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Abstract 

Abstract 

The acquisition of motor skills is influenced by several factors. Feedback, training schedule 

and individual differences between learners are three of them and were investigated in the 

present thesis. A special focus was on brain processes underlying feedback processing and 

motor preparation. These were investigated using event related potentials (ERPs). In a large 

study, we trained 120 participants to throw at virtual targets and tested them in a subsequent 

session for retention and transfer. ERPs were recorded in both sessions. Training schedule 

was manipulated with half of the participants practicing under high contextual interference 

(CI) (randomized training) and the other half under low CI (blocked training). In a follow-up 

online study, 80% of the participants completed a subset of the Raven advanced progressive 

matrices, testing their reasoning ability. We could show, that under high CI, participants’ 

reasoning ability was related to higher performance increase during training and higher 

subsequent performance in retention and transfer. Similar effects of reasoning ability on 

performance increase in late stages of low CI training indicate, that variability is a necessary 

prerequisite for beneficial effects of reasoning ability. We conclude, that CI affects the 

amount of variability of practice across the course of training and thereby modulates whether 

learning is rule-based or pattern-based (Study 1). This interpretation is fostered by findings of 

differential learning effects on ERPs in the preparatory phase. High CI shows a larger decline 

in attention- and control-related ERPs than low CI. Moreover, CNV amplitude, as a measure 

of motor preparatory activity, increases with learning only, when attention demands of 

training and retention are similar, as in low CI training. This points to two parallel 

mechanisms in motor learning, with a cognitive and a motor processor, mutually contributing 

to CNV amplitude (Study 2). In the framework of the “reinforcement learning theory of the 

error related negativity”, we showed, that positive performance feedback is processed 

gradually and that this processing is reflected in varying amplitudes of reward positivity 

(Study 3). Together these results provide new insights on motor learning.
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Zusammenfassung 

Zusammenfassung 

Feedback, Trainingsplan und individuelle Unterschiede zwischen Lernern sind drei Faktoren 

die den motorischen Fertigkeitserwerb beeinflussen und wurden in der vorliegenden 

Dissertation untersucht. Ein besonderer Fokus lag auf den zugrundeliegenden 

Gehirnprozessen von Feedbackverarbeitung und Handlungsvorbereitung, die mittels 

ereigniskorrelierter Potenziale (EKPs) untersucht wurden. 120 Teilnehmer trainierten auf 

virtuelle Zielscheiben zu werfen und wurden in einer Folgesitzung auf Abruf und Transfer 

getestet. In beiden Sitzungen wurden EKPs aufgezeichnet. Der Trainingsplan verursachte 

entweder hohe contextual interference (CI) (randomisiert) oder  niedrige CI (geblockt). In 

einer anschließenden Onlinestudie, bearbeiteten 80% der Teilnehmer eine Untermenge der 

Raven advanced progressive matrices, die schlussfolgerndes Denken (SD) erfassen. Unter 

hoher CI hängt besseres SD mit größerem Zuwachs im Training und höherer Performanz in 

Abruf und Transfer zusammen. Ähnliche Effekte von SD im späten Trainingsverlauf unter 

niedriger CI lassen darauf schließen, dass Variabilität eine notwendige Voraussetzung für 

positive Effekte von SD ist. Wir folgern, dass CI das Ausmaß an Praxisvariabilität über den 

Trainingsverlauf beeinflusst und darüber moduliert, ob Lernen regelbasiert oder musterbasiert 

erfolgt (Studie 1). Diese Interpretation wird durch differenzielle Lerneffekte auf EKPs in der 

Vorbereitungsphase gestützt. Hohe CI führt zu einer stärkeren Abnahme von 

aufmerksamkeits- und kontrollbezogenen EKPs während der Vorbereitungsphase. Darüber 

hinaus nimmt die CNV Amplitude, als Maß motorischer Vorbereitungsaktivität zu, allerdings 

nur, wenn die Aufmerksamkeitsanforderungen in Training und Abruf gleich sind, wie bei 

niedriger CI. Das spricht für zwei parallele Mechanismen motorischen Lernens, die 

gemeinsam zur CNV Amplitude beitragen (Studie 2). Wir zeigten außerdem, dass sich 

graduelle Verarbeitung positiven Performanz-Feedbacks in der Variation der Amplitude der 

Reward Positivity widerspiegelt (Studie 3). Zusammen geben diese Ergebnisse neue 

Einsichten in den motorischen Fertigkeitserwerb. 

 2 



Introduction 

Synopsis 

1. Introduction 

 The acquisition and refinement of motor skills is a fundamental part of human life. 

Early studies on factors influencing motor learning mainly used simple actions, such as choice 

reaction time tasks, time estimation tasks or artificial movement sequences. It is not surprising 

that some mechanisms and principles derived from such research did fail, when investigated 

in more complex applied settings. Whereas in simple tasks, under low cognitive load, frequent 

feedback or support might interrupt learning, in complex tasks with higher cognitive load, it 

aids skill acquisition, by reducing the load (Wulf & Shea, 2002). Similarly, a demanding 

schedule with high contextual interference (CI), randomly practicing several movements, is 

advantageous for the acquisition of simple skills, but detrimental to the acquisition of 

complex skills (Barreiros, Figueiredo, & Godinho, 2007). As load appears to be an important 

factor mediating the effects of other variables in training, individuals’ capacity should be 

relevant for the effectiveness of such experimental manipulations.  

 The present thesis elucidates effects of contextual interference and individual 

differences in reasoning ability on skill acquisition using a complex motoric task, throwing. 

Specifically, effects of reasoning ability on skill acquisition were investigated within high and 

low CI (Study 1). Moreover, effects of CI on learning related changes in ERPs during the 

motor preparatory stage were examined (Study 2). Furthermore, we zoomed in to the basic 

level of feedback processing, as a substantial factor in skill acquisition (Study 3).  

I will introduce a theory of motor learning and influential factors (Section 1.1). Subsequently 

I will present the corresponding ERPs (Section 2.2) to then outline the aims of the present 

work (Section 1.3). The present studies will be summarized in Section 2 and jointly discussed 

in Section 3.  
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Introduction 

1.1. A theory of motor learning and influential factors  

In the following section, I will introduce models on motor skill acquisition and control 

(Section 1.1.1), as well as variables influencing this process. Thus I will review literature on 

effects of training schedule (Section 1.1.2), as well as individual differences and skill 

acquisition (Section 1.1.3). Finally, I will introduce the reinforcement learning theory, which 

centers on outcome evaluation supporting skill acquisition (Section 1.1.4).  

1.1.1. Schmidt’s Schema Theory. An influential theory of motor learning is 

Schmidt’s Schema Theory (Schmidt, 1975).  It proposed that classes of movements are 

represented as generalized motor programs (GMPs), as distinct representation of every single 

movement would easily surpass storage capacity. GMPs cover invariant features of classes of 

movements that are parameterized to the current needs of a specific task. This assumption 

also takes into account, that movements are often executed quickly, and that some 

movements, such as ballistic movement do not allow for online control, but must be prepared 

in advance. Preparation of a movement includes specification of the GMP and 

parameterization. Parameters are derived from schema information. Schemata contain abstract 

representations of response – outcome rules. Schmidt distinguishes between two kinds of 

schemata: recall schemata, holding parameter specification-outcome rules and recognition 

schemata, integrating proprioceptive and external sensory information and outcome 

information. Whereas recall schemata are used for response production, recognition schemata 

are more relevant for response evaluation. For movements of the same class, the abstract 

representation of parameter specifications and outcomes in the corresponding recall schema 

allows for transfer to new movements, never executed before.  Hence, when you throw a 

basketball, you can do this from a lot of different positions without training every single one 

separately. The more different positions you learn to throw from, the higher is the variability 

of practice, which is defined as the performance of multiple variants of the same class of 

movements. During skill acquisition, variability of practice aids schema formation, as it 
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Introduction 

enhances the amount of information to be abstracted to the schema. In this way, 

representations of schema rules are strengthened. The stronger the schema, the better is 

transfer performance to novel tasks of the same class. 

 Schmidt’s schema theory was criticized for its inability to explain practice order 

effects, that is effects of the organization of tasks within training (Merbah & Meulemans, 

2011; Newell, 2003; C. H. Shea & Wulf, 2005). If it is only the amount of variants of a task 

performed, that counts for the formation of schemata and the order of these experiences is 

irrelevant, no effects of practice order should be observed. 

1.1.2. Contextual Interference. Contextual interference (CI) relates to the 

organization of training during skill acquisition and addresses above mentioned practice order 

effects. CI is high, when several tasks (or variants of a task) are practiced in close temporal 

proximity, as in randomized training and it is low, when tasks are learned in isolation, as in 

separate training blocks. In laboratory settings, high CI results in inferior performance in 

training than low CI, but to superior performance in retention and transfer (Brady, 2004; J. B. 

Shea & Morgan, 1979). Several theories attempt to explain the CI effect. The most prominent 

are the elaboration hypothesis (J. B. Shea & Morgan, 1979) and the reconstruction hypothesis 

(Lee & Magill, 1983). The elaboration hypothesis assumes that during high CI training, 

multiple action plans co-reside in working memory, where they are compared. This leads to 

more elaborate and complex representations of the action plans. In contrast, the reconstruction 

(or forgetting) hypothesis assumes that the motor solution process (finding the correct 

movement with regard to the goal) must be repeated in actively in every trial, when the 

condition changes. Thus, the action plan must be reconstructed instead of just rerunning it. 

This repeated problem solving results in stronger representations of the action plan.  

For simple tasks there is converging evidence about the CI effect. In contrast, in 

applied settings and for complex tasks results are mixed (Barreiros et al., 2007; de Croock, 

van Merriënboer, & Paas, 1998; Feghhi, Abdoli, & Valizadeh, 2011; Stambaugh, 2011).  
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Introduction 

Albaret and Thon (1998) tested whether CI interacted with task complexity in a 

drawing task without visual control. Complexity was manipulated by varying the number of 

segments participants had to draw within a shape (between one and four). For the simple 

shapes there was a clear CI effect in retention and transfer, but not for shapes with more than 

two segments.  

Wulf and Shea (2002) proposed that CI increases cognitive demands during 

acquisition. In simple tasks, this leads to intensified processing and as a consequence better 

retention and transfer. However, with increasing task complexity, cognitive demands 

accumulate potentially causing overload, which disrupts learning. This proposal points toward 

the assumption of an optimal load for learning, as proposed by cognitive load theory (CLT, 

Sweller, 1988). Sweller (1994) differentiates between exogenous cognitive load, produced by 

the learning environment, and endogenous cognitive load, stemming from within-task element 

interactivity (e.g. the relationship between segments to be drawn in a shape). Both accumulate 

in working memory and at a given threshold exceed its capacity. Consistently, in simple tasks, 

the CI effect is most stable when motor programs vary, that is when movements from 

different classes need to be learned. In contrast, in complex tasks with high element 

interactivity, the use of several motor programs exceeds capacity. Here the CI effect is more 

stable when parameters of the same motor program need to be learned (Merbah & 

Meulemans, 2011). This is consistent with the CLT assumption that element interactivity, 

which relates to the concept of variability of practice in Schema theory, drives schema 

formation. Schema formation in turn reduces intrinsic load (Paas, Renkl, & Sweller, 2003). 

Consistently, extended practice increases the efficiency of CI (C. H. Shea, Kohl, & Indermill, 

1990). Moreover, participants with higher experience levels were found to profit from high CI 

(Hall, Domingues, & Cavazos, 1994), whereas novices show better performance after low CI 

training (Guadagnoli, Holcomb, & Weber, 1999; Hebert, Landin, & Solmon, 1996).  CI works 

better for older children and adults compared with young children (Farrow & Maschette, 
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1997; Wulf & Shea, 2002), but only when adults and older children are more familiar with the 

tasks examined (Pinto Zipp & Gentile, 2010). Consistent with CLT, CI effects depend not 

only on task features, but also the learning stage, with high CI being detrimental in early 

learning stages.  

1.1.3. Motor learning and individual differences in cognitive ability. From an 

individual differences perspective, Ackerman (1988) assumes three independent phases of 

skill acquisition. In the beginning, learning consists of hypothesis testing, which is related to 

declarative knowledge and, hence, dependent on cognitive resources, such as working 

memory. Once a solution is established, there is a transition to an associative phase, in which 

the relevance of cognitive abilities decreases and perceptual speed gets more important. 

Finally, once the skill is well established it becomes autonomous and independent of 

cognitive abilities, being governed by procedural memory and determined by psychomotor 

abilities (Ackerman & Cianciolo, 2000; Beaunieux et al., 2006).  

Woltz (1988) has shown effects of working memory on the acquisition of a cognitive 

procedural task. Participants had to perform actions, depending on different conditions 

according to a complex set of rules, comparable to a monitoring task at a control panel. 

Whereas the learning stages in the acquisition of this skill might be the same, this cognitive 

task differs in two key aspects from motor skill acquisition. First, acquisition in this task was 

related to response selection, rather than response production. Other than here, in motor skill 

acquisition, usually the “what” is clear, but the “how” is not. Second, this study did not 

require the deduction of production rules because the rules were provided in advance. 

Contrary, in motor skill acquisition, relationships between movement characteristics and 

outcomes are hard to verbalize and multiple different parameter combinations can solve the 

same motor problem. Although results from the cognitive domain might transfer to the motor 

domain, to our knowledge, the relationship between cognitive abilities and performance in 

motor skill acquisition has not previously been tested.  
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As task complexity seems to modulate cognitive load (see section 1.1.2), it should 

mediate the effectiveness of cognitive abilities to predict motor learning. In the language 

domain, Opitz and Friederici (2003) showed that during learning of complex artificial 

grammars participants changed from similarity-based decisions to rule abstraction. For simple 

grammars, pattern-based learning was sufficient. Pattern-based learning is independent of 

declarative knowledge and can occur implicitly, that is without working memory 

involvement. The acquisition of rule knowledge, in contrast, requires explicit learning and 

both, pattern-based and rule based learning, take place under explicit learning conditions 

(Opitz & Hofmann, 2015). Transferring this to the motor domain, motor learning might 

require both, pattern-based learning of the associations between actions and their outcomes, as 

well as rule-based integrating a variety of action- and outcome information.  

An important variable determining the ability to abstract trial-to-trial information to a 

unifying pattern is (inductive) reasoning (Heit, 2000). Earlier studies on effects of cognitive 

ability on learning relate to working memory, not reasoning. Still, reasoning ability covers the 

identification and use of patterns from a variety of sources and it is highly correlated with 

working memory (Buehner, Krumm, & Pick, 2005; Kyllonen & Christal, 1990; Süß, 

Oberauer, Wittmann, Wilhelm, & Schulze, 2002). In the framework of schema theory, 

reasoning ability should therefor be a suitable predictor for schema formation/ learning. 

1.1.4. Feedback and reinforcement learning. Simple actions, like pressing the 

correct button in a two-choice task can be evaluated regarding goal achievement based on 

internal proximal afferent motor feedback. In contrast, when it comes to complex goal 

directed actions, external feedback on the distal effects of actions is required (Henderson, 

1977; Wulf & Shea, 2002). In motor learning, external feedback on performance in relation to 

the goal, termed Knowledge of Results (KR) is a key variable and has been shown to improve 

performance (for a review see Salmoni, Schmidt, & Walter, 1984). 
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Reinforcement learning theory provides a framework how feedback is utilized in 

behavioral adaptation and learning (Sutton & Barto, 1998). Here, the actual outcome 

(feedback) is compared to the predicted outcome to trigger adaptation. Previous outcomes are 

the basis for predictions/expectations and the difference between actual outcome and the 

expectation is termed prediction error. In turn, the prediction error in a given trial is used to 

adjust the prediction of the outcome in subsequent trials and select responses in order to 

optimize performance. The size of the difference determines the magnitude of the prediction 

error. Take, as an example, someone who wants to learn basketball free throws. The learner 

will estimate the likelihood of making a goal based on his previous performance and generate 

a corresponding expectation. As long as his relative number of baskets is low, he will not 

expect to score a goal. Doing so would be a better-than-expected outcome (positive prediction 

error). Based on this new experience, the learner will adapt his expectation for the next trial, 

as scoring a goal is now more likely. This adaptation process is termed temporal difference 

learning. The reinforcement learning framework comprises two components: the critic that 

computes the prediction error, and the actor that selects actions that maximize the outcome by 

repeating successful behavior.  

Consistent with the assumptions of reinforcement learning, processing of both, 

positive and negative feedback predicts behavioral adaptation and learning (Cavanagh, Frank, 

Klein, & Allen, 2010; Van Der Helden & Boksem, 2012). Beyond this, in some settings, 

positive feedback fosters learning to a larger extend than negative feedback (Arbel, Goforth, 

& Donchin, 2013; Arbel, Murphy, & Donchin, 2014; Chiviacowsky & Wulf, 2007; Eppinger, 

Kray, Mock, & Mecklinger, 2008; Wulf, Shea, & Lewthwaite, 2010). 

1.2. Electrophysiological correlates of motor learning 

I assume several processing stages during an action, which are schematically summarized in 

figure 1. The right side of the schema is related to preparatory activity in the dorsal and 

ventral visual stream, as well as the motor areas. The left side of the schema summarizes 
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stages related to behavioral adaptation and feedback processing. Relevant ERPs are displayed 

along with the corresponding processes.  

 

Figure 1: Schematic illustration of sub processes in motor control and learning with 

associated ERP components. CNV: Contingent Negative Variation, LRP: Lateralized 

Readiness Potential, MP: Motor Potential, ERN: Error related Negativity, Pe: Error Positivity, 

FRN: Feedback related Negativity, RP: Reward Positivity, RL: Reinforcement learning 

The present outline will focus on preparatory activity, such as the extraction of motor relevant 

information from cues and the motor related preparatory activity (Section 1.2.1), as well as 

feedback related potentials in the framework of reinforcement learning (Section 1.2.2). 

1.2.1. Preparatory activity and effects of learning. To investigate motor 

preparation independent of motor execution, S1-S2 paradigms are used. Here, a precue (S1), 

provides prior information on the required action. After a wait-interval (foreperiod) in which 

motor preparation can take place, an imperative stimulus (S2) prompts the action.  

Information on the required action needs to be extracted from S1 prior to motor 

preparation. Part of this processing is reflected in the P3 component of the ERP. The P3 is a 

centrally distributed positive ERP with a maximum between 250 and 500 ms after stimulus 

onset. It can be separated into a more frontal component, the P3a, associated with allocation 

of focal attention, and a parietal component, P3b, related to memory operations (Polich, 
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2007).  A selective decrease in the frontal component occurs with habituation to the task 

along with repetition and the frontal – parietal ratio is larger for more difficult tasks 

(Segalowitz, Wintink, & Cudmore, 2001).   

The contingent negative variation (CNV), related to abstract motor preparation, is a 

slow cortical potential, starting on fronto-central recording sites and moving to more posterior 

sites with time (for a review see Leuthold, Sommer, & Ulrich, 2004). For foreperiods longer 

than 1 s the CNV can be separated into two independent waveforms, the early orienting wave 

or initial CNV (iCNV) with a fronto- central maximum and the following expectancy wave or 

late CNV (lCNV) with a centro-parietal maximum (Brunia & Damen, 1988; Verleger, 

Wauschkuhn, van der Lubbe, Jaskowski, & Trillenberg, 2000). The iCNV is assumed to be 

rather stimulus related, supposedly reflecting unspecific allocation of attention to task relevant 

stimuli in order to provide optimal readiness for action. Still, it seems to contribute to motor 

preparation beyond a mere orienting reaction, indicated by event related desynchronization in 

the alpha frequency range contralateral to the cued hand (Bender, Resch, Weisbrod, & 

Oelkers-Ax, 2004). Bender and colleagues argued that this activity reflects early task related 

preparatory motor processes, presumably memory retrieval of a motor program. The lCNV is 

assumed to equal the readiness potential (RP) that precedes voluntary actions (e.g. Prescott, 

1986). Beyond this interpretation, the component is also sensitive to stimulus expectation, 

motivation and effort (for a review see Brunia, 2004). In the context of motor control, the 

lCNV is interpreted as reflecting the number of pre-specified parameters (Leuthold & 

Jentzsch, 2001; Leuthold et al., 2004; Wild-Wall, Sangals, Sommer, & Leuthold, 2003). Its 

amplitude varies with task difficulty (Frömer, Hafner, & Sommer, 2012) and is larger for 

novel, as compared to learned movement sequences (De Kleine & Van der Lubbe, 2011).  

From studies investigating the temporal aspects of motor preparation (time 

preparation), it is known, that randomized and blocked designs lead to differential 

experimental effects. Whereas in a blocked design, short foreperiods lead to better 

  11 



Introduction 

performance and larger CNV amplitudes than long foreperiods, the opposite pattern is 

observed in randomized designs (Müller-Gethmann, Ulrich, & Rinkenauer, 2003). Müller-

Gethmann et al. argued that the predictability of the time of S2 presentation is influenced by 

blocked versus randomized presentation contexts. Similar effects have been reported for 

manipulations that were performed either block-wise or randomly within blocks. The 

commonly found effect that fully informative precues lead to larger lCNV amplitudes than 

partial precue information was reported for random, but not for blocked presentation 

schedules (Rose, Verleger, & Wascher, 2001; Van Boxtel, Van den Boogaart, & Brunia, 

1993).  Thus, the CNV is context sensitive and task scheduling interacts with other 

manipulations in their effect on its amplitude. As a consequence, task scheduling should have 

an impact on learning-related effects on motor preparation, too. 

Motor learning is associated with a frontal-parietal shift (Sakai et al., 1998; Shadmehr 

& Holcomb, 1997; Toni, Krams, Turner, & Passingham, 1998). The reduction in frontal 

activity is supposedly related to automation and a decrease in working memory load (Jansma, 

Ramsey, Slagter, & Kahn, 2001). Preparatory motor activity increases with learning of goal 

directed actions (Sakai, Ramnani, & Passingham, 2002). Using EEG, Staines, Padilla, and 

Knight (2002) observed a decrease in the frontal P3 component, associated with processing of 

task related stimulus features and an increase of the negative component preceding the 

execution of the response, related to response preparation. The latter result is inconsistent 

with above-mentioned decreased lCNV for learned compared to novel movement sequences 

(De Kleine & Van der Lubbe, 2011). As outlined above, CNV is sensitive to presentation 

schedule. The discrepancy might hence result from an interaction of presentation schedule and 

learning related changes in motor preparatory ERP components. 

Evidence on differential effects of presentation schedule on learning related changes in 

the motor preparatory phase comes from fMRI research. Cross, Schmitt, and Grafton (2007) 

identified differential effects of high and low CI training (see Section 1.1.2) on premotor and 
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motor areas, as well as sensori-motor integration areas with increased activity during high CI 

learning. Furthermore, superior and medial frontal gyri and right lateral occipital areas, as part 

of the fronto-parietal attention network were more active under high CI. The later effects are 

consistent with assumed higher cognitive demands of high CI training or more elaborate 

processing. As these results only refer to comparisons between early and late training, an open 

question is how schedule effects preparatory activity in retention compared to training. 

1.2.2. Electrophysiological correlates of feedback processing. The “reinforcement 

learning theory of the error-related negativity” (RL-ERN) is an implementation of 

reinforcement learning theory (see Section 1.1.4) at the neural level (Holroyd & Coles, 2002). 

According to RL-ERN, the reward prediction error is reflected by phasic changes of activity 

in anterior cingulate cortex (ACC). Performance-monitoring activity in the ACC is computed 

either on the basis of external feedback or internal information obtained by the response itself 

(Bellebaum & Colosio, 2014; Holroyd & Coles, 2002; Holroyd, Nieuwenhuis, et al., 2004). If 

based on internal processes, ACC activity seems to be reflected in the ERN; if based on 

external feedback, error detection is reflected in the feedback-related negativity (FRN).  

The FRN is a fronto-centrally distributed negative ERP with a maximum around 200 - 

400 ms after feedback onset (Holroyd, Pakzad-Vaezi, & Krigolson, 2008). Typically, the 

FRN is determined as the difference wave between ERPs to feedback signals about incorrect 

and correct responses or between non-reward and reward signals. The FRN is larger for 

negative as compared to positive outcomes (Miltner, Braun, & Coles, 1997) and it is sensitive 

to both, utilitarian (reward/punishment) and performance feedback (Nieuwenhuis, Yeung, 

Holroyd, Schurger, & Cohen, 2004). It is interpreted as reflecting the reward prediction error 

(Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003). Consistent with this interpretation, the FRN 

is context dependent, with amplitude to a specific outcome depending on alternative outcomes 

(Holroyd, Larsen, & Cohen, 2004; see  Kujawa, Smith, Luhmann, & Hajcak, 2013 for 

divergent findings; Nieuwenhuis et al., 2005). Moreover, reward probability or reward 
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magnitude modulations of the FRN were observed to error- and correct-related feedback 

ERPs, but more consistently for the latter (Cohen, Elger, & Ranganath, 2007; Hajcak, 

Holroyd, Moser, & Simons, 2005; Hajcak, Moser, Holroyd, & Simons, 2006; Kreussel et al., 

2012; Potts, Martin, Burton, & Montague, 2006; Potts, Martin, Kamp, & Donchin, 2011; San 

Martin, Manes, Hurtado, Isla, & Ibanez, 2010). Compared to negative feedback, positive 

feedback elicits ERPs that are larger in amplitude and of different polarity (Walsh & 

Anderson, 2012). The interpretation of the FRN reflecting the signed prediction error is 

supported by a recent meta-analysis (Sambrook & Goslin, 2015).  

Variations of feedback values indicated that the FRN is related to goal achievement, as 

neutral and irrelevant feedback elicited similar FRNs as negative feedback (Band, van 

Steenbergen, Ridderinkhof, Falkenstein, & Hommel, 2009; Holroyd, Hajcak, & Larsen, 

2006). Holroyd et al. (2008) introduced the feedback correct related positivity. They argued 

that the lack of a typical N2 to correct feedback was due to cancellation with an overlapping 

positivity, other than the P3 and related to performance monitoring. Recent fMRI findings 

also support the assumption of a reward positivity (RP). An increase in BOLD response in 

areas related to reinforcement learning was observed following positive but not negative 

feedback. This increase of activity was related to more positive ERP amplitudes (Becker, 

Nitsch, Miltner, & Straube, 2014).  Because these and other recent findings suggest a different 

interpretation of the FRN difference wave, we will henceforth refer to feedback related ERPs 

as RP (Baker & Holroyd, 2011; Holroyd, Krigolson, & Lee, 2011; Kujawa et al., 2013; Lukie, 

Montazer-Hojat, & Holroyd, 2014). 

The above-mentioned studies mostly rely on dichotomous feedback or reward delivery 

vs. omission. Still, evidence on reward magnitude effects suggests, that errors and rewards are 

not processed in a dichotomous way. Thus, in a gambling experiment with a fortune wheel, 

the reward positivity amplitude was larger for full (win/miss), as compared to near (narrow 

win/near miss) outcomes, indicating that the visual feedback was processed in a graded, not in 
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dichotomous fashion (Ulrich & Hewig, 2014). Evidence on graded error monitoring in the 

response-locked ERN has been provided with larger amplitudes for larger errors (Anguera, 

Seidler, & Gehring, 2009).  Similar effects have been reported for feedback-related potentials. 

In a time estimation task, the exact timing was returned as feedback information with larger 

errors resulting in more negative reward positivity amplitudes (Luft, Takase, & Bhattacharya, 

2014).  

1.3. Aims and outline of the present work 

 Aim of the present work was to shed light on the cognitive processes during the 

acquisition of a complex motoric task. As reviewed above, hypotheses on the CI effect relate 

to processing load and working memory (Lee & Magill, 1983; J. B. Shea & Morgan, 1979). 

The failure of many studies using applied and complex tasks to show CI effects was explained 

by overload of the cognitive system (Wulf & Shea, 2002). This assumption has never been 

tested directly. Moreover, to our knowledge, there is only one study investigating the 

underlying neural mechanisms of the CI effect and this study is furthermore limited to 

changes during training, omitting retention (Cross et al., 2007). In addition, feedback 

processing, as an important stage in skill acquisition, has mainly been investigated using 

simple tasks, such as time estimation tasks. Moreover, studies on graded performance 

feedback are rare and focus on error feedback (Luft et al., 2014). We aimed at contributing to 

previous literature, by investigating neural correlates of processing graded positive 

performance feedback in a complex motor task. 

  To approach these questions, we conducted a large learning experiment, training 120 

participants to throw at virtual targets with a Nintendo Wii remote controller. Training 

comprised three horizontal target positions (left, center, right). We manipulated a spatial 

parameter of an existing motor program (throwing in general), as CI effects are more stable 

with prior experience (Guadagnoli et al., 1999; Hall et al., 1994; Hebert et al., 1996; Pinto 

Zipp & Gentile, 2010) and for parameter adaptation tasks, compared to practicing multiple 
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MPs (Wulf & Lee, 1993, see Section 1.1.2). Participants were – based on separately tested 

darts throwing performance – matched to two training groups with equal average 

performance. The high CI group practiced the three target positions randomly and the low CI 

group block-wise. Both training groups performed 105 trials of each target position, as 

extended training supports the effectiveness of CI (C. H. Shea et al., 1990). In a follow up 

session, one week later, retention was assessed for one of the practiced target positions 

(center) and transfer was tested for a larger target distance. Electroencephalographic (EEG) 

activity was measured in both sessions. We had shown feasibility of EEG recordings using 

this setup in an earlier study (Frömer et al., 2012). In a follow up online study, 80% of the 

sample completed a reasoning ability test, consisting of a subset of the Raven advanced 

progressive matrices. 

 Based on this dataset, the present work investigated motor learning at three different 

levels: behavioral, individual differences and neural. In Study 1 we tested the assumption that 

individual differences in reasoning ability interact with training schedule, limiting the 

effectiveness of high CI training. Moreover, we focused on electrophysiological correlates of 

two stages in motor learning, which are motor preparation and feedback processing. In Study 

2 we investigated the effect of CI on learning related changes in ERPs in the motor 

preparatory phase. Besides the two CNV waves, we focused on activity related to the fronto-

parietal attention network, that has been highlighted in previous research as being sensitive to 

CI manipulations, supposedly indicating differences in cognitive load. Finally, in Study 3 we 

investigated the effect of graded positive performance feedback on RP amplitude. As the 

outcome prediction influences RP amplitude, we used a linear mixed models approach that 

allows for trial-by-trial control of corresponding measures.  
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2. Summary of the present studies 

2.1. Effects of reasoning abilities and CI on skill acquisition (Study 1)  

Variability of practice enhances the amount of information on action-outcome 

relationships and presumably facilitates schema formation (Schmidt, 1975). Crucially, schema 

formation can be facilitated by variability only, if participants are able to abstract from the 

current task and integrate different learning occasions. Reasoning ability should determine 

whether individuals are able to abstract the relevant information to the underlying rule and 

learn. CI enforces the abstraction of underlying rules, as a consequence of higher temporal 

proximity of task variations but also increases load, which in addition to intrinsic load of 

complex tasks might encompass individual’s capacity (Young, Cohen, & Husak, 1993). Study 

1 investigated the effect of CI and individual differences in reasoning on skill acquisition to 

test the assumption, that effectiveness of CI is limited by processing capacity. We separately 

analyzed training and follow up performance using linear mixed models (LMMs). Although 

we considered factors influencing the CI effect in our design (large number of training trials, 

pre-learned MP, parameter adaptation, see section 1.1.2 and 1.3) we found no significant main 

effects of CI on performance, neither in training, nor retention and transfer. Even by the end 

of training and after significant improvement, mean performance was rather low (around 50% 

hits), indicating that difficulty was too high for CI to show overt beneficial effects. Learning 

took place mainly during the first third of training in both groups. As predicted, in the high CI 

group there was a significant main effect of reasoning with performance increasing with 

reasoning ability. In the first third of training, there was a tendency for steeper acquisition 

curves for participants with higher reasoning ability. A main effect of reasoning was present 

from the second third of training onwards, and persisted across retention and transfer. This 

finding is consistent with reports from the cognitive procedural skill acquisition domain 

(Ackerman, 1988; Ackerman & Cianciolo, 2000; Woltz, 1988). In contrast, for the low CI 

group, there were no main effects of reasoning at any stage of training or follow up. Still, in 
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the last third of training with increased variability of practice, there was a significant 

interaction of acquisition curve and reasoning. Thus, participants with higher reasoning 

improved more during this last stage of training. We interpret this result as a change from 

pattern- or association-based learning to rule-based learning or schema formation. That 

means, to our understanding, in the beginning of training, the low CI group performed the 

task pattern- or association-based, but switched to rule-based learning, once enough 

variability was provided. At that point, reasoning ability could show advantageous effects, but 

not previously. In summary, there was an effect of reasoning ability on performance 

improvement that was different in timing for the CI groups and showed persistent effects only 

for high CI. In other words the advantage of high reasoning seems to develop when there is 

variability of practice and persists, when variability of practice is introduced early.  

Motor skills are often considered as independent from cognitive ability, as mainly 

governed by procedural learning and memory. Our study provides evidence, that at least the 

acquisition of motor skills is facilitated by higher cognitive ability and so is transfer within 

the same class of movements. Crucially, this effect only emerges, when sufficient variability 

of practice is given, allowing for the integration of information from multiple task variants to 

underlying rules. These findings propose a new perspective on CI, potentially reconciling CI 

effects and schema theory.  

2.2. CI and differential learning effects on ERP components (Study 2) 

As described in Section 1.2.1 motor learning is accompanied by a frontal-parietal shift 

in preparatory activity. CI influences the recruitment of brain regions in the preparatory phase 

of motor learning. Moreover, results on learning related changes in motor preparatory ERPs 

are heterogeneous and might be explained by task scheduling, as manipulated in CI. To 

systematically test this, in Study 2 we investigated the effect of CI on learning related changes 

in preparatory ERPs. Preparatory activity in training was compared to preparatory activity in 

retention, using the same condition. Specifically, the P3, iCNV and lCNV were analyzed. In 
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addition frontal and right lateral occipital activity in the two CNV time windows were 

analyzed, to assess, whether reductions in this activity are limited to cue related activity or 

persist throughout the preparatory interval, possibly reflecting a reduction in ongoing 

cognitive control. As expected, P3 amplitudes were reduced in retention for both groups. This 

finding is consistent with an interpretation of a reduction in frontal P3 activity as a decrease in 

ongoing cognitive control (Segalowitz et al., 2001).  High CI resulted in reduced prefrontal 

activity throughout the whole foreperiod in retention relative to training. Supposedly part of 

the same attention network, right lateral occipital activity was larger during high CI training 

than during retention. These effects were specific to high CI training and not found for low CI 

training. The results are consistent with earlier findings on the recruitment of different brain 

structures depending on CI (Cross et al., 2007). This selective effect is consistent with the 

interpretation of enhanced effort under high CI (Young et al., 1993). In separate analyses of 

between group differences within training and retention, none of the components showed 

significant group differences in retention and only right lateral occipital negativity was 

significantly larger for high compared to low CI during training, indicating higher attention 

demands under high CI training. From previous literature, we expected larger CNV 

amplitudes in retention, as compared to training. We observed differential effects of the 

training schedule on CNV in retention, both in iCNV and lCNV. Whereas there were no 

effects on iCNV after low CI training, congruent with our hypothesis, however, lCNV was 

significantly increased. In contrast, high CI training led to a significant decrease in iCNV and 

a trend for a decrease in lCNV during retention relative to training. These results are 

consistent with previous findings that the CNV is larger in more difficult tasks (Frömer et al., 

2012), and in unfamiliar tasks (De Kleine & Van der Lubbe, 2011). Whereas there were no 

significant differences between groups during training, lCNV was significantly larger during 

retention after low CI than high CI training. No differences were found for iCNV. Our results 

support previous interpretations suggesting that processes in addition to mere motor 
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programming affect the lCNV. Such factors cover motivation, stimulus anticipation, working 

memory and cognitive effort (Brunia, 2004; Ruchkin, Canoune, Johnson, & Ritter, 1995; van 

Boxtel & Brunia, 1994; Wascher, Verleger, Jaskowski, & Wauschkuhn, 1996). The latter two 

factors might explain the differences in retention effects between high and low CI training. 

Whereas working memory and attention demands are similar after low CI training, cognitive 

load in retention is significantly lower than during high CI training. A potential increase in the 

motor related portion of the lCNV, as observed after low CI training, might be masked by the 

proportionally stronger decrease in the effort related portion of the component. This 

interpretation is consistent with the assumption of two motor processors, as proposed by 

Verwey (2001). According to this model, a cognitive processor and a motor processor 

contribute to motor control in parallel. Whereas load on the cognitive processor decreases 

with learning, contributions of the motor controller increase. We propose that both processors 

are reflected in lCNV amplitude and that their interplay explains the differential effects.  

P3, iCNV, as well as early frontal activity were significantly smaller in amplitude for 

hits as compared to misses, in the high CI group, only. A similar effect was observed for 

lCNV. Again, successful performance was related to smaller amplitude. Whereas it is 

unreasonable to assume that less effortful processing should result in superior performance, it 

is plausible that effort is reduced once the task is learned. Crucially no such effects were 

found for the low CI group. We interpret this finding as reflecting a stronger reduction in 

cognitive effort under high CI with increasing performance during and after learning. As the 

cognitive motor controller seems to be less active under low CI, performance does not affect 

load-related components. 

Motor learning results in a decrease in cognitive demand, as reflected by a reduction in 

P3 amplitude in the preparatory period. High CI results in higher cognitive load during 

training and a stronger subsequent reduction in effort-related activity under retention. Motor 

preparatory activity increases during retention, but only if training and retention use a blocked 
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schedule. This effect is supposedly related to parallel cognitive and motor processing, both 

probably reflected in lCNV amplitude. Decrease in cognitive processing might overshadow an 

increase in motor preparation following high CI training. Future research needs to determine, 

whether the dependency of motor preparatory-related changes on training schedule are caused 

by different learning mechanisms, such as rule vs. pattern based learning during training. 

2.3. Graded Positive Performance Feedback and Reward Positivity (Study 3) 

In motor learning, graded feedback is related to better performance than dichotomous 

feedback relative to a standard, as this kind of feedback allows for more flexible goal-setting 

and hence improvements (Locke, 1968). If the outcome is evaluated based on goal attainment 

only, no further improvement is possible. Still, people do refine their skills, hence even 

successful actions should be processed in a graded fashion. As previous research focused on 

the processing of error feedback, aim of Study 3 was to investigate whether gradual feedback 

processing within goal-achieved-outcomes is reflected in RP. The location of the ball’s 

impact on the target disk served as graded performance feedback. As in unsuccessful trials the 

target disk is not hit at all, only more or less successful trials - with positive valence - were 

analyzed. RP amplitude served as dependent variable. As they influence outcome prediction, 

we analyzed the effect of hit frequency and preceding trial outcome in each trial. This way, 

we indirectly took unsuccessful trials into account by investigating their influence on current 

correct trials. As feedback accuracy and preceding performance vary trial-by-trial, we used 

linear mixed models that allow for trial-based analysis of covariates and relevant factors.  As 

expected, RP amplitudes gradually increased with increasing accuracy. These effects dovetail 

with the results reported by Luft et al. (2014) who had found that larger errors produced more 

negative reward positivity amplitudes. Moreover, our findings mirror reward magnitude 

effects on RP in correct trials reported in the reward-learning domain (Kreussel et al., 2012; 

San Martin et al., 2010). Thus, we transfer previous findings on reward magnitude to graded 

feedback in skill acquisition. Unexpectedly, accuracy feedback interacted with hit frequency. 
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Whereas the most accurate feedback consistently produced the largest RP, the differentiation 

between medium and low accuracy feedback vanished, when hit frequency was high. 

Possibly, this effect is related to effects of adaptive goal setting once a certain level of 

performance is reached.  Similar effects of graded performance feedback on goal setting have 

been reported previously (Locke, 1968). As to the overall effect of previous performance, RP 

was globally reduced when hit frequency increased. When hit frequency is high, a positive 

feedback is rather expected, thus once it is provided the prediction error is small. Hit 

frequency interacted with training group, with a stronger effect in the high CI group. As in 

this group all conditions contributed to hit frequency throughout the whole training, it is a 

better predictor of performance than in the low CI group. Here, performance in the first five 

blocks was less predictive for performance following the change in target position. This might 

explain the difference in the frequency effect between groups. RP was locally enhanced for 

hits after unsuccessful trials. The same reasoning, as for hit frequency, holds for the preceding 

trial performance effect. After unsuccessful trials, the expectation is adapted towards lower 

achievement, as would be predicted by temporal difference learning (Sutton & Barto, 1998). 

Thus, compared to this lower expectation, the positive feedback produces a larger positive 

prediction error. Hit frequency and preceding trial performance showed the effects expected 

in the framework of reinforcement learning and proved to be important control variables 

when examining magnitude effects on RP. Thus we confirm previous assertions on the 

necessity to control for these variables (Holroyd, 2004; Holroyd et al., 2008). Preceding trial 

performance had a larger effect when hit frequency was high. In terms of reinforcement 

predictions, this effect can be interpreted as an online adaptation of expectations as in 

temporal difference learning. In two separate experiments, between-subjects, reward 

positivity has been shown to depend on context (Holroyd, Larsen, et al., 2004). Thus, the 

response to an outcome in reward positivity amplitude does not reflect it’s (global) absolute 

magnitude, but this evaluation is flexible and dependent on (local) contextual factors. 
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Consistent with fMRI findings by Nieuwenhuis et al. (2005), our results suggest influences of 

both, global and local outcome alternatives and a fast trial-by-trial adaptation of expectations. 

In summary, the present study applied predictions from reinforcement learning theory 

and its neural application to performance monitoring in complex motor skill acquisition. It 

confirmed and extends previous findings on reward magnitude effects in the reward positivity 

of correct trials. As we observed graded effects on reward positivity for hits with different 

degrees of accuracy it complements previous findings on graded feedback effects. In addition, 

we showed local and global preceding performance effects on reward positivity that can be 

interpreted as reflecting trial-by-trial adaptations of outcome expectancies. 
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3. General discussion and future directions 

 The present dissertation tries to answer the call for the analyses of motor learning in 

complex tasks (Wulf & Shea, 2002). It is devoted to the CI effect and two stages in the 

process of motor learning and control: motor preparation and feedback processing. 

Participants learned to throw at virtual targets either under high or low CI and were 

subsequently retested for retention and transfer performance. EEG was recorded in both 

sessions, allowing for an investigation of the underlying neural mechanisms of motor 

preparation and feedback processing. Moreover, we tested Participants’ reasoning ability to 

shed light on the assumption of individual ability posing a limit on CI effects.  

From the results, I conclude, that CI modulates how variability of practice is used for 

schema formation during parameter learning. I will discuss this interpretation in Section 3.1. 

Moreover, the abstraction of parameter rules seems to put additional load on the cognitive 

system. In Section 3.2 I will discuss this hypothesis and integrate it with the theory of two 

motor processors and the CLT. Finally, I will discuss the locus of the CI effect in motor 

learning and open questions in Section 3.3.  

3.1. Schema formation, CI and variability of practice in parameter learning 

Schmidt’s Schema theory states that variability of practice enhances experience on the 

relationship between parameters of a task and outcomes and thereby supports schema 

formation (Schmidt, 1975). As during schema formation, underlying parameter-outcome rules 

need to be abstracted, individuals with higher ability in rule abstraction or reasoning (Heit, 

2000) should learn faster and better. Schmidt does not make any assumption on spacing 

between experiences of variants of a task and does hence not explain CI effects. By the end of 

training the amount of variability of practice is the same under high and low CI and 

accordingly there should be no difference in retention and transfer (Merbah & Meulemans, 

2011; Newell, 2003; C. H. Shea & Wulf, 2005). This interpretation neglects the underlying 
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mechanism of rule abstraction. Therefore, the distribution of variability of practice and its 

local impact on schema formation need to be taken into account.  

I propose that variability of practice or its absence affects every given trial within the 

learning history. If under low CI, variability of practice kicks in only after a considerable 

portion of training, namely when the condition changes for the first time, it cannot previously 

shape learning in a favorable way. Consistent with this assumption, Study 1 showed that 

individuals with higher reasoning ability perform significantly better than those with lower 

reasoning ability, but only under high CI training. Under low CI training, reasoning ability did 

not relate to performance, neither in training, nor retention or transfer. Only in the final phase 

of training, after the introduction of the last condition, acquisition curves were steeper for 

high-reasoning participants. We argue, that schema formation can only be supported by 

variability of practice, if individuals have sufficient capacity to draw conclusions from 

varying input. The results of Study 1 support this interpretation and the pattern of results on 

the relationship of performance improvement with reasoning ability further suggests, that 

variability of practice is a necessary prerequisite for rule abstraction. 

 To conclude that the elaboration hypothesis (J. B. Shea & Morgan, 1979) should be 

favored over the reconstruction hypothesis (Lee & Magill, 1983) is close at hand. Only the 

elaboration hypothesis explicitly assumes comparison between variants of a task in working 

memory. Still, prior experience with different task variants might as well alter the motor 

solution process being reconstructed in a given trial, according to the reconstruction 

hypothesis. Although given our data the elaboration hypothesis appears more plausible, I 

cannot safely conclude whether multiple parameter settings are co-activated in working 

memory or whether they are frequently updated with learning experiences shaping the 

reconstruction process. 

Henceforth, the effect of reasoning ability on motor learning might be two fold: first, 

directly on the level of problem solving and rule abstraction and second, indirectly mediated 
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by working memory capacity that limits the amount of information available for the rule 

abstraction process. These alternatives are hard to differentiate, as working memory and 

reasoning are highly correlated (Buehner et al., 2005; Kyllonen & Christal, 1990; Süß et al., 

2002). Sufficient working memory capacity is a necessary prerequisite for rule abstraction to 

take place, both as relevant items need to be activated and second, as comparison of these 

items is a working memory process, too. Reasoning ability covers both processes and should 

therefore be considered as an estimate of cognitive processing capacity. The effect of CI on 

cognitive load will be discussed in the next section. 

3.2. CI, cognitive load and the two processors in motor learning 

  Results on the CI effect in complex tasks are heterogeneous (de Croock et al., 1998; 

Feghhi et al., 2011; Stambaugh, 2011). It is not surprising that despite taking precautions to 

facilitate CI effects in our investigation, such as a large number of training trials, a parameter 

manipulation and a pre-learned motor program, we did not yield typical overt CI effects in our 

performance data. Throwing is a complex task with numerous degrees of freedom and our 

implementation of this task required the additional coordination of the remote controller that 

behaved differently from typical projectiles. As a result, even after significant increase with 

learning, average performance by the end of was below 60% hits. In terms of CLT, inter-

element interactions of sub-movements supposedly created a high intrinsic load that 

prevented the effects of schema formation to reveal in overt behavior (Paas et al., 2003; 

Sweller, 1988, 1994).  

In line with this reasoning, the inconsistency of results on the CI effect in complex 

tasks was often explained by increased processing demands under high CI that add up with 

task intrinsic demands and possibly overload processing capacity (Barreiros et al., 2007; Wulf 

& Shea, 2002; Young et al., 1993). This assumption is supported by fMRI findings, revealing 

stronger activation of the fronto-parietal attention network under high compared to low CI 

(Cross et al., 2007). Consistently, the results of Study 1 indicate covert effects of CI and 
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stronger involvement of cognitive processes in parameter learning under high CI (see Section 

3.1). Study 2 provides further evidence on higher cognitive demands under high CI training 

with stronger reductions in attention and control related components in the ERP in retention. 

This effect is consistent with a reduction in load with learning, as well as additional effort 

during schema formation, as assumed by CLT (Paas et al., 2003; Sweller, 1988). Learning 

related load reduction probably also underlies the smaller activity of the fronto-parietal 

attention network for successful as compared to unsuccessful trials. Notably this effect was 

only found for high CI.  

Together these results point towards different learning mechanisms under high and 

low CI. As argued in Section 3.1 rule abstraction requires variability of practice. Thus across 

large parts of low CI training, rule-based learning cannot take place. Instead the motor system 

needs to rely on pattern-based learning, which in Study 1 led to massive decline in 

performance once the condition changed. The differential activation of attention and control 

related areas could reflect this difference in learning mechanisms. Still, rule-based and 

pattern-based learning mechanisms are not mutually exclusive, but usually work in parallel 

when feedback is given (Opitz & Hofmann, 2015). This interpretation is consistent with the 

notion of two processors (cognitive and motor) in motor learning, as proposed by Verwey 

(2001) in the sequence learning domain. As the cognitive processor is capacity limited, 

participants with higher reasoning ability show superior performance (Study 1).  

I conclude that in motor learning a cognitive and a motor processor work in parallel. 

The cognitive processor is more active under high CI learning or given high variability of 

practice. Here, CI increases cognitive load during motor learning by promoting inter-variant 

comparison and rule abstraction. These processes are capacity limited and intrinsic load of 

complex tasks and individual processing capacity mutually determine the amount of capacity 

available rule abstraction.  
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3.3. ERP correlates of motor learning and the locus of the CI effect  

The present work investigated two stages in motor learning: feedback processing and motor 

preparation. Feedback provides information on action outcomes and subserves behavioral 

adaptation according to reinforcement learning theory (Sutton & Barto, 1998). RP, as 

reflecting prediction error should not only be sensitive to variations in the magnitude of 

negative, but also positive feedback. In Study 3 we showed such effects of graded positive 

performance feedback on RP amplitude. These results complement earlier findings on graded 

error feedback being reflected in RP with larger negativities for larger errors (Luft et al., 

2014). As predicted by reinforcement theory measures of expectancy, such as hit frequency 

and successful preceding trial performance produced smaller RP amplitudes. This effect 

supports the interpretation of RP reflecting signed prediction error and underlines the 

importance of controlling for expectancy measures when investigating magnitude effects on 

RP (Holroyd, 2004; Holroyd & Coles, 2002; Holroyd et al., 2008). Further, our results 

indicated that outcome predictions are flexibly adapted trial by trial, as for example negative 

preceding performance had a larger impact in trials when hit frequency was high. High 

performance moreover seems to lead to a dedifferentiation between medium and low accuracy 

performance feedback. This result is consistent with adaptive goal setting found for graded 

performance feedback (Locke, 1968). It is yet unclear how precisely feedback information is 

translated changes in motor behavior. Whereas simple reinforcement mechanisms might 

strengthen the representations of successful movements, additional processes must recalibrate 

parameter settings after errors. This gap remains to be bridged.  

  Motor learning goes along with a fronto-parietal shift, as reflected in a decrease in P3 

and an increase in motor preparatory activity (Staines et al., 2002). Whereas in Study 2 the 

reduction in the cue related P3 was not affected by training schedule, motor preparatory 

activity was. The increase in lCNV from training to retention in the low CI group replicates 

previous findings. In contrast, there was a significant decrease in iCNV and a trend for a 
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decrease in lCNV from training to retention in the high CI group. We concluded that CI 

effects might cover the effects on the frontal-parietal shift associated with motor learning in 

the motor component by increasing activation of the cognitive processor during training. In 

Study 2, we propose, that activity of both processors is reflected in CNV amplitude. 

Contributions of the frontal-parietal attention network to CNV have been reported previously 

using source localization (Gomez, Flores, & Ledesma, 2007). The findings were interpreted 

as endogenous attentional efforts to support motor preparation. Differential activation of 

cognitive and motor processor by high and low CI might explain contradictory effects of 

learning on lCNV.  

Concerning the locus of the CI effect, we found strong evidence, that high CI does 

indeed produce higher demands on cognitive processing during the preparatory stage. The 

feedback accuracy effect did not interact with CI. Only control variables, such as hit 

frequency and target position interacted with CI. These effects are supposedly related to 

differences in performance and its distribution across training, but do not allow for the 

assumption of differential processing between CI groups. Whereas “absence of evidence is 

not evidence of absence” (Altman & Bland, 1995), together with the results from Study 2 and 

previous literature (Cross et al., 2007), motor preparation, rather than feedback processing is 

affected by CI. Possibly, processes translating feedback information to motor preparation, 

such as adaptation processes or updating of the motor schema might be the original source of 

the differences. In the simplified process model of motor learning presented in section 1.2 the 

latter process would relate to the “Get information” stage. Notably, P3 amplitude did neither 

differ between groups, nor did CI significantly affect its learning related decrease. The 

amplification of control and attention related activity during the preparatory stage rather 

indicates higher cognitive processes modulating motor preparation. 
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3.4. Conclusions 

Integrating the results from Study 1, 2 and 3, I conclude that, informed by feedback 

processing, cognitive and motor processes run in parallel during motor learning. Both 

processors contribute to lCNV amplitude. The contribution of cognitive processes is higher 

under high CI during learning. This is further supported by the enhanced activation of the 

fronto-parietal attention network. Given variability of practice and sufficient cognitive 

capacity, Individuals abstract rules to schemata that allow for flexible transfer in parameter 

adaptation. This interpretation is consistent with the elaboration hypothesis (J. B. Shea & 

Morgan, 1979). Feedback about the outcome is a prerequisite for rule-based learning (Opitz & 

Hofmann, 2015) and of special importance for the acquisition of complex tasks (Wulf & 

Shea, 2002). Graded positive performance feedback modulates RP amplitude and effects of 

expectancy measures indicate a fast trial-by trial adaptation of expectations and hint towards 

adaptive goal setting with increasing performance. A question remaining for future research is 

how feedback information translates to parameter adaptation and which brain processes 

reflect this translation. 
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