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Abstract

Moving object detection is a fundamental task for a variety of traffic ap-
plications. In this paper the Daubechies and biorthogonal wavelet families are
exploited for extracting the relevant movement information in moving image
sequences in a 3D wavelet-based segmentation algorithm. The proposed algo-
rithm is applied for traffic monitoring systems. The objective and subjective
experimental results obtained by applying both wavelet types are compared
and interpreted in terms of the different wavelet properties and the character-
istics of the image sequences. The comparisons show the superior performance
of the symmetric biorthogonal wavelets in the presence of noisy images and
changing lighting conditions when compared to the application of high order
Daubechies wavelets. The algorithm is evaluated using simulated images in
the Matlab environment.

Index Terms— 3D wavelet transform, Image segmentation, Biorthogonal wavelets,
Daubechies wavelets, traffic monitoring systems.

1 Introduction

Image segmentation is essential in many advanced techniques of multi-dimensional
signal processing and its applications. The goal of segmentation is to simplify and/or
change the representation of an image to make it more meaningful and easier to an-
alyze. It is typically used to locate objects and boundaries (lines, curves, etc.)
in images. Some of the practical applications of image segmentation are: medical
imaging, diagnosis, face- and fingerprint recognition, machine vision and automatic
traffic controlling systems. Image segmentation for traffic monitoring systems means
detection and extraction of the moving objects that take part in the updated current
traffic situation. In other words, active objects in an image sequence are encoded
while the background, which may have moving and non-moving parts, is excluded.
The development of reliable and efficient segmentation algorithms which can meet
the requirements of the subsequent tracking and interpretation tasks as well as the
high-speed response for real time applications is still a challenging problem. The
most widely used image segmentation method for traffic or even outdoor moving
object monitoring is based on background subtraction [2, 9, 20]. The background
is initially set as the first frame of the video sequence [18, 6] or it is modelled as a
Gaussian Mixture Model (GMM) [20]. In both cases, the background model must be
updated in order to deal with changing lighting conditions and movements of irrel-
evant objects. Another approach uses a threshold based on the notion that vehicles



are compact objects having a different intensity as their background [13]. A general
problem of this approach is that it cannot avoid false detection of shadows or missed
detection of vehicle parts with similar intensities as its environment. Binary and
grey-scale morphological operators can be used to improve background-foreground
segmentation results [19]. In [6] background estimation and application of an adap-
tively updated threshold are combined. Some other approaches use a model based
detection [11]. It is based on edge detection as a first step followed by fitting a
proposed model. In [15] an image segmentation and moving object extraction algo-
rithm applying the 3D Haar wavelet transform is presented. In [17] it is compared
with the 2D wavelet-based algorithm proposed by Téreyin et al. [18] to assess the
validity of the algorithm. That comparison shows that the 3D wavelet-based algo-
rithm is more reliable to detect objects entering the scene than the 2D wavelet-based
algorithm. Due to the multiresolution analysis the segmentation is speeded up and
the performance of the algorithms is improved.

The application of Daubechies and the biorthogonal wavelets for edge detection
was considered in [14] and further compared with other conventional methods in [3].
In both works it was found that the short wavelets are capable of better edge detec-
tion than long wavelets but the results were not explained in terms of the wavelet
features. In the present work Daubechies as well as biorthogonal wavelets are used
in the 3D wavelet-based algorithm of [15]. Here, the focus is on studying the differ-
ent features of the wavelets, namely the symmetry of the biorthogonal wavelets and
the irregularity of the high order Daubechies wavelets. Their effects on the image
segmentation and moving object detection are investigated by comparing the simu-
lation results of both types. The aim of this comparison is to get a relation between
the features of the wavelets, the characteristics of the input image sequence, and the
segmentation results.

The organization of the paper is as follows: In Section 2 the theory of Daubechies
and biorthogonal wavelets is briefly surveyed. The 3D wavelet transform is explained
in Section 3. Section 4 describes the 3D wavelet based algorithm. Section 5 presents
the test data sets and the results of simulations. Matlab is used to assess the
efficiency of the algorithm for the different wavelets objectively and subjectively.
Finally, summary and conclusion are given.

2 Wavelets Overview

In this section a brief review of the principles and the theory of the orthogonal and
biorthogonal wavelets is given to emphasize the features of each method.

2.1 Daubechies Wavelets

Daubechies constructed the first wavelet family of scale functions that are orthog-
onal and have finite vanishing moments, i.e., compact support [7]. This property
insures that the number of non-zero coefficients in the associated filter is finite.
This is very useful for local analysis. The Haar wavelet shown in Fig. 1(a) is the
basis of the simplest wavelet transform. It is also the only symmetric wavelet in
the Daubechies family and the only one that has an explicit expression in discrete
form. Haar wavelets are related to a mathematical operation called Haar transform,
which serves as a prototype for all other wavelet transforms. Like all wavelet trans-



forms, the Haar transform decomposes a discrete signal into two subsignals of half its
length. One subsignal is a running average or trend, the other subsignal is a running
difference or fluctuation. The Haar wavelet transform has the advantages of being
conceptually simple, fast and memory efficient, since it can be calculated in place
without a temporary array. Furthermore, it is exactly reversible without the edge
effects that are a problem of other wavelet transforms. On the other hand, the Haar
transform has its limitations because of its discontinuity, which can be a problem
for some applications, like compression and noise removal of audio signal processing.
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Figure 1: Mother wavelet functions of Haar, DB4, and DBS, respectively.

The Daubechies wavelet transforms are defined in the same way as the Haar
wavelet transform by computing the running averages and differences via scalar
products with scaling signals and wavelets. For higher order Daubechies wavelets
Yapn, N denotes the order of the wavelet and the number of the vanishing moments.
The regularity increases with the order, as shown in Fig. 1. The support length
is 2N — 1. The length of the associated filter is twice as the number of the van-
ishing moments, i.e., 2N. The approximation and detail coefficients are of length
floor(%5%) 4+ N, if n is the length of (f(¢)) [12, 7]. This wavelet type has balanced
frequency responses but non-linear phase responses. The regularity of the wavelets
increases with the order. Figs. 1(b) and 1(c) show the wavelets DB4 and DBS8. The
wavelets with fewer vanishing moments give less smoothing and remove less details,
but the wavelets with more vanishing moments produce distortions [10].

The analysis as proposed by Mallat [12] is done with some overlapping depending
on the number of the vanishing moments N, due to the independence between the
length of the wavelet function and the dyadic translation. The length of the associ-
ated filter is 2V and the translation k& of the wavelet during the dyadic analysis is
done in terms of the scale level j € Z and not of the number of vanishing moments
N of the wavelet, i.e., k = 2/b, b € Z. For example, for the Haar wavelet ;,4,, there
is no overlapping at all because the translation step is equal to the width of the
wavelet. However, for the wavelet 145 the overlapping is equal to 2 sample points.
Generally, for a wavelet of order N at scale j the length of the associated filter is
constant. Concerning the last discussion the detection of an event by higher order
wavelets takes longer than that by lower order. Fig. 2 shows a 1D signal that has
three main events. The first event appears in the beginning of the signal in the form
of a zigzag line, the second one consists of three sharp edges, and the last event is
a wide edge with a slow transition. The detail coefficients of two levels of analysis
show that 14, has the ability to localize the event even in higher levels.
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Figure 2: Detail coefficients for a two level analysis by Haar, DB4, and DBS8. Haar
coefficients detect all the rapid changes in the 1% level, while the detection of the
wide edge lasts longer. Detection of events using the wavelets DB4 and DB8 comes
shifted in position and distributed on a wider range.

2.2 Biorthogonal Wavelets

It is well known that bases that span a space do not have to be orthogonal. In
order to gain greater flexibility in the construction of wavelet bases, the orthogonal-
ity condition is relaxed allowing semi-orthogonal, biorthogonal or non-orthogonal
wavelet bases. Biorthogonal Wavelets are families of compactly supported symmet-
ric wavelets. The symmetry of the filter coefficients is often desirable since it results
in linear phase of the transfer function. In the biorthogonal case, rather than hav-
ing one scaling and wavelet function, there are two scaling functions ¢, ¢, that may
generate different multiresolution analysis, and accordingly two different wavelet
functions 9, ¥. 1 is used in the analysis and v is used in the synthesis. In addition,
the scaling functions ¢, ¢ and the wavelet functions v, 1 are related by duality in
the following sense:
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A theorem by Cohen, Daubechies and Fauveau [1] gives sufficient conditions for
building biorthogonal wavelets. The separation of analysis and synthesis is such that
the useful properties for analysis (e.g., oscillations, zero moments) can be concen-
trated on the 1f/; function. The interesting property for synthesis (regularity) which
is assigned to the 1 function has proven to be very useful.

The dual scaling and wavelet functions have the following properties:

1. They are zero outside of a segment.
2. The calculation algorithms are maintained, and thus very simple.
3. The associated filters are symmetrical.

4. The functions used in the calculations are easier to build numerically than
those used in the Daubechies wavelets.

In this work biorthogonal B-spline wavelets were selected. B-splines are sym-
metrical, bell-shaped, piece-wise polynomial functions with good local properties.
They were originally introduced by Chui and Wang [5, 4] as wavelet and scaling
functions in multiresolution expansions. The B-spline wavelets have the following
desirable properties: compact support, smoothness, symmetry, good localization, a
simple analytical form in the spatial-frequency domain, and efficient implementa-
tion. They form a simple set of scaling functions satisfying the dilation equation
with binomial filter coefficients. The biorthogonal wavelet functions Biorl.3 and
Bior2.2 are illustrated in Fig. 3.
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Figure 3: Biorthogonal wavelets Bior 1.3 and Bior 2.2.

It is convenient to name the biorthogonal wavelets as BiorNr.Nd, where N7 is the
number of the order of the wavelet or the scaling functions used for reconstruction,
while Nd is the order of the functions used for decomposition. The support width of
the reconstruction and decomposition functions is 2Nr+1 and 2Nd+1, respectively.
The length of the associated filters is max(2Nr,2Nd) + 2. However, the effective

length of the filters associated with the wavelet functions ¥ g;.r1.3 and ¥g;,1.3 and



UBior2.2 and @Bmm is 2 and 3, respectively, and the effective length of the filters
associated with the scaling functions ¢g;or1.3 and ¢ pior1.3 and @gioree and Gpioro.o is
6 and 5, respectively.

Similar to the Daubechies wavelets, the analysis by the biorthogonal wavelets is
done with some overlapping based on the effective length of the filters, except for
Biorl.1, since it is the Haar wavelet.

2.3 3D Wavelet Transform

Multidimensional wavelet transform can be decomposed into a tensor product of
orthogonal subspaces. Consequently, the 3D scaling function and the 3D wavelet
functions can each be expressed as a product of three one-dimensional functions.
The analysis is carried out along the z—, y—, and z—dimension of the volumetric
data. Eight coefficients result from the one level analysis. One coefficient represents
a volume approximation of the input data. The information which is missed in the
approximation is distributed in the other 7 volume detail coefficients. Fig. 4 shows
a one level 3D analysis done as three stand-alone 1D transforms.

The 3D dyadic scaling function ¢ and wavelet functions %, i = 1,2,..7, can be
expressed as follows:

—22¢<x M>¢<
= 2% y(z — 279k)é(y — 279 )p(z — 27 m)
—22¢<w—2%W(y—z-jzw(z—z—jm)
= 2% y(z — 29 k)y — 290)(z — 279 m)

)

(b]{klm}(if Y,z
g{klm}(x Y,z
j{kzlm}(w Y,z
{klm}<I Y,z

g{klm}<$ Y,z

(
(
(

2)
2)
2)
z) =
)=22(x—2jm¢@—2ﬁ0¢@—2ﬁm)
z) =
z) =
)

j {k: i\, Y, 2) = 2 2 ’QZ)(I‘ k’)Qb(y - 2_Jl)¢(z —277m 8
] {k: lym} r,Y,2) = 2 > ¢(x k?)¢(y - 2_jl)1/}<z - 2_jm) 9
] {klm} T, Y,%2) = 2 2 (.CL' -2 Jk)w< - 27”)1&(2 - 27jm) (10

Using Eqgs. 3 to 10 the 3D analysis gives the following 8 subbands:

Aj tkgmy = (f(z,y,2), ¢j,{k,l,m}(Iayaz)>u
;‘,{k,l,m} = <f($’y7 z), ¢;,{k,l,m} (%% Z)>
j € ZN{k,l,m} € 73,
1=1,..7
(12)

In Eq. 12 A, is the low-pass subband at resolution level j and D; is the high-pass
subband 7 at resolution level j. For the fast 3D wavelet analysis only the low-pass
subbands A; (xi1my.J € Z,{k,l,m} € 7?2 are used for further decomposition at lower
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resolution levels. Therefore, it requires only O(n) computations [8]. The subband
A is generated applying the scaling function ¢ to all the three dimensions of the
data. So it represents the approximation in all axes. It can be used to replace the
original data if no relevant changes occur. The subbands D', D?, D% and D7 are
the result of applying the wavelet function ) on the z-axis. So all of them contain
information about the possible changes along the z-axis. Therefore, information
about vertical edges can be easily obtained from such subbands. The subbands
D?, D3, DS and D7 and the subbands D* D5 D% and D7 can be explained in
the same way as gradient information along the y-axis and z-axis, respectively. If
the z-axis represents the time dimension, then the differences can be interpreted as
a temporal change of illumination. Because movement means a change in spatial
domains that follows the temporal change we think that the movement should be
represented with the subband D7.

Figure 4: 3D Wavelet analysis as three one-dimensional transforms.

2.4 The 3D Wavelet-based Algorithm

In [15] a 3D wavelet-based algorithm for the detection of moving objects in a traffic
surveillance video was proposed. The 3D algorithm has the advantage of considering
the relevant spatial as well as temporal information of the movement. A movement in
time sequence images is a three-dimensional change, two spatial dimensions and the
time. Under this assumption, the detection of the moving objects is the answer to
the question where and when there is a change in the local and temporal information.

The algorithm benefits from the multiresolution characteristics of the wavelet
analysis. The analysis of an image sequence is done in different resolution levels.
This speeds up the processing and improves the performance of the segmentation. In
recent years multiresolution representation of images has got significant attention.
But it has not been widely used for segmentation of time sequence images.

Moving object detection is performed by creating a mask from a group of frames
which represents the regions of interest (ROI), where the moving objects supposed
to be. The number of frames in a group depends on the level of the wavelet analysis.
The proposed algorithm consists of three parts as shown in Fig. 5. It allows to derive
a motion-based segmentation for any frame of the scene. In the first part, the 3D
wavelet transform is used for the segmentation of the image sequence and produces
a primary extraction of the ROI. The second part is a conventional procedure to
improve the segmentation and to provide binary masks for the ROI. The final part
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is a projection of the created masks onto the original images to extract the ROI in
the original resolution. The first part is the only part that is affected by the choice
of the wavelet function, therefore this is the only part described here.

The first and main part of the algorithm is the analysis of the input image se-
quence by the 3D wavelet transform. The input sequence is divided into groups
of frames based on the analysis level. For the first level of the analysis only two
frames are analyzed at once. For further levels the number of frames is equal to
27 where j is the analysis level. As already shown in Fig. 4, the results of the 3D
wavelet transform are eight subbands, but only the subbands D* and D7 are used
for further processing. In general, the detail subbands have low intensity values.
The subband D* shows relative high intensity values where events have occurred
in time, while the subband D7 shows events in all three dimensions. The subband
D7 represents a great part of the motion information in changes of the spatial and
temporal domains. But its results show only the borders of the moving objects. It
has been found that combining D7 with other subbands improves the results. The
combination with the subband D* has been found to give the best results because
it represents the change between the approximations of successive frames. It shows
the area where the movement occurs clearly. However, any changes in the pixel
intensity between the processed frames also appear around the moving region so
that its results are very noisy and cannot be used alone to extract the region of mo-
tion. That is why a simple average is used for the combination with the subband D”.

The output of this step is a sequence of images with low intensities. The images
have their highest intensity values where the movements are occurring and values
near to zero otherwise. This step can be considered as a primary segmentation step
that needs enhancements.

3 Simulation Results

To investigate the algorithm for the extraction of ROI many data sets were used and
evaluated manually by a human operator. More statistical results and discussion
about the accuracy of the segmentation in comparison with other methods are given
in [15, 17].

In this paper the main objective is to compare the different wavelet types for the
proposed application. Simulation results from four data sets are presented. All the
data sets were captured using a stationary video camera. A summarized description
of the data sets is shown in Table 1. The data sets can be categorized into two groups
depending on the scene and the complexity of the movements. The first category,
including set1 and set2, represents a simple scene of a front view with small camera
observation angle to a street, where only a few cars are passing through. The second
category, including set3 and set4, represents a complex scene of a wide view of a
cross, where almost all types of moving traffic objects are present. Fig. 6 shows
examples for both scenes.

For this study, a software program has been developed to enable a flexible ex-
periment environment. The user is able to define the data set by giving the prefix
name of the images and specifying the number of images and the starting serial
number. It is assumed that all the images have the same prefix name and differ
only by a postfix serial number. If the images are coloured, the tool converts them
automatically into grey level images. All the wavelets available in the MATLAB
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Figure 5: Block diagram of the 3D wavelet-based segmentation algorithm.

wavelet toolbox can be chosen by the user to perform the analysis for any given
number of levels. The user can control the segmentation enhancement steps. He
can choose different thresholding methods and decide which of the smoothing and
dilation operations shall be performed and which filter setting should be chosen.
The main feature of this program is that its commands can be put together and
further modified to build the core of a toolbox for moving object detection in future
work.

Output of the algorithm is a sequence of images showing the extracted ROI in
the original resolution of the input images. For statistics and better presentations
the ROIs are represented by their smallest bounding boxes. Generally, very small
regions were neglected and considered as noise. The error is measured as false alarm
rate and missed object rate. The false alarm rate is the ratio of the boxes that con-
tain no objects relative to the total number of bounding boxes. The missed object
rate is computed as the ratio of objects that are not contained in any box relative
to the total number of moving objects. For the first data set two levels of wavelet
analysis were applied because of its size, while for the other data sets three levels
of analysis were applied. Tables 2 and 3 show the results of each data set at the
different levels using different wavelets in terms of false alarms and missing objects
rates.



Figure 6: Examples of the used data sets for testing and evaluating the image
sequence segmentation algorithms. (a) Example of the Adlershof data sets. (b)
Example of the Danziger data sets.

Table 1: Description of the data sets used for the evaluation of the video segmen-
tation algorithms.

Set  Prefix Seq. Frame/ Frames Image  No. of
No. name size  second size type objects
1 Adlershofl 12 25 288 x 352  Jpeg 13
2 Adlershof2 16 25 288 x 352  Jpeg 11
3 Danziger6 64 6 480 x 340 Bitmap 458
4 Danziger7 32 3 480 x 340 Bitmap 229

Figs. 7 and 8 show examples of an extracted ROI using different wavelets.
Generally, the areas of the ROI become larger than the moving objects as the analysis
level increases. This is due to the decrease in the temporal resolution. Fig. 7 shows
samples of the results of the first data set. The results show comparable detection of
the objects applying the Haar and biorthogonal wavelet, while for the DB4 wavelet
the accuracy of the algorithm is affected by the irregularity of the wavelets in terms
of increased false alarm rates. The results of the second data set emphasize the
effect of the wavelet features on the visual results, such as the function length, the
symmetry and the irregularity. Fig. 8(a) shows an image composed of two frames
and a boundary for the ROI done by hand. Fig. 8(b) shows that the detection by
the Haar wavelet is localized. However, there are sharp transitions between the ROI
and the background. In many applications a smooth transition is highly desired. In
Fig. 8(c) the results of the biorthogonal wavelets show that the detected object is
centred in the ROI, which can be explained by the biorthogonal wavelet symmetry
properties. In contrast, the results of the Daubechies wavelet as shown in Fig. 8(d)
are shifted to the left. Thus, we have a too early detection of moving objects due to
the wavelet function length of DB4 and its irregularity. The third and the fourth data
sets are used mainly for the statistical results since they represent long observations
with many moving objects. The results of both the Haar and biorthogonal wavelets
are comparable and superior to those obtained by the DB4. However, as the level
of analysis increases the rate of missed objects decreases for all the wavelet types.
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Table 2: False alarm rate for the different data sets.

Haar DB4 DB8 Biorl.3 Bior2.2

Set 1 Level 1| 14% 46% 41% 19% 19%
2 25%  69% 46% 35% 35%

Set 2 Level 1 8% 45% 50% 8% 8%
2 31% 67% 68% 31% 31%

3 31% 7%  66% 31% 31%

Set 3 Level 1 0% 10% 13% 9% 4%
2 5% 20% 18% 23% 13%

3 4% 31% 31% 13% 15%

Set 4 Level 1 3% 19% 26% 12% 6%
2 5% 40% 3% 26% 31%

3 1%  25% 1% 25% 31%

Table 3: Missed object rates for the different data sets.

Haar DB4 DB8 Biorl.3 Bior2.2

Set 1 Level 1 0% 0% 0% 0% 0%
2 0% 15% 0% 0% 0%

Set 2 Level 1 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0%

3 0% 27% 0% 0% 0%

Set 3 Level 1| 11% 13% 23% 9% 18%
2 2% 6% 12% 8% 8%

3 0% 9% 10% 3% 4%

Set 4 Level 1 3% 8% 16% 12% 13%
2 1% 2% 4% 7% 7%

3 0% 3% 13% 0% 7%

4 Discussion and Conclusion

Alg. Summery

The 3D wavelet based algorithm is reliable to detect objects entering a scene. The
proposed algorithm tends to detect the objects in groups, especially when they
move close together. This group detection depends on the number of frames that
are processed at a time and on the level of the analysis. The results illustrate exam-
ples of extracted ROI of all levels. A main feature of the multiresolution algorithm
is that the processing is done in a lower spatial resolution than that of the input
images. Therefore the computational complexity is reduced considerably. The 3D
wavelet transform utilizes temporal information of the motion as well as spatial
information. The information contained in the image sequences can be a subject
for approximation and differencing. Such processing has many advantages in video
transmission between different components of the monitoring system like camera,
processing unit, and terminals for further decision making.

Haar better for ROI detection
The algorithm is applied to the different image sequences using Daubechies and
biorthogonal wavelets to study the effect of the properties of the wavelet functions
on the analysis. The results show that the Haar wavelet provides good detection of
the moving object because of its localization property.
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The problem of long wavelets
The longer filters associated with the other wavelets lead to overlapping in the analy-
sis, which consequently makes the sharp edges be detected as wide events. Since
the localization of the event detection is the main concern the overlapping analysis

has to be considered as a disadvantage. It affects the segmentation by producing
enlarged ROIs.

Bior is better than DB because..
The symmetry property of biorthogonal wavelet is also exploited for the detection.
It improves the rate of missed objects as they were centred in the extracted ROI.
The results obtained from the DB4 wavelets are inferior compared to both previ-
ous wavelets, because the irregularity of the wavelet affects the detection of moving

Figure 7: Extraction of ROI and the corresponding bounding boxes for the data set
Adlershof1. (a) and (b) Haar wavelet. (c) and (d) Biorl.3. (d) and (f) DBA4.
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Figure 8: Localization of the extracted ROI. (a) Motion in two successive frames
from the data set Adlershof2. The ROI using (b) Haar wavelet. (c) Biorl.3. (d)
DBA4.

objects to a far extent. “Too” many pixels from the right areas to the pixels that
are processed currently are taken into consideration by the analysis. This leads to a
misestimation of these parts. As a result the extracted regions become bigger than
the moving objects and are shifted to the left. This is clearly seen by the results of
the data set Adlershof2 because the objects are moving from the right end of the
scene to the left end.

Complexity
Moreover, the complexity of the computation increases as the length of the filters
increases.

Overlapping is good j comp.
In other applications, such as lossy video compression, the overlapping analysis can
be counted as an advantage. The information content in a certain segment of the
video will be copied in various coefficients. Discarding some of the coefficients for
the purpose of compression will not lead to a loss of information, since they are
represented somewhere else. Thus, as the overlapping increases, high compression
rates with better reconstruction of the video can be achieved.

HW Implemenattion

Due to the simplicity of the Haar wavelets, parts of the algorithm were implemented
on specialized hardware which can be included in a camera [16].
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