
Efficient Permutation-Based Range-Join Algorithms on N -Dimensional Meshes
Using Data-Shifting (Preliminary version)

Shao Dong Chen Hong Shen Rodney Topor

School of Computing and Information Technology
Griffith University

Nathan, Queensland 4111, AUSTRALIA
Email: fschen,hong,rwtgcit.gu.edu.au

Abstract

In this paper, we present two efficient parallel algorithms
for computing a non-equijoin, range-join, of two relations
on N -dimensional mesh-connected computers. The pro-
posed algorithms uses the data-shifting approach to effec-
tively permute every sorted subset of relation S to each pro-
cessor in turn recursively in dimensions from low to high,
where it is joined with the local subset of relation R.

1 Introduction

With the increases in database size and query complex-
ity, highly parallel database systems supported by general-
purpose parallel architectures have become the trend for
future database systems [5]. As an important and time-
consuming operation in relational database systems, join
has attracted a significant amount of research effort for de-
signing efficient parallel algorithms [2, 9, 11]. In this re-
search, we generalize the conventional equijoin and band-
join operations [6] to range-join operations, and design
efficient parallel range-join algorithms on N -dimensional
mesh-connected computers.

For two given constants e1 and e2 with 0 � e1 � e2,
we define the range-join of two relations R (inner rela-
tion) and S (outer relation) on attribute A from R and B

from S, denoted by R ./
e2

e1
S, to be the relation T ob-

tained by concatenating all tuples r in R and s in S such
that e1 � jr:A� s:Bj � e2 [12]. Range-join is an impor-
tant operation in relational database systems and appears
frequently in practice, especially in the queries requiring
joins over continuous real world domains such as time and
distance. For example, a query for “finding all customers
whose account balance differs 100 to 1000 dollars from that
of some customer” requires a range-join. Moreover, as a
generalization of band-join operations, the range-join algo-
rithms can be directly used to compute band-joins as well
as equijoins.

It has been shown that the hash-based join algorithms are
superior to other algorithms for equi-join operations [11].

However, as the join condition of the range-joins in-
volves range comparisons rather than equalities, hash-
based join algorithms are unsuitable for range-join oper-
ations [6] because the conventional hash functions (e.g.
modulo-division, folding, radix-transformation, and mid-
square methods) will inherently destroy the ordering of
the tuples. In contrast, permutation-based join algorithms,
which is an efficient implementation of parallel nested-
loops join algorithms, have been shown to be effective for
computing range-joins on hypercube computers [12] and
torus computers [3]. Moreover, unlike most of hash-based
join algorithms which are vulnerable to data skew and will
result in an unacceptable performance for extremely skewed
data, the permutation-based join algorithms are immune to
any data skew.

In general, with the assumption that each relation is dis-
tributed evenly across all processors in the mesh initially,
permutation-based algorithms sort the two local subsets of
both relations in each processor, then permute every sub-
set of S to every processor in turn, where it is joined with
the local subset of R at that processor. The local range-join
operation in each processor for two sorted subsets is im-
plemented by a sequential sort-merge algorithm presented
in [4].

In this paper, we present an effective approach for effi-
ciently permuting all subsets of S. Our data-shifting ap-
proach permutes the data recursively from lower dimen-
sions to higher dimensions. It can be applied to meshes
with different storage capacity which results in two dif-
ferent data permutation join algorithms. The Basic Data-
Shifting Join (BASHJ) algorithm can minimize the number
of buffered subsets which are needed to be stored temporar-
ily at a processor during the permutation, but it requires a
large number of data transmissions due to the low paral-
lelism. Conversely, the Buffered Shifting Join (BUSHJ) al-
gorithm can achieve a high parallelism and minimize the
number of data transmissions, but it needs to store a large
number of buffered subsets in each processor.

���������	
��������������������������������������
������������

��	������
����������������

���� !�"�#���$��%���&�!���������



2 N -Dimensional Meshes

Meshes are an important class of parallel interconnec-
tion networks which have been well studied in the litera-
ture [10]. In parallel database design, mesh-connected par-
allel computers are characterized by the shared-nothing ar-
chitecture [13]. There are several commercially available
mesh-connected computers, such as the recent Intel Paragon
XP/S [7] whose processors are connected by meshes in-
stead of hypercubes which were used in the earlier Intel
iPSC/860.

(1,2,3)

(1,1,1) (1,1,2) (1,1,3) (1,1,4)

(1,2,1) (1,2,2) (1,2,4)

(1,3,1) (1,3,2) (1,3,3) (1,3,4)

(1,4,1) (1,4,2) (1,4,3) (1,4,4)

(2,1,1) (2,1,2) (2,1,3) (2,1,4)

(2,2,1) (2,2,2) (2,2,3) (2,2,4)

(2,3,1) (2,3,2) (2,3,3) (2,3,4)

(2,4,1) (2,4,2) (2,4,3) (2,4,4)

(3,1,1) (3,1,2) (3,1,3) (3,1,4)

(3,2,1) (3,2,2) (3,2,3) (3,2,4)

(3,3,1) (3,3,2) (3,3,3) (3,3,4)

(3,4,1) (3,4,2) (3,4,3) (3,4,4)

(4,1,1)

(4,2,1)

(4,3,1)

(4,4,1) (4,4,2)

(4,3,2)

(4,2,2)

(4,1,2) (4,1,3)

(4,2,3)

(4,3,3)

(4,4,3)

(4,1,4)

(4,2,4)

(4,3,4)

(4,4,4)

3

2
1

Figure 1. A 4� 4� 4 mesh

An N -D mesh has a simple recursive structure: It can
be constructed from DN different (N � 1)-D submeshes
by simply connecting each processor in the j-th (N � 1)-
D submesh to the corresponding processor in the (j + 1)-
th submesh with an edge in dimension N , such that their
indices differ by one in theN -th dimension, where 1 � j <
DN .

We denote an N -D mesh by M and one of its k-D
submeshes by Mk which has (D1 � � � � � Dk) proces-
sors, where 0 � k � N . For any Mk, there is a fixed
listL = [ik+1; : : : ; iN ] which determines the indices ofMk

in the higher dimensions k + 1 to N , where 1 � ij � Dj

for k + 1 � j � N . We call L the determinant of Mk.
The determinant of any Mk has N � k elements. When L
is empty, MN is M , and when L has N elements, M0

contains only one processor. For a k-D submesh Mk,
we further denote its j-th (k � 1)-D submesh by M

j
k�1,

where 1 � j � Dk.

Example 1 The 3-D mesh in Figure 1 can be denoted by
M3 or simply by M . It has 4 � 4 � 4 = 64 processors
and four 2-D submeshes M1

2 ;M
2
2 ;M

3
2 and M4

2 , each be-
ing a grid. The determinant of M is empty, [], while the
determinant of each M i

2 is [i] (i = 1; : : : ; 4).
Each 2-D submesh M i

2 contains four 1-D submeshes
M1

1 ;M
2
1 ;M

3
1 and M4

1 , each being a linear array. The
determinant of its j-th 1-D submesh is j : [i] = [j; i]
(j = 1; : : : ; 4), where operation : means to prefix an el-
ement l into a list L. For example, the determinant of the
second 1-D submesh of the 2-D submesh M3

2 is [2; 3].
Similarly, each 1-D submesh M

j
1 also contains four 0-

D submeshes M1
0 ;M

2
0 ;M

3
0 and M4

0 , each being a single
processor. The determinant of its t-th 0-D submesh is

t : [j; i] = [t; j; i] (t = 1; : : : ; 4). At this stage, the de-
terminant of a 0-D submesh is the same as the index of its
single processor. �

A large number of parallel algorithms have been de-
signed for meshes, including sorting, routing and searching.
However, very little research has been done on the design of
join algorithms on meshes. Simple nested-loops and sort-
merge algorithms on meshes are briefly mentioned in [8]
when a high level comparison between meshes and hyper-
cubes is presented, but the author of [8] doesn’t present
these two algorithms in detail and doesn’t demonstrate how
to implement them. In this paper, we present and ana-
lyze new permutation-based range-join algorithms on N -
dimensional meshes using data-shifting.

3 Analytical Model and Permutation-Based
Join

We adopt the analytical model used in [2] and hence
assume that both relations are initially distributed evenly
across all processors in the computer whose total available
memory is larger than the size of inner relation R. Data are
accessed and transferred in blocks. To simplify the analy-
sis, we don’t consider the join-product skew [15] in the data,
and assume that the processing time of a join operation de-
pends only on the number of tuples processed.

When analyzing the algorithms, we consider three ma-
jor costs associated with the join operations, namely I/O,
communication and computational costs. The I/O costs are
required to read/write data from/to the disks, while the com-
munication costs are required to transfer data between dif-
ferent processors across an interconnection network. The
computational costs are required for the operations which
are performed in main memory. There are many different
in-memory operations and it is difficult, if not impossible, to
consider all of them. Thus, we focus on only three main in-
memory operations: comparison, hashing and probing op-
erations. We don’t consider the other in-memory operations
in the algorithm analysis, such as moving a tuple whose cost
is insignificant and negligible, and concatenating two tuples
whose cost has been included in the output cost since the
number of concatenation operations is proportional to the
number of resulting tuples generated. The notations used to
describe and analyze the algorithms are follows:

� jRj; jSj: number of tuples in relations R and S;

� BR; BS : number of blocks of relations R and S
(BR � BS);

� Ri1;::: ;iN ; Si1;::: ;iN : the subsets of R and S in proces-
sor Pi1;::: ;iN ;

� JS: join selective factor, defined by jR./Sj
jRj�jSj ;

� p: number of processors;

� M : number of blocks of available memory in a pro-
cessor, (BR � M � p);

���������	
��������������������������������������
������������

��	������
����������������

���� !�"�#���$��%���&�!���������



� Tio: time for reading/writing one block of data from/to
the disk;

� Tt: time for transferring a block of data between two
neighboring processors;

� Tc: time for comparing two values in memory;

Permutation-based join consists of the following two
phases:

1. Sorting Local Subsets: Every processor simultane-
ously reads its initial subset of relationS, sorts it on the
join attribute sequentially, and then applies the same
process to relation R.

2. Permute and Join: Every processor simultaneously
computes the local range-join for its two local subsets
of R and S, and then repeatedly reads the current sub-
set of S from a neighbor and performs a local range-
join operation on this arriving subset, until all subsets
of S have visited each processor exactly once.

Clearly, permutation-based join computes the whole join by
computing totally p2 subjoins independently, that is,

R ./ S =

p�1[

i=0

p�1[

j=0

(Ri ./ Sj):

The purpose of sorting subsets in the first phase is to
make the local range-join operations more efficient. When
two operand subsets are stored, we can perform these lo-
cal range-join operations by using our sequential algorithm
which has been shown to be more efficient than other possi-
ble algorithms for computing range-joins [4]. Thus, locally
sorting the initial subsets in each processor only once can
benefit all p2 subsequent subjoin operations, and hence the
redundant CPU processing required in the previous nested-
loops algorithm can be reduced significantly.

The first phase could be implemented by the following
statements:

for all processors Pi1;::: ;iN do in parallel
Read Si1;::: ;iN from disk to memory;
Sort Si1;::: ;iN using a sequential external sorting algorithm;
Write sorted Si1;::: ;iN back to disk;
Read Ri1;::: ;iN from disk to memory;
Sort Ri1;::: ;iN using a sequential internal sorting algorithm;
Read sorted Si1;::: ;iN from disk to memory

The total cost Tini(R;S; p) of phase 1 is

Tini(R;S; p) = Tio �
BR + BS + 2BS logM BS=p

p

+Tc �
BR logBR=p+BS logBS=p

p
: (1)

In addition, we will use “subset(s)” to mean “the subset(s)
of relation S” hereafter when no confusion could occur.

In the second phase, the local range-join operation for
one sorted subset ofR and one sorted subset of S is realized
by a sequential sort-merge range-join algorithm [1], which
is based on the standard sort-merge join algorithm [14] for
equi-join, with additional backup to inspect previously con-
sidered tuples: For each tuple s, it first joins every tuple r
such that r:A+ e1 � s:B � r:A+ e2, and then joins every
tuple r such that r:A� e2 � s:B � r:A� e1. The result tu-
ples are stored in the local disk of each processor as they are
produced, one block at a time. The running time of this al-
gorithm is denoted by Tlj(R=p; S=p). If another sequential
local range-join algorithm is used, Tlj(R=p; S=p) is simply
replaced by that algorithm’s running time.

Thus, the remaining problem in the second phase is how
to efficiently permute the subsets of S to all processors. De-
spite the simplicity of the problem, the task of exploring ef-
ficient data permutation approaches for an N -D mesh is not
an easy task. In the following section we present a permu-
tation algorithm based on data-shifting.

4 Basic Data-Shifting Join

Description

We start with a simple algorithm for permuting (and join-
ing) the subsets of S on an 1-D mesh – a linear array with
D1 processors. This algorithm works like pulsing water
through a pipe between its two ends in turn, as suggested
in Figure 2. Thus, it consists of two steps, each with D1�1

P1 P P P2 3 4

S S S4

S

SS
S

S
S S

S
S
S S
S S

S S S2 3 4

S1

1SS1

S1

S1

S1 S1

S1

S1

S S2

S2 S3

1 forward-shift

4 4 4 4

4443

4432

321

backward-shift

initial stage

restore the initial subsets

Figure 2. Permuting data in a linear array

iterations:

Forward Shift: Each processor Pj (j = 2; : : : ; D1) re-
peatedly reads a subset from its left neighbor Pj�1,
and performs a join on this newly arrived subset.

Backward Shift: Each processor Pj (j = 1; : : : ; D1 � 1)
repeatedly reads a subset from its right neighborPj+1,
and performs a join on this newly arrived subset.

Since every processor replaces its current subset with the
subset read from its neighbor, its current subset is S1 af-
ter forward-shift. Thus, we must be able to restore their
original subsets to perform backward-shift. To do so, ev-
ery processor makes a temporary copy of its original subset
before forward-shift, and restores the original subset back
from this copy after forward-shift. This temporary subset is
called a buffered subset. The correctness of the algorithm
is obvious since every subset is visited and joined in each
processor exactly once.

���������	
��������������������������������������
������������

��	������
����������������

���� !�"�#���$��%���&�!���������



This data-shifting algorithm for linear arrays can be gen-
eralized for higher dimensional meshes based on their re-
cursive structure, and works in a recursive fashion: When
permuting the subsets on a k-D submesh Mk with deter-
minant L, if k = 0, the single processor in Mk performs
a local join operation on its current subset; if k > 0, the
processors in Mk execute the following six steps:

1.BASHJ (k; L):

2. All processors permute the subsets simultaneously on
all (k � 1)-D submeshes, each in dimensions from 0
to k � 1 recursively.

3. Every processor Pi1;::: ;iN copies its current sub-
set Si1;::: ;iN to buffered subset Sk

i1;::: ;iN
temporarily,

where Sk
i1;::: ;iN

is stored in the local memory first un-
til the local memory is exhausted, then is stored in the
local disk.

4. All processors perform a forward-shift in dimension k
with Dk � 1 iterations, where the local join operation
in the algorithm for linear arrays is replaced by a re-
cursive permutation in the lower dimensions from 0
to k � 1.

5. Every processor Pi1;::: ;iN restores Sk
i1;::: ;iN

to be
Si1;::: ;iN .

6. All processors perform a backward-shift in dimen-
sion k withDk�1 iterations, where the local join oper-
ation in the algorithm for linear arrays is replaced by a
recursive permutation in the lower dimensions from 0
to k � 1.

7. Every processor Pi1;::: ;iN restores Sk
i1;::: ;iN

to be
Si1;::: ;iN .

Thus, a subset Si1;::: ;iN is backed up once in Step 2 and re-
stored twice in Steps 4 and 6, one for performing backward-
shift, and one for permuting in the higher dimension k + 1.
During the i-th iteration of forward-shift, every processor
in each M j

k�1 (j = i + 1; : : : ; Dk) reads the subset of its

neighbor in M j�1
k�1 along the edge in dimension k to replace

its own one, and then permutes the (new) subset onM j

k�1 in
dimensions from 0 to k�1 recursively. Similarly, during the
i-th iteration of backward-shift, every processor in M j

k�1

(j = 1 : : : ; Dk�i) reads the subset of its neighbor inM j+1
k�1

along the edge in dimension k, and then permutes the (new)
subset on M j

k�1 in dimensions from 0 to k � 1 recursively.

Example 2 Consider a simplified example in which we
permute (and join) four subsets of S denoted by inte-
gers 1,2,3 and 4 on a 2 � 2 mesh. In dimension k, let
store(k), restore(k), fs(k) and bs(k) denote operations
of storing and restoring a subset, and one-step shifting a
subset forwards and backwards, respectively. The whole
process is illustrated in Figure 3, where the rectangles rep-
resent the processors and the integers inside them represent
the subsets of S. When a processor performs a local join
operation, its corresponding rectangle will be grayed. �

1 (1) 2 (2)

3 (3) 4 (4)

1 (1)

3 (3) 3 (4)

1 (2) 1 (1) 2 (2)

3 (3) 4 (4)

1 (1) 2 (2)

3 (3) 4 (4)

1 (1) 2 (2)

3 (3) 4 (4)

1 (1) 2 (2)

1
(3,1)

2
(4,2)

1 (1) 2 (2)

1
(3,1)

2
(4,2)

1 (1) 2 (2)

3 (3) 4 (4)

3 (1) 4 (2)

3 (1) 4 (2)3 (1) 4 (2)3 (1) 4 (2)

1 (1) 2 (2)

3 (3) 4 (4)3 (1) 4 (2)

3
(1,3)

4
(2,4)

3 (1) 4 (2)

3
(1,3)

4
(2,4)

3 (1) 4 (2)

3
(1,3)

4
(2,4)

a. initial c. store (1) d. fs (1) e. restore (1) f. bs (1) g. restore (1)

1 (1) 2 (2)

2 (4)1 (3)

1 (1) 2 (2)

2 (4)

2 (1) 2 (2)

4 (4)4 (3)

1 (1) 2 (2)

2
(4,2) 1 (3)

1
(3,1)

1 (1) 2 (2)

1
(3,1)

1
(4,2)

1 (1) 2 (2)

2
(3,1)

2
(4,2)

4 (4)3 (3)

3 (1) 4 (2)
3

(1,3)
3

(2,4)
4

(1,3)
4

(4,2)

x. restore (2)

h. store (2)

i. fs (2)k. store (1)l. fs (1)m. restore (1)n. bs (1)o. restore (1)p. restore (2)

q. bs (2) r. local joins s. store (1) t. fs (1) u. restore (1) v. bs (1) w. restore (1)

BASHJ (1,[i]) i=1,2

BASHJ (1,[i]) i=2

BASHJ (1,[i]) i=1

b. local joins

j. local joins

1 2

3 4

1 2

3 4

Figure 3. Permuting S on a 2� 2 mesh

Analysis

It is not difficult to verify that every subset of S visits
every different k-D submesh exactly once for 0 � k � N ,
and hence the algorithm can correctly compute R ./e2e1 S.

During the permutation on a k-D submesh, since each
processor keeps one extract temporary copy of its current
subset of S for each dimension i (i = 1; : : : ; k), it needs to
keep at most k + 1 subsets of S including the current one
in memory. Remember that each processor has M blocks
of memory in total, and it already uses MR=p blocks for
the local subset of R and needs to reserve one block for
the resulting tuples. Thus, the available free memory for
the subsets of S is Mf = M � BR=p � 1, and there is
maxf0;Mf � (k+ 1)BS=pg subsets which requires 3 disk
I/O operations: one for storing them to disk (Step 2) and
the other two for restoring them back to memory (Steps 4
and 6). Thus, this disk I/O cost is 3Tio �maxf0;Mf � (k+
1)BS=pg.

There are 2Dk � 2 iterations in forward- and backward-
shift in Steps 3 and 5, each consisting of one parallel data
transmission (which requires Tt �BS=p time) and one recur-
sive call. With another recursive call in Step 1, the BASHJ
algorithm has totally 2Dk � 1 recursive calls. Hence, the
running time T (k) for algorithm BASHJ on a k-D submesh
is given in the recurrence relation

T (k) =

8>><
>>:

T (k � 1)� (2Dk � 1)+
Tt � (Dk � 1)2BS

p
+

Tio � 3maxf0;Mf �
(k+1)BS

p
g; k > 0

Tlj (R=p; S=p); k = 0:

To further simplify the analysis, we assume that Mf =
BS=p, that is, only one subset of S – the current one – can
fit in the memory. We then resolve the above recurrent re-
lation and have the total cost Tbashj of the whole BASHJ

���������	
��������������������������������������
������������

��	������
����������������

���� !�"�#���$��%���&�!���������



algorithm in dimension N as follows:

Tbashj(R;S) = T (N ) =

Tt �
BS

p
�

� NY
i=1

(2Di � 1)� 1

�
+

Tlj(R=p; S=p)�
NY
i=1

(2Di � 1) +

3Tio �
BS

p

�
1 +

N�1X
i=1

NY
j=i+1

(2Dj � 1)

�
: (2)

5. Buffered Data-Shifting Join

Description

From the preceding analysis, we know that the paral-
lelism of the previous data-shifting algorithm does not ap-
pear to be very attractive. In particular, during the j-
th iteration of forward-shift, all processors in the (k �

1)-D submeshes M1
k�1; : : : ;M

j
k�1 are idle because they

don’t receive any (new) subsets from their neighbors in
other (k � 1)-D submeshes and hence they cannot per-
form any local join operation at all. Similarly, during
the j-th iteration of backward-shift, all processors in sub-
meshes M j+1

k�1; : : : ;M
Dk
k�1 are idle.

To obtain better parallelism, we propose a Buffered
Data-Shifting Join (BUSHJ) algorithm that eliminates the
recursive calls inside forward- and backward-shifts by al-
lowing the processors to keep every arriving subset. In par-
ticular, if k = 0, processor Pi1;::: ;iN in Mk performs a local
join operation on its subset as in the BASHJ, but also stores
this subset into a sequence Qi1;::: ;iN of subsets of S. Ini-
tially,Qi1;::: ;iN is empty.

If k > 0, the BUSHJ permutes the subsets on all (k�1)-
D submeshes recursively in dimension from 0 to k � 1
as the first step of the BASHJ, but it allows every pro-
cessor Pi1;::: ;iN to store every arriving subset to Qi1;::: ;iN

during the permutation. Hence when this step terminates,
Pi1;::: ;iN has stored all (D1 � � � � � Dk�1) subsets in its
(k � 1)-D submesh into Qi1;::: ;iN , whose t-th element,
denoted by Qi1;::: ;iN [t], is the t-th subset appended into.
With Qi1;::: ;iN , Pi1;::: ;iN doesn’t need to make a temporary
copy of current subset as in the second step of BASHJ. The
BUSHJ algorithm now starts a loop with (D1�� � ��Dk�1)
steps. During the t-th step for 1 � t � D1 � � � � � Dk�1,
the t-th subset in Qi1;::: ;iN is transferred in forward- and
backward-shift in turn as in the previous data-shifting algo-
rithm, but in each iteration, the recursive call in the previous
algorithm is replaced by a local join operation for the arriv-
ing subset and an operation for storing this arriving subset.

Example 3 We consider the same problem in Example 2,
and solve it by using the BUSHJ algorithm now, as illus-
trated in Figure 4. We use the same notation and represen-
tations which are used in Example 2. �

1 (1)

3 (3) 3 (4)

1 (2)1 (1) 2 (2)

3 (3) 4 (4)

c. store (1)b. local joins

1 (1) 2 (2)

3 (3) 4 (4)

1 (1)

3 (3)

1 (1)

3 (3)

2
(1,2)

4
(3,4)

i. store (1)

(1,2)

(3,4)

1

1

k. fs (2)

(1,2)

(3,4)

1

3

l. restore (2)

(1,2)

(3,4)

n. restore (2)

4

2
(1,2)

(3,4)
4

2

p. restore (2)

a. initial d. restore (1) e. fs (1) f. store (1) g. restore (1)

2 (1)

4 (3)

h. bs (1)

BUSHJ (1,[i]) i=1,2

(1,2)

(3,4)

1

3

j. restore (2)

(1,2)

(3,4)
3

m. bs (2)

3
(1,2)

(3,4)

2

o. fs (2)

2
(1,2)

(3,4)
4

4

q. bs (2)

t=1t=2

1 2

3 4

1
(2,1)

3
(4,3)

(2,1)

(4,3)

2

4
(2,1)

(4,3)

2

4

(2,1)

(4,3)

2

2
(2,1)

(4,3)

2

4
(2,1)

(4,3)
3

1
(2,1)

(4,3)
3

1

1 2

3 4

(2,1)

(4,3)

2

4

(2,1)

(4,3)

2

4
(2,1)

(4,3)
4

4
(2,1)

(4,3)

1

1
(2,1)

(4,3)
3

3

Figure 4. BUSHJ(2; []): Permuting S on a 2� 2
mesh

Analysis

As the BASHJ algorithm, the BUSHJ algorithm can per-
mute every subset of S to every processor exactly once, and
hence it is also correct. However, unlike the BASHJ algo-
rithm which requires each processor to store at most N + 1
subsets during the permutation, the BUSHJ algorithm re-
quires each processor to store all subsets which are initially
stored the (N � 1)-D submesh where the processor is in.
That is, each processor needs to store (D1 � � � � � DN�1)
subsets during the permutation, and hence more disk I/O
operations are required to shuffle the overflow subsets of S
in and out of memory several times. On the other hand, the
parallelism of the BUSHJ is higher than that of the BASHJ,
and it requires fewer data transmissions and local join oper-
ations.

To simplify the analysis, we also make the assumption
that only one subset of S can fit in the free memory at a
time (Mf = BS=p). Thus, both Steps 2 and 4 require one
disk I/O operation. Steps 3 and 5 are two loops with Dk�1
iterations, each consisting of one parallel data transmis-
sion (which requires Tt �BS=p time), a local join operation
(which requires Tlj(R=p; S=p) time), and a disk I/O oper-
ation (which requires Tio � BS=p time). Moreover, Steps 2
to 5 are repeated D1 � � � �Dk�1 times, each for a subset
in Qi1;::: ;iN . Hence, the running time T (k) for the BUSHJ
algorithm on a k-D submesh is given in the recurrence rela-
tion

T (k) =

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

T (k � 1) +
Qk�1

i=1 Di��
Tio �

2BS
p

+ Tt � (Dk � 1)2BS
p

+

Tlj(R=p; S=p)� (2Dk � 2)

�
; k = N

T (k � 1) +
Qk�1

i=1 Di��
Tio �Dk

2BS
p

+ Tt � (Dk � 1)2BS
p

+

Tlj(R=p; S=p)� (2Dk � 2)

�
; 0 < k < N

Tlj (R=p; S=p) + Tio �
BS
p
; k = 0

The above equation clearly indicates that we don’t need
the cost of copying D1 � � � � �DN�1 subsets to disk when

���������	
��������������������������������������
������������

��	������
����������������

���� !�"�#���$��%���&�!���������



permuting in dimension N . We solve the above recurrent
relation and have the total cost Tbushj of the whole BUSHJ
algorithm on an N -D mesh as follows:

Tbushj(R;S) = T (N )

= Tt �
2BS

p

NX
i=1

�
(Di � 1)

i�1Y
j=1

Dj

�
+

Tlj(R=p; S=p)�

�
1 +

NX
i=1

((2Di � 2)
i�1Y
j=1

Dj)

�
+

Tio �
BS

p

�
1 +

N�1X
i=1

(2Di

i�1Y
j=1

Dj) + 2
N�1Y
j=1

Dj

�
:(3)

Note that, although the number of disk I/O operations of
the BUSHJ (which is 9) is fewer than that of the BASHJ
(which is 12) due to the small D1 and D2 in this example,
the BUSHJ algorithm normally requires much more disk
I/O operations than the BASHJ algorithm, but much fewer
parallel data transmissions and local join operations.

6 Concluding Remarks

In this paper, we have presented two parallel algorithms
to efficiently compute the range-joins on an N -D mesh.
Both algorithms use the data-shifting approach in which
all the subsets of both relations are sorted and each sub-
set of S is then permuted to every processor in turn, where
it is joined with the local subset of R at that processor. This
approach minimizes the communication costs and can be
applied to a system with either large or limited storage ca-
pability.

It is worthwhile to note that, as the range-join opera-
tion is the generalization of the conventional equi-join and
band-join operations, all the proposed range-join algorithms
can be used to compute equi-join and band-join opera-
tions. More importantly, all proposed algorithms are gen-
eral methods for data permutation on an N -D mesh and can
be applied for solving any problem whose main communi-
cation pattern is data permutation.

Future research tasks are to implement the proposed al-
gorithm on a suitable parallel machine for further perfor-
mance evaluation, and to develop efficient parallel algo-
rithms on other parallel computer architectures and for other
database operations.

References

[1] S. D. Chen, H. Shen, and R. W. Topor. Efficient paral-
lel permutation-based range-join algorithms on mesh-
connected computers. Technical Report CIT-94-19,
CIT, Griffith University, Australia, Aug. 1994.

[2] S. D. Chen, H. Shen, and R. W. Topor. An im-
proved hash-based join algorithm in the presence of
double skew on a hypercube computer. In Proc.

of the 17th Australia Computer Science Conference,
Christchurch, New Zealand, Jan. 1994.

[3] S. D. Chen, H. Shen, and R. W. Topor. Permutation-
based parallel range-join algorithm on N -dimensional
torus computers. Information Processing Letters,
52(10):35–8, Oct. 1994.

[4] S. D. Chen, H. Shen, and R. W. Topor. Efficient
parallel permutation-based range-join algorithms on
mesh-connected computers. In Proc. of the 1995
Asian Computing Science Conference, pages 225–38,
Pathumthani, Thailand, Dec. 1995. Springer-Verlag.

[5] D. J. DeWitt and J. Gray. Parallel database sys-
tems: The future of high performance database sys-
tems. Communication of ACM, 35(6):85–98, 1992.

[6] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An
evaluation of Non-Equijoin algorithms. In Proc. of the
17th VLDB, Barcelona, Spain, Sept. 1991.

[7] Intel Corporation. Intel Corporation literature, Nov.
1991.

[8] H. Jhang. Performance comparison of join on hyper-
cube and mesh. In 1992 ACM Computer Science Con-
ference, pages 243–50, Kansas City, MO, USA, 1992.

[9] M. Kitsuregawa and Y. Ogawa. Bucket spreading par-
allel hash: A new robust, parallel hash join method
for data skew in the super database computer (SDC).
In Proc. of the 16th VLDB, pages 210–221, Brisbane,
Australia, 1990.

[10] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays Trees Hypercubes. Morgan
Kaufmann Publishers, San Mateo, CA, 1992.

[11] D. Schneider and D. DeWitt. A performance eval-
uation of four parallel join algorithms in a shared-
nothing multiprocessor environment. ACM SIGMOD
Record, 18(2):110–121, June 1989.

[12] H. Shen. An improved selection-based parallel range-
join algorithm in hypercubes. In Proc. of the 20th EU-
ROMICRO Conference, pages 65–72, Liverpool, UK,
Sept. 1994.

[13] M. Stonebraker. The case for shared nothing.
Database Engineering, 9(1), 1986.

[14] J. D. Ullman. Principles of Database and Knowledge
Base Systems, volume 2. Computer Science Press,
1989.

[15] C. B. Walton, A. G. Dale, and R. M. Jenevein. A tax-
onomy and performance model of data skew effects in
parallel joins. In Proc. of the 17th VLDB, Barcelona,
Spain, Sept. 1991.

���������	
��������������������������������������
������������

��	������
����������������

���� !�"�#���$��%���&�!���������


