
An Algorithm for Matching Nondeterministic
Services with Operating Guidelines

Peter Massuthe1 and Karsten Wolf 2

1 Humboldt–Universität zu Berlin
Institut für Informatik
Unter den Linden 6

10099 Berlin, Germany
massuthe@informatik.hu-berlin.de

2 Universität Rostock
Institut für Informatik

18051 Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. Interorganizational cooperation is more and more organized
by the paradigm of services. Service-oriented architectures (SOA) provide
a general framework for service interaction. SOA describe three roles of
services, the service provider, the service requester, and the service broker,
together with the three operations publish, find, and bind.
We provide a formal method based on nondeterministic automata to
model services and their interaction. In this paper, we restrict ourselves
to finite and acyclic automata. We suggest operating guidelines as a con-
venient and intuitive artifact to realize the publish operation. In our ap-
proach, the find operation reduces to a matching problem between the
requester’s service and the published operating guidelines. If matching
services are actually bound together, our approach guarantees deadlock-
free communication. In this paper, matching of deterministic as well as
nondeterministic automata with operating guidelines is presented.

Key words: Services, SOA, Formal Methods, (Nondeterministic) Automata,
Operating guidelines, Matching

1 Introduction

Nowadays, cooperation across borders of enterprises is increasingly important.
Functionalities are outsourced or so-called virtual enterprises for specific tasks
are formed. In this setting, services play an important role. A service basically
encapsulates self-contained functions that interact through a well-defined inter-
face. Recent publications apply the term service in different contexts with varying
denotations (see [1] for a survey). In this paper, we assume the essentials of a
service to include its identifier (id), its interface, and its internal operational be-
havior. We abstract from other aspects of services such as real-time constraints,
cost models, underlying middleware, etc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/127589079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The well-known class of web services is an implementation of services with
an interface specified in WSDL (Web Services Description Language) [2] and an
id given by an URI (Uniform Resource Identifier).

In the following, we concentrate on services with operational behavior de-
scribed as a workflow, i.e. an implemented business process. Such services have
become particularly important since the establishment of BPEL3 as a widely
accepted language to describe web services. BPEL provides control structures
that typically occur in workflows.

As a running example we consider the service of a beverage vending machine
as outlined in Fig. 1. The service provided by this machine expects a coin (C––) to
be inserted and one of the buttons T or C being pressed. The service then reacts
by delivering a beverage, i.e. a cup of tea (in case T has been pressed) or a cup
of coffee (in case C has been pressed).

T C

€

Fig. 1. A vending machine that sells, for 1 Euro, either a cup of tea (button T), or a
cup of coffee (button C).

Typically, a service is not executed in isolation, but in cooperation with
other services. So, a network of interacting services arises. Service-oriented ar-
chitectures (SOA) [4] provide a general framework for service interaction. SOA
distinguish three roles of services: the service provider, the service requester, and
the service broker. A service provider publishes information about his service
to a repository. The service broker manages the repository and allows a service
requester to find an adequate service provider. Then, the requester may initiate
the bind operation and both service requester and provider can start interacting.

The three roles of services and the three operations publish, find, and bind
are depicted in Fig. 2.

The interaction of services may cause nontrivial communication between a
requester and a provider. In our example, a requester of the vending machine
service must insert a coin, press a button, and will finally receive his beverage.
3 Business Process Execution Language for Web Services [3], also known as BPEL4WS
or WS-BPEL.

2

Service
Broker

Service
Provider

Service
Requester

publishfind

bind

Service
Broker

Service
Provider

Service
Requester

publishfind

bind

Fig. 2. The service-oriented architecture triangle.

Considering the service broker, it is obviously desirable that a querying ser-
vice requester gets assigned only such a service provider that their services do
not ill-communicate with each other (such as running into a deadlock or sending
unanticipated messages).

In our example, a broker must not deliver our vending machine service to
a requester who wants to pay in other currencies than C–– or to a requester who
expects the beverage before paying.

For this purpose, the service broker needs information about the internal
control structure of the provider’s service – the service’s interface only (like its
WSDL specification, for instance) is not sufficient. Publishing the whole internal
control to the service broker would solve the problem. This is, however, not
feasible for complexity reasons. Additionally, the service provider may want to
keep the internal structure of his service secret.

In a currently quite popular approach, the information published about a
provider’s service P is a so-called public view [5,6] of P , i.e. an abstract version
P ′ with a communication behavior equivalent to P . In this setting, the broker
must perform a compliance check, i.e. a check whether the system composed
of P ′ and a requesting service R behaves well in the above described manner.
The compliance check is mainly a verification task for the (non-)reachability
of states in the composed system. It is supposed that compliance of R and P ′

induces compliance of R and P .
In contrast, our approach is based on a different perspective: A provider does

not publish information about internals of his service P , but information about
all accepted ways of interacting with P . This information implicitly describes all
well-communicating requester’s services R for P and is called operating guideline
for P (OGP for short) [7,8].

In our operating guideline setting, the broker must solve a matching problem.
If a requester’s service R matches OGP then R’s interaction with P is accepted.
Thus, it is guaranteed that P and R interact well.

As an advantage, matching R with OGP is less complex than a compliance
check of R with the public view P ′ of P : The complexity of the compliance check
is in the order of the product of the sizes of R and P ′. In contrast, the complexity
of matching R with OGP is basically in the order of the size of R only.

3

In this paper, we present a formal approach to realize a service-oriented
architecture with the help of operating guidelines. In its current shape, it is
restricted to acyclic services, i.e. services which cannot return to a state they
have been in before. In our approach, a service is modeled as an acyclic, possibly
nondeterministic service automaton. A possible way of interacting with a service
is modeled as an automaton as well.

We establish a theory that enables us to characterize all accepted interactions
R with a given service P . Our main result in this regard is the separation of the
criterion “accepted behavior” into local conditions which, for every state s of R,
just talk about presence or absence of transitions leaving s. These conditions
can be translated into Boolean annotations to a particular automaton SP for
characterizing the set of all accepted interactions with P . The annotated SP

then serves as the operating guideline.
The rest of the paper is organized as follows. First we introduce our formal

foundation for services, service automata, and their interaction via asynchronous
communication in Sect. 2. Then, in Sect. 3 we formally define the operating
guideline for a service automaton and develop an algorithm to compute op-
erating guidelines. In Sect. 4 we show how operating guidelines can be used to
derive all well-communicating service requesters for a given provider. We present
an algorithm to match both deterministic and nondeterministic automata with
operating guidelines. Finally, we summarize the results of the paper and sketch
our plans for further work.

2 A Formal Model for Services

In this section we introduce service automata, a class of communicating, non-
deterministic automata, as a formal model for services. A service automaton
reflects the internal control of a service as well as its communication behavior
via its interface. Service automata provide a model for services of requesters and
providers.

Service automata are essentially a simplification of classical I/O automata [9]
towards the handling of asynchronous messages. Using I/O automata, the con-
tent of mailboxes and message channels would be modeled explicitly as part of
the state of an automaton. In our approach, the mailboxes are not considered
to be part of the automaton itself. They occur implicitly through the definition
of the interaction between service automata. This approach leads to smaller and
thus more readable automata. Other versions of automata models for services
were proposed by [10] and [1], for instance. In [10] communication is modeled
as occurrences of labels with no explicit representation of pending messages,
whereas [1] use bounded and unbounded queues to store such messages.

In our service automata model the communication behavior of a service is
modeled as labels to transitions of the service automaton. A label !x represents
sending a message via channel x (which can represent a message or a real trade
item). In contrast, a label ?x represents receiving a message from channel x.
The label τ represents a silent (i.e. internal) transition. We require that, inside

4

one and the same automaton, a letter x occurs either everywhere with question
mark or everywhere with exclamation mark. For the sake of simplicity, we ab-
stract from data and do not consider the content of a message. For data with
finite domain, important message content can, however, be represented in our ap-
proach. For instance, a message with Boolean values can be represented through
the separation into two channels, one for messages with content true, one for
messages with content false.

The interaction of services is represented by a composite transition system
of the corresponding service automata. A state of the transition system consists
of a state of each communicating service automaton and the currently pending
messages. Well-communication of two services R and P is then expressed as a
property of the transition system.

In the following, we assume a finite set MC of message channels.

Definition 1 (Service automaton). A service automaton is a nondetermin-
istic automaton A = [I, Q, T, q0, Ω] that consists of
• an interface I = Iin ∪ Iout such that Iin, Iout ⊆ MC, Iin ∩ Iout = ∅,
• a finite set Q of states,
• a finite set T ⊆ Q × L × Q of transitions where L = {?x | x ∈ Iin} ∪ {!x |

x ∈ Iout} ∪ {τ},
• an initial state q0 ∈ Q, and
• a set Ω ⊆ Q of final states.

L is called the set of labels of A. y

In the sequel, we study acyclic service automata only, i.e. automata such that
the transitive closure of the transition relation is irreflexive.

We denote service automata by A, B, P , and R. A and B are used for
arbitrary automata, P and R are used if we want to emphasize the role as
service provider and service requester, respectively. If not clear from the context,
we denote the ingredients of a service automaton A by IA, IinA , IoutA , QA, TA,
q0A

, ΩA.
As an example, Fig. 3 shows a service automaton PV modeling the vending

machine of Fig. 1. The automaton can receive a coin (label ?C––) and accepts one
of the two buttons being pressed (labels ?T and ?C). The vending machine then
generates a beverage (labels !BC and !BT). Let p1 be the initial state of PV and
let p5 and p6 be the final states of PV .

Consider now two requesters who want to use the provided vending machine
service. Their services are modeled as service automata RC and RE , depicted
in Fig. 4. Let q4 and t3 be the only final states of RC and RE , respectively.
RC models a customer who wants coffee, whereas the customer modeled by
RE apparently “forgets” to press one of the buttons. Thus, RE is an erroneous
customer of the vending machine.

Two communicating automata R and P must have interfaces such that one
automaton sends only those messages that can be received by the other one, and
vice versa. Without loss of generality, we assume IinR = IoutP and IoutR = IinP

to be given from now on.

5

p1

p2

p3

p5

p4

p6

?€

?C?T

!BT !BC

Fig. 3. A service automaton PV for the provider’s vending machine.

q1

q2

q3

q4

!€

!C

?BC

(a) RC

t1

t2

t3

!€

?BC

(b) RE

Fig. 4. Two service automata RC and RE modeling requesters of the vending machine.

We consider an asynchronous model of message passing between R and P .
This model is formalized through the following definition of the transition system
R ⊕ P representing the behavior of two service automata in interaction. As we
assume asynchronous communication, this interaction involves messages pending
in channels (namely those which have already been sent but not yet received).
Since more than one message of a kind may be pending, we use the concept of
multisets for modeling pending messages. A multiset is basically an extension of
the concept set which allows multiple occurrences of one and the same element.
Formally, a multiset over a domain A is a mapping M : A → N. M(a) is called
the multiplicity of a in M and stands for the number of occurrences of a. In
all following definitions, bags(A) denotes the set of all multisets over A. M + a
stands for incrementing the multiplicity of a in M by 1 (adding an element to
M), and M − a for decrementing the multiplicity of a in M by 1 (removing an

6

element from M). a ∈ M is true if the multiplicity of a in M is at least 1. We
use {} to denote the empty multiset where, for all a ∈ A, {}(a) = 0.

A state of the transition system R⊕ P represents a state of P , a state of R,
and a multiset M of pending messages. Every transition of R ⊕ P corresponds
either to a transition in R or to a transition in P . A transition labeled !a produces
a message in channel a, whereas a transition labeled ?a consumes a message from
channel a which can only occur if a is present in the message bag. τ -transitions
do neither create nor consume messages.

Definition 2 (Interaction of service automata). Let P and R be two ser-
vice automata. Without loss of generality, let QR ∩ QP = ∅. The transition
system R⊕ P = [Q,T, q0, Ω] consists of
• a set of states Q ⊆ QR ×QP × bags(MC),
• a set of labeled transitions T ⊆ Q× (LP ∪ LR)×Q,
• an initial state q0, and
• a set Ω ⊆ Q of final states.

Q and T are defined inductively as follows:
Basis: q0 = [q0R

, q0P
, {}] is a state of the transition system.

Step: If q = [qR, qP ,M] is a state and there is a transition

• t = [qR, !a, q′R] ∈ TR, then q′ = [q′R, qP ,M + a] ∈ Q and [q, !a, q′] ∈ T ,
• t = [qP , !a, q′P] ∈ TP , then q′ = [qR, q′P , M + a] ∈ Q and [q, !a, q′] ∈ T ,

• t = [qR, ?a, q′R] ∈ TR and a ∈ M , then q′ = [q′R, qP ,M − a] ∈ Q and
[q, ?a, q′] ∈ T ,

• t = [qP , ?a, q′P] ∈ TP and a ∈ M , then q′ = [qR, q′P ,M − a] ∈ Q and
[q, ?a, q′] ∈ T ,

• t = [qR, τ, q′R] ∈ TR, then q′ = [q′R, qP ,M] ∈ Q and [q, τ, q′] ∈ T ,
• t = [qP , τ, q′P] ∈ TP , then q′ = [qR, q′P ,M] ∈ Q and [q, τ, q′] ∈ T .
A state q = [qR, qP ,M] of R ⊕ P is defined to be a final state, i.e. q ∈ Ω, if

and only if qP ∈ ΩP , qR ∈ ΩR, and M = {}. y

The definition formalizes the intuition that R and P move independently in
R⊕ P . A receive action is only possible if the message to be received is present
in the message bag (it is then removed). A send action adds a message to the
bag.

As an example, the transition systems RC ⊕ PV and RE ⊕ PV are depicted
in Fig. 5. The node [q1, p1, {}] in the transition system in Fig. 5(a) means that
the coffee requester RC of Fig. 4(a) is in its state q1, the vending machine PV is
in its state p1, and there are no messages pending. Since it was possible for the
requester to send a coin in state q1, it is possible in [q1, p1, {}], too. Thereby, a
new node is reached, where the requester is in state q2 and there is an C–– pending
to be consumed by the vending machine.

In this paper, we concentrate on a correctness criterion called weak termina-
tion. Intuitively, weak termination means that from every reachable state of the

7

[q1, p1, {}] [q2, p1, {€}] [q3, p1, {€,C}]

[q2, p2, {}] [q3, p2, {C}]

[q3, p4, {}]

[q3, p6, {B }]

[q4, p6, {}]

!€ !C

!C

?€ ?€

?C

!BC

?BC

C

(a) RC ⊕ PV

[t1, p1, {}] [t2, p1, {€}]

[t2, p2, {}]

!€

?€

(b) RE ⊕ PV

Fig. 5. The two transitions systems RC ⊕ PV and RE ⊕ PV .

transition system a final state of the transition system is reachable. This crite-
rion is derived from the notion of weak soundness of components of distributed
workflows [6]. Weak soundness itself is based on the notion of soundness of
(monolithic) workflows introduced by van der Aalst [11].

Definition 3 (Deadlocks, weak termination). Let P and Q be two acyclic
service automata and let P ⊕R be the corresponding transition system as defined
above. A non-final state q, i.e. q ∈ Q \ Ω, without any successor in R ⊕ P is a
deadlock. P ⊕R is weakly terminating iff R⊕ P does not have deadlocks. y

It is easy to see that the only state without successors in RC ⊕ PV is the
state [q4, p6, {}], which is a final state of RC ⊕ PV : Fig. 5(a) is an example of a
transition system which is weakly terminating.

In contrast, the state [t2, p2, {}] of the transition system RE⊕PV (see Fig. 5(b))
is a deadlock but is no final state: RE ⊕ PV is not weakly terminating.

In this paper, for a given service automaton P , we are interested in the set of
all service automata R such that the composed system of R and P behaves well.
In technical terms, we are looking for all R, s.t. R ⊕ P is weakly terminating.
Each such R is called a strategy for P .

Definition 4 (Strategy). Let P be a service automaton. A service automaton
R is a strategy for P iff R⊕ P is weakly terminating. y

8

In our example, RC is a strategy for PV but RE is no strategy for PV .
The term strategy originates from a control-theoretic point of view (see [12,13],

for instance): We may see R as a controller for P enforcing the weak termination
property.

From now on, a service automaton is denoted by S if we want to emphasize
its role as a strategy. The set of all strategies for P is denoted by Strat(P).

Several results in the forthcoming sections are based on a state-by-state char-
acterization of those service automata which are strategies. This characterization
uses a mapping that we call knowledge.

Definition 5 (Knowledge). Let R and P be two service automata. The knowl-
edge function k(R,P) is a mapping k(R,P) : QR → ℘(QP × bags(MC)), such that
k(R,P)(qR) = {[qP ,M] | [qR, qP ,M] ∈ QR⊕P }. y

Informally, k(R,P)(qR) represents the set of possible states in R ⊕ P that P
and the message bag can be in, while R is in qR.

For given services R and P , k(R,P) can be easily computed by constructing
R ⊕ P . This is possible in time proportional to the size of R ⊕ P which is at
most the size of R times the size of P . For acyclic services R, k(R,P) can as well
be computed incrementally since the value k(R,P)(q) just depends on the direct
predecessors of q in R.

q1

q2

q3

q4

!€

!C

?BC
[p6, { }]

[p1, { }]

[p1,€],
[p2, { }]

[p2,C],
[p3, { }],
[p6,BC]

Fig. 6. The service automaton RC with its knowledge about the vending machine.

Figure 6 shows the coffee requester’s service RC of Fig. 4(a) with its k-values
depicted in the bubbles. If RC is in state q1 then PV must be in state p1 and
the message bag is empty, hence k(RC ,PV)(q1) = { [p1, {}] }. After sending a coin
(i.e. RC is in state q2), PV can still be in state p1 and the coin is in the bag, or
PV has already received the payment and is in state p2.

Using the knowledge k(R,P), we can characterize strategies as follows.

9

Lemma 1. R is a strategy for P iff, for all qR ∈ QR and all [qP , M] ∈ k(R,P)(qR),
at least one of the following conditions holds:
• qR ∈ ΩR, qP ∈ ΩP , and M = {}, i.e. [qR, qP , M] is a final state;
• there is a transition t = [qP , l, q′P] in TP , such that there is a transition in

R⊕ P that leaves [qR, qP ,M] and is labeled with l;
• there is a transition t = [qR, l, q′R] in TR, such that there is a transition in

R⊕ P that leaves [qR, qP ,M] and is labeled with l. y

We omit the proof since the result is basically a reformulation of the defini-
tion of weak termination. Nevertheless, the lemma shall turn out to be useful
since it describes explicitly the obligations for strategies R: Whenever P has no
transition leaving a state in R ⊕ P (which is determined since we assume P to
be given) then R is obliged to have one (i.e. we have to design R such that it is
capable of leaving such states).

It is again easy to check the service automata RC and RE for these criteria.
Whereas RC fulfills Lemma 1, RE violates all three criteria in state t2: There
is a tuple [p2, {}] in k(RE ,PV)(t2) such that neither [t2, p2, {}] is an end state,
nor is there a transition possible in RE ⊕ PV : All transitions leaving t2 (p2) are
consuming transitions in RE (PV), but M is empty.

3 Operating Guidelines

In this section, we develop our notion of operating guidelines. An operating
guideline for a service P is an artifact computed from P that is suitable for
deciding for arbitrary services R, whether or not R is a strategy for P . In other
words, our aim is to characterize the set of all strategies Strat(P). In our ap-
proach, the operating guideline OGP for a service P will turn out to be an
annotated automaton. It is built from a specific strategy SP and Boolean anno-
tations as in [14]. The strategy SP as well as the annotations are selected such
that a deterministic automaton is a strategy for P if and only if it is a sub-
automaton of SP that complies to the annotations in a sense yet to be defined.
The case of nondeterministic requesters is left to the next section.

A service automaton (and thus a strategy) is deterministic if it does not
contain τ -transitions and does not have states that are left by multiple transitions
with equal labels. The set of all deterministic strategies of P is denoted by
Stratd(P). Obviously, it holds Stratd(P) ⊆ Strat(P).

We proceed as follows. We formally define the notions sub-automaton, an-
notation, and compliance. Then we exhibit, based on Lemma 1, the particular
strategy SP as well as the particular annotations that form the operating guide-
line OGP for a given service P . We conclude with an algorithm and remarks on
complexity issues.

Definition 6 (Sub-automaton). An automaton A′ is a sub-automaton of an
automaton A, A′ v A, iff QA′ ⊆ QA, TA′ ⊆ TA, q0A′ = q0A , and ΩA′ ⊇
QA′ ∩ΩA. y

10

The set of all sub-automata of an automaton A is denoted by Sub(A).
If P is acyclic, we may unroll every deterministic strategy R of P to an

equivalent strategy R′ which is a tree shaped automaton, i.e. a service automaton
where each state has at most one incoming transition. Since P is acyclic, R′

has limited depth. Thus, matching non-tree-shaped automata with OGP can be
reduced to matching tree shaped automata with OGP . It is thus sufficient to
characterize the set Stratd,t(P) ⊂ Stratd(P) of all (deterministic) tree shaped
automata which are strategies for P .

Consider a deterministic tree shaped automaton A and a function Φ that
maps every state q of A to a Boolean formula Φ(q). Let the propositions of Φ(q)
be labels of transitions that leave q in A. Φ is then called an annotation to A.
An automaton with an annotation is called annotated automaton and is denoted
by AΦ. As an example, Figure 8 shows an annotated automaton.

Definition 7 (Φ-compliance). Let AΦ be an annotated automaton, A′ a sub-
automaton of A, and q ∈ QA′ (and therefore q ∈ QA).
A state q is compliant with Φ(q) iff Φ(q) is true under the assignment assigning
true to all propositions that are labels of transitions leaving q in A′, and false to
all other propositions.
A′ is compliant with AΦ (denoted A′ |= AΦ) iff all states q ∈ QA′ are compliant
with Φ(q). y

Having a compliant sub-automaton A′ of A, we call every automaton A′′ that
is isomorphic to A′ compliant to AΦ, too.

Let Comply(AΦ) = {A′ | A′ v A,A′ |= AΦ} denote the set of all automata
that are compliant to AΦ. This way, a single annotated automaton AΦ represents
a set of automata, i.e. the set Comply(AΦ).

Our goal for the remaining part of this section is to derive an automaton SP

and an annotation Σ such that Comply(SΣ
P) = Stratd,t(P). We will then use

SΣ
P as the operating guideline for P . Both our choice of SP and Σ depends on

Lemma 1 presented at the end of the previous section.
Let, throughout the remainder of this section, P be a service automaton.

First, we derive a suitable automaton SP . Since only sub-automata can be com-
pliant with SP , SP must be at least as large as the largest deterministic tree
shaped strategy of P . As pointed out earlier, there is a depth limit d for deter-
ministic interaction with P . Furthermore, a deterministic tree shaped automaton
can have, in every state, at most one transition per message channel. Thus, every
deterministic tree shaped strategy must be a sub-automaton of the automaton F
which is a tree of sufficient depth where all states at non-maximum depth have
exactly one successor for each message channel. Since F may become as large as
cd where c is the number of message channels of P and d the depth limit, it is
desirable to find a smaller automaton that fits our needs. Such an automaton SP

can be found by applying Lemma 1 to F . The following pseudo-code algorithm
illustrates the idea. It first computes F and then iteratively removes states which
violate Lemma 1. The result is the service automaton SP . In this algorithm, we
encode a state of F as a sequence over message channels. This results in unique

11

naming of states. The initial state is coded as the empty sequence λ, the suc-
cessor of state q reached by the transition labeled m is denoted by qm. Let I∗

denote the set of finite sequences over I.

01 const d : Integer; // the assumed depth limit
02 var QSP : states;
03 ESP : edges;
04 begin
05 // start with automaton F described above:
06 QSP := {w | w ∈ IP

∗, length(w) ≤ d};
07 ESP := {[q, m, qm] | qm ∈ QSP };
08 compute k-values; // as outlined in the previous section
09 while (exists q ∈ QSP such that k(SP ,P)(q) violates Lemma 1)
10 // remove q and its adjacent edges:
11 QSP := QSP \ {q′ | q is prefix of q′};
12 ESP := ESP ∩ (QSP × LP ×QSP);
13 // set corresponding final states of SP

14 ΩSP := {q ∈ QSP | k(SP ,P)(q) ∩ (ΩP × bags(MC)) 6= ∅};
15 return SP := [IP , QSP , ESP , λ, ΩSP];
16 end

Fig. 7. The algorithm for constructing the strategy SP out of F by removing states
violating Lemma 1.

Since, by Lemma 1, states being removed by this procedure cannot be a
member of any strategy of P , we immediately have, that every deterministic
tree shaped strategy of P is a sub-automaton of the resulting automaton SP .
Formally:

Lemma 2. Stratd,t(P) ⊆ Sub(SP). y

Justified by this lemma, we shall refer to the computed SP as the most
permissive (tree shaped) strategy for P .

The outlined algorithm involves starting out with the automaton F . This can
be substantially improved by constructing and k-annotating F incrementally.
This way, it is not necessary to descend beyond states that violate Lemma 1
anyway. This idea has been detailed out in [15].

In the next step, we aim at constructing a particular annotation Σ to an
arbitrary tree shaped automaton R such that Comply(RΣ) is exactly the set of
those sub-automata of R which are in Stratd,t(P). For this purpose, let qR ∈ QR.
Then the formula Σ(qR) is built as a straight coding of the criteria in Lemma 1:
Σ(qR) is the conjunction of sub-formulae σ(qR,qP ,M), for all [qP ,M] ∈ k(R,P)(qR).
If k(R,P)(qR) = ∅ then let Σ(qR) = true.

The sub-formula σ(qR,qP ,M) is
• true if qR ∈ ΩR, qP ∈ ΩP , and M = {};

12

• true if there is a transition of P leaving [qR, qP ,M] in R⊕ P ;
• the disjunction of all l occurring as labels of transitions in R that leave

[qR, qP ,M] in R⊕ P , otherwise.
Please note that if there is no l in the third item, then σ(qR,qP ,M) is the empty

disjunction which is equivalent to false.

Lemma 3. Let R, P , Σ be as described above. Then Comply(RΣ) is the set of
those sub-automata of R which are in Stratd,t(P). y

Proof (Sketch). For a tree shaped automaton R and a sub-automaton R′ it
is easy to verify that, for all q ∈ QR′ , k(R′,P)(q) = k(R,P)(q). Then, by the
construction of Σ, R′ ∈ Comply(RΣ) iff every state of R′ satisfies the criteria
stated in Lemma 1. ¤

Combining the previous two lemmas, we obtain:

Theorem 1 (Characterization of strategies). Let P be an arbitrary ser-
vice automaton. Let SP be its most permissive strategy. Then, Comply(SΣ

P) =
Stratd,t(P). y

Thus, the following definition of operating guidelines is justified:

Definition 8 (Operating guideline). Let P be an arbitrary service autom-
aton. Let SP be its most permissive strategy. Let Σ be annotations to SP as
described above. Then SΣ

P is called the operating guideline OGP for P . y

1

3

5

9

8

12

!€

!C
!T

!T !€

!€

!C

2 4

7

11

6

10

!€ OR !T OR !C

!T OR !C

?BC?BC ?BT?BT

Fig. 8. The operating guideline OGPV for the vending machine service automaton PV .

As an example, we recall our vending machine service automaton PV . The
operating guideline OGPV for PV (Fig. 3) is depicted in Fig. 8. It is constructed

13

by removing states from the complete automaton of depth 3 with labels !C–– , !T,
!C, ?BC, and ?BT leaving each state. The annotation of a state with less than two
successors is skipped since it coincides with the label of the outgoing transition
(in case of one successor) or is true if there are no successors.

It is easy to see that the service automaton RC of Fig. 4(a) is compliant with
the annotations. The automaton RE of Fig. 4(b), instead, is not compliant since
its state t2 (which is corresponding to state 2 of OGPV

) violates the formula
attached to that state: There is no transition in RE leaving t2 that is labeled
with !T or !C.

Computing OGP consists of first computing the most permissive strategy SP

for P , and second computing the annotations for all states of SP . Computing
SP can be done in time cd · |P | where c is the number of message channels of P ,
d is the maximum number of interactions in any run of P , and |P | is the number
of states of P . In one pass, the full automaton F of size cd is generated. In a
second pass, F is annotated with k-values which takes |F| · |P |. In a third pass,
states of F are removed if they violate Lemma 1. This can be done in a single
depth-first search through F which is linear in |F|. The accumulated costs of
investigating the k-values of F is proportional to |F| · |P |. Thus, all passes need
at most cd · |P |. Computing the annotations takes c · |SP | · |P |. For every state q
of SP , we need to traverse through k(SP ,P)(q) and build a disjunction of at most
c elements. Thus, the accumulated costs are O(c · |SP | · |P |). The computational
efforts can be significantly reduced by the use of technologies known from the
area of model checking. There, several powerful techniques for alleviating state
explosion have been developed.

We propose to use OGP as an artifact generated by the owner of a provided
service P which can be published to the service broker.

4 Matching Service Automata with OGP

In the previous section, we proposed the operating guideline OGP = SΣ
P as

a characterization of all deterministic strategies for a given service automaton
P , i.e. Stratd,t(P) = Comply(OGP). The result is a very easy check to find
out whether a querying requester’s service R will weakly terminate with the
provided service P . For a deterministic automaton R, the broker must match R
with OGP and decide whether R is an element of the set Comply(OGP). This
can easily be done in two steps: First, the broker needs to check if R v SP . If
the test fails, then R can be no strategy. Otherwise the broker must, in a second
step, check the compliance of R with the annotations, i.e. decide if R |= SΣ

P .
Only if both tests succeed, R is a strategy. If at least one test fails, R and P are
not weakly terminating and hence R is no strategy.

Thus, matching a deterministic service automaton R with OGP amounts to
unrolling R to a tree, to map the nodes of R to nodes of OGP , and to evaluate
the annotations in OGP . All steps can be performed during a single depth-first
search through the unrolled version of R and is thus linear in the size of R.

14

A typical example of a requester that already fails in the first step is our
vending machine requester RE (Fig. 4(b)) who forgets to press a button. It is
easy to see that RE is no sub-automaton of the most permissive strategy SPV

underlying the operating guideline OGPV of our vending machine.
A requester who first inserts a coin and then presses the button for tea, but

who then leaves his beverage in the machine is a typical example for failing in
the second step of the matching process. The corresponding service automaton
would be a sub-automaton of SPV

in the first step. In the second step, however,
the automaton must have a transition labeled ?BT to comply with the annotation
of state 5 of OGP – which is not present in the automaton.

In the rest of this section, we are interested in the matching of all strate-
gies, including the nondeterministic ones. Fortunately, OGP is, without any
change, capable of characterizing nondeterministic strategies, too. In the sequel,
we present an algorithm that receives an arbitrary (deterministic or nondeter-
ministic) acyclic service automaton R and the operating guideline OGP of P as
input, and is capable of deciding whether R is a strategy for P or not. With-
out loss of generality, we assume R to be given in its unrolled shape, i.e. as a
tree shaped automaton. We proceed with presenting the algorithm, followed by
a justification of its correctness.

Our algorithm is based on a coordinated depth-first traversal of R and OGP .
Let again SP be the most permissive strategy underlying the operating guideline
OGP , i.e. OGP = SΣ

P . Hence, a state qSP is a state in OGP and a state qR is
a state in R. The algorithm assigns, to each state qR in R, a “fitting” state
qSP

in OGP . Then, we evaluate the annotation of the assigned state qSP
under

the assignment given by qR. Only those states of R that do not have leaving
τ -transitions must be evaluated. We claim that R is a strategy if and only if all
executed evaluations yield true. This amounts to the following pseudo-code for
our matching algorithm, depicted in Fig. 9.

The number of calls to dfs is at most the number of states of R. Our algorithm
is thus an efficient instrument for matching an acyclic service automaton R with
an operating guideline OGP .

As an example, consider again our vending machine. The relevant part of
its operating guideline is depicted on the right hand side of Fig. 10(a) and
Fig. 10(b). Please note the state 5 of the operating guideline. This node will
never be reached by any requester since the vending machine PV will not return
a coffee after button T was pressed. Thus, the knowledge value k(5) is empty
and the annotation of state 5 is equal to true. This node is not removed while
constructing the operating guidelines (but was not shown in the figures before
for reasons of better readability).

Consider now two new nondeterministic requesters of the vending machine.
The requester on the left hand side of Fig. 10(a) is capable of receiving a coffee
or to internally decide for a tea in state p3. The call dfs(p3, 3) results in hasTau
being true and hence the formula Σ(3) = ?BT is not evaluated for p3. All
executed evaluations in Fig. 10(a) yield true. Thus, Fig. 10(a) is an example for
positive matching.

15

01 proc main(R: strategy, OGP : operating guideline)
02 dfs(q0R , q0SP

);
03 exit(“yes”)
04
05 proc dfs(qR, qSP)
06 hasTau := false;
07 for all [qR, l, q′R] ∈ TR do
08 if l = τ then dfs(q′R, qSP); hasTau := true;
09 else if ¬∃q′SP

: [qSP , l, q′SP
] ∈ TSP then exit(“no”);

10 else dfs(q′R, q′SP
); /* note that q′SP

is unique if it exists */
11 if ¬ hasTau then
12 match := evaluate Σ(qSP) with assignment defined by qR;
13 if ¬ match then exit(“no”);
14 return.

Fig. 9. The matching algorithm for matching a requester R with an operating guideline
OGP .

In contrast, in Fig. 10(b) the algorithm returns “no”. The depicted requester
is very similar to the left one with one difference: In state q3, he is capable of
receiving a tea or, e.g. after a timeout, to decide for a coffee. In call dfs(q5, 3),
there is no τ -transition leaving q5 and thus the formula Σ(3) = ?BT is evaluated
and the evaluation returns false.

The first observation involved in justifying this algorithm is:

Lemma 4. For each called instance dfs(qR, qSP
): k(R,P)(qR) = k(SP ,P)(qSP

). y

Proof. (Sketch, induction over the transition relation of R)
Basis: The k-values of the initial states coincide since they correspond to the

states reachable in P without any transition of R or SP .
Step: Let [qR, l, q′R] ∈ TR and k(R,P)(qR) = k(SP ,P)(qSP

). If l = τ then we
call dfs(q′R, qSP) and it holds k(R,P)(qR′) = k(R,P)(qR) = k(SP ,P)(qSP) since the
τ -transition does not change the status of message channels and it does neither
enable nor disable any transition in SP . If l 6= τ , it can be shown that, for the
unique q′SP

holding [qSP
, l, q′SP

] ∈ TSP
, k(R,P)(qR′) = k(SP ,P)(qS′P) since, in a

tree automaton, the k-value of the target of a transition is uniquely determined
by the k-value of the source state of the transition and its label. ¤

With this observation, it is easy to show

Theorem 2 (Justification I). If the above algorithm exits with “yes”, then R
is a strategy for P . y

Proof. For every state qR ∈ QR, the conditions of Lemma 1 are satisfied: Either,
there is a τ -transition leaving qR. Then the third condition is true since the
τ -transition is executable in qR independently from qP and M . Or, there is no
τ -transition leaving qR. Then, the conditions hold since the state qSP assigned to

16

1

...

3

4

!C

!T

!T

!€

!C

2
...

...

!€ OR !T OR !C

!T OR !C

p1

p2

p3
p5

p4 p6

!€

τ

!T

dfs(p1,1)

dfs(p2,2)

dfs(p3,3)

dfs(p5,3)

5
dfs(p6,4)

?BT

?BT
?BT ?BC?BC

(a) Positive matching.

1

...

3

4

!C
!T

!T

!€

!C

2
...

...

!€ OR !T OR !C

!T OR !C

q1

q2

q3
q5

q4 q6

!€

τ

!T

dfs(q1,1)

dfs(q2,2)

dfs(q3,3)

dfs(q5,3)

5

?BT

?BT ?BC?BT ?BC

(b) Negative matching.

Fig. 10. Two examples for the matching algorithm calls of dfs(qR, qSP).

qR by the coordinated depth-first search has the same k-value as qR (Lemma 4),
and so the annotation of qSP

correctly encodes the conditions of Lemma 1 for
qR. ¤

For the justification, it remains to show that, whenever the algorithm exits
with “no”, then R is not a strategy. We use the following lemma.

Lemma 5. Let R be a tree shaped strategy that has a transition [q, τ, q′]. Let
Q′R = QR \{q}. If q = q0R

then let q0R′ = q′, otherwise let q′′ be the unique state
such that [q′′, l, q] ∈ TR and let TR′ = (TR ∪ {[q′′, l, q′]}) \ {[q′′, l, q], [q, τ, q′]}.
Then it holds: R′ is a tree shaped strategy, too. y

Proof (Sketch). Since the occurrence of a τ -transition in R is not constrained
by P , R may decide to execute it whenever it is possible. If R is a strategy then

17

it is still one if it obeys this “τ first” rule. R′ describes basically R under this
rule for a particular τ -transition. ¤

Assume, our algorithm exits with “no” in line 9 during a call dfs(qR, qSP
)

with R being a strategy. Then, using Lemma 5, there would exist a deterministic
strategy that has a state qR corresponding to qSP

with a transition leaving qR

labeled l. Since qSP does not have this transition but is known to contain all
deterministic strategies as sub-automaton, we obtain a contradiction.

Assume that our algorithm answers with “no” in line 13 during a call dfs(qR, qSP
),

even though R is a strategy. Then, with the same argument as above, we can
derive a deterministic strategy that runs into the same situation and contra-
dicts the relation between OGP and deterministic strategies established in the
previous section. Consequently:

Theorem 3 (Justification II). If the above algorithm exits with “no”, then R
is not a strategy of P . y

5 Conclusion

We introduced a formal approach to service-oriented architectures that is based
on automata. The model is called service automata, a class of communicating,
nondeterministic automata. Both service provider and service requester are mod-
eled as service automata. The composition of two service automata results in a
transition system, modeling the asynchronous communication between services.

Then, we introduced the concept of annotated automata as a condensed
form to represent sets of automata. We argued that the operating guideline for a
service provider is a suitable and elegant artifact to be published to the service
broker. With the help of operating guidelines, the broker can easily match a
provider with a querying requester.

Even though the guidelines originally cover only deterministic strategies, they
can, without change, be used for a characterization of nondeterministic strate-
gies, too. The matching algorithm is linear in the size of the requester’s service.

We provided an approach on a solid theoretic basis. All constructions and
matchings can be performed fully automatically and without giving away the
internal structure of the provider.

In this paper, we only studied acyclic systems and restricted ourselves to the
interaction between one provider and one requester. Current research activities
are concerned with operating guidelines for multiple partners and systems with
cycles and the extension to service composition. Furthermore, we want to apply
the concept of operating guidelines to other problems like the exchangeability of
services.

References

1. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: A Look Behind
the Curtain. In: PODS ’03: Proceedings of the twenty-second ACM SIGMOD-

18

SIGACT-SIGART symposium on Principles of database systems, New York, NY,
USA, ACM Press (2003) 1–14

2. Christensen, E., Curbera, F., Meredith, G., Weeravarana, S.: Web Service Dis-
cription Language (WSDL) 1.1. Technical report, Ariba, International Business
Machines Corporation, Microsoft (2001)

3. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Weer-
awarana, S.: Business Process Execution Language for Web Services,
Version 1.1. Specification, BEA Systems, IBM, Microsoft, SAP, Siebel
(2003) http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbiz2k2/html/bpel1-1.asp.

4. Gottschalk, K.: Web Services Architecture Overview. IBM whitepaper, IBM de-
veloperWorks (2000) http://ibm.com/developerWorks/web/library/w-ovr/.

5. Leymann, F., Roller, D., Schmidt, M.: Web Services and Business Process Man-
agement. IBM Systems Journal 41(2) (2002)

6. Martens, A.: Verteilte Geschäftsprozesse - Modellierung und Verifikation mit Hilfe
von Web Services. PhD thesis, Institut für Informatik, Humboldt-Universität zu
Berlin (2004)

7. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to
the SOA. In: 2nd South-East European Workshop on Formal Methods 2005
(SEEFM05), Ohrid, Republic of Macedonia (2005)

8. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35–43 To
appear.

9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
10. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic

Composition of e-Services that Export their Behavior. In: Proc. of the 1st Int. Conf.
on Service Oriented Computing (ICSOC 2003). Volume 2910 of Lecture Notes in
Computer Science., Springer (2003) 43–58

11. Aalst, W.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems and Computers 8(1) (1998) 21–66

12. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer
Academic Publishers (1999)

13. Ramadge, P., Wonham, W.: Supervisory Control of a Class of Discrete Event
Processes. SIAM J. Control and Optimization 25(1) (1987) 206–230

14. Wombacher, A., Fankhauser, P., Mahleko, B., Neuhold, E.: Matchmaking for Busi-
ness Processes Based on Choreographies. International Journal of Web Services
1(4) (2004) 14–32

15. Weinberg, D.: Analyse der Bedienbarkeit. Diplomarbeit, Humboldt-Universität zu
Berlin (2004)

19

