbiont ancestor, by a bacterial-type polymerase (PEP for plastid-

encoded plastid RNA polymerase) and two phage-type polymerases (NEP for nuclear-

encoded plastid RNA polymerase) (Weihe 2012). These polycistronic transcripts are 

further processed into smaller units and monocistronic transcripts. However, the exact 

mechanism by which these processing sites are determined has not been known for a long 

time. Nonetheless, a number of RNA-binding proteins have been implicated in this 

process (Nickelsen 2003). A large number of proteins implicated in intergenic processing 

contain degenerate repeats of 34 to 38 amino acids. According to the number of amino 

acids in one repeat, these proteins are named TPR (tetratricopeptide repeats), PPR 

(pentatricopeptide repeat) and OPR (octatricopeptide repeat) proteins (Small and Peeters 

2000; D'Andrea and Regan 2003; Schmitz-Linneweber and Small 2008). 

In the chloroplast of Chlamydomonas reinhardtii, nuclear-encoded stabilization factors 

have been shown to bind to the 5’UTR region of the transcripts and protect them from 

degradation. Nuclear proteins Nac2 and MCD1 determine the stability of the psbD and 

petD transcripts by acting on their respective 5’UTR (Drager et al. 1998; Nickelsen et al. 

1999; Vaistij et al. 2000; Bollenbach and Stern 2003; Murakami et al. 2005; Loiselay et al. 
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2008). Many of such factors belong to the aforementioned classes of TPR, PPR or OPR 

proteins (Auchincloss et al. 2002; Rahire et al. 2012). 

Mbb1 is a tetratricopeptide-like protein with 10 tandemly arranged repeats in 

Chlamydomonas. It is encoded in the nucleus and acts as an RNA binding protein in the 

chloroplast. In the mbb1 mutant 222E, the psbB/T/H transcription unit fails to accumulate 

(Monod et al. 1992). Mbb1 acts directly on the 5’UTR of psbB (Vaistij et al. 2000). 

Although orthologs of Chlamydomonas proteins can rarely be found in higher plants, 

HCF107 (high chlorophyll fluorescence 107), the ortholog of Mbb1 in Arabidopsis 

thaliana, is required for psbB and psbH expression (Felder et al. 2001; Sane et al. 2005). 

The 3’and 5’ maturation is a result of RNA protection from digestion of ribonuclease, 

including endoribonucleases and exoribonucleases (5’ to 3’ or 3’ to 5’) (Stoppel and 

Meurer 2011). By binding to its 5’ end in vitro, recombinant HCF107 can protect psbH 

from the 5’ to 3’ exonucleases degradation. Similarly, the 3’ to 5’ exonucleases could also 

be blocked by HCF107. In vivo, degradation by these two types of exonucleases would, in 

theory, leave a small RNA (sRNA) protected by HCF107. Indeed, in maize, a sRNA 

corresponding to the psbH 5’ end can be detected (Hammani et al. 2012). 

While the OPRs are expanded in Chlamydomonas, PPRs are prominent in terrestrial 

plants; for example, 450 PPRs are found in Arabidopsis thaliana. Mutants of PPR 

proteins are defective in splicing, editing, stabilization, or translation of subsets of 

organellar RNAs, as indicated in the review (Schmitz-Linneweber and Small 2008). An 

amino acid code for PPR proteins binding to single strand RNA (ssRNA) was suggested 

and confirmed in vitro. Two amino acids in each PPR repeat were shown to determine the 

binding specificity (Barkan et al. 2012; Ke et al. 2013). PPR10 is an extensively studied 

protein. It binds to atpI-atpH and psaJ-rpl33 intergenic regions and defines the 5’ and 3’ 

terminal positions of processed transcripts (Pfalz et al. 2009). Pfalz et al. described a 

sRNA in maize, which represents the footprint of PPR10 and overlaps with the ends of 

the processed transcripts. The binding of an RBP or a presence of stable RNA secondary 

structure could lead to sRNA in the corresponding region, and sRNAs were found to 

coincide with the processed 5’ or 3’ transcript ends (Ruwe and Schmitz-Linneweber 

2012; Zhelyazkova et al. 2012b). As a result, the presence of a sRNA is an indicator of the 

existence of an RBP binding site (Ruwe and Schmitz-Linneweber 2012; Zhelyazkova et 

al. 2012b). 

Based on these observations, a model for processing in plastids was suggested, whereby 

endoribonucleases first cleave RNA sequences that are unstructured or unprotected by 
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proteins. The cleavd products serve as substrates for exonucleases, and nucleotides at 

either the 5’ or 3’ end are progressively removed until the point is reached where the 

sequences are blocked by the structure or an RBP (Pfalz et al. 2009; Prikryl et al. 2011). 

According to this model, there is a very fine boundary between intergenic processing and 

RNA degradation. 

1.3 Group II intron splicing 

1.3.1 Group II intron 

Group II introns are large catalytic RNAs, which are often referred to as ribozymes. They 

are usually found in bacteria, lower eukaryotes and organellar genomes of plants. There 

are about 20 group II introns in the chloroplast genome of higher plants. Despite the 

diversity of the primary sequences, group II introns are characterized by their self-

splicing ability and formation of a secondary structure of six double helical domains (DI-

DVI) radiating out from a central core (Michel et al. 1982; Michel and Dujon 1983). 

Group II introns and nuclear spliceosome pre-mRNAs are similar in their splicing 

mechanism and the formation of lariat intronic RNA (Butcher and Brow 2005; Marcia 

and Pyle 2012). 

The six domains of group II introns have different functions: DI is the largest domain and 

potentially builds the scaffold for folding; DII is not conserved phylogenetically and its 

deletion scarcely affects splicing efficiency; DIII could enhance the catalyzation step; 

DIV is variable in length and sequence. This domain usually encodes a protein (intron 

encoded protein, IEP, also called maturase), which exhibits both splicing and retrohoming 

activities in bacteria and some organelles; DV is the most conserved domain and is 

critical for the catalytic reaction; and DVI contains the branch adenosine (branch “A”) 

which is necessary for lariat RNA (branched circular RNA) formation during splicing 

(Qin and Pyle 1998). Along with these common features, several exceptions are 

noteworthy. For example, trnV in plant chloroplasts lacks the branch adenosine and is 

spliced in a hydrolytic way (Vogel and Borner 2002). Based on their structural features, 

group II introns can be further classified into group IIA, IIB (Michel et al. 1989), IIC and 

IID (Toor et al. 2001). Novel lineages IIE and IIF were also suggested in bacteria based 

on the ongoing identification of new group II introns and bioinformatic analyses (Nagy et 

al. 2013). The major structural forms of group II intron RNAs (IIA and IIB) in bacteria 
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and organelles developed through coevolution with their respective maturase rather than 

as independent catalytic RNAs (Toor et al. 2001). 

In vitro self-splicing of group II introns under a high Mg2+ concentration condition was 

first reported in 1986 (Peebles et al. 1986; van der Veen et al. 1986). These initial studies 

characterized the formation of a circular product-lariat. A self-splicing model with two 

transesterification steps was also proposed based on the results. More specifically, in the 

first step, the 2’ OH of a bulged adenosine in DVI attacks the 5’ splice site, resulting in 

the cleavage of 5’ exon and the formation of a lariat RNA intermediate. In the second step, 

3’ OH of the upstream exon nucleophilically attacks the 3’ splice site, resulting in ligated 

exons and a release of the intron as a lariat (Sharp 1987). 

Group II introns have to fold into a correct conformation before performing the catalytic 

reaction. Mg2+ was shown to be required in intron folding. All intron regions fold 

uniformly at the same Mg2+ concentration (Swisher et al. 2002). A further study showed 

that folding of D1 is the rate limiting step of the whole RNA folding, eventhough this 

folding step requires the same salt concentration as the whole RNA folding (Su et al. 

2005). 

1.3.2 Yeast and bacterial maturases 

The most extensively studied group II introns are intron of Ll.LtrB in Lactococcus lactis 

(Mills et al. 1996) as well as al1 and al2 in yeast mitochondria (mt) (van der Veen et al. 

1986). Although group II introns can self-splice in high Mg2+ concentrations in vitro, the 

addition of protein factors could promote the splicing in low Mg2+ concentration 

conditions (Saldanha et al. 1999). Moreover, proteins are required for catalyzing the 

splicing reaction in vivo (Lambowitz and Belfort 1993; Wank et al. 1999). In yeast and 

bacteria, each group II intron encodes a maturase mostly in DIV. The maturase contains 

four domains with different functions: reverse transcriptase (RT) domain for intron 

duplication, DNA binding domain and endonuclease domain for site-specific cleavage. 

These three domains are necessary for retrohoming, while the fourth X domain is needed 

for promoting splicing (Figure 1) (Mohr et al. 1993). 
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Figure 1: Structures of a typical group II intron ORF and matK ORF. A typical group II intron ORF 

contains four domains, reverse transcriptase domain for intron duplication, DNA binding domain (D) and 

endonuclease domain (En domain) for site-specific cleavage. These three domains are necessary for 

retrohoming while the fourth X domain is needed to promote RNA binding and splicing; matK ORF has 

only remnants of RT domain and a well-conserved domain X. The schematics are derived from the 

Lactococcus lactis Ll.ltrB intron (U50902) and Arabidopsis trnK1I1 (NC_000932), from (Hausner et al. 

2006). 

Yeast mtDNA contains two group II introns in some alleles of cox1 gene: aI1 and aI2. 

They have a sequence identity of 50%. The open reading frames of their maturases extend 

to the upstream exons and the maturases are generated after proteolytic processing 

(Carignani et al. 1983; Moran et al. 1994). Group II intron in yeast or bacteria could be 

excised as a donor sequence and inserted into a specific reception. This process is known 

as retrohoming (Cousineau et al. 1998; Yang et al. 1998; Watanabe and Lambowitz 2004). 

Owing to their high mobility, group II introns can be used in other applications, such as 

site-specific deletion and insertion (Enyeart et al. 2014). 

LtrA is the maturase of Lactococcus lactis LtrB. It is encoded entirely in DIV which also 

shows the highest affinity of binding to LtrA. This binding is important for splicing, 

retrohoming and regulation (Watanabe and Lambowitz 2004). The deletion of DIV 

decreases the binding affinity of LtrA to RNA by five orders of magnitude, while also 

dramatically decreasing the splicing efficiency (Wank et al. 1999). LtrA was found to 

bind primarily to DIV, after which it makes further contact with upstream DI and 

downstream DVI. In this way, this maturase promotes the folding of group II introns to 

the splicing structure (Matsuura et al. 2001). Further in vitro mutagenesis studies 

determined a stem-loop at the distal end of DIV. As the LtrA key binding site, it is a 25 nt 

minimal binding region containing the Shine-Dalgarno (Keene et al.) sequence and the 

start codon of LtrA (Singh et al. 2002; Keene et al. 2006). Both the sequence and the 

RNA structure of this binding site are important for LtrA recognition (Matsuura et al. 

2001). The binding of LtrA to a number of bases in the SD sequences implies 

autoregulation of its expression (Matsuura et al. 2001). An autoregulation model was 
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suggested based on the fact that binding of LtrA to this region down-regulates LtrA 

translation. According to this premise, the binding of LtrA to the SD region competes 

with the ribosome loading and/or the binding stabilizes the RNA structure and thus 

inhibits the translation. This model was tested with a lacZ report vector in E. coli. Indeed, 

the presence of LtrA was found to down regulate lacZ expression (Singh et al. 2002). 

At least three conformation statuses of LtrA were found based on the limited proteolysis 

and fluorescence quenching experiments. The domains of LtrA undergo conformation 

change in the presence of DIV of RNA (Rambo and Doudna 2004). The first interaction 

between the LtrA protein and group II introns is encountered as a result of the attraction 

of positively charged residues in the protein to the negatively charged RNA. Further 

specific binding of LtrA was approached via the recognition of the DI and DIV. This 

study further revealed that the formation of maturase dimmer offers the possibility of 

making contact with two domains (Rambo and Doudna 2004). In contrast, findings of 

another study that applied the same method under a different experimental condition 

suggested that the formation of protein conformation is not dependent on the presence of 

RNA (Blocker et al. 2005). 

1.3.3 Plant maturases in chloroplast 

During coevolution between the host and the endosymbiont, the endosymbionts 

degenerated into organelles, the plastid and mitochondrion. Most of the endosymbiont 

genes were transferred to the host nuclear genome, as were the maturases (Ayliffe et al. 

1998; Rousseau-Gueutin et al. 2012; Yoshida et al. 2014). In recent years, significant 

number of nuclear maturases have been identified. However, maturase can still be found 

in organelles of plant and mitochondria of fungi (de Longevialle et al. 2010). The only 

retained maturase in the chloroplast is MatK, which is encoded in trnK intron, while in 

mitochondrion, the only maturase, MatR, is encoded in nad1 intron 4 (Mohr et al. 1993). 

Splicing of organellar RNA is catalyzed by organellar maturases and nuclear splicing 

factors that with organelle localization (de Longevialle et al. 2010; Brown et al. 2014).  

1.3.3.1 Group II intron and MatK 

Thus far, 20 group II introns have been found for Arabidopsis thaliana and Nicotiana 

tabacum (Shinozaki et al. 1986), while 17 group II introns have been identified for Zea 

mays and Oryza sativa (Michel et al. 1989). To date, many nuclear-encoded plastid 
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splicing factors have been characterized. Their roles in splicing plastid group II introns 

are summarized in Figure 2. They belong to different protein families such as PPR protein 

and CRM (Chloroplast RNA splicing and ribosome maturation) domain protein (de 

Longevialle et al. 2010; Asakura et al. 2012; Hammani and Barkan 2014). MatK is likely 

to serve the splicing role for several group II introns (Zoschke et al. 2010). Different from 

the bacterial maturase, MatK only retains the conserved X domain and the partial reverse 

transcriptase domain (Figure 1 and (Mohr, 1993)). 

 

 

 

 

 

 

Figure 2: Group IIA introns in chloroplast and their splicing factors. The group IIA and IIB introns are 

classified according to Michel (Michel et al. 1989). The intron that is found in Arabidopsis thaliana but not 

in maize and rice is marked with asterisks. PPR4 is a PPR protein, CRS1 and CFM2 are CRM domain 

proteins, WTF1 is a PORR (Plant Organelle RNA Recognition) domain protein, mTERF4 belongs to the 

mTERF (mitochondrial transcription termination factor) protein family, RH3 is a member of DEAD box 

RNA helicase family and WHY1 is a ‘Whirly’ protein. The only chloroplast maturase-MatK, is depicted in 

bold, modified from de Longevialle (de Longevialle et al. 2010). 

1.3.4 Spliceosomal splicing is believed to descend from group II splicing 

Spliceosome is a uniform RNA-protein composition that catalyzes the splicing of most 

nuclear pre-mRNA introns. Same as group II introns, the splicing reaction consists of two 

consecutive transesterification steps. The assembly of spliceosome is based on snRNPs 

(small nuclear ribonucleoprotein particles) U1, U2, U4/U6 and U5, and numerous protein 

factors (reviewed by Matera and Wang (Matera and Wang 2014)). This assembly process 

commences with the recognition of U1 snRNP to the 5’ splicing site (5’ SS), after which 

the intron sequence flanking branch point is recognized by U2 snRNP. Subsequently, a 
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number of RNA and protein factors are recruited, including a snRNP complex consists U5, 

extensively base-paired U4 and U6, as well as their corresponding protein factors. Finally, 

conformational rearrangement occurs to facilitate the splicing. U6 snRNA has been 

shown to play the same role as DVI of the group II intron (Peebles et al. 1995), whereby 

both could form stem-loop and interact with metal ion (Yean et al. 2000; Gordon and 

Piccirilli 2001). Functional similarity between U6 and DVI was proven by the fact that 

the replacement of U6atac snRNA with DVI can still promote the in vivo splicing (Shukla 

and Padgett 2002). Prp8 is one of the U5 snRNP proteins that with a size of 280kDa in 

yeast. The sequence of its central domain resembles the reverse transcriptases domain of 

the group II intron maturases. The Prp8 palm-fingers region (designated Th/X) was also 

speculated to be functionally equivalent to the X/maturase domain in group II maturases 

(Dlakic and Mushegian 2011). The crystal structure of a large piece of a Prp8 fragment is 

similar to the bacterial group II intron reverse transcriptase, revealing that the 

spliceosome and bacterial group II intron splicing pathways share the same evolutional 

origin. Moreover, Prp8 forms a large cavity based on its reverse transcriptase thumb, the 

endonuclease-like and RNaseH-like domains. The space in this cavity is sufficient for 

accommodating the catalytic core of group II intron RNA (Galej et al. 2013). 

1.3.5 Distribution of MatK and group II introns suggests the splicing role of MatK 

MatK is present in all the chloroplast genomes of autotrophic land plants that contain 

group II introns, and is also found in charophycean green algae (Turmel et al. 2006). The 

location of matK in the intron of trnK suggests its function in splicing its home intron, in 

the manner akin to that of its bacterial counterparts. However, matK is present as a stand-

alone reading frame, in the species where the trnK gene has been lost, such as 

streptophyte algae Zygnema, the fern Adiantum capillus-veneris and also the parasitic 

land plants Epifagus virginiana and four Cuscuta species (C. exaltata, C. reflexa, C. 

campestris and C. obtusiflora) (Wolfe et al. 1992; Turmel et al. 2005; Funk et al. 

2007; McNeal et al. 2007; Braukmann et al. 2013). As the loss of trnK is not in line with 

that of matK, the latter is likely to have other functions and, it most likely targets other 

introns. To date, the loss of matK has only been observed in Rhizanthella gardneri of 

mycoheterotrophic orchid and some members of Grammica of Cuscuta subgenus from 

the parasitic angiosperm. These species also lost several group IIA introns that may 

require activity of MatK (McNeal et al. 2009; Delannoy et al. 2011; Braukmann et al. 
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2013). The evidence presented above supports the hypothesis that MatK splices other 

introns, rather than only its home intron. 

1.3.6 MatK and its targets, association and splicing 

MatK is significantly similar to bacterial maturase. The direct binding of MatK to introns 

was demonstrated in vitro (Liere and Link 1995). Via RIP- Chip analysis, seven out of 

eight group II introns were identified (trnK, trnV, trnI, trnA, rps12-in2, rpl2 and atpF) to 

be associated with MatK in chloroplast, while no group IIB intron was found to be 

associated. This association was verified by slot-blot analysis. Further microarray analysis 

narrowed down the binding site for MatK to the intron region of trnK excluding the entire 

matK ORF, DV and parts of DVI (Zoschke et al. 2010). 

Microarray analysis was performed with other targets of MatK, and an association 

between MatK and DIV was found for trnA, trnI and atpF. However, no enrichment was 

found by microarray for rpl2, trnV and rps12-in2 (Neumann 2011). In contrast to the 

bacterial group II introns, which are able to disperse to different genome locations, 

chloroplast group II introns of embryophytes are no longer mobile. In accordance with 

this feature of the chloroplast group II introns, the putative splicing factor, MatK, lost the 

protein domains required for intron mobility (Mohr et al. 1993)(Mohr, Perlman, and 

Lambowitz 1993; Barthet and Hilu 2007). The role of MatK in splicing was studied with 

the barley albostrian that lack the functional ribosomes for translation in plastids. It was 

found that neither the trnK precursor nor any other member of the subgroup IIA is spliced 

in this strian (Hess et al. 1994; Vogel et al. 1997; Vogel et al. 1999). 

1.3.7 Autoregulation of maturases 

The aforementioned bacterial maturase LtrA autoregulates its own expression via 

feedback loop circuits mediated by a stem-loop structure at its start codon region. 

Multiple negative feedback loops were also found in the chloroplast of Chlamydomonas 

(Ramundo et al. 2013). In higher plants, the large subunit of Rubisco was shown to 

undergo autoregulation of translation (Wostrikoff and Stern 2007). The maintenance of 

matK in chloroplast might be a prerequisite for a similar autoregulation mechanism. A 

stem-loop structure was found in the matK start codon region in Zea mays. To examine 

the autoregulation in vivo, a reporter gene, driven by different lengths of 5’UTRs 

surrounding the matK start codon, was coexpressed with MatK in a heterologous E. coli 
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expression system. No difference in reporter gene expression was observed either before 

or after the induction of MatK expression, indicating that, in this heterologous system, 

chloroplast MatK does not influence its own gene expression via its 5’UTR region, which 

might also be the case in higher plants (Zoschke et al. 2009). 

The regulatory role of protein can be examined by mutagenesis. However, matK knock 

out by insertion mutagenesis only results in heteroplastomic lines (Drescher 2003). An 

attempt to produce MatK with lower activity by introducing point mutants was also 

unsuccessful (Zoschke et al. 2010). As these results suggest the importance of MatK, 

subsequently studies were performed without disrupting the matK expression (Zoschke et 

al. 2010). Quantitative analyses of protein and RNA levels of MatK demonstrated a 

strong discrepancy between them through tobacco development, especially in the early 

development stages. The most pronounced discrepancy was found in 7-day-old tissue, as 

the MatK protein reached the highest level while the RNA was almost undetectable 

(Hertel et al. 2013). This discrepancy indicates that matK expression is not simply 

determined by the transcript amount, but that a regulation in translation or protein 

stability may also play a role. With the additional information of the dynamic interaction 

between MatK and its targets during development, a mathematical model with feedback 

regulation was generated. This model reflects the characteristics of the MatK gene 

expression network. Accordingly, MatK protein autoregulates its own translation via the 

formation of pre-trnK/MatK repression complexes (Hertel et al. 2013). 

1.4 RNA-Protein association analysis 

The control of post-transcriptional level is largely relies on RBPs. Some RBPs modulate a 

single RNA. For example, the PPR protein HCF152 binds to the psbH–petB intergenic 

region in Arabidopsis (Meierhoff et al. 2003), yet some RBPs, such as hnRNP-like 

proteins, interact with multiple RNA targets (Yeap et al. 2014). In order to understand the 

manner in which RBPs control RNAs, the first step is to identify the RNA targets of 

RBPs. A variety of methods have been applied to achieve this goal. RNAs bound to RBP 

can be identified by in vitro methods such as RNA electromobility shift assays (REMSAs) 

(Hellman and Fried 2007). The yeast three hybrids system is another solution, with the 

aim of analyzing RNA-protein interaction in vivo (SenGupta et al. 1996). More recently, 

several newly developed high-throughput methods were utilized in large-scale analyses. 

These studies included systematic evolution of ligands by exponential enrichment 
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(SELEX) (Ogawa and Biggin 2012), RIP-chip (RNA immunoprecipitation and Chip-

hybridization) (Keene et al. 2006), RIP-seq (Zhao et al. 2010) and PAR-Clip 

(Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) 

(Hafner et al. 2010), or related techniques (HITS-Clip, etc.) (Licatalosi et al. 2008; Konig 

et al. 2011). Although each method has its advantages and disadvantages, combining 

genetic and biochemical approaches with computational analysis is typically required 

when applying these methods. 

1.5 The aim of this work 

The identification of protein-bound RNA targets has been widely carried out using 

various methods. MatK, the only chloroplast maturase, has been shown to be associated 

with seven group II introns. This leads to the need to understand how a maturase can 

recognize introns with diverse sequences. Determining the binding preference of MatK to 

different domains of group II introns is thus the main goal of this work. In this study, the 

newly developed RIP-seq method will be used to analyze the binding sites for MatK 

within HA-tagged and non-tagged MatK of Nicotiana tabacum; using this method, a 

quantitative analysis of the binding will be performed simultaneously. 

Thus far, the function of MatK in chloroplast intron splicing has only been implied based 

on the binding data, phylogenetic data and pharmacological considerations. There is 

functional similarity between MatK and bacterial group II maturase. Moreover, bacterial 

maturase LtrA was proved to be autoregulated, and the available data indicates that MatK 

may possess this ability. Consequently, further investigation of MatK regulation is an 

important aspect of this work. As the knockout of MatK has failed in previous studies, in 

this work, an attempt to overexpress MatK has been made, both in chloroplasts and in the 

nucleus. Overexpression might help obtain more direct evidence for the function of 

splicing, and the nuclear overexpression of MatK may be able to disrupt its potential 

autoregulation circuits. 

Two autoregulation models have been proposed based on the characteristics of MatK: (1) 

Binding of MatK to the stem-loop in its own start codon region inhibits the translation; 

and (2) The trnK precursor serves as the translational template of MatK, whereby splicing 

of this template decreases the MatK translation. The first model has been tested in an 

E.coli system and the results indicated that MatK is insufficient to repress its expression 
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in this system (Zoschke et al. 2009). Here, the second model will be studied by 

identifying the translational-active transcripts. 

In the second part of this thesis, attempts are made to analyze the binding sites of RBPs 

via a different approach. According to the view that sRNAs are the footprints of RBPs, 

Chlamydomonas sRNA data sets were examined in this study for the presence of 

chloroplast sRNAs. The well-studied mbb1 mutant and wild-type Chlamydomonas were 

used to determine the relationship between MBB1 and the sRNAs found in the region of 

the MBB1 targets. 



Material and methods 

2. Material and methods 

2.1 Material 

2.1.1 Plant material and bacterial strain 

Nicotiana tabacum lines of Hemagglutinin (HA)-tagged matK at N or C terminus 

(HA:MatK or MatK:HA) and control lines were prepared by Reimo Zoschke (Zoschke et 

al. 2010) 

Bacterial strain TOP10 from Invitrogen and SURE from Agilent Technologies were used 

for plasmids propagation. 

Total Chlamydomonas RNA samples from wild-type and mbb1 mutant strains were 

kindly provided by Prof. Michel Goldschmidt-Clermont. 

2.1.2 Antibodies and oligos 

Mouse anti–HA antibody (Sigma, H3663) and mouse anti–HA-HRP (Sigma, H6533) 

antibody were used as 1:500 dilutions for Western blot. 

See Appendix 1 for oligos used in this study. 

2.1.3 Plasmids 

PGL1 vector was kindly provided by Prof. Bernhard Grimm. pGW1 and pAV6 

(Verhounig et al. 2010) vectors were  kindly provided by Prof. Ralph Bock. 

2.1.4 Plant culture material and medium 

Soil for plant culture was from Einheits Erde 

MS-Medium liquid: 0.44% (w/v) Murashige & Skoog Medium (Duchefa) 0.05% (w/v) 

MES, 3% (w/v) sucrose; adjust to pH 5.8 with KOH 

MS-Medium plate: MS-Medium liquid with 0.5% (w/v) plant agar (Duchefa) 

MG plates: same as MS plates, but with 16 g/L glucose instead of sucrose 

Co-Cultivation medium: 2MS plates with 0.2 mg/L NAA and1 mg/L BAP 

Callus induction medium: 2MG plates with 0.2 mg/L NAA, 1 mg/L BAP and appropriate 

antibiotics (2 mg/L Basta for pGL1 vector) 

Root induction medium: 2MG plates with 0.1 mg/L NAA and appropriate antibiotics (2 

mg/L Basta for pGL1 vector) 
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MS-Medium with Spectinomycin: MS-Medium with Spectinomycin (500 µg/ml, Duchefa) 

RMOP-Medium: MS-Medium with spectinomycin, N6-Benzyladenine (1 mg/l, Sigma) 

and 1-Naphthaleneacetic acid (0.1 mg/l, Sigma) (Svab et al. 1990) 

2.1.5 Bacteria medium 

LB-medium: LB-medium 3.5% (W/V, Sigma) 

LB-medium with agar: LB-medium with agar 3.5% (w/v, Sigma) 

SOB-Medium: 2% (w/v) Trypton, 0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 

adjust to pH 7.0 with NaOH, sterilize by autoclaving; add autoclaved 10 mM 

MgCl2 before use (Hanahan 1983) 

SOC-Medium: SOB-Medium add 20 mM Glucose and 10mM MgCl2 (Hanahan 1983) 

YEB medium: 5 g/L beef extract, 1 g/L yeast extract, 5 g/L peptone, 5 g/L sucrose, 2 

mM/L MgSO4, adjust to pH 7.0 

2.1.6 Buffers and Solutions 

Church hybridization buffer: 7% SDS, 0.5 M Sodiumphosphate (pH 7.0), 1 mM EDTA 

Co-IP buffer: 0.15 M NaCl, 20 M Tris-HCl (pH 7.5), 2 mM MgCl2, 0.5% NP-40 (v/v) 

2× CTAB: 2% CTAB (w/v), 100 mM Tris-HCl (pH 8.0), 20 mM EDTA (pH 8.0), 1.4 M 

NaCl 

Denaturing polyacrylamide gel (in TBE): 8 M Urea, 1× TBE, 15% Acrylamide, 0.5 ‰ 

APS and 5 µl TEMED for each gel 

Dot blot sample buffer: 66% deionized Formamide, 21% Formaldehyde, 1.3× MOPS (pH 

8.0) 

ECL detection solution: 100 mM Tris-HCl pH 8.5, 1.25 mM Luminol in DMSO, 0.45 

mM p- Coumaric acid in DMSO, 0.01% H2O2 

EX buffer: 0.2 M KAc, 30 mM HEPES-KOH (pH 8.0), 10 mM MgAc2, 2 mM DTT, 

before use, add 1× protease inhibitor (Protease Inhibitor Cocktail Tablets, Roche), 

0.4 mM PMSF, 0.1 μg/ml Aprotinin 

Extraction buffer (for polysome analysis): 200 mM Tris-HCl, 0.2 M KCl, 0.2 M Sucrose, 

35 mM MgCl2, 25 mM EGTA, 1% Triton X-100, 2% Polyoxyethylene-10, before 

use, add 71 ‰ 2-Mercaptoethanol, 0.12 mg/ml Chloramphenicol, 0.5 mg/ml 

Heparin 

Extraction buffer without detergent (for polysome analysis): Extraction buffer without 

Triton X-100, Polyoxyethylene-10 and 2-Mercaptoethanol 
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Formaldehyde: 36.5-38% (w/v) Formaldehyde, 10-15% (w/v) Methanol (premixed, 

Sigma) 

Grinding buffer: 50 mM HEPES-KOH (pH 8.0), 330 mM Sorbitol, 2 mM EDTA, 1 mM 

MgCl2, 1 mM MnCl2, 0.25% BSA, 1.5 mM Sodium ascorbate 

Homogenization buffer: 10% sucrose, 0.1 M Tris-HCl (pH 7.2), 5 mM EDTA, 5 mM 

EGTA, add fresh 2 µg/ml Aprotinin, 40 mM β-mercaptoethanol and 2 mM PMSF 

HS buffer: 50 mM HEPES-KOH (pH 8.0), 330 mM Sorbitol 

Methylene blue: 0.3 M NaAc (pH 5.2), 0.03% (w/v) Methylene Blue 

10× MOPS: 2 M MOPS, 0.8 M NaAc, 0.1 M Na2EDTA, adjust to pH 7.0 

Northern sample buffer: 65% deionized Formamide, 22% Formaldehyde, 13% 10× 

MOPS (pH 7.0) 

Northern loading buffer: 50% Glycerol, 10% 10× MOPS (pH 7.0), 10 mM EDTA (pH 

8.0), 0.25% (w/v) Bromphenol Blue, 0.25% (w/v) Xylene cyanol; sterile filtered 

Northern running buffer: 88.5% H2O, 10% 10× MOPS (pH 7.0), 1.5% Formaldehyde 

Northern transfer buffer: 5× SSC 

10× polysome gradiant salts: 0.4 M Tris (pH 8.0), 0.2 M KCl, 0.1 M MgCl2 

Ponceau stain solution: 30% (w/v) Trichloroacetic acid, 30% (w/v) 5-Sulfosalicylic acid, 

2% (w/v) Ponceau S (Merck) 

3× protein loading buffer: 30% Glycerol, 15% 2-MeEtOH, 7% (w/v) SDS, 200 mM Tris-

HCl (pH 6.8), 0.25% (w/v) Bromphenol Blue 

5× protein transfer buffer: 1 M Glycin, 125 mM Tris 

1×protein transfer buffer: 20% 5× transfer buffer, 20% Methanol 

Resolving gel: 13% Acrylamid, 375 mM Tris-HCl (pH 8.8), 0.1% (w/v) SDS, 0.1% (w/v) 

APS, 0.05% TEMED 

10× SDS running buffer: 1.92 M Glycin, 250 mM Tris-Base, 1% (w/v) SDS  

20× SSC: 3 M NaCl, 0.3 M Sodium citrate, adjust to pH 7.0 with HCl 

Stacking gel: 5% Acrylamid, 130 mM Tris-HCl (pH 6.8), 0.1% (w/v) SDS, 0.1% (w/v) 

APS, 0.1% TEMED 

50× TAE: 2 M Tris-Acetate (pH 8.0), 50 mM EDTA (pH 8.0) 

10× TBE: 1.1 M Tris, 900 mM Boric acid, 25 mM EDTA, adjust to pH 8.3 with HCl 

10× TBST: 0.5 M Tris-HCl (pH 7.5), 1.5 M NaCl, 1% Tween 20 

Sterilization buffer: 15% DanKlorix (Colgate-Palmolive), 0.03% Tween 20 
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2.1.7  Providers of chemicals and equipments 

Abcam Abcam Inc., Cambridge, MA, USA 

Ambion Invitrogen Life Technologies GmbH, Darmstadt, Germany 

Amersham Biosciences Amersham Biosciences Europe GmbH, Freiburg, Germany 

Applied Biosystems Applied Biosystems Inc., Foster City, CA, USA  

Beckman Beckman Coulter Inc., Fullerton, CA, USA  

Bio-Rad Bio-Rad Laboratories, Hercules, CA, USA 

Biozym Biozym Scientific GmbH., Hessisch Oldendorf, Germany 

Calbiochem Merck Chemicals GmbH., Hessen, Germany 

Carl Roth Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Colgate-Palmolive Colgate-Palmolive GABA GmbH, Hamburg, Germany 

Duchefa Duchefa Biochemie B.V., Haarlem, Niederlande 

Einheits Erde 
Einheitserde- und Humuswerke Gebr. Patzer GmbH & Co. 

KG, Sinntal-Jossa, Germany 

Epicentre Epicentre Biotechnologies, Madison, USA 

Franz Eckert GmbH Franz Eckert GmbH, Waldkirch, Germany 

GE Healthcare GE Healthcare Germany, Munich, Germany 

Harnishmacher Harnischmacher Labortechnik, Germany 

Hartmann-Analytics Hartmannnanlytic GmbH., Braunschweig, Germany 

Heraeus Heraeus, Hanau, Germany 

Millipore Millipore Corp., Bedford, MA, USA 

Miltenyi Biotec Miltenyi Biotec GmbH., Bergisch Gladbach, Germany 

NEB New England Biolabs, Ipswich, MA, USA 

peqlab peqlab Biotechnologie GmbH, Erlangen, Germany 

QIAGEN QIAGEN GmbH, Hilden, Germany 

Retsch Retsch GmbH, Haan, Deutschland 

Roche Roche Diagnostics GmbH, Mannheim, Deutschland 

Roth C. Roth GMBH & Co, Karlsruhe, Deutschland 

Sigma Sigma-Aldrich Corporation, St. Louis, MO, USA 

Thermo Thermo Fisher Scientifc Inc. Waltham MA, USA 

Whatman Whatman Paper, Maidstone, Großbritannien 
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2.1.8 Softwares 

Programm supplier or website 

Acrobat  Adobe Professional 

BLAST http://www.ncbi.nlm.nih.gov/BLAST   

Mfold  http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi  

Oligo caculator http://www.basic.northwestern.edu/biotools/oligocalc.html

TM caculator 
Thermo scientific 

http://www.thermoscientificbio.com/webtools/tmc/ 

Quantity One  Bio-Rad 

Imagelab Bio-Rad 

SnapGene GSL Biotech 

CLC workbench CLC Bio 

EndNote Thomson Reuters 

Office  Microsoft 

2.2 Methods 

2.2.1 Cultivation of Nicotiana tabacum 

Nicotiana tabacum plants were grown on soil under long day conditions (16 hours light, 8 

hours dark) at 27°C with light intensities of approximately 300 μmol. m-2. s -1. For 

subsequent acquisition of 7-day-old tissue, seeds were sown on polyamide nets (mesh 

size 500 μM, Franz Eckert GmbH) on soil. Both seed sowing and seedling harvesting 

were performed at 10:00 am. 

2.2.2 Chloroplast isolation and stroma extraction 

The procedure of chloroplast isolation from tobacco was modified from Voelker (Voelker 

and Barkan 1995) and was performed at 4 °C. Seedlings of 7-day-old tobacco (without 

roots) were taken from 3-4 plates (d = 14 cm) and were homogenized with a waring 

blender in 350 ml grinding buffer, once for 5 s at low speed, and twice more for 5 s at the 

high speed setting. Next, the mixture was filtrated through one layer of MicroCloth 

(Calbiochem) and centrifuged at 1000 g for 6 min and, after which the pellet was 

resuspended in 1-2 ml of HS buffer. After adding 3-4 volumes of HS buffer, it was 
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transferred to corex tubes, and centrifuged at 1000 g for 6 min. The supernatant was 

discarded again, 200-400 μl EX buffer was added to the pellet, and the mixture was 

transferred to 1.5 ml eppendorf tube and squeezed through syringes (needle: 0.55 × 25 

mm) for ~40 times in order to crack chloroplasts. Finally, cracked chloroplasts were 

centrifuged at 30,000 g for 30 min to separate the membrane and stroma fractions. The 

stroma fraction was used for immunoprecipitation (IP) of MatK. For longer storage, 

glycerol was added to the stroma fraction to a final concentration of 10% and samples 

were stored at -80 °C. 

2.2.3 Co-Immunoprecipitation (co-IP) of MatK and rpL32 

Co-IP was performed at 4 °C. For each MatK co-IP, two volumes of co-IP buffer and 5 μg 

of mouse anti–HA antibody (Sigma) were added to the stroma fraction containing 

approximately 200 μg of protein. The stroma-antibody mixture was vertical rotated at 12 

rpm for 1 hour, after which 50 μl Magnetic Beads (Life Technologies) were added and the 

reaction was rotated for one more hour. Next, the beads were pelleted on a magnetic rack, 

and the supernatant was taken for RNA extraction and Western blot. Finally, IP pellet was 

washed 3 times with co-IP buffer, and 200 μl EX buffer was added to the IP pellet before 

storage or RNA extraction. The same fraction (1/50) was aliquoted from both IP 

supernatant and pellet for Western blot. 

GFP tagged rpL32 was immunoprecipitated with μ MACS column (Miltenyi Biotec). 

Firstly, the MACS anti-GFP microbeads were equilibrated at room temperature with 200 

µl extraction buffer with detergents. Next, 200 mg of frozen leaf material was 

homogenized before mixing with 1330 µl of the extraction buffer. This was followed by 

centrifugation for 5 min at 13,200 g and 4 °C to remove the cell debris and nuclei. 

Aliquots were taken from the supernatant for RNA extraction (200 µl) and Western blot 

(10 µl), while the remaining quantity was used for IP (~1130 µl). 1/20 volume of 10% 

sodium deoxycholate (SDC) was added to the remaining fraction and incubation was 

performed on ice for 5 min. After centrifugation for 15 min at 13,200 g at 4 °C to remove 

insoluble material, 40 µl of anti-GFP µbeads was added to the supernatant, followed by 

incubation for one hour at 4 °C, while shieding the reaction from light. The reaction 

mixture was loaded onto pre-equilibrate column and the flow-through was collected. The 

colume was washed 3 times (first, with 500 µl of extraction buffer with detergents; 

second, with 300 µl of extraction buffer with detergents; third, with 300 µl of extraction 

buffer without detergents). The column was eluted with elution buffer that was preheated 
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to 95 °C (100 µl elution buffer for each IP; 20 µl was first added and incubated for 5 min 

before adding further 80 µl). Both the flow-through and the elution fractions were 

aliquoted for Western blot and RNA extraction. 

2.2.4 DNA and RNA extraction 

The isolation of total DNA from tobacco followed the CTAB method (Stewart and Via 

1993). Plant material was homogenized together with a pre-cooled metal ball (d = 5 mm) 

in 2 ml tube using the Retsch apparatus. Next, 2× CTAB was added to the homogenate (1 

ml of CTAB for approx. 300 mg homogenate). The mixture was incubated at 60 °C for 30 

min. After extracting DNA with Chloroform/Isoamyl alcohol (24:1, Roth), DNA was 

pelleted with Isoproponal and washed with 70% ethanol. 

Total RNA was extracted using TRIzol (Invitrogen) following the manufacturer’s protocol. 

RNA was digested using Ambion DNase I (RNase-free, Life Technologies) and purified 

with Phenol/Chloroform/Isoamylalcohol (Roth). 

2.2.5 Determination of DNA and RNA concentration 

The concentrations of DNA and RNA were determined by optical density using a 

spectrophotometer Nanodrop 1000 (peqLab) at 260 nm. The integrity of DNA was 

verified by electrophoresis on 1% agarose gels. The integrity of rRNA bands was verified 

by electrophoresis on 1% denaturating agarose gels containing 1.7 M formaldehyde. The 

DNA and RNA samples were stored at -20 °C and -80 °C, respectively. 

2.2.6 Reverse transcription 

Reverse transcriptions were carried out using the SuperScript III Reverse Transcription 

Kit (Life Technologies) (for 3’ RACE, 5’ RACE and genotyping RT-PCR) or the 

QuantiTect Reverse Transcription Kit (Qiagen) (for qRT-PCR). 

2.2.7 Polymerase chain reaction (PCR) analysis and cloning 

For genotyping and probe fragments preparation, PCR was performed with DNA 

polymerase from Qiagen. For cloning, PCR was performed with Phusion High-Fidelity 

DNA Polymerase (Thermo). PCR products were analyzed by agarose gel electrophoresis 

and nanodrop. 
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2.2.8 Real-Time quantitative polymerase chain reaction (qPCR) 

DNase digested RNA was reverse transcribed with a mixture of gene-specific reverse 

primers. SYBR Green PCR Core Reagent set (Applied Biosystems) and 7500 Fast Real-

Time PCR System (Applied Biosystems) were used for performing the qPCR. The 

reaction was performed in MicroAmp Fast Optical 96-Well Reaction Plates (0.1 ml) and 

covered with MicroAmp Optical Adhesive Film (Applied Biosystems). 

2.2.9 5’ RACE (Rapid amplification of cDNA ends) and 3’RACE 

Chlamydomonas chloroplast RNA was used in the 5’ and 3’ RACE. 

For 5’ RACE, the Rumsh RNA oligo (5’-GUGAUCCAACCGACGCGACAAGCU 

AAUGCAAGANNN-3’) was ligated to the chloroplast RNA by T4 RNA ligase I (Life 

Technologies). The ligated product was reverse transcribed using SuperScript III Reverse 

Transcription Kit with Hexa/Nona random primer following the manufacturer’s 

instruction. The resulting cDNA was amplified by PCR using Phusion High-Fidelity DNA 

Polymerases with the primer pair Rumsh1 and the gene-specific primers listed in 

Appendix 1. The PCR product was cloned using the pJect PCR cloning kit (Fermentas). 

The positive colonies were identified by colony PCR and were sequenced with 

Pjet1.2fwd and Pjet1.2rev primers. 

For 3’ RACE, the SRA 3’ RNA oligo (TCGTATGCCGTCTTCTGCTTG) was ligated to 

the chloroplast RNA by T4 RNA ligase I. The ligated product was reverse transcribed 

using SuperScript III Reverse Transcription Kit with the adapter RT primer. The resulting 

cDNA was amplified by PCR using Phusion High-Fidelity DNA Polymerases with the 

primer pair adapter PCR primer and gene-specific primer listed in Appendix 1. The 

following cloning and sequencing procedures were the same as 5’ RACE. 

2.2.10 Western blot analysis 

For the total protein sample preparation, leaves were ground in liquid nitrogen and 

homogenized in 250 µl of homogenization buffer. Protein concentration was measured 

using the Bradford method (Bradford 1976). Protein was separated by SDS-PAGE, and 

blotted onto nitrocellulose membrane (GE Healthcare). Blots were stained with ponceau 

to assess protein quality and control loading. Blots were blocked with 4% skimmed milk 

(Sigma) in 1× TBST and were probed with antibody. Detection was performed using the 
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ECL detection solution. The signal was imaged with ChemiDoc XRS (Bio-Rad) system 

and quantified with Imagelab software (Bio-Rad). 

2.2.11 Polysome fractionation 

Polysome fractionation of leaf tissue was performed following previously described 

protocol (Barkan 1998). First, 0.5 g of tissue was ground to a fine powder in liquid 

nitrogen, before adding 1 ml of the extraction buffer. The sample was further ground until 

thawed, after which the homogenized plant material was forced through a glass wool plug 

in a 2 ml syringe to remove debris. The flow through fraction was incubated on ice for 10 

min and was centrifuged at 21,000 g for 5 min at 4 °C. Next, 1/20 volume of 10% Sodium 

deoxycholate (SDC) was mixed with the supernatant and incubated on ice for 5 min. 

After the mixture was centrifuged at 21,000 g for 5 min at 4 °C, 0.5 ml of the supernatant 

was loaded on to 4.4 ml of analytical sucrose gradients and was centrifuged at 275,000 g 

for 30 min at 4 °C without forced stop. The resulting sucrose gradients were fractionated 

into 12 factions (0.41 ml per fraction) from top to bottom and were transferred to 12 tubes 

with 50 µl 5% SDS/0.2 M EDTA. RNA was extracted from each fraction with 

Phenol/Chloroform/Isoamyl alcohol (P/C/I, 25:25:1, Roth). 

Stock sucrose solutions containing 15%, 30%, 40%, and 55% sucrose were prepared, 

ensuring that each contained the indicated concentration of sucrose and 1× polysome 

gradient salts, 500 μg/ml heparin, 100 μg/ml chloramphenicol, and 25 μg/ml 

cycloheximide. Next, 1.1 ml of the 55% sucrose solution was pipeted into the bottom of a 

5 ml ultracentrifuge tube, and was frozen at -80 °C. After this, 1.1 ml of the 40% solution 

was pipeted on top of it and was frozen again. The same process was followed for the 30% 

and 15% sucrose solutions. 

2.2.12 Northern blot analysis 

2.2.12.1 RNA sample preparation and gel electrophoresis 

The RNA samples were mixed with 2.5 volumes of Northern sample buffer. 10× RNA 

loading buffer was added after denaturing the RNA samples at 75 °C for 15 min. 2 µl of 

RiboRuler High Range RNA Ladder (Fermentas) was parepared in the same way as the 

RNA sample. The gels were run in the horizontal electrophoresis chamber (bsb11 biotech) 

for 2 hours at 100 V. 
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RNA Agarose Gel (1.0%, w/v): 1.5 g molecular biology agarose (Bio-Rad) was cooked in 

109 ml of H2O. Once it was cooled to 65 °C, 15 ml of 10× MOPS buffer (pH 8.0) and 26 

ml of Formaldehyde were added and the gel was poured. 

2.2.12.2 RNA transfer 

Electrophoretically separated RNA was transferred onto Hybond-N (Amersham 

Biosciences) membranes by capillary blotting using standard protocols. Next, the blot 

was crosslinked in a UV chamber (Bio-Rad) irradiate once with 150 mJ/cm2. Finally, the 

blot was stained with Methylene blue solution, in order to assess the RNA quality and 

control loading. 

2.2.12.3 Probe labeling 

Strand specific DNA probe was labeled with α32P-dCTP as follows. First, a mixture of 

100 ng template (PCR product), 2 µl of 10 mM reverse primer, 5 µl of 10× Klenow buffer 

and H2O (add H2O to a total volume of 40 µl) was heated to 95 °C for 10 min. 

Subsequently, 3 µl of mixC (10 mM of each dATP, dTTP and dGTP), 2 µl of Klenow 

fragment 10 U/µl) and 5 µl (50 µCi) of γ 32P-dCTP were added. The reaction mixture 

was incubated at 37 °C for 10 min, before adding 4 µl of dNTP mix (0.25 mM of each 

dATP, dTTP, dGTP and dCTP) and incubating again for 10 min. Ultimately, the probe 

was purified using illustra MicroSpin G-50 column (GE Healthcare) to remove the 

uncooperated radioactivity following the manufacturer's protocol. Next, the purified 

probe was denatured for 10 min at 95 °C before hybridization. 

Oligo probe was end-labeled by γ32P-ATP, whereby 40 pM oligo, 2 µl 10× buffer A, 1 µl 

Polynucleotide Kinase (PNK) and 5 µl γ32P-ATP (50 µCi) were mixed, after which H2O 

was added to 20 µl. Finally, the mixture was incubated at 37 °C for 10 min and was 

purified using MicroSpin G-25 column. 

2.2.12.4 Hybridization and detection 

Hybridization was carried out overnight in Church buffer at 55 °C for ssDNA probe and 

45 °C for oligo probe. The membrane was washed once in 0.5× SSC / 0.1% SDS (10 min) 

and twice in 0.2x SSC / 0.1% SDS (15 min each) at the bybridization temperature, before 

being exposed to a phosphoimager plate. The plate after exposure was scanned by 
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Personal Molecular Imager (Bio-Rad) and quantified using Quantity One software (Bio-

Rad). 

2.2.13 Dot blot analysis 

For each dot, RNA was denatured in 80 µl of the sample buffer for 15 min at 75 °C, 

before being cooled on ice and mixed with 30 µl of 20× SSC. Next, N+ hybond 

membrane (12 cm× 9 cm) was moistened with water and soaked in 20× SSC for 10 min. 

Once Bio-dot SF Microfiltration Apparatus (Bio-Rad) was assembled and vacuum was 

applied, the wells were washed with 400 µl of 5× SSC, and 100 µl of the denatured RNA 

samples were loaded into each well. Once RNA samples were dried, the wells were 

washed again with 400 µl of 5× SSC, vacuum was applied for further 5 min and the 

membrane was cross-linked in a UV chamber irradiate once with 150 mJ/cm2. 

2.2.14 Plastid transformation 

Stable transformation of plastids was performed with modifications according to the 

protocols of Svab (Svab and Maliga 1993) and Okuzaki (Ayako and Yutaka 2012). Sterile 

tobacco leaves from plants cultured on MS were cut into 0.5 cm× 0.5 cm squares before 

being placed onto MS plates with the lower leaf side up. They were cultured overnight 

and transformed using the Biolistic PDS-1000 / He Particle Delivery System (1,100 psi, 

L2 = 6 cm, 10 shots per construct, Bio-Rad) with gold particles (0.6 uM, Bio-Rad) loaded 

with the transformation plasmids. Spectinomycin resistant calli were regenerated on 

RMOP medium (2-4 rounds), rooted on MS medium and transferred to soil for seeds 

production. 

2.2.15 Agrobacterium-mediate nuclear transformation of Nicotiana tabacum 

The overexpression vector was transformed into Nicotiana tabacum via an 

agrobacterium-mediated method (Horsch 1985). Midribs were removed from sterile 

tobacco leaves, while the remaining leaf pieces were cut into approximately 1 cm× 1 cm 

squares before being transferred to petri dishes, where they were placed upside down. 

Next, a thin layer of sterile MS liquid medium was added to cover the leaf pieces, which 

were poked uniformly with a needle. The leaf pieces were subsequently transferred to the 

Agrobacterium suspension plates and incubated for 10 min, before being transferred onto 

co-cultivation plates that were over-laid with filter paper. The leaf pieces were placed 

upside down and remained in close contact with the filter paper. The plates were sealed 
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with parafilm and incubated in darkness at 24 °C for 3 days. Finally, the leaf pieces were 

transferred onto callus induction plates and were subcultured bi-weekly to fresh medium. 

The plates were incubated in dim light at 22 °C until shoots could be excised. 

Shoots were excised from calli with forceps and were inserted in the MS basal medium 

with selective agent for rooting at 22 °C and 18/6 photoperiods with light intensity of 60-

80 μmol. m-2. s-1. When they reached adequate size, the plantlets (comprising both shoots 

and roots were transferred to soil for acclimatization. The established seedlings were 

transferred to the greenhouse to set seeds. 

2.2.16 RNA library construction and sequencing 

RNA was extracted with Phenol/Chloroform from the IP pellet of HA tagged and control 

lines. Next, the RNA samples were proceeded for library construction using ScriptMiner 

Small RNA-seq library preparation Kit (Epicentre). Next, the libraries were sequenced 

(performed by Dr. Wei Chen’s group, The Max Delbrück Center for Molecular Medicine, 

Germany). 

Two additional libraries were prepared using Ion Total RNA-seq Kit (Life Technologies), 

which were sequenced using Ion Proton system (Life Technologies). 

2.2.17 Reads mapping 

The reads were quality trimmed and mapped to the Nicotiana tabacum chloroplast 

genome by CLC workbench (Version 6.0.1) with the repeat region masked. The following 

parameters were used: Mismatch cost = 2; Insertion cost = 3; Deletion cost = 3; Length 

fraction = 0.5; Similarity fraction = 0.8. Local alignment was applied. 

2.2.18 SRNA data analysis 

Chlamydomonas sRNA data was retrieved from Ibrahim et al. (Ibrahim et al. 2010), 

available as a GEO Series NCBI: GSE17815, including reads from four different libraries. 

Two of these libraries had been prepared from a knockout line of the terminal 

nucleotidyltransferase, while the remaining two are from the knockdown line of a 

tryptophan synthase β subunit. Three further libraries were available as the GEO Series 

GSE32457 and had been prepared from a wild-type Chlamydomonas strain grown under 

three different conditions, namely: normal conditions, phosphate starvation, or sulphate 

starvation. SRNA sequences with more than one read in each sample were mapped to the 

chloroplast genome (NC_005353) using CLC Genomics Workbench (Version 6.0.1), 
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allowing one mismatch in the core sequence. As a threshold, clusters of at least three 

overlapping sequences were counted, and each cluster should contain more than 10 reads. 

The core sequence of each cluster was defined as those nucleotides represented in at least 

50% of all reads within the cluster. Only the clusters located in the non-coding regions 

were considered. 

2.2.19 Low molecular weight (LMW) RNA enrichment and sRNA Northern blot 

SRNAs were enriched according to Lu (Lu et al. 2007) from the total RNA prepared in 

Prof. Michel Goldschmidt-Clermont laboratory. RNA was resolved on 15% denaturing 

polyacrylamide gels containing 8 M urea before being transferred to Hybond-N nylon 

membranes (GE Healthcare). Membrane-bound RNAs were chemically crosslinked by 1-

Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), as described by Pall and Hamilton 

(Pall and Hamilton 2008). Moreover, DNA oligonucleotides were end-labeled with 50 

µCi γ32P-ATP (Hartmann-Analytics) using Polynucleotide kinase (Thermo Scientific) 

and were used as probes. Hybridization was carried out following the same protocol as 

for the Northern blot described before. The membranes were stripped by incubating in 0.5% 

SDS at 60 °C for 1 hour. 



Results 

3. Results 

3.1 MatK targets identification and regulation analysis 

3.1.1 Pipeline of RIP-seq experiment 

The described bacterial maturases only splice their home intron. In contrast, using RIP-

Chip, the chloroplast maturase MatK has been shown to be associated with seven RNA 

targets (trnK, trnV, trnI, trnA, rps12-in2, rpl2 and atpF) (Zoschke et al. 2010). Findings of 

the study using oligo tilling arrays indicate that MatK associates with multiple domains of 

the trnK intron（Zoschke et al. 2010）. Using the same method, DIV of trnI and trnA 

was also found to be associated with MatK, while no association was found with the 

domains of atpF, trnV, rpl2 and rps12-in2. This result is most likely caused by the limited 

sensitivity of Chip hybridization using tilling arrays (Neumann 2011). 

High-throughput sequencing is a highly sensitive method. Taking the advantage of the 

transplastomic plants that express a C terminus HA-epitope tagged MatK (+HA) and 

non–tagged control line (–HA) of Nicotiana tabacum (Zoschke et al. 2010), RNA 

coprecipitated with MatK was analyzed by RNA-seq with the aim of narrowing down the 

MatK binding sites on RNA (Figure 3). The input control used in this study was from an 

RNA-seq project with total RNA of Nicotiana tabacum (unpublished data). 

As it was shown that the MatK protein reaches its highest level at 7-day-old tobacco 

(Zoschke et al. 2010), chloroplasts were isolated from the seedlings of this age. 

Furthermore, due to the fact that MatK is a soluble protein in the chloroplast stroma 

(Zoschke et al. 2010), the stroma fraction of chloroplast was separated from the 

membrane fraction to enrich the MatK protein. Consequently, the IP was performed with 

the stroma fraction. 
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Figure 3: Workflow of RIP-seq used in this study. Chloroplasts were isolated from 7-day-old seedlings of 

HA tagged (+HA) and non-tagged (–HA) tobacco, stroma fraction was separated and used in 

immunoprecipitation (IP) with HA antibody. RNA from IP pellet was extracted with Phenol/Chloroform, 

precipitated with ethanol and used for library preparation. The libraries were sequenced and the reads were 

mapped to the tobacco chloroplast genome (NC_001879) for further data analysis. Modified from Zhao et, 

al (Zhao et al. 2010). 

Immunoprecipitation of MatK was verified by Western blot analysis. As can be seen, a 

band with an apparent molecular weight of ~55kDa was detected in Input and Pellet 

fractions (Figure 4). The position of this band is in accordance with those reported in 

previous immunological analysis of MatK (Liere and Link 1995; Barthet and Hilu 

2007; Zoschke et al. 2010). The RNA from the IP pellet was extracted next. The quality 

and quantity of the extracted RNA was analyzed using capillary electrophoresis. 

According to the report of the fragment analyzer (AdvanCE), the sizes of RNA from the 

IP pellet vary from 100 nt to 1500 nt (see Appendix 2). Two libraries were constructed 

using the sRNA preparation kit (Epicentre) and were sequenced by employing the 

Illumina HiSeq sequencing system. To recover the long transcripts in the RNA sample, 

the RNA was digested with RNase III before the preparation of two additional libraries 

for Ion Torrent sequencing. After digestion, the RNA population was fragmented to length 

of approximately 100 nt, and this size is compatible with the specifications of the Ion 

Total RNA-seq library preparation kit (Life Technologies) (see Appendix 2). 
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Figure 4: Inmmunoprecipitation of the HA tagged MatK from transplastomic tobacco lines. 

Chloroplasts were isolated from 7-day-old +HA and –HA tobacco seedlings, HA-tagged MatK was 

immunoprecipitated from chloroplast stroma with an HA antibody (Sigma) and magnetic beads (Life 

Technologies). Protein samples of input, IP supernatant and IP pellet were separated by the SDS-PAGE gel 

and blotted to a nitrocellulose membrane. HA-specific signals were detected with an HA antibody 

conjugated to horseradish peroxidase (HA-HRP, Sigma) and developed by ECL detection solution (upper 

panel). Ponceau staining was used as loading control (lower panel). 

3.1.2 Multiple transcripts are associated with MatK 

To gain an overview of the RNA species associated with MatK, the output reads of the 

sequencing were trimmed and mapped to the tobacco chloroplast genome (NC_001879). 

The read coverage at each genomic position was extracted and the relative enrichment 

was calculated as the ratio of +HA to either –HA or total RNA. 
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Figure 5: Overall mapping of MatK targets identified by RIP-seq. The libraries were prepared with 

these RNA samples from the IP pellet and were sequenced. Reads from each library (+HA and –HA tagged 

MatK-IP pellets) were mapped to the chloroplast genome (NC_001879), respectively. The ratio of mapped 

reads between +HA and –HA was calculated and plotted to the chloroplast genome. The arrowheads 

indicate the enriched intronless tRNAs. Illumina: upper curve, Ion torent: lower curve. 

The relative enrichment was defined by the ratio of +HA to control. The -HA control was 

used for eliminating the unspecific binding of RNA to the antibody and beads during IP. 

The threshold of relative enrichment was set as five folds for a minimal length of 50 nt. 

Using the Illumina RIP-seq method, seven of the eight chloroplast group IIA intron-

containing transcripts (with the exception of trnV ) could be identified. While six group 

IIA-containing intron transcripts are in line with the targets identified by the RIP-Chip 

method (Zoschke et al. 2010). The MatK home intron, trnK, is the most strongly enriched 

transcript. Additionally, a group IIA intron, clpP-in2 and a group IIB intron, ycf3-in2 (6.3 

folds in the peak) were also found (Figure 5. upper curve). According to the Ion Torrent 

sequencing results, all seven group IIA targets previously identified by RIP-Chip were 

enriched while the clpP-in2 was not enriched. However, the very abundant transcripts 

psbA and rbcL and some intronless tRNAs and rRNAs such as 16s rRNA, were also 

found (Figure 5. lower curve). 

The expression levels of individual genes are very different in a certain transcriptome 

(Zhelyazkova et al. 2012b; Freeberg et al. 2013). The enrichment of some transcripts 

might be caused by their higher expression compared to other transcripts. Thus, in order 

to eliminate the unspecific signal caused by differential expression of the genes, the 

relative enrichment of +HA to the input (total RNA) was also calculated. According to the 

results of the Illumina sequencing experiment, the overall pattern did not change, with the 
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exception of the emergence of trnV, several intronless tRNAs and very abundant 

transcripts, such as 16s and 23s rRNAs (Appendix 3 and Appendix 6). The Ion Torrent 

sequencing experiment yielded, with the exception of rRNAs, the six group IIA intron-

containing RNAs and some rRNAs, as well as group IIB intron ndhA-in, while most of 

the intronless RNAs obtained in the calculation with –HA disappeared (Appendix 3 and 

Appendix 6). 

3.1.3 Multiple sites association and preferential domains of MatK binding to its 

targets 

Here the focus was solely on the group IIA targets, which were consistently enriched in 

both sequencing methods. When zooming in on the mapping results, multiple peaks could 

be identified in each transcript, most of which are in the intron region. For example, for 

atpF, the major peaks are in the intron region, while only a very short exonic fragment 

adjacent to the intron region is enriched (atpF in Figure 6). 

For the transcripts with short exons, such as trnK, enrichment was also found in the exon 

regions, especially in the Illumina experiment (Figure 6). This may be due to the 

incomplete endogenous degradation of transcripts by endo- and/or exonucleases. 

Interestingly, the entire trnK intron region is enriched, with the exception of the matK 

ORF region, indicating an exclusion of the maturase ORF region in the maturase-intron 

association. An enrichment of matK start codon region was also observed, indicating an 

association between the MatK protein and its own start codon region (Figure 6). 

The mapping patterns differ for these two sequencing experiments. First, a higher relative 

enrichment value was obtained in the Ion Torrent than in the Illumina sequencing 

experiment. For example, for atpF, the highest relative enrichment value yielded by 

Illumina is 72.5, while Ion Torrent sequencing produced the highest value of 310 (Figure 

6 and Appendix 6). Second, the peaks that emerged in Ion Torrent sequencing are 

generally broader than those obtained by the Illumina sequencing. For example, the first 

two major peakes of trnI found in the Illumina sequencing fused to one broad peak in the 

Ion Torrent sequencing (Figure 6). Both of aforementioned differences are likely caused 

by the inclusion of relatively long transcripts in the Ion Torrent sequencing. 
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Figure 6: Zoom in of the MatK targets identified by RIP-seq. The reads from two libraries (+HA and –

HA tagged MatK) were mapped to the chloroplast genome (NC_001879), respectively, and the ratio of the 

mapped reads between +HA and –HA was calculated (Y-axis) and plotted to the chloroplast genome. The 

targets present in both libraries were examined and the mapping graphs for the respective gene region are 

shown. The blue curve in the upper part and the red curve in the lower parts of each graph represent the 

enrichments derived from the Illumina and Ion Torrent sequencings methods, respectively. The bar 

underneath the graph shows the distribution of exons (filled black blocks) and domains of group II intron 

(empty blocks) defined in a previous study (Michel et al. 1989). In the graphs, the exon regions are also 

marked by a grey shadow. ClpP-in2 is also shown here, even though it is considered an unspecific target, as 

only one peak in its exon2 is consistently revealed in both sequencing experiments.  

Group II introns in chloroplast are not conserved in terms of primary sequences. However, 

they share the secondary structure defined by the six domains. When the enrichment is 

connected with the domain regions, the DI and DVI are preferentially associated with 

maturase in all the targets found by Illumina experiment (Table 1). On the other hand, DI 

and DIV and DV are preferentially associated with the maturase, as shown in the Ion 

Torrent experiment (Table 2). In both experiments, the main peaks are mostly in DI. 

However, some peaks are not consistently present. For example, the highest enrichment is 

located in DIV and DV for rpl2 in the Illumina sequencing, but DV is not enriched in the 

Ion Torrent sequencing (Table 1 and Table 2). 

Table 1 Relative enrichment of each domain of MatK associated RNAs by Illumina sequencing. 

Illumina 

RNA E1 DI DII DIII DIV DV DVI E2 

trnK         

atpF         

trnV         

rpl2         

rps12-2         

trnI         

trnA         

For each MatK associated RNA found by Illumina sequencing (Figure 6), the highest point of the relative 

enrichment for each domain was selected. According to these values, the enrichment of domains was 

ordered from the highest (darkest) to the lowest (lightest). 
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Table 2: Relative enrichment of each domain of MatK associated RNAs by Ion Torrent sequencing. 

Ion Torrent 

RNA E1 DI DII DIII DIV DV DVI E2 

trnK         

atpF         

trnV         

rpl2         

rps12-2         

trnI         

trnA         

For each MatK associated RNA found by Ion Torrent sequencing (Figure 6), the highest point of the relative 

enrichment for each domain was selected. According to these values, the enrichment of domains was 

ordered from the highest (darkest) to the lowest (lightest). 

A dot blot experiment was carried out to confirm the results of RIP-seq. The RNA was 

prepared the in same way as was the RNA used in RIP-seq. More specifically, two oligos 

for atpF and two oligos for trnV were selected for hybridization (Appendix 4A). The 

result of the dot blot experiment were in good agreement with those of the the result of 

RIP-seq, with the exception of a probe for trnV. Although trnV1 was slightly enriched 

(1.36 folds) in the dot blot, it was enriched in the Illumina but not in the Ion Torrent 

sequencing (Appendix 4 B). 

3.1.4 Association of MatK to its targets is regulated 

In its life cycle, RNA is dynamically associated with RBP. This association is regulated 

by the developmental stages and environmental conditions, such as nutrition (Tam et al. 

2010; Freeberg et al. 2013) and light (Danon and Mayfield 1991; Lisitsky and Schuster 

1995). Extant studies have shown that MatK is associated with seven targets. However, 

whether this association is static or dynamic remains to be determined. The protein and 

the RNA of MatK reach their highest level at 7 days and 25 days after imbibition, 

respectively (Hertel et al. 2013). Here, the binding of MatK to its targets was examined in 

these two developmental stages of tobacco (7 days and 25 days). 

Chloroplasts were isolated from two tobacco lines with an HA tag at either the N terminus 

(HA:MatK) or the C terminus of MatK (MatK:HA, same as +HA in the RIP-seq analysis). 
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These two lines were considered as biological replicates. IP with HA antibody was 

performed with the stroma fraction of chloroplasts. RNA samples from both supernatant 

and pellet fractions were used for the dot blot. The blots were hybridized with an intron 

probe of each target (Figure 7A). 

The relative enrichment ratio was defined by the fraction of each target in the sum of 

seven targets and was shown in a pie chart for the 7-day and 25-day stages, respectively 

(Figure 7B). In the 7-day-old tobacco, trnA is the most strongly enriched intron, followed 

by the trnK intron, while rps12-in2 is the least enriched intron. By contrast, in the 25-day-

old tobacco, trnK is the most strongly enriched intron, followed by atpF intron, with trnV 

as the least enriched (Figure 7B). A ratio-to-ratio value was calculated between the 

relative enrichment ratios at 7 days and 25 days. This value clearly shows the dynamic 

change. For example, for the MatK home intron trnK, the ratio-to-ratio value is 1, 

indicating that the proportion of MatK associated trnK intron does not change from 7 to 

25 days. In addition, the trnV proportion decreased to less than half the initial amount (0.4 

fold), and the most dramatic change was noted for atpF, for which the proportion 

increased 3 folds in the 25-day-old tobacco (Figure 7C). Surprisingly, these changes of 

association do not correlate either with the transcription rate or the steady-state level of 

RNA in these two stages (Hertel et al. 2013), indicating a regulation of association during 

development. 
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Figure 7: Association between MatK and its targets in two developmental stages of Nicotiana tabacum. 

(A) Dot-blot hybridization of RNAs that coimmunoprecipitate with HA tagged MatK. Here, 1/8 of the RNA 

from one IP was applied to replicate dot blots, and was hybridized with intron probes. P: RNA from pellet 

fraction, S: RNA from supernatant fraction. HA:MatK: HA tagged at the N terminus of MatK. MatK:HA: 

HA tagged at the C terminus of MatK. (B) The enrichment fraction of each MatK targets. The enrichment 

ratios between the pellet and the supernatant signal of the dot blot were calculated. The enrichment factions 

displayed in pie charts were calculated by the enrichment ratio of each target divided by the sum ratio of all 

seven targets. (C) The ratio-to-ratio indicates the dynamic association of RNA-MatK during development. 

For each target, the ratio-to-ratio value was calculated from the enrichment fraction ratio between the 25d 

and 7d data. There is an increased association of RNA-MatK in 25-day compare to 7-day old tobacco when 

the value is greater than 1, and vice versa. 

3.1.5 Precursors are the predominante transcripts associated with MatK 

Group II intron splicing consists of two reversible transesterification reactions and results 

in ligated exons and an excised lariat RNA. After splicing, the bacterial maturase remains 

tightly bound to the excised intron and presumably uses most or all of the interactions 

among the group II intron domains to stabilize the ribozyme structure and reverse splice 

the intron into DNA-a procedure also known as intron mobility (Wank et al. 1999). Thus 

far, the RNA species bound by MatK are still unknown. This leads to the need to ascertain 

whether the species-precursor, spliced intron or mature RNA-are associated with MatK 

and identify the one that is overrepresented. To meet this aims, primers located in 

different regions were used to discriminate these three RNA species associated with MatK 

by RT-quantitative PCR (RT-qPCR). This approach was chosen as primers in exon1 (Ex1f) 

and intron (Inr) can detect precursors; primers in intron (Inf) and exon2 (Ex2r) can detect 

precursor and lariat; and primers in exon1 and exon2 can be used for detecting mature 

RNA (Figure 8A). 

The fold change was calculated by +HA relative to the –HA line. The findings indicate 

that the amplicon spans at the exon-intron junction is more abundant than that at the 

intron-exon junction and at the mature RNA. In the case of trnV, the exon-intron 

amplicon is 5.6 times greater than that of the control, while the fold change for the exon-

exon amplicon is 2.1 (Figure 8B), indicating that the MatK is associated with the 

precursor, while its association with the mature RNA is almost imperceptible. The exon-

intron amplicon represents the precursor while the intron-exon amplicon represents both 

the precursor and the lariat RNA with the second exon. In theory, the intron-exon 
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amplicon should be greater than or equal to the exon-intron amplicon. However, the 

findings obtained here contradict this assumption. A similar pattern was observed for trnA 

(Figure 8B). 
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Figure 8: Association of trnA and trnV transcripts with MatK. IP was performed with HA antibody in 

the +HA and –HA tagged MatK tobacco lines. RNA from IP-pellet was treated with DNase I and reverse 

transcribed with gene-specific primers. (A) Schematic diagram of the primer positions on RNAs. QPCR 

was performed with primers spanning exon-intron (Ex-In), intron-exon junction (In-Ex) or both adjacent 

exons (Ex-Ex) of the transcripts. (B) MatK associated transcripts species. The fold change was calculated 

by +HA compare to the –HA line. 

3.1.6 Polysome fractionation indicated that both the trnK precursors and free 

intron serve as the translational template for MatK 

Bacterial maturase LtrA was shown to be autoregulated by binding to its own start codon 

region (Singh et al. 2002). A feedback regulation was also suggested for the chloroplast 

MatK (Hertel et al. 2013). However, the mechanism for the MatK regulation presently 

remains unknown. One possible autoregulation models based on the location of MatK 

posits that the trnK precusor serves as the translational template, and splicing of the 

template decreases the translation. In order to test this hypothesis, the MatK translational 

templates had to be identified. The RNA species containing matK ORF are potential 

MatK translational template. Northern blot analysis in previous study identified three 

matK ORF-containing transcripts species, namely psbA-trnK precursor, trnK precursor 

and trnK free intron (Hertel et al. 2013). If the trnK free intron is not the translational 

template, the simple matK autoregulation model would be proved. Due to the fact that the 

translational-active transcripts are associated with polysome complex, whereby the 

population of such transcripts loaded with polysomes can be size-fractionated by sucrose 
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density gradient. Consequently, the translational-active transcripts can be separated from 

the untranslational RNAs. 

In the sucrose gradient, the more ribosomes are associated with transcripts, the heavier 

the transcripts are, and the deeper they migrate. Using the sucrose gradient, the total 

tobacco extract was separated into 12 fractions and Northern blot was performed with the 

RNA from these fractions. Using the probe in the matK ORF (Figure 9A), presence of 

signals of three bands could be observed in all the RNA samples, indicating that these 

three transcripts migrate to all the fractions, including the densest ones (Figure 9B). The 

uppermost band with a size of ~4kb is corresponding to the psbA-trnK transcript, while 

the mainband with a size of ~2.5kb corresponds to trnK precursor, and the last transcript, 

which is a little smaller than pre-trnK, is the trnK free intron (Figure 9B). 
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Figure 9: Polysome analysis of transcripts for matK translation. The total extract from 7-day-old 

tobacco was size-fractionated into 12 fractions by sucrose gradient (with the top fraction denoted as sample 

1 and the bottom fraction as sample 12). The RNA was extracted from each fractions, and was separated by 

1% denature agarose gel and blotted onto nylon membrane. (A) Schematic diagram of the probe locations. 

Dashed line: location of matK ORF probe. (B) The membrane was hybridized with single strand DNA 

(ssDNA) probe of partial matK ORF. (C) The membrane was hybridized with a mixture of oligo probes 

covering trnK exon1 and exon2. 

To confirm the identification of these transcripts, another Northern blot was performed 

with the RNA samples from the same preparation, and was hybridized with a mixture of 

oligo probes located in the trnK exon1 and exon2 (Figure 9A). The ~4kb psbA-trnK and 

~2.5kb pre-trnK transcripts detected by the trnK exons probes show the same migration 

pattern as these transcripts detected by the matK ssDNA probe (Figure 9B and 9C). 

However, when the trnK exon probes were applied, the free intron could not be detected 

due to the probe location. Additionally, tRNA(K) occurs when detecting with exon probes 

(Figure 9C, see the bottom of the membrane), whereby a small amount migrates to the 

bottom fractions, e.g., fraction 12 (Figure 9C), indicating an active function of tRNA(K) 

in the translation. 

As the polysome fractionation Northern blot identified all matK ORF containing 

transcripts as translational template, it is important to ascertain if there is a preference 

between these templates. Taking advantage of a GFP tagged rpL32 tobacco line, dot blot 

can quantify the amount of translational-active transcripts relative to the endogenous total 

transcripts. Using μ MACS column (Miltenyi Biotec), rpL32 containing complexes were 

separated from the remaining cell extracts as elution fraction. The transcripts associated 

with these complexes are translational-active RNAs. However, due to the detection of 

tRNA(K) by the trnK exon probe, the quantified results cannot indicate the proportion 

usage of different transcripts (Appendix 5). 

3.1.7 Overexpression matK in nucleus 

During the coevolution of endosymbionts and their host, large numbers of genes were 

transferred into the host nucleus genome, including many maturases. The only exception 

was matK in chloroplast (de Longevialle et al. 2010). This scenario was justified as 

follows: (1) As MatK is toxic for the nuclear RNAs, it may splice some of the nuclear 

RNAs, which form a structure similar to group II intron of MatK targets, or (2) MatK 

needs to be rapidly and tightly autoregulated; however, autoregulation requires the 
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transcripts and protein to be in the same location. In this study, attempts were made to 

express matK from the nucleus, and subsequently knock out the chloroplast matK. 

A vector named prmh was constructed for the nuclear transformation using the backbone 

of pGL1 vector that is derived from pGPTVbar (Becker et al. 1992). Prmh was 

constructed by insterting matK (Nicotiana tabacum) with 35s promoter, transit peptide 

and HA tag into the SmaI restriction site of pGL1 (Figure 10B). 

Here, 35s promoter was used for overexpression and rbcs transit peptide was attached at 

the matK 5’ end to ensure the chloroplast location for the translated MatK. Basta was used 

for the plant selection, as tobacco lines transformed with prmh and pGL1 are resistant to 

Basta (Figure 10A). The HA tag at 3’ end was used to produce an epitope tagged MatK 

protein for detection (Figure 10B). This vector was transformed into wild-type Nicotiana 

tabacum mediated by agrobacteria. The empty pGL1 vector was transformed as a control. 

Seedlings were first proved to contain the insertion by genotyping PCR with two pairs of 

primers, one of which was located in promoter and transit peptide region, with the other 

pair in the matK:HA ORF (Figure 10B). RT-PCR was carried out for detecting the 

transcription of MatK. Total RNA samples were reverse transcribed with gene-specific 

primer, and a control experiment without the adding of reverse transcriptase was also 

conducted. With the matKseqfor1 and HArev primer pair, the expected 532 bp product 

can be amplified. On the other hand, the 3’matKseqrev1and HArev primer pair allowed 

amplifying the 183 bp product (Figure 10C). This result indicates that the inserted 

fragment were transcribed in plants p1, p2 and p4. Western blot with total protein extract 

was performed with the RT-PCR positive plants, whereby the pGL1 plant was used as 

negative control, and the HA tagged rpoA plant (Finster et al. 2013) was used as positive 

control. The results revealed that no signal can be detected in any nuclear transformed 

plants (Figure 10D), indicating either no expression or low expression of MatK. 
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Figure 10: Nuclear transformation of MatK in Nicotiana tabacum. Chloroplast targeting expression 

vector prmh was transformed to nucleus by agrobacteria-mediated method. An empty vector pGL1 was also 

transformed as a control. (A) The F1 generation of nuclear transformants are indistinguishable from wild-

type tobacco under standard growth condition (upper panel). Prmh and pGL1 transformants of F2 

generation are resistant to Basta. 7-days old tobacco seedlings were sprayed with Basta and grown till 10-

days old (lower panel). (B) The positive transformants (tobacco lines No. 1-8) were identified by 

genotyping PCR. Upper panel: PCR performed with primers located in the promoter and signal peptide 

region (primer pair 1 and 2), lower panel: PCR performed with primers located in the matK:HA ORF region 

(primer pair 3 and 4). The names of primers used are as follows, 1: 35s; 2: rbcssprev1, 3: matKsmalfor2; 4: 

HArev. (C) RT-PCR indicates the transcription of inserted fragments. DNase-treated total RNA was reverse 

transcribed with RT (+) or without RT (-) by a gene-specific reverse primer (HArev), and was amplified 

with primers located at the inserted fragments (HArev and 3’matKseqrev resulted a product of 183bp, 

HArev and matKseqfor1 resulted a product of 532bp). (D) Western blot indicates no expression of MatK 

protein. Total protein was separated with SDS-PAGE gel and blotted onto a nitrocellulose membrane. HA 

antibody was used for the detection, an HA tagged rpoA line (Finster et al. 2013) was used as a technical 

positive control. SP: signal peptide; RT: reverse transcriptase; M: Marker; C1 and C2: control lines 

transformed with pGL1. 

3.1.8 Plastid transformation for matK overexpression 

In chloroplasts, MatK is translated at a very low level, probably under a strict regulation 

(Barthet and Hilu, 2007). The RIP-seq showed that MatK binds to other structure-similar 

RNAs, indicating the importance of maintaining the low level expression. In this study, 

overexpression of MatK was carried out to examine the regulation of MatK. To avoid the 

potential toxic effects of MatK in chloroplast, vectors were constructed with an 

expression inducible element-Riboswitch (Verhounig et al. 2010). Two constant 

expression vectors with the T7g10 translation element (Ruhlman et al. 2010) were also 

prepared. The sequence used for MatK expression was either matK (NTmatK) of 

Nicotiana tabacum or synthetic matK (AmatK) that was codon optimized. AadA cassette 

was used for plant selection against spectinomycin and the HA tag at the 3’ end of MatK 

was used for protein detection and purification. Four vectors were prepared in total, 

namely: pRSNTmatK, pRSAmatK, pT7g10NTmatK and pT7g10AmatK (Figure 11). 

They were used in stable transformation of tobacco plastids mediated by biolistic delivery 

systems (Svab et al., 1990; Ayako and Yutaka 2012). 
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Figure 11: Schematic diagram of vectors used for MatK overexpression in Nicotiana tabacum plastid. 

Tobacco matK (NTmatK) and synthetic matK (AmatK) were either expressed constantly (pT7g10NTmatK 

and pT7g10AmatK) or inducible expressed by Riboswitch (pRSNTmatK, pRSAmatK). The 3’ HA tag was 

used for protein detection and purification. 

The first generation of plants (F1) was genotyped by PCR and Southern blot analysis, 

revealing that two independent lines generated from pRSAmatK were homoplastomic, 

while only one heteroplastomic line was generated from pT7g10AmantK (Ranzini 2014). 

The analysis on the RNA splicing of the homoplastomic plants is still ongoing. The leaf 

pieces from the heterplastomic plants were cultured for further regeneration. At the same 

time, as segregation may occur in the seeds, the plantlets of the heteroplastomic line were 

transferred to soil after rooting for seed production. 

3.2 SRNAs suggest the Mbb1 binding sites at 5’UTR of psbB and psbH 

3.2.1 Chloroplast sRNAs identification within Chlamydomonas RNA-seq datasets 

As sRNAs are distinct in functions but common in size, they are usually discovered by 

high-throughput sequencing of their cDNAs. Normally, the short RNAs are separated 

from total RNA by gel electrophoresis, after which they are eluted before being used as 

library template for sequencing (Malone et al. 2012). Datasets produced as outlined above 

include short RNAs derived from nuclear and organellar genomes when working with 

eukaryotes. In plants, these are the nuclear, plastid, and the mitochondrial genomes. 

Studies on sRNAs have been carried out in a wide variety of plant species including 

Chlamydomonas (Ibrahim et al, 2010). 

Small-size RNAs such as miRNA and siRNA, were already shown to play diverse 

regulatory roles in the gene expression via different mechanisms (Huttenhofer et al. 
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2005; Lin et al. 2006; Kim et al. 2009; Lee et al. 2012; Duarte et al. 2014). Although most 

of these works focused on the nuclear or cytosolic sRNAs, other studies also identified 

sRNA members in organelles (Lung et al. 2006; Wang et al. 2011; Ruwe and Schmitz-

Linneweber 2012; Hackenberg et al. 2013). Some of these organellar sRNAs are involved 

in plant stress response (Wang et al. 2011). In this study, the sRNAs in plastid of 

Chlamydomonas were identified and their roles in post-transcription regulation were 

examined. 

Seven short RNA datasets in Chlamydomonas, originally designed to analyze miRNAs 

and siRNAs ((Ibrahim et al, 2010) and GEO series GSE32457), were used in the present 

study. Reads from all seven datasets were pooled and mapped to the chloroplast genome 

of Chlamydomonas (NC_005353). Identical reads were treated as one sequence, with 

each sequence potentially stands for up to hundreds of reads. A total of 17,400 unique 

chloroplast-specific sRNA sequences were obtained after mapping, which is equivalent to 

2.2% of the total sRNA population. The enrichment of sequences across the chloroplast 

genome exhibited wide variations in local distribution in the tRNA, rRNA, mRNA 

regions as well as intergenic regions. The sRNA derived from rrn operon, tRNA and the 

other highly accumulated genes such as psbA and rbcL are the most abundant. In contrast, 

the sRNAs originating from other mRNA and intergenic regions were least prevalent but 

exhibited distinct isolated enrichment. As the non-coding regions are the potential binding 

sites for RNA-stabilizing proteins (Ruwe and Schmitz-Linneweber 2012; Zhelyazkova et 

al. 2012b), and were main focus of interest here, the remaining unrelated regions were 

excluded in further analysis. In total, 61 sRNA clusters were identified in this study, most 

of which were less than 300 bp away from their respective start or stop codon (Appendix 

7). 

3.2.2 SRNAs coincidence with transcript ends 

In angiosperm, the binding of helical-repeat proteins can protect RNAs from degradation 

and generate sRNAs in the binding sites (Prikryl et al. 2011; Ruwe and Schmitz-

Linneweber 2012; Zhelyazkova et al. 2012b). Consistent with this idea, in this study, 

chloroplast sRNAs tended to locate toward transcript ends. Moreover, in the analyzed 

datasets, five sRNAs map immediately at known transcript ends (Drapier et al. 

1992; Sturm et al. 1994; Vaistij et al. 2000; Zerges et al. 2003; Somanchi et al. 2005) 

(Appendix 8). Four of these transcript ends were confirmed by 5’ RACE (Figure 12A), 

and coincide with the sites where sRNAs emerge. 
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The sRNAs at 3’UTRs were frequently adjacent to a stem-loop structure, such as the 

sRNAs at psbL 3’ and trnR 3’. PsbL sRNA 3’ end was found to coincide with the 3’ 

mRNA end identified using 3’ RACE, and the stem-loop structure found was adjacent to 

this end (Figure 12B). Similarly, the 3’ ends of psbA were mapped adjacent a stem loop 

(dG = -18.80 kcal/mol). However, no sRNA was mapped to this 3’ end. Two sRNAs were 

found in the 5’UTR of psbB and psbH, respectively. Mbb1, the RBP which is contributing 

to the stabilization of these two transcripts, is proposed to bind to these two 5’UTR 

regions (Hammani et al. 2012) (Figure 12A). 
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Figure 12: SRNAs corresponding to the ends of chloroplast mRNAs in Chlamydomonas. (A) The 5’ 

ends of mRNA mapped by 5’ RACE. Most clone ends coincide with the sRNA 5’ ends. (B) The 3’ ends of 

mRNA mapped by 3’ RACE. PsbA 3’ end coincides with a stem-loop structure (dG = -18.80 kcal/mol), 

while psbL 3’ end coincides with the location of sRNA. The numbers above or below the arrowheads 

indicate the number of 5’ or 3’ RACE clones that terminate at the respective sites. The sequences 

corresponding to four chloroplast sRNAs (Appendix 8) are highlighted in bold. The start and stop codons 

are highlighted both in bold and italic. In the sequence with stem-loop structure, base-pairing nucleotides 

are indicated by matching parenthesized brackets while the unpaired positions are indicated by dots. 
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3.2.3 Absence of two sRNAs at UTR regions of Mbb1 target in the mbb1 mutant 

Binding of RBPs was shown to lead to the accumulation of sRNAs at the binding sites 

(Prikryl et al. 2011; Ruwe and Schmitz-Linneweber 2012; Zhelyazkova et al. 2012a). The 

wild-type and mbb1 null mutant Chlamydomonas were used here to test whether Mbb1, 

the RBP that binds at the 5’UTR of psbB and psbH, is related to the accumulation of the 

sRNAs located at the respective regions. RNA gel blot hybridization was performed with 

low molecular weight (LMW) RNA fraction enriched from the total RNA. The aim of 

using this LMW fraction was to enrich the RNAs that with small molecular weight and 

thus increase the sensitivity of detection. Both of these sRNAs can be detected in wild-

type with the sizes similar to the sequences found in deep sequence datasets (Figure 13A 

and Appendix 7). Moreover, individual sequences in each sRNA cluster exhibited 

variations in length, and the sharpness of the sRNA band in RNA gel blot could reflect 

this variation (Figure 13A). However, neither psbB nor psbH sRNAs can be detected in 

the mutant. The lack of these two sRNA in mbb1 could be caused by a general loss of 

sRNA in this mutant. To exclude this possibility, the same blot was stripped and 

hybridized with probes for two control sRNAs: petB 5’ and psbH 3’antisense (Figure 

13A). Both control sRNAs were present in the mutant. It is obvious that the accumulation 

of psbB 5’ and the psbH 5’ sRNAs are dependent on the presence of Mbb1. And it has 

already been shown that the mRNA stability and/or processing of psbB and psbH 

transcripts are affected by Mbb1 (Monod et al, 1992). Interestingly, a sequence similarity 

between sRNAs of the psbB and psbH 5’UTRs was noted. More specifically, they share a 

core sequence: AAGUAAA (Figure13B), and the locations of this core sequence are ~7 nt 

downstream of 5’ end for both transcripts (Figure 12). 
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Figure 13: SRNAs correspond to the 5’ ends of chloroplast mRNAs in Chlamydomonas. (A) 

Autoradiograms of RNA blots from the WT and the mbb1 mutant (MU). Low molecular weight (LMW) 

RNA was enriched from the total RNA and was resolved by 15% polyacrylamide gel containing 8M urea. A 

fluorescence image of the gel stained with ethidium bromide (EtBr) is shown as loading control (the 

leftmost panel). The probes are ssDNA oligonucleotides (<=25 nt) antisense to the sRNAs. The same 

membrane was repeatedly probed and stripped as described in Materials and Methods section. The 

radioactive probes used in hybridization are indicated above the panels. The arrowheads indicate the signal 

of the sRNAs. (B) Sequence alignment of the psbB 5’ and psbH 5’ sRNAs. SRNAs were aligned by 

CLUSTAL 2.1. The asterisks denote conserved nucleotides. 
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4. Discussion 

4.1 Binding specificity of MatK to its RNA targets 

Organelle group II introns have features not shared by their intron relatives. Unlike the 

prokaryotic group II introns, they are unable to perform self-splicing. Moreover, unlike 

the eukaryotic nuclear transcripts, they are not spliced via spliceosome. Thus far, a large 

number of nuclear-encoded splicing factors have been identified, which facilitating the 

splicing of group II introns (de Longevialle et al. 2010). Presently, MatK is the only 

presumed chloroplast encoded splicing factor, and is consistently found in the intron of 

trnK in most plants (http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi). The 

location of matK suggests its function in splicing the intron of trnK. Additionally, matK is 

retained and standing freely in several chloroplast genomes where trnK is lost (McNeal et 

al. 2009). MatK is associateed with the trnK as well as other group II introns ((Zoschke  

2010) and this study), indicating its potential ability to splice other targets. 

Binding of RBPs to RNA is the first step for facilitating their function. Typically, the 

binding specificity is achieved by recognition of a particular RNA sequence and/or 

structure (Draper 1999; Antson 2000; Hall 2002; Mougin et al. 2002; Singh 2002; Maris 

et al. 2005). A wide variety of experimental methods can be applied for identifying RNA 

ligands of RBPs. Next generation sequencing combined with bioinformatics analysis can 

uncover the more specific RNA structural contexts that are recognized by RBPs in vivo 

(Fukunaga et al. 2014). 

Structural requirements for RNA recognition by MatK 

In this study, in addition to the enrichment of seven group IIA targets, which all show 

strong association with MatK, the signal for the group IIA intron clpP-in2 is slightly 

above background. Furthermore, the two group IIB intron, ycf3-in2 and ndhA, are 

enriched in one of the two RIP-seq results (Figure 5 and Appendix 5). These 

inconsistently associated introns have a very similar structure to the other introns targets 

(Michel et al. 1989), suggesting that RNA structure plays an important role in the RNA-

MatK interaction. 

Bacterial maturases such as LtrA bind their cognate intron (in this case Ll.LtrB) with high 

affinity and specificity. No other group II intron was found to bind to LtrA under stringent 

binding conditions (Saldanha et al. 1999). When the conditions were less stringent, LtrA 
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was also found to bind other group II introns, such as yeast mtDNA introns aI2 and aI5 

and E. coli IntB (Saldanha et al. 1999). 

As the substrate of maturase, group II introns possess only a few conserved nucleotides. 

With the exception of the relatively highly conserved and well characterized DV, the 

remaining conserved segments are short and scattered across the intron. For example, the 

consensus sequences at the 5’ and 3’ boundaries of introns are GUGYG and AY (Y = C, 

U), respectively. However, they are usually too short to define boundaries in genomes 

(Michel and Ferat 1995). In contrast, the secondary structures of the group II introns are 

highly conserved. 

RNA structures can form cotranscriptionally and can thus provide rapid access to their 

protein ligands while not yet fully produced (Lai et al. 2013; Geary et al. 2014). Moreover, 

MatK may bind to RNAs when they are not yet fully folded during transcription or to 

introns accumulating in an unfolded state. In both cases, it could play a role in the further 

folding of its targets. MatK is likely to bind to some introns, including clpP-in2, since 

they are structurally related to the core group IIA targets. However, the affinity to these 

RNAs might be low (see low clpP-in2 signal in Figure 6) due to structural deviations 

from the canonical group IIA intron scheme (Michel et al. 1989). Consequently, it is 

possible that MatK does not support splicing in these cases. Genetic studies exploring the 

splicing role of MatK for its various target introns are thus needed to answer this question. 

Proof for MatK being a true splicing factor is still missing 

MatK is presumed to splice multiple targets. However, the only evidence for the 

involvement of MatK in chloroplast splicing is that the seven group IIA introns (with the 

exception of clpP-in2) are not spliced in the plastid translation deficient barley mutant, 

while the group IIB intron in trnG was spliced efficiently (Hess et al. 1994; Hubschmann 

et al. 1996; Vogel et al. 1999). The intron in trnV was presumed to be among these seven 

MatK-dependent introns, although the data are hard to interpret due to the low signals 

obtained in Northern blot experiments (Vogel et al. 1999). In the present study, trnV 

association with MatK is also under the predefined threshold in one of the two RIP-seq 

experiments. It is possible that trnV is not a true splicing target of MatK. However, trnV 

intron is lost in the plastid genome of the underground orchid Rhizanthella gardneri, 

where matK is also lost. As a result, MatK and trnV may lose contact due to a weak 

association. 
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Two introns bound by MatK in tobacco, group IIA intron rpl2 and clpP-in2, are retained 

and are correctly spliced in Rhizanthella gardneri (Delannoy et al. 2011). The splicing of 

clpP requires a PPR protein in the moss Physcomitrella patens (Hattori et al. 2007). Thus, 

MatK could be redundant in the presence of such factors, or serve only non-essential 

functions in splicing of such introns. Similar argument could be applied to the rpl2 intron. 

In other words, while MatK is able to bind to multiple RNAs, its splicing function is not 

presently fully understood. Thus, further manipulation of MatK is necessary for verifying 

its function in splicing. Since standard knock out approaches were unsuccessful (Sorefan 

et al. 2012), conditional knock out or overexpression of MatK should be attempted. 

Binding of MatK to its targets is developmentally regulated 

In this study, MatK was found to be dynamically associated with group II introns. More 

specifically, in a comparison of 7-day and 25-day-old tobacco (Figure 7), MatK 

association with atpF was found to increase 3 times in older tissue, while its association 

with trnV decreased two-fold. These differences in association are independent of 

accumulation levels of RNAs that are described by Hertel et. al. (Hertel et al. 2013). The 

splicing efficiency of intons could be affected as other studies have shown that splicing 

efficiency varies at different developmental stages. For example, differences were found 

in the ratio of spliced to nonspliced atpF, petB, petD, rbl16 and ycf3 in maize and trnG in 

mustard (Barkan 1989; McCullough et al. 1992; Liere and Link 1995). Additionally, the 

splicing of the group IIB intron in ndhB is impaired by high temperature (Karcher and 

Bock 2002).  

The dynamic association between MatK and its targets indicates a regulation in splicing. 

This raised an important question of, whether MatK-dependent splicing is important for 

the accumulation of the final product of gene expression, the mature tRNA or the encoded 

protein. The MatK association with trnA, trnV and trnI varied during the development 

while all three corresponding mature tRNAs decreased (Hertel et al. 2013). This suggests 

that, at least in the developmental stages analyzed, MatK is not rate-limiting for these 

splicing events. Unfortunately, no protein expression data for the ORF containing targets 

of MatK such as atpF and rps12 in tobacco, presently exists. Furthermore, it is clear that 

MatK is not the only factor that assists the splicing of these introns. The involvement of 

other nucleus-encoded splicing factors (Figure 2) is likely to cause the dynamic 

association between MatK and its targets. 
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Association of MatK with intron-containing transcripts 

Bacterial maturases are able to bind to the precursor and lariat intermediate during 

splicing, and afterwards still bind to the excised lariat intron to facilitate the retrohoming 

activity (Bonen and Vogel 2001). For MatK it was unclear, whether the precursor or the 

spliced intron is associated with MatK. In this study, RT-qPCR was used to discriminate 

the different transcripts associated with MatK. Although detection of the lariat structure 

failed (Koehler 2013), precursor was found to be the predominant transcripts associated 

with MatK, while the mature transcripts were not associated (Figure 8B). The binding of 

MatK to the lariat RNA could be impaired due the evolutionary loss of the RT domain, 

which is known to be important for assisting lariat-based retrohoming (Cui et al. 2004). In 

the same assay, the 5’ end of the precursor is more enriched than the 3’ end for trnA 

(Figure 8B), indicating that associations of RNA to MatK occur at the 5’ end of 

transcripts rather than at the 3’ end. This association tendency could due to the uneven 

degradation of RNA at the 5’ and 3’ end during chloroplast isolation and co-IP. However, 

this observation is not supported by the RIP-seq data (trnA and trnV in Figure 6), where 

tendency of 5’ end enrichment was not found. As a result, the most likely reason for this 

scenario is that the degraded short RNA fragments at 3’ end detected by RIP-seq were 

excluded in the RT-qPCR. 

Enriched intronless transcripts in co-IP with MatK 

In this study, the intron ligands that were repeatedly found to co-precipitate with MatK 

are group IIA introns. In addition, some intronless transcripts, such as tRNAs, rRNAs and 

RNAs coding for photosystem subunits, were also found to be bound to MatK (Appendix 

6). One reason for their presence in MatK-IP pellets could be their high abundance within 

the chloroplast transcriptome in comparison to the very low-expressed “MatK-bait” used 

in the co-IP. These RNAs could be an artifact of the co-IP procedure and would not be 

true MatK targets. Since it was found that re-association of unspecific RNAs to protein 

could occur after cell lysis (Mili and Steitz 2004). 

4.2 The binding of MatK to different domains of its targets 

Adaptation of MatK to assist splicing of multiple introns 
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The purified LtrA was shown to bind to RNA as dimers in vivo (Saldanha et al. 1999). 

Biochemical analysis suggests that the N-terminus of the RT domain of LtrA is essential 

for high affinity binding to the LI. LtrB intron, while domain X of LtrA is associated with 

the conserved regions of the catalytic core of the intron (Cui et al. 2004). However, MatK 

maintained only part of the C-terminal RT domain and the entire X domain. The lack of 

large parts of the RT domain, especially the N-terminal part, may lead to the loss of 

binding specificity of MatK. Potentially, this loss was a prerequisite for MatK to bind to 

multiple targets and assist splicing of multiple introns. 

Relationship between function of domain and its enrichment 

As shown in this study, DI of group II introns is associated with MatK for all its targets 

(the differences in the two sequencing results will be discussed later). In contrast, there is 

no consistent enrichment of DII and DIII across all target introns. This domain is also 

usually the largest and the most complex. DI interacts strongly with DV and DVI at the 

tertiary level (Boudvillain and Pyle 1998). It was assumed that DI delivers the molecular 

scaffold into its catalytic active structure (Qin and Pyle 1997). In plants, DII and DIII are 

usually short in length. Their contributions have been shown to be limited in structure 

formation and splicing efficiency in bacterial group II introns (Kwakman et al. 

1989; Koch et al. 1992). DIV is variable in size in bacteria since it does not always retain 

an ORF. Extant studies on bacterial maturase mutants revealed the interaction between 

different regions of maturase and the domains of group II intron. For example, stable 

binding of the maturase to the intron requires binding to its DIV (Huang et al. 2003). 

However, 10% and 70% of residual splicing could still be detected in vivo for L1. LtrB 

and cox1-in2 when their DIVs are missing, respectively (Huang et al. 2003; Cui et al. 

2004). The residual splicing efficiency suggests importance of DIV-maturase interaction 

differs depending on the respective intron and/or maturase. For MatK, a strong 

enrichment of DIV was found for rpl2 and trnA, whereas this domain is relative weakly 

enriched in other MatK target introns (Figure 6, Table 1 and Table 2). This scenario 

suggests that, even for the same maturase, the association of DIV differs among its intron 

ligands. RIP-seq data of trnK suggests that the matK ORF is not bound by the maturase; 

this observation is in line with the results of a trnK-oligo-tilling-array (Zoschke 2010). 

DV is the most conserved domain in both length (always 34 nt in plants) and sequence 

(Michel et al. 1989). It is relatively more enriched than other domains in the seven introns 

discussed in this work, which may be due to its essential role for catalytic activity 
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(Peebles et al. 1995; Konforti et al. 1998). DVI in the data reported here is also enriched 

in most of the introns found in Illumina RIP-seq results. It encompasses the branch “A” 

site and has been shown to interact with DI and DV (Dib-Hajj et al. 1993; Podar and 

Perlman 1999). Together, the MatK RIP-seq results indicate a preference of binding to 

different domains for its individual targets. 

Differences of domains enrichment between bacterial maturases and MatK 

Using quantitative binding assays and RNA footprinting experiments, RNA sites 

protected by bacterial maturase LtrA was found in DI, DII and DVI (Matsuura et al. 

2001). As DII is not strongly enriched in MatK RIP-seq, the binding results reported here 

do not fully coincide with those pertaining to the bacterial maturase. This incongruence 

may be due to two possible reasons: (1) Bacterial maturase only serves its own intron but 

the plastid MatK serves multiple group II introns. Thus, there must be some differences in 

the recognition and binding mechanisms between these two types of maturases; (2) The 

RIP-seq results obtained in this study suggest the in vivo association. However, the 

available data for bacterial maturase binding were obtained from recombinant maturase 

and RNA substrate produced by in vitro transcription. Thus, as co-transcriptional folding 

of RNA was missing (Zemora and Waldsich 2010), the bacterial maturase is likely to 

make additional and/or different contacts with the RNA substrate and thus correct the 

RNA structure, changing it from the random-folded or even misfolded conformation. 

Different library preparation methods result in different association patterns 

Some differences were found for domains association between the two sequencing 

methods. With the exception of DI, consistent binding pattern could not be established for 

other domains. According to the Illumina RIP-seq results, DI and DVI are enriched for all 

target introns, while DV is enriched in three target introns in Ion Torrent sequencing. The 

differences are likely caused by the library preparation. The RNAs from the IP pellet were 

of various lengths, ranging from about 20 nt to more than 1 kb. Using the sRNA library 

preparation kit, only RNAs smaller than 80 nt can be retained, as the rest is excluded. As 

a result, the average read length for this library is 78 nt. In order to include all the RNA 

from IP pellet into the library, an RNaseIII digestion step was used to shorten the RNA in 

the library preparation for Ion Torrent sequencing. RNase III digests the RNA molecules 

at the positions where the double strand forms and thus, very useful for sequencing the 

entire transcriptome with abundant long transcripts. However, it is difficult to recover the 
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low abundant transcripts after the RNase III digestion. Additionally, RNase III digestion 

may be also a challenge for the group II introns, as their complex secondary structures are 

built based on the formation of double strand. Thus, a digestion-induced bias could be an 

issue, due to the nonrandom double strand formation. Moreover, it is very likely that 

MatK recognizes structure instead of sequence. As a result, digesting the RNA targets 

without crosslinking may release the RNA ligands from the RNA-protein complex. 

However, treatment with RNase is required for obtaining a higher resolution. RNase 

digestion combined with crosslink prior to IP may sharpen the peaks of enrichment shown 

in Figure 6 and eliminate the enrichment at the exon regions. RNA cloning bias, and 

ligation bias in particular, could also be the reason for the differences found between 

these two sequencing methods. Ligation bias can be introduced by the ligase and RNA 

secondary structure (Linsen et al. 2009; Hafner et al. 2011). For the group II intron RNAs 

with complex secondary structure, the ligation bias could be alleviated by correcting the 

adapters and/or via utilization of a thermo stable ligase at a higher temperature (Sorefan et 

al. 2012; Zhang et al. 2013). 

Thus far, the minimal binding sites of many RBPs were characterized with RIP-seq in 

combination with the RNA-crosslink technique （ Friedersdorf and Keene 2014; 

Munschauer et al. 2014; Webb et al. 2014） . Presently, there is no available deep 

sequencing data for the interaction of MatK to its targets. While the first trial without 

crosslink in this study narrowed down the binding site to the intron domains level. In 

order to obtain a higher resolution, it would be beneficial to conduct the crosslink of 

MatK to its targets, along with RNase digestion and size selection. 

4.3 Regulation of MatK 

MatK is the only maturase retained in the chloroplast, as all the other counterparts were 

transferred to the nucleus during evolution (de Longevialle et al. 2010). Its autoregulation 

is one possible reason for retention of MatK in chloroplasts. In other words, as the MatK 

protein could regulate its own transcription and/or translation, it would need to be 

encoded in cis. Supporting this idea of regulated MatK expression, a discrepancy of MatK 

at the RNA and protein level was found in 7-day and 25-day-old tobacco plants (Hertel et 

al. 2013). 

Feedback regulation in chloroplast 
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In Chlamydomonas, feedback regulation in the expression of some ribosomal proteins, 

some tRNAs, tufA and genes encoding the subunits of the plastid RNA polymerase has 

been reported (Ramundo et al. 2013). Interestingly, a feedback regulation for MatK was 

suggested by the discrepancy between protein level and RNA level during development, 

and was further supported by bioinformatics analysis using additional data on the 

developmental expression of MatK targets (Hertel et al. 2013). Bacterial maturase LtrA is 

autoregulated via a stem-loop structure in the start codon region (Singh et al. 2002). A 

similar structure was found in the same region of the matK gene in maize and tobacco. 

Consequently, the autoregulation model used for LtrA was suggested to apply in this case 

(Zoschke et al. 2009). However, the following analysis of co-expression of MatK and the 

5’ stem-loop region in E.coli did not provide evidence of any interaction (Zoschke et al. 

2009). While this may be due to the limitations of the E.coli system, it can also reflect the 

actual situation. Several attempts were also made to test the potential autoregulation in an 

in vitro translation system (Yukawa et al. 2007). However, no expression of the reporter 

gene was obtained when it is driven by various lengths of matK 5’UTR (unpublished data, 

prof. Masayuki Nakamura, personal communication). It is likely that the matK expression 

elements used in this system were too weak for producing detectable reporter gene 

products. 

A potential autoregulation mechanism for matK 

A possible autoregulation mechanism can be achieved by the location of matK and the 

function of its protein. Chloroplast RNAs are usually organized as polycistronic 

transcripts. After processing of these precursors, different transcripts with variable ORF 

content are produced. Transcripts containing the matK ORF are: psbA-trnK, pre-trnK and 

trnK-in (see Figure 9). As MatK splices pre-trnK to produce trnK-in, if pre-trnK is the 

only or major translational template for MatK, an increased amount of MatK could 

decrease the template from which it is translated by splicing. As a result, translation of 

MatK would be decreased. In the maize crp1 mutant lacking the processing of petB and 

petD, the polycistronic precursor accumulates to its normal level while monocistronic 

forms of petB and petD are missing. PetB protein accumulates to the normal level in this 

mutant, while PetD protein largely decreases, suggesting that PetD is translated more 

efficiently from the monocistronic transcript (Barkan et al. 1994; Fisk et al. 1999). In the 

polysome analyses conducted in this study, no selection was found for a particular 

translational template of MatK. psbA-trnK, pre-trnK and trnK-in are all translated, in line 
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with the observation that maize PsbB is translated from all the transcripts containing its 

ORF (Barkan 1988). The initiation of translation requires the recognition of specific RNA 

elements within RNAs, including the recognition of Shine-Dalgarno like sequences for 

some chloroplast genes (Sugiura et al. 1998; Kozak 1999; Zerges 2000; Hirose and 

Sugiura 2004). It is thus likely that these matK transcripts comprise all the necessary 

elements since they mostly differ in the presence of the trnK exons. As a result, there is 

no discrimination in the selection of translational templates as evidenced by the analysis 

presented here. Thus, it is unlikely that autoregulation is driven by choice of the unspliced, 

rather than the spliced, matK RNAs. 

Misexpression of MatK is toxic 

Manipulation of protein expression is an essential method for studying protein function. 

However, all the previous attempts to knock out or point mutate matK had failed 

(Drescher 2003b; Zoschke et al. 2010). In this work, no detectable amount of MatK was 

found in nuclear transformants that were generated to overexpress MatK ectopically. In 

addition, thus far, any attempt to constantly express MatK in transplastomic plant 

produced heteroplastomic plants only, while further selection experiments for segregation 

are still ongoing. Nevertheless, the available data suggests the essential nature of matK. 

Potentially, MatK is able to target other RNAs aside of its canonical intron targets, which 

could lead to problems in the expression of such promiscuous targets when MatK is 

present in large quantities. One potential issue could arise because MatK interferes with 

the splicing of non-target introns, i.e. group IIB introns. In order to test this premise, a 

truncated form of MatK lacking domain X could be expressed, which would be expected 

to loose its “toxicity”. Such truncation approaches have indeed shown a high protein 

expression in plants (Akama and Takaiwa 2007; Wu et al. 2014). Moreover, an inducible 

MatK expression system was chosen here, as it might help to control the timing and/or 

protein levels during the specific critical stages of plant development (in particular in 

early chloroplasts development in meristematic tissue). This, in turn, could minimize the 

detrimental effects of MatK overexpression. Riboswitch has been shown to be able to 

control the transcription and translation in chloroplast (Verhounig et al. 2010) and, as a 

result, can be used in the inducible expression or knock out. Another option for the future 

would be to overexpress MatK in plant cell lines such as tobacco BY-2 (Bright Yellow - 2 

of the tobacco plant) (Kato 1972) which would overcome the potential toxic effect of 

MatK in certain (young) tissues in vivo. 
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4.4 MatK, an intermediate between bacterial maturases and the spliceosome? 

The splicing of each bacterial group II intron is catalyzed by the maturase encoded in the 

intron. By contrast, a large number of nuclear introns are spliced by a uniform splieosome 

machinery. These two splicing machineries are identical in terms of biochemical reaction 

steps (Sontheimer et al. 1999; Fica et al. 2013). There are also sequence similarities at the 

splice sites of the RNA substrates, as well as crystal structure similarities within the 

ribozyme and the spliceosome (Cech 1986; Toor et al. 2008; Keating et al. 2010; Marcia 

et al. 2013; Marcia and Pyle 2014). Based on these parallels, the catalytic group II introns 

are believed to be the ancestors of spliceosomal introns (Sharp 1985; Cech 1986). 

Sequence and crystal structure similarities between the Th/X domain of spliceosome core 

protein Prp8 and the X domain of group II intron encoded maturase in bacteria and fungi 

were also found (Dlakic and Mushegian 2011; Galej et al. 2013). However, there is still a 

large “gap” between them, raising more questions to be answered. For example: how did 

the one-intron specific maturase evolve into the multiple-intron serving spliceosome? 

What was the fate of the domains of the group II introns? Although a function of splicing 

is not yet fully understood, organelle maturase such as MatK or MatR may yield some 

valuable information, allowing the “gap” between bacterial maturase and the spliceosome 

to be narrowed. 

The present study yielded several important findings. First, MatK is associated with 

multiple introns. This is similar to the nuclear spliceosome but different from the bacterial 

maturase. Second, similar to the bacterial maturase, MatK makes contact with multiple 

domains within group II introns, even though it interacts with different domains for each 

intron. Similarity in protein sequences of bacterial maturase and organellar maturase has 

already been reported (Neuhaus and Link 1987). Additionaly, four nuclear maturases, 

namely nMAT1-4, were identified in the plant genomes. They are closely related to group 

II intron maturase and facility the splicing of multiple mitochondrial mRNAs (Keren et al. 

2009; Keren et al. 2012; Brown et al. 2014; Cohen et al. 2014). Moreover, in addition to 

the similarity in splicing mechanism, several group II intron domains, such as DV, can 

complement a spliceosome lacking certain U-RNAs (Jarrell et al. 1988; Dib-Hajj et al. 

1993; Chin and Pyle 1995; Michels and Pyle 1995; Podar et al. 1995). Recently, sequence 

similarity between organellar intron trnI and U2 snRNA was found (Gert Weber, personal 

communication), this resembles the functional equivalence between snRNAs and domains 

of group II intron that have been previously described and experimentally tested (Hetzer 
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et al. 1997; Shukla and Padgett 2002). Prp8 was demonstrated to bind to U1, U2, U5, and 

U6 snRNAs, as well as the 5′ splice site, break point site and 3′ splice site region of 

intronic pre-mRNA (Li et al. 2013). This suggests that the involvement of multiple RNA 

segments in spliceosome is necessary to facilitate splicing (Grabowski et al. 

1985; Pikielny and Rosbash 1986). Because MatK associates with multiple intron 

elements, it might be taken as a simplified model for the extremely versatile Prp8 protein, 

which makes contacts with multiple RNA segments and proteins during splicing. 

4.5 SRNAs reveal the binding sites of proteins which are functioning in RNA 

processing and stability in Chlamydomonas reinhardtii 

Relationship between sRNAs and RBPs 

Nuclear-encoded proteins have been shown to play essential roles in the regulation of 

plastid gene expression in Chlamydomonas (Monod et al. 1992; Stampacchia et al. 

1997; Boudreau et al. 2000; Tanaka et al. 2000; Auchincloss et al. 2002). Unlike the PPRs 

mostly found in higher plants, OPRs are extensively found in Chlamydomonas (Rahire et 

al. 2012), and an additional group, TPRs, is ubiquitous in bacteria, fungi, plants and 

animals (Blatch and Lassle 1999). In the present study, some of the sRNAs mapped to the 

UTRs of RNA and were particularly adjacent to the ends of transcripts (Appendix 6). This 

is in line with the fact that regulatory RBPs usually bind in the UTR regions of RNAs. 

Helical-repeat proteins form a large group among these RBPs in organellar RNA 

metabolism. RBP, and PPR proteins in particular, can generate short remnant RNAs by 

binding and protecting RNA from exonucleolytic degradation (Prikryl et al. 2011; Ruwe 

and Schmitz-Linneweber 2012; Zhelyazkova et al. 2012a). As a result, the sRNAs at the 

5’UTR of the psbA, psbD and petD may represent the footprints of nuclear-encoded 

proteins Rbp63, Nac2 and MCD1 (Boudreau et al. 2000; Ossenbuhl et al. 

2002; Murakami et al. 2005), respectively. Binding of Mbb1 at the 5’UTR of psbB and 

psbH also result in sRNAs. 

In the mbb1 mutant, the two sRNAs disappear while other sRNAs such as petB 5’ and 

psbH 3’ are still present, supporting the specific connection between sRNA and RBP. The 

remaining sRNAs in the list produced in this study (Appendix 7) are also interesting 

candidates for protein binding sites, especially for the nuclear-encoded PPRs or OPRs. 

Several systematic studies suggested that eukaryotic RBPs regulate sets of functionally 
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related RNAs (Keene and Tenenbaum 2002; Hogan et al. 2008). MBB1 bi-targetes the 

psbB and psbH RNAs that encode subunits of photosystem II, suggesting a correlation of 

regulation between these two subunits, possibly similar to the CES (epistasy of synthesis) 

process (Choquet et al. 1998). Indeed, PsbH protein was found locate close to CP47 in 

PSII complex and was shown to stabilize the binding of CP47 to the PSII reaction center 

in cyanobacteria (Komenda et al. 2002; Bumba et al. 2005; Iwai et al. 2006). Thus, 

sRNAs can be used in identifying RBP binding sites and, additionally, they may supply 

information of the RBP regulation. 

SRNAs undergo dynamic changes 

Several sRNAs were detected successfully by Northern blot. However, the sRNA for 

petD 5’UTR was not detectable when the same method was applied (data not shown). 

This difference may be caused by the nutrition conditions that the Chlamydomonas were 

subjected to. Indeed, it has been shown that the transcriptome of Chlamydomonas is 

connected with the copper and iron nutrition (Castruita et al. 2011; Urzica et al. 2012). 

Supporting this, in the present study, the number of reads for each sRNA varies in the 

libraries prepared from wild-type Chlamydomonas strain grown under different nutrition 

conditions (normal conditions, phosphate starvation, or sulphate starvation). Specifically, 

in the case of psbH 5’ sRNA, the number of reads obtained under the three nutrition 

conditions are 25, 4 and 0, respectively, indicating a correlation between sRNA and 

nutrition for Chlamydomonas. Since these read numbers are rather low, verification by 

targeted sequencing of chloroplast sRNAs in Chlamydomonas needs to be carried out to 

corroborate these preliminary findings. 

Presence of abnormal sRNAs 

Three overlapping sRNAs were found to be mapping to the 5’UTR psaC transcript. 

However, using sRNA Northern blot, only a single sRNA with a size of 50 nt could be 

detected. The three sRNAs found by RNA-seq might, when combined, simply represent 

the longer sRNAs identified by classical Northerns blot (Appendix 8). This discrepancy 

could be due to the size selection of RNAs in the sequencing library. In the library 

analyzed in this study, RNAs exceeding 30 nt in length were excluded. As a result, some 

of the remaining sRNAs may be further degradation products of relatively longer sRNAs 

(i.e. the 50 nt sRNA detected by Northern blot). The existence of these three sRNAs could 

also mean that multiple proteins bind this region. However, these three overlapped 
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sRNAs can not be derived from the one single transcript. Moreover, the likehood that 

they are produced by the same RBP is low, as they are not conserved in sequence. Thus, 

they may have originated from different RBPs that capture part of the psaC population at 

the 5’UTR. 

Roles of sRNAs 

Eventhough the sRNAs found in the UTR regions of plastid RNAs were shown to be 

caused by RBP and/or stem-loop structure (Ruwe and Schmitz-Linneweber 

2012; Zhelyazkova et al. 2012b), they might also play regulatory roles rather than only 

being the mere “junk” of the degradation products. Firstly, the sRNAs could compete for 

the RBPs with their respective long transcripts and could thus regulate their stability 

and/or translation. Secondly, by selectively binding to the complex that contains a protein 

factor, such as PPR, sRNAs may guide the regulatory roles of the protein complex. 

Thirdly, as small potentially mobile molecules, sRNAs could mediate the crosstalk 

between the organelle and nucleus if they are able to go through the barrier of organelle 

membrane. Finally, some sRNAs are antisense to their respective long transcripts. As a 

result, an interaction between them may assistant the regulation of target RNAs. 
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Appendixes 

6. Appendices 

Abbreviations 

% percentage 
µl macroliter 
A, T, G, C, U nucleic 
acid bases 

adenosine, thymine, guanine, cytosine, uracil 

bp basepair 
BSA Bovine serum albumin 
CR Chlamydomonas reinhardtii 
CRM domain Chloroplast RNA splicing and ribosome maturation domain 
DNA deoxyribonucleic acid 
DTT Dithiothreitol 
E.coli Escherichia coli 
EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 
EDTA ethylenediaminetetraacetic acid 
EGTA ethyleneglycoltetraacetic acid 
En domain endonuclease domain 
HA hemagglutinin epitope 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  
HRP horseradish peroxidase 
HV Hordeum vulgare 
IEP intron encoded protein 
IP immunoprecipitation 
kb kilobase 
kDa kilodalton 
LB medium Lysogeny broth medium 
LMW low molecular weight 
M molar 
min minute 
mJ millijoule 
ml mililiter 
mM milimolar 
MOPS 3-(N-morpholino)propanesulfonic acid 
MS medium Murashige and Skoog medium 
mtDNA mitochondrial DNA  
mTERF mitochondrial transcription termination factor 
NEP nuclear-encoded plastid RNA polymerase 
ng nanogram 
NMD nonsense-mediated mRNA decay 
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nt nucleotide 
NT Nicotiana tabacum 
oC degree Celsius 
OE over expression 
OPR octatricopeptide repeat 
ORF open reading frame 
PAGE Polyacrylamide gel electrophoresis 
PAR-Clip Photoactivatable Ribonucleoside-Enhanced Crosslinking and 

Immunoprecipitation 
PCR polymerase chain reaction 
PEP plastid-encoded plastid RNA polymerase 
pH potential hydrogen, -log [H+] 
pM picomolar 
PMSF phenylmethylsulfonyl fluoride 
PORR Plant Organelle RNA Recognition 
PPR pentatricopeptide repeat 
qPCR quantitative PCR 
RACE Rapid amplification of cDNA ends 
RBP RNA-binding proteins  
REMSAs RNA electromobility shift assays 
RIP-Chip RNA immunoprecipitation and Chip hybridization 
RIP-seq RNA immunoprecipitation and sequencing 
RNA ribonucleic acid 
RNase ribonuclease 
RNA-seq RNA sequencing; transcriptome sequencing 
RNP ribonucleoprotein particles 
rpm round per minute 
rRNA ribosomal RNA 
RS riboswitch 
RT reverse transcriptase 
RT-PCR reverse transcription-PCR 
SD region Shine-Dalgarno region 
SDC sodium deoxycholate 
SDS sodium dodecyl sulfate 
SELEX Systematic Evolution of Ligands by Exponential Enrichment 
snRNP small nuclear ribonucleoprotein particles 
SOB-Medium Super-Optimal-Broth-Medium 
SOC Super Optimal broth with Catabolite repression 
sRNA small RNA 
SS splicing site 
SSC saline-sodium citrate 
ssDNA single strand DNA 
ssRNA single strand RNA 
TAE Tris-Acetate-EDTA 
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TBST Tris Buffered Saline with Tween 
TPR tetratricopeptide repeats  
tRNA transfer RNA 
UTR untranslated region 
UV ultraviolet 
w/v mass/volume 
ZM Zea mays 
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Appendix 1: Oligonucleotides used this study 

Name Sequence (5'->3') orgamism purpose 

AtmatkBamHIr GAGGATCCTTATTCATGATTGACCAAATCATTA
AG AT matK expression 

ATmatkseq1f GTACTAATACCTTACCCCATC AT sequencing 
ATmatkseq2f GGAAGATGCATTCTGGCAAC AT sequencing 
crpsbL3’race TGGCTAGACCAAATCCAAATAAAC CR RACE 
cratpA3’race CCAATTAGCTCGTGGTGCTC CR RACE 
crpetD5’race CCCATAGCAGCTGGGTC CR RACE 
crpetD3’race CCAGAATGGTATTTCTACCCTG CR RACE 
crpsbA5’race GATGTCTACTGGCGGAGC CR RACE 
crpsbA3’race GGTAATCGGTATTTGGTTCACTG CR RACE 
crpsbB5’race CCAACCACCCCAAGATTGTG CR RACE 
crpsbB3’race GCTCGTAAAGCTCAATTAGGTG CR RACE 
crpsbH5’race CCTGCTTCTGAGTTAAGTGG CR RACE 
crpsbH3’race CAGGCTGGGGTACAACTG CR RACE 
crpetB5’race TGATGCGAAAGCTTCTGCTAC CR RACE 
crpetB3’race CATTACCATGGGACCAAGTTG CR RACE 
cprrn75race CGTATCGCCGGTATCTGC CR RACE 

cr222Eoligo AACCTTGTAATAATTAAGTAAAAAAATCAGTA
AAAACCTGTCTC CR RNase protection 

psbH5oligo CCTTATTTTTTACAGAAAGTAAATAAAATAGC
GCTCCTGTCTC CR RNase protection 

psbB anti oligo TACTGATTTTTTTACTTAATTATT CR sRNA Northern 
psbH anti oligo CTATTTTATTTACTTTCTGTAAA CR sRNA Northern 
crpetD 
antioligo   AATATGGTTTAGCCGTTCCGAAAAGTTTTTT CR sRNA Northern 

crpsbA 
antioligo  TTTTTAAAGTTTTAATTTCTCCGTAAAAT CR sRNA Northern 

psbH3 oligo TGCCACTGGCCTTCCGTTAAGAT CR sRNA Northern 
psbBcds 
antioligo   ATTTACCGAATTCAACTTGGTCATTAAT CR sRNA Northern 

psbH3 
antioligo  TGCCACTGCCGAATATAAATATGGTT CR sRNA Northern 

petD 5T7 AAAAAACTTTTCGGAACGGCTAAACCATATCC
TGTCTC CR sRNA Northern 

petB 5 
antioligo ATTGTGACATGACCATTAGGCTTTC CR sRNA Northern 

psbH3 antisl  ATCTTAACGGAAGGCCAGTGGCAGTTGGCGG
TGCCACTGCC CR sRNA Northern 

crpetDanti5end ATGCTGTATTTCTAATGTTTACATGCTAAA CR sRNA Northern 

petD51T7 AAAAATTTTTAGCATGTAAACATTAGAAATAC
AGCATAACCTGTCTC CR In vitro 

transcription 

petD52T7 TGGCTTTATAAAATAAAAAACTTTTCGGAACG
GCTAAACCATATTTATTCCTGTCTC CR In vitro 

transcription 
crpsbBf ATGGGTTTACCTTGGTATCGTG CR PCR 
crpsbHf ATGGCAACAGGAACTTCTAAAG CR PCR 
crpsbHr GCTAAAGTTTCCCAACTCATAG CR PCR 
crpsaC1as CATATATTTCTCTCCTCATAC CR oligo probe 
crpsaC2as CAAAAAGAAGATTGAGAATCGACTT CR oligo probe 
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crpsaC3as TATGTCATCTCCATATCAAAAA CR oligo probe 
crpsaC4as TGTGCTAAATATGTCATCTCCATA CR oligo probe 
Rumsh1 TGATCCAACCGACGCGAC Artificial 5‘ RACE 
AdapterRTPri
mer CAAGCAGAAGACGGCATA Artificial 3' RACE 

AdapterPCRPri
mer CAAGCAGAAGACGGCATACG Artificial 3' RACE 

PJET1.2fwd CGACTCACTATAGGGAGAGCGGC E.coli cloning 
sequencing 

PJET1.2rev AAGAACATCGATTTTCCATGGCAG E.coli cloning 
sequencing 

hisNdeIexf CGTCATATGAAACATCACCATCACCATCAC histag matK expression 
HvmatkBamHI
r GAGGATCCTTAATTAAGAGGGTTGACCAGG HV matK expression 

HVmatkseq1f GAAATCTTGGTTCAACTCCTTC HV sequencing 
HVmatkseq2f GGAAAGGCAATTCTTGCATC HV sequencing 

atpF1 CGAAACTCCCGGCAGATGGCCAGTGGCCCAA
AGAAACGAAAGAATCGGTT NT dot blot 

atpF2 ATACACCAAGCACTACACTTAGATTTATTGGAT
TTGTTGCTAAAATATCG NT dot blot 

matK sma1 for GTAGCCCGGGATGGAAGAAATCCAAAG NT matK and HA 
cloning 

HA rev TCATTAAGCATAATCAGGTACATCGTATGGATA
TCC NT matK and HA 

cloning 
Rbcs SP for ATGGCTTCCTCTGTTCTTTCCTC NT Rbcs SP cloning 
Rbcs SP rev CTGCATGCATTGCACTCTTCC NT Rbcs SP cloning 

matk smaI for2 GTAGCCCGGGATGGAAGAAATCCAAAGATATT
TACAGC NT cloning 

matK ol rev1 GATAATTCGCCAGATCATTGATACA NT cloning 
matK ol rev2 CCAAATCCGACTTCTATATACTCC NT cloning 
MatK seq for1 GAAGTTCGATACCCTTGTTCC NT sequencing 
matK seq rev1 GGATGCCCTAATACGGTAC NT sequencing 
matk seq  for2 CGTCTTTCTACGGAACCAATC NT sequencing 
matK seq rev2 CGTTCAAGAAGGGCTCCA NT sequencing 
MatK seq for3 ACGATCAATTCATTCAACATTTCC NT sequencing 
matK seq rev3 CAGGGTAGGGTATTAGTATATC NT sequencing 
MatK seq for4 GCACTTGCTCATGATCATGG NT sequencing 

trnK in1for  GTAGAAGCTTGCTGTAATACGACTCACTATAG
GGTCTTCGGGTTGCTAACTCAACG NT autoregulation 

trnK in1 ol  TCTTCGGGTTGCTAACTCAACGGTAGAGTACT
CGGCTTTTAAGTGCGGC NT autoregulation 

trnV 1 GTGTAAACGAGTTGCTCTACCAACTGAGCTAT
AGCCCT NT dot blot 

trnV 2 
AACTCCCTTGAAAAACATTGGCGCGCGTGTA
AACGAGTTGCTCTACCAAC NT dot blot 

trnV ex1f TGGTAGAGCAACTCGTTTACACG NT qPCR 
trnV inr GGACCGAACTCTTTGTCAGG NT qPCR 
trnV inf AATGCATGTTGGGTCTTTGAA NT qPCR 
trnV inr2 CTGATTGTATGATGAACTCCCTTG NT qPCR 
trnV ex2r GGGCTATACGGACTCGAACC NT qPCR 
trnA exf TCTTGCAATTGGGTCGTTG NT qPCR 
trnA inr GCACGTTTCGGTCCTCTTC NT qPCR 
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trnA inf TCTATCGTTGGCCTCTATGGTAG NT qPCR 
trnA inf2 TTGGAGAGCACAGTACGATGA NT qPCR 
trnA exr GACTCGAACCGCTGACATC NT qPCR 
Ntmatkf ATGGAAGAAATCCAAAGATATTTACA NT cloning 
NTmatKseqr TGTTGTTGCGATCTATCTGG NT cloning 
NTmatKseqf GAAGTCGGATTTGGTATTTGG NT cloning 
clpP2inr2 GAATTCGAAGTGCCATGCTA NT cloning 
rpl2inr2 ACTGAACTCAATCACTTGCTG NT cloning 
rps12inr2 GGTTAGCCATACACTTCACA NT cloning 
trnIinr2 GAGCACATTGAACTATCCATG NT cloning 
trnKin5f ACACATATGGATGAAGTGAGG NT PCR 
trnKin5r CGTTCCAAGAATTCTAACACG NT PCR 
trnGf GTTCGATTCCCGCTATCC NT PCR 
seqNOS TACATGCTTAACGTAATTCAACAG vector sequencing 
35Sprom ATCCTTCGCAAGACCCTTCC vector sequencing 
pURfor GCTTGACCGCAACTTTGAC Vector matK expression 
pURrev CTTTGCTTCCAGATGTATGC Vector matK expression 
pGEXf GGGCTGGCAAGCCACGTTTGGTG vector sequencing 
pGEXr CCGGGAGCTGCATGTGTCAGAGG vector sequencing 
PFLf GATAACCATCTCGCAAATAAATAAG vector sequencing 
PFLr CAAGTAAAACCTCTACAAATGTG  vector sequencing 
ZmmatkBamHI
r 

GAGGATCCTTAATTAAGAGTAAGAGGATTCAC
C ZM matK expression 

ZMmatkseq1f CCGGAGTCAAGATGTTCC ZM sequencing 
ZMmatkseq2f CTTACCTTGTCAATTTCTCGC ZM sequencing 
ZMmatKseqr GCCTTTCCTTGATATCGAAC ZM Sequencing 

pavHAr CCTTAATTGAATTTCTCTAGAGCCTCATTAAGC
ATAATCAGGTACATC Artificial cloning 

Riboswitchr ATGATCCTCTCCACGAGAG Artificial cloning 
Prrnr GGATCCTCCCAGAAATATAGC   Artificial cloning 

HA5ANTmatkr CATAATCAGGAACATCATAAGGATACTGGTAG
TTTGCCAGGTC Artificial cloning 

RSprrnr GAATCAACGTAGGATCCTCC Artificial cloning 
ScIPpsbAf GCTGGAGCTCACCTTGGTTGACACGAGTATA Artificial cloning 

BHIPpsbAr AATTAAGAATCAACGTAGGATCCGGTAAAATC
TTGGTTTATTTAATCATC Artificial cloning 

aadaseqr ACCTCTGATAGTTGAGTCGA Artificial cloning 
Amatkseqf GTTCTCGCATTTGGTATCTC Artificial cloning 
SacIf GAACAAAAGCTGGAGCTCG Artificial cloning 

NTmatkRSr GTAAATATCTTTGGATTTCTTCCATATGATCCTC
TCCACGAGAG Artificial cloning 

NTmatkPrrnr GTAAATATCTTTGGATTTCTTCCATGGATCCTC
CCAGAAATATAGC Artificial cloning 

AmatkRSr GTAACGCTGGATTTCTTCCATATGATCCTCTCC
ACGAGAG Artificial cloning 

AmatkPrrnr GTAACGCTGGATTTCTTCCATGGATCCTCCCA
GAAATATAGC Artificial cloning 

matKPpsbAr GTAAATATCTTTGGATTTCTTCCATGGTAAAAT
CTTGGTTTATTTAATCATC Artificial cloning 

AmatkPpsbAr GTAACGCTGGATTTCTTCCATGGTAAAATCTT
GGTTTATTTAATCATC Artificial cloning 
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NTmatkp7g10r GTAAATATCTTTGGATTTCTTCCATGCTAGCCA
TATGTATATCTCCTTCT Artificial cloning 

Amatkp7g10r GTAACGCTGGATTTCTTCCATGCTAGCCATATG
TATATCTCCTTCT Artificial cloning 

ANTmatkseq1f  CCACCTGAATTACGTCCTG Artificial sequencing 

ANTmatkseq2f  CACCTTCCTGCTCATGAAC 
Artificial 

sequencing 

ANTmatkf ATGGAAGAAATCCAGCGTTAC 
Artificial 

cloning 

AZMmatkseq1
f CAGGAAGTCGAAGCAAGAG 

Artificial 
sequencing 

AZMmatkseq2
f CTCCAAGAATGGGAAGATAG Artificial sequencing 

trnfMf TTCAAATCCTGTCTCCGCAA Artificial cloning 
Amatkseqr GTAGAGGAAATTGTGTTGCTG Artificial cloning 
NtmatkBamHIr GAGGATCCCTACTGGTAGTTTGCCAGG Artificial matK expression 
Pawgfor GTGATACCATGGGCAGAAG Artificial cloning 
Pawgrev GCTGAAAATCTTCTCTCATCC Artificial cloning 

 

 

 

 

 

 

 

 

 

 

 

83 



Appendixes 

Appendix 2 Analysis of immnuprecipated RNA before and after RNase III treatment. The reports of 

measurement by fragment analyzer. (A) RNA samples from IP pellet of +HA tobacco. (B) RNA samples 

from IP pellet of –HA tobacco. (C) RNA sample from IP pellet of +HA, and digested with RNase III. 

Digested RNA sample from IP pellet of –HA was not measured due to the very small amount of RNA. 
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Appendix 3 Overall view of MatK targets identified by RIP-seq. RNA was extracted from the IP pellet 

+HA tobacco. With the RNA samples, libraries were prepared and sequenced with. Illumina and Ion Torrent 

sequencing systems. A total RNA library was used as input control. Reads from libraries were mapped to 

the chloroplast genome (NC_001879), respectively.  The ratio of mapped reads between +HA and Input was 

calculated and plotted to the chloroplast genome for Illumina (A) and Ion Torrent (B) sequencing, 

respectively. 
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Appendix 4 Confirmation of RIP-seq results by dot blot. RNAs were extracted from IP supernatant or 

pellet and spotted to a nylon membrane. Oligo probes were radio-labeled and hybridized to the blots. (A) 

The oligos used in the hybridization. The positions of oligos were indicated with red arrows. (B) The signal 

of dots were quantified and the enrichment was calculated as IP pellet to supernatant. The enrichment ratios 

were calculated between IPs of +HA and –HA. 
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Appendix 5 Dot blot analysis with RNA from ribosome IP. (A) Inmmunoprecipatition of rpL32. GFP 

tagged rpL32 was inmmunoprecipited with μ MACS column (Miltenyi Biotec). Consequently, rpL32 

associated RNA was eluted from the column. The protein samples of input, flow through and elution 

fractions were separated by SDS-PAGE gel and detected with GFP antibody. (B) Dot blot analysis of 

ribosome associated RNA. RNA from elution fraction was extracted and blotted onto nylon membranes. 

Probes located in the exon region of trnK, 5’border of trnK intron and matK ORF were radio-labeled and 

hybridized with the membranes. 
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Appendix 6 Top hits with enrichment values in MatK RIP-seq 

Illumina(+HA/–HA) Illumina(+HA/input) Ion Torrent(+HA/–HA) Ion Torrent(+HA/input) 
top hits1 Position2 Value3 top hits position value top hits position value top hits position value 
trnK-in 4372 111.2 trnK-in 4359 31305.0 trnfM 38392 474.3 23s-4.5s rRNA 109153 1063.3 
trnA-in 106135 86.9 trnA-in 105542 4858.0 atpF-in 13177 310.0 trnA-in 105763 973.0 
atpF-in 12638 72.5 trnI-in 105196 2946.5 trnS 8684 265.0 trnI-in 105196 497.5 
rpl2-in 87244 41.8 rpl2-in 87252 536.8 trnG 38097 222.0 23s rRNA 108631 215.0 
trnI-in 104823 30.3 16s rRNA 103382 224.1 psbA-trnH 500 178.0 16s rRNA 104245 138.7 

clpP-in2 72964 22.0 atpF-in 13095 197.3 trnK-in 1923 172.0 rpl2-in 87538 114.0 
rps12-in2 100284 15.7 unannotated 29666 192.0 rpl2 87361 153.0 trnK-in 4304 55.0 
rpoC1-in1 23640 7.0 unannotated 43520 183.8 trnA-in 105974 145.5 atpF-in 13200 52.8 

rpoB 25329 7.0 petD-in 79235 170.0 trnL 96461 130.0 rps12-in2 100267 41.0 
ycf3-in2 44996 6.3 23s rRNA 108253 167.3 psbA 538 124.0 petD 79192 24.0 
rpoC2 21229 6.0 ycf3-in1 45886 156.0 trnI-in 104743 111.1 rbcL 58703 21.4 

rps7 99606 149.0 psbC 36049 109.0 ndhA-in 122246 15.0 
rbcL 57814 117.3 ycf3-in2 45131 106.0 atpA 11981 12.0 

trnV-in 53797 110.6 trnV-in 53872 105.0 ycf3-in1 45725 12.0 
rps12-in2 100269 95.0 rbcL 58267 99.0 psaA 41239 11.3 

psaA 43227 89.0 16s rRNA 104244 80.8 psbB 75779 11.0 
psbC 36685 83.8 trnQ 7456 59.0 unannotated 34329 10.5 
psaB 40924 83.0 trnS 37183 59.0 psaB 41181 10.3 

clpP-in2 73209 79.5 unannotated 109438 43.9 petB 77597 9.5 
4.5s rRNA 109296 78.8 trnR 10467 43.0 psbC 36058 7.7 

psbD 34582 73.0 trnE 32300 40.0 trnV-in 54268 6.6 
atpB 56475 72.0 rps12-in2 100159 37.0 rpoC1 23660 6.0 
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psbB 76216 69.9 trnW 68829 36.0 ndhJ 51245 5.0 

1 Top 23 hits from each calculation were selected, the minimal enrichment ratio is equal to or greater than 5; 

2 Chloroplast genomic position according to genbank entry NC_001879; 

2 The value is the enrichment ratio of +HA to –HA or input; 

3 The transcript names denoted in bold indicate that the hits are intron-containing and present in at least three caculations. 
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Appendix 7 Short chloroplast RNAs in Chlamydomonas reinhardtii 

locus 5' end1 3' end1 core sequence2 Distance to start codon3 Distance to stop codon3 Stem-loop (dG4) 

unannotated 659 642 ATCAGGTGGAAGCTTCCG 
petA 3' antisense 4176 4158 GAAGGGGTTTACTGATATC 325 
petD 5'-1 6021 6041 TTTAGCATGTAAACATTAGAA -361 
petD 5'-2 6123 6141 AACTTTTCGGAACGGCTAA -259 
trnR1 3' 7331 7348 TAAGAGATTGTGGATTAC 139 -13.2 
tufA 5' 12453 12471 TAAACCTGAAAAATTGGAT -256 
tufA 3' 14083 14104 TCGACCATAGGTGAGGACAAAT 139 
trnE1 3' 14622 14640 AGAACAGGAGGTAGTTTTT 105 
trnC 3' 14952 14969 CGAGCTCTTCTGTTGTTC 82 
rpl20 3' antisense 16782 16800 GTTCAAGCGGAGGATAAAT 128 
 trnW 5' 17286 17268 GTAAAAGTGGCTGGTTTAA -40 
petB 3' 19986 19969 TACTTGCTTCGGATATAA 38 
petB 5' 20695 20674 GAAAGCCTAATGGTCATGTCAC -41 
trnG1-rps4 33506 33523 TTAGAATCCAGGCATCTT -93 91 
unannotated 57444 57423 CGGACGAGGCGAGCTATCTTTA 
unannotated 57942 57926 CGCGGCGAGGTTGGGGC 
unannotated 57992 57975 TTTAGAGAGTACGGGATG 
rps14 5' antisense 62789 62807 ATAAAAGAAGGATGACTTG -60 
psbM 3' antisense 64139 64157 GAAGACATAAGCGTGAACA 58 
psbZ-psbM 64404 64385 TTTGTAACTCTAGACGGTAT -103 
psbZ 5' antisense 65407 65428 TAAAGACCAAAATACTCTATCT 477 
unannotated 66263 66284 AAGACTAAAGTGCCCAAGCTCA 
unannotated 66761 66743 AGGGGACGTCTGCTGTACG 
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ccsA 5' antisense 68790 68808 AAAGGGGAAGAGGCTTGTC -231 
unannotated 75118 75100 ATGGGACGGATGGCATTTT 
psbH 3' antisense 76604 76625 TCTTAACGGAAGGCCAGTGGCA 143 -16.7 
psbH 5' 77067 77047 TTTACAGAAAGTAAATAAAAT -54 
psbB 5' 81838 81818 AATAATTAAGTAAAAAAATCA -35 
rps9 5' antisense 93937 93956 TATGACTGATTTCGGCCAAT -219 
trnM2-psbE 5' 94895 94878 AAAGCAGACAAATTGTTGAAAA -59 80 
psbF 5' 102095 102116 AACGAGTTAGCTTAATACAAAA -53 
psbL 3' 103083 103102 ACGCGGAGGGGATAACATAA 74 -21.1 
petG 5' 103264 103284 TCTTGAAGTGTGATGACTCCT 
petG 3' 103725 103743 TCTTCTATGGACGGAATAC 89 
rpoC2  5' antisense 107969 107987 AGGAGACGGTAAGGTAGAG 
unannotated 118991 119009 GCGCAGAATCGAAGGGTAT 
psaB 5' 119227 119245 ACAGGATTATGGCGTAGTC -374 
rbcL 5' 123961 123943 GATTATTTTAGGATCGTCA 44 
atpA 5' 124492 124510 AGCAATCGGCGTCATAAAC -280 -11.1 
atpA-psbI 126304 126324 AATTAAGTAGGAACTCGGTAT -364 26 -8.1 
atpH 5' 128934 128952 TTAGGAGGAAATACAATGA -15 
atpH 3' 129442 129461 CTGTTTGGTATTGGCTAACG 264 
ORF1995- atpB 161954 161933 AAAAATAAGCGTTAGTGAATAA -314 167 
psbD 5' 175679 175660 AATTTAACGTAACGATGAGT -47 
ORF2971 3' 186481 186503 TTTAAGTGTTACAAAGAAATTGA -421 
psbC 5' 186938 186956 TTATATGGGTGGACGTTAA -87 
trnF-psaC 189303 189320 GTATGAGGAGAGAAATAT -159 55 
trnF-psaC 189368 189391 AAGTCGATTCTCAATCTTCTTTTT 
trnF-psaC 189395 189414 ATGGAGATGACATATTTAGC -67 149 
trnN 3' 190887 190905 ATCTTAGGCGTCTTTGGAC 54 
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rpoC1a 5' 200832 200814 TTCGGGCTGGCACGGCCAT -267 
trnV 3' 201023 201005 ATTGCGGATGTATAAATTC 38 
unannotated 203152 203133 AACTGGAGGCGAAAATTAGA 
unannotated 14923(203499) 14941(203517) CCGGTAAACTCGCCCACAT 

unannotated 
1729(40427) 

(153776) 

1710(40451) 

(153752) 
TCCGAAGGAGGGAGCAGGCA    

unannotated 

2238(14095) 

(54810)(139393) 

(176468) 

2262(14113) 

(54792)(139411)

(176486) 

AATAAATAAATTTGTCCTC    

unannotated 35884(158319) 35903(158300) ATACGAATAGTAATACGGTT 
trnA-rrn7 41751(152452) 41768()152435 ATTAAGAGCGAATCAAAA -78 381 
psbA in 2 53489(140714) 53471(140732) CAGCTGGCGAGTCAATTGT 
psbA in 1 54778(139425) 54761(139442) AATGATCGAGCAGGACTT 
psbA 5' 55449(138754) 55431(138772) TTTACGGAGAAATTAAAAC -36 

1 Chloroplast genomic position according to genbank entry NC_005353; in parentheses: positions multiple sites, mostly in inverted repeat IRA; 

2 >50% of sequences in a cluster share this sequence ; 

3 The start and stop codon next to the sRNA cluster is considered and only if it is no farther than 500 nt away; 

4 Free energy was calculated using mfold. 
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Appendix 8 SRNAs coincide with the transcripts ends 

locus core sequence 
Distance to 
start codon 

stability 
factor UTR end UTR end literature stability factor literature 

petD 5'-1 TTTAGCATGTAAACATTAGAA -361 MCD1 -361,-344 Nancy R. Sturm,1994 MCB 

Schinya Murakami 2005 NAR,  

Linda A. Rymarquis 2006 The Plant 
J. 

tufA 5' TAAACCTGAAAAATTGGAT -256 -257,-256 Gregg W. Silk 1993 PMB 
psbA 5' TTTACGGAGAAATTAAAAC -36 RBP63 -90, -36 Jörg Nickelsen 1994 EMBO Friedrich Ossenbühl 2002 EJB 
psbH 5' TTTACAGAAAGTAAATAAAAT -54 Mbb1 -54,-53,-51,-78 Clayton H. Johnson 1994 PMB Fabián E. Vaistij 2000 PNAS 

psbB 5' AATAATTAAGTAAAAAAATCA -35 Mbb1 -147,-35 
Fabián E. Vaistij 2000 The 
Plant J. Fabián E. Vaistij 2000 PNAS 

atpH 5' TTAGGAGGAAATACAATGA -15 -13 

Dominique Drapier 1998  

Plant Physiology 

psbD 5' AATTTAACGTAACGATGAGT -47 Nac2 -74,-47 Jörg Nickelsen 1994 EMBO 
Christian Schwarz 2007 The Plant 
Cell 

 

 



Appendixes 

Appendix 9 Autoradiograms of an RNA blot of chloroplast RNA from the WT and the Mac2 

mutant. The radioactive probes used in hybridization are indicated below the panels. The arrowheads 

indicate the signal of the sRNAs. LMW RNA was enriched from total RNA and resolved on a 15% 

polyacrylamide gel containing 8M urea. A fluorescence image (the upper part of each panel) from the 

gel stained with ethidium bromide is shown as loading control. The probes are single-stranded DNA 

oligonucleotides (<=25 nt) antisense to the sRNAs. The two blots were prepared from the same RNA 

sampless. 
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