
COMponent-based Statistical Computing

A B S C H L U S S A R B E I T

zur Erlangung des akademischen Grades

Master of Science

(m. sc.)

im Masterstudiengang Statistik eingereicht an der

Wirtschaftswissenschaftlichen Fakultät

Humboldt-Universität zu Berlin

von

Herr Dipl.-Volksw. Gökhan Aydınlı

geboren am 15.10.1974 in Berlin

Gutachter:

1. Prof. Dr. Wolfgang Härdle

2. Prof. Dr. Bernd Rönz

eingereicht am: 15. Juli 2004

Abstract

Modern statistical analysis requires standardization, transparency, interac-

tivity, and reproducibility. This thesis presents an add-in based solution

building on Microsoft’s COM technology which aims to fulfil these require-

ments. We will argue in favor of open and flexible environments within a

distributed, i.e. client/server framework. Our emphasize lies on spread-

sheets as suitable frontends for add-in based statistical systems.

Keywords:

Component Architectures for Computational Statistcs, Add-In solutions,

Spreadsheets, Applications in Client/Server Systems

Zusammenfassung

Standardisierung und Transparenz sind Grundvoraussetzungen für moderne

statistische Datenanalyse. Darüberhinaus sind Interaktivität und Reprodu-

zierbarkeit wünschenswert. Im Rahmen dieser Arbeit wird eine Add-in ba-

sierte Lösung vorgestellt, die auf Microsofts COM Technologie beruht und

versucht die genannten Ziele zu ermöglichen. Tabellenkalkulationen können

dabei ein nützliches Werkzeug sein, wenn sie im Zusammenspiel mit statisti-

schen Spezialpaketen zum Einsatz kommen.

Schlagwörter:

Komponenten Architekturen für Computergestützte Statistik, Add-In Lös-

ungen, Tabellenkalkulationen, Praktischer Einsatz in Client/Server Systemen

Dedicated

to my Parents

iii

Acknowledgements

I would like to thank the Deutsche Forschungsgemeinschaft SFB 373 ’Simu-

lation and Quantification of Economic Processes’ and all members of the

Center for Applied Statistics and Economics (CASE).

iv

Preface

This thesis presents a high-level approach for client/server based statistical

computing. The underlying technology is a component based architecture,

which allows for flexible integration, reusability and expansion of existing

systems

The aim is to provide statistical intelligence in a distributed manner on add-

in level. The discussed tool is developed with the idea in mind to combine a

well-known GUI spreadsheet with a procedural statistical language exploiting

Microsoft’s COM technology.

The accompanying CD-ROM contains this thesis in portable format along

with the latest version of the add-in application.

This document was typeset in LATEX according to the EDOC requirements

of the Humboldt-Universität zu Berlin.

Please refer to http://edoc.hu-berlin.de/epdiss/latex/latex.html for further

information.

v

http://edoc.hu-berlin.de/epdiss/latex/latex.html

Contents

1 Motivation 1

1.1 Spreadsheets . 1

1.1.1 Excel and Statistical Data Analysis 2

1.1.2 Some Remarks on Excel’s Graphical Capabilities . . . 4

1.1.3 The Risk of using Excel for Statistics 8

1.2 Add-Ins . 10

1.3 COM Add-ins . 12

2 Client / Server based Statistical Computing 15

2.1 XploRe . 16

2.2 XQS/XQC . 16

3 MD*ReX 18

3.1 Evolution of the Excel Client 18

3.2 The MD*ReX Architecture . 19

3.2.1 Design Issues for Add-in based Solutions 22

3.2.2 Customizing the Add-in Environment 22

3.3 How to work with MD*ReX 24

vi

CONTENTS

3.4 Future Work . 32

3.4.1 Graphics . 32

3.4.2 User Customization . 34

3.4.3 Performance . 35

3.4.4 Outlook . 36

3.5 Some Graphical Examples . 39

3.5.1 Implied Volatility . 39

3.5.2 DAX30 Time Series Analysis 40

3.5.3 SARIMA Time Series Analysis 41

3.5.4 Spline Smoothing . 42

3.5.5 Kernel Regression . 43

3.5.6 Kernel Densities . 44

A Glossary 50

B Program Source 51

B.1 MD*ReX Source Tree . 52

B.2 MD*Serv Source Tree . 53

B.3 Visual Basic Source . 54

B.4 mdlDebug.bas . 54

B.5 mdlExcelXploRe.bas . 55

B.6 mdlMap.bas . 57

B.7 mdlMDRex2004.bas . 59

B.8 mdlMDRexCommandBar.bas 62

B.9 mdlShell.bas . 64

vii

CONTENTS

B.10 clsMDCOMContextMenu.cls 67

B.11 clsMDCOMMenu.cls . 69

B.12 clsMDCryt.cls . 77

B.13 clsPutGet.cls . 81

B.14 clsXPL2XLS.cls . 83

B.15 dsrExcel11.Dsr . 84

B.16 frmConnect.frm . 90

B.17 frmFunctions.frm . 92

B.18 frmGetResult.frm . 93

B.19 frmLibsLocal.frm . 94

B.20 frmNamedRanges.frm . 95

B.21 frmObjects.frm . 96

B.22 frmQuantlets.frm . 97

B.23 frmQuantsLocal.frm . 98

B.24 frmSplashNew.frm . 99

B.25 frmStatus.frm . 102

B.26 frmXLA.frm . 103

B.27 frmXPLDirect.frm . 104

viii

List of Figures

1.1 Examples of Excel Charts taken from [47] 4

1.2 Examples of Excel Charts taken from [47] 5

1.3 Examples of Excel Charts taken from [47] 6

1.4 Examples of Excel Charts taken from [47] 7

1.5 Adobe and Bloomberg Excel add-ins 11

1.6 The IDTExtensibility2 interface 13

1.7 MD*ReX within Microsoft Word 14

2.1 MD*Serv as native Win32 executable (MDCOM.exe) 17

3.1 Command line (un)registration of MD*ReX 19

3.2 MD*ReX registered . 20

3.3 MD*ReX unregistered . 20

3.4 COM Add-in dialogue in Office 21

3.5 Excel’s start up view . 24

3.6 MD*ReX after initialization. 25

3.7 Connect dialogue . 25

3.8 MD*ReX after connection . 26

ix

LIST OF FIGURES

3.9 Excel workbook with time series data and MD*ReX context

menu entries . 27

3.10 MD*ReX Put dialogue . 28

3.11 MD*ReX mapped object table 28

3.12 MD*ReX Named Ranges dialogue 29

3.13 MD*ReX command line interface 29

3.14 MD*ReX result window with evaluated command 30

3.15 XploRe Direct editor . 31

3.16 MD*ReX XploRe Direct menu entry 32

3.17 MD*ReX after receiving data from XQS 33

3.18 MD*ReX worksheet function evaluating the mean of the series 34

3.19 XPLEval worksheet function 34

3.20 MD*ReX worksheet . 35

3.21 Example of a custom add-in 36

3.22 Result of a custom add-in . 37

3.23 MD*ReX Implied Volatility Illustration 39

3.24 MD*ReX Time Series Analysis for DAX30 40

3.25 MD*ReX SARIMA Analysis for Airline Data 41

3.26 Cubic and Adaptive Spline smoothing 42

3.27 Kernel Regression . 43

3.28 Construction of Kernel Densities 44

B.1 MD*ReX source tree . 52

B.2 MD*Serv source tree . 107

x

List of Tables

1.1 Microsoft Excel statistical tools 3

xi

Chapter 1

Motivation

Let’s not kid ourselves: the most widely used piece of software for

statistics is Excel.

[38]

In our understanding modern statistical analysis and efficient method prolif-

eration require standardization, interactivity, transparency, and reproducibil-

ity. The used terminology will be explained throughout the thesis, whenever

it occurs.

This chapter will discuss our motivation for statistical computing utilizing

spreadsheets. We also will explain why add-in based solutions might help to

overcome some of the deficiencies of spreadsheet applications.

1.1 Spreadsheets

Our modern data-oriented and computer-centric society heavily uses one cat-

egory of software application: Spreadsheets. The manipulation of figures and

functional relations and their conversion respectively representation in charts

is the main objective behind the philosophy of spreadsheets, i.e. organizing

information into machine readable columns and rows [3].

1

Motivation

Put differently [36]:

”[...] spreadsheet programs are the paradigm for numerical soft-

ware for most users of desktop PCs.”

The value of the spreadsheet lies in its flexibility. It allows one to interac-

tively manipulate data and obtain corresponding graphical representations.

In other words spreadsheets offer an interaction model radically different

from an ’enriched’ statistical language like XploRe or R [3].

And since a ubiquitous software vendor has had enough market power to

promote his ’own’ solution, we can literally recognize a standard for this

type of software. When one talks about spreadsheets, the first think which

comes to mind is probably Microsoft’s Excel. Evidently Excel is not the only

available spreadsheet and one might identify many reasons (compare section

1.1.3) to assume that Excel is not even the most appropriate product for

statistical analysis.

But the mentioned circumstances made Excel to a widely used software suite

for data analysis. As it is mainly bundled with new PCs and the according

operating system, Excel became a quasi standard for working with data in

professional, scientific, and educational settings [2].

1.1.1 Excel and Statistical Data Analysis

Of course Microsoft recognized the value of Excel for statistical data analysis

and equipped the application with a variety of additional analysis tools. With

add-on modules as the Scenario-Manager, the Solver, the Analysis Tool-Pack

and 81 built-in statistical functions Microsoft enhanced Excel for statistical

analysis (see table 1.1).

Thus Excel seems to be well suited to accomplish the usual tasks of statistical

analysis given that the basic operations of Excel are known to the user. In

particular these are according to [31]:

• Data input and storage

2

Motivation

1 one/two way ANOVA

2 Covariance

3 Correlation

4 Exponential Smoothing

5 Fourier Anaylsis

6 Two-Sample F-Test

7 Histogram

8 Moving Average

9 various Two-Sample T-Tests

10 Random Number Generation

11 Rank and Percentile

12 Regression

13 Sampling

Table 1.1: Microsoft Excel statistical tools

• Data correction

• Tabular and graphical representation

• Statistical calculation

• Usage of Excel’s statistical functions

Hence it may be not farfetched to assume that anyone who has worked with

Windows PCs is capable of using Excel and its basic features in a short

amount of time. Especially in a teaching environment it should be expectable

that students are familiar with Excel. Therefore we might conclude that our

first recommendation for efficient statistics is fulfilled: standardization. Of

course only if one is willing to accept a proprietary quasi-standard which

Microsoft gained through market power.

However since market frictions and anti-trust issues are not of concern within

this research, it is enough for us to state that there is a sufficient large amount

of installations and users of Excel.

3

Motivation

1.1.2 Some Remarks on Excel’s Graphical Capabilities

From personal communications with statisticians and academics I assume

that Excel’s graphical engine is not regarded as, say, suitable for data rep-

resentation. It is often supposed that an ’ordinary’ office application cannot

cope with the state-of-the-art graphics produced by e.g. SAS or S-Plus.

Figure 1.1: Examples of Excel Charts taken from [47]

I would like to use this opportunity to state that this is a somewhat biased

attitude. With only a few mouse clicks or lines of VBA code the charting

abilities of Excel can be expanded to generate sophisticated statistical graph-

ics, like histograms, box-plots, scatter- or three dimensional plots. Excellent

references on Excel and how to customize it via its accompanying macro

language can be found in [41], [45] and [46].

4

Motivation

Figure 1.2: Examples of Excel Charts taken from [47]

These can furthermore equipped with sliders, buttons, and other objects for

interactive exploration of (e.g. multivariate) data as seen in [36]. Slicing

and brushing techniques can be implemented quite easily as well. Excel also

supports the export to portable graphic formats to use for example in web

publishing. We will see some examples while discussing MD*ReX in section

3.3.

Graphical representations are a central theme for statistical research and thus

a huge literature exists on this topic. A general purpose overview is given

in [13]. Exploratory techniques are described e.g. in [22]. Applications in

multivariate statistics can be found in [20].

5

Motivation

Figure 1.3: Examples of Excel Charts taken from [47]

In the context of reproducible respectively replicable, see [29], research we

are encountered with further requirements. [42] proposes a ’living document’

approach building upon component technology. The SWEAVE and MD*Book

projects are LATEX based approaches for documenting statistical research us-

ing R respectively XploRe as backend services. While the former is aimed

towards generating integrated documents, i.e. LATEX documents with R/S

source and objects as described in [28], the latter is a system to generate

various output formats ranging from PDF to XML based e-stat modules,

where statistical methods (Quantlets) are incorporated as e.g. executable

hyperlinks, see [48].

The importance of making (statistical) research replicable has been recog-

nized by the academic community and the above mentioned approaches are

only a few of the efforts to achieve this. In the Yxilon project this issue is a

6

Motivation

central theme, thus pushing the XploRe environment into a further compo-

nentized architecture.

Figure 1.4: Examples of Excel Charts taken from [47]

Now, what has this to do with Excel. Excel is only one part of a whole suite

of applications. The paradigm of ’living objects’ has long been addressed by

Microsoft and other industry players.

The features we like to play with on modern Windows operating systems like

Drag and Drop from one document to another or embedding a complex Excel

worksheet into a Word document are the result of a long lasting technology

research beginning in the early 90s at Microsoft formerly known as OLE.

And it was exactly this pursuit which was the driving force behind the now

ubiquitous COM / ActiveX technology, see [7] and [39].

Why should one reinvent the wheel when the technologies are already there?

This is one possible motivation of exploiting existing component technolo-

7

Motivation

gies like COM, CORBA and to some extent Web Services in statistical

computing, compare e.g. [6] and [8]. Another one might be increased per-

formance efficiency through binary communication in distributed setups, see

[5].

So wouldn’t it be desirable to have modern statistical methods and documen-

tation technologies under one common (standardized) roof? It might sound

strange to statisticians, but maybe a completely component oriented, [14],

office environment (e.g. Microsoft Office, SUN StarOffice or OpenOffice) is

a readily available solution.

To get back to Excel’s graphic engine, an excellent reference to start with is

[47] which has been the source of the sample graphics in figure 1.1 to figure

1.4 which I have arbitrarily chosen for illustrative purposes.

Furthermore we might also conclude that our second requirement is fulfilled:

interactivity since the direct manipulation and interaction philosophy is in-

herent to the spreadsheet paradigm. Moreover interaction can even be accom-

plished within the graphical representation of statistical analyses as shown.

1.1.3 The Risk of using Excel for Statistics

Nevertheless statisticians should be careful in exploiting the statistical fea-

tures of Excel. Excel has never been designed to be a full blown statistical

package. Therefore we cannot expect functionality similar to professional

statistical programs. There is a lack of advanced statistical methods like

seasonal time series analysis or neural networks [3].

Despite of this, there is still a growing literature, which promotes Excel itself

as a tool for computational statistics. E.g. [31] remark that Excel is an

’excellent application’ for statistical analysis and classify it as tool to avoid

’calculation errors’. In view of the literature on the deficiency of Excel for

statistical analysis such statements should be handled carefully.

Features within Excel which should be used with due care in statistical anal-

ysis are according to [11]:

• Computing algorithms

8

Motivation

• (prefab) Graphics

• Treatment of missing data

• Random number generators

• Regression

• Help screens

Because of the known deficiencies of Excel in the field of numerical accuracy

and statistics, the literature even suggests not to use Excel at all, see e.g.

[23], [10], [30], [24] or [43].

We would not go that far: Since numerical and methodological impreciseness

can be circumvent by redirecting the numerical computations to a statistical

backend. We will discuss involved technical aspects in the course of this

thesis, see section 3.2.

Of course this immediately raises the question whether the statistical backend

is reliable. In this context [29] recommends cross checking with at least two

statistical packages and the rigorous implementation of benchmarks.

Anyhow another reason not to use Excel for statistical analysis is the violation

of the transparency requirement. Like in any other proprietary statistical

package we do not how Microsoft developers implemented, e.g. the Two-

Sample F-Test or the random number generator in Excel. But there is also

a solution to this issue. The statistical backend, which is in charge of the

numerical computations, should provide its method implementations in open

(human readable) format. This is guaranteed for example within the XploRe

environment, see 2.1.

Combining the beneficial features of spreadsheets, namely the direct manip-

ulation and graphical interaction abilities with powerful statistical methods,

might help to promote this class of applications to well known and convenient

frontends to modern statistical engines. For a discussion of the benefits of

using spreadsheets to convey mathematical and statistical concepts see [33],

[34], and [35].

9

Motivation

Now how can such an integration be accomplished? As can be expected there

does not exist the only right method or approach. We rather have the freedom

to choose from various possible integration architectures. This question has

to be addressed by examining the given conditions and the aimed goals of

such a combination.

As mentioned we will concentrate on Excel and its facilities on the frontend

side and XploRe on the statistical backend side. This alone seems to bear

the notion of a possible client / server architecture. But even within such

client / server architectures we have to cope with subtle differences and tech-

nological paradigms varying from language, platform and vendor. Since my

thesis is concerned with high-level approaches, we will examine the possible

integrative handles the frontend has to offer.

1.2 Add-Ins

One reason for the popularity of Excel is its strict component oriented archi-

tecture which allows the user to:

customize it either via the GUI, or e.g. the built-in macro language VBA,

automate it, i.e. repetitive tasks can be solved via batch processing or

scripting,

expand its functionality through (third-party) software.

Especially the last two points created a whole industry of special purpose soft-

ware / component vendors for the Microsoft Office platform. Some of them

specialized for example in statistical tools for Excel, to address those issues

mentioned in section 1.1.3. Other larger software manufacturers saw further

market potential for own products by offering their functionality within the

Microsoft Office suite. Or simply would like to provide some value added for

their existing customers.

Well known examples are the Adobe Acrobat PDF converter for Office or

the Bloomberg trader tools for Excel. Figure 1.5 shows both tools in Excel.

10

Motivation

Figure 1.5: Adobe and Bloomberg Excel add-ins

What all these solutions have in common is that they are add-in based ap-

proaches. Add-ins are software applications which solely live in the execution

or process runtime of another hosting application. In terms of Microsoft Of-

fice add-ins, [40] gives the following definition:

”Speaking in the most general terms, an add-in can be thought

of as any software component that is used to add functionality

to another application. [...] We will refer to a ”document”(Word

document, Excel workbook, Access database, etc.) within the

11

Motivation

target application as a client for the add-in. [...] This general def-

inition would even include a dynamic link library (DLL), whose

exported functions are called from the target application. How-

ever, the term add-in generally applies to a more restricted type

of software component, that is, an ActiveX server component

(DLL or EXE) that is designed specifically to provide additional

functionality to a particular type of application, such as one of

the major Office applications.”

However the presented add-ins in figure 1.5 are not COM servers in the just

mentioned fashion, they are rather special Excel workbooks. What makes

them special despite the file extension, .xla instead of .xls, is the way

Excel (and the other Office products) handle such add-ins. Connectivity to

the hosting application is achieved via the Add-in Manager within Excel.

And once activated an Excel add-in maintains this state even when Excel is

shutdown and restarted in the meanwhile.

1.3 COM Add-ins

The COM add-in model was introduced with the advent of Microsoft Office

2000.

Again, speaking with [40]:

”[...] a COM add-in is an ActiveX server component (DLL or

EXE) that implements a specific COM interface called IDTEx-

tensibility. [...] An interface is just a collection of functions that

are designed for a specific purpose. [...] The main purpose of the

IDTExtensibility interface is simply to provide [...] feature acces-

sibility (to the user) and access to the client’s object model.”

The IDTExtensibility2 COM interface provides five events the add-in de-

veloper can utilize to manipulate her add-in and the hosting, i.e. calling

application. The members are depicted in figure 1.6. The complete reference

is available from [32].

12

Motivation

Figure 1.6: The IDTExtensibility2 interface

The major improvement in contrast to former legacy add-ins is that a single

COM add-in is callable from any application which supports COM add-ins.

In other words if a developer wanted her add-in application to be callable

across different Microsoft Office applications, she had to program every single

application-specific portion in a programming language unique to the accord-

ing Office application, see [37]. Admittedly a time consuming and tedious

task.

Instead now the only thing to do is to add an application specific version of

the IDTExtensibility2 interface to the add-in. The benefits are obvious: the

developer has to maintain only one source code base for a whole family of add-

ins which can be used in different applications. I implemented a prototype

version of the MD*ReX add-in for Microsoft Word, see figure 1.7, many

13

Motivation

more e.g. for the database application Access or the presentation software

Powerpoint could be added.

Figure 1.7: MD*ReX within Microsoft Word

Thus on a high-level view the COM technology and the provided IDTExten-

sibility2 interface allow developers to rapidly implement add-in versions with

suitable functionality within a variety of COM enabled host applications, a

majority on the Windows platform.

A huge improvement for statisticians who want to provide methods to a broad

audience of users of e.g. standard office applications, especially spreadsheets.

14

Chapter 2

Client / Server based

Statistical Computing

The potential applicability of statistical software is growing steadily. On

the one hand we have efficient and cheap data collection methods available.

Relational database applications and modern data analysis paradigms as

e.g. data mining, see [25], provide statisticians with very large data sets.

Computational statistics can hence be more generally described as computing

with data, see e.g. [9].

On the other hand the Internet overwhelmingly influenced our perception of

distributed computational statistics. Reading and writing data from network

applications or code execution over the network are of utmost importance in

the pursuit for distributed computing with data, see [8].

And of course technical progress resulting in hardware which is getting rela-

tively cheaper and relatively more powerful with each product cycle.

Those factors govern, among others mentioned in the beginning, the design

paradigms of statistical software. For educational purposes other issues might

be of concern too, see [4].

15

Client / Server based Statistical Computing

2.1 XploRe

XploRe is a high level object-oriented programming language, i.e. the user

writes procedures or functions, such as in Pascal or C/C++. In contrast to

these languages the declaration of variables is not necessary in order to pre-

serve the character of an interpreter. Furthermore, variables can be collected

in list structures, so that it is possible to hold common information of a data

set in a single data object.

Features of an high-level language like recursion, local variables, loops, and

conditional execution are available. The building blocks of the XploRe lan-

guage like language elements, data types, grammar and flow control are dis-

cussed in [26]. The first WWW and Java interfaces are also described there.

[22] describes data structures (for among others graphical and data objects)

and their implementations within XploRe.

Statistical methods (called Quantlets in XploRe) are provided as plain-text

ASCII files and collected into libraries (Quantlibs in XploRe jargon), cover-

ing modern statistical methods for time series, panel data, neural networks

and financial engineering, etc. Dynamic link calls are possible, so one can

incorporate own methods in XploRe, written in the language of his or her

choice. An automatic HTML converter ensures integration of Quantlets and

Quantlibs into the help system.

A basic introduction into using XploRe is available in [18]. More refined

methods are explained in [15]. Methods with a statistical finance view are

discussed in [16].

2.2 XQS/XQC

The XploRe Quantlet client / server system of XploRe has been described

in [21], [17] and to its full extent in [27]. The MD*Crypt protocol stack is

illustrated in [12]. So I will not go into much detail on this architecture here.

Nevertheless it should be mentioned, that I had to apply some slight changes

to the middleware application MD*Serv in order to make it a native Windows

16

Client / Server based Statistical Computing

executable (MDCOM.exe) instead of a Java executable archive (MDServ.jar)

and to slightly improve performance while working with MD*ReX (figures

2.1 and B.2).

Furthermore [12] describes the relevant modification applied to the MD*Crypt

protocol stack in order to make it implementable within a COM based en-

vironment, namely the MD*ReX client, and discusses performance issues of

socket based communications.

Figure 2.1: MD*Serv as native Win32 executable (MDCOM.exe)

17

Chapter 3

MD*ReX

MD*ReX is an add-in solution for client/server based statistical computing

(compare sections 1.2 and 2). The MD*ReX client is hosted within a COM

enabled application, in this particular case Microsoft’s Excel spreadsheet. Its

server counterpart is the XploRe Quantlet Server (XQS). The communica-

tion broker between both is the middleware solution MD*Serv. The language

in which the communication is realized is the TCP/IP based MD*Crypt pro-

tocol.

3.1 Evolution of the Excel Client

The story of MD*ReX begun with a prototype add-in version developed by

Erich Neuwirth in 1999/2000, using raw Windows Socket connections to talk

to the XploRe server application.

The next incremental step was then introduced by [1], implementing a custom

COM enabled MD*Crypt version developed in Microsoft Visual Java.

Both versions were pure Excel add-ins, i.e. implemented as special Excel

workbooks with .xla extension, as explained in section 1.2. The develop-

ment environment for both has been the integrated development environment

(IDE) of Microsoft Office for its own macro language VBA.

18

MD*ReX

With the progressing spread of the Microsoft Office 2000 package I seized

to support pure Excel add-ins and thus stopped developing with VBA. This

conversely had the effect that I also had to stop the support for Excel versions

prior to Excel 2000, which has the internal version number 9. Thus Excel

95 and Excel 97 were cut-off from the potential user list. As of this writing

MD*ReX has full support only for Excel 2003 (version 11). I assume this loss

was outweighed by the increased flexibility gained through the COM add-in

technology as described in section 1.3.

3.2 The MD*ReX Architecture

With the implementation of the IDTExtensibility2 COM interface I started to

develop MD*ReX in Visual Basic 6 (VB). This had first of all the advantage

of using a full featured language for Windows application development rather

than a macro language for Office development and secondly the positive side

effect that I now could compile the add-in to a DLL, promising slightly higher

performance, instead of distributing a blown-up Excel workbook.

Figure 3.1: Command line (un)registration of MD*ReX

In technical terms MD*ReX is an In-Process COM server, [39], which is

linked against the regarding Office and Excel object libraries and which ref-

erences the mentioned MD*Crypt DLL.

To be able to work with the COM add-in, MD*ReX has to be introduced

to the user’s operating system. This is achieved via registering the DLL in

19

MD*ReX

Windows’ application repository also known as the registry. This is auto-

matically done during setup. But can also be accomplished manually via the

Windows command line utility regsvr32.exe (figure 3.1).

If the switch /u is supplied then the utility will unregister (figure 3.3) the

DLL from the system otherwise it will register the DLL, (figure 3.2).

Figure 3.2: MD*ReX registered

Figure 3.3: MD*ReX unregistered

Of course the described command line registration only installs the COM

DLL. The middleware applications, the XQS, and any other supplied files are

unaffected by this.

The registration is needed for the COM runtime to find the specific program-

matic identifier of the COM application and to load the appropriate DLL or

EXE. Once registered the add-in is started as soon as Excel is triggered by

the user. This is the default behavior of the client. The IDTExtensibility2

interface allows for other start-up modes like load on demand or load once.

But in my opinion we do not need to take care of these options, since the

user can control whether the COM add-in is loaded or unloaded via a menu

bar entry in the regarding Office application.

This control is somewhat hidden, but via right-clicking in the main menu

20

MD*ReX

Figure 3.4: COM Add-in dialogue in Office

bar of the Office application and choosing customize, a window opens which

allows for various customizations of the Office menu.

Under the Extras entry, a command button called ”COM Add-ins” can be

found (figure 3.4). Dragging and dropping this somewhere on the menu bar

gives the user full control of every Office COM add-in on the System.

In the current version MD*ReX consists of a total of five classes, six modules

and 12 GUI elements (figure B.1). The functionality of the client is discussed

in the following section.

An important class is clsMDCrpt.cls which implements the MD*Crypt pro-

tocol. This class is designed to encapsulate the communication details of the

client and could also be used by other VB developers. This class currently

consists of 17 properties, ten public members and 14 functions.

Another important class is clsMDCOMMenu.cls, which controls the main user

interface of the add-in. Both classes are generic and can be used for creating

COM add-ins for various Office applications. The complete source listing of

the client can be found in the appendix of this thesis.

21

MD*ReX

3.2.1 Design Issues for Add-in based Solutions

As outlined before, Excel might be a suitable tool for data storage, manipula-

tion and analysis. A success factor for a statistical add-in is the functionality

it offers and the design of its user interface. MD*ReX has been designed to

seamless fit into the well known user interface of the hosting Office applica-

tion without burdening the user to learn a complex and overloaded GUI.

Another design issue was to address a broad audience of users. As pointed

out in [3] and [4] we can at least identify three potential user categories:

method developers, advanced consumers of methods, and näıve users. An-

other classification might be teachers, graduate, and undergraduate students.

These user groups have different claims while using a statistical software.

Accordingly the environment should account for these profiles. A method

developer needing direct access to the statistical engine. In MD*ReX this is

achieved through a command line utility in the toolbar (figure 3.13). The

sophisticated methods user seeking for a macro editor to develop his own

functions. In MD*ReX this is the XploRe Direct utility (figure 3.15). And of

course the näıve user who is accustomed to or needs a menu driven interface

with dialogues and menu options. These can be accomplished via custom

add-in workbooks also known as .xla add-ins (figure 3.21).

3.2.2 Customizing the Add-in Environment

This last feature is extremely important if one needs to customize the COM

add-in environment itself. For the Excel client I decided to provide this

customization ability via user provided workbooks and a well-defined entry

point for custom VBA macros to be inline with the Excel object and user

model. The directory structure of the client is as follows:

/root-directory

/mdserv

/mdrexxla

/debug

where the root directory contains the MD*ReX COM DLL itself and one

default Excel .xla add-in. This default add-in, called Xploregetresult.xla,

22

MD*ReX

is automatically loaded when the client connects to a server and serves as

a generic excel worksheet function. It contains the VBA function XPLEval

which is a reference implementation of Excel worksheet functions and can be

seen in action in figure 3.19. The source is given below.

Option Explicit

Public Function XPLEval(XPLExpression As Variant, ParamArray XploReArgs() As Variant) As Variant

Dim i%

Dim oAdd As Object

Dim tArgs As Variant

If UBound(XploReArgs) >= 0 Then

For i = 0 To UBound(XploReArgs)

tArgs = XploReArgs(i)

Next i

End If

On Error GoTo Catch_Err

Set oAdd = Application.COMAddIns.Item("mdrex2004.dsrExcel11").Object

XPLEval = oAdd.XPLEval(XPLExpression, tArgs)

Exit Function

Catch_Err:

XPLEval = "#XPLError"

End Function

Sub AddDescription(Name, DescText, Optional Category = 4)

Application.MacroOptions Macro:=Name, Description:=DescText End

Sub

Private Sub Workbook_Open()

Call AddDescription(XPLEval, "Evaluates XploRe Quantlets")

End Sub

The mdserv directory contains the complete middleware and the XQS along

with all needed libraries, Quantlets and DLLs. The debug directory is the

place where MD*ReX writes its log file. The directory where MD*ReX looks

for user supplied add-ins is mdrexxla. By default this directory contains

one workbook add-in called oneVarSummary.xla. The functionality of this

add-in is described below.

As stated previously the Office application functionality can be enhanced by

problem specific add-in packages. In this setup of spreadsheet and statistical

engine we differentiate two user interaction models: in-sheet functions (also

referred to as worksheet functions) and customizations via menu based

functionality. We will try to make this approaches clear considering the

examples in the following section.

23

MD*ReX

3.3 How to work with MD*ReX

Before explaining how MD*ReX can be used for statistical data analysis,

some remarks on the variable size restrictions might be sensible. MD*ReX

can handle as much data as Excel can, and this is in its most current version

up to 255 variables (in columns), containing up to 65, 535 cases per variable

(in rows) on workbook level. The amount of workbooks Excel can handle is

theoretically only limited to the amount of memory on the PC.

After installing MD*ReX, which is usually done via the provided setup ap-

plication (but which can also be done manually as described in 3.2) the user

can start working with the add-in simply by starting the hosting office appli-

cation. In this examples the caller is always Excel and the callee is MD*ReX

for Excel.

Figure 3.5 shows Excel right after the user started it. As can be seen, the user

is confronted with the usual Excel GUI. Despite the fact that an additional

menu item appears on the top menu bar of Excel, also called Worksheet Menu

Bar.

Figure 3.5: Excel’s start up view

Clicking the new menu item MD*ReX 2004 some background activity is

recognizable which results in a splash screen with some information regarding

the MD*ReX COM add-in and a new menu bar appearing on the Worksheet

Menu Bar. Figure 3.6 shows this.

24

MD*ReX

Figure 3.6: MD*ReX after initialization.

A status message is displayed to the user on the default status bar location

in the lower part of Excel’s window. As can be seen the new menu bar item

consists of a couple of buttons and other items which are not accessible to

the user except for one item labeled Connect. Clicking on the only enabled

Connect button brings up a small window where the user has the opportu-

nity to select an XQS from a dropdown list. The choices are either a local

connection or a remote connection to other XQS.

Figure 3.7: Connect dialogue

While this is happening MD*ReX starts the middleware application MD-

COM.exe (formerly known as MDServ.jar) in the background. This process

is invisible to the user and can only be seen if the Windows process manager

is started as shown in figure 2.1. If the user now selects a local connection the

background process MDCOM.exe, which is listening to incoming connection

25

MD*ReX

requests, triggers a new instance of the XQS. This process is also hidden from

the user and can be watched either in the process manager or in the Excel

status bar. Evidently the user will remark a difference on the new menu bar,

since the previously disabled items are now activated and can be used, see

figure 3.8.

Figure 3.8: MD*ReX after connection

Having gone so far the client is now ready to start some statistical analysis.

As a simple example I will show some techniques to work with MD*ReX. A

basic requirement is naturally to work with data which is already contained

within an Excel spreadsheet. For illustration figure 3.9 shows a workbook

which contains some time series of the MSCI World stock index (Morgan

Stanley Capital International) obtained from Datastream.

As can be seen from figure 3.9, standard Excel interface features like a con-

text menu which opens up when right-clicking with the mouse anywhere in

the currently open workbook, can provide an intuitive way for the user to

communicate with a statistical backend software. In our implementation

MD*ReX offers a put and get method to post and retrieve data to and from

the XQS. The necessary action is now to mark an appropriate range of work-

sheet cells which contain the desired data and activate the put method. This

can be done either by the context menu or the Put-button in the menu bar.

Both are consistent with the Excel user interaction model.

MD*ReX’ put method utilizes another window based control to facilitate the

data exchange. Both the context menu entry as well as the menu bar entry

26

MD*ReX

Figure 3.9: Excel workbook with time series data and MD*ReX context

menu entries

open up a window asking the user to provide an appropriate name for the

data object to be sent to the XQS, see figure 3.10. After the user has given

the object a name, MD*ReX uploads the data onto the XQS. While doing

this it stores the name the user supplied and creates a mapping table which

contains all objects the user sent or retrieved from the XQS. This mapping

table furthermore creates so called named ranges which facilitate the use of

worksheet functions within Excel.

The mapping is crucial for obtaining an overview of data objects and for

facilitating the navigation within the client environment. The mapping con-

sists of the name supplied by the user (this is the first entry in the line and

also corresponds to the Excel named range), the worksheet name the data

27

MD*ReX

Figure 3.10: MD*ReX Put dialogue

object resides in, the exact address of the object in standard Excel notation

and finally the name of the data object on the server marked with the string

XPLORE: followed by its name. The mapping window is accessible via the

menu tool bar as seen in figure 3.12, the mapping table itself is depicted in

figure 3.11

Figure 3.11: MD*ReX mapped object table

As stated above, addressing various user needs to interact with a statistical

environment, I implemented two GUI elements to account for different needs.

The first one is a command line menu element which allows the user to di-

rectly issue XploRe commands. Each command is evaluated instantaneously.

28

MD*ReX

Figure 3.12: MD*ReX Named Ranges dialogue

If the evaluated command has a return value it will be displayed in an output

window, similar to 3.14 otherwise the command is silently processed. The

command line menu item also provides a command history for convenience.

Figure 3.13: MD*ReX command line interface

The other GUI element is an editor with built in result window. Both items

are necessary for providing a flexible and user friendly environment and are

standard in the XploRe GUI version and hence are expected by users of the

add-in version.

The editor can be reached via the XploRe Direct menu entry as shown in

figure 3.16.

The editor can be used to run custom or existing Quantlets. In our running

example we first load some libraries and then calculate log-returns and the

autocorrelation of the index series. Finally we print the according values in

the result window of the editor as depicted in figure 3.15.

But having results only in an editor window is not satisfying. We want the

resulting data objects back in our Excel workbook. As mentioned MD*ReX

29

MD*ReX

Figure 3.14: MD*ReX result window with evaluated command

provides a get method. In analogy to the put method this will get any

existing XploRe data object into Excel. The name mapping is also done in

this direction. After clicking back in the context menu or the menu bar, the

according object is written into the cell range of the current mouse position.

To be more precise the put and get methods read or write into the cell range

with the current Excel focus. Hence a picture similar to figure 3.17 might

be obtained. Note the open drop down field showing current Excel named

ranges.

We mentioned two user interaction models: in-sheet functions and menu

based functionality. Figure 3.18 shows the first kind: in-sheet functions. Via

the XplEval worksheet function we are able to evaluate XploRe commands

as if they were standard Excel functions, see also figure 3.19.

What remains is the customization respectively expansion of the client en-

vironment via user supplied .xla workbook add-ins. A prototype workbook

add-in which makes use of a menu-based functionality is supplied during

setup of the COM add-in. What this add-in does, is simply wrapping the

XploRe descriptive() command into a GUI based Excel function. To acti-

30

MD*ReX

Figure 3.15: XploRe Direct editor

vate this add-in, the menu item MD*ReX Add-Ins, see figure 3.16, has to be

clicked. This instructs MD*ReX to scan the mdrexxla directory for workbook

add-ins. If according add-ins were found they are displayed in the MD*Rex

Excel Add-Ins window as shown in 3.20.

The user now can select the desired add-in which is loaded into Excel. This

kind of add-ins can contain GUI elements but do not have to. The supplied

example add-in contains a small menu bar which opens another control when

clicked. With the so called Excel Refedit control the user can select arbitrary

Excel ranges, see figure 3.21.

After selecting a range the add-in asks for a XQS object name and then

sends the data to the server. The sent range is evaluated and in this case the

XploRe command descriptive(), which returns some descriptive statistics, is

executed on that range. The result of this command is then sent back to the

31

MD*ReX

Figure 3.16: MD*ReX XploRe Direct menu entry

MD*ReX result window as shown in figure 3.22.

When the user is finished with the analysis and wants to quit working with

MD*ReX, the recommend procedure is to click on Disconnect. This termi-

nates the current session with the XQS and unloads any custom workbook

add-in. If one wants to get rid of the additional menu bar a click on the

MD*ReX 2004 icon in the Worksheet menu bar is sufficient to close it. This

also unloads default add-ins. To completely unload the COM add-in itself ei-

ther Excel’s COM Add-ins menu can be used or the DLL can be unregistered

via the

regsrv32 mdrex2004.dll /u

command issued at the windows command prompt. This works only in the

directory where the COM add-in is installed, by default this resembles to:

%program_files_folder%\MDTECH\MDREX\

3.4 Future Work

3.4.1 Graphics

With the presented features MD*ReX has quite a lot to offer for statistical

data analysis. The immediate execution and representation of any XploRe

method which does not reply on graphical output is an advantage appreciated

in a spreadsheet environment. Its ability to connect to local XQS instances as

32

MD*ReX

Figure 3.17: MD*ReX after receiving data from XQS

well as those on remote machines is another one which offers flexibility when

computing power is needed, especially in heterogeneous environments.

However there is still room for improvement. First of all MD*ReX does not

exploit the graphical facilities provided by MD*Crypt but rather relies on a

manual treatment of XploRe data objects.

Hence the next incremental step would be to render XploRe graphical objects

into Excel chart objects. The interactivity features of XploRe graphics are

well suited to be mapped into interactive Excel charts, maybe via employing

additional slider objects within Excel. An alternative approach could be

achieved by creating a graphics device as ActiveX object in Visual Basic,

33

MD*ReX

Figure 3.18: MD*ReX worksheet function evaluating the mean of the series

Figure 3.19: XPLEval worksheet function

Visual C++ or Visual Java and to display XploRe graphics in this device,

when MD*ReX encounters an XploRe graphics object.

Nevertheless I would favor the former approach since this would represent a

solution which is more compatible with Excel’s object world and would not

disturb the Excel user experience with an additional graphics component.

3.4.2 User Customization

The outlined proposal to account for user added methods via Excel work-

book add-ins is in a preliminary stage yet. A more sophisticated handling of

this feature is desirable. Therefore the published application programming

34

MD*ReX

Figure 3.20: MD*ReX worksheet

interface (API) of MD*ReX needs further refinement, in order to allow the

user to pass arbitrary (user defined) data objects to MD*ReX for further

evaluation by the XploRe runtime environment. The current entry point is

quite restrictive and only allows for passing Excel range objects and character

strings.

3.4.3 Performance

The major drawback in socket based communication is a latency in sending

requests and receiving corresponding answers. While the MD*Crypt/MD*Serv

middleware approach is well dimensioned for light-weight applications like

browser based applet or e-book solutions a local communication via a socket

based unstructured byte stream is a restraint in circumstances where very

fast response cycles are required.

Unfortunately this holds true for the recalculation paradigm of spreadsheet

applications. Every time when Excel enters a recalculation cycle, e.g. because

35

MD*ReX

Figure 3.21: Example of a custom add-in

the user changed a cell value which was calculated by a worksheet function,

the application has to wait until the middleware sends and receives data

between client and server. For menu based applications, which as shown

might also be realized in spreadsheets, this is not much of a problem. But

things can get really slow, if the user makes use of worksheet functions. Since

for every cell this extra middleware cycle has to be undergone.

3.4.4 Outlook

The statistical package XploRe emphasized a flexible, transparent, and in-

teractive environment in its earliest versions. It was clear that distributed

working in heterogeneous environments was crucial for scientific research and

education in statistics.

The client/server concept which was then derived from this findings, still

underline the topicality and necessity of such an approach. As discussed the

36

MD*ReX

Figure 3.22: Result of a custom add-in

current Java based middleware architecture is formidable in applications like

browser based services or e-books. In volume and time critical circumstances

however the communication overhead can create a bottleneck. To sum up

we can identify following concerns:

The communication is low-level: a special purpose format is used for inter-

change and hence there is hardly potential for reusability of the communica-

tion structure and only little support for universal data formats. It follows

that the developer of an client application has to have enough knowledge of

the underlying system, i.e. XploRe and its communication structure to start

an analysis and evaluate the result. Low level communication details, like

restart of an calculation, identification of communication errors, assurance

of the transmitted data are cumbersome details a developer has to take care

of rather on concentrating on the big picture of his application. A possible

remedy might be to shift communication from sockets to a binary level e.g.

by exploiting a component interaction architecture like COM, at least in local

environments.

37

MD*ReX

Especially within the MD*ReX project these problems are of concern, though

there is a high demand for such an spreadsheet based application as shown

e.g. in [44] and suggested by the download figures among the various clients

the XploRe project has to offer.

A major concern in application development is reusability, customization,

and rapid application composition out of pre fabric components, see e.g.

[14]. In order to be able to compose applications using components they

should meet the following requirements, see e.g. [39]:

dynamic linking

implementation encapsulation

language independence

A component technology like COM is aimed towards standardization of how

components expose their functionality using interfaces. Software component

architectures break the existing barriers between different programs by defin-

ing a framework where different components can interact which each other

in a seamless manner, see e.g. [5]

Thus one aim of a component oriented approach can be identified as to be the

seamless integration of the statistical environment in whichsoever component

environment and ideally a complete encapsulation of the communication and,

if feasible, of those provided statistical methods.

This consequently would allow users and developers to access statistical

knowledge exposed by e.g. the XploRe system as if it were the environment

(language, application, etc.) they are so familiar with, e.g Excel.

A bunch of alternatives (COM, CORBA, XML based Web Services) are

available and the decision in favor of one or against the other has to be

made in light of various influencing factors: the targeted audience, i.e. which

platforms have to be supported, what kind of applications one wants to

address and which development horizon is acceptable, just to name a few.

The newly started Yxilon project might help in fostering a strictly compo-

nent oriented architecture. Then even the support of different component

paradigms could be achieved, as a developer could exploit the paradigm

which best suits her requirements.

38

MD*ReX

3.5 Some Graphical Examples

With the described tool set and command functionality it is possible to

conduct sophisticated statistical analyses with MD*ReX, like the following

charting examples show. These are examples of existing Quantlets which are

reproduced with MD*ReX and presented here as a closing feature of this

thesis.

3.5.1 Implied Volatility

Figure 3.23: MD*ReX Implied Volatility Illustration

39

MD*ReX

3.5.2 DAX30 Time Series Analysis

Figure 3.24: MD*ReX Time Series Analysis for DAX30

40

MD*ReX

3.5.3 SARIMA Time Series Analysis

Figure 3.25: MD*ReX SARIMA Analysis for Airline Data

41

MD*ReX

3.5.4 Spline Smoothing

Figure 3.26: Cubic and Adaptive Spline smoothing

42

MD*ReX

3.5.5 Kernel Regression

Figure 3.27: Kernel Regression

43

MD*ReX

3.5.6 Kernel Densities

Figure 3.28: Construction of Kernel Densities

44

Bibliography

[1] G. Aydınlı, Web Based Finance Tools, EGARCH and the ReX Client,

Master’s thesis, Wirtschaftswissenschaftliche Fakultät, Humboldt-

Universität zu Berlin, 2000.

[2] , in Härdle, W. and Kleinow, T. and Stahl, G. (eds.): Applied

Quantitative Finance, Theory and Computational Tools, ch. Net Based

Spreadsheets in Quantitative Finance, Springer-Verlag, 2002.

[3] G. Aydınlı, W. Härdle, and E. Neuwirth, Efficient and Secure Statistics

in Office Applications, Proc. of the 35th Symposium on the Interface

“Security and Infrastructure Protection”, 2003.

[4] G. Aydınlı, W. Härdle, and B. Rönz, E-Learning / E-Teaching of Statis-

tics: A New Challange, Proc. of the IASE satellite conference on “Statis-

tics Education and the Internet”, 2003.

[5] T. Baier, R: Windows Component Services, Integrating R and Ex-

cel on the COM layer, DSC 2003 Working Paper, available online at

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/, 2003.

[6] T. Baier and E. Neuwirth, High-Level Interface between R

and Excel, DSC 2003 Working Paper, available online at

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/, 2003.

[7] K. Brockschmidt, Inside Ole, 2 ed., Microsoft Press, 1995.

[8] J. Chambers and D.T. Lang, Ω̂ A Component-based Statisti-

cal Computing Environment, Statistics and Data Mining Re-

45

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

BIBLIOGRAPHY

search, Bell Labs, Technical Reports, available at http://cm.bell-

labs.com/cm/ms/departments/sia/doc/comp.html, 1999.

[9] J.M. Chambers, M.H. Hansen, D.A. James, and D.T. Lang, Distributed

Computing with Data: A CORBA-Based Approach, Statistics and

Data Mining Research, Bell Labs, Technical Reports, available at

http://cm.bell-labs.com/cm/ms/departments/sia/doc/comp.html,

1998.

[10] H.R. Cook, M.G. Cox, M.P. Dainton, and P.M. Harris, Testing spread-

sheets and other packages used in metrology, testing the instrinsic func-

tions of excel, Tech. Report NPL Report CISE 27/99, National Physical

Laboratory, Queens Road, Teddington, Middlesex, TW11 0LW, Septem-

ber 1999, ISSN 1361-407X.

[11] J.D. Cryer, Problems with using Microsoft Excel for Statistics, Joint

Statistical Meetings, August 2001, Altanta, GA, 2001.

[12] J. Feuerhake, XQS/MD*Crypt as a Means of Education and Computa-

tion, in COMPSTAT 2002, Proceedings in Computational Statistics [19],

pp. 635–640.

[13] J. R. Geßler, Statistische Graphik, Birkhäuser, 1993.

[14] F. Griffel, Componentware, dpunkt-Verlag, 1998.

[15] W. Härdle, Z. Hlávka, and S. Klinke, XploRe - Application Guide,

Springer-Verlag, 2000.

[16] W. Härdle, T. Kleinow, and G. Stahl (eds.), Applied Quantitative Fi-

nance, Theory and Computational Tools, Springer-Verlag, 2002.

[17] W. Härdle, T. Kleinow, and R. Tschernig, Web Quantlets for Time

Series Analysis, The Annals of Mathematical Statistics 53 (2001), no. 1,

179–188.

[18] W. Härdle, S. Klinke, and M. Müller, XploRe - Learning Guide,

Springer-Verlag, 2000.

46

http://cm.bell-labs.com/cm/ms/departments/sia/doc/comp.html
http://cm.bell-labs.com/cm/ms/departments/sia/doc/comp.html
http://cm.bell-labs.com/cm/ms/departments/sia/doc/comp.html

BIBLIOGRAPHY

[19] W. Härdle and B. Rönz (eds.), COMPSTAT 20002, Proceedings in Com-

putational Statistics, Physica-Verlag, 2002.

[20] W. Härdle and L. Simar, Applied Multivariate Statistical Analysis,

Springer-Verlag, 2003.

[21] T. Kleinow and T. Lehmann, Computational Statistics, vol. 17:3,

ch. Client/Server based Statistical Computing, Physica-Verlag, 2002.

[22] S. Klinke, Data Structures for Computational Statistics, Contributions

to Statistics, Physica-Verlag, 1997.

[23] L. Knüsel, On the Accuracy of Statistical Distributions in Mi-

crosoft Excel 97, Accuracy of Statistical Packages, available online at

http://www.stat.uni-muenchen.de/∼knuesel/elv/accuracy.html, 1998.

[24] , On the Reliability of Microsoft Excel XP for Statisti-

cal Purposes, Accuracy of Statistical Packages, available online at

http://www.stat.uni-muenchen.de/∼knuesel/elv/accuracy.html, 2002.

[25] D. Krahl, U. Windhäuser, and F.-K. Zick, Data Mining - Einsatz in der

Praxis, Addison-Wesley, 1998.

[26] T. Kötter, Entwicklung Statistischer Software, Wirtschaftswis-

senschaftliche Beiträge, Physica-Verlag, 1998.

[27] H. Lehmann, Client/Server Based Statistical Computing, Ph.D. thesis,

Wirtschaftswissenschafliche Fakultät, Humboldt-Uniervistät zu Berlin,

2004.

[28] F. Leisch, Sweave: Dynamic Generation of Statistical Reports Using

Literate Data Analysis, in COMPSTAT 2002, Proceedings in Computa-

tional Statistics [19], pp. 575–580.

[29] B.D. McCullough, Is it safe to assume that software is accurate?, Inter-

national Journal of Forecasting 16 (2000), 349–357.

[30] B.D. McCullough and B. Wilson, On the Accuracy of Statistical Proce-

dures in Microsoft Excel, Computational Statistics & Data Analysis 31

(1999), 27–37.

47

http://www.stat.uni-muenchen.de/~knuesel/elv/accuracy.html
http://www.stat.uni-muenchen.de/~knuesel/elv/accuracy.html

BIBLIOGRAPHY

[31] M. Monka and W. Voß, Statistik am PC, Hanser, 2002.

[32] MSDN, Microsoft Developer Network Library, Microsoft online refer-

ences available at http://msdn.microsoft.com/library/default.asp, 2004.

[33] E. Neuwirth, in DiSessa, A. and Hoyles, C. (eds.): The Design of Com-

putational Media to Support Exploratory Learning, ch. Visualizing struc-

tural and formal relationships with spreadsheets, Springer-Verlag, 1996.

[34] , in Filby, G. (ed.): Spreadsheets in Science and Engineering,

ch. Spreadsheets as Tools in Mathematical Modeling and Numerical

Mathematics, Springer-Verlag, 1997.

[35] , in Tinsley, D. and Johnson, D. (eds.): Information and Com-

munications Technology in School Mathematics, ch. Spreadsheets: just

smart calculators or a new paradigm for thinking about mathematics

structure?, Chapman-Hall, 1998.

[36] , Spreadsheets as Tools for Statistical Computing and Statistics

Education, COMPSTAT 2000, Proceedings in Computational Statistics,

2000, pp. 131–138.

[37] F.C. Rice, Building a COM Add-in for Microsoft Office XP, Tech. report,

Microsoft Corporation, 2002.

[38] B.D. Ripley, Statistical Methods Need Software: A View of Statiscal

Computing, Opening Lecture RSS 2002, presentation available online at

http://www.stats.ox.ac.uk/∼ripley/RSS2002.pdf, 2002.

[39] D. Rogerson, Inside COM, Microsoft Press, 1997.

[40] S. Roman, What is an Add-in?, Articles on

VB/VBA/Office Programming, available online at

http://www.romanpress.com/Articles/Articles.htm, 2001.

[41] , Writing Excel Macros with VBA, 2nd Edition, O’Reilly, 2002.

[42] G. Sawitzki, Keeping Statistics Alive in Documents, Computational

Statistics 17 (2002), no. 1, 65–88.

48

http://msdn.microsoft.com/library/default.asp
http://www.stats.ox.ac.uk/${sim }$ripley/RSS2002.pdf
http://www.romanpress.com/Articles/Articles.htm

BIBLIOGRAPHY

[43] J.S. Simonoff, Statistical Analysis using Microsoft Excel,

Statistics and Data Analysis Handout, available online at

http://pages.stern.nyu.edu/∼jsimonof/classes/1305/pdf/excelreg.pdf,

2002.

[44] H. Sofyan and A. Werwatz, Analysing XploRe Download Profiles with

Intelligent Miner, Computational Statistics 16 (2001), 465–479.

[45] J. Walkenbach, Excel 2002 Formulas, M & T Books, 2002.

[46] , Excel 2002 Power Programming with VBA, M & T Books, 2002.

[47] , Excel Charts, Wiley Publishing, 2002.

[48] R. Witzel and S. Klinke, MD*Book online & e-stat: Generating e-stat

Modules from LATEX, in COMPSTAT 2002, Proceedings in Computa-

tional Statistics [19], pp. 449–454.

49

http://pages.stern.nyu.edu/~jsimonof/classes/1305/pdf/excelreg.pdf

Appendix A

Glossary

Abbreviations

COM Component Object Model

CORBA Common Object Request Broker

CUI Commandline User Interface

DLL Dynamic Link Library

GUI Graphical User Interface

OLE Object Linking and Embedding

PDF Portable Document Format

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

TCP/IP Transport Control Protocol / Internet Protocol

VB Visual Basic

VBA Visual Basic for Applications

XML Extensible Markup Language

50

Appendix B

Program Source

51

Program Source

B.1 MD*ReX Source Tree

Figure B.1: MD*ReX source tree

52

Program Source

B.2 MD*Serv Source Tree

Figure B.2: MD*Serv source tree

53

Program Source

B.3 Visual Basic Source

This section contains the complete source code of the discussed MD*ReX

client.

B.4 mdlDebug.bas

Attribute VB_Name = "mdlDebug"
Option Explicit

Public Const dbgstar = "***" & vbTab
Public myFile As FileSystemObject

Sub ExeErr(errX As ErrObject)
’ Zeigt ein Meldungsfeld mit Fehlerinformationen an.
Dim strMsg As String
strMsg = App.Title & "caused an error." & vbCrLf & "Error :" & errX.Number _

& vbCrLf & errX.Description
MsgBox strMsg , , App.EXEName

End Sub

Sub CreateDBGFolder ()
On Error GoTo Debug_Err:

If Not (myFile.FolderExists(App.Path & "\ debug ")) Then
myFile.CreateFolder (App.Path & "\debug ")
Call WriteDBGString (" Creating debug folder in: " & App.Path & "\ debug\" & vbCrLf , App.

EXEName & ".log")
End If

Exit Sub

Debug_Err:
Call ExeErr(Err)

End Sub

Sub WriteDBGString(DBGString As String , DBGFileName As String)
Dim tmpFile As Object
On Error GoTo Debug_Err

If Not (myFile.FileExists(App.Path & "\ debug \" & DBGFileName)) Then
myFile.CreateTextFile App.Path & "\ debug\" & DBGFileName , True
Call WriteDBGString (" Creating debug file in: " & App.Path & "\ debug\" & DBGFileName &

vbCrLf , App.EXEName & ".log")
End If

Set tmpFile = myFile.OpenTextFile(App.Path & "\ debug \" & DBGFileName , ForAppending , ,
TristateUseDefault)

tmpFile.write (dbgstar & DBGString)
tmpFile.Close

Exit Sub

Debug_Err:
Call ExeErr(Err)

End Sub

54

Program Source

B.5 mdlExcelXploRe.bas

Attribute VB_Name = "mdlExcelXploRe"
Option Explicit
Public struFunc As String
Public strFunc As String
Public strPathTmp As String
Public qNameArray () As String
Public libNameArray () As String
Public xlaNameArray () As String
Public myQuantLibMapper As LibQuantMapper

Sub SendFunctionToVBA(FunctionToSend As String)
On Error GoTo SendFunctionErr:

oHostInst.VBE.ActiveVBProject.VBComponents.Import (FunctionToSend)

Exit Sub

SendFunctionErr:
Select Case Err.Number

Case Is = 0
Exit Sub

Case Else
MsgBox "You must turn on access to VBA projects !" & vbCrLf & "To do this , point to Macro

on the Tools menu" & vbCrLf & _
"and then click Security , then click trusted sources tab , then click to select the TRUST

access to Visual Basic Project check box.", vbOKOnly , Err.Number & " " & Err.
Description

Exit Sub
End Select

End Sub

Function LoadVBAFunction () As String
Dim i As Integer
On Error Resume Next

Select Case (oHostInst.Version)
Case "10.0"

’struFunc = LoadResData (101, "CUSTOM ")
struFunc = LoadResData (103, "CUSTOM ")
For i = 1 To LenB(struFunc)

strFunc = strFunc & Chr(AscB((MidB(struFunc , i, 1))))
Next i
LoadVBAFunction = strFunc

Case Else
struFunc = LoadResData (102, "CUSTOM ")
For i = 1 To LenB(struFunc)

strFunc = strFunc & Chr(AscB((MidB(struFunc , i, 1))))
Next i
LoadVBAFunction = strFunc

End Select

End Function

Sub CreateVBATxt ()
Dim tmpFSO As FileSystemObject
Dim a As Variant

On Error Resume Next
strPathTmp = App.Path & "\VBA.tmp"
Set tmpFSO = New FileSystemObject

Set a = tmpFSO.OpenTextFile(strPathTmp , ForWriting , True)
Debug.Print strFunc
a.write (strFunc)
a.Close
Set tmpFSO = Nothing

End Sub

Function GetLocalAddins(FileSpec As String) As Variant
Dim FileCount As Integer
Dim FileName As String

On Error GoTo NoFilesFound

FileCount = 0
FileName = Dir(FileSpec)
If FileName = "" Then GoTo NoFilesFound

’ Loop until no more matching files are found
Do While FileName <> ""

FileCount = FileCount + 1
ReDim Preserve xlaNameArray (0 To FileCount)
xlaNameArray(FileCount) = FileName
FileName = Dir()

Loop
GetLocalAddins = xlaNameArray

55

Program Source

Exit Function

’ Error handler
NoFilesFound:

MsgBox "No Addins found !"
GetLocalAddins = False

End Function

Function GetLocalQList(FileSpec As String) As Variant
’ Returns an array of filenames that match FileSpec
’ If no matching files are found , it returns False

Dim FileCount As Integer
Dim FileName As String

On Error GoTo NoFilesFound

FileCount = 0
FileName = Dir(FileSpec)
If FileName = "" Then GoTo NoFilesFound

’ Loop until no more matching files are found
Do While FileName <> ""

FileCount = FileCount + 1
ReDim Preserve qNameArray (1 To FileCount)
qNameArray(FileCount) = FileName
FileName = Dir()

Loop
GetLocalQList = qNameArray
Exit Function

’ Error handler
NoFilesFound:

GetLocalQList = False
End Function

Function GetLocalLibList(FileSpec As String) As Variant
’ Returns an array of filenames that match FileSpec
’ If no matching files are found , it returns False

Dim FileCount As Integer
Dim FileName As String

On Error GoTo NoFilesFound

FileCount = 0
FileName = Dir(FileSpec)
If FileName = "" Then GoTo NoFilesFound

’ Loop until no more matching files are found
Do While FileName <> ""

FileCount = FileCount + 1
ReDim Preserve libNameArray (1 To FileCount)
libNameArray(FileCount) = FileName
FileName = Dir()

Loop
GetLocalLibList = libNameArray
Exit Function

’ Error handler
NoFilesFound:

GetLocalLibList = False
End Function

Function ReadQuantletFile(QFileName As String) As String ()
Dim a
Dim i As Long
Dim temp
Set myFile = New FileSystemObject
Set a = myFile.OpenTextFile(QFileName , ForReading , False , TristateFalse)

For i = 1 To a.Line
temp = a.readLine(i)
Next i

End Function

Function IsRangeEmpty(RangeToCheck As Range) As Boolean
Dim rngTemp As Range

For Each rngTemp In RangeToCheck
If IsEmpty(rngTemp) Then

IsRangeEmpty = True
Else

IsRangeEmpty = False
End If

Next
End Function

56

Program Source

B.6 mdlMap.bas

Attribute VB_Name = "mdlMap"
Option Explicit
Public myMapper As XPL2XLSMapper
Public CounterRuns As Long

Sub Map(ByVal XLS As Range , ByVal XPL As String , Runs As Long)
On Error GoTo MapErr
Dim tString As String

With myMapper
ReDim Preserve .XLSObject(Runs - 1)
ReDim Preserve .XPLObject(Runs - 1)
ReDim Preserve .XLSObjectName(Runs - 1)
.XLSObject(Runs - 1) = CStr(XLS.Worksheet.Name) & "_" & CStr(XLS.Address)
Debug.Print XLS.Worksheet.Name
XLS.Name = XPL
.XLSObjectName(Runs - 1) = CStr(XPL)
.XPLObject(Runs - 1) = XPL
.XPLObjectCount = .XPLObjectCount + Runs

End With
Call WriteDBGString (" mapping" & CStr(XPL) & vbCrLf , App.EXEName & ".log")

Exit Sub

MapErr:
Call ExeErr(Err)
Exit Sub

End Sub

Function CountRuns () As Long
Dim j As Long

CountRuns = j + 1
CounterRuns = CounterRuns + CountRuns

End Function

Sub WriteName(ByVal sName As String , ByVal XLS As Range)
’
End Sub

Sub WriteMapper(Row As Long , Col As Long)
’// deprecated
Dim i%

On Error GoTo Mapper_Err
If SheetExists (" XploRe 2 Excel Mapping Table ") Then

With oHostInst.Sheets (" XploRe 2 Excel Mapping Table ")
.Unprotect
.Cells(Row , 1).Value = "XploRe: " & myMapper.XPLObject(CounterRuns - 1)
.Cells(Row , 1).Interior.ColorIndex = 3
.Cells(Row , 2).Value = "Excel: " & myMapper.XLSObject(CounterRuns - 1)
.Cells(Row , 2).Interior.ColorIndex = 32
.Rows ("1:" & Row).EntireRow.Hidden = False
.Rows(Row + 1 & ":65536").EntireRow.Hidden = True
.Columns (1).EntireColumn.Hidden = False
.Columns (2).EntireColumn.Hidden = False
.Columns (1).EntireColumn.AutoFit
.Columns (2).EntireColumn.AutoFit

For i = 3 To 256
.Columns(i).EntireColumn.Hidden = True

Next
.Protect

End With
Else

AddMappingSheet (" XploRe 2 Excel Mapping Table ")
With oHostInst.Sheets (" XploRe 2 Excel Mapping Table ")

.Unprotect

.Cells(Row , 1).Value = "XploRe: " & myMapper.XPLObject(CounterRuns - 1)

.Cells(Row , 1).ColorIndex = 3

.Cells(Row , 1).Font.ColorIndex = 3

.Cells(Row , 2).Value = "Excel: " & myMapper.XLSObject(CounterRuns - 1)

.Cells(Row , 1).ColorIndex = 32

.Cells(Row , 1).Font.ColorIndex = 2

.Rows ("1:" & Row).EntireRow.Hidden = False

.Rows(Row + 1 & ":65536").EntireRow.Hidden = True

.Columns (1).EntireColumn.Hidden = False

.Columns (2).EntireColumn.Hidden = False

.Columns (1).EntireColumn.AutoFit

.Columns (2).EntireColumn.AutoFit
For i = 3 To 256

.Columns(i).EntireColumn.Hidden = True
Next

.Protect
End With

End If
Exit Sub

Mapper_End:
Exit Sub

57

Program Source

Mapper_Err:
Call ExeErr(Err)
Resume Mapper_End

End Sub

58

Program Source

B.7 mdlMDRex2004.bas

Attribute VB_Name = "mdlMDRex2004"
Option Explicit

Public oHostInst As Object ’//forward declare hosting Office App
Public oAddinInst As Object ’//forward declare hosted (COM)AddIn App
Public p_AddinInst As Object
Public MenuItem As Office.CommandBarButton ’//forward declare container for MenuBar ,

needs Reference to MSOffice v.11 ObjectLib
Public PopupItem As Office.CommandBarPopup ’//forward declare container for PopUp
Public ContextMenuItem As Office.CommandBarButton

Public p_OfficeCrypt As clsMDCrypt ’//forward declare MDCrypt Protocol implemented by MDRex
Public str_InfoMDCOM As String ’// container for MDCrypt messages
Public str_InfoMDCRYPT As String ’// container for MDCrypt messages
Public OfficeInstances As Integer ’//counter for calling Office Instances
Public clsResult () As String ’// container for Results

Public Const PROG_ID_START As String = "!<" ’//const for ProgIDs of MDRex COM -Addin
Public Const PROG_ID_END As String = ">"

Public Const CBR_NAME As String = "Worksheet Menu Bar" ’//const for menu items in MSExcel
Public Const CTL_CAPTION As String = "&MD*ReX 2004"
Public Const CTL_KEY As String = "MDCOMAddIn"
Public Const CTL_NAME As String = "MD*ReX 2004"

Public myPutGet As clsPutGet
Public myMDCOMMenu As clsMDCOMMenu ’//pointer to clsMDCOMMenu , main UserInterface class
Public myMDCOMContextMenu As clsMDCOMContextMenu ’//pointer to clsMDCOMContextMenu

Public myFrmSplash As frmSplashNew ’//prefetch forms and keep them globally available
Public myFrmGetResult As frmGetResult
Public myFrmFunctions As frmFunctions
Public myFrmLibsLocal As frmLibsLocal
Public myFrmNamedRanges As frmNamedRanges
Public myFrmObjects As frmObjects
Public myFrmQuantlets As frmQuantlets
Public myFrmQuantsLocal As frmQuantsLocal
Public myFrmStatus As frmStatus
Public myFrmXLA As frmXLA

Public blnRexToggled As Boolean
Public LocalMDServ As Boolean
Public myAddin1 As Excel.AddIn

Public ObjectString As String ’//global container for Objects
Public FunctionString As String ’//global container for Functions
Public QuantletString As String ’//global container for Quantlets
Public InfoString As String ’//global container for Quantlets

Public Function SaveHostApp(ByRef oHost As Object , ByRef oAddin As Object)
Set oHostInst = oHost
Set oAddinInst = oAddin
If (myMDCOMMenu Is Nothing) Then

Set myMDCOMMenu = New clsMDCOMMenu
Set myMDCOMContextMenu = New clsMDCOMContextMenu

End If
End Function

Public Function UpdateViewsMenu ()
With oHostInst

If p_OfficeCrypt.ConnectedToServer = True Then
.StatusBar = "MD*COM - XQS Status " & "[" & p_OfficeCrypt.GetServerStatus () & "]" & "

XQS IP " & "[" & p_OfficeCrypt.propServerIP & ":" & p_OfficeCrypt.propServerPort
& "]"

Else
.StatusBar = "MD*COM - XQS Status " & "[" & p_OfficeCrypt.GetServerStatus () & "]"

End If
End With
Call UpdateMenuItems(myMDCOMMenu.cbMDCOM)

End Function

Public Function UpdateViewsContext ()
With oHostInst

If p_OfficeCrypt.ConnectedToServer = True Then
.StatusBar = "MD*COM - XQS Status " & "[" & p_OfficeCrypt.GetServerStatus () & "]" & "

XQS IP " & "[" & p_OfficeCrypt.propServerIP & ":" & p_OfficeCrypt.propServerPort
& "]"

Else
.StatusBar = "MD*COM - XQS Status " & "[" & p_OfficeCrypt.GetServerStatus () & "]"

End If
End With
Call UpdateContextMenuItems(myMDCOMContextMenu.cmPut)
Call UpdateContextMenuItems(myMDCOMContextMenu.cmGet)
Call UpdateContextMenuItems(myMDCOMContextMenu.cmRun)

End Function

59

Program Source

Public Sub UpdateMenuItems(ByRef cmdBar As Office.CommandBar)
On Error GoTo UpdateMenuItemsErr
Dim i%
Set MenuItem = cmdBar.Controls.Item (1)
With MenuItem

If Not p_OfficeCrypt.ConnectedToServer Then
.Style = msoButtonCaption
.Enabled = True
.Caption = "Connect"
.Width = 50

Else
.Style = msoButtonCaption
.Enabled = True
.Caption = "Disconnect"
.Width = 50

End If
End With

For i = 2 To 8
cmdBar.Controls(i).Enabled = p_OfficeCrypt.ConnectedToServer

Next i

Exit Sub

UpdateMenuItemsErr:
Call ExeErr(Err)
Exit Sub

End Sub

Public Sub UpdateContextMenuItems(ByRef cmdBtn As Office.CommandBarButton)
On Error GoTo UpdateContextMenuItemsErr
Dim i%
Set ContextMenuItem = cmdBtn ’.Controls.Item (1)
With ContextMenuItem

If Not p_OfficeCrypt.ConnectedToServer Then
.Enabled = False

Else
.Enabled = True

End If
End With

Exit Sub

UpdateContextMenuItemsErr:
Call ExeErr(Err)
Exit Sub

End Sub

Public Function LoadAddin(bool As Boolean , whichAddin As String , Optional str As String) As
Boolean

On Error GoTo LoadAddin_err

If str <> "" Then
Set myAddin1 = oHostInst.AddIns.Add(App.Path & "\" & whichAddin) ’, True)
Call WriteDBGString (" trying to load external Excel addin (" & myAddin1.Name & ")" & vbCrLf

, App.EXEName & ".log")
End If

If myAddin1 Is Nothing Then
Exit Function
Call WriteDBGString ("no AddIn (" & myAddin1.Name & ") found ." & vbCrLf , App.EXEName & ".

log")
End If

If bool Then
myAddin1.Installed = True
Call WriteDBGString (" loading (" & myAddin1.Name & ") succeeded ." & vbCrLf , App.EXEName &

".log")
Else

myAddin1.Installed = False
Call WriteDBGString (" unloading (" & myAddin1.Name & ") succeeded ." & vbCrLf , App.EXEName &

".log")
End If

Exit Function

LoadAddin_err:
Call ExeErr(Err)
Exit Function

End Function

Public Function FileToTextBox(TextBox As TextBox , Path As String)
Dim tmpFSO As FileSystemObject
Dim a As Variant

60

Program Source

On Error Resume Next
strPathTmp = Path ’App.Path & "\VBA.tmp"
Set tmpFSO = New FileSystemObject

Set a = tmpFSO.OpenTextFile(strPathTmp , ForReading , False)
TextBox.Text = a.ReadAll
a.Close
Set tmpFSO = Nothing
TextBox.Text = Replace(TextBox.Text , Chr$ (10), Chr$ (13) & Chr$ (10))
TextBox.Text = Replace(TextBox.Text , Chr$ (13) & Chr$ (13), Chr$ (13))
Debug.Print TextBox.Text

End Function

Function SheetExists(NewSheetName) As Boolean
’Returns TRUE if sheet exists in the active workbook
Dim x As Object
On Error Resume Next
Set x = oHostInst.ActiveWorkbook.Sheets(NewSheetName)
If Err = 0 Then SheetExists = True _

Else: SheetExists = False
End Function

Sub AddMappingSheet(SheetName As String)
On Error Resume Next
If Not SheetExists(SheetName) Then

oHostInst.Worksheets.Add.Move After := oHostInst.Worksheets(oHostInst.Worksheets.Count)
oHostInst.Worksheets(oHostInst.Worksheets.Count).Name = SheetName
oHostInst.Sheets(SheetName).Protect

Else: Exit Sub
End If
End Sub

Sub DeleteAddIns(AddInName As String)
Dim tmpStr As String
tmpStr = AddInName
tmpStr = Replace(tmpStr , ".xla", "")

On Error Resume Next
’oHostInst.AddIns (" Onevarsummary ").Installed = False
oHostInst.AddIns(tmpStr).Installed = False ’//to assure that addins are correctly un/loaded

End Sub

61

Program Source

B.8 mdlMDRexCommandBar.bas

Attribute VB_Name = "mdlMDRexCommandBar"
Option Explicit

Function CreateAddInCommandBarButton(ByVal Application As Object , _
ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode , _
ByVal AddInInst As Object) As Office.CommandBarButton

’ Diese Prozedur ordnet einen Verweis auf das Application -Objekt , das
’ an das OnConnection -Ereignis übergeben wurde , einer globalen
’ Objektvariablen zu. Dann erstellt sie eine neue
’ Befehlsleisten -Schaltfläche und gibt einen Verweis auf die
’ Schaltfläche an die OnConnection -Ereignisprozedur zurück. Der
’ Vorteil gegenüber dem Einfügen dieser Codeanweisung in ein
’ öffentliches Modul besteht darin , dass Sie diese Prozedur bei einem
’ Projekt mit mehreren Add -In -Designern aus den einzelnen Designern
’ aufrufen können , anstatt die Codeanweisung duplizieren zu müssen.

Dim cbrMenu As Office.CommandBar
Dim ctlBtnAddIn As Office.CommandBarButton
Dim myIcon As Variant
Dim myClip As Clipboard
Dim cbrProtection As Long

’MsgBox "Creating CommandBar !", vbInformation , "CreateAddInCommandBar"
On Error GoTo CreateAddInCommandBarButton_Err

’ Zurückgeben eines Verweises auf das Application -Objekt und Speichern
’ dieses Objekts in einer öffentlichen Variablen , so dass andere Prozeduren
’ im Add -In es verwenden können.
Set oHostInst = Application

’ Verweis auf Befehlsleiste zurückgeben.

If (oHostInst <> "Microsoft Word") Then
Set cbrMenu = oHostInst.CommandBars(CBR_NAME)
cbrProtection = cbrMenu.Protection
cbrMenu.Protection = msoBarNoProtection

Else
Set cbrMenu = oHostInst.CommandBars ("Menu Bar")
cbrProtection = cbrMenu.Protection
cbrMenu.Protection = msoBarNoProtection

End If

’ Schaltfläche hinzufügen , um das Add -In aus der Befehlsleiste
’ aufzurufen , wenn nicht bereits vorhanden.
’ Konstanten werden auf Modulebene deklariert.
’ Suchen nach der Schaltfläche auf der Befehlsleiste.
Set ctlBtnAddIn = cbrMenu.FindControl(Tag:= CTL_KEY)
If ctlBtnAddIn Is Nothing Then

’ Neue Schaltfläche hinzufügen.
Set ctlBtnAddIn = cbrMenu.Controls.Add(Type:= msoControlButton , _

Parameter := CTL_KEY)
’ Schaltflächeneigenschaften Caption , Tag , Style und OnAction festlegen.
With ctlBtnAddIn

.Caption = CTL_CAPTION

.Tag = CTL_KEY

.Style = msoButtonIconAndCaption
Clipboard.SetData LoadResPicture (104, vbResBitmap)
.PasteFace
Clipboard.Clear
.OnAction = PROG_ID_START & AddInInst.ProgId & PROG_ID_END

End With
End If
’ Verweis auf neue Befehlsleisten -Schaltfläche zurückgeben.
Set CreateAddInCommandBarButton = ctlBtnAddIn

Exit Function

CreateAddInCommandBarButton_End:
Exit Function

CreateAddInCommandBarButton_Err:
’ Aufrufen einer generischen Fehlerbehandlungsroutine für das
’ Add -In.
Call ExeErr(Err)
Resume CreateAddInCommandBarButton_End

End Function

Function CreateAddInComboBox(ByVal Application As Object , _
ByVal AddInInst As Object) As Office.CommandBarComboBox

’ Diese Prozedur ordnet einen Verweis auf das Application -Objekt , das
’ an das OnConnection -Ereignis übergeben wurde , einer globalen
’ Objektvariablen zu. Dann erstellt sie eine neue

62

Program Source

’ Befehlsleisten -Schaltfläche und gibt einen Verweis auf die
’ Schaltfläche an die OnConnection -Ereignisprozedur zurück. Der
’ Vorteil gegenüber dem Einfügen dieser Codeanweisung in ein
’ öffentliches Modul besteht darin , dass Sie diese Prozedur bei einem
’ Projekt mit mehreren Add -In -Designern aus den einzelnen Designern
’ aufrufen können , anstatt die Codeanweisung duplizieren zu müssen.

Dim cbrMenu As Office.CommandBar
Dim ctlComboAddIn As Office.CommandBarComboBox

’MsgBox "Creating CommandBar !", vbInformation , "CreateAddInCommandBar"
On Error GoTo CreateAddInComboBox_Err

’ Zurückgeben eines Verweises auf das Application -Objekt und Speichern
’ dieses Objekts in einer öffentlichen Variablen , so dass andere Prozeduren
’ im Add -In es verwenden können.
Set oHostInst = Application

’ Verweis auf Befehlsleiste zurückgeben.
Set cbrMenu = oHostInst.CommandBars ("MD*ReX Toolbar ")

’ Schaltfläche hinzufügen , um das Add -In aus der Befehlsleiste
’ aufzurufen , wenn nicht bereits vorhanden.
’ Konstanten werden auf Modulebene deklariert.
’ Suchen nach der Schaltfläche auf der Befehlsleiste.
Set ctlComboAddIn = cbrMenu.FindControl(Tag:=" MDCOMCMDLINE ")
’ Verweis auf neue Befehlsleisten -Schaltfläche zurückgeben.
Set CreateAddInComboBox = ctlComboAddIn

Exit Function

CreateAddInComboBox_End:
Exit Function

CreateAddInComboBox_Err:
’ Aufrufen einer generischen Fehlerbehandlungsroutine für das
’ Add -In.
Call ExeErr(Err)
Resume CreateAddInComboBox_End

End Function

Function RemoveAddInCommandBarButton(ByVal _
RemoveMode As AddInDesignerObjects.ext_DisconnectMode)
Dim cbrMenu As Office.CommandBar
Dim ctlBtnAddIn As Office.CommandBarButton
Dim temp As Integer
Dim i As Integer

’ Dieses Verfahren entfernt die Befehlsleisten -Schaltfläche für das
’ Add -In, wenn der Benutzer die Verbindung getrennt hat.

On Error GoTo RemoveAddInCommandBarButton_Err

’ Wenn der Benutzer das Add -In aus dem Speicher entfernt ,
’ Schaltflächen entfernen. Wenn nicht , Add -In aus dem
’ Speicher entfernen , da die Anwendung schließt. In diesem
’ Fall muss die Schaltfläche nicht entfernt werden.

If (p_OfficeCrypt.ConnectedToServer = True) Then
temp = MsgBox ("You are still connected to: " & vbCrLf & p_OfficeCrypt.propServerIP &

vbCrLf & ". You will now be disconected ." & vbCrLf & "WARNING: all data on the server
will be lost!" & vbCrLf , vbOKOnly , "Disconnect " & p_OfficeCrypt.propServerIP)

p_OfficeCrypt.clsTerminate
End If

Select Case RemoveMode
Case ext_dm_HostShutdown

Call myMDCOMMenu.MDCOMDisconnect
Call WriteDBGString ("MD*ReX Host shut down" & vbCrLf & "RemoveMode: Host Shutdown" &

vbCrLf & "Will Remove AddInCommandbarButton", App.EXEName & ".log")
oHostInst.CommandBars(CBR_NAME).Controls(CTL_NAME).Delete

Case ext_dm_UserClosed
On Error Resume Next
Call myMDCOMMenu.MDCOMDisconnect
’ Benutzerdefinierte Befehlsleisten -Schaltfläche löschen.
oHostInst.CommandBars(CBR_NAME).Controls(CTL_NAME).Delete
Call WriteDBGString ("MD*ReX Host shut down" & vbCrLf & "RemoveMode: User Closed" &

vbCrLf & "Will Remove AddInCommandbarButton", App.EXEName & ".log")
On Error GoTo RemoveAddInCommandBarButton_Err

End Select

RemoveAddInCommandBarButton_End:
Exit Function

RemoveAddInCommandBarButton_Err:
Call ExeErr(Err)
Resume RemoveAddInCommandBarButton_End

End Function

63

Program Source

B.9 mdlShell.bas

Attribute VB_Name = "mdlShell"
Option Explicit

Private Type PROCESS_INFORMATION
hProcess As Long
hThread As Long
dwProcessId As Long
dwThreadId As Long

End Type

Private Type STARTUPINFO
cb As Long
lpReserved As String
lpDesktop As String
lpTitle As String
dwX As Long
dwY As Long
dwXSize As Long
dwYSize As Long
dwXCountChars As Long
dwYCountChars As Long
dwFillAttribute As Long
dwFlags As Long
wShowWindow As Integer
cbReserved2 As Integer
lpReserved2 As Long
hStdInput As Long
hStdOutput As Long
hStdError As Long

End Type

Public hProcID As Long

Public Declare Function ShellExecute Lib "shell32.dll" Alias "ShellExecuteA" (ByVal hWnd As Long ,
ByVal lpszOp As String , ByVal lpszFile As String , ByVal lpszParams As String , ByVal lpszDir
As String , ByVal FsShowCmd As Long) As Long

Public Declare Function WaitForSingleObject Lib "kernel32" (ByVal hHandle As Long , ByVal
dwMilliseconds As Long) As Long

’gets hObject as dwProcessId
Private Declare Function OpenProcess Lib "kernel32" (ByVal dwDesiredAccess As Long , ByVal

bInheritHandle As Long , ByVal dwProcessId As Long) As Long

Private Declare Function PostMessage Lib "user32" _
Alias "PostMessageA" _
(ByVal hWnd As Long , _
ByVal wMsg As Long , _
ByVal wParam As Long , _
ByVal lParam As Long) As Long

Private Declare Function IsWindow Lib "user32" _
(ByVal hWnd As Long) As Long

Private Declare Function FindWindow Lib "user32" _
Alias "FindWindowA" _
(ByVal lpClassName As String , _
ByVal lpWindowName As String) As Long

Private Declare Function CreateProcess Lib "kernel32" _
Alias "CreateProcessA" _
(ByVal lpApplicationName As String , _
ByVal lpCommandLine As String , _
lpProcessAttributes As Any , _
lpThreadAttributes As Any , _
ByVal bInheritHandles As Long , _
ByVal dwCreationFlags As Long , _
lpEnvironment As Any , _
ByVal lpCurrentDriectory As String , _
lpStartupInfo As STARTUPINFO , _
lpProcessInformation As PROCESS_INFORMATION) As Long

Private Declare Function TerminateProcess Lib "kernel32" (ByVal hProcess As Long , ByVal uExitCode
As Long) As Long

Private Declare Function GetExitCodeProcess Lib "kernel32" (ByVal hProcess As Long , lpExitCode As
Long) As Long

Private Declare Function CloseHandle Lib "kernel32" (ByVal hObject As Long) As Long

Private Declare Function GetWindow Lib "user32" (ByVal hWnd As Long , ByVal wCmd As Long) As Long

Private Declare Function GetDesktopWindow Lib "user32" () As Long

64

Program Source

Private Declare Function BringWindowToTop Lib "user32" (ByVal hWnd As Long) As Long

Private Declare Function GetWindowThreadProcessId Lib "user32" (ByVal hWnd As Long , lpdwProcessId
As Long) As Long

Private Declare Function SetWindowText Lib "user32" Alias "SetWindowTextA" (ByVal hWnd As Long ,
ByVal lpString As String) As Long

Private Declare Function GetClassName Lib "user32" Alias "GetClassNameA" (ByVal hWnd As Long ,
ByVal lpClassName As String , ByVal nMaxCount As Long) As Long

Private Declare Function SendMessage Lib "user32" Alias "SendMessageA" (ByVal hWnd As Long , ByVal
wMsg As Long , ByVal wParam As Long , lParam As Any) As Long

Public Declare Function FindWindowEx Lib "user32" Alias "FindWindowExA" (ByVal hWnd1 As Long ,
ByVal hWnd2 As Long , ByVal lpsz1 As String , ByVal lpsz2 As String) As Long

Const GW_HWNDFIRST = 0
Const GW_HWNDNEXT = 2
Const GW_CHILD = 5
Const WM_SETTEXT = &HC
Const SYNCHRONIZE = 1048576
Const NORMAL_PRIORITY_CLASS = &H20&

’Constants used by the API functions
Const WM_CLOSE = &H10
Const INFINITE = &HFFFFFFFF

Public Const SW_NOSHOW = 0
Public Const SE_ERR_FNF = 2&
Public Const SE_ERR_PNF = 3&
Public Const SE_ERR_ACCESSDENIED = 5&
Public Const SE_ERR_OOM = 8&
Public Const SE_ERR_DLLNOTFOUND = 32&
Public Const SE_ERR_SHARE = 26&
Public Const SE_ERR_ASSOCINCOMPLETE = 27&
Public Const SE_ERR_DDETIMEOUT = 28&
Public Const SE_ERR_DDEFAIL = 29&
Public Const SE_ERR_DDEBUSY = 30&
Public Const SE_ERR_NOASSOC = 31&
Public Const ERROR_BAD_FORMAT = 11&
Public AddInFSO As FileSystemObject

Dim pInfo As PROCESS_INFORMATION
Dim sInfo As STARTUPINFO
Dim sNull As String
Dim lSuccess As Long
Dim lRetValue As Long

Function GethWndFromProcID(hProcIDToFind As Long) As Long
Dim hWndDesktop As Long
Dim hWndChild As Long
Dim hWndChildProcID As Long

On Local Error GoTo GethWndFromProcID_Error
hWndDesktop = GetDesktopWindow ()
hWndChild = GetWindow(hWndDesktop , GW_CHILD)

Do While hWndChild <> 0
Call GetWindowThreadProcessId(hWndChild , hWndChildProcID)

If hWndChildProcID = hProcIDToFind Then
GethWndFromProcID = hWndChild
Exit Do

End If
hWndChild = GetWindow(hWndDesktop , GW_HWNDNEXT)

Loop

Exit Function

GethWndFromProcID_Error:
GethWndFromProcID = 0
Exit Function

End Function

Public Function TriggerMDServ () As Boolean
Dim r As Long
Dim msg As String
Dim ShellString As String

ShellString = App.Path & "\ mdserv\MDCOM.exe"
r = StartMDServ(ShellString)

If r <= 32 Then
Select Case r

Case SE_ERR_FNF
msg = "File runme.bat not found. It should be located under: " & App.Path & "\

mdserv"
Case SE_ERR_PNF

65

Program Source

msg = "Path to mdserv not found. Path should be: " & App.Path & "\ mdserv"
Case SE_ERR_ACCESSDENIED

msg = "Access denied"
Case SE_ERR_OOM

msg = "Out of memory"
Case SE_ERR_DLLNOTFOUND

msg = "DLL not found"
Case SE_ERR_SHARE

msg = "A sharing violation occurred"
Case SE_ERR_ASSOCINCOMPLETE

msg = "Incomplete or invalid file association"
Case SE_ERR_DDETIMEOUT

msg = "DDE Time out"
Case SE_ERR_DDEFAIL

msg = "DDE transaction failed"
Case SE_ERR_DDEBUSY

msg = "DDE busy"
Case SE_ERR_NOASSOC

msg = "No association for file extension"
Case ERROR_BAD_FORMAT

msg = "Invalid EXE file or error in EXE image"
Case Else

msg = "Unknown error"
End Select
Call WriteDBGString(msg & vbCrLf , App.EXEName & ".log")
TriggerMDServ = False
Exit Function

Else
TriggerMDServ = True

End If
End Function

Public Function StartMDServ(DocName As String) As Long
’trusts in a well behaved IS installation of MDReX where mdserv is installed
Dim Scr_hDC As Long
Scr_hDC = GetDesktopWindow ()
hProcID = ShellExecute(Scr_hDC , "Open", DocName , "", App.Path & "\ mdserv", 0) ’1 visible 0

invisible
StartMDServ = hProcID
Call WriteDBGString ("MDCOM.exe middleware has been launched! ProcID = " & hProcID & "" & vbCrLf ,

App.EXEName & ".log")
End Function

Public Sub CloseMDCOM ()
’Closes the MDCOM console app
Dim hWindow As Long
Dim lngResult As Long
Dim lngReturnValue As Long
Dim retval As Long
Call WriteDBGString (" Sending message WM_CLOSE to MDCOM.exe" & vbCrLf , App.EXEName & ".log

")
hWindow = FindWindow(vbNullString , App.Path & "\ MDServ\MDCOM.exe")
lngReturnValue = PostMessage(hWindow , WM_CLOSE , vbNull , vbNull)
lngResult = WaitForSingleObject(hWindow , INFINITE)
retval = TerminateProcess(hWindow , 0&)
Call WriteDBGString ("MDCOM.exe almost surely closed" & vbCrLf , App.EXEName & ".log")

End Sub

66

Program Source

B.10 clsMDCOMContextMenu.cls

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 ’True
Persistable = 0 ’NotPersistable
DataBindingBehavior = 0 ’vbNone
DataSourceBehavior = 0 ’vbNone
MTSTransactionMode = 0 ’NotAnMTSObject

END
Attribute VB_Name = "clsMDCOMContextMenu"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit

Public WithEvents cmPut As Office.CommandBarButton
Attribute cmPut.VB_VarHelpID = -1
Public WithEvents cmGet As Office.CommandBarButton
Attribute cmGet.VB_VarHelpID = -1
Public WithEvents cmRun As Office.CommandBarButton
Attribute cmRun.VB_VarHelpID = -1

Dim cMenuExists As Boolean
Dim dbgStr As String

Public Sub MDCOMConnectContextMenu(ByRef oAddin As Object , ByRef oApp As Object , cmdBar As Office.
CommandBar)

Dim i As Integer
Dim j%
Dim str As String
Dim ContextItem
Dim cbar As CommandBar
dbgStr = dbgstar & "Entering GUI setup MDCOMConnectContextMenu" & vbCrLf
On Error GoTo ContextMenu_Err
Call DestroyContextMenu(oApp) ’//obtain clean environment
str = "Cell" ’// for now only in cells , later we can traverse through

’// various context menus as follows:
’//for i=1 to 3
’//Array ("Cell", "Column", "Row")(i - 1)

Set cbar = oApp.CommandBars(str)
Set cmPut = cbar.Controls.Add(Type:= msoControlButton , Before :=1, temporary :=True)

With cmPut
.BeginGroup = True
.Style = msoButtonIconAndCaption
.Caption = "Put ..."
.ToolTipText = "Upload Excel Range as XploRe Object"
.OnAction = "!<" & oAddin.ProgId & ">"
.Tag = "MDCOMCMPUT"
.Visible = True
Clipboard.SetData LoadResPicture (104, vbResBitmap)
.PasteFace
Clipboard.Clear

End With
Set cmGet = cbar.Controls.Add(Type:= msoControlButton , Before :=2, temporary :=True)

With cmGet
.Style = msoButtonCaption
.Caption = "Get ..."
.ToolTipText = "Get XploRe Object as Excel Range"
.OnAction = "!<" & oAddin.ProgId & ">"
.Tag = "MDCOMCMGET"
.Visible = True

End With
Set cmRun = cbar.Controls.Add(Type:= msoControlButton , Before :=3, temporary :=True)

With cmRun
.Style = msoButtonCaption
.Caption = "Run"
.ToolTipText = "Execute XploRe command from Excel cells"
.OnAction = "!<" & oAddin.ProgId & ">"
.Tag = "MDCOMCMRUN"
.Visible = True

End With

dbgStr = dbgstar & dbgStr & "creating menu bar succeeded" & vbCrLf
Call WriteDBGString(dbgStr , App.EXEName & ".log")
dbgStr = ""
UpdateViewsContext

Exit Sub

ContextMenu_Err:
Call ExeErr(Err)
Exit Sub

End Sub

67

Program Source

Public Sub MDCOMContextMenuDisconnect ()
On Error GoTo MDCOMContextMenuDisconnectErr
dbgStr = dbgstar & "Entering GUI setup MDCOMContextMenuDisconnect" & vbCrLf
Call DestroyContextMenu(oHostInst)
’Set cmMDCOM = Nothing
dbgStr = dbgstar & "Deleting GUI context menu finished" & vbCrLf
Exit Sub

MDCOMContextMenuDisconnectErr_exit:
Exit Sub

MDCOMContextMenuDisconnectErr:
Select Case Err.Number

Case Err.Number = 0
GoTo MDCOMContextMenuDisconnectErr_exit:

Case Err.Number <> 0
MsgBox Err.Number & " " & Err.Description , vbCritical , "DestroyContextMenu"
GoTo MDCOMContextMenuDisconnectErr_exit:

End Select
End Sub

Public Sub DestroyContextMenu(ByRef oApp As Object)
Dim cbar As CommandBar
On Error GoTo DestroyContextMenuErr

Set cbar = oApp.CommandBars ("Cell")
Set cmPut = cbar.FindControl(Tag :=" MDCOMCMPUT ")
Set cmGet = cbar.FindControl(Tag :=" MDCOMCMGET ")
Set cmRun = cbar.FindControl(Tag :=" MDCOMCMRUN ")
cmPut.Delete
cmGet.Delete
cmRun.Delete

Exit Sub

DestroyContextMenu_exit:
Exit Sub

DestroyContextMenuErr:
Select Case Err.Number

Case Err.Number = 0
GoTo DestroyContextMenu_exit:

Case Err.Number <> 0
MsgBox Err.Number & " " & Err.Description , vbCritical , "DestroyContextMenu"
GoTo DestroyContextMenu_exit:

End Select
End Sub

Private Sub cmGet_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
myPutGet.GetXPL

End Sub

Private Sub cmPut_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
myPutGet.PutXpl

End Sub

Private Sub cmRun_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
MsgBox "RUN"
End Sub

68

Program Source

B.11 clsMDCOMMenu.cls

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 ’True
Persistable = 0 ’NotPersistable
DataBindingBehavior = 0 ’vbNone
DataSourceBehavior = 0 ’vbNone
MTSTransactionMode = 0 ’NotAnMTSObject

END
Attribute VB_Name = "clsMDCOMMenu"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = False
Option Explicit

Public WithEvents oHostXLS As Excel.Application
Attribute oHostXLS.VB_VarHelpID = -1
Public WithEvents oHostDOC As Word.Application
Attribute oHostDOC.VB_VarHelpID = -1

Dim oHostApp As Object
Dim oAddin As Object
Dim oApp As Object
Public cbMDCOM As Office.CommandBar

Dim btnInfo As Office.CommandBarPopup
Attribute btnInfo.VB_VarHelpID = -1
Dim WithEvents btnXPLObjects As Office.CommandBarButton
Attribute btnXPLObjects.VB_VarHelpID = -1
Dim WithEvents btnXPLFunctions As Office.CommandBarButton
Attribute btnXPLFunctions.VB_VarHelpID = -1
Dim WithEvents btnXPLQuantlets As Office.CommandBarButton
Attribute btnXPLQuantlets.VB_VarHelpID = -1
Dim WithEvents btnXPLLibraries As Office.CommandBarButton
Attribute btnXPLLibraries.VB_VarHelpID = -1
Dim WithEvents btnXPLNamedRanges As Office.CommandBarButton
Attribute btnXPLNamedRanges.VB_VarHelpID = -1
Dim WithEvents btnXPLLogs As Office.CommandBarButton
Attribute btnXPLLogs.VB_VarHelpID = -1

Dim WithEvents btnXQScrap As Office.CommandBarButton
Attribute btnXQScrap.VB_VarHelpID = -1
Dim WithEvents btnPut As Office.CommandBarButton
Attribute btnPut.VB_VarHelpID = -1
Dim WithEvents btnRun As Office.CommandBarButton
Attribute btnRun.VB_VarHelpID = -1
Dim WithEvents btnGet As Office.CommandBarButton
Attribute btnGet.VB_VarHelpID = -1

Dim btnConsole As Office.CommandBarPopup
Dim WithEvents btnCMDLine As Office.CommandBarComboBox
Attribute btnCMDLine.VB_VarHelpID = -1
Dim WithEvents btnXPLDirect As Office.CommandBarButton
Attribute btnXPLDirect.VB_VarHelpID = -1
Dim WithEvents btnXPL_xla As Office.CommandBarButton
Attribute btnXPL_xla.VB_VarHelpID = -1
’Dim WithEvents btnXPL_adstat As Office.CommandBarButton
’Dim WithEvents btnXPL_anddar As Office.CommandBarButton
’Dim WithEvents btnXPL_anova As Office.CommandBarButton
’Dim WithEvents btnXPL_bootstrap As Office.CommandBarButton
’Dim WithEvents btnXPL_factoranalysis As Office.CommandBarButton
’Dim WithEvents btnXPL_hazard As Office.CommandBarButton
’Dim WithEvents btnXPL_linreg As Office.CommandBarButton
’Dim WithEvents btnXPL_lorenz As Office.CommandBarButton
’Dim WithEvents btnXPL_meancl As Office.CommandBarButton
’Dim WithEvents btnXPL_mediancl As Office.CommandBarButton
’Dim WithEvents btnXPL_moduscl As Office.CommandBarButton
’Dim WithEvents btnXPL_rankcorr As Office.CommandBarButton
’Dim WithEvents btnXPL_summarize As Office.CommandBarButton
’Dim WithEvents btnXPL_varcl As Office.CommandBarButton
’Dim WithEvents btnXPL_covcl As Office.CommandBarButton
’Dim WithEvents btnXPL_ttest As Office.CommandBarButton
’Dim WithEvents btnXPL_ftest As Office.CommandBarButton

Dim WithEvents btnFormulaWatch As Office.CommandBarButton
Attribute btnFormulaWatch.VB_VarHelpID = -1
Dim btnHelp As Office.CommandBarPopup
Attribute btnHelp.VB_VarHelpID = -1
Dim WithEvents btnMDCOMHelp As Office.CommandBarButton
Attribute btnMDCOMHelp.VB_VarHelpID = -1
Dim WithEvents btnXPLHelp As Office.CommandBarButton
Attribute btnXPLHelp.VB_VarHelpID = -1
Dim WithEvents btnWWWAPSS As Office.CommandBarButton
Attribute btnWWWAPSS.VB_VarHelpID = -1
Dim WithEvents btnWWWMDCOM As Office.CommandBarButton

69

Program Source

Attribute btnWWWMDCOM.VB_VarHelpID = -1
Dim WithEvents btnWWWXPL As Office.CommandBarButton
Attribute btnWWWXPL.VB_VarHelpID = -1
Dim btnAbout As Office.CommandBarPopup
Dim WithEvents btnAboutMDCOM As Office.CommandBarButton
Attribute btnAboutMDCOM.VB_VarHelpID = -1
Dim WithEvents btnAboutXPL As Office.CommandBarButton
Attribute btnAboutXPL.VB_VarHelpID = -1

Dim WithEvents MenuItem As Office.CommandBarButton
Attribute MenuItem.VB_VarHelpID = -1
Dim bBarExists As Boolean

Dim myFrmConnect As frmConnect
Dim myFrmXPLDirect As frmXPLDirect
Dim strResults As String
Dim dbgStr As String

Public Sub MDCOMConnect(ByRef oAddin As Object , ByRef oApp As Object , cmdBar As Office.CommandBar)
Dim i As Integer
Dim j%
Dim MenuItem

dbgStr = dbgstar & "Entering GUI setup MDCOMConnect" & vbCrLf

On Error Resume Next
Set myFrmConnect = New frmConnect ’//forward references
Set myFrmXPLDirect = New frmXPLDirect

DestroyToolBars ’//obtain clean environment

If oApp = "Microsoft Excel" Then ’//switch to control for hosting Office app
Set oHostXLS = oApp

Set cbMDCOM = oApp.CommandBars.FindControl ("MD*ReX Toolbar ")
i = oHostXLS.CommandBars.FindControl(Tag:=" MDCOMPUT ").Index
’i = oHostXLS.Toolbars ("MD*ReX Toolbar ").Index
’If (cbMDCOM Is Nothing) And (IsEmpty(i) = True) Then bBarExists = False
’If (i <> 0) Then bBarExists = True
If (cbMDCOM Is Nothing) Then bBarExists = False
On Error GoTo 0
If bBarExists Then ’//toolbar already exists

dbgStr = dbgstar & dbgStr & "bBarExists returned true" & vbCrLf
Set cbMDCOM = oHostXLS.CommandBars ("MD*ReX Toolbar ")
Set btnInfo = cbMDCOM.FindControl(Tag:=" MDCOMNetEnvInfo", recursive := msoTrue)
Set btnXQScrap = cbMDCOM.FindControl(Tag :=" MDCOMXQS", recursive := msoTrue)
Set btnPut = cbMDCOM.FindControl(Tag :=" MDCOMPUT", recursive := msoTrue)
Set btnGet = cbMDCOM.FindControl(Tag :=" MDCOMGet", recursive := msoTrue)
Set btnConsole = cbMDCOM.FindControl(Tag :=" MDCOMSHELL", recursive := msoTrue)
Set btnCMDLine = cbMDCOM.FindControl(Tag :=" MDCOMCMDLINE", recursive := msoTrue)
Set btnXPLDirect = cbMDCOM.FindControl(Tag :=" MDCOMXPLDIRECT", recursive := msoTrue)
Set btnHelp = cbMDCOM.FindControl(Tag:=" MDHELP", recursive := msoTrue)
Set btnMDCOMHelp = cbMDCOM.FindControl(Tag :=" MDCOMHELP", recursive := msoTrue)
Set btnXPLHelp = cbMDCOM.FindControl(Tag :=" MDCOMXPLHELP", recursive := msoTrue)
Set btnAboutMDCOM = cbMDCOM.FindControl(Tag:=" MDCOMABOUT1", recursive := msoTrue)
Set btnAboutXPL = cbMDCOM.FindControl(Tag:=" MDCOMABOUT2", recursive := msoTrue)
dbgStr = dbgstar & dbgStr & "recursively activated menu items " & vbCrLf

Else ’//now create the toolbar
dbgStr = dbgstar & dbgStr & "bBarExists returned false"
Set cbMDCOM = oHostXLS.CommandBars.Add("MD*ReX Toolbar", msoBarTop , , msoFalse)
With cbMDCOM
.Protection = msoBarNoCustomize ’//don ’t allow changes on toolbar
.Visible = True
dbgStr = dbgstar & dbgStr & "creating menu bar from scratch" & vbCrLf
Set btnXQScrap = .Controls.Add (1) ’//1st toolbar menu
With btnXQScrap

.Style = msoButtonCaption

.Caption = ""

.ToolTipText = ""

.DescriptionText = ""

.OnAction = "" ’// empty because handled by dsr

.Tag = "MDCOMXQS"

.Width = 40

.Visible = True

.BeginGroup = True
End With

Set btnInfo = .Controls.Add(msoControlPopup) ’//this is a popup hosting further
menus

With btnInfo
.BeginGroup = True
.Caption = "MD*ReX Info"
.DescriptionText = "XPL Shell"
.Tag = "MDCOMNetEnvInfo"
.ToolTipText = "Provides Current Networking and Environment info ."""
.Visible = True

Set btnXPLObjects = .Controls.Add (1)
With btnXPLObjects

70

Program Source

.Style = msoButtonCaption

.Caption = "XploRe Objects"

.ToolTipText = "Objects known on XQS"

.DescriptionText = "XPLObjects"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLOBJECTS"

.Visible = True
End With

Set btnXPLFunctions = .Controls.Add(1)
With btnXPLFunctions

.Style = msoButtonCaption

.Caption = "XploRe Functions"

.ToolTipText = "Functions known on XQS"

.DescriptionText = "XPLFunctions"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLFUNCTIONS"

.Visible = True
End With

Set btnXPLQuantlets = .Controls.Add(1)
With btnXPLQuantlets

.Style = msoButtonCaption

.Caption = "XploRe Quantlets"

.ToolTipText = "Quantlets known on XQS"

.DescriptionText = "XPLQuantlets"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLQUANTLETS"

.Visible = True
End With

Set btnXPLLibraries = .Controls.Add(1)
With btnXPLLibraries

.Style = msoButtonCaption

.Caption = "XploRe Libraries"

.ToolTipText = "Libraries known on XQS"

.DescriptionText = "XPLLibraries"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLLIBRARIES"

.Visible = True
End With

Set btnXPLNamedRanges = .Controls.Add(1)
With btnXPLNamedRanges

.BeginGroup = True

.Style = msoButtonCaption

.Caption = "Named Ranges"

.ToolTipText = "Mapping between XPL Objects and XLS Ranges"

.DescriptionText = "NamedRanges"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLNAMEDRANGES"

.Visible = True
End With

Set btnXPLLogs = .Controls.Add(1)
With btnXPLLogs

.BeginGroup = True

.Style = msoButtonCaption

.Caption = "Status Logs"

.ToolTipText = "View Log files"

.DescriptionText = "XPLLogs"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLLOGS"

.Visible = True
End With

End With

Set btnPut = .Controls.Add(1)
With btnPut

.Style = msoButtonCaption

.Caption = "Put"

.ToolTipText = "Put"

.DescriptionText = "Put"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMPUT"

.Visible = True

.BeginGroup = True
End With

Set btnGet = .Controls.Add(1)
With btnGet

.Style = msoButtonCaption

.Caption = "Get"

.ToolTipText = "Get"

.DescriptionText = "Get"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMGet"

.Visible = True

71

Program Source

End With

Set btnConsole = .Controls.Add(msoControlPopup) ’//this is a popup hosting further
menus

With btnConsole
.BeginGroup = True
.Caption = "XploRe"
.DescriptionText = "XPL Shell"
.Tag = "MDCOMSHELL"
.ToolTipText = "XploRe"
.Visible = True

Set btnXPLDirect = .Controls.Add (1)
With btnXPLDirect

.Style = msoButtonCaption

.Caption = "XploRe Direct"

.ToolTipText = "XploRe Direct"

.DescriptionText = "XPLDirect"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLDIRECT"

.Visible = True
End With

Set btnXPL_xla = .Controls.Add(1)
With btnXPL_xla

.Style = msoButtonCaption

.Caption = "MD*ReX AddIns"

.ToolTipText = "Load MD*ReX Excel AddIns (.xla files)"

.DescriptionText = "XPLXLA"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLXLA"

.Visible = True
End With

End With

Set btnCMDLine = .Controls.Add(msoControlComboBox) ’Add ’(2)
With btnCMDLine

.BeginGroup = True

.DropDownLines = 3

.DropDownWidth = 75

.Tag = "MDCOMCMDLINE"
End With

If oApp.Version <> "9.0" Then
Set btnFormulaWatch = .Controls.Add(msoControlButton , 5687)

With btnFormulaWatch
.BeginGroup = True

End With
End If

Set btnHelp = .Controls.Add(msoControlPopup)
With btnHelp

.BeginGroup = True

.Caption = "Help"

.DescriptionText = "Help"

.Tag = "MDHELP"

.ToolTipText = "Get Help."

.Visible = True

Set btnMDCOMHelp = .Controls.Add (1)
With btnMDCOMHelp

.Caption = "MD*ReX Help"

.ToolTipText = "Online Help"

.DescriptionText = "MDReXHelp"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMHELP"

.Visible = True
End With

Set btnXPLHelp = .Controls.Add(1)
With btnXPLHelp

.Caption = "XploRe APSS"

.ToolTipText = "Auto Pilot Support System (APSS)"

.DescriptionText = "XPLHelp"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMXPLHELP"

.Visible = True
End With

Set btnAbout = .Controls.Add(msoControlPopup)
With btnAbout

.BeginGroup = True

.Caption = "About"

.DescriptionText = "About"

.Tag = "MDAbout"

.ToolTipText = "About MD*ReX & XploRe"

.Visible = True

Set btnAboutMDCOM = .Controls.Add(1)

72

Program Source

With btnAboutMDCOM
.Caption = "MD*ReX"
.ToolTipText = "MD*ReX"
.DescriptionText = "AboutMDREX"
.OnAction = "!<" & oAddin.ProgId & ">"
.Tag = "MDCOMABOUT1"
.Visible = True

End With

Set btnAboutXPL = .Controls.Add(1)
With btnAboutXPL

.Caption = "XploRe"

.ToolTipText = "XploRe"

.DescriptionText = "AboutMDXPL"

.OnAction = "!<" & oAddin.ProgId & ">"

.Tag = "MDCOMABOUT2"
.Visible = True
End With

End With
End With

End With
dbgStr = dbgstar & dbgStr & "creating menu bar succeeded" & vbCrLf

End If
End If

Call WriteDBGString(dbgStr , App.EXEName & ".log")
dbgStr = ""
UpdateViewsMenu
End Sub

Public Sub MDCOMDisconnect ()
On Error GoTo MDCOMDisconnectErr
dbgStr = dbgstar & "Entering GUI setup MDCOMDisconnect" & vbCrLf
DestroyToolBars
Set myFrmXPLDirect = Nothing
Set cbMDCOM = Nothing
Set oHostApp = Nothing
dbgStr = dbgstar & "Deleting GUI finished" & vbCrLf
Exit Sub

MDCOMDisconnect_exit:
Exit Sub

MDCOMDisconnectErr:
Select Case Err.Number

Case Err.Number = 0
GoTo MDCOMDisconnect_exit:

Case Err.Number <> 0
MsgBox Err.Number & " " & Err.Description , vbCritical , "DestroyToolBar"
GoTo MDCOMDisconnect_exit:

End Select
End Sub

Private Sub DestroyToolBars ()
On Error GoTo DestroyToolBarsErr:
dbgStr = dbgstar & dbgStr & "Will destroy ToolBar now" & vbCrLf
cbMDCOM.Delete

DestroyToolBars_exit:
dbgStr = dbgstar & dbgStr & "Successfully destroyed ToolBar" & vbCrLf
Exit Sub

DestroyToolBarsErr:
Select Case Err.Number

Case Err.Number = 0
GoTo DestroyToolBars_exit:

Case Err.Number <> 0
MsgBox Err.Number & " " & Err.Description , vbCritical , "DestroyContextMenu"
GoTo DestroyToolBars_exit:

End Select
End Sub

Private Sub btnAboutMDCOM_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)

If oHostInst = "Microsoft Word" Then
With myFrmSplash

.Caption = "MD*ReX"

.lblCompanyProduct.Caption = "MD*ReX Microsoft Office COM Add -in"

.lblVersion = "MD*ReX Version " & Format(App.Major , "#0") & "." & Format(App.Minor , "#00")
& "." & Format(App.Revision , "#0000")

.lblCopyright = App.LegalCopyright

.txtSplash.ToolTipText = "MD*ReX"

.txtSplash.Text = "MD*COM guid: " & oAddinInst.Guid & vbCrLf & "MD*COM says ..." & vbCrLf &
"Path to MD*SERV: " & App.Path & "\ mdserv" & vbCrLf & "Operating System: " &

oHostDOC.System.OperatingSystem & _
vbCrLf & "Host: " & oHostDOC.Name _

& " " & oHostDOC.Version & " Build: " & oHostDOC.Build & vbCrLf & "MD*Crypt says ... "
& _

vbCrLf & "Server Status" & p_OfficeCrypt.propServerStatus & vbCrLf & "MD*Crypt version
" _

73

Program Source

& p_OfficeCrypt.MDReXInfoServer.getMdCryptVersion & vbCrLf & "MD*Crypt Java " _
& p_OfficeCrypt.MDReXInfoServer.getMdCryptJava & vbCrLf & "MD*XQS build date: " _
& p_OfficeCrypt.MDReXInfoServer.serverBuildDate

.txtSplash.Visible = True

.txtSplash.Locked = True

.Show
End With
Else

With myFrmSplash
strResults = p_OfficeCrypt.MDReXInfoServer.serverBuildDate
.lblCopyright = App.LegalCopyright
.lblCompanyProduct.Caption = "MD*ReX Microsoft Office COM Add -in"
.lblVersion = "MD*ReX " & Format(App.Major , "#0") & "." & Format(App.Minor , "#00") &

"." & Format(App.Revision , "#0000")
.txtSplash2.ToolTipText = "MD*ReX"
.txtSplash2.Text = "MD*COM guid: " & oAddinInst.Guid & vbCrLf & "MD*COM says ..." &

vbCrLf & "Path to MD*SERV: " & App.Path & "\ mdserv" & vbCrLf & "Operating System:
" & _

oHostInst.OperatingSystem & vbCrLf & "Host: " & oHostInst.Value & " " _
& oHostInst.Version & " Build: " & oHostInst.Build & vbCrLf & "MD*Crypt says ... " & _
vbCrLf & "Server Status: " & p_OfficeCrypt.propServerStatus & vbCrLf & "MD*Crypt

version " _
& p_OfficeCrypt.MDReXInfoServer.getMdCryptVersion & vbCrLf & "MD*Crypt Java: " _
& p_OfficeCrypt.MDReXInfoServer.getMdCryptJava & vbCrLf & "MD*Serv build: " _
& p_OfficeCrypt.MDReXInfoServer.getMdServVersion & vbCrLf _
& "MD*XQS Server ID: " _
& p_OfficeCrypt.MDReXInfoServer.getMyMdServId & vbCrLf _
& "MD*XQS Server System: " _
& p_OfficeCrypt.MDReXInfoServer.getServerSystem & vbCrLf _
& "MD*XQS Server Build: " _
& p_OfficeCrypt.MDReXInfoServer.getServerBuild & vbCrLf _
& "Java SDK Version: " _
& p_OfficeCrypt.MDReXInfoServer.getMdServJava & vbCrLf _
& "MD*XQS Server Build Date: " _
& strResults
.txtSplash2.Visible = True
.txtSplash2.Locked = True
.Command3.Caption = "Ok"
.Command4.Caption = "www.md -rex.com"
.Show

End With
End If

End Sub

Private Sub btnAboutXPL_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
Dim Browser As Object
On Error Resume Next
Set Browser = CreateObject (" internetexplorer.application ")
Browser.navigate "http ://www.xplore -stat.de/"
With Browser

.StatusBar = False

.MenuBar = False

.Toolbar = 1

.Visible = True
End With

End Sub

Private Sub btnGet_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
On Error Resume Next
myPutGet.GetXPL

End Sub

Private Sub btnMDCOMHelp_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
MsgBox "FUNCTION MD*ReXHELP"

End Sub

Private Sub btnPut_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
On Error Resume Next
myPutGet.PutXpl

End Sub

Private Sub btnWWWAPSS_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
’
End Sub

Private Sub btnWWWMDCOM_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
’
End Sub

Private Sub btnWWWXPL_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
’
End Sub

Private Sub btnXPL_xla_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
Dim i%
Dim xlaString As String
On Error GoTo XLAErr

GetLocalAddins (App.Path & "\ mdrexxla *.xla")

74

Program Source

xlaString = "Available MD*ReX Excel AddIns (total " & UBound(xlaNameArray) & "): " &
vbCrLf

With myFrmXLA
.List1.Clear
For i = 1 To UBound(xlaNameArray)

.List1.AddItem (xlaNameArray(i))
Next i
.Show vbModal

End With

Exit Sub

XLAErr:
Call ExeErr(Err)
Exit Sub

End Sub

Private Sub btnXPLDirect_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
On Error GoTo btnXPLDirect_Click_Err
myFrmXPLDirect.Show
Exit Sub

btnXPLDirect_Click_Err:
Exit Sub

End Sub

Private Sub btnXPLHelp_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
Dim Browser As Object
On Error Resume Next
Set Browser = CreateObject (" internetexplorer.application ")
Browser.navigate ("http :// www.xplore -stat.de/help/_Xpl_Start.html")
With Browser

.StatusBar = True

.MenuBar = False

.Toolbar = 1

.Visible = True
End With

End Sub

Private Sub btnXPLFunctions_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
On Error Resume Next
With myFrmFunctions

.txtFunctions = FunctionString

.Show vbModal
End With

End Sub

Private Sub btnXPLLibraries_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
Dim i%
Dim libString As String
On Error Resume Next
With myFrmLibsLocal

If (p_OfficeCrypt.propServerIP = "localhost ") Then
GetLocalLibList (App.Path & "\ mdserv\lib *.lib")
libString = "Available Libraries (total " & UBound(libNameArray) & "): " & vbCrLf
For i = 1 To UBound(libNameArray)

libString = libString & libNameArray(i) & vbCrLf
Next i

Else
MsgBox "Only supported when connected locally"

End If
.txtLibsLocal = libString
.Show vbModal
End With

End Sub

Private Sub btnXPLLogs_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
On Error Resume Next
With myFrmStatus

Call FileToTextBox (. txtProtLog , "C:\" & "prot.log")
Call FileToTextBox (. txtMDRexLog , App.Path & "\debug \" & App.EXEName & ".log")
.Show vbModal

End With
End Sub

Private Sub btnXPLNamedRanges_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As
Boolean)

Dim i%
On Error Resume Next
With myFrmNamedRanges

If (CounterRuns > 0) Then
For i = 0 To UBound(myMapper.XLSObject)

.listNamedRanges.AddItem (myMapper.XLSObjectName(i) & ": " & myMapper.
XLSObject(i) & " XPLORE: " & myMapper.XPLObject(i))

Next i
End If

.Show vbModal
End With

75

Program Source

End Sub

Private Sub btnXPLObjects_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
On Error Resume Next
With myFrmObjects

.txtObjects = ObjectString

.Show vbModal
End With

End Sub

Private Sub btnXPLQuantlets_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
Dim i%
Dim qString As String
On Error Resume Next
With myFrmQuantlets

If (p_OfficeCrypt.propServerIP = "localhost ") Then
GetLocalQList (App.Path & "\ mdserv\lib *.xpl")
qString = "Available Quantlets (total " & UBound(qNameArray) & "): " & vbCrLf
For i = 1 To UBound(qNameArray)

qString = qString & qNameArray(i) & vbCrLf
Next i
.txtQuantlets = qString
.Show vbModal

Else
.txtQuantlets = QuantletString
.Show vbModal

End If
End With

End Sub

Private Sub btnXQScrap_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
Dim i%
On Error GoTo CatchErr

If btnXQScrap.Caption = "Connect" Then
Call LoadAddin(True , "XploReGetResult.xla", "go") ’//default add_in , always loaded
myFrmConnect.Show vbModal

Else
p_OfficeCrypt.clsTerminate
UpdateViewsMenu
UpdateViewsContext
If (oHostInst <> "Microsoft Word") Then
With oHostInst
End With
ReDim myMapper.XLSObject (0)
ReDim myMapper.XPLObject (0)
myMapper.XPLObjectCount = 0
GetLocalAddins (App.Path & "\ mdrexxla *.xla")
If xlaNameArray (1) <> "" Then

If (UBound(xlaNameArray) > 0) Then
For i = 1 To UBound(xlaNameArray)

Call LoadAddin(False , "\ mdrexxla \" & xlaNameArray(i)) ’//unload custom addins
Next i

End If
End If
Call LoadAddin(False , "XploReGetResult.xla") ’//unload default addin
End If
ReDim xlaNameArray (0)

End If

Exit Sub

CatchErr:
Call ExeErr(Err)
Exit Sub

End Sub

Private Sub Class_Terminate ()
If Not oHostApp Is Nothing Then MDCOMDisconnect

End Sub

Private Sub cmMDCOM1_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
’
End Sub

Private Sub cmMDCOM2_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
MsgBox "FUNCTION RUN"

End Sub

Private Sub cmMDCOM3_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
MsgBox "FUNCTION GET"

End Sub

Public Sub SyncBox(box As Office.CommandBarComboBox)
Set btnCMDLine = box

End Sub

76

Program Source

B.12 clsMDCryt.cls

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 ’True
Persistable = 0 ’NotPersistable
DataBindingBehavior = 0 ’vbNone
DataSourceBehavior = 0 ’vbNone
MTSTransactionMode = 0 ’NotAnMTSObject

END
Attribute VB_Name = "clsMDCrypt"
Attribute VB_GlobalNameSpace = True
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit

Public MDReXServer As mdcrypt.RexServer
Public MDReXInfoServer As mdcrypt.XQSInfoObject
Public MDReXCryptVersion As mdcrypt.MdCryptVersion
Public ConnectedToServer As Boolean
Public tempResult As Variant
Public finalResult As String
Public xlPath As String
Public ReXDisplay As Object
Public ReXGraphic As Object

Private Sub Class_Initialize ()
On Error GoTo Class_Ini_Err:
Set MDReXServer = New mdcrypt.RexServer
Set MDReXInfoServer = New mdcrypt.XQSInfoObject
Set MDReXCryptVersion = New mdcrypt.MdCryptVersion

Exit Sub

Class_Ini_Err:
Select Case Err.Number
Case 0

GoTo 0
Case Else

MsgBox Err.Number & " " & Err.Description , vbCritical , "MDCrypt Class_Initialize () Error"
Exit Sub

End Select
0: End Sub

Private Sub Class_Terminate ()
Set MDReXServer = Nothing
Set MDReXInfoServer = Nothing
Set MDReXCryptVersion = Nothing

End Sub

Public Property Get propReXServer () As String
propReXServer = MDReXServer
End Property

Public Property Get propClientReady () As String
propClientReady = MDReXServer.clientReady
End Property

Public Property Get propdblMatrix () As Object
Set propdblMatrix = MDReXServer.dblMatrix
End Property

Public Property Get propInfo () As String
propInfo = MDReXServer.info
End Property

Public Property Get propmatrixCols () As Long
propmatrixCols = MDReXServer.matrixCols
End Property

Public Property Get propmatrixRows () As Long
propmatrixRows = MDReXServer.matrixRows
End Property

Public Property Get propmatrixName () As String
propmatrixName = MDReXServer.Matrixname
End Property

Public Property Get propResult () As String
propResult = MDReXServer.result
End Property

Public Property Get propServerIP () As String
propServerIP = MDReXServer.serverIP
End Property

77

Program Source

Public Property Get propServerPort () As Long
propServerPort = MDReXServer.serverPort
End Property

Public Property Get propServerStatus () As Long
propServerStatus = MDReXServer.serverStatus
End Property

Public Property Get propMDCryptVersion () As String
propMDCryptVersion = MDReXInfoServer.MdCryptVersion
End Property

Public Property Get propMDCryptJavaVersion () As String
propMDCryptJavaVersion = MDReXInfoServer.mdCryptJava
End Property

Public Property Get propMDCryptConectionError () As String
propMDCryptConectionError = MDReXServer.connectionError
End Property

Public Property Get propMDCryptGraphic(Index As Long) As Object
propMDCryptGraphic = MDReXServer.graphic(Index)
End Property

Public Property Get propMDCryptNumberOfGraphics () As Object
propMDCryptNumberOfGraphics = MDReXServer.numberOfGraphics
End Property

Public Property Get propMDCryptNumberOfDisplays () As Object
propMDCryptNumberOfDisplays = MDReXServer.numberOfDisplays
End Property

Public Sub SetServerIP(sip As String)
MDReXServer.SetServerIP (sip)

End Sub

Public Sub SetServerPort(spt As Long)
MDReXServer.SetServerPort (spt)

End Sub

Public Function clsConnect () As Boolean
Dim i%

While propServerStatus = 1006
clsConnect = MDReXServer.Connect
If Len(propMDCryptConectionError) <> 0 Then

MsgBox "A timeout occurred. Trying to reconnect !" & vbCrLf & "MD*Crypt: " &
propMDCryptConectionError

For i = 0 To 1
MDReXServer.Connect
Next i

End If
If clsConnect = False Then

Exit Function
End If

Wend

If clsConnect = True And propServerStatus = 1003 Then
ConnectedToServer = clsConnect

Else: If ConnectedToServer = False And propServerStatus <> 1003 Then ConnectedToServer =
clsConnect

MsgBox Err.Number
End If

End Function

Public Sub clsTerminate ()
While propServerStatus <> 1006

MDReXServer.Terminate
Wend

If propServerStatus = 1006 Then
ConnectedToServer = False

Else
ConnectedToServer = True
Debug.Print Err.Number

End If
’to be sure
MDReXServer.Terminate

End Sub

Public Function clsBruteTerminate () As Boolean
While propServerStatus <> 1006

MDReXServer.Terminate
Wend

If propServerStatus = 1006 Then
ConnectedToServer = False

Else

78

Program Source

ConnectedToServer = True
Debug.Print Err.Number

End If

If propServerStatus = 1006 Then
clsBruteTerminate = True

Else
clsBruteTerminate = False

End If
End Function

Public Function clsSendQuantlet(ByVal Quantlet As String) As Boolean
clsSendQuantlet = MDReXServer.sendQuantlet(Quantlet)
RenderGraphic
End Function

Public Function clsGetResult () As String
tempResult = MDReXServer.getResultEncoded ("")
finalResult = Replace(tempResult , Chr$ (10), Chr$ (13) & Chr$ (10))
finalResult = Replace(finalResult , Chr$ (13) & Chr$ (13), Chr$ (13))
clsGetResult = finalResult
End Function

Public Function GetServerStatus () As String
GetServerStatus = MDReXServer.GetServerStatus ()
Select Case MDReXServer.GetServerStatus

Case 1000
GetServerStatus = GetServerStatus & Chr (32) & "(Socket initialized)"
Case 1001
GetServerStatus = GetServerStatus & Chr (32) & "(Handshake done)"
Case 1002
GetServerStatus = GetServerStatus & Chr (32) & "(Connection accepted)"
Case 1003
GetServerStatus = GetServerStatus & Chr (32) & "(Server ready)"
Case 1004
GetServerStatus = GetServerStatus & Chr (32) & "(Server busy)"
Case 1005
GetServerStatus = GetServerStatus & Chr (32) & "(Server waiting)"
Case 1006
GetServerStatus = GetServerStatus & Chr (32) & "(Not connected)"
ConnectedToServer = False

End Select
End Function

Public Function SendDoubleMatrix(Matrixname As String , Matrix , ByVal Cols As Long , ByVal Rows As
Long) As Boolean

Dim Dims
Dim done As Boolean
Dim iCols As Long
Dim iRows As Long
Dim tempArray

Call MDReXServer.wipeMatrix
Dims = MDReXServer.setDims(Rows , Cols)
MDReXServer.setMatrixName (Matrixname)

On Error GoTo SendDoubleMatrixErr:

Select Case (IsArray(Matrix))
Case False

If IsNumeric(Matrix) = False Or IsEmpty(Matrix) = True Then
Call MDReXServer.setdblNaN(Rows - 1, Cols - 1)

Else
Call MDReXServer.setDblElement(CDbl(Matrix), 0, 0)

End If
Case Else

For iCols = 0 To Cols - 1
For iRows = 0 To Rows - 1
oHostInst.StatusBar = "Parsing cell value: " & Matrix(iRows + 1, iCols + 1) & " @

position: " & iRows & "/" & iCols
If IsNumeric(Matrix(iRows + 1, iCols + 1)) = False Or IsEmpty(Matrix(iRows +

1, iCols + 1)) = True Then
Call MDReXServer.setdblNaN(iRows , iCols)

Else
Call MDReXServer.setDblElement(CDbl(Matrix(iRows + 1, iCols + 1)), iRows ,

iCols)
End If

Next iRows
Next iCols

End Select

SendDoubleMatrix = MDReXServer.sendMatrix
Call WriteDBGString (" SendDoubleMatrix with params: " & Matrixname & " (matrixname) " & Cols &

" (cols) " & Rows & " (rows) " & "succeeded ." & vbCrLf , App.EXEName & ".log")
oHostInst.StatusBar = "Put finished successfully !"
Call MDReXServer.wipeMatrix

Exit Function

SendDoubleMatrixErr:

79

Program Source

Select Case Err.Number
Case 13

MsgBox Err.Number & " " & Err.Description & vbCrLf & "Single Cells not allowed !" & vbCrLf
& "Use XploRe Direct instead!", vbCritical , "SendDoubleMatrixError"

Exit Function
Case 0

Call MDReXServer.wipeMatrix
GoTo 0

Case Else
MsgBox Err.Number & " " & Err.Description , vbCritical , "SendDoubleMatrixError"
Call WriteDBGString (" SendDoubleMatrix with params: " & Matrixname & " (matrixname) " &

Cols & " (cols) " & Rows & " (rows) " & "failed ." & vbCrLf , App.EXEName & ".log")
Exit Function

End Select
0: End Function

Public Function GetDoubleMatrix(DblMatrixName As String) As Variant
Dim tmpArray () As Double
Dim Klaus As Boolean
On Error GoTo ErrHndl:

Call MDReXServer.wipeMatrix
oHostInst.StatusBar = "Getting double element " & DblMatrixName & "! Dimensions of " &

DblMatrixName & ": " & MDReXServer.GetDoubleMatrix(DblMatrixName).Cols & "x" &
MDReXServer.GetDoubleMatrix(DblMatrixName).Rows

Klaus = MDReXServer.getMatrix(DblMatrixName)
Set GetDoubleMatrix = MDReXServer.getDblMatrix

If Klaus = False Then
GoTo ErrHndl
End If

Exit Function

ErrHndl: MsgBox "MD*COM GetDoubleMatrix (): " & vbCrLf & "Could not get " & DblMatrixName & " " &
vbCrLf & Err.Description & vbCrLf & "[" & Err.Number & "]"

Set GetDoubleMatrix = Err
Exit Function

End Function

Public Function Matrixname ()
Matrixname = MDReXServer.getMatrixName
End Function

Public Function RenderGraphic () As Object
Dim i As Long
On Error GoTo ErrHndl:

Select Case (MDReXServer.getNumberOfDisplays)
Case (0)

Debug.Print "RenderGraphic: # of Displays: "; MDReXServer.getNumberOfDisplays
GoTo SelectHndl:

Case Else
Debug.Print "RenderGraphic: # of Displays: "; MDReXServer.getNumberOfDisplays
For i = 0 To (MDReXServer.getNumberOfDisplays - 1)

If ReXDisplay Is Nothing Then
Set ReXDisplay = MDReXServer.getDisplay(i)
Debug.Print "RenderGraphic_ReXDisplay Cols (" & ReXDisplay.Cols & "), Rows (" &

ReXDisplay.Rows & "), ID (" & ReXDisplay.id & "), Type (" & ReXDisplay.Type &
")" & vbCrLf

End If
Next i

End Select

Select Case (MDReXServer.getNumberOfGraphics)
Case (0)

Debug.Print "RenderGraphic: # of Graphics: "; MDReXServer.getNumberOfGraphics
GoTo SelectHndl:

Case Else
For i = 0 To (MDReXServer.getNumberOfGraphics - 1)

Set ReXGraphic = MDReXServer.getGraphic(i)
Debug.Print "Attributes of Graphic " & ReXGraphic.displayID & " (displayID)." & vbCrLf

& "Rows: " & ReXGraphic.Row & vbCrLf & "Cols: " & ReXGraphic.Col & vbCrLf & "Dim
: " & ReXGraphic.dim

Next i
End Select

SelectHndl:
Set RenderGraphic = Nothing
Exit Function

ErrHndl:
Debug.Print "MD*COM getGraphic (): " & vbCrLf & "Error occured! " & vbCrLf & Err.

Description & vbCrLf & "[" & Err.Number & "]"
Set RenderGraphic = Err
Exit Function

End Function

80

Program Source

B.13 clsPutGet.cls

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 ’True
Persistable = 0 ’NotPersistable
DataBindingBehavior = 0 ’vbNone
DataSourceBehavior = 0 ’vbNone
MTSTransactionMode = 0 ’NotAnMTSObject

END
Attribute VB_Name = "clsPutGet"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit

Public Sub GetXPL ()
Dim Varname As String
Dim PutRange As Range , r1 As Range , r2 As Range
Dim TempVariantArray ()
Dim myCols As Long , myRows As Long
Dim Klaus As Boolean
Dim rCount As Long
Dim cCount As Long
Dim tempRows As Long
Dim tempCols As Long
Dim i As Long , j As Long , k As Long , l As Long
Dim dummy As String

Dim rngTemp As Range
Dim strValue As String
Dim strRangeName As String
Dim strAddress As String
Dim strFormula As String
Dim TmpComment As Excel.Comment

dummy = "Sorry object doesn ’t exsist at XQS"
Varname = InputBox ("Name of XploRe Object: ", "Get")

If Varname = "" Then
MsgBox "You Specified an empty Object name!"
Exit Sub

End If

On Error GoTo GetXPLErr:
Call WriteDBGString ("Going to get " & Varname & " from XQS." & vbCrLf , App.EXEName & ".log")
TempVariantArray () = p_OfficeCrypt.GetDoubleMatrix(Varname).elements
tempRows = UBound(TempVariantArray , 1)
tempCols = UBound(TempVariantArray , 2)
Call WriteDBGString ("# ROWS: " & vbTab & tempRows & vbCrLf , App.EXEName & ".log")
Call WriteDBGString ("# COLS: " & vbTab & tempCols & vbCrLf , App.EXEName & ".log")

If tempCols > 255 Then
MsgBox "Sorry your matrix has more than 255 Columns !" & vbCrLf _
& "MS Excel does not support more than 255 Columns in a single worksheet ." & vbCrLf _
& "Your matrix has " & tempCols & " columns ."
UpdateViews
Exit Sub

End If

If tempCols = 0 Then
Set PutRange = oHostInst.Selection
Set PutRange = PutRange.Cells(1, 1)
Set PutRange = oHostInst.Range(PutRange , PutRange.Offset(tempRows , tempCols))
Call WriteDBGString ("just got" & Varname & " from XQS." & vbCrLf , App.EXEName & ".log")

If (IsRangeEmpty(PutRange) = True) Then
PutRange.Value = TempVariantArray
strAddress = PutRange.Address & vbCrLf & PutRange.AddressLocal
Call WriteDBGString (" placeing " & Varname & " to " & PutRange.AddressLocal &

vbCrLf , App.EXEName & ".log")
Else

MsgBox "The Range you selected is not empty. Select another range"
Call WriteDBGString (" placeing " & Varname & " not done. Range not empty !" & vbCrLf

, App.EXEName & ".log")
Exit Sub

End If
Else

Set PutRange = oHostInst.Selection
Set PutRange = PutRange.Cells(1, 1)
Set PutRange = oHostInst.Range(PutRange , PutRange.Offset(tempRows , tempCols))
Call WriteDBGString ("just got" & Varname & " from XQS." & vbCrLf , App.EXEName & ".log")

If (IsRangeEmpty(PutRange) = True) Then
PutRange.Value = TempVariantArray
strAddress = PutRange.Address & vbCrLf & PutRange.AddressLocal
Call WriteDBGString (" placeing " & Varname & " to " & PutRange.AddressLocal &

vbCrLf , App.EXEName & ".log")

81

Program Source

Else
MsgBox "The Range you selected is not empty. Select another range"
Call WriteDBGString (" placeing " & Varname & " not done. Range not empty !" & vbCrLf

, App.EXEName & ".log")
Exit Sub

End If
End If
CountRuns
Call Map(PutRange , Varname , CounterRuns)
Set PutRange = Nothing

Exit Sub

GetXPLErr:
Select Case Err.Number

Case -2147467259
MsgBox "The object name you specified [" & Varname & "] seems not to exist at the XQS

.", vbCritical , dummy
Case 0

GoTo 0
Case Else

MsgBox Err.Number & " " & Err.Description , vbCritical
End Select
Exit Sub

0: End Sub

Public Sub PutXpl ()
Dim Varname As String
Dim Matrix
Dim ValRange As Range
Dim tempVal As Object
Dim i As Long , j As Long
Dim RowNum As Long , ColNum As Long

On Error GoTo PutXpl_Err
1: Varname = InputBox ("Name of XploRe Object: ", "Put")

If Varname = "" Then
MsgBox "You Specified an empty Object name!"
Exit Sub

End If

Select Case CounterRuns
Case 0

GoTo 2:
Case Else

For i = 0 To UBound(myMapper.XPLObject)
If Varname = myMapper.XPLObject(i) Then

If MsgBox(Varname & " already exists at server! Overwrite ?", vbOKCancel) =
vbCancel Then GoTo 1:

End If
Next i

End Select

2: Set ValRange = oHostInst.Selection

If IsEmpty(ValRange) Then
MsgBox "You haven ’t selected a cell range for the object" & vbCrLf & "or the selected

range is empty !"
Exit Sub

End If
RowNum = ValRange.Rows.Count
ColNum = ValRange.Columns.Count
Matrix = ValRange
Call WriteDBGString ("Going to put " & Varname & " to XQS." & vbCrLf , App.EXEName & ".log")
Call WriteDBGString ("# ROWS: " & vbTab & RowNum & vbCrLf , App.EXEName & ".log")
Call WriteDBGString ("# COLS: " & vbTab & ColNum & vbCrLf , App.EXEName & ".log")
Call p_OfficeCrypt.SendDoubleMatrix(Varname , Matrix , ColNum , RowNum)
UpdateViews
CountRuns
Call Map(ValRange , Varname , CounterRuns)

Exit Sub

PutXpl_Err:
Call ExeErr(Err)
Exit Sub

End Sub

82

Program Source

B.14 clsXPL2XLS.cls

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 ’True
Persistable = 0 ’NotPersistable
DataBindingBehavior = 0 ’vbNone
DataSourceBehavior = 0 ’vbNone
MTSTransactionMode = 0 ’NotAnMTSObject

END
Attribute VB_Name = "clsXPL2XLS"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit

Public Type XPL2XLSMapper
XPLObject () As String
XLSObject () As String
XLSObjectName () As String
XPLObjectCount As Long

End Type

Public Type LibQuantMapper
QuantletName () As String
QuantletLibrary () As String
InputArgs () As String
OutputArgs () As String
OptionalArgs () As String

End Type

83

Program Source

B.15 dsrExcel11.Dsr

VERSION 5.00
Begin {AC0714F6 -3D04 -11D1-AE7D -00 A0C90F26F4} dsrExcel11

ClientHeight = 12315
ClientLeft = 0
ClientTop = 0
ClientWidth = 19140
_ExtentX = 33761
_ExtentY = 21722
_Version = 393216
Description = "XploRe COM client"
DisplayName = "MD*ReX 2004"
AppName = "Microsoft Excel"
AppVer = "Microsoft Excel 11.0"
LoadName = "Startup"
LoadBehavior = 3
RegLocation = "HKEY_CURRENT_USER\Software\Microsoft\Office\Excel"
RegInfoCount = 1
RegType0 = 1
RegKeyName0 = "Author"
RegSData0 = ""

End
Attribute VB_Name = "dsrExcel11"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
Option Explicit
’//public members declared in mdlMDRex2004.bas

Private WithEvents p_mctlBtnEvents As Office.CommandBarButton
Attribute p_mctlBtnEvents.VB_VarHelpID = -1
Private WithEvents p_mcomboEvents As Office.CommandBarComboBox
Attribute p_mcomboEvents.VB_VarHelpID = -1

Private Declare Function GetForegroundWindow Lib "user32" () As Long
Dim hwndXLS As Long
Dim sProgID As String
Dim myCommandBar As Office.CommandBar

Private Sub AddinInstance_Initialize ()
On Error GoTo DSR_Err
Set myPutGet = New clsPutGet
Set myFile = New FileSystemObject
Call CreateDBGFolder

blnRexToggled = False
Set myFrmSplash = New frmSplashNew
Set myFrmGetResult = New frmGetResult
Set myFrmFunctions = New frmFunctions
Set myFrmLibsLocal = New frmLibsLocal
Set myFrmNamedRanges = New frmNamedRanges
Set myFrmObjects = New frmObjects
Set myFrmQuantlets = New frmQuantlets
Set myFrmQuantsLocal = New frmQuantsLocal
Set myFrmStatus = New frmStatus
Set myFrmXLA = New frmXLA

Set p_OfficeCrypt = New clsMDCrypt
With p_OfficeCrypt

str_InfoMDCRYPT = .MDReXServer
str_InfoMDCRYPT = "MD*Crypt instance: " & str_InfoMDCRYPT & vbCrLf & "XQS Status: " & .

propServerStatus
End With
Call WriteDBGString(App.EXEName & " Initialize () @ " & Date & " " & Time & vbCrLf , App.EXEName

& ".log")
Call WriteDBGString (" XploRe Middleware " & str_InfoMDCRYPT & vbCrLf , App.EXEName & ".log")

TriggerMDServ
Exit Sub

DSR_Err:
Call ExeErr(Err)

End Sub

Private Sub AddinInstance_OnAddInsUpdate(custom () As Variant)
On Error GoTo DSR_Err
If p_OfficeCrypt Is Nothing Then

Set p_OfficeCrypt = New clsMDCrypt
End If
Call WriteDBGString(App.EXEName & " OnAddInsUpdate () @ " & Date & " " & Time & vbCrLf , App.

EXEName & ".log")
Exit Sub

DSR_Err:
Call ExeErr(Err)

84

Program Source

End Sub

Private Sub AddinInstance_OnBeginShutdown(custom () As Variant)
On Error GoTo DSR_Err
Call WriteDBGString(App.EXEName & " OnBeginShutdown () @ " & Date & " " & Time & vbCrLf , App.

EXEName & ".log")
Exit Sub

DSR_Err:
Call ExeErr(Err)

End Sub

Private Sub AddinInstance_OnConnection(ByVal Application As Object , ByVal ConnectMode As
AddInDesignerObjects.ext_ConnectMode , ByVal AddInInst As Object , custom () As Variant)

On Error GoTo DSR_Err
Call WriteDBGString(App.EXEName & " OnConnection () (caller: " & Application & ") @ " & Date &

" " & Time & vbCrLf , App.EXEName & ".log")

Set oHostInst = Application
Set p_AddinInst = AddInInst
If (oHostInst.Version <> "11.0") Then MsgBox "This COM AddIn has only been tested with MSExcel

v.11 (Excel2003)." & vbCrLf & "Though it should be downward compatible" & vbCrLf & "it
is not guaranteed that this AddIn " & vbCrLf & "will work as intended with earlier
versions ." & vbCrLf & "Please update Excel.", vbInformation , App.EXEName

Call WriteDBGString(App.EXEName & " called from: " & oHostInst & " v." & oHostInst.Version &
vbCrLf , App.EXEName & ".log")

str_InfoMDCOM = p_AddinInst.Description & " On Connection" & vbCrLf & "GUID: " & p_AddinInst.
Guid & vbCrLf & "ProgID: " & p_AddinInst.ProgId

Select Case ConnectMode
Case ext_cm_AfterStartup

Call WriteDBGString(str_InfoMDCOM & vbCrLf & str_InfoMDCRYPT & App.EXEName & "
initialized! Connect mode: " & ConnectMode & "(ext_cm_AfterStartup)" & vbCrLf ,
App.EXEName & ".log")

Case ext_cm_CommandLine
Call WriteDBGString(str_InfoMDCOM & vbCrLf & str_InfoMDCRYPT & App.EXEName & "

initialized! Connect mode: " & ConnectMode & "(ext_cm_CommandLine)" & vbCrLf , App
.EXEName & ".log")

Case ext_cm_External
Call WriteDBGString(str_InfoMDCOM & vbCrLf & str_InfoMDCRYPT & App.EXEName & "

initialized! Connect mode: " & ConnectMode & "(ext_cm_External)" & vbCrLf , App.
EXEName & ".log")

Case ext_cm_Startup
Call WriteDBGString(str_InfoMDCOM & vbCrLf & str_InfoMDCRYPT & App.EXEName & "

initialized! Connect mode: " & ConnectMode & "(ext_cm_Startup)" & vbCrLf , App.
EXEName & ".log")

End Select

AddInInst.object = Me ’//obtain reference to this == Me
’obtain reference to Excel , MD*Crypt and window handle for Excel
’Excel is assumed to be in the foreground
Call SaveHostApp(Application , AddInInst)
hwndXLS = GetForegroundWindow ()
On Error Resume Next
sProgID = AddInInst.ProgId
Set p_mctlBtnEvents = CreateAddInCommandBarButton(Application , ConnectMode , AddInInst)
’DeleteAddIns
Call LoadAddin(False , "XploReGetResult.xla") ’//unload default addin

Exit Sub

DSR_Err:
Call ExeErr(Err)

End Sub

Private Sub AddinInstance_OnDisconnection(ByVal RemoveMode As AddInDesignerObjects.
ext_DisconnectMode , custom () As Variant)

Dim i%
On Error GoTo DSR_Err
Call WriteDBGString(App.EXEName & " OnDisconnection () @ " & Date & " " & Time & vbCrLf , App.

EXEName & ".log")
RemoveAddInCommandBarButton RemoveMode

GetLocalAddins (App.Path & "\ mdrexxla *.xla")
If xlaNameArray (1) <> "" Then

If (UBound(xlaNameArray) > 0) Then
For i = 1 To UBound(xlaNameArray)

DeleteAddIns (xlaNameArray(i)) ’//unload custom addins
Next i

End If
End If
DeleteAddIns (" Xploregetresult ")
ReDim xlaNameArray (0)

If p_OfficeCrypt.ConnectedToServer Then Call WriteDBGString(App.EXEName & " is still connected
during OnDisconnection ()" & vbCrLf , App.EXEName & ".log")

p_OfficeCrypt.clsTerminate

Exit Sub

85

Program Source

DSR_Err:
Call ExeErr(Err)

End Sub

Private Sub AddinInstance_OnStartupComplete(custom () As Variant)
On Error GoTo DSR_Err
Call WriteDBGString(App.EXEName & " OnStartupComplete () @ " & Date & " " & Time & vbCrLf , App.

EXEName & ".log")

Exit Sub

DSR_Err:
Call ExeErr(Err)

End Sub

Private Sub AddinInstance_Terminate ()
Dim killer As Boolean
On Error GoTo DSR_Err
Call WriteDBGString(App.EXEName & " OnAddInsUpdate @ " & Date & " " & Time & vbCrLf , App.

EXEName & ".log")
Set p_AddinInst = Nothing
If p_OfficeCrypt.ConnectedToServer Then Call WriteDBGString(App.EXEName & " is still connected

during Terminate ()" & vbCrLf & "Will force termination now!", App.EXEName & ".log")

While Not killer
killer = p_OfficeCrypt.clsBruteTerminate

Wend

Set p_OfficeCrypt = Nothing
Set oHostInst = Nothing
Set myFrmSplash = Nothing
Set myFrmFunctions = Nothing
Set myFrmLibsLocal = Nothing
Set myFrmNamedRanges = Nothing
Set myFrmObjects = Nothing
Set myFrmQuantlets = Nothing
Set myFrmQuantsLocal = Nothing
Set myFrmStatus = Nothing
Set myFrmXLA = New frmXLA

CloseMDCOM
Call WriteDBGString(App.EXEName & " finished Terminate () successfully !" & vbCrLf & "Object

Cleanup done!" & vbCrLf , App.EXEName & ".log")
Call WriteDBGString ("Have a nice day ..." & vbCrLf & vbCrLf , App.EXEName & ".log")

Exit Sub

DSR_Err:
Call ExeErr(Err)

End Sub

Private Sub p_mcomboEvents_Change(ByVal Ctrl As Office.CommandBarComboBox)
Dim i%
On Error GoTo DSR_Err
With p_mcomboEvents

ReDim str_ComboText (. ListCount)
If Ctrl.Text <> "" Then

str_ComboText (. ListCount) = Ctrl.Text
.AddItem (str_ComboText (. ListCount))

End If
.DropDownLines = .ListCount

End With

If Ctrl.Text <> "" Then
p_OfficeCrypt.clsSendQuantlet (Ctrl.Text)
myFrmGetResult.txtGetResult.Text = p_OfficeCrypt.clsGetResult
If myFrmGetResult.txtGetResult.Text <> "" Then myFrmGetResult.Show

End If
Exit Sub

DSR_Err:
Call ExeErr(Err)

End Sub

Private Sub p_mctlBtnEvents_Click(ByVal Ctrl As Office.CommandBarButton , CancelDefault As Boolean)
Dim strResults As String
Dim temp As Integer
On Error GoTo Event_Err
’ get instance on splash screen.
If myFrmSplash Is Nothing Then Set myFrmSplash = New frmSplashNew
If blnRexToggled = False Then

strResults = p_OfficeCrypt.MDReXInfoServer.serverBuildDate
With myFrmSplash

.Caption = "MD*ReX 2004"

.lblCopyright = App.LegalCopyright

.lblCompanyProduct.Caption = "MD*ReX Microsoft Office COM Add -in"

.lblVersion = "MD*ReX " & Format(App.Major , "#0") & "." & Format(App.Minor , "#00") &
"." & Format(App.Revision , "#0000")

.txtSplash2.ToolTipText = "MD*ReX"

86

Program Source

.txtSplash2.Text = "MD*COM guid: " & oAddinInst.Guid & vbCrLf & "MD*COM says ..." &
vbCrLf & "Path to MD*SERV: " & App.Path & "\ mdserv" & vbCrLf & "Operating System:
" & _

oHostInst.OperatingSystem & vbCrLf & "Host: " & oHostInst.Value & " " _
& oHostInst.Version & " Build: " & oHostInst.Build & vbCrLf & "MD*Crypt says ... " & _
vbCrLf & "Server Status: " & p_OfficeCrypt.propServerStatus & vbCrLf & "MD*Crypt

version " _
& p_OfficeCrypt.MDReXInfoServer.getMdCryptVersion & vbCrLf & "MD*Crypt Java: " _
& p_OfficeCrypt.MDReXInfoServer.getMdCryptJava & vbCrLf & "MD*Serv build: " _
& p_OfficeCrypt.MDReXInfoServer.getMdServVersion & vbCrLf _
& "MD*XQS Server ID: " _
& p_OfficeCrypt.MDReXInfoServer.getMyMdServId & vbCrLf _
& "MD*XQS Server System: " _
& p_OfficeCrypt.MDReXInfoServer.getServerSystem & vbCrLf _
& "MD*XQS Server Build: " _
& p_OfficeCrypt.MDReXInfoServer.getServerBuild & vbCrLf _
& "Java SDK Version: " _
& p_OfficeCrypt.MDReXInfoServer.getMdServJava & vbCrLf _
& "MD*XQS Server Build Date: " _
& strResults
.txtSplash2.Visible = True
.txtSplash2.Locked = True
.Command3.Caption = "Ok"
.Command4.Caption = "www.md -rex.com"
.Show

End With
Set myCommandBar = oHostInst.CommandBars (" Worksheet Menu Bar") ’//handle on MSExcel Main

Commandbar
Call myMDCOMMenu.MDCOMConnect(p_AddinInst , oHostInst , myCommandBar) ’//entry point for

creating MDRex Toolbar
Call myMDCOMContextMenu.MDCOMConnectContextMenu(p_AddinInst , oHostInst , myCommandBar) ’//

entry point for creating MDRex Context Menu
Set p_mcomboEvents = CreateAddInComboBox(oHostInst , p_AddinInst) ’//handle on MDReX

commandline button
blnRexToggled = True

Else
If p_OfficeCrypt.ConnectedToServer = True Then

temp = MsgBox ("You are still connected to: " & vbCrLf & p_OfficeCrypt.propServerIP &
vbCrLf & "Pressing yes will disconnect you." & vbCrLf & "WARNING: all data on the
server will be lost!" & vbCrLf & "Do you want to disconnect ?", 4 + 32, "

Disconnect " & p_OfficeCrypt.propServerIP)
If temp = 6 Then

p_OfficeCrypt.clsTerminate
Else

Exit Sub
End If
oHostInst.StatusBar = ""
Call myMDCOMMenu.MDCOMDisconnect
Call myMDCOMContextMenu.MDCOMContextMenuDisconnect

Else
oHostInst.StatusBar = ""
Call myMDCOMMenu.MDCOMDisconnect
Call myMDCOMContextMenu.MDCOMContextMenuDisconnect

End If
blnRexToggled = False

End If

Exit Sub

Event_End:
Exit Sub

Event_Err:
Call ExeErr(Err)
Resume Event_End

End Sub

Public Function OneVar(x As Excel.Range) As Excel.Range

Dim Varname As String
Dim Matrix As Range
Dim ValRange As Range
Dim tempVal As Object
Dim i As Long , j As Long
Dim RowNum As Long , ColNum As Long

If Not ActiveworkbookIsValid(False , "rexone ") Then

1: Varname = InputBox ("Name of XploRe Object: ", "Put")

If Varname = "" Then
MsgBox "You Specified an empty Object name!"
Exit Function

End If

Select Case CounterRuns
Case 0

GoTo 2:
Case Else

87

Program Source

For i = 0 To UBound(myMapper.XPLObject)
If Varname = myMapper.XPLObject(i) Then

If MsgBox(Varname & " already exists at server! Overwrite", vbOKCancel) =
vbCancel Then GoTo 1:

End If
Next i

End Select

2: Set ValRange = x

If IsEmpty(ValRange) Then
MsgBox "You haven ’t selected a cell range for the object" & vbCrLf & "or the selected

range is empty !"
Exit Function

End If
RowNum = ValRange.Rows.Count
ColNum = ValRange.Columns.Count
Set Matrix = ValRange

Call p_OfficeCrypt.SendDoubleMatrix(Varname , Matrix , ColNum , RowNum)
UpdateViewsMenu
UpdateViewsContext
CountRuns
Call Map(ValRange , Varname , CounterRuns)

p_OfficeCrypt.clsSendQuantlet (" library ("" stats "")")
p_OfficeCrypt.clsSendQuantlet (" setenv ("" outputstringformat "", ""%s"")")
p_OfficeCrypt.clsSendQuantlet (" descriptive (" & Varname & ")")
myFrmGetResult.txtGetResult.Text = p_OfficeCrypt.clsGetResult
If myFrmGetResult.txtGetResult.Text <> "" Then myFrmGetResult.Show
’OpenTemplate (" onevar ")

End If
End Function

Public Function ActiveworkbookIsValid(bThrowMsg As Boolean , CustDocProp As String) As Boolean

’Returns True/False indicating whether or not the activeworkbook
’is created from our template. If bThrowMsg is true , it also displays
’a warning to the user when the workbook is not "valid".
’
’** Note: The workbook template contains a custom document property named
’ "GanttChart ". If this property appears in the activeworkbook , then the
’ workbook is assumed to be "valid ".

ActiveworkbookIsValid = False
If Not (oHostInst.ActiveWorkbook Is Nothing) Then

Dim b As Boolean
Dim PropString As Object
Dim wb As Workbook
On Error Resume Next
Set wb = oHostInst.ActiveWorkbook
b = oHostInst.wb.CustomDocumentProperties(CustDocProp).Value
PropString = wb.CustomDocumentProperties
PropString = wb.CustomDocumentProperties(CustDocProp).Value
If Err = 0 Then ActiveworkbookIsValid = True

End If

If Not (ActiveworkbookIsValid) And bThrowMsg Then
MsgBox "The active workbook is not a valid workbook for use with " & _

"the MD*ReX Add -in.", , "MD*ReX"
End If

End Function

Public Function XPLEval(XPLExpression As Variant , ParamArray XPLArgs () As Variant) As Variant

Dim i%
Dim tExpr$
Dim tArgs As Variant

If UBound(XPLArgs) >= 0 Then
tArgs = XPLArgs(i)

End If

If Not ActiveworkbookIsValid(False , "rexeval ") Then

tExpr = XPLExpression
XPLEval = XPLEvalReturn(tExpr)

End If

End Function

Function XPLEvalReturn(EvalString As String) As Variant

Dim tStr As String
Dim errStr As String

88

Program Source

tStr = EvalString

p_OfficeCrypt.clsSendQuantlet (" setenv ("" outheadline "", """") ")
’p_OfficeCrypt.clsSendQuantlet (" setenv ("" outlayerline "", """") ")
p_OfficeCrypt.clsSendQuantlet (" setenv ("" outlineno"", """") ")
p_OfficeCrypt.clsSendQuantlet (" setenv ("" outputstringformat "", ""%s"")")
p_OfficeCrypt.clsSendQuantlet (tStr)
tStr = p_OfficeCrypt.clsGetResult
tStr = Replace(tStr , Chr (13), "")
tStr = Replace(tStr , Chr (10), "")
XPLEvalReturn = tStr
If Not (Err.Number <> 0) Then

Exit Function
Else
XPLEvalReturn = "# XPLError"
End If
End Function

89

Program Source

B.16 frmConnect.frm

VERSION 5.00
Begin VB.Form frmConnect

BorderStyle = 4 ’Festes Werkzeugfenster
Caption = "Connect to XQS"
ClientHeight = 1545
ClientLeft = 2835
ClientTop = 3435
ClientWidth = 4350
Icon = "frmConnect.frx ":0000
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 912.837
ScaleMode = 0 ’Benutzerdefiniert
ScaleWidth = 4084.415
ShowInTaskbar = 0 ’False
StartUpPosition = 2 ’Bildschirmmitte
Begin VB.ComboBox Combo2

Height = 315
Left = 1440
Style = 2 ’Dropdown -Liste
TabIndex = 5
Top = 480
Width = 2775

End
Begin VB.ComboBox Combo1

Height = 315
ItemData = "frmConnect.frx ":08CA
Left = 1440
List = "frmConnect.frx ":08CC
Style = 2 ’Dropdown -Liste
TabIndex = 4
Top = 120
Width = 2775

End
Begin VB.CommandButton cmdOK

Caption = "OK"
CausesValidation= 0 ’False
Default = -1 ’True
Height = 390
Left = 1800
TabIndex = 2
Top = 1020
Width = 1140

End
Begin VB.CommandButton cmdCancel

Cancel = -1 ’True
Caption = "Cancel"
CausesValidation= 0 ’False
Height = 390
Left = 3000
TabIndex = 3
Top = 1020
Width = 1140

End
Begin VB.Label lblLabels

Caption = "&XQS IP address :"
Height = 270
Index = 0
Left = 105
TabIndex = 0
Top = 142
Width = 1320

End
Begin VB.Label lblLabels

Caption = "X&QS Port #:"
Height = 270
Index = 1
Left = 105
TabIndex = 1
Top = 502
Width = 1080

End
End
Attribute VB_Name = "frmConnect"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Public ConnectSucceeded As Boolean
Dim IPString As String
Dim PortLong As Long
Dim myMDCOMMenu As clsMDCOMMenu

90

Program Source

Private Sub cmdCancel_Click ()
’Globale Variable auf False setzen ,
’um eine fehlgeschlagene Anmeldung zu kennzeichnen.
ConnectSucceeded = False
Me.Hide

End Sub

Private Sub cmdOk_Click ()
Me.MousePointer = vbHourglass

p_OfficeCrypt.SetServerIP (Me.Combo1.Text)
p_OfficeCrypt.SetServerPort (Me.Combo2.Text)

If p_OfficeCrypt.clsConnect = True Then

UpdateViewsMenu
UpdateViewsContext
Me.MousePointer = 0
Me.Hide

’ REMOVED from project since we use excel names
’ If (oHostInst <> "Microsoft Word") Then
’ AddMappingSheet (" XploRe 2 Excel Mapping Table ")
’ oHostInst.Worksheets (1).Activate
’ End If

p_OfficeCrypt.clsSendQuantlet (" mdrexinfo=info()")
InfoString = p_OfficeCrypt.clsGetResult
p_OfficeCrypt.clsSendQuantlet (" mdrexinfo.objects ")
ObjectString = p_OfficeCrypt.clsGetResult
p_OfficeCrypt.clsSendQuantlet (" mdrexinfo.functions ")
FunctionString = p_OfficeCrypt.clsGetResult
p_OfficeCrypt.clsSendQuantlet (" mdrexinfo.quantlets ")
QuantletString = p_OfficeCrypt.clsGetResult

Else
MsgBox "Could not connect !" & vbCrLf & "This might be due to a running xqs.exe process ." &

vbCrLf & "Switch to process manager and kill any xqs ... processes ." & vbCrLf & "Then
restart Excel and try again ."

Exit Sub
End If
Unload Me
End Sub

Private Sub Combo1_Change ()
IPString = Combo1.SelText
End Sub

Private Sub Combo2_Change ()
If IsNumeric(Me.Combo2.Text) = True Then
PortLong = Combo2.SelText
End If
End Sub

Private Sub Form_Load ()
If (myMDCOMMenu Is Nothing) Then
Set myMDCOMMenu = New clsMDCOMMenu
End If
With Me.Combo1

.AddItem (" localhost ")

.AddItem ("xqs.xplore -stat.de")

.AddItem ("apus.wiwi.hu -berlin.de")
’ .AddItem (" amadeus.statistik.uni -dortmund.de")
’ .AddItem (" helena.stat.uni -muenchen.de")
’ .AddItem ("mid.ism.ac.jp")
’ .AddItem (" corona.utstat.utoronto.ca")
’ .AddItem (" xplore.math.usu.edu")
’ .AddItem ("stat.wharton.upenn.edu")
’ .AddItem (" pulsar.galaxy.gmu.edu")
’ .AddItem (" euterpe.ensae.fr")
’ .AddItem ("stat2.wu -wien.ac.at")
’ .AddItem (" stat4ux.stat.ucl.ac.be")
’ .AddItem (" sunsite.univie.ac.at")

.Enabled = True

.ListIndex = 0

.Locked = False
End With
With Me.Combo2

.AddItem ("8889")

.AddItem ("8890")

.AddItem ("8891")

.Enabled = True

.ListIndex = 0

.Locked = False
End With
End Sub

91

Program Source

B.17 frmFunctions.frm

VERSION 5.00
Begin VB.Form frmFunctions

BorderStyle = 4 ’Festes Werkzeugfenster
Caption = "Functions"
ClientHeight = 7500
ClientLeft = 45
ClientTop = 315
ClientWidth = 7725
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 7500
ScaleWidth = 7725
ShowInTaskbar = 0 ’False
StartUpPosition = 3 ’Windows -Standard
Begin VB.Frame Frame1

Caption = "Frame1"
Height = 7215
Left = 120
TabIndex = 0
Top = 120
Width = 7455
Begin VB.TextBox txtFunctions

BackColor = &H80000004&
Height = 6765
Left = 120
Locked = -1 ’True
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 1
Top = 240
Width = 7125

End
End

End
Attribute VB_Name = "frmFunctions"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

92

Program Source

B.18 frmGetResult.frm

VERSION 5.00
Begin VB.Form frmGetResult

BorderStyle = 3 ’Fester Dialog
Caption = "XQS Result"
ClientHeight = 4935
ClientLeft = 45
ClientTop = 405
ClientWidth = 6750
Icon = "frmGetResult.frx ":0000
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 4935
ScaleWidth = 6750
ShowInTaskbar = 0 ’False
Begin VB.Frame Frame1

Caption = "Result"
Height = 4695
Left = 120
TabIndex = 0
Top = 120
Width = 6495
Begin VB.TextBox txtGetResult

BeginProperty Font
Name = "Courier"
Size = 9.75
Charset = 0
Weight = 400
Underline = 0 ’False
Italic = 0 ’False
Strikethrough = 0 ’False

EndProperty
Height = 4350
Left = 90
Locked = -1 ’True
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 1
Text = "frmGetResult.frx ":08CA
Top = 225
Width = 6285

End
End

End
Attribute VB_Name = "frmGetResult"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Option Explicit

93

Program Source

B.19 frmLibsLocal.frm

VERSION 5.00
Begin VB.Form frmLibsLocal

BorderStyle = 4 ’Festes Werkzeugfenster
Caption = "Local Libraries"
ClientHeight = 5235
ClientLeft = 45
ClientTop = 315
ClientWidth = 7740
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 5235
ScaleWidth = 7740
ShowInTaskbar = 0 ’False
StartUpPosition = 3 ’Windows -Standard
Begin VB.TextBox txtLibsLocal

BackColor = &H80000004&
Height = 4500
Left = 240
Locked = -1 ’True
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 0
Top = 360
Width = 7155

End
Begin VB.Frame Frame1

Caption = "Libraries"
Height = 4935
Left = 120
TabIndex = 1
Top = 120
Width = 7455

End
End
Attribute VB_Name = "frmLibsLocal"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

94

Program Source

B.20 frmNamedRanges.frm

VERSION 5.00
Begin VB.Form frmNamedRanges

BorderStyle = 4 ’Festes Werkzeugfenster
Caption = "XPL2XLS Object Mapping"
ClientHeight = 4230
ClientLeft = 45
ClientTop = 315
ClientWidth = 7020
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 4230
ScaleWidth = 7020
ShowInTaskbar = 0 ’False
StartUpPosition = 3 ’Windows -Standard
Begin VB.Frame fraListNames

Caption = "Name Mapping"
Height = 3975
Left = 120
TabIndex = 0
Top = 120
Width = 6735
Begin VB.ListBox listNamedRanges

Height = 3570
Left = 120
TabIndex = 1
Top = 240
Width = 6495

End
End

End
Attribute VB_Name = "frmNamedRanges"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

95

Program Source

B.21 frmObjects.frm

VERSION 5.00
Begin VB.Form frmObjects

BorderStyle = 4 ’Festes Werkzeugfenster
Caption = "Objects"
ClientHeight = 7440
ClientLeft = 45
ClientTop = 315
ClientWidth = 7710
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 7440
ScaleWidth = 7710
ShowInTaskbar = 0 ’False
StartUpPosition = 3 ’Windows -Standard
Begin VB.Frame Frame1

Caption = "Objects"
Height = 7215
Left = 120
TabIndex = 0
Top = 120
Width = 7455
Begin VB.TextBox txtObjects

BackColor = &H80000004&
Height = 6780
Left = 120
Locked = -1 ’True
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 1
Top = 240
Width = 7125

End
End

End
Attribute VB_Name = "frmObjects"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

96

Program Source

B.22 frmQuantlets.frm

VERSION 5.00
Begin VB.Form frmQuantlets

BorderStyle = 4 ’Festes Werkzeugfenster
Caption = "Quantlets"
ClientHeight = 7350
ClientLeft = 45
ClientTop = 315
ClientWidth = 7545
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 7350
ScaleWidth = 7545
ShowInTaskbar = 0 ’False
StartUpPosition = 3 ’Windows -Standard
Begin VB.TextBox txtQuantlets

BackColor = &H80000004&
Height = 6735
Left = 240
Locked = -1 ’True
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 0
Top = 360
Width = 7095

End
Begin VB.Frame Frame1

Caption = "Quantlets"
Height = 7095
Left = 120
TabIndex = 1
Top = 120
Width = 7335

End
End
Attribute VB_Name = "frmQuantlets"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

97

Program Source

B.23 frmQuantsLocal.frm

VERSION 5.00
Begin VB.Form frmQuantsLocal

BorderStyle = 4 ’Festes Werkzeugfenster
Caption = "Quantlets (local)"
ClientHeight = 5730
ClientLeft = 45
ClientTop = 315
ClientWidth = 8190
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 5730
ScaleWidth = 8190
ShowInTaskbar = 0 ’False
StartUpPosition = 3 ’Windows -Standard
Begin VB.TextBox txtQuantsLocal

BackColor = &H80000004&
Height = 4980
Left = 240
Locked = -1 ’True
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 0
Top = 360
Width = 7605

End
Begin VB.Frame Frame1

Caption = "Quantlets (local)"
Height = 5415
Left = 120
TabIndex = 1
Top = 120
Width = 7935

End
End
Attribute VB_Name = "frmQuantsLocal"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

98

Program Source

B.24 frmSplashNew.frm

VERSION 5.00
Begin VB.Form frmSplashNew

BackColor = &H00800000&
BorderStyle = 1 ’Fest Einfach
Caption = "Form1"
ClientHeight = 8460
ClientLeft = 45
ClientTop = 435
ClientWidth = 6210
Icon = "frmSplashNew.frx ":0000
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
Picture = "frmSplashNew.frx ":08CA
ScaleHeight = 8460
ScaleWidth = 6210
StartUpPosition = 2 ’Bildschirmmitte
Begin VB.TextBox txtSplash2

BackColor = &H80000009&
Height = 4335
Left = 0
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 9
Text = "frmSplashNew.frx ":5136A
ToolTipText = "Status Info"
Top = 4080
Width = 6255

End
Begin VB.CommandButton Command4

Caption = "Command4"
Height = 375
Left = 4680
TabIndex = 8
Top = 2880
Width = 1455

End
Begin VB.CommandButton Command3

Caption = "Command3"
Height = 375
Left = 3960
TabIndex = 7
Top = 2880
Width = 615

End
Begin VB.CommandButton Command2

Caption = "md -rex.com"
Height = 30
Left = 14070
TabIndex = 6
Top = 6300
Width = 0

End
Begin VB.CommandButton Command1

Caption = "ok"
Height = 660
Left = 28140
TabIndex = 5
Top = 7050
Width = 0

End
Begin VB.TextBox txtSplash

BackColor = &H00FFC0C0&
Height = 720
Left = 42210
Locked = -1 ’True
MultiLine = -1 ’True
ScrollBars = 2 ’Vertikal
TabIndex = 0
Top = 8040
Width = 0

End
Begin VB.Label lblCopyright

Alignment = 1 ’Rechts
BackColor = &H00000000&
Caption = "Copyright"
BeginProperty Font

Name = "Arial"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 ’False
Italic = -1 ’True
Strikethrough = 0 ’False

EndProperty

99

Program Source

ForeColor = &H80000005&
Height = 255
Left = 2520
TabIndex = 4
Top = 3735
Width = 3600

End
Begin VB.Label lblVersion

Alignment = 1 ’Rechts
BackColor = &H00000000&
Caption = "Version"
BeginProperty Font

Name = "Arial"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 ’False
Italic = 0 ’False
Strikethrough = 0 ’False

EndProperty
ForeColor = &H80000005&
Height = 255
Left = 2520
TabIndex = 3
Top = 3540
Width = 3600

End
Begin VB.Label lblCompanyProduct

Alignment = 1 ’Rechts
BackColor = &H00000000&
Caption = "Unternehmen/Produkt"
BeginProperty Font

Name = "Arial"
Size = 8.25
Charset = 0
Weight = 700
Underline = 0 ’False
Italic = 0 ’False
Strikethrough = 0 ’False

EndProperty
ForeColor = &H80000005&
Height = 255
Left = 2520
TabIndex = 2
Top = 3330
Width = 3600

End
Begin VB.Label lblLicenseTo

Appearance = 0 ’2D
BackColor = &H80000006&
Caption = " Member of XploRe Quantlet Client Family "
BeginProperty Font

Name = "Arial"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 ’False
Italic = 0 ’False
Strikethrough = 0 ’False

EndProperty
ForeColor = &H80000005&
Height = 255
Left = 0
TabIndex = 1
Top = 0
Width = 3255

End
End
Attribute VB_Name = "frmSplashNew"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub Command3_Click ()
Unload Me

End Sub

Private Sub Command4_Click ()
Dim Browser As Object
On Error Resume Next
Set Browser = CreateObject (" internetexplorer.application ")
Browser.navigate ("http :// www.md-rex.com/")
With Browser

.StatusBar = True

.MenuBar = False

.Toolbar = 1

.Visible = True

100

Program Source

End With
End Sub

Private Sub Form_Click ()
Unload Me

End Sub

Private Sub Form_Load ()
’
End Sub

101

Program Source

B.25 frmStatus.frm

VERSION 5.00
Begin VB.Form frmStatus

BorderStyle = 4 ’Festes Werkzeugfenster
Caption = "Log Files"
ClientHeight = 7485
ClientLeft = 45
ClientTop = 315
ClientWidth = 8430
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 7485
ScaleWidth = 8430
ShowInTaskbar = 0 ’False
StartUpPosition = 3 ’Windows -Standard
Begin VB.Frame Frame2

Caption = "mdrex.log"
Height = 3255
Left = 240
TabIndex = 1
Top = 4080
Width = 7815
Begin VB.TextBox txtMDRexLog

Height = 2655
Left = 360
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 3
Text = "frmStatus.frx ":0000
Top = 360
Width = 7335

End
End
Begin VB.Frame Frame1

Caption = "prot.log"
Height = 3735
Left = 240
TabIndex = 0
Top = 120
Width = 7815
Begin VB.TextBox txtProtLog

Height = 3135
Left = 240
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 2
Text = "frmStatus.frx ":0006
Top = 360
Width = 7335

End
End

End
Attribute VB_Name = "frmStatus"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

102

Program Source

B.26 frmXLA.frm

VERSION 5.00
Begin VB.Form frmXLA

BorderStyle = 5 ’ Änderbares Werkzeugfenster
Caption = "MD*ReX Excel Add -Ins"
ClientHeight = 3660
ClientLeft = 60
ClientTop = 330
ClientWidth = 4800
LinkTopic = "Form1"
MaxButton = 0 ’False
MinButton = 0 ’False
ScaleHeight = 3660
ScaleWidth = 4800
ShowInTaskbar = 0 ’False
StartUpPosition = 3 ’Windows -Standard
Begin VB.CommandButton cmdXLAcancel

Caption = "cancel"
Height = 375
Left = 3480
TabIndex = 3
Top = 3120
Width = 975

End
Begin VB.CommandButton cmdXLASelect

Caption = "Select"
Height = 375
Left = 2280
TabIndex = 2
Top = 3120
Width = 1095

End
Begin VB.Frame Frame1

Caption = "Available AddIns"
Height = 2775
Left = 120
TabIndex = 0
Top = 120
Width = 4455
Begin VB.ListBox List1

Height = 2400
Left = 120
TabIndex = 1
Top = 240
Width = 4215

End
End

End
Attribute VB_Name = "frmXLA"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub cmdXLAcancel_Click ()
Unload Me

End Sub

Private Sub cmdXLASelect_Click ()
With Me

Call LoadAddin(True , .List1.Text , "go")
.Hide

End With
End Sub

Private Sub List1_Click ()
With Me

Call LoadAddin(True , .List1.Text , "go")
.Hide

End With
End Sub

Private Sub List1_DblClick ()
With Me

Call LoadAddin(True , .List1.Text , "go")
.Hide

End With
End Sub

103

Program Source

B.27 frmXPLDirect.frm

VERSION 5.00
Object = "{831 FDD16 -0C5C -11D2 -A9FC -0000 F8754DA1 }#2.0#0"; "MSCOMCTL.OCX"
Object = "{F9043C88 -F6F2 -101A-A3C9 -08002 B2F49FB }#1.2#0"; "COMDLG32.OCX"
Begin VB.Form frmXPLDirect

BackColor = &H00FFC0C0&
Caption = """ Analyse > Compute > XploRe """
ClientHeight = 7650
ClientLeft = 165
ClientTop = 855
ClientWidth = 8145
Icon = "frmXPLDirect.frx ":0000
LinkTopic = "Form1"
MaxButton = 0 ’False
ScaleHeight = 7650
ScaleWidth = 8145
StartUpPosition = 3 ’Windows -Standard
Begin MSComDlg.CommonDialog cmDlg

Left = 7305
Top = 4080
_ExtentX = 847
_ExtentY = 847
_Version = 393216
CancelError = -1 ’True

End
Begin MSComctlLib.StatusBar statB

Align = 2 ’Unten ausrichten
Height = 435
Left = 0
TabIndex = 4
Top = 7215
Width = 8145
_ExtentX = 14367
_ExtentY = 767
SimpleText = "TEST"
_Version = 393216
BeginProperty Panels {8E3867A5 -8586 -11D1-B16A -00 C0F0283628}

NumPanels = 3
BeginProperty Panel1 {8E3867AB -8586 -11D1-B16A -00 C0F0283628}

Object.Width = 2734
MinWidth = 2734

EndProperty
BeginProperty Panel2 {8E3867AB -8586 -11D1-B16A -00 C0F0283628}

Object.Width = 3528
MinWidth = 3528

EndProperty
BeginProperty Panel3 {8E3867AB -8586 -11D1-B16A -00 C0F0283628}

Style = 5
Alignment = 1
AutoSize = 2
Object.Width = 1508
MinWidth = 1499
TextSave = "01:00"

EndProperty
EndProperty

End
Begin VB.TextBox txtXPLOutput

BackColor = &H80000004&
Height = 4215
Index = 1
Left = 0
Locked = -1 ’True
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 3
Text = "frmXPLDirect.frx ":08CA
Top = 3000
Width = 6975

End
Begin VB.CommandButton cmdClear

Caption = "C&lear"
Height = 255
Left = 7065
TabIndex = 2
Top = 315
Width = 975

End
Begin VB.CommandButton cmdRun

Caption = "& Execute"
Height = 255
Left = 7065
TabIndex = 1
Top = 75
Width = 975

End
Begin VB.TextBox txtXPLInput

104

Program Source

BackColor = &H00FFFFFF&
Height = 3015
Index = 0
Left = 0
MultiLine = -1 ’True
ScrollBars = 3 ’Beides
TabIndex = 0
Text = "frmXPLDirect.frx ":08DB
ToolTipText = "only Quantlets go here ..."
Top = -15
Width = 6975

End
Begin VB.Menu mnuProgram

Caption = "& Program"
Begin VB.Menu mnuNew

Caption = "New"
Shortcut = ^N

End
Begin VB.Menu mnuOpen

Caption = "Open"
Shortcut = ^O

End
Begin VB.Menu mnuExit

Caption = "Exit"
End

End
Begin VB.Menu mnuData

Caption = "D&ata"
Begin VB.Menu mnuDataOpen

Caption = "Open"
End

End
Begin VB.Menu mnuMain

Caption = "&Main"
Begin VB.Menu mnuObjects

Caption = "Objects"
End
Begin VB.Menu mnuFunc

Caption = "Functions"
End
Begin VB.Menu mnuQuantlets

Caption = "Quantlets"
End

End
End
Attribute VB_Name = "frmXPLDirect"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

Private Sub cmdClear_Click ()
Me.txtXPLInput (0).Text = ""
Me.txtXPLOutput (1).Text = ""
End Sub

Private Sub cmdRun_Click ()
Dim tempQuantlet As String
Dim sQuantlet As String
Dim done As Boolean

Me.MousePointer = vbHourglass
Me.statB.Panels.Item (1).Text = "Executing ..."
Me.statB.Panels.Item (2).Text = p_OfficeCrypt.GetServerStatus

If Me.txtXPLInput.Item (0).Text = "" Then
MsgBox "NULL STRINGS NOT ALLOWED !"
Exit Sub

End If

Call p_OfficeCrypt.clsSendQuantlet (" setenv (" + Chr (34) + "outputformat" + Chr (34) + "," + Chr (34)
+ "%8.9g" + Chr (34) + ")")

Call p_OfficeCrypt.clsSendQuantlet (" setenv (" + Chr (34) + "outmaxdata" + Chr (34) + "," + Chr (34) +
"10000" + Chr (34) + ")")

tempQuantlet = Me.txtXPLInput (0).Text
sQuantlet = Replace(tempQuantlet , Chr$ (13) & Chr$ (10), Chr$ (10))

If (p_OfficeCrypt.ConnectedToServer = False) Or (p_OfficeCrypt Is Nothing) Then
MsgBox "CANNOT SEND! PLEASE CONNECT FIRST !"
Exit Sub

End If

Me.statB.Panels.Item (2).Text = p_OfficeCrypt.GetServerStatus
done = p_OfficeCrypt.clsSendQuantlet(sQuantlet)
Me.statB.Panels.Item (2).Text = p_OfficeCrypt.GetServerStatus

’Call p_OfficeCrypt.clsGetResult

105

Program Source

’Me.txtXPLOutput (1).Text = clsresult (0)

Me.txtXPLOutput (1).Text = p_OfficeCrypt.clsGetResult
Me.MousePointer = 0
Me.statB.Panels.Item (1).Text = "Ready ..."
Me.statB.Panels.Item (2).Text = p_OfficeCrypt.GetServerStatus
End Sub

Private Sub Form_Load ()
Me.statB.Panels.Item (1).Text = "Ready ..."
Me.statB.Panels.Item (2).Text = p_OfficeCrypt.GetServerStatus
End Sub

Private Sub mnuDataOpen_Click ()
On Error GoTo ErrHnd
With Me.cmDlg

.DialogTitle = "Open Data file"

.Filter = "XploRe Data Files (*.dat) |*.dat|Text files (*. txt)|(*. txt)|All files (*.*) |(*.*)
"""

.FilterIndex = 1

.InitDir = App.Path & "\ mdserv\data"

.ShowOpen
End With
Call FileToTextBox(Me.txtXPLInput.Item (0), Me.cmDlg.FileName)

Exit Sub

ErrHnd:
Exit Sub

End Sub

Private Sub mnuExit_Click ()
Unload Me
End Sub

Private Sub mnuFunc_Click ()
MsgBox "FUNCTIONS"
End Sub

Private Sub mnuNew_Click ()
Me.txtXPLInput.Item (0).Text = ""
End Sub

Private Sub mnuObjects_Click ()
MsgBox "OBJECTS"
End Sub

Private Sub mnuOpen_Click ()
Dim tmp As String
On Error GoTo ErrHnd
With Me.cmDlg

.DialogTitle = "Open Quantlet"

.Filter = "Quantlets (*. xpl) |*.xpl|Text files (*. txt)|(*. txt)|All files (*.*) |(*.*)"

.FilterIndex = 1

.InitDir = App.Path & "\ mdserv\lib"

.ShowOpen
End With
Call FileToTextBox(Me.txtXPLInput.Item (0), Me.cmDlg.FileName)

Exit Sub

ErrHnd:
Exit Sub

End Sub

Private Sub mnuQuantlets_Click ()
MsgBox "OMLETTES"
End Sub

106

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig ohne fremde Hilfe ver-

faßt und nur die angegebene Literatur und Hilfsmittel verwendet zu haben.

Gökhan Aydınlı

15. Juli 2004

107

	Motivation
	Spreadsheets
	Excel and Statistical Data Analysis
	Some Remarks on Excel's Graphical Capabilities
	The Risk of using Excel for Statistics

	Add-Ins
	COM Add-ins

	Client / Server based Statistical Computing
	XploRe
	XQS/XQC

	MD*ReX
	Evolution of the Excel Client
	The MD*ReX Architecture
	Design Issues for Add-in based Solutions
	Customizing the Add-in Environment

	How to work with MD*ReX
	Future Work
	Graphics
	User Customization
	Performance
	Outlook

	Some Graphical Examples
	Implied Volatility
	DAX30 Time Series Analysis
	SARIMA Time Series Analysis
	Spline Smoothing
	Kernel Regression
	Kernel Densities

	Glossary
	Program Source
	MD*ReX Source Tree
	MD*Serv Source Tree
	Visual Basic Source
	mdlDebug.bas
	mdlExcelXploRe.bas
	mdlMap.bas
	mdlMDRex2004.bas
	mdlMDRexCommandBar.bas
	mdlShell.bas
	clsMDCOMContextMenu.cls
	clsMDCOMMenu.cls
	clsMDCryt.cls
	clsPutGet.cls
	clsXPL2XLS.cls
	dsrExcel11.Dsr
	frmConnect.frm
	frmFunctions.frm
	frmGetResult.frm
	frmLibsLocal.frm
	frmNamedRanges.frm
	frmObjects.frm
	frmQuantlets.frm
	frmQuantsLocal.frm
	frmSplashNew.frm
	frmStatus.frm
	frmXLA.frm
	frmXPLDirect.frm

