
Service Discovery Using Communication Fingerprints

Olivia Oanea1, Jan Sürmeli2, and Karsten Wolf1

1 Universität Rostock
18051 Rostock, Germany

{olivia.oanea,karsten.wolf}@uni-rostock.de
2 Humboldt-Universität zu Berlin

Unter den Linden 6
10099 Berlin, Germany

suermeli@informatik.hu-berlin.de

Abstract. A request to a service registry must be answered with a service that
fits in several regards, including semantic compatibility, non-functional compat-
ibility, and interface compatibility. In the case of stateful services, there is the
additional need to check behavioral (i.e. protocol) compatibility. This paper is
concerned with the latter aspect. An apparent approach to establishing behavioral
compatibility would be to apply the well-known technology of model checking to
a composition of the provided service and the requesting service. However, this
procedure must potentially be repeated for all provided services in the registry
which may unprohibitively slow down the response time of the broker. Hence, we
propose to insert a preprocessing step. It consists of computing an abstraction of
the behavior for each published service that we call communication fingerprint.
Upon request, we use the fingerprint to rule out as many as possible incompatible
services thus reducing the number of candidates that need to be model checked
for behavioral compatibility. The technique is based on linear programming and is
thus extremely efficient. We validate our approach on a large set of services that
we cut out of real world business processes.

1 Introduction

In a service oriented architecture, we expect a service broker to manage a service registry.
The broker can be approached by a service provider or a service requester. Service
providers want their service to be published such that it can later on be bound to a
service requester. The service broker may extract useful information about the provided
service. A service requester approaches the broker for extracting one of the registered
services. Besides all kind of functional and non-functional properties that should match
the request, it is important that the requesting service R and the service P selected by
the broker have compatible behavior, i.e. their interaction should not run into problems
such as deadlocks and livelocks. In this article, we propose an approach for supporting a
service broker in this regard.

An apparent method for asserting deadlock and livelock freedom would be to model
check [4] the composition R ⊕ P before shipping the URI of P to R. This is a rather
expensive procedure which has a strong negative impact on the response time of the
broker. For this purpose, we proposed an alternative check [20] which preprocesses

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127589124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. PRELIMINARIES

fragments of the state space to be checked at publish time. However, even this check
must in worst case be applied to all compositions R⊕ Pi where {P1, . . . , Pn} is the set
of registered services. Consequently, we need a complementing technique which narrows
the set of registered services to be checked with R to a subset as small as possible.

To this end, we propose communication fingerprints. A communication fingerprint of
service P collects constraints on the number of occurrences of messages in any correct
run of a composed system that involves P . The fingerprint of a registered service is com-
puted upon publishing a service. When a requester approaches the registry, its fingerprint
is computed as well and matched with the fingerprints of the registered services. We
show that fingerprint matching is a necessary condition for correct interaction, so the
expensive model checking procedures need only be executed for matching services.

For computing communication fingerprints, we rely on Petri net models of services
which can be automatically obtained [10] from specifications in the industrial language
WS BPEL [2]. For these models, we employ a technique called the state equation. The
state equation provides a linear algebraic relation between two markings (states) m
and m′ as well as a sequence of transitions that transforms m into m′. Using the state
equation, we derive constraints on the number of message occurrences. For matching
fingerprints, we rely on a relation between the state equations of components and the
state equation of the composed system that has been observed in [22, 16, 13].

The paper is organized as follows. We introduce Petri net models for services. We
continue with the formal definition of fingerprints, their calculation, and their application.
We present a case study that underpins the performance gain of our approach. Finally,
we discuss further use cases for communication fingerprints.

2 Preliminaries

2.1 Mathematical Notations

For our approach, we need some notations for vectors as well as sequences of transitions.
Let A,B,C be sets where A is a set of (natural or integer) numbers. AB denotes

the set of all mappings from B → A. A mapping f ∈ AB can be represented as an
B-indexed vector over A. Let f ∈ AB and f ′ ∈ AC , then f + f ′ ∈ AB∪C is defined
as follows: (f + f ′)(b)

def
= f(b) if b ∈ B \ C, (f + f ′)(c)

def
= f ′(c) if c ∈ C \ B, and

(f+f ′)(x)
def
= f(x)+f ′(x), otherwise. The restriction f|B′ ∈ AB

′
of a mapping f ∈ AB

to B′ ⊆ B, is defined as follows: f|B′(b)
def
= f(b). Let f(B′) def

= {f(b) | b ∈ B′}. The
extension f|C′ ∈ AC

′
of a mapping f ∈ AC to C ′ ⊇ C is defined as f|C′(c)

def
= f(c) if

c ∈ C and f|C′
def
= 0, otherwise. For b ∈ B, b ∈ AB denotes the vector where b(b) = 1

and b(y) = 0 for y 6= b. 0 ∈ AB denotes the zero vector. The scalar product of two
vectors x, x ∈ AB is given by x · x′ def

=
∑
i∈B x(i) · x′(i).

B∗ denotes the set of all sequences over B, including the empty sequence ε. The
projection πB(σ) ∈ B∗ of a sequence σ ∈ C∗ to elements of B ⊆ C, is defined as
follows: πB(ε)

def
= ε, πB(tσ) = tπB(σ) if t ∈ B, and πB(sσ)

def
= πB(σ), otherwise.

For a sequence, σ ∈ B∗ its count vector Γ (σ) ∈ INB assigns to b ∈ B its number of
occurrences in σ.

2

2. PRELIMINARIES

2.2 Message Exchange

We assume two global disjoint sets of bilateral channels that are used by services
to exchange messages with each other: Ca and Cs. The channels in Ca are used for
asynchronous message exchange, i.e. sending and receiving events can be distinguished.
We demand that no service both sends and receives messages over the same channel.
The channels in Cs are used for synchronous message exchange, i.e. we can neither
distinguish sending from receiving events nor initiator from reactor. Thus, those channels
are not directed and message exchange can be understood as a handshake. We define
Σ! def

= {!a|a ∈ Ca}, Σ? def
= {?a|a ∈ Ca} and Σ# def

= {#a|a ∈ Cs} as alphabets whose
letters are identifiers for sending, receiving and synchronizing events, respectively, and
Σ

def
= Σ! ∪Σ? ∪Σ# as the alphabet of all communication events. The interface of each

service is thus a subset of Σ: It is a collection of all possible externally visible events
caused by this service.

2.3 Open Net Syntax

We consider the control flow of a service to be modeled as an open net. Open net models
of services can automatically be obtained [10] from specifications in the industrial
language WS BPEL [2]. An open net [19] is a Petri net [14] extended by means of
asynchronous and synchronous communication: We label communication transitions
with elements from Σ. For transitions that do not represent communication activities,
we introduce the label τ . The actual message exchange is then modeled in the definition
of composition below.

Definition 1. An open net N = (P, T, F,M0,Mf , λ) consists of

– two finite and disjoint sets P (of places) and T (of transitions);
– a flow relation F ⊆ (P × T) ∪ (T × P);
– an initial marking M0 ∈ INP and a set of final markingsMf ⊆ INP , respectively;
– a labeling λ : T → Σ ∪ {τ} such that, for all a ∈ Ca, {!a, ?a} 6⊆ λ(T).

Σ(N)
def
= λ(T) \ {τ} denotes the interface of N . If Σ(N) = ∅, then we call N closed.

p0
#initiate

t0

p1

?suggestt1

p2

!feedbackt2

!acceptt3

!rejectt4

p3

p4

Fig. 1. Open net N1 with final markings p3 and p4

3

2. PRELIMINARIES

In graphical representation, places and transitions are depicted as circles and rect-
angles, respectively. We annotate the transitions with their labels. Figure 1 shows an
open net N1. The modeled service exchanges messages synchronously over channel
initiate ∈ Cs, sends messages over the channels accept, feedback, reject ∈ Ca and
receives over suggest ∈ Ca. The initial marking of N1, is the marking p0. The final
markings of N are not expressed graphically but can be found in the caption: p3 and p4.

For n ∈ P ∪ T , we consider •n def
= {n′|(n′, n) ∈ F} and n• def

= {n′|(n, n′) ∈ F}.
We extend this notion to •Q def

=
⋃
n∈Q

•n and Q• def
=

⋃
n∈Q n

• for Q ⊆ P ∪ T .
To model the collaboration of services, we compose open nets. We compose only

such nets that are syntactically compatible. Syntactical compatibility means that shared
asynchronous channels are read by one open net and written by the other. Both services
may use additional channels. We call syntactically compatible nets partners.

Definition 2 (partners, shared channels). Two open nets N = (P, T, F,M0,Mf , λ)
and N ′ = (P ′, T ′, F ′,M ′0,M′f , λ′) are called partners iff Σ(N)|Σ! ∩ Σ(N ′)|Σ! =
Σ(N)|Σ? ∩Σ(N ′)|Σ? = ∅. We define the set of shared channels of two partners N,N ′

as S(N,N ′) def
= {a | a ∈ Ca, {!a, ?a} ⊆ Σ(N) ∪ Σ(N ′)} ∪ {c | c ∈ Cs,#a ∈

Σ(N) ∩Σ(N ′)}.

Two partners are composed by introducing buffer places for shared asynchronous
channels and by fusing transitions that have the same synchronous label. For sim-
plicity, we assume that ingredients of different nets are disjoint, except for the in-
terfaces. Figure 2 shows the composition of two open nets N2, N3 with interfaces
Σ(N2) = {?a, !b,#c, !d} and Σ(N3) = {!a, ?b,#c}: Buffer places for each asyn-
chronous channel in S(N2, N3)∩ Ca = {a, b} are introduced; transitions of the partners
with the same synchronous label are fused. The resulting composite has the interface
Σ(N2 ⊕N3) = {#c}.

?a !b

!a

?b

?b

a b

#c

!d

#c

!d

Fig. 2. Two open nets N2, N3 and their composition N2 ⊕N3

The formal definition of composition is a bit tedious, due to the presence of both
synchronous and asynchronous communication. Formally, a channel name is used for the
corresponding buffer place; the fusion of two transitions t, t′ results in a new transition
[t, t′].

4

2. PRELIMINARIES

Definition 3 (composition). Let N , N ′ be partners. The composition of N and N ′ is
the open net N ⊕N ′ def

= (PN⊕N
′
, TN⊕N

′
, FN⊕N

′
,MN⊕N ′

0 ,MN⊕N ′
f , λN⊕N

′
), where

– PN⊕N
′ def
= P ∪ P ′ ∪ P a, where P a = S(N,N ′) ∩ Ca (P a represents the buffers

for pending asynchronous channels);
– TN⊕N

′ def
= ((T ∪ T ′) \ {t | λ(t) = #x with x ∈ S(N,N ′)}) ∪ {[t, t′]|t ∈ T, t′ ∈

T ′, λ(t) = λ′(t′)} (a pair [t, t′] represents the joint occurrence of t and t′);
– FN⊕N

′ def
= ((F ∪ F ′) ∩ ((PN⊕N

′ ∪ TN⊕N ′) × (PN⊕N
′ ∪ TN⊕N ′)) ∪ F a ∪ F s,

where
• F a def

= {(t, a) ∈ (T ∪T ′)×P a|(λ+λ′)(t) =!a}∪{(a, t) ∈ P a×(T ∪T ′), (λ+
λ′)(t) =?a};

• F s =
⋃
{((•t ∪ •t′) × {[t, t′]}) ∪ ({[t, t′]} × (t• ∪ t′•)) | [t, t′] ∈ (T × T ′) ∩

TN⊕N
′};

– MN⊕N ′
0

def
=M0+M

′
0+0 is the initial marking andMN⊕N ′

f

def
= {M+M ′+0|M ∈

Mf ,M
′ ∈M′f} is the set of final markings;

– λN⊕N
′
(t) =

• τ if t ∈ TN⊕N ′ and (•t ∪ t•) ∩ P a 6= ∅,
• τ if t ∈ (T × T ′) ∩ TN⊕N ′ ,
• (λ+ λ′)(t), otherwise.

The composition of two open nets may or may not be closed. The intuition of a
composite comprising a not-empty interface is that of a composite component that is to
be composed with other components.

2.4 Open Net Semantics

We define the behavior of an open net as that of the underlying Petri net: A transition
t ∈ T is enabled in marking M if M(p) ≥ 1 for all places p ∈ •t. An enabled transition
may fire yielding a marking m′ where M ′(p) = M(p) − 1 for all places p ∈ •t \ t•,
M ′(p) = M(p) + 1 for all places p ∈ t• \ •t and M ′(p) = M(p) for all other places,
which is denoted by a step M t−→M ′. This notion can be extended to finite sequences
of steps M0

t0−→ M1
t1−→ . . .

tn−→ Mn+1, denoted as M0
t0t1...tn−→ Mn+1. We call

t0t1 . . . tn a firing sequence of N , finishing in Mn+1. An example firing sequence of N1

depicted in Fig. 1 is t0t1t2t1t3, which results in marking p3.

Definition 4 (M -behavior, language of an open net). Let N be an open net and M
be a marking of N . We call beh(N,M)

def
= {σ |M0

σ−→M} the M -behavior of N . We
define the language of N as L(N)

def
=

⋃
M∈Mf

beh(N,M).

For example, the language of N1 depicted in Fig. 1 includes the firing sequence
t0t1t2t1t3 but not the firing sequence t0t1t2t1, because the latter results in p2 6∈ Mf .

Let N and N ′ be two partners and N ⊕N ′ their composition. Then every transition
sequence of the composite can be projected on transition sequences of the components,
yielding a transition sequence of the component. The formal definition is similar to the
definition of classical projection on sequences, only differing in the handling of fused
transitions.

5

2. PRELIMINARIES

Definition 5 (projection of transition sequences). We define the projection of transi-
tion sequence σ of N ⊕N ′ to transitions of N as σ[N]

def
= bσc where

– bεc = ε,
– for all t ∈ T and σ′ ∈ (TN⊕N

′
)∗, btσ′c = t bσ′c,

– for all t ∈ T ′ and σ′ ∈ (TN⊕N
′
)∗, btσ′c = bσ′c, and

– for all [t, t′] ∈ T × T ′ and σ′ ∈ (TN⊕N
′
)∗, b[t, t′]σ′c = t bσ′c.

We observe that the projection of a firing sequence in the composition is a firing
sequence of the component it is projected to. This enables us to analyze an open net in
isolation and draw first conclusions on its behavior with a future partner.

Lemma 1. Let N,N ′ be partners. Then, L(N ⊕N ′)[N] ⊆ L(N).

Counting the interaction events that occur along a firing sequence of an open net,
we obtain a channel usage vector. We can translate the language of an open net to the
channel usage vectors. The result is an abstraction of the interaction behavior of the open
net.

Definition 6 (channel usage). Let N be an open net and σ ∈ T ∗. We define the chan-
nel usage of σ with respect to N as Ψ(N, σ) ∈ INCa∪Cs where for all c ∈ Ca ∪ Cs,
Ψ(N, σ)(c)

def
=

∑
t∈T,λ(t)∈{!c,?c,#c} Γ (σ)(t). Likewise, we define the channel usage of

N as Ψ(N)
def
=

⋃
σ∈L(N) Ψ(N, σ).

The before mentioned firing sequence σ = t0t1t2t1t3 of open net N1 in Fig. 1 can
be abstracted to its channel usage, resulting in vector Ψ(N, σ) = v with v(initiate) =
v(feedback) = v(accept) = 1, v(suggest) = 2, and v(suggest) = 0.

In a final marking of a composed open net, each message buffer place is empty
by definition. Thus, every message that is sent asynchronously is also received before
reaching a final state. Thus, for all firing sequences in the composed open net that finish
in a final marking, the two partners agree on the channel usage.

Lemma 2. Let N,N ′ be partners. Then, for any s ∈ S(N,N ′) and σ ∈ L(N ⊕N ′),
Ψ(N, σ[N])(s) = Ψ(N ′, σ[N ′])(s).

Although syntactically compatible, not every two partners are semantically com-
patible. There exist different notions for semantical compatibility, one of them is weak
termination: From any reachable marking in the composition, a final marking is still
reachable.

Definition 7 (weakly terminating). An open net N is weakly terminating if, for every
firing sequence σ of N , there exists some σ′ such that σσ′ ∈ L(N).

Definition 8 (compatibility w.r.t. weak termination). Let N , N ′ be partners. N and
N ′ are compatible w.r.t. weak termination, if either

1. N ⊕N ′ is closed and and weakly terminating, or
2. N ⊕ N ′ is not closed and there exists a partner N ′′ of N ⊕ N ′, such that (N ⊕
N ′)⊕N ′′ is closed and weakly terminating.

The nets N2 and N3 in Figure 2 are not compatible with respect to weak termination.

6

3. COMMUNICATION FINGERPRINTS

3 Communication Fingerprints

A communication fingerprint is a finitely representable over-approximation for the set of
channel usage vectors which can be realized in a component. It abstracts from the order
in which messages are sent or received and from any internal control flow. Syntactically,
a communication fingerprint is a boolean combination of constraints. The simplest
constraints are lower and upper bounds for the number of occurrences of a message in
any sequence of L(N). For N1 in Fig 1, suggest ≤ 5. However, these constraints do
not suffice in the case of services with cycles in their control flow as the lower bound
tends to be 0 and the upper bound tends to be infinity. For this reason, we also introduce
constraints that compare the difference between message occurrences. If one message
is sent and another one is received on a cycle, the difference between the number of
occurrences is finite even if the number of occurrences of each message in isolation is
not bounded. For N1, we can think of suggest− feedback = 1. Pushing this idea to the
limits, a constraint can finally compare any linear combination of message occurrences
with a number. A linear combination of message occurrence counts can be represented
as a vector x ∈ ACa∪Cs where A is a suitable set of numbers. In the following, let
A ∈ {ZZ,Q}. As an example, suggest− feedback can be written as the vector v with
v(suggest) = 1, v(feedback) = −1 and v(c) = 0 for c ∈ {initiate, accept, reject}.
Such a vector, together with an upper bound, forms a constraint. While the notion as
a vector with one upper bound eases up the formalism, we often write constraints as
described above.

Definition 9 (constraint, formula). A constraint is a pair (v, k) ∈ ACa∪Cs × A. A
formula is any boolean combination of constraints and the literals true and false.

Note that our formalism covers constraints of the form a = 1 or a > 3. These
constraints can be represented by the former, by using the classical transformation rules
for inequalities: a = 1⇔ (a ≤ 1) ∧ (1 ≤ a), 1 < a⇔ −a < −1.

A formula ϕ is evaluated in a channel usage vector x. If it evaluates to true, we say
that x models ϕ, denoted as x |= ϕ.

Definition 10 (|=). Let ϕ be a formula.

1. (true, false) x |= true and x 6|= false.
2. (atomic formulae) Let ϕ = (v, k). If

∑
c∈Ca∪Cs v(c) · x(c) ≤ k, then x |= ϕ, else

x 6|= ϕ.
3. (conjunction) Let ϕ = ϕ1 ∧ ϕ2. If x |= ϕ1 and x |= ϕ2, then x |= ϕ, else x 6|= ϕ.
4. (disjunction) Let ϕ = ϕ1 ∨ ϕ2. If x |= ϕ1 or x |= ϕ2, then x |= ϕ, else x 6|= ϕ.
5. (negation) x |= ¬ϕ if and only if x 6|= ϕ.

As an example, a channel usage vector a models (a, 5). Based on the model relation,
we define the set of all models of a formula and feasibility of a formula.

Definition 11 (Ψ(ϕ), feasible, infeasible). Let ϕ be a formula. We define the set of
models of ϕ as Ψ(ϕ) def

= {x | x |= ϕ}. We call ϕ feasible if Ψ(ϕ) 6= ∅ and infeasible,
otherwise.

7

4. COMPUTATION OF FINGERPRINTS

We observe that the boolean operators ∧,∨,¬ correspond to the set operations
intersection, union and complement.

Lemma 3. Let ϕ,ϕ′ be formulae.

1. Ψ(ϕ ∧ ϕ′) = Ψ(ϕ) ∩ Ψ(ϕ′),
2. Ψ(ϕ ∨ ϕ′) = Ψ(ϕ) ∪ Ψ(ϕ′), and
3. Ψ(¬ϕ) = ACa∪Cs \ Ψ(ϕ).

A communication fingerprint of an open net N is a formula that overapproximates
the set of channel usage vectors realizable in N .

Definition 12 (Communication fingerprint). LetN be an open net and ϕ be a formula.
ϕ is a communication fingerprint (or fingerprint for short) of N , if and only if Ψ(ϕ) ⊇
Ψ(N).

The formulae initiate = 1 ∧ suggest − feedback = 1 ∧ accept + reject = 1 and
initiate ≤ 1 ∧ suggest− feedback = 1 ∧ (reject = 1 ∨ accept = 1) are both example
fingerprints of N1 in Fig. 1.

Given the fingerprints of two partners, we can semi-decide compatibility of the
partners by checking the conjunction of the fingerprints for feasibility.

Theorem 1. Let N1, N2 be partners. Let ϕ1, ϕ2 fingerprints of N1, N2, respectively. If
N1, N2 are compatible (with respect to weak termination), ϕ1 ∧ ϕ2 is feasible.

Proof. Let N1 and N2 be compatible with respect to weak termination. Then at least
one final marking must be reachable in the composition, say M0

σ−→ Mf . The two
projections σ1 and σ2 to N1 and N2, respectively, must agree on each other, i.e. x∗ =
Ψ(σ1, N1) = Ψ(σ2, N2). By Def. 12, x∗ |= ϕ1 and x∗ |= ϕ2. Consequently, ϕ1 ∧ ϕ2 is
feasible.

Consider the fingerprint ϕR = suggest− feedback = 0 ∧ accept + reject = 1 of a
partner of open net N1 from Fig. 1. A corresponding open net could expect feedback on
any suggestion it does. Let ϕ be the before mentioned fingerprint initiate = 1∧suggest−
feedback = 1 ∧ accept + reject = 1 of N1. Inspecting the conjunction ϕ ∧ ϕR, we find
that it is infeasible: No channel usage vector can model both suggest− feedback = 0
and suggest− feedback = 1. Therefore, the two services are incompatible.

In Sect. 4, we propose an efficient way to obtain a communication fingerprint for an
open net N . Then, in Sect. 5, we shall discuss how to reduce feasibility of ϕ1 ∧ ϕ2 to
the feasibility of a set of systems of linear inequalities.

4 Computation of fingerprints

In this section we show how fingerprints can be computed with standard Petri technique
called the state equation [8]. The state equation is a system of linear equalities based
on the incidence matrix of the Petri net, its initial marking and a target marking. The
solution set of the state equation of N for the target marking M is syntactically a set of
transition occurrence vectors and semantically an over-approximation for beh(N,M).
Before we elaborate on its use for computing fingerprints, we formally introduce the
incidence matrix and the state equation.

8

4. COMPUTATION OF FINGERPRINTS

Definition 13 (incidence matrix). LetN be an open net. We define the incidence matrix
of N as I(N) ∈ ZZP×T with I(N)(p, t) = 1 if t ∈ •p and t 6∈ p•, I(N)(p, t) = −1 if
t 6∈ •p and t ∈ p•, and I(N)(p, t) = 0, otherwise.

Based on the incidence matrix, we can introduce the state equation.

Proposition 1 (Petri net state equation). Let M1 and M2 be a markings of N and σ a
transition sequence σ with count vector Γ (σ). If M1

σ−→M2 then

M1 + I(N) · Γ (σ) =M2.

If no particular sequence σ is given, the vector Γ (σ) can be replaced by unknowns.
This transforms the state equation into a linear system of equations. The solutions are
count vectors among which are all count vectors of firing sequences that transform M1

into M2. Replacing M1 with the initial marking and M2 with any final marking thus
yields an overapproximation of all count vectors of sequences in L(N) which can be
easily translated into channel usage vectors.

Definition 14 (Overapproximated behavior). With beh∗(N,M), denote the set of all
sequences that fit the state equation, i.e. beh∗(N,M) = {σ ∈ T ∗ |M0+I(N)·Γ (σ) =
M}. Let beh∗(N) =

⋃
Mf∈Mf

beh∗(N,Mf).

In our context, the state equation thus translates into:

Theorem 2. beh∗(N) ⊇ L(N).

We are now ready to compute a communication fingerprint for N . We proceed as
follows. First, we assume that the left hand side of a constraint (a formal sum of message
counts) and one of the final markings is given. We use the state equation to compute an
upper bound for the evaluation of the formal sum. i.e. an as small as possible constant
right hand side for the constraint. Then we aggregate the results for all final markings of
N and for a given set of formal sums. In this approach, the set V of formal sums to be
used is a parameter. Later in this section, we discuss possible options for choosing this
set. Our approach results in the following fingerprint.

Definition 15 (Computed fingerprint). Let N be an open net. Let V ⊆ ACa∪Cs . Let
M∗f = {M ∈Mf | beh∗(M) 6= ∅}. Then the computed fingerprint of N w.r.t. V is∨

M∈M∗f

∧
v∈V

(v, kM,v)

where kM,v is the solution of the following linear program: Minimize k = v · y in
M0 + I(N) · x =M and, for all c ∈ Ca ∪ Cs, y(c) =

∑
t:λ(t)∈{!c,?c,#c} x(t).

Theorem 3. The computed fingerprint is a valid fingerprint of N , regardless of V .

Proof. The equation M0+ I(N) ·x =M represents the state equation for final marking
M , so its solution space covers all transition count vectors of sequences in beh(N,M).
Thus, the constraint (v, kM,v) is valid under the assumption that M is the only final
marking. The conjunction of constraints is valid under the same assumption as all single
constraints are valid. The disjunction is finally valid for N as each sequence in L(N)
must reach one of the final markings in N . ut

9

4. COMPUTATION OF FINGERPRINTS

As linear programming is a standard technique, and the remaining steps are simple
aggregations, we skip the presentation of pseudo-code for the procedure. We imple-
mented the proposed procedure in a tool called Linda [9] which is freely available. Run
times concerning Linda will be presented in Sect. 6. Meanwhile, we discuss several
strategies for choosing the set V for formal sum that are used in the procedure sketched
above.

4.1 Semantically motivated constraints

A semantic constraint bases on a formal sum which expresses a relation between mes-
sage counts known to the user. Semantical constraints may be useful in an interactive
computation of a fingerprint. One possible semantical constraint is mutual exclusion of
a number of events. As an example, a service might send either a reject or an accept
message. We could use the formal sum reject + accept. An upper bound of 1 would in-
dicate that the two events are mutually exclusive. Additionally, there might exist pairs of
messages that occur equally often. For example, a login is followed by a log off at some
point. Or each request is either granted or denied. Corresponding formal sums would be
login − logoff and request − (granted + denied). An upper bound of 0 then indicates
that the events occur equally often. Maybe a service is not as restrictive and accepts that
a logoff message is not sent, but it expects not to receive more logoff messages than
login messages. In this case, an upper bound greater than 0 is a useful indicator.

4.2 Geometrically motivated constraints

There are certain formal sums that represent particular geometrical shapes. For instance,
if only single message counts are compared, the solutions correspond to hyper-cubes. If
only differences are compared, the space of solutions corresponds to bounded differences,
and so on up to the most expressive represented by convex polyhedra. For several such
classes of constraints, there exist alternative representations and efficient procedures
for checking feasibility as well as for computing conjunction and disjunction on that
alternative representation. Thus, it makes sense to favor formal sums that belong to such
specific classes. A survey on known geometrically motivated classes of constraints can
be found in [15, 3].

4.3 Constraints with finite bounds

Constraints in a fingerprint are typically useful when their upper bound is finite. Other-
wise, all sequences are realizable and constraints cannot not discriminate any open net.
In this subsection we give a sufficient condition for finiteness of the upper bound which
uses the Petri net concept of t-invariants.

Formally, a t-invariant is a solution of I(N) · y = 0. Intuitively, a t-invariant is a
transition occurrence vector, such that firing the transitions accordingly from marking M
yields the markingM again (i.e. the state equation has the formM+I(N) ·Γ (σ) =M).
A t-invariant which is realizable in a firing sequence represents the count vector of a
cycle in the state space which, in turn, can be executed arbitrarily often. Cycles hence

10

5. MATCHING OF FINGERPRINTS

cause infinite upper bounds to any constraint where the t-invariant itself does not yield
the value 0.

For exploiting this observation, consider a t-invariant x and a solution y of the state
equation with some target marking M . Then x+k ·y is a solution as well, for any k ∈ A.
This yields infinite bounds for several terms. Let t be a t-invariant and a transition t with
label !a. Our approach results in an infinite upper bound for formal sum a, even if t fires
only finitely often or never at all.

Lemma 4. Let ϕ be a formula, v ∈ ACa∪Cs . Then, Ψ(ϕ) = Ψ(ϕ ∨ (v,∞)).

Next we state a sufficient condition for a formal sum having a finite bound based on
the set of all minimal t-invariants (or a super set). A t-invariant x is called minimal if
it cannot be written as a positive linear combination of t-invariants. In a first step, we
translate the t-invariants into channel usage vectors. Then, we build a system of linear
equations based on these vectors so that the solution set is a set of terms for which our
approach results in finite bounds.

Lemma 5. Let N be an open net and M be a marking of N . Let A ⊆ AT be a set of
minimal t-invariants of N . Let X ⊇ A and Y = Ψ(X). Let m ∈ AY×(Ca∪Cs), so that
m(y, c) = y(c). Then, for each v ∈ ACa∪Cs with m · v = 0 holds: min({v> · Ψ(N, x) |
x ∈ beh∗(N,M)}) is finite.

Note that the above condition for finite bounds is not a necessary one; however we
can use it to create generic formal sums which lead to finite bounds by construction.

5 Matching of fingerprints

We call two fingerprints matching, if their conjunction is feasible. If fingerprints of
two services do not match, they are incompatible; else, we can not give a conclusive
answer to the question of compatibility. In this section, we discuss how matching of two
fingerprints given in DNF can be decided efficiently. In the following, we only assume
fingerprints in DNF that contain at least one conjunctive clause; any other case is trivial.
The main idea is that feasibility of a conjunction of atomic formulae is equivalent to
feasibility to a corresponding system of linear inequalities.

Definition 16 (system of linear inequalities associated to formulae). Let F be a set
of atomic formulae and ϕ =

∧
f∈F f . Then, the asociated system of linear inequalities

is denoted with sli(ϕ)
def
= (A, b) where

– A ∈ ZZF×Ca∪Cs such that A((v, k), c) = v(c), and
– b ∈ ZZF such that b((v, k)) = k.

Please note, that this definition also works for an empty set of atomic formulae,
yielding ϕ = true and the empty system of linear inequalities sli(true).

Lemma 6. Let F be a set of atomic formulae and ϕ =
∧
f∈F f . Then, ϕ is feasible if

and only if sli(ϕ) is feasible.

11

6. CASE STUDY

In case a conjunction of two formulae in DNF is feasible, there exists a conjunctive
clause of each formula so that their conjunction is feasible. Such a conjunctive formula
is by construction a conjunction of atomic formulae.

Lemma 7. Let ϕ = ϕ1 ∨ . . . ∨ ϕm and ϕ′ = ϕ′1 ∨ . . . ∨ ϕ′n. Then, ϕ ∧ ϕ′ is feasible if
and only if there exist i, j ∈ IN with 1 ≤ i ≤ m, 1 ≤ j ≤ n and sli(ϕi ∧ ϕ′j) is feasible.

To decide matching, we have to check m · n systems of linear inequalities in the
worst case. Following our approach, a fingerprint of an open net is a formula with less
or equal conjunctive clauses than final markings. Thus, m ≤ |Mf | and n ≤ |M′f |. In
our experience, services have a very small number of final markings. We thus think that
matching of two fingerprints can work as an efficient quick check that results in either
incompatible or inconclusive.

Fingerprint matching can be done with a tool called Yasmina [21]. Run times con-
cerning Yasmina are presented in Sect. 6.

6 Case study

In the introduction, we discussed the following scenario: Given one requester service R
and a service registry, the task is to find a service in the registry that is compatible with
the requester. We assume that the registry contains an open net model and a fingerprint
for each available service. To find a compatible service, we check each candidate C
for compatibility with R until we find a compatible partner for R: First, we decide
matching of the fingerprints. In the case that this check yields inconclusive, we decide
compatibility with model checking.

For validating this approach, we had to build up a large number of services. As a
sufficiently large set of actual services was not available to us, we generated “close to
real” services as follows. We started with a large set of real industrial business processes
available to us. They have been modeled using the IBM WebSphere Business Modeler,
then anonymized so they could be made available to us and finally translated into Petri
net models. Anonymization had been done by replacing semantical annotations to the
activities by generic strings. The used set of business processes has been analyzed in [6].

Each process has then been decomposed into two asynchronously communicating
parts which then service as services. Decomposition follows the idea of [22, 12], however,
we decomposed only into two components instead of as many as possible components
using an extension of Diane [5] tailored for the specific libraries. For many processes,
there exist several possibilities for decomposing them, so we obtain a rather big set of
services. For several processes, the obtained services are actually infinite state systems.
In this case, we added artificial capacities to the unbounded places. Two services that
have been obtained from a weakly terminating business process model are not necessarily
compatible. In addition, several original models have not been compatible in the first
place. The set of available processes is organized into libraries. Each library contains
models from similar business fields. For this reason, we experimented with separate
sample sets, one for each library.

For all model checking tasks, we used LoLA [11]. The tools for fingerprint computa-
tion and matching were Linda [9] and Yasmina [21]. The first table shows some numbers

12

6. CASE STUDY

concerning the processes in the used libraries with their characteristics: For each library,
we list the number of processes and the resulting composites. The fourth column shows
how many of those composites were actually weakly terminating, while the fifth displays
for how many composites the fingerprint matching returned inconclusive. The number
of weakly terminating composites is rather low (as explained above). This ratio seems,
however, to be realistic in a service registry as a diverse registry should contain rather
many incompatible services to a given requester.

Table 1. Testbed statistics and analysis results

Library # Processes # Composites # Weakly terminating # Matching inconclusive

A 127 2412 252 672
B1 43 2066 20 597
B2 49 592 25 209
B3 105 3460 210 1165

In the second table, we compare the run times of a pure state based approach with
the run times of the proposed fingerprint based approach. To this end, we checked all
pairs of partner services that stem from the same library. The reported times are the
overall times for executing all these checks within a library: The second column lists
total amount of time for model checking the composites. The third column states the
run time of the fingerprint computation. The fourth column displays the time needed for
fingerprint matching. For all inconclusive results, we used model checking, resulting in
run times as given in the fifth column. Finally, the sixth column displays the total amount
for the fingerprint based compatibility check, which does not include the run time for
fingerprint computation.

Table 2. State-based approach vs. fingerprint approach

Library State-based Fingerprint
Total Computation Matching Model checking Total

A >48h 2m49s 30s 28h ≈28h
B1 18m3s 2m57s 29s 6m9s 6m38s
B2 30m43s 53s 12s 16s 28s
B3 >36h 11m6s 1m29s 2h ≈2h

We see that for about two thirds of the individual problems, the fingerprint check tells
that these services are incompatible. These are the problem instances for which it is not
necessary to perform a subsequent model checking. For the remaining services, model
checking must be applied in any case. Hence, the speed-up can be seen in comparing
the overall time of model checking all instances with the overall time of all fingerprint
matchings plus the overall time for those model checking runs where the fingerprint check

13

7. OTHER APPLICATIONS

was inconclusive. The runtime of the fingerprint matching alone does not contribute
significantly to the overall run time and the fingerprint approach requires only about one
third of the state-based approach.

7 Other Applications

Service discovery is not the only possible application of communication fingerprints. In
this section, we sketch other possible application areas.

Organizing a registry To reduce complexity in the find scenario, we can substitute
the linear approach to a binary tree traversal: Each node is annotated with a formula.
Each leaf of the tree is a fingerprint of a service in the repository, the other nodes are
disjunctions. Thus, the formula of each node is the fingerprint of a set of services and
the tree can be traversed from the root to find a candidate.

Checking substitutability Two services are substitutable if all compatible partners of the
old service are compatible to the new one as well. This implies that the fingerprints of
the original and the substitute have to match.

Checking adaptability When adapting two services, a mediator is introduced to realize
proper interaction. The mediator can be build by creating an engine from a set of
semantical message transformation rules. Then, we compose the two services and the
engine and synthesize a partner, such that the four services are compatible. We can use a
fingerprint quick check to decide if the semantic rules are sufficient to adapt the services.

8 Conclusion

In this paper we have considered service communication fingerprints as an approach
for pre-selecting appropriate interaction partners with respect to weak termination. We
used the state equation of the underlying Petri net to derive constraints over the set of
synchronous and asynchronous message event occurrences. Communication fingerprints
are considerably small in comparison to the state space of a service. We considered a
simple and efficient procedure for obtaining a suitable (not necessarily optimal) com-
munication fingerprint. Matching fingerprints amounts to solving linear programming
problems. Our experiments show that the fingerprint approach can significantly speed up
service discovery.

Our approach is complementary to testing observed behavior against model behavior
using frequency profiles [1] and keeping repositories of behavioral profiles [18, 17]. Both
approaches apply to monolithic workflow and are restricted to transition occurrences. Our
approach is different from compositional analysis of invariants of functional nets [22]:
We analyze communication patterns which are inherently related to communication.

For future work, we shall consider the application of fingerprints in the synthesis of
livelock-free partners. Further, we shall experiment how service communication finger-
print registries created to store subclasses of potentially compatible partners contributes
to speeding up operations on behavioral registry [7].

14

8. CONCLUSION

Acknowledgements Olivia Oanea is supported by German Research Foundation (DFG)
under grant WO 1466/11-1

References

1. W. M. P. van der Aalst. Matching observed behavior and modeled behavior: an approach
based on Petri nets and integer programming. Decis. Support Syst., 42(3):1843–1859, 2006.

2. A. Alves et all. Web Services Business Process Execution Language Version 2.0. Technical
Report CS-02-08, OASIS, 2007.

3. R. Clarisó and J. Cortadella. The octahedron abstract domain. Sci. Comput. Program.,
64(1):115–139, 2007.

4. E.M. Clarke, D. Peled, and O. Grumberg. Mode Checking. MIT Presss, 1999.
5. Diane. http://service-technology.org/diane.
6. D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Völzer, and K. Wolf.

Instantaneous soundness checking of industrial business process models. In BPM 2009,
volume 5701 of LNCS. Springer-Verlag, 2009.

7. K. Kaschner and K. Wolf. Set algebra for service behavior: Applications and constructions.
In BPM 2009, volume 5701 of LNCS, pages 193–210. Springer-Verlag, 2009.

8. K. Lautenbach. Liveness in Petri Nets. St. Augustin: Gesellschaft fr Mathematik und
Datenverarbeitung Bonn, Interner Bericht ISF-75-02.1, 1975.

9. Linda. http://service-technology.org/linda.
10. N. Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0. In Web Services and

Formal Methods, Forth International Workshop, WS-FM 2007, Brisbane, Australia, September
28-29, 2007, Proceedings, volume 4937 of LNCS, pages 77–91. Springer-Verlag, 2008.

11. Lola. http://service-technology.org/lola.
12. S. Mennicke, O. Oanea, and K. Wolf. Decomposition into open nets. In AWPN 2009, volume

501 of CEUR Workshop Proceedings, pages 29–34. CEUR-WS.org, 2009.
13. O. Oanea and K. Wolf. An efficient necessary condition for compatibility. In ZEUS, volume

438 of CEUR Workshop Proceedings, pages 81–87. CEUR-WS.org, 2009.
14. W. Reisig. Petri nets. An Introduction. Springer, 1985.
15. A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience series in discrete

mathematics. John Wiley & Sons, 1986.
16. Jan Sürmeli. Profiling services with static analysis. In AWPN 2009 Proceedings, volume 501

of CEUR Workshop Proceedings, pages 35–40. CEUR-WS.org, 2009.
17. M. Weidlich, A. Polyvyanyy, J. Mendling, and M. Weske. Efficient computation of causal

behavioural profiles using structural decomposition. In PETRI NETS 2010, volume 6128 of
LNCS. Springer-Verlag, 2010.

18. M. Weidlich, M. Weske, and J. Mendling. Change propagation in process models using
behavioural profiles. In SCC ’09, pages 33–40. IEEE, Sept. 2009.

19. K. Wolf. Does my service have partners? LNCS ToPNoC, 5460(II):152–171, March 2009.
Special Issue on Concurrency in Process-Aware Information Systems.

20. K. Wolf, C. Stahl, J. Ott, and R. Danitz. Verifying livelock freedom in an SOA scenario. In
ACSD 2009, pages 168–177. IEEE, 2009.

21. Yasmina. http://service-technology.org/yasmina.
22. D. A. Zaitsev. Compositional analysis of Petri nets. Cybernetics and Systems Analysis, Volume

42, 1, 2006, pages 126–136, 2006.

15

