
Flow Generation for IP/ATM
Label-Switched Routing over Random Networks

Aaron Harwood and Hong Shen
School of Computing and Information Technology

Griffith University
Nathan, QLD 4111, AUSTRALIA

Email: fA.Harwood, H.Sheng@cit.gu.edu.au

Abstract

We address the problem of generating ATM labels which
facilitates IP packet flow through the network. We define the
virtual flow topology and provide a stochastic algorithm,
GFLOW , that generates labels for virtual connections us-
ing periodic broadcasts providing simple and efficient ro-
bustness and oblivious execution. For a random network
with N nodes of average degree �d and dimeter �(k), we
demonstrate how our algorithm can be used to generate a
mean l = 1 + (k � 1) �d labels at each node to provide a
probability�

�
l

N

�
that any pair of nodes will have a virtual

connection between them. We show that with probability
roughly 1

2
+ l

2N
any node may route a message along a vir-

tual connection which terminates within an �-neighborhood
of the destination, where � = �

�
log�d

�
N

k

��
, with l as stip-

ulated. Of course the number of labels generated at each
node is variable and directly relates to the cost in such
a way that a network administrator can trade label space
for increased performance. We provide simulation results
using Matlab mathematical language interpreter that sup-
ports our analysis.

1 Introduction

The combination of ATM label switched routing with IP
packet forwarding is a rapidly growing technology[7, 5]. A
fundamental problem is to generate ATM labels which fa-
cilitates IP packet flow through the network[6]. The use of
ATM virtual circuit switching under IP provides, for flow
labeled incoming packets, direct routing to the output port,
known as label-switched routing (LSR) where packets are
labeled according to their flow using labels locally identi-
fied between neighboring routers. Labels can be assigned
to aggregate flows (flows with similar destination networks)
and according to traffic patterns in order to reduce the total

labels required over a network[4]. Just as important though,
the algorithm should be robust, easy to implement and ex-
ecutable obliviously at each router, akin to the successful
features of IP packet forwarding algorithms widely used for
the Internet.

1.1 Previous Work

The � Flow Problem as defined in [3] is to provide a
flow topology such that the maximum number of flows any
packet must traverse to reach a destination is no greater than
� and the maximum table size over all routers is minimized.
This problem is identical to the open problemof minimizing
the cost of an interconnection network as was demonstrated
by us earlier. In [2] Faragó and others develop techniques
to construct optimal virtual path network topologies using
random graphs. There algorithms are off-line and don’t re-
late directly to routing protocols, however their results like
other more general results[1] indicate that random construc-
tions of networks, such as the one presented in this paper,
do indeed exhibit optimal characteristics. Other work that
we know of also invariably requires centralized processing
of some sort in order to construct the virtual topology or
constructs a topology in response to traffic patterns without
regard for the topology.
For example, recent work by others in INFOCOM 20001

also addresses this issue. Afek and Bremler-Barr propose a
scheme drawing analogies to a subway system in a large
metropolitan area. Packets are put onto trains (flows) to
be removed from the train after some number of stations
(routers). Thus, their scheme requires a counter and ex-
tra hardware functionality at Layer 2. They look at using
multi-train lines (several flows) but leave optimization of
the number of labels versus the number of flows for future
research. Furthermore their algorithms require constructing
topological maps. For n routers they reduce the table size

1http://www.cse.ucsc.edu/ rom/infocom2000/

���������	
����
�����
����
����
���������������������

����
��������

��	������
����������������

���� !�"�#���$��%���&�!���������



(labels recorded at each node) to
p
n.

1.2 Our Contribution

In this paper we define the virtual flow topology and
propose a stochastic algorithm, GFLOW , that generates
labels for virtual connections using periodic broadcasts to
provide simple and efficient robustness and oblivious exe-
cution. Our proposed allows the mean table size to be set
according to a given function, needs no topological maps
and extra functionality at Layer 2, and can be easily imple-
mented.

2 Flow Topology Definition

Let the network beG(V;E) and have distance from u to
v over E being �(u; v) traversals, where u; v 2 V , E �
V � V . A flow consists of a destination node, v, plus one
or more nodes along a path, F = fv; v

�1; v�2; � � � ; v�jg.
We use negative subscripts to indicate upstream nodes, ie
flows are directed and vi is upstream from vj if i < j. Con-
versely we may identify a flow from the flow “leaf” or last
upstream node u = v

�j , so that F = fu; u1; u2; � � � ; ujg.
Here positive numbers mean downstream. Each node on
the flow must record a label which it associates with the
destination and a mapping from that label to an output port
(neighbor) with possibly a new label to switch to. Labels
have significance only between neighboring nodes.
A flow tree on v is the set of flows that terminate at v.
A flow path from u to v consists of 2 or more flows,
F1; F2; � � � ; Fj, where the destination of Fi must be equal
to the leaf of flow Fi+1. Of course the leaf of F1 must be u
and the destination of Fj must be v.
The set of flowsF generated overG is the flow topology.

The graph obtained as that induced on G by F has vertices
consisting of the leaf and destination nodes of each flow in
F and edge set being connections between the leaf and des-
tination of each flow. The degree of a node is equivalently
the number of labels, with lu being the number of labels
recorded by node u and l the maximum over all nodes. In
this way we can assess the asymptotic cost of the virtual
topology.

3 On the Growth of Neighborhoods over
Random Networks

Consider a node v 2 V and neighborhood network
Gv(�) such that u 2 Gv iff �(v; u) � �. Let �v(�) be
the boundary network of Gv(�) such that u 2 �v(�) iff
�(v; u) = �. Assume n� is the number of nodes in �v(�)
and that the function n� is independent of the node v. In
fact, this assumption is justified if the number of edges con-
tained in the network is large enough, as we know that, with

sufficient edges, a random network will contain with high
probability a single large connected component (with some
small isolated components that are negligible) of which
there are many cycles of various lengths. Given that these
cycles are uniformally distributed over the component, the
neighborhoods of different nodes will, with all likelihood,
furnish statistically equivalent structures.
The proof of our assumption lies in direct inference from
the work of Erdös and Rényi, who show that the evolution
of random graphs takes on five distinct phases classified
by the probability of the random graph exhibiting certain
structures[8].
We have occasion to ask for an expression of ni in terms

of the average degree, �d, and the total number of nodes, N .
In these terms it is reasonable for instance that

n0 = 1; n1 = �d

It is less clear the value for n2. To proceed let us ex-
amine the basic random process of picking a number of
edgesM = �dN=2, each with equal probability, ie, after the
first edge is picked, of the remaining edges, each edge will
be picked with equal probability. Furthermore examine the
case when partitioning the N nodes into two sets, one set,
Gv(i), containing Ni nodes and the other set, G � Gv(i),
containingN � Ni nodes. One may ask for the probability
that an edge will be chosen at random such that the choice
satisfies one of three mutually exclusive possibilities: both
vertices of the edge are inside, outside, and one inside and
the other outside of Gv(i).
Enumerating the possibilities there areNi(N �Ni) total

possible edges that could cross the boundary an odd number
of times, C2

N�Ni
=
�
N�Ni

2

�
possible edges that could be

outside Gv(i) and C2
Ni

=
�
Ni

2

�
edges that could be inside

Gv(i). The total number of edges is

C2
N =

�
N

2

�
=

N (N � 1)

2
:

After discretely selecting M edges, and allowing T to be
the random variable giving the number of edges that cross
the boundary, the probability that exactly T = t of them
cross the boundary is

P [T = t] =

�
Ni(N � Ni)

t

���N�Ni

2

�
+
�
Ni

2

�
M � t

���N
2

�
M

�
�1

:

To confirm this is a probability see that
P

P [T = t] = 1,
where t = 0; 1; � � � ;M or

MX
t=0

Ct
Ni(N�Ni)

CM�t
R =

��N
2

�
�dN
2

�

where R = C2
N�Ni

+ C2
Ni
. This is clearly true when ap-

plying the rule Ck
m+n =

Pk

j=0C
j
mC

k�j
n since Ni(N �

���������	
����
�����
����
����
���������������������

����
��������

��	������
����������������

���� !�"�#���$��%���&�!���������



Ni) + C2
N�Ni

+ C2
Ni

= C2
N
. The expected value, E[T ] =P

M

t=0
tP [T = t], is not nearly as easy to calculate. Using

Chebyshev’s summation inequalitieswe can but say that

E[T ] �
M � 1

2
: (1)

Allowing for edges to be continuously selected, so as to pro-
vide unchanging proportionsof probable outcomes, we may
say that roughly

E[t] =
Ni(N �Ni)�

N

2

� M =
Ni(N �Ni)

N � 1
�d

which gives for Ni = N=2 a value only slightly greater
than that deduced in Eq. (1). Assume, that of the remaining
N � Ni nodes, each node is of equal probability of being
connected to an edge leaving Gv(i). As we are not inter-
ested in the exact topology, but only the expected number
of nodes, we have only to ensure when counting that no two
edges connect the same node pair. For each node in Gv(i)

there are
�
N�Ni

N�Ni

N�1
�d

�
ways of connecting the outgoing edges.

Each candidate node appears in
�
N�Ni�1
N�Ni

N�1
�d�1

�
combinations

which gives purely a probability �d=(N � 1) of being se-
lected by a single node in Gv(i) since Ck

n = (n=k)Ck�1

n�1.
This is the intuitive result if we consider that the degree of
any node is uniformly distributed over the remaining nodes
in a random network. With exactly Ni independent trials,
the chance of not being selected is�

1�
�d

N � 1

�Ni

so for N �Ni nodes roughly

(N � Ni)

 
1�

�
1�

�d

N � 1

�Ni

!

of them will be selected.
We now consider the number of nodes in the band i, ni,

as only those nodes can connect to nodes forming the next
band. Note that each of the N 0 = N � Ni + ni + ni�1 =
N � Ni�2 nodes has probability 1=(N 0 � 1) of receiving
an edge from a node in band i. With exactly ni trials, we
calculate the fraction of the N 0 nodes that form band i to
get:

ni+1 = (N � Ni)

�
1�

�
1�

�d

(N � Ni�2 � 1)

�ni�
Ni+1 = Ni + ni+1

4 Probabilistic Flows

Many algorithms may be devised that distribute labels
throughout a network to provide flows. Recall the number

of labels recorded by a node u is lu and l is the maximum
over all nodes. Our first consideration is of course that if
node u 6= v knows of v (ie associates a label with it) then a
neighbor of u must also know of v (let every node know of
itself). Typically this neighbor will be on the shortest path
to v.
To illustrate this concept and to provide a framework for

analysis consider an intuitive algorithm for generating flows
over a general topology. The proposed algorithm works
similar to distance-vector routing in that suggested flows
that are of length greater than a known flow length are im-
mediately discarded.

Algorithm: GFLOW

1. Every node generates a label for itself, ie P [(u; u) 2
T ] = 1.

2. Periodically2, every node broadcasts its own label to
its neighbors.

3. A node u receiving a label, y, associated with v over
a minimum path, discards any current knowledge of v
and then does exactly one of the following

(a) Discards the received information (losing all
knowledge of v).

(b) Records y and Broadcasts the received informa-
tion plus a arbitrary generated pre-image of y, x,
to its neighbors.

End: GFLOW

When a node broadcasts a flow label to its neighbors
it also broadcasts the length of the flow in hops, alike to
distance-vectoring so that only the minimum length flows
are recorded.
To enforce Eq. (??) we may have that a node u cannot

discard knowledge of v if an upstream neighbor of u, u�1,
has not discarded knowledge of v. If all upstream neighbors
of u have discarded knowledge of v (or were never given it
from u) then u can choose to discard its knowledge of v
at any time. The node u is in this case a “leaf” node of
the flow. Otherwise u must inform u�1 that it intends to
discard knowledge, breaking the flow. It may also simulta-
neously declare a new knowledge of v and a new label for
u�1 to switch to. Every upstream node must also discard
knowledge of v unless it has redundant alternatives.
Let GFLOW be executed on all nodes in an oblivious

way. Also, let the decision as to whether information is Dis-
carded or Recorded and Broadcast be purely a random one
with probabilities pD and pR respectively. In other words,
after receiving a valid label (one that comes from a shortest
path route from v) the algorithm chooses one of two possi-
bilities:

2The period may be measured in hours or days.

���������	
����
�����
����
����
���������������������

����
��������

��	������
����������������

���� !�"�#���$��%���&�!���������



1. Discard the knowledge or

2. Record and Broadcast the knowledge.

Clearly pD = 1�pR. We want to calculate the probabilities
pD and pR that will give an average number of nodes �v(�)
that know of v out of the expected n� nodes at distance �
from v.
The exact nature of this probability depends on many

factors including the local neighborhood of u or v, the tech-
nology being used, the traffic statistics etc. For now assume
that we want

P [(u; v) 2 T ] /
1

�(u; v)
:

In this way, nodes far from v will have a small probabil-
ity of knowing of v, while nodes closer to v will have a
large probability of knowing of v. We may stipulate for in-
stance, when the algorithm is in equilibrium, what the mean
concentration of knowledge will be for any particular node.
Using �� to be the mean number of nodes at distance � from
v that will have knowledge of v and knowing n� is the ex-
pected number of nodes at distance � from v we have

P [(u; v) 2 T ] =
��(v;u)

n�(v;u)
:

Over a suitable time interval, proportionally longer than the
broadcast period ofGFLOW , every nodemay be observed
to record information at a given probability.
A non-leaf node can discard knowledge of v so long as it

instructs all upstream nodes that use that knowledge to also
discard knowledge of v. Thus the probability that u discards
knowledge of v is 1 minus the product of probabilities that
all down stream nodes do not. In any case we must have pD
or pR as a function of � since P [(u; v) 2 T ] as given is a
function of �. FromGFLOW definition:

�0 = 1; pR(0) = 1; pR(1) = �1=n1:

Working inductively we assume there are �i nodes in
band iwhich in total connect to a fraction (1�(1� �d=N 0)�i )
of the nodes in band i+1whereN 0 = N�Ni�2�1. Of the
total connected nodes we want only �i+1 of them to record
a label which yields the probability

pR(i + 1) =
�i+1

(N �Ni)(1� (1 � �d=N 0)�i)
:

4.1 Simulation Results

We implemented the above algorithm on networks of
various size and average degree. Our simulations though
are rather limited to small cases, no larger than 200 nodes.
We observed the flow trees constructed using one iteration

of the algorithm (ie one broadcast for each node in the net-
work). Since each iteration is independent this does not lead
to loss in generality. For every node v in the network we
observed the number of labels that were recorded at each
distance � from v and averaged this observed function over
all the nodes. In other words we calculated ��� based on ob-
served results. Fig. 1 and Fig. 2 show the observ ations for
the case for a random network of 100 nodes with �d = 3 and
a random network of 100 nodes with �d = 5 respectively.
Each plot shows five trials of the algorit hm with �0 = 1
and �i = �d for all i > 0.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

distance

av
g 

nu
m

be
r 

of
 la

be
ls

Figure 1. Average labels recorded versus dis-
tance.

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

distance

av
g 

nu
m

be
r 

of
 la

be
ls

Figure 2. Average labels recorded versus dis-
tance.

There are a number of factors which lead to a deviation
from the desired values. Firstly, the large deviation at large
distance is due to the fact that for instance it is impossible to
have 3 nodes record information when the band consists of
less than 3 nodes. Also, our simulation required a connecte
d network but we extracted the largest connected compo-
nent from the random networkwhich has a number of nodes

���������	
����
�����
����
����
���������������������

����
��������

��	������
����������������

���� !�"�#���$��%���&�!���������



slightly less than that quoted and furthermore has statist ical
properties that differ slightly from a random network. In
general the results in dicate that the algorithm operates as
we expect it to, providing for each node a number of possi-
ble flows that are distributed over each band in the network.
Also they provide an i ndication of the variation which we
have not yet touched upon. Variation is a parameter wh ich
we leave for future derivation. Fig. 3 shows two trials of
the algorithm for a random network of almost 200 nodes
and �d = 3.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

distance

av
g 

nu
m

be
r 

of
 la

be
ls

Figure 3. Average labels recorded versus dis-
tance.

5 Analysis

The number of labels dedicated to different services is
a design criteria that necessarily impacts the performance
of that service. To have with probability 1 a flow between
every pair of nodes we would need every router to recordN
labels. But N is considered high cost so the purpose of this
section is to show the relationship between the cost of the
algorithm in terms of the labels recorded at each node and
the estimated number of flows that will be required for any
random route request.
To begin, recall that�� is the number of nodes at distance

� from a node v in the network that on average will record a
label for v. Assuming that P [(u; v) 2 T ] = P [(v; u) 2 T ]
it follows that

l =
kX

i=0

�i: (2)

Of course we want that l = o(N ) so as to significantly re-
duce the cost. Let a route request be generated at node u
with a destination node v chosen at random; recall the dis-
tance from u to v is �(u; v) and P [(u; v) 2 T ] =

��(u;v)
n�(u;v)

. If

a random request is generated at u then �(u; v) is a random
variable and

E

�
��(u;v)

n�(u;v)

�
=

kX
i=0

�i
ni

ni
N

=
l

N

is the average probability that u has a label for v. Clearly if
�i = ni then �P = 1 but l 6= o(N ) since

P
ni = N . Setting

�i = ni=q obtains �P = 1=q but still l is not significantly
reduced. Let �i be a constant equal to for instance �d (as
used in the previous simulations) with �0 = 1. From Eq.
(2) we have l = 1 + (k � 1) �d which (with respect to k) is
directly proportional to the interconnection network cost as
defined in the literature so

�P =
1 + (k � 1) �d

N
:

From this result we conclude that on average, the probabil-
ity that u can route a message to v using a single flow with
l = O(k �d) labels recorded at each node is �(l=N ).

Clearly if u cannot route the message to v using a single
flow, then u must route the message to a node as close to v
as possible. The default case is that u routes the message to
a node one step closer to v. The message in this case will
traverse a number, �, of flows.
Now, every flow tree is independent, so in an average

sense it is equally likely that u has recorded a label for a
neighbor of v. Thus if u cannot route to v, it may route to
a neighbor of v. Using these average probabilities of rout-
ing it follows that for any q nodes chosen arbitrarily, u has
probability

Rq = 1�
�
1� �P

�q
� q �P �

q(q � 1)

2
�P 2 (3)

of recording a label for at least one of them. Since these
nodes may be chosen arbitrarily, choose a set of nodes that
form a neighborhood of v such that q = N� where recall
that N� =

P�
i=0 ni. The probability that u may route to

a neighborhood of v, or in other words that u may route to
a node of distance no greater than � from v is now com-
putable. If we let q = N=l we see that

Rq =
1

2
+

l

2N
:

Now, it is quite clear that for values of 0 < i < k
2 we

can have ni � �di. Let us assume for this analysis that the
network is infinitely large so that (for all finite i)

Ni =
iX

j=0

nj �
1� �di+1

1� �d
(4)

where setting Ni = q = N=l and solving for i in terms of
N , l and �d yields

i = log�d

�
1�

N

l
(1� �d)

�
� 1 = �

�
log �d

�
N

k

��
:

���������	
����
�����
����
����
���������������������

����
��������

��	������
����������������

���� !�"�#���$��%���&�!���������



In this way we conclude that a random request has a proba-
bility roughly 1

2
+ l

2N
of routing to a node within a distance

�
�
log�d

�
N

k

��
of the destination. More succinctly we can

write the probability that u can route to a node at distance
no greater than i from v by substituting q in Eq. (3) with the
expression for Ni from Eq. (4):

RNi
� Ni

�P �
1

2
(N2

i
�Ni) �P

2

= �

�
k �di+1

N

�
:

For i = 0 we get the kd=N , the same probability calculated
for routing directly to the node using a single flow. The
probability of routing to an i-neighborhood of the destina-
tion increases exponentially in �d with i.
Calculation of the expected value for � cannot proceed

using the coarse approximationswe have made so far. How-
ever we can see that � is bounded by i+1where i has prob-
ability distribution given above. In other words P [� = 1] =
kd=N and P [� = 2] � kd2=N , etc. We obtain this bound
by observing that after the first flow we have at most i flows
to go. So from our previous result we see that about half of
all requests will require to traverse �

�
log �d

�
N

k

��
flows.

However, this bound is quite loose as really we under-
stand that after traversing the first flow the message is ap-
preciably closer to the destination. Missing from our theory
is the probability function that provides the number of nodes
in the set Lx where s 2 Lx if �(u; s) + �(v; s) = x. Using
this function we could properly derive an estimation for �
but we leave this problem open for future work.

6 Conclusion

We presented as a main contribution of this paper, a
simple and efficient algorithm for generating labels in an
IP/ATM-LSR network. The algorithm requires no syn-
chronization between nodes other than immediate neigh-
bors. Each node relies on a probability function to deter-
mine whether it records a label or discards a label associated
with a given flow termination node. The probability func-
tion is computed using only the total nodes in the network,
N , and the average degree �d, assuming for generality that
the network edges are randomly distributed. The method
of generating this probability function is crucial for discus-
sion and we present perhaps the most intuitive case, when
the probability of a virtual connection existing between any
two nodes is inversely proportional to the distance between
the nodes. We leave open the possibility of this probability
function being proportional to other factors such as technol-
ogy, topology, application or traffic statistics.
We suggest that this approach may be used to analyze

deterministic algorithms using only probabilities of 1 and 0

for instance. In effect, the performance that our algorithm
exhibits (as a function of label space available or dedicated)
may be seen as a best average case. It is surely the case
that better performance should be obtained by algorithms
that use given or inferred knowledge of the topology be-
yond the simple variables we make use of, viz. N and �d.
However the strong acceptance of protocols such as IP has
been attributed to the fact that little topological knowledge
is recorded and/or relied on. Our algorithm thus promises
a robust and extensible solution to achieving good perfor-
mance over general topologies.

References

[1] B. Bollobas. Random Graphs. Academic Press, Lon-
don, 1985.

[2] Farago, Chlamtac, and Basagni. Virtual path network
topology optimization using random graphs. In INFO-
COM: The Conference on Computer Communications,
joint conference of the IEEE Computer and Communi-
cations Societies, 1999.

[3] Aaron Harwood and Hong Shen. Near optimal flow la-
belling in ATM/IP-LSR networks using multi-segment
flows. Proceedings of IEEE International Conference
on Networks, Singapore, 2000.

[4] Ken ichi Nagami, Hiroshi Esaki, Yasuhiro Katsube, and
Osamu Nakamura. Flow aggregated, traffic driven label
mapping in label-switching networks. IEEE j. on sel.
areas in commun., 17(6):1170–1177, June 1999.

[5] Berry Kercheval. TCP/IP over ATM: a no-nonsense in-
ternetworking guide. P T R Prentice-Hall, Englewood
Cliffs, NJ 07632, USA, 1998.

[6] P. Newman, T. Lyon, and G. Minshall. Flow labeled
ip: A connectionless approach to ATM. In Proc. IEEE
Infocom, pages 1251–1260,March 1996.

[7] Peter Newman, Greg Minshall, and Thomas L. Lyon. IP
switching — ATM under IP. IEEE/ACM Transactions
on Networking, 6(2):117–129, April 1998.

[8] Joel H. Spencer, editor. Paul Erdös: the art of counting
: Selected writings. MIT Press, 1973.

���������	
����
�����
����
����
���������������������

����
��������

��	������
����������������

���� !�"�#���$��%���&�!���������


