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Abstract

Research on dependable computing is undergoing a shift from traditional fault tolerance towards
techniques that handle faults proactively. These techniques comprise two parts: (a) prediction of
failures and (b) actions that are performed in case of an upcoming failure. This work provides the
first reliability model that incorporates both correct and false predictions as well as both types of
actions: failure prevention and recovery preparation. Closed form solutions to availability, reliability
and hazard rate are provided.

Index Terms

Proactive fault handling, reliability, availability, failure prediction, preventive actions, recovery

preparation.
ACRONYMS
CTMC continuous time Markov chain
PFH  proactive fault handling
TTF  time to failure
TTR  time to repair
TTP  time to prediction
MTTF mean time to failure
MTTR mean time to repair
MTTP mean time to prediction
TP true positive
FP false positive
TN true negative
FN false negative
NOTATION

n number of predictions

ng number of failures

nz  nhumber of non-failures

nw  number of warnings

npp number of true positives

nrpp number of false positives

npy  humber of true negatives

nrpy humber of false negatives

Ap Prediction rate

Arp  rate of true positive predictions

This work was supported in part by Intel Corporation and Deutsche Forschungsgemeinschaft DFG project
MA 1773/ 3-1



https://core.ac.uk/display/127589522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 SALFNER AND MALEK

Arpp rate of false positive predictions
Arny  rate of true negative predictions
Arpny  rate of false negative predictions

p reaction rate
7 repair rate
Al lead time of failure predictor

Prp failure probability in case of true positive predictions
Prp failure probability in case of false positive predictions
Pry failure probability in case of true negative predictions
repair time improvement factor

precision

recall

false positive rate

infinitesimal generator matrix

equilibrium probability for state

steady-state availability

reliability

hazard rate

cumulative distribution of TTF

distribution density of TTF

initial state distribution
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I. INTRODUCTION

NTICIPATING failures before they occur and applying preventive strategies to avoid them
A or reducing time-to-repair by preparation for upcoming failures is a promising approach to
further enhancement of system dependability. Since introduction of preventive maintenance a few
decades ago, it has become an increasingly significant area in dependability research in the past few
years, as can be seen from autonomic computing initiative [1], trustworthy computing [2], recovery-
oriented computing [3], work on rejuvenation (e.g., [4]) and various conferences on self-*properties
(see, e.qg., [9)]).

Proactive fault handling techniques subsume all those methods that buitthlove failure
prediction to proactively deal with faults in order to prevent a system failure or to minimize
downtime. This includes all methods where either preventive actions are triggered by the prediction
of an upcoming failure or where repair actions are prepared for the upcoming failure such that TTR
is reduced. Fig. 1 visualizes the approach.

Preventive actions

Fail “‘\C},Q»e’"S (avoidance of failure)
ailure
prediction

Pr epafes Repair actions

(quick repair after failure)

Fig. 1. PFH is the combination of failure prediction and proactive actions. Either preventive actions are triggered before
the failure occurs or repair mechanisms are prepared for an imminent failure to reduce TTR.

The goal of this article is to investigate the effect of PFH on system reliability and steady-
state availability in a comprehensive way that allows to model all the various methods that are
encompassed by PFH. The model we have developed can help to evaluate application of PFH
techniques for a given system or to investigate what is most effective to further increase system
reliability / availability.

In order to develop our generic framework for reliability modeling, we first illustrate the working
principle and present a categorized overview of preventive as well as repair actions. Reliability
modeling is carried out by the use of two CTMC models prescinding the key features of PFH.
The transition rates of the CTMCs are determined by metrics capturing the essential properties of
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PFH such as precision of failure prediction or repair time improvement. The CTMCs are analyzed
and key quantities such as steady-state availabilityr reliability R(¢) are computed. In order to
apply the presented modeling approach to a real system, the metrics used for modeling have to be
estimated from measurement data. Therefore, an estimation procedure is described in the last part
of this work.

The article is structured as follows: In Section Il explains the working principle is explained and
a classification of preventive and repair actions are introduced. Next, in Section Ill the measures
used for assessment are introduced. In Section IV and V availability and reliability modeling
are described and an example is presented in Section VI. Finally, in Section VII a procedure for
extracting modeling metrics from measurement data is outlined followed by conclusions.

I[l. PROACTIVE FAULT HANDLING

Proactive reaction to faults is at first glance closely coupled with fault detection: A fault needs
to be detected before a system can react to it. However to be precise, not just a fault but mainly
the failure is the kind of event that should be avoided, which makes a big difference especially in
the case of fault-tolerant systems. Hence, efficient proactive fault handling requires the prediction
of failures, to judge whether a faulty situation bears the risk of a failure or not. To achieve this, an
online failure predictor is necessary to continuously monitor the system in order to make a decision
whether some failure seems to occur in the near future or not.

If the failure predictor's analysis suggests that a failure will occur, it raiséslare warning
It is obvious that any failure predictor can make wrong predictions: the predictor might forecast
an upcoming failure even if this is not the case, which is called FP, or the predictor might miss to
predict a failure that is imminent in the system, which is called FN. Tab. I lists all four cases that
may occur.

TABLE |
FOUR CASES OF FAILURE PREDICTION

H Imminent failure () | No imminent failure (F)

warning (W) correct warning TP) false warning £ P)

no warning (W) || missing warning £N) | correct no-warningN)

Raising a failure warning leads either to triggering of a preventive action trying to avoid the
failure or it leads to preparation of a repair action for the upcoming failure such that TTR can be
reduced. If the failure predictor's analysis suggests that the system is running well and hence no
failure is anticipated in the near future, no action occurs. In case of a FP prediction, preventive
actions or preparation of repair actions are performed unnecessarily and in case of a FN prediction,
nothing is done about the upcoming failure and standard repair is taking place after the failure has
occurred. Tab. Il summarizes all four cases.

TABLE 1l
ACTIONS PERFORMED AFTER PREDICTION

Prediction H Preventive actions Repair actions

TP Try to prevent failure| Prepare repair

TN No action No action

FP Unnecessary action | Unnecessary preparation
FN No action Standard repair

In order to give an idea of the types of actions that are covered by our modeling approach, the
following sections will briefly describe repair as well as preventive actions covered by PFH.
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A. Repair actions

Repairing the system after failure occurrence is the classical way of failure handling. It is based
on detection mechanisms such as coding checks, replication checks, timing checks or plausibility
checks. Within PFH, these repair actions do still react to failures, but if its occurrence is anticipated
a preparation might take place which in turn may reduce time-to-repair.

The goal of repair actions is recover from failure and bring the system into a consistent state. If
the consistent state is a previous fault-free one (a so-caliedkpoin), the action applies &oll-
backward schem@eAll computations from the last checkpoint up to the time of failure occurrence
have to be recomputed. Typical examples are recovery from a checkpoint or the recovery block
scheme introduced by [6]. In case ofrall-forward schemethe system is moved forward to a
consistent state by either dropping or approximating the computations that have failed.

Both schemes may compriseconfigurationsuch as switching to a hardware spare or another
version of a software program, changing network routing, etc. Reconfiguration takes place before
computations are redone or approximated.

In the traditional case without PFH, checkpoints are saved independently of upcoming failures,
e.g., periodically. When a failure occurs, reconfiguration takes place until the system is ready
for recomputation / approximation and all the computations from the last checkpoint up to the
time of failure occurrence have to be redone. TTR is determined by two factors: time needed for
reconfiguration and the time needed for recomputation or approximation of lost computations, which
is determined by the length of the time interval between the checkpoint and the time of failure
occurrence. In some cases recomputation may take less time than originally but the implication still
holds. Please also note that not all repair actions exhibit both factors contributing to TTR. Fig. 2-a
shows the interrelation.

TTR

(a) without preparation
for a failure

> time
Cp Reconfigured Up

TTR improvement

with preparation
(b) for a failure

\

time

CP F Reconfigured  Up

Fig. 2. Improved TTR for prediction-driven repair schemes. (a) sketches classical recovery and (b) improved recovery
in case of preparation for an upcoming failure. “CP” denotes the last checkpoint before failure, “F” the time of failure
occurrence, “Reconfigured” the time when reconfiguration has finished and “Up” the time when the system is up again.

A large variety of repair actions exist that can benefit from failure prediction and it seems
infeasible to list all of them here. Anyway, coupling with a failure predictor can in principle reduce
both factors of TTR. Time needed for reconfiguration can be reduced since reconfiguration can be
prepared for an upcoming failure. Think, for example, of a cold spare: Booting the spare machine
can be started right after an upcoming failure has been predicted such that it is almost up when
the failure occurs. Additionally, PFH allows to save a checkpoint close to the failure which reduces
the amount of computations that need to be repeated and hence minimizes the amount of time
consumed by recomputations. Fig. 2-b sketches the effects. On the other hand when a failure is
anticipated it might not be wise to take a checkpoint since the state might be corrupted already
but as a preparation for such a case we may take additional periodic checkpoints and use them if
necessary.

B. Preventive actions

Preventive actions are triggered by a failure predictor in order to prevent the occurrence of a
failure that seems to be imminent in the system but has not yet occurred. We have identified four
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categories of mechanisms that can anticipate failures before they appear: preventive restarts, state
clean-up, preventive failover and system mollification.

« Preventive restart¢ry to avoid upcoming failures by reset. This may range from component
restart up to complete reboot of a system. One example is software rejuvenation [7], which is
about preventively restarting components to counteract aging of software (e.g., memory leaks).

« State clean-upries to avoid failures by cleaning up resources. Examples include garbage
collection, clearance of queues, correction of corrupt data or elimination of useless processing.

» Preventive failovertechniques perform a switch to some spare hardware or software unit.
Several variants of this technique exist. For example, failure prediction-driven load balancing
can accomplish gradual “failover” from a failure-prone to a failure-free component [8].

« System mollificatiofease-up) is a common way to prevent failures. For example, web-servers
reject connection requests in order not to become overloaded. Within proactive fault handling,
the number of allowed connections is adaptive and would depend on the risk of failure.

Preventive actions affect TTF since in case of successful failure avoidance TTF is increased.

However, if avoidance does not succeed, nothing is done to improve repair and hence TTR remains
unchanged.

Ill. A SSESSINGPROACTIVE FAULT HANDLING

In order to assess the effect of PFH on quantities sucR(as measures have to be identified
to quantify the effectiveness of a PFH approach. In particular, effectiveness assessment implies
measurement of the failure predictor’'s accuracy, success rate of preventive actions and efficiency
of repair actions.

A. Failure prediction

Precision and recall, originally defined to evaluate information retrieval strategies [9], are fre-
guently used to express prediction quality.
Precision is the ratio of the number of correctly identified failures to the number of all positive

predictions (warnings): N n
TP TP
= = 1)

nrp +nrp nw
Recall is defined as the ratio of the number of correctly predicted failures to the total number of
failures that actually occurred. Recall is sometimes also called true positive rate.

r— nrp _ nrp @)

nrp + NrEN ng
Consider the following example for clarification: If a prediction algorithm achieves precision of
0.8, a generated failure warning is correct (refers to a true failure) in 80% of all cases and 20%
are false warnings. A recall of 0.9 expresses that 90% of all actual failures are predicted (and 10%
are missed). In most cases, precision and recall show an inverse proportionality: improving recall
lowers precision and vice versa.

Precision and recall do not take TN predictions into account. False-positive rate is a standard

measure accounting for it:

nrgp nrp (3)

ngp + Nry ng

B. Effects on TTR

As have been shown in the previous section, TTR is affected by repair actions. In order to
assess reliability, it is sufficient to subsume all effects of repair actions by measuring mean relative
improvement of TTR. It is the ratio of MTTR without preparation to MTTR with preparation:

- MJ\:/gJZR @

prep
Obviously, we would expect that preparation for upcoming failures improves MTTR,Ahud,
but the definition also allows < 1 corresponding to a change for the worse.

k
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C. Effects on TTF

Avoidance of failures by preventive actions increases TTF. However, the opposite effect can also
occur: due to additional load generated by failure prediction and actions, failures can be provoked
that would not have occurred if no PFH had been in place. Modeling of system reliability must
take both cases into consideration. We do therefore not analyze the effects of preventive actions
separately but rather consider the four cases of predictions presented in Tab. | and introduce three
probabilities:

Prp is the probability that a failure occurs in case of a correct warning. An effective preventive
mechanism that is avoiding most of the failures and is not causing additional ones results
in low Prp.

Prp s the probability of failure occurrence in case of a false positive warning. It corresponds to
the probability that a failure is provoked by the extra load of failure prediction, preventive
actions and preparation of repair actions.

Pry is the probability that an extra failure is provoked by the prediction alone (since it is a
negative prediction, no action is triggered / prepared).

There is no need to define a probability for FN predictions since nothing is done about the failure
that will occur and the probability is hence equal to 1.

If the PFH system comprises several actions, some dispatcher is necessary in order to decide
what action to trigger or to prepare. Decision accuracy of the dispatcher is inherently contained
within Prp, Prp, and Pry. Think, for example, of the case that the dispatcher chooses to prepare
a repair action instead of triggering a preventive action then the probability of failure occurrence
is increased whilé: is improved.

IV. M ODELING AVAILABILITY

Reliability modeling is most useful for systems that are not yet existing —otherwise reliability
could bemeasuredather than modeled. Reliability modeling dates back a few decades and CTMCs
have become one of the dominating modeling techniques (see, e.g., [6] for an overview). Models
of preventive schemes have been developed along with preventive maintenance in the seventies (an
overview is given in [10]), but these models were mainly based on (static) lifetime distributions
and have not covered online prediction. In the case of software rejuvenation Huang et al. [7]
used CTMCs to demonstrate improved availability / reliability. Those models have been improved
over the years to model the rejuvenation process more realistically. Especially a paper by Bao et
al. [11] has introduced online measurement and estimation of an upcoming failure. However, to our
knowledge none of the models published so far have explicitly (a) modeled the process of failure
prediction including false predictions and (b) covered preventive as well as prediction-driven repair
actions. The model presented here is therefore based on three typesaaietersthat can be
assessed independently:

1) MTTF and MTTR of a system without PFH

2) parameters of prediction techniques that are considered to be psedr(d f)

3) parameters of the actions under considerati®pp( Prp, Pry, andk)

We use a CTMC for modeling the process of PFH and to compute steady-state availalaikty
function of these parameters.

A. The model

Steady-state availability of a system is usually computed by modeling a repairable system that
is either in an “up” or “down” state (See Fig. 3, and [6] for an overview). System failure Xate
determines the transition from “up” to “down” and repair rat¢he transition back to the up-state.

Steady-state availability can then be computed as the equilibrium state probability of the up-state.
In order to include failure prediction we have added four failure-prone states corresponding to the
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Fig. 3. The simplest CTMC for availability modeling. is the failure rate ang. the repair rate.

four cases of prediction correctness. Improved TTR is modeled by two failure states. The case that
the system has been prepared for the faildfg or that the failure occurs without preparatiaf].

See Fig. 4.
} “up” state

} failure prone states

u
} “down” states

Fig. 4. The CTMC for availability modeling. States 1-4 correspond to the four cases of failure prediction correctness:
TP, FP, TN andFN. States 5 and 6 correspond to “down” states whésedenotes failure handling where the failure
had been anticipated and repair was preparedBncccounts for the unprepared counterpart.

Starting from the up-state at some point in time a failure prediction is performed. If the predictor
came to the conclusion that a failure was imminent and raised a warning and that was true
(something was really going wrong in the system) the prediction is a TP. Due to the warning,
preventive actions are triggered and/or repair actions are preparetl.-A&rp is the success
probability for preventing the failure, the system returns to the up-state with probabdity’rp
while with probability Prp a failure occurs and the system enters stidte The inverse of the
duration of the transitions is reaction rateln the second case (where the failure occurred) improved
repair takes place due to the failure warning raised by the predictor and the subsequent preparation
for the failure. The improved repair rate /g:.

In case of a FP prediction, the predictor came to the false conclusion that something is going
wrong in the system and hence actions are performed unnecessarily. Due to the additional workload
induced by prediction and preventive as well as preparatory actions, there is some proli@bility (
that a failure is caused by PFH. Therefore, the model transits to Biateith probability Prp
from where it returns to the up-state with improved repair rate.

In case of TN predictions, there is no imminent failure in the system and no warning is raised,
which means that no actions are performed. Nevertheless, failure prediction causes some additional
load with a certain risk ) that a failure is caused by prediction. In this case the model transits
to the unprepared failuré}; since the predictor has not raised a failure warning and hence no
preparation has taken place. The transition back to the up-state is taking place with standard repair
rate .

If the predictor does not recognize that something is going wrong in the system and that a failure
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is coming up, the prediction is a FN. Since nothing is done about the upcoming failure there is no
transition back to the up-state and the model transits without any preparatign to
In summary every PFH technique should strive to achieve two goals:

1) the portion of true predictions (either TP or TN) should be maximized, and
2) failure occurrence probabilitieBrp, Prp and Pry should be as close to zero as possible.

B. Temporal properties of the modeled system

CTMC models express temporal behavior using exponential transition distributions that are
determined by a single parameter: the transition rate. This section determines the rates of our
model, which are\rp, App, Arn, Arn, p, @andpu.

In traditional reactive systems, a system was considered to be in a failure-free state until a
failure occurs followed by a repair period. The measures MTTF and MTTR naturally arose from
this notion. In PFH, failure predictions take place in between the occurrence of failures. Therefore, a
switch from MTTF to mean-time-to-prediction MTTP is necessary for our modeling (see Fig. 5-a).
Additionally, predictions are performed some time ahead in order to have enough time to perform
preventive as well as preparatory actions. This time interval is ctdled timeAl (see Fig. 5-b).

v v v
(a) T T T 1 T T > {
TP FP TN TP FP TN TN FN
b T v T
(b) [ t
TP FP
prediction prediction

Fig. 5. A timeline showing failures ¥) and predictions (TP, FP, TN, FN). Blow-up (b) shows that predictions take
place some lead tim&l ahead. Time to prediction is indicated by TTP.

MTTP can be computed from MTTF of a system without PFH and the parameters of the failure
predictor. It can be seen from Fig. 5-a and from Tab. | that the total number of prediatiens
determined by:

n=nrg+ng :nFﬁLn% ZanLnTW*nTTP
nrp  Nrp 1 1 1 1
—nF+——nF+nTp<—> —nF—l—nFr(—)
pf f pf f pf f
1—
— e (140 22) ©)
pf

Therefore, there artél +7r 1;7)) as many predictions as failures. From this follows that MTTP

] ) pf
is determined by:

ymrrp = S MITE p (6)

1=p
(1 +r o )
and hence the overall prediction ratg is:

1

A\, = 7
P MTTP (7)
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The rate of predictions,, has to be distributed among the four states TP, FP, TN, and FN. This
is achieved by computing the fraction of TP, FP, TN and FN predictions.
Starting withZZ we have:

n=nr+ng

nrp | MEp _ NTp | MW — NTP

T
nrp | nrp  nre
=P TP _ ®)
rpf
nrp 1
- T, T IyL_1 ©)
ropf f

In order to compute the fraction of FP, FN, and TN predictions, we need to know:

nw 1 npp

e (10)
n p n
np _ Lnre 1)
n r n
and then we have
“rp _ W RTP (12)
n n n
REN _ TF TP (13)
n n n
nrN _ Mg _hrep _ o TF_TEP (14)
n n n n n

To compute transition rates to the failure-prone states for TP, FP, FN and TN predictions, we
distribute the overall prediction ratg, according to the fractions:

Arp = L2 o), (15)
n
1
App = L2y ), = ( - 1) Arp (16)
n p
1
)\FN = LFN * )\p = ( — 1) )\Tp (17)
n r
1 1
)\TN:W*)\pzAp+<1——>>\Tp (18)
n p T
The reaction rate is defined by lead-timeé\/:
1
= — 19
N (19)
and repair ratq: is —as usual— the inverse of MTTR:
- (20)
W= MTTR

C. Computing availability

In order to simplify representation we use numbers 0 to 6 to identify the states of the CTMC
(as indicated in Fig. 4).

Steady state availability is defined as the portion of uptime versus lifetime, which is equivalent to
the portion of time, the system is up. In terms of our CTMC model, this quantity can be determined
by the equilibrium state distribution.
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The infinitesimal generator Matrig) of the CTMC shown in Fig. 4 is:

=Xy Arp App ArN Apn 0O 0
(1=Prp)p —p 0 0 0 Prpp O
(1-=Ppp)p 0 —p 0 0 Prpp O

Q=|1-Prn)p 0 0 —p 0 0 Prnp (21)
0 0 0 0 —p O P
ku 0O 0 0 0 —kp O
n 0 0 0 0 0 —

The equilibrium distribution of a CTMC defines a probability distribution over the states, such
that the global balance equations are fulfilled. This is equivalent to a solution to the following
equations [12]:

7Q=0 (22)
6
s.t. Zm =1 (23)
=0

If 7 is a solution to (22) then each scaling ®fis also a solution to (22) and hence, an infinite
number of solutions exist, one of which fulfills (23). Therefore, we arbitrarilyrget 1 and solve
the inhomogeneous equation systerm) = b by Gaussian elimination yielding a single solution
7' whereQ is

—Xp AP AFp AN ApN O

(1=Prp)p —p 0 0 0 Prpp
. 1-P — P,
Q= ( FP)P 0 p 0 0 FPp (24)
(I=Pry)p 0 0 —p 0 O
0 0 0 0 —p 0
k 0o 0 0 0 —kp
and
5=<7u00000) (25)
The solution7 that fulfills (23) is obtained by scaling of;:
!
™ = ! 1€ {0 ce 5}
(Z?:o Wi) + 1
o = ! (26)

Results are provided in Tab. .

Steady-state availability is determined by the portion of time the stochastic process stays in one
of the up-states 0 to 4 (see Fig. 4):

4
A:Zﬂ'izl—ﬂ'g)—ﬂ'ﬁ
1=0
(p+ Ap)uk

A= 27
pk(p+ Ap) + p(PrpArp + PrpArp + kEPryArn + kApN) @7

yielding a closed-form solution for steady-state availability of systems with PFH.
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TABLE 11l

SOLUTION TO THE STEADY STATE EQUATIONS FOR AVAILABILITY.

Uy

Solution

o

T

3

T4

5

6

pkp

pk(p 4+ Xp) + p(PrpArp + PrpArp + EPrvArn + EARN)
pkArp

uk(p+ Xp) + p(PrpArp + PreArp + kEPrnArn + EAFN)
BwkArp

uk(p+ Xp) + p(PrpArp + PrpArp + EPrnATN + EAFN)
kAT N

pk(p+ Xp) + p(PrpArp + PreArp + kPrNArn + kAFN)
HEAFN

uk(p+ Xp) + p(PrpArp + PreArp + EPrnATN + EAFN)
p(PrpArp + PrpArp)

pk(p 4+ Xp) + p(PrpArp + PrpArp + EPrvArn + EARN)
kp(PrvATN + ArN)

uk(p+ Xp) + p(PrpArp + PreArp + EPrnArn + EAFN)

V. MODELING RELIABILITY

11

Reliability R(t) is defined as the probability of failure occurrence up to timgiven that the
system is fully operational at= 0. In terms of CTMC modeling this is equivalent to a non-

repairable system and computation of the first passage time into the down-state.

A. The Model

Since we are modeling a non-repairable system, the distinction between two down#aas (
F3) is not required anymore. Furthermore, there’s no transition back to the up-state. That is why
we use a simpler topology where the failure stafigsand F;; are merged into one absorbing state
F as shown in Fig. 6.

Fig. 6. The CTMC to model reliability. Failure states 5 and 6 of Fig. 4 have been merged into one absorbing state.

The Q-Matrix for this model has the form:

T t
=5 )

(28)
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whereT is:
—Ap AP AFP AN AFN
(I=Prp)p —p 0 0 O
T=| (1-Prp)p 0 —p 0 0 (29)
(I=Pry)p 0 0  —p 0
0 O 0 0 —p
andty equals:
to=[0 Prpp Prpp Prnp pl" (30)

B. Reliability and hazard rate

R(t) and hazard raté(t) can be computed from the probability of moving into the down-state
F, which is the probability distribution of TTF. In terms of CTMCs this quantity is called first
passage time distributioR'(¢) and respectivelyf(¢). Reliability and hazard rate can be computed
from it in the following way:

R(t)=1— F(t) (31)
h(t) = % (32)

F(t) and f(t) are the cumulative distribution and density of a phase-type exponential distribution
[12] and we have:

F(t)=1—aexp(tT)e (33)
fit) =aexp(tT) to (34)

wheree is a vector with all ones andxp (¢7") denotes the matrix exponential. A closed form
expression for the matrix exponential exists and can be computed using a symbolic computer
algebra tool. However, the solution would fill several pagasd will hence not be provided here.

« is the initial state probability distribution. It can be determined from the fact that reliability is
defined such that the system is fully operational at ttree0. Hence:

a=[1 0 0 0 0 (35)

VI. AN EXAMPLE

In order to give an idea about the effects of PFH approach on steady-state availability and
reliability, we provide an example. Due to the lack of experimental data, the values have been
chosen arbitrarily except for the failure predictor's parameters and f, which are taken from
experiments with a commercial telecommunication platform (see [13]). The parameter values that
we have used aré/TTF = 999h, MTTR = 1h, lead-timeAl = 1min, p = 0.83, » = 0.9,
f=0.01, Prp = 0.4, Prp = 0.1, Pry = 0.01, k = 2. The system without PFH has unavailability
0.001 (i.e., availability 0.999). Employing PFH with the given parameters would reduce steady-state
unavailability by a factor of about two to 0.000472 (i.e., availability 0.999528). Reliability is also
improved (see Fig. 7-a) and the hazard rate is constantly below the hazard rate of a system without
PFH. Especially, during the first half an hour a notable improvement is observed, as can be seen
from Fig. 7-b.

VIl. ESTIMATING THE PARAMETERS FROMEXPERIMENTS

The previous sections described how availability and reliability for systems with PFH can be
determined as a function of seven parametersr, f, Prp, Prp, Pry and k. As it seems
impossible to derive the parameters analytically from system specification, they must be estimated
from experiments. The dilemma is that an assessment of availability and reliability is of most
interest during system design when experiments cannot be carried out. Therefore, the values must be
estimated from experiments in similar environments. This is possible since the estimation procedure
separates the mutual influence of failure prediction and reaction schemes.

The solution found by Maplé' contains approximately 3000 terms.
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1.0
0

S
--- wio PFH
— with PFH -

0.8
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— with PFH
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o 500 1000 1500 2000 2500 3000 0.0 0.2 0.4 0.6 0.8 1.0
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I
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(a) Reliability (b) Hazard rate

Fig. 7. Reliability and hazard rate falTTF = 999h, MTTR = 1h, lead-timeAl = 1min, p = 0.83, r = 0.9,
f=0.01, Prp =04, Prp =0.1, Pry =0.01, k = 2.

A. Experiment I: Failure prediction accuracy

During the first experiment, only those parameters characterizing failure prediction (namely
and f) are investigated without any feedback onto the system. This can either be accomplished by
performing predictions offline working with previously recorded logfiles or performing them on a
separate machine. Side effects such as additional workload caused by prediction are incorporated
into the measures assessed in the second and third experiment.
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Fig. 8. A timeline obtained from an experiment showing true failure$ &nd prediction results. “I” indicate positive
predictions (warnings) and “@” negative predictions. Four cases are highlighted that need to be counted for parameter
estimation.

Starting from a timeline such as Fig. 8, predictions can be assigned to be TH;d5R@ (case
), FN (casell) or TN (casell). From this assignment a table like Tab. | can be set uppand
and f can be computed as defined in (1) to (3).

B. Experiment II: Failure probabilityPrp

The goal of the second experiment is to assess the capability of the preventive measures to avoid
an upcoming failure, which is represented by the probabhitityy. Once againPrp is the probability
that a failure occurs given an upcoming true failure and a positive prediction. To estimate it, the
second experiment has to be carried out with failure predictions and actions have to be performed
on a test system that mimics key features of the modeled system as close as possible. The outcome
of the experiment is again a timeline as in Fig. 8. However, the simple assignment of cases to TP,
FP, etc. is not possible any more due to the following observations:

casel] can either refer to a TP prediction where the triggered action could not prevent the

occurrence of the failure, or it can refer to a FP prediction successively leading to a



14 SALFNER AND MALEK

failure induced by, e.g., the additional load caused by the prediction algorithm and the
action that was triggered.
casel] can either refer to a FP prediction or to a TP prediction where the upcoming failure had
been prevented.
casell can either refer to a FN prediction or to a TN prediction where the additional load caused
a failure.
The conclusion of this is that it has to be clear which positive prediction is TP and which is FP. To
solve this problem, the experiment of the second experiment must include fault injection to identify
when a true failure is imminent in the system.
Prp can then be estimated by analyzing only those time intervals where a failure was known to
be imminent:

count(warnings with subsequent true failure in second experiment
count(warnings in second experiment

Prp = (36)

wherecount(-) denotes the number of occurrences in the test result.

C. Experiment lll: Failure probabilitiesPrp and Py

Prp and Pry assess the risk of additional failures that are caused by PFH. In caBgpof
the failure is caused by predictions only, while in casePpf> it is caused by the prediction and
subsequent actions. Both probabilities can be estimated from a third experiment with a system
having failure prediction and actions installed, but no fault injection (as in the second experiment)
is needed.

In order to estimatd’rp we start with casél, which reflects positive predictions followed by the
occurrence of a failure (see Fig. 8). This situation can occur along with TP or FP predictions where
in case of a TP prediction a failure occurs with probabilityr and in case of a FP prediction
with probability Prp (see Fig. 6). Therefore, the following equation holds:

count(casel]) = Prp - count(TP) + Prp - count(FP) (37)

In order to computecount(TP) and count(FP), we count the number of positive predictions
(warnings) in the experiment and use the valuespfar and f that have already been estimated in
the first experiment of the estimation procedure.

count(TP) = p - count(warnings in third experimeint (38)
count(FP) = (1 — p) - count(warnings in third experimept (39)

Since Prp is known from the second experiment of the estimation procedure, the solutidiy for

is:
count(casel) — Prp - p - count(warnings in third experimeint

(1 —p) - count(warnings in third experimeit

Prp = (40)

Pry can be estimated in a similar manner. Equivalent to (37) the following equation holds:

count(casell) = (1 — Prp) - count(TN) (41)
and hence we obtain ( o)
count(case
Pryn=1—- ————- 42
™ count(TN) (42)

where the number of TN predictions is computed by
count(TN) = count(predictions in third experimejt NN (43)
n

where "2 is the fraction of TN predictions. Following (14), this fraction can be computed from
p, v and f, which are known from the first experiment of the experiment.
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D. Experiment IV: Repair time improvement

In order to estimate the repair time improvement faétoan experimental trace such as Fig. 8
that additionally includes TTR is needed. Ass the ratio of MTTR without preparation and MTTR
with preparation, mean values for both cases need to computed. Occurrences [Of aaseibute
to MTTR with preparation and occurrences of cas¢éo MTTR without preparation, respectively.

VIII. CONCLUSIONS

With proliferation of failure prediction methods and proactive recovery techniques, there is a need
to capture them in dependability models in order to assess their impact. The model presented here
explicitly incorporates failure prediction including correct and false decisions as well as it accounts
for preventive actions and improved repair at the same time. Our model is based on parameters
where

« precision, recall and false positive rate are used for assessment of failure prediction accuracy

« probability of failure occurrence in case of true positive, false positive or true negative
predictions are used to assess success of preventive actions as well as the occurrence of
additional failures that are caused by proactive fault handling

« a repair time improvement factor accounts for the effect of preparing repair actions for an
upcoming failure.

We have used continuous-time Markov chains for modeling and have derived a closed-form
solution for steady state availability, reliability, and hazard rate, and we have proposed a procedure
for estimating the selected parameters from experiments.
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