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Abstract A multistage stochastic programming approach to airline net-
work revenue management is presented. The objective is to determine seat
protection levels for all itineraries, fare classes, point of sales of the airline
network and all data collection points of the booking horizon such that the
expected revenue is maximized. While the passenger demand and cance-
lation rate processes are the stochastic inputs of the model, the stochastic
protection level process represents its output and allows to control the book-
ing process. The stochastic passenger demand and cancelation rate processes
are approximated by a finite number of tree structured scenarios. The sce-
nario tree is generated from historical data using a stability-based recursive
scenario reduction scheme. Numerical results for a small hub-and-spoke net-
work are reported.

Key words Airline revenue management – Seat inventory control – Mul-
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1 Introduction

Revenue management in the airline industry refers to strategies for control-
ling the sale of seats according to the passenger demand in a flight network
in order to maximize revenue. Revenue management started with the pio-
neering work of Littlewood [14] and became standard in airline industries.
For introductions and overviews we refer to [29,15,18,12,28,27].
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While earlier approaches to revenue management used linear program-
ming models based on the average demand, more recently, probabilistic
optimization approaches are suggested due the stochastic nature of the pas-
senger demand and of the entire booking process. In [26] a randomized linear
programming approach is proposed, where a deterministic model is solved
for a sequence of demand samples. The averages of the resulting dual multi-
pliers are then used as bid prices to control the booking process. The authors
of [26] showed that their method outperforms the deterministic approach.
In [1], a combination of a stochastic gradient algorithm and of approximate
dynamic programming ideas is used to improve initial booking limits. In [10,
5,3,2] two-stage stochastic programs are proposed to deal with the stochas-
tic character of the booking process. In [5] a simple recourse model is used,
where the LP relaxation is replaced by an equivalent problem based on [31].
Compared to other approaches, e.g., [32] based on expected marginal rev-
enue, this model does not require additional integer variables to deal with
the stochastic passenger demand. The authors of [10] propose a two-stage
model within a bid price approach where the capacity constraints in the
first stage uses leg based seat allocations. The seats allocated to itineraries
are then considered in the second stage. The simulation experiments pro-
vide higher revenues in most cases than probabilistic nonlinear programs
as formulated, e.g., in [25]. In [3] a hybrid method is suggested where the
second stage corresponds to the solution of a Markov decision problem. In
[2] two-stage and multistage stochastic programs are considered. Due to the
non-convexity of the multi-stage program (and its continuous relaxation),
solving two-stage stochastic programs (similar to [5]) on a rolling horizon is
suggested.

The multistage stochastic programming approach to revenue manage-
ment is so far only proposed in our earlier work [16] and in the recent paper
[6]. In [6] a different model for network revenue management is considered
by making optimal decisions on sales instead of seat protection levels and
by excluding cancelations. This leads to a simpler and linear programming
model. The focus of [6] is on testing different strategies for generating sce-
nario trees (Monte Carlo sampling, principal components sampling, moment
matching and bootstrapping methods), where the branching structure of the
tree is prescribed. The authors of [6] test in-sample and out-of-sample stabil-
ity for evaluating scenario trees and the performance on a small and a large
flight network. They show that their multistage stochastic programming ap-
proach outperforms the deterministic approach and that the performance
is also better than the approach of [26] if Monte Carlo sampling with a
sufficiently high number of scenario branchings is employed.

In the present paper, we continue and extend our earlier work [16] on
multistage stochastic programming models in network revenue management
into several directions. As in [16] seat protection levels are determined and
the cancelation process is taken into account allowing for overbooking in
all time periods before departure. The disjunctive constraints describing
the dynamics and constraints of the booking process are incorporated and
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reformulated by introducing auxiliary binary variables. After approximat-
ing the underlying stochastic process, the model is solved by mixed-integer
linear programming algorithms. A new method [8] for generating scenario
trees as approximate representation of the passenger demand and cancela-
tion rate process is used. It is based on a recent stability result for multistage
stochastic programs [9] and does not impose conditions on the underlying
probability distribution. The method starts with a certain number of pos-
sible scenarios for the passenger demand and cancelation rate process. It
generates clusters of scenarios and branchings using a recursive scenario re-
duction procedure such that the maximal expected revenue of the original
problem is approximated. Due to the multi-dimensionality of the multi-
variate passenger demand and cancelation rate process (containing various
statistical dependencies between booking classes, dcps and legs), the gener-
ation technique for scenario trees is of great significance. The latter effect
was also observed in the computational studies of [6]. Our approach is tested
on a single hub-and-spokes airline network and a variety of different starting
scenario sets.

In the last two years, airline revenue management was challenged by
increasing low fare competition which involved dismantling of booking class
restrictions. The consequential change in passenger booking demand has
required changes in the modeling assumptions. However, we believe, that
this development will not affect all markets. In particular, the large network
carriers which dominate long-haul routes will have to manage a combination
of unrestricted low fare markets and more traditional markets, where rules
and regulations cause different passenger demand patterns. Hence, we feel
certain, that our model still meets the requirements of practice.

Our paper is organized as follows. First we describe the network revenue
management problem and introduce a stochastic model which is refined
in the sequel. Next, we discuss the approximation of the stochastic input
process by scenario trees and describe a stability-based scenario tree gen-
eration method. The tree structure is used to reformulate the problem in
node representation. Then, the incorporation of cancelations is motivated
by an example. In the next section, we present numerical results which sug-
gest the applicability of the approach (at least) to small networks. Finally,
concluding comments are given.

2 Multistage Stochastic Programming Model

2.1 Problem Description

We consider a flight network consisting of I origin-destination itineraries,
J fare classes, K points of sale, L legs and M(l) compartments in each leg
l = 1, . . . , L. The booking horizon is subdivided into T booking intervals.
The interval bounds t = 0, . . . , T are called data collection points (dcp).
The subscripts i, j, k, t are used to denote the itinerary, fare class, point of
sale and data collection point, respectively.
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The stochastic input parameters are the unconstrained passenger de-
mand di,j,k,t ∈ Z and the cancelation rates γi,j,k,t ∈ [0, 1). Let dt and
γt denote the vectors (di,j,k,t)i,j,k and (γi,j,k,t)i,j,k, respectively, containing
all itineraries, fare classes and points of sale. The passenger demand and
the cancelation rates are represented by a discrete time stochastic process
ξ = (ξ0, ξ1, . . . , ξT ) on some probability space (Ω,F ,P), where ξt := (dt, γt).
For each t ∈ {0, . . . , T} we denote by Ft ⊆ F the σ-field generated by the
random vector (ξ0, . . . , ξt). The σ-fields Ft, t = 0, . . . , T , represent a filtra-
tion, i.e., it holds F0 = {∅, Ω}, Ft ⊆ Ft+1 and without loss of generality
FT = F .

The decision variables are the protection levels Pt = (Pi,j,k,t)i,j,k, t =
0, . . . , T − 1, for the next booking interval (t, t+ 1]. These protection levels
restrict the number of sold and uncancelled tickets of each itinerary, fare
class and point of sale up to dcp t + 1. The decision variables Pt form a
stochastic process on (Ω,F ,P), too. We require, that this process is adapted
to the filtration of σ-fields Ft, t = 0, . . . , T , i.e., the decision Pt at dcp t
only depends on the information available until t (non-anticipativity).

The products, i.e., the tickets for each itinerary, fare class and point of
sale, are assigned to the resources, i.e., the capacities Cl,m of the compart-
ments m = 1, . . . ,M(l) on the legs l = 1, . . . , L, by a matrix A = (aijk,lm).
Let Il denote the set of itineraries containing leg l and Jm(l) the set of
fare classes belonging to compartment m on leg l. The entries aijk,lm of A
belong to {0, 1}, where aijk,lm = 1 if i ∈ Il and j ∈ Jm(l) and aijk,lm = 0
else. Let C denote the vector (Cl,m)l,m of capacities.

2.2 Stochastic Model

The objective of the stochastic network revenue management model con-
sists in determining protection levels Pt such that the expected revenue is
maximized, i.e.,

max
(P0,...,PT−1)

E

[
T∑

t=0

(〈f bt , bt〉 − 〈f ct , ct〉)
]

(1)

where f bt = (f bi,j,k,t)i,j,k and f ct = (f ci,j,k,t)i,j,k denote the vectors of fares
and refunds, respectively, bt = (bi,j,k,t)i,j,k and ct = (ci,j,k,t)i,j,k denote
the number of bookings and cancelations, respectively, during the booking
interval (t− 1, t], the scalar product 〈f bt , bt〉 is given as usual by

〈f bt , bt〉 =
∑

i,j,k

f bi,j,k,tbi,j,k,t.

and 〈f ct , ct〉 accordingly.
The number of tickets sold depends on the passenger demand and on the

protection levels. Bookings will be made as long as the passenger demand is
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not satisfied and the protection levels allow bookings, respectively. Hence,
we have the constraints

bt = min

{
Pt−1 −

t−1∑

τ=0

bτ +
t∑

τ=0

cτ , dt

}
t = 1, . . . , T, P-a.s., (2)

which describe the dynamics of the booking and cancelation process. We
note that the vectors b0 ∈ Z and c0 ∈ Z contain the bookings and cancela-
tions, respectively, made before the optimization horizon starts.

Since the number of uncancelled seats in all compartment on each leg
may not exceed the physical capacity of the compartments, we arrive at the
capacity constraints

∑

i∈Il

∑

j∈Jm(l)

K∑

k=1

Pi,j,k,T−1 ≤ Cl,m m = 1, . . . ,M(l), l = 1, . . . , L, P-a.s.

or more compactly

A PT−1 ≤ C P-a.s. (3)

The latter constraint is required only for the last booking interval to allow
overbookings in the remaining booking intervals without additional efforts
like overbooking rules.

Furthermore, some variables of the optimization problem have to satisfy
integrality and non-negative conditions.

bt, Pt ∈ ZI×J×K bt, Pt ≥ 0 t = 1, . . . , T, P-a.s. (4)

Finally, we require that the state and decision variables of the stochastic
program are non-anticipative, i.e.,

bt and Pt are Ft-measurable. (5)

The non-anticipativity constraint (5) expresses how the information flow
evolves over time. If the stochastic input process has only a finite number
of scenarios, the constraint (5) may be modeled by finite linear equality
constraints in various ways, see [22, Chapter 3.6] and [21].

2.3 Reformulation of the Optimization Model

We denote by Bi,j,k,t :=
∑t

τ=0 bi,j,k,t the number of cumulative bookings
and by Ci,j,k,t the number of cumulative cancelations. The number of cu-
mulative cancelations Ci,j,k,t is then set to Ci,j,k,t := bγi,j,k,tBi,j,k,t + 0.5c,
where bαc ∈ Z means the lower integer part of α ∈ R. The number of
cancelations in (t− 1, t] is given by ct = Ct − Ct−1.

To derive an approximation for the equation in (2), we start from

bt = min {Pt−1 −Bt−1 + γt(Bt−1 + bt), dt}
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and obtain the equation

bt = min
{

(1− γt)−1Pt−1 −Bt−1, dt
}
.

To have bt ∈ Z, we introduce an auxiliary variable Baux
t ∈ Z by setting

Baux
t =

⌊
(1− γt)−1Pt−1 + 0.5

⌋
and replace the equation in (2) by

bt = min {Baux
t −Bt−1, dt} ,

which is equivalent to

Bt ≤ Baux
t (6)

bt ≤ dt (7)

(6) or (7) are active. (8)

The disjunctive constraints (8) may be modeled by introducing binary aux-
iliary variables (see [17, Section I.4]). For this purpose we introduce vectors
of binary variables z̃t ∈ {0, 1}I×J×K as well as vectors of slack variables
zdt ∈ ZI×J×K , and zPt ∈ ZI×J×K . The conditions (6) – (8) are then re-
placed by the (in)equalities

Bt + zPt = Baux
t bt + zdt = dt 0 ≤ zdt ≤ z̃tdt 0 ≤ zPt ≤ (1− z̃t)κ ,

where κ is a sufficiently large positive constant.
The stochastic network revenue management model now reads

max
(P0,...,PT−1)

E

[
T∑

t=1

(〈f b, bt〉 − 〈f c, ct〉)
]

subject to the dynamics of the cumulative bookings

B0 := B̄0 Bt = Bt−1 + bt P-a.s.

the protection level conditions

Bt + zPt =
⌊
(1− γt)−1Pt−1 + 0.5

⌋
P-a.s.

the passenger demand constraints

bt + zdt = dt P-a.s.

the disjunctive constraints for the number of bookings

0 ≤ zdt ≤ z̃tdt 0 ≤ zPt ≤ (1− z̃t)κ P-a.s.

the approximations of the cumulative cancelations

Ct := bγtBt + 0.5c P-a.s.

the number of cancelations

ct = Ct − Ct−1 P-a.s.
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the capacity constraints

A PT−1 ≤ C P-a.s.

the integrality and non-negativity constraints

Bt, Ct, Pt, z
d
t ∈ ZI×J×K , z̃t ∈ {0, 1}I×J×K, bt, ct ≥ 0 P-a.s.

as well as the non-anticipativity constraints

bt, Pt, z̃t and zdt are Ft-measurable.

2.4 Approximation of the Stochastic Process by Scenario Trees

The first step of solving the stochastic revenue management model consists
in approximating the discrete-time stochastic process ξ = (ξ0, ξ1, . . . , ξT ) by
a stochastic process ξ̃ = (ξ̃0, ξ̃1, . . . , ξ̃T ) having a finite number of scenarios
in the form of a scenario tree. Such a tree consists of nodes, where the
nodes at period t correspond to possible values of ξ̃t, t = 0, . . . , T . Let
N := {0, 1, . . . , N} ⊂ N denote the set of all nodes, where n = 0 corresponds
to the root node at t = 0 and t(n) denotes the time period belonging to
node n. By Nt we denote the set {n ∈ N|t(n) = t} for each t = 0, . . . , T .
Each node n ∈ Nt, t ∈ {1, . . . , T}, is connected with the unique predecessor
node n− at t − 1 by an arc. To each node n ∈ Nt with t ∈ {0, . . . , T − 1}
a nonempty set N+(n) ⊂ Nt+1 of successors is associated. By path(n) we
denote the set {0, . . . , (n−)−, n−, n} of nodes from the root to node n. Hence,
each scenario corresponds to path(n) for some leaf n ∈ NT . A time period
t ∈ {0, . . . , T − 1} is called stage if there exists n ∈ Nt such that N+(n)
is not a singleton. We refer to Figure 1 for a scenario tree instance with 3
stages. With the given scenario probabilities πn, n ∈ NT , we associate a
probability πn to each node n ∈ N by the recursion πn =

∑
m∈N+(n) π

m.

Hence, we obtain
∑

n∈Nt π
n = 1 for each t = 0, . . . , T and, in particular,

π0 = 1. In the following, we use the notation {ξn}n∈N for the scenario tree
representing the approximate stochastic input process.

2.5 Generation of Scenario Trees

Potential users of multistage stochastic programming models are often able
to generate a (large) number of scenarios with given probabilities. Such sce-
narios may be obtained, e.g., by simulating from stochastic models that are
calibrated to historical data or by using the past observations obtained un-
der comparable circumstances directly as scenarios and by assigning them
identical probabilities. In many practical cases, however, such sets of sce-
narios are not tree-structured except the appearance of the root node that
corresponds to the presently available or initial information. We refer to the
discussion in [7, Section 3] for further information and relevant references.



8 A. Möller, W. Römisch, K. Weber

s
n = 0
s���

��

@
@
@
@@

s
s
n−

s

��
���

��
���

HHHHH

s
s
n
sξn
s
s
s

���
��

XXXXX

���
��

XXXXX

HHHHH

���
��

XXXXX
XXXXX

s
ssss N+(n)ss
s NTs
s
sq

t = 0

q
t = 1

q
t(n)

q
T

Fig. 1 Scenario tree with T = 4, N = 21 and 11 leaves

Presently available approaches to scenario tree generation are based on the
use of bounds [13], on Monte Carlo [23] or Quasi-Monte Carlo methods [19],
on moment matching [11], on metric distances of distributions [20] and on
stability arguments [8]. Most of them make use of a prescribed branching
structure. Some of these methods have been implemented in [6] and tested
on several instances of network revenue management models.

We will briefly describe the approach of [8] which starts with a stochastic
process ξf having a finite number of scenarios ξs = (ξs0 , ξ

s
1 , . . . , ξ

s
T ) with

probabilities ps, s = 1, . . . , S, and being defined on the same probability
space (Ω,F ,P) as the original process ξ. It is assumed that ξf is a fan of
scenarios, i.e., ξ1

0 = · · · = ξS0 = ξ∗0 , that the mean or L1-distance

‖ξ − ξf‖1 := E[|ξ − ξf |]

is small and that ξf is adapted to the filtration of ξ. While the second
condition means that ξf is a good approximation of ξ in the sense of mean
convergence, the latter condition requires that the σ-field σ(ξf,0, . . . , ξf,t)
generated by the first t+ 1 random variables of the process ξf is contained
in Ft for each t = 0, . . . , T .

Starting from ξf the approach of [8] determines adaptively a stochastic
process ξtr on (Ω,F ,P) which is also adapted to the filtration of ξ, whose
scenarios have tree form, and satisfies the conditions

‖ξf − ξtr‖1 ≤ ε (9)∑

i∈I1

∑

j∈I1,i
pj |ξj − ξi| ≤ εf , (10)

where ε > 0 and εf > 0 are prescribed tolerances, It ⊂ {1, . . . , S} denotes
the index set of realizations of ξtr at t ∈ {0, . . . , T} and It,i contains the
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indices of scenarios coinciding with scenario i ∈ It at t. In particular, the
set I0 is a singleton.

It is shown in [8, Section 4] that, if ‖ξ − ξf‖1 is sufficiently small, there
exists a constant K > 0 such that the estimate

|v(ξ)− v(ξtr)| ≤ K
(
‖ξ − ξf‖1 + ‖ξf − ξtr‖1 +

∑

i∈I1

∑

j∈I1,i
pj |ξj − ξi|

)

≤ K(‖ξ − ξf‖1 + ε+ εf).

holds for the optimal values v(ξ) and v(ξtr) of a multistage stochastic pro-
gram with inputs ξ and ξtr, respectively, in the right-hand side of linear
constraints. The estimate is valid if the stochastic programming model is lin-
ear (without integrality requirements) and if the cardinality of {ξ1

t , . . . , ξ
S
t }

coincides for t = 1, . . . , T (i.e., no branching occurs in the initial scenario
fan for t > 0). Although the underlying optimization model for revenue
management is mixed-integer (due to the disjunctive constraints even if the
integrality constraints are ignored), we consider the preceding estimate as
a justification of our tree generation process. The estimate is a consequence
of a more general stability result for linear multistage stochastic programs
in [9].

Next we describe an algorithm to construct the process ξtr starting from
ξf and such that (9) and (10) for given tolerances ε and εf are satisfied.
To this end, let further tolerances εt for each period t = 1, . . . , T be given
such that

∑T
t=1 εt ≤ ε holds. For each t = 1, . . . , T we define clusters Ct

of scenarios, i.e., partitions of the index set I := {1, . . . , S}, and processes

ξ̂t such that ξtr := ξ̂T , where the scenarios of ξtr and their probabilities
are given by the structure of the final partition CT . The algorithm may be
described as follows.

Step 0: Set ξ̂0 := ξf and C0 = {I}, i.e., the first cluster contains all scenar-
ios of ξf .

Step 1: Determine disjoint index sets I1 := I1
1 and J1

1 such that I1∪J1
1 = I

and

J1
1 = ∪i∈I1

1
J1

1,i, J
1
1,i := {j ∈ J1

1 : i = i11(j)}, i11(j) ∈ arg min
i∈I1
|ξ̂1,i

1 − ξ̂1,j
1 |.

We define ξ̂1 = {ξ̂1
τ}Tτ=1 via its scenarios ξ̂1,i, i ∈ I , by setting

ξ̂1,i
τ =

{
ξ
α1(i)
τ , τ = 1,
ξiτ , otherwise,

where scenario ξ̂1,i appears with probability pi, i ∈ I , and the mapping
α1 : I → I1 is given by

α1(j) =

{
i11(j) , j ∈ J1

1 ,
j , otherwise.
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The index sets I1 and J1
1 are determined such that the estimates

∑

i∈I1

∑

j∈J1
1,i

pj |ξj − ξi| ≤ εf

and ∑

i∈I1

∑

j∈J1
1,i

pj |ξj1 − ξi1| =
∑

j∈J1
1

pj min
i∈I1
|ξi1 − ξj1 | ≤ ε1

hold. Set C1 = {α−1
1 (i) : i ∈ I1}.

Step t: Let Ct−1 = {C1
t−1, . . . , C

Kt−1

t−1 }. Determine disjoint index sets Ikt
and Jkt such that Ikt ∪ Jkt = Ckt−1, k = 1, . . . ,Kt−1 and

It := ∪Kt−1

k=1 Ikt , J
k
t = ∪i∈Ikt J

k
t,i, J

k
t,i := {j ∈ Jkt : i = ikt (j)},

ikt (j) ∈ arg min
i∈Ikt
|ξ̂t−1,i
t − ξ̂t−1,j

t |.

We define ξ̂t = {ξ̂tτ}Tτ=1 via its scenarios ξ̂t,i, i ∈ I , by setting

ξ̂t,iτ =

{
ξ
αt(i)
τ , τ ≤ t,
ξiτ , otherwise,

where scenario ξ̂t,i appears with probability pi, i ∈ I , and the mapping
αt : I → It is given by

αt(j) =

{
ikt (j) , j ∈ Jkt ,
j , otherwise.

The index sets Ikt and Jkt , k = 1, . . . ,Kt−1, are determined such that

Kt−1∑

k=1

∑

j∈Jkt

pj min
i∈Ikt
|ξit − ξjt | ≤ εt.

Set Ct = {α−1
t (i) : i ∈ Ikt , k = 1 . . . ,Kt−1}.

Step T+1: Let CT = {C1
T , . . . , C

KT
T }. Determine a stochastic process

ξtr having the KT scenarios ξ̂T,k where ξ̂T,kt := ξ
αt(i)
t if i ∈ CkT ,

k = 1, . . . ,KT , t = 1, . . . , T .

It is shown in [8, Theorem 4.5] that then the estimate

‖ξf − ξtr‖1 ≤
T∑

t=1

εt ≤ ε

and, hence, (9) is valid. The estimate (10) holds due to the constructions in
step 1 of the algorithm.

The above algorithm is illustrated in Figure 2. The first and last picture
show the original fan ξf and the final scenario tree ξtr, respectively. Picture
i corresponds to the situation after Steps i− 1, i = 2, . . . , 5.
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Fig. 2 Illustration of the above algorithm for an example with T=4 starting with
a scenario fan containing N=58 scenarios

2.6 Stochastic Programming Model in Node Representation

After rewriting the stochastic programming model in node representation,
where the node index is denoted by the superscript n, it consists in maxi-
mizing the total expected revenue

max
(Pni,j,k)

N∑

n=1

πn
I∑

i=1

J∑

j=1

K∑

k=1

[
f bi,j,k,t(n)b

n
i,j,k − f ci,j,k,t(n)c

n
i,j,k

]
(11)

subject to the dynamics for the cumulative bookings

B0
i,j,k = B̄0

i,j,k Bni,j,k = B
n−
i,j,k + bni,j,k (n ∈ N \ {0}) (12)

the protection level conditions

Bni,j,k + zP,ni,j,k =
⌊
(1− γni,j,k)−1Pn−i,j,k + 0.5

⌋
(13)

the passenger demand constraints

bni,j,k + zd,ni,j,k = dni,j,k (n ∈ N \ {0}) (14)
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the disjunctive constraints for the number of bookings (κ > 0 sufficiently
large)

0 ≤ zd,ni,j,k ≤ z̃ni,j,kdni,j,k 0 ≤ zd,ni,j,k ≤ (1− z̃ni,j,k)κ (n ∈ N \ {0}) (15)

the approximations of the cumulative cancelations

Cni,j,k =
⌊
γni,j,kB

n
i,j,k + 0.5

⌋
(n ∈ N \ {0}) (16)

the number of cancelations

cni,j,k = Cni,j,k − Cn−i,j,k (n ∈ N \ {0}) (17)

the leg-capacity limits for all m = 1, . . . ,M(l) and l = 1, . . . , L

∑

i∈Il

∑

j∈Jm(l)

K∑

k=1

Pni,j,k ≤ Cl,m (n ∈ NT−1) (18)

and the non-negativity and integrality constraints

Bni,j,k, C
n
i,j,k, P

n
i,j,k ∈ Z, z̃ni,j,k ∈ {0, 1}, bni,j,k, cni,j,k ≥ 0. (19)

All constraints except (18) have to be satisfied for all i = 1, . . . , I , j =
1, . . . , J and k = 1, . . . ,K. The non-anticipativity constraints are satisfied
by construction.

Compared to [16] the optimization model takes into account the disjunc-
tive constraints. The cumulative bookings Bn

i,j,k play the role of a major
state variable.

Altogether, the optimization model (11)–(19) represents a large-scale
structured mixed-integer linear program. It contains 3IJK(N − 1) contin-
uous variables, IJK(N −S) + 2IJK(N − 1) integer variables, IJK(N − 1)

binary variables and 6IJK(N − 1) +
∑

n∈NT−1

∑L
l=1M(l) constraints.

After solving the optimization model, the (deterministic) protection lev-
els P 0

i,j,k of dcp t0 = 0 may be taken as decision variables to control the

booking requests. As current inventory systems cannot handle P 0
i,j,k di-

rectly, these decision variables could be utilized by a separate component to
which all booking requests are directed from the inventory system (so called
“seamless operational mode”). A new scenario tree may then be generated
having its root node at the next dcp t0 + 1 and the multistage stochastic
program is resolved to get the protection level decisions for the next booking
interval. This procedure may be continued until the booking horizon ends
(moving horizon). Alternatively, the information from the state variables
Bt0+1 and Ct0+1 may be used to approximate a decision from the solution
tree. If there is some n ∈ Nt0+1 with Bt0+1 = Bn and Ct0+1 = Cn, then the
protection levels P n may be used to control the booking process during the
booking interval (t(n), t(n) + 1]. Otherwise, some information on the prob-
ability distribution (like averages, quantiles etc.) of the relevant protection
levels based on the difference between (Bt0+1, Ct0+1) and (Bn, Cn)t(n)=t0+1

could be taken to compute approximate protection levels at t0.
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2.7 Motivation for Incorporating Cancelations

Cancelations are incorporated into the optimization model due to practical
limitations. In particular, cancelations are considered to allow booking and
cancelation scenarios where the number of cancelations may exceed the
number of bookings during some booking intervals. If in such a case the
passenger demand and the cancelation rates would instead be replaced by
a reduced demand

d̃ni,j,k := (1− γni,j,k)
∑

m∈path(n)\{0}
dmi,j,k − (1− γn−i,j,k)

∑

m∈path(n−)\{0}
dmi,j,k , (20)

which are possibly negative and if we allow negative numbers of bookings
b̃ni,j,k, then each b̃ni,j,k has to satisfy the condition

b̃ni,j,k ≥ −


γni,j,k

∑

m∈path(n)\{0}
bmi,j,k − γ

n−
i,j,k

∑

m∈path(n−)\{0}
bmi,j,k


 (21)

where the quantities are defined as in Section 2.6. Hence, b̃ni,j,k may not
be smaller than the maximally possible number of cancelations. But, the
information on the cancelation rates γni,j,k and the number of bookings bni,j,k
are no longer available if we use d̃ni,j,k and b̃ni,j,k in the model. Therefore, the
condition above can not be ensured. Hence, the solution may require more
cancelations as possible based on the passenger demand and on the can-
celation rates. The following two-stage, three-period example demonstrates
this effect.

Example N = 5, T = 2, I = 1, J = 2, K = 1, L = 1, M(1) = 1,
C1,1 = 250, f b1,1,1,1 = f c1,1,1,2 = f b1,1,1,1 = f c1,1,1,2 = 900.00, f b1,2,1,1 =

f c1,2,1,2 = f b1,2,1,1 = f c1,2,1,2 = 600.00, B̄0
1,1,1 = B̄0

1,2,1 = 0. The structure of
the scenario tree is described by the parameters given in Table 1. The pas-
senger demand dni,j,k, the cancelation rates γni,j,k and the reduced demand

d̃ni,j,k are summarized in Table 2. An optimal solution of the problem is

Table 1 Parameter describing the scenario tree structure

n 0 1 2 3 4
n− - 0 0 1 2
πn 1.0 0.7 0.3 0.7 0.3
t(n) 0 1 1 2 2

given by P 0
1,1,1 = 0, P 0

1,2,1 = 120, P 1
1,1,1 = 150, P 1

1,2,1 = 100, P 2
1,1,1 = 40 and

P 2
1,2,1 = 210. The optimality is implied by the facts that in both scenarios

(0, 1, 3) and (0, 2, 4), respectively, the airplane is operating at full capac-
ity as well as that in both scenarios the number of sold high fare tickets
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Table 2 Passenger demand, cancelation rates and reduced demand

d1
1,1,1 = 0 γ1

1,1,1 = 0 ⇒ d̃1
1,1,1 = 0

d1
1,2,1 = 140 γ1

1,2,1 = 0.15 ⇒ d̃1
1,2,1 = 119

d3
1,1,1 = 150 γ3

1,1,1 = 0 ⇒ d̃3
1,1,1 = 150

d3
1,2,1 = 140 γ3

1,2,1 = 0.15 ⇒ d̃3
1,2,1 = 119

d2
1,1,1 = 0 γ2

1,1,1 = 0 ⇒ d̃2
1,1,1 = 0

d2
1,2,1 = 150 γ2

1,2,1 = 0.2 ⇒ d̃2
1,2,1 = 120

d4
1,1,1 = 40 γ4

1,1,1 = 0 ⇒ d̃4
1,1,1 = 40

d4
1,2,1 = 150 γ4

1,2,1 = 0.3 ⇒ d̃4
1,2,1 = 90

is maximal. The corresponding values of b̃ni,j,k are: b̃11,1,1 = 0, b̃11,2,1 = 119,

b̃21,1,1 = 0, b̃21,2,1 = 120, b̃31,1,1 = 150, b̃31,2,1 = −19, b̃41,1,1 = 40 and b̃41,2,1 = 90.
Based on the cancelation rates γ1

1,2,1 = 0.15, there have to be 140 bookings

when moving from node 0 to node 1 in order to achieve b̃11,2,1 = 119. On
the other hand, γ1

1,2,1 = γ3
1,2,1 = 0.15 enforces that the number of bookings

has to be greater or equal to the number of cancelations for i = 1, j = 2
and k = 3 when moving from node 1 to node 3. Thus, b̃31,2,1 has to be non-

negative which contradicts to the solution b̃31,2,1 = −19. Hence, the optimal
solution requires more cancelations than we can expect from the cancelation
rates γ1

1,2,1 and γ3
1,2,1.

The effect occurs since the information about the cancelation rate is not
available and negative values for the reduced number of bookings (including
cancelations) b̃ni,j,k are allowed. Because the inequality

0 ≥ −


γni,j,k

∑

m∈path(n)\{0}
bmi,j,k − γn−i,j,k

∑

m∈path(n−)\{0}
bmi,j,k




holds, the effect does not occur if b̃ni,j,k ≥ 0 is still required provided that a
feasible solution exists. But, the latter condition excludes solutions where
the number of cancelations exceeds the number of bookings in some booking
interval. While neglecting the ratio of bookings and cancelations provides
larger feasible sets in general, the feasible set may be reduced by the condi-
tion b̃ni,j,k ≥ 0 in particular cases which leads to lower revenues if cancelation
rates are ignored. The possible impact of taking cancelations into account
was already observed earlier, e.g., in [24].

3 Numerical Results

Computational tests are carried out for a single hub-and-spoke flight net-
work illustrated in Figure 3. The dimensions of the corresponding revenue
management problem are summarized in Table 3. For each data collection
point (dcp) t = 0, . . . , T − 1 the days to departure (d) are listed in Table 4.
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Hub

A

B

CH

Fig. 3 Hub-and-Spoke flight network

Table 3 Dimensions

I J K L M(l) T
(l = 1, . . . , 6)

12 6 1 6 2 14

Table 4 Data collection points and days to departure

dcp 0 1 2 3 4 5 6 7 8 9 10 11 12 13
d 182 126 84 56 35 21 14 10 7 5 3 2 1 0

The compartments are denoted by “B” (m = 1) and “E” (m = 2), respec-
tively. The capacities of compartments B and E comprise 24 and 216 seats,
respectively, on all legs. The fare classes are “B1” (j = 1), “B2” (j = 2),
“E1” (j = 3), “E2” (j = 4), “E3” (j = 5) and “E4” (j = 6). As proposed
in [5,2,30] the booking process is modeled by a non-homogeneous Poisson
process (NHPP). This process allows to model the uncertainty of the total
number of booking requests as well as the variability of the arrival intensity
for each fare class over time, simultaneously [5]. The total number of cumu-
lative booking requests over the booking horizon Gijk is assumed to have a
Gamma distribution. The arrival pattern of the booking requests βijk(t) is
assumed to have a Beta distribution. The arrival intensity of the booking
requests λijk(t) is then given by

λijk(t) = βijk(t) Gijk Gijk ∼ Gamma(pijk , gijk).

As in [5] we assume in this example that the cumulative booking requests
are independent for each i, j and k. The density function of the (standard)
Gamma distribution with shape and scale parameters p > 0 and g > 0,
respectively, is

fGamma(p,g)(x) :=
(x/g)p−1e−x/g

gΓ (p)
=

(1/g)p

Γ (p)
xp−1e−x/g 0 ≤ x < +∞,

where Γ (z) :=
∫∞

0
xz−1e−xdx denotes the Gamma function.

For t ∈ [0, T ] and parameter a > 0, b > 0 the density function β(t) of
the Beta distribution is defined by

β(t) :=
1

TB(a, b)

(
t

T

)a−1(
1− t

T

)b−1

0 ≤ t ≤ T,

where B(a, b) :=
∫ 1

0 x
a−1(1−x)b−1dx = Γ (a)Γ (b)

Γ (a+b) denotes the beta function.
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The cumulative booking requests dijk(t) until some t ∈ [0, T ] now are

dijk(t) =

∫ t

0

λijk(τ)dτ = Gijk

∫ t

0

βijk(τ)dτ

For each itinerary i, fare class j and point of sale k we generate samples for
the Gamma distribution. The parameters of the Gamma distribution and
the fares are given in Table 5. Since the arrival intensity samples Gijk do not
reflect possible cancelations so far, they are scaled by (1−γi,j,k,T )−1, where
for all j, k, t, the cancelation rates γi,j,k,t are set to 0.1 if i = 1, 2, 0.05 if
i = 3, 4 and 0.0 if i = 5, 6, respectively. For each dcp t, these scaled samples
are multiplied with the value of the cumulative distribution function of the
Beta distribution at t. The parameters of the Beta disribution are given in
Table 6. In this way, scenarios for the entire flight network are generated.

Table 5 Parameters of the Gamma distribution and fares

ODI Fare class POS p γ Mean DCP Fare

AH, HA, B1 – 3.0 1.5 4.5 1 – 13 500
BH, HB B2 – 3.0 1.5 4.5 1 – 13 340

E1 – 10.0 1.2 12.0 1 – 13 200
E2 – 40/3 1.2 16.0 1 – 13 160
E3 – 22.0 1.0 22.0 1 – 13 130
E4 – 30.0 1.0 30.0 1 – 13 100

CH, HC B1 – 2.0 1.5 3.0 1 – 13 500
B2 – 2.0 1.5 3.0 1 – 13 340

E1 – 5.0 1.2 6.0 1 – 13 200
E2 – 20/3 1.2 8.0 1 – 13 160
E3 – 11.0 1.0 11.0 1 – 13 130
E4 – 15.0 1.0 15.0 1 – 13 100

AHB, BHA B1 – 2.0 1.5 3.0 1 – 13 800
B2 – 2.0 1.5 3.0 1 – 13 540

E1 – 7.5 1.2 9.0 1 – 13 320
E2 – 10.0 1.2 12.0 1 – 13 260
E3 – 16.5 1.0 16.5 1 – 13 210
E4 – 22.5 1.0 22.5 1 – 13 160

AHC, CHA B1 – 3.0 1.5 4.5 1 – 13 800
BHC, BHA B2 – 3.0 1.5 4.5 1 – 13 540

E1 – 15.0 1.2 18.0 1 – 13 320
E2 – 20.0 1.2 24.0 1 – 13 260
E3 – 33.0 1.0 33.0 1 – 13 210
E4 – 45.0 1.0 45.0 1 – 13 160
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Table 6 Parameters of the Beta distribution

ODI Fare class POS a b

All B1 – 12.0 1.5
B2 – 8.0 2.0
E1 – 6.0 2.0
E2 – 4.0 3.0
E3 – 3.0 4.0
E4 – 2.0 4.0

The booking request scenario tree is generated by the algorithm de-
scribed in Section 2.5 starting with initial sets consisting of S = 100,
200, 300, 400 and 500 scenarios, respectively. For each S three sets of ini-
tial scenarios are generated as outlined above. The parameters and toler-
ances needed for the generation algorithm in Section 2.5 are set to r = 1,
ε = 0.30 εmax, εf = 0.40 εmax and εt ≈ Cqt+1, t = 1, . . . , 13, with q := 0.65
in all examples. Here, the normalization constant εmax is defined as the
smallest L1-distance between the initial scenario fan (with identical weights
1
S ) and one of its scenarios endowed with unit mass. The constant C > 0 is

choosen such that the condition
∑T

t=1 εt ≤ ε is satisfied. The resulting sce-
nario tree for example 15 is illustrated in Figure 4. In this example, branch-
ings occur at the beginning of 8 of the 13 booking intervals. No branchings
appear in the two intervals after the root node and in the last three in-
tervals. The dimensions of this tree and of the corresponding optimization
model are given in Table 7.

Fig. 4 Input scenario tree
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Table 7 SP model dimensions

S N Number of Number of Number of
cont. Variables binary Variables Constraints

87 988 420192 71064 426558

The computations are performed on a Linux-PC equipped with a 2.4
GHz Intel Pentium 4 processor. The program input consists of the data
of the flight network and of the generated scenario tree. The integrality
constraints in (19) are ignored, so that only the binary variables z̃ni,j,k are
integer. The constant κ is chosen as κ := 5 maxm=1,...,M(l),l=1,...,L Cl,m. The
mixed-integer linear program was solved using CPLEX 9.1 where the MIP
gap is set to be 0.005. The program output consists in the optimal protec-
tion levels. The optimal values and the computing times are summarized in
Table 8. The optimal values are very similar in all examples except exam-
ple 11. This observation suggests that at least for the considered network
the generation of scenario trees starting with 100 initial scenarios provides
sufficiently good results at reasonably fast computing times.

Table 8 Computational results for different samples sizes

Example Number of N S Optimal Computing Time
Initial Scenarios Value h:mm:ss

1 500 4803 425 210316 0:21:22.5
2 500 4825 428 210268 0:53:58.8
3 500 4804 424 210450 1:18:56.2

4 400 3854 344 210763 0:14:54.0
5 400 3871 341 210312 0:34:39.3
6 400 3871 341 210543 0:11:44.7

7 300 2895 254 210294 0:08:12.8
8 300 2886 257 211123 0:06:41.8
9 300 2897 259 210154 0:08:08.0

10 200 1945 172 210425 0:03:17.7
11 200 1956 173 215121 0:04:27.0
12 200 1962 174 209993 0:03:18.5

13 100 989 88 210376 0:00:24.8
14 100 992 88 210956 0:00:25.4
15 100 988 87 210380 0:00:24.0

Figure 5 shows the fares and initial protection levels for ODI C-H-B
from example 15. Figure 6 illustrates the scenario trees for the cumulative
passenger demand and for the protection levels of selected fare classes from
example 15. Each picture also contains the mean value and the 5 per cent
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and 95 per cent quantiles. The passenger demand for classes with essentially
different fares arrives during different time intervals with different intensity.
For example, the demand of the low fare class 6 arrives earlier than the that
of the high fare class 3 of the same compartment and is is essentially higher.
The same effect can be observed for fare class 3 compared with the highest
class 1. As expected the protection levels of the low fare class 6 restrict the
number of tickets for sale compared to the passenger demand while in fare
classes 1 and 3 the protection levels are similar to the cumulative passenger
demand.

B1 B2 E1 E2 E3 E4
0

200

400

600

800
Fares HODI:12L

B1 B2 E1 E2 E3 E4
0

2

4

6

8

10

12

14

Optimal Protection Level of the First Stage HODI: 12L

Fig. 5 Fares and optimal first stage protection levels for ODI C-H-B (i = 12)

Finally, the sum of the protection levels in both compartments of leg
HC from example 15 are shown in Figure 7. Recall that the capacity of
compartments 1 and 2 are 24 and 215 passengers, respectively. The figures
illustrate that the mean values of the sum of the protection levels are close
to the compartment capacity. The mean value of about 22 passenges for
compartment 1 is due to the fact that the demand and cancelation rates are
choosen such the resulting bookings and cancelations just meet the com-
partment capacity and since sums of protection levels above this capacity
are truncated by the protection level constraints.

The results and computing times are reasonable and encourage the use
of our solution approach at least for small airline networks.

4 Extension to Bid Prices

The Lagrange multipliers of the capacity constraints may serve as approxi-
mate bid prices for the itineraries of the network. However, in our stochastic
network revenue management model capacity constraints are only required
for the last time period, i.e., at dcp t = T − 1, in order to allow for over-
bookings in earlier time periods. Hence, introducing capacity constraints at
the dcp’s t = 0, . . . , T − 2 would lead to approximate bid prices, but also to
the loss of the overbooking option. In addition, the dimension of the dual
problem increases essentially. As a compromise, capacity constraints might
be introduced only at t = 0 or for a few time periods t = 0, . . . , t0 and the
model be resolved with t0 as starting point. In this way, overbooking is still



20 A. Möller, W. Römisch, K. Weber

2 4 6 8 10 12

10

20

30

40

50

60

H1 - Cancellation RateL * Cumulative Demand HODI: 12 Fare Class: 1L

2 4 6 8 10 12

10

20

30

40

50
Protection Level HODI: 12 Fare Class: 1L

2 4 6 8 10 12

10

20

30

40

50

60

H1 - Cancellation RateL * Cumulative Demand HODI: 12 Fare Class: 3L

2 4 6 8 10 12

10

20

30

40

50
Protection Level HODI: 12 Fare Class: 3L

2 4 6 8 10 12

10

20

30

40

50

60

H1 - Cancellation RateL * Cumulative Demand HODI: 12 Fare Class: 6L

2 4 6 8 10 12

10

20

30

40

50
Protection Level HODI: 12 Fare Class: 6L

Fig. 6 Cumulative passenger demand and protection levels for selected fare
classes of ODI C-H-B (i = 12)
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Fig. 7 Sum of protection level for leg HC (l = 6).

possible in the remaining dcp’s t = t0, . . . , T −1, approximate bid prices are
available and the size of the dual problem remains reasonably small.

5 Conclusions and Outlook

We propose a model for airline network revenue management that allows
for cancelations and overbookings, provides optimal seat protection levels
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and represents a mixed-integer multistage stochastic program. The booking
controls resulting from our optimization approach are not yet in practical
use for controlling booking requests, though actual developments in inven-
tory and revenue management systems set the stage for it. The stochastic
passenger demand and cancelation process is approximated by a scenario
tree with possible branchings in data collection points. The scenario tree is
generated by a stability-based recursive reduction and bundling technique
which allows to handle multi-dimensional and multivariate stochastic pro-
cesses. When solving real-life airline network revenue management models,
the initial scenario set should be based directly on historical passenger de-
mand data, which has to be adjusted subject to a suitable demand model
(unconstraining) in order to minimize or at least reduce spiral-down effects
(cf. [4]). The node representation of the revenue management model cor-
responds to a large scale, structured mixed-integer linear program which
is solved by standard MILP software (CPLEX). The numerical results and
running times confirm the applicability of our approach to small networks.
Future work will focus on the decomposition of the optimization problem
into smaller subproblems for each itinerary, fare class and point of sale
by Lagrangian relaxation. Preliminary numerical results encourage the ap-
plicability of such a Lagrangian decomposition approach to real-life flight
networks. The model may be extended to compute approximate bid prices
by introducing additional capacity constraints as discussed in the previous
section.
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