
Efficient Weighted Multiselection in Parallel Architectures∗

Hong Shen

Graduate School of Information Science

Japan Advanced Institute of Science and Technology

1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan

Email: shen@jaist.ac.jp

Abstract

We study parallel solutions to the problem of
weighted multiselection to select r elements on given
weighted-ranks from a set S of n weighted elements,
where an element is on weighted rank k if it is the
smallest element such that the aggregated weight of
all elements not greater than it in S is not smaller
than k. We propose efficient algorithms on two
of the most popular parallel architectures, hyper-
cube and mesh. For a hypercube with p < n pro-
cessors, we present a parallel algorithm running in
O(nεmin{r, log p}) time for p = n1−ε, 0 < ε < 1,
which is cost optimal when r ≥ p. Our algorithm
on
√

p × √p mesh runs in O(
√

p + n
p log

3 p) time
which is the same as multiselection on mesh when
r ≥ log p, and thus has the same optimality as mul-
tiselection in this case.

Key words: Hypercube, mesh, multiselection,
parallel algorithm, weighted selection.

1 Introduction

Given an unordered set S = {x1, x2, . . . , xn}
and a weighted-rank array of r integers K =
{k1, k2, . . . , kr}, where element xi is associated with
a weight w(xi), the problem of weighted multiselec-

tion requires to select r elements from S, x∗1, . . . , x
∗
r ,

such that x∗i is the ki-th weighted element in S
for i = 1, . . . , r. Here, x is said to be the k-
th weighted element in S if it is the smallest el-
ement such that the aggregated weight of all ele-
ments not greater than it in S is not smaller than
k: x = min{xi |

∑

xj≤xi
w(xj) ≥ k}. Weighted

multiselection generalizes the problems of weighted
selection (when r = 1) and multiselection (when
w(xi) = 1 for all 1 ≤ i ≤ n), both having been stud-
ied extensively in sequential [2, 10, 11, 16, 18, 26]
and parallel [1, 4, 6, 7, 15, 24, 25, 19] environments
due to their important applications in various fields

∗This work was supported by research grant #14380139
funded by Japan Society for the Promotion of Science (JSPS)
under its Grant-in-Aid for Scientific Research Category (B).

such as graph theory, order statistics and set theory
[9, 12, 5, 17].
Recently it has been shown that weighted multi-

selection can be done optimally both sequentially
and in parallel on PRAM, in the same order as
for multiselection. This is consistent with the com-
plexity relationship between the conventional selec-
tion and weighted selection. For parallel weighted
multiselection, a cost (product of time and number
processors) optimal algorithm following the general
paradigm to achieve cost optimum has been pro-
posed in [23], which runs in O(nε log r) time on
the EREW (Exclusive-Read and Exclusive-Write)
PRAM for any 0 < ε < 1.
When the computation model is an interconnec-

tion network, several results are known for multise-
lection. For a hypercube containing p < n proces-
sors, it has been shown [20] that multiselection can
be done in O(nεmin{r, log p}) time with p = n1−ε

synchronous processors, for any 0 < ε < 1, which
is cost optimal when r ≥ p. For a

√
p × √p mesh-

connected computer, where all processors operate
synchronously, multiselection can be solved opti-
mally in time (p1/2+min{r log r, log p}np log

2 p) [21].
In this paper we present two efficient parallel al-

gorithms for weighted multiselection in hypercube
and mesh respectively. They have the same time
complexity as their corresponding multiselection al-
gorithms when r ≥ log p. The rest of the paper is
organized as follows: In the next section, we present
our hypercube algorithm for weighted multiselec-
tion. Section 3 describes the weighted multiselec-
tion algorithm on mesh. Section 4 concludes the
paper.

2 Weighted multiselection on

hypercube

We use a hypercube with p ≤ n processors. Pro-
cessors in the hypercube operate synchronously
(in SIMD mode). We denote by cube(a, d) a d-
dimensional hypercube with processor starting ad-
dress a (and ending address a + 2d − 1). A

Proceedings of the Fifth International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP�02)
0-7695-1512-6/02 $17.00 © 2002 IEEE

d-dimensional hypercube cube(0, d) contains two
(d − 1)-dimensional subcubes cube(0, d − 1) and
cube(2d−1, d− 1) across which communication links
connect pairs of processors whose addresses differ at
precisely the d-th bit (the most significant bit).
For simplicity and without loss of generality,

throughout this paper we assume that all elements
in the rank array K are sorted in increasing or-
der. If this is not the case, we can make it by
simply calling a hypercube sorting algorithm with
an additional cost of O(r log r log log r). For set
S = {x1, x2, . . . , xn}, where xi has weight w(xi)
associated, we use w(S) to denote the aggregated
weight of all elements in S: w(S) =

∑n
i=1 w(xi).

Given rank array K, to facilitate description we say
selecting K from S to mean selecting those elements
from S whose weighted-ranks are specified in K.
We first present the algorithm for (single-

element) weighted selection on hypercube and then
describe our algorithm for weighted multiselection.

2.1 Weighted selection

Let SelectCube(S, k, cube(a, d)) be an algorithm
for selecting the k-th smallest element from S in
cube(a, d). Here we use the following algorithm
given in [22] that combines Chandran and Rosen-
felt’s hypercube selection algorithm [3] and Cypher
and Plexiton’s O(log p log log p)-time sorting algo-
rithm [8].

Algorithm SelectCube(S, k, cube(a, d))
{* Select the kth element from n elements in S
in cube(a, d) with p processors. *}

1. for i = 0 to p− 1 do in parallel

Processor i selects the medianmi of its local
n/p data using an optimal sequential
selection algorithm;

2. Select the median m of M using the parallel
sorting algorithm of [8];
{*M contains all local medians mi, 0 ≤ i ≤
p− 1.*}

3. Split S into SL = {x ∈ S | x < m}, SE = {x ∈
S | x = m} and SG = {x ∈ S | x > m};

4. if |SL| < k ≤ |SL| + |SE | then Output any
element in SE ; EXIT;

5. if k ≤ |SL| then S′ = SL; k
′ = k else S′ = SG;

k′ = k − |SL| − |SE |;

6. Distribute S′ evenly over all processors in
cube(a, d);

7. SelectCube(S′, k′, cube(a, d))

endSelectCube.

The time complexity of SelectCube, denoted by
TS(n, p), is

TS(n, p) = O(log p log log p log(n/p) + n/p). (1)

Derivation of the above equation can be found in
[22].

Our algorithm for weighted selection in hyper-
cube can be constructed by applying SelectCube
and is based on the following idea: Select the median
of S and use it to split S into two halves; identify
the half that contains the k-th weighted element by
comparing the aggregated weight of each set with k
and discard the other half of data; redistribute data
and repeat this process. The algorithm is described
as follows:

Algorithm WSelectCube(S, W , k, cube(a, d))
{* Select the k-th weighted element from n
weighted elements in S in cube(a, d) with p pro-
cessors. *}

1. if d ≤ 1 then employ an optimal sequential
weighted selection algorithm [22];

2. if p = n then

Sort S using the algorithm of [8];
Compute prefix sums of the sorted sequence
of S; Search for k among the prefix sums;

{*If si−1 < k ≤ si, where si is the prefix sum
up to x′i and x′1 ≤ x′2 ≤ . . . ≤ x′n, the k-th
weighted element is x′i.*}

3. SelectCube(S, n/2, cube(a, d));

4. Compute w(SL) =
∑

x∈SL
w(x);

5. if k < w(SL) then S′ = SL; W
′ =WL

else S′ = SG; W
′ =WG; k = k − w(SL);

6. if n/p > 1 then d′ = d else d′ = d− 1;

7. Redistribute S′ in cube(a, d′);

8. WSelectCube(S′, W ′, k, cube(a, d′))

endWSelectCube.

Let TWS(n, p) denote the time complexity of the
algorithm. TWS can be obtained by the following
analysis: Step 1 takes O(n) time; Step 2 requires
O(log p log log p) time for sorting (O(log p) time for
prefix summation and searching); Step 3 requires
O(log p log log p log(n/p)+n/p) time by Equation 1;
Steps 4–7 need O(log p+ n/p) time; Step 8 requires
TWS(n/2, p) time. We have therefore the following
equation:

Proceedings of the Fifth International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP�02)
0-7695-1512-6/02 $17.00 © 2002 IEEE

TWS(n, p) =

O(n), if d ≤ 1,
O(log p log log p), if p = n,
O(log p log log p log(n/p) + n/p)
+TWS(n/2, p) if n/p > 1.

(2)
Solution to the above equation is

TWS(n, p) = O(

log(n/p)−1
∑

i=0

(
n

p2i
+

log p log log p log
n

p2i
))

= O(n/p+ log2(n/p) log p log log p).(3)

We therefore have the following lemma:

Lemma 1 Weighted selection in n elements on a

p-processor hypercube computer can be completed in

O(n/p+ log2(n/p) log p log log p) time.

2.2 Weighted multiselection

The structure of hypercube lends itself well for par-
allel execution of balanced divide-and-conquer al-
gorithms. This leads to the following idea for our
weighted multiselection: first we select the median
m from S and use it as the splitter to partition S
into two halves SL and SG containing all elements
not greater than and not smaller than m respec-
tively; we compute w(SL) and w(SG), and use them
to partitionK into two partsKL = {k | k < w(SL)}
and KG = {k | k ≥ w(SL)} accordingly; then we
recursively select KL from SL and KG from SG re-
spectively in parallel. Following this idea, our al-
gorithm for weighted multiselection is a call to the
following procedure with WMSelectCube(S, W , K,
cube(0, log p)).

Algorithm WMSelectCube(S, W , K, cube(a, d))
{*Select all elements in S whose weighted-ranks
are given in K in a d-dimensional hypercube
with processor starting address a, where |S| =
n and |K| = r.*}

1. if d = 0 then use an optimal sequential weight
multiselection algorithm [23] and EXIT;

2. if r = 1 then WSelectCube(S, W , k1,
cube(a, d)) and EXIT;

3. SelectCube(S, n/2, cube(a, d)); {*Select the
median of S on cube(a, d).*}

4. if p = n then

Sort S using the algorithm of [8];
Compute prefix sums of the sorted sequence
of S; Search for ki in parallel
among the prefix sums;

5. Partition S into two halves: SL = {x | x ≤ m}
and SG = {x | x ≥ m};

6. Compute w(SL) =
∑

x∈SL
w(x);

7. Partition K into two parts: KL = {k | k <
w(SL)} and KG = {k | k ≥ w(SL)};

8. if |KL| = 0 then

Redistribute SG in cube(a, d);
WMSelectCube(SG, KG, cube(a, d))

else if |KG| = 0 then

Redistribute SL in cube(a, d);
WMSelectCube(SL, KL, cube(a, d))

else

Redistribute SL in cube(a, d−1) and SG in
cube(a+ 2d−1, d− 1) respectively;

Do in parallel
WMSelectCube(SL, KL, cube(a, d−1));
WMSelectCube(SG, KG,
cube(a+ 2d−1, d− 1))

endWMSelectCube.

Let T (n, r, p) denote the time complexity of Al-
gorithm WMSelectCube. Step 1 takes O(n) time.
Step 2 requires O(n/p + log2(n/p) log p log log p)
time by Algorithm WSelectCube. Step 3 re-
quires O(log p log log p log(n/p) + n/p) time by
Equation 1; Step 4 requires O(log p log log p) time;
Steps 5–7 need O(log p + n/p) time; In Step 8,
moving data to a subcube is realized by stan-
dard techniques for data aggregation and reduc-
tion [13] in O(log p + n/p) time, the recursive
calls take T (n/2,max{|KL|, |KG|}, p) (for the first
two) and T (n/2,max{|KL|, |KG|}, p/2) (for the last
pair of parallel calls). As the three recursive
calls are selective, the maximum time for them is
T (n/2,max{|KL|, |KG|}, p/2). We have therefore
the following equation:

T (n, r, p) =

O(n/p+ log2(n/p) log p log log p),
if r = 1,

O(n log r), if p = 1,
O(log p log log p), if p = n,
O(log p log log p log(n/p) + n/p)+
T (n/2,max{|KL|, |KG|}, p/2).

if r, n/p > 1.
(4)

Noticing that max{T (n/2, |KL|, p/2), T (n/2, |KG|,
p/2)} = T (n/2,max{|KL|, |KG|}, p/2) ≤
T (n/2, r − 1, p/2), we have the following solu-
tion to the above recurrence:

T (n, r, p) = O ((log p log log p log(n/p) + n/p)

min{r, log p}). (5)

Since cube(a, d − 1) and cube(a + 2d−1, d − 1)
are topologically identical two halves ((d − 1)-D

Proceedings of the Fifth International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP�02)
0-7695-1512-6/02 $17.00 © 2002 IEEE

hypercubes) of cube(a, d), two parallel recursive
calls WMSelectCube(SL, KL, cube(a, d − 1)) and
WMSelectCube(SG KG, cube(a + 2

d−1, d − 1)) can
run easily in the synchronous mode. All other
steps in the algorithm are executed also in the syn-
chronous mode.
Clearly, if we let p = n1−ε for any 0 < ε < 1,

there is always a constant n∗ s.t. n/p = nε >
log p log log p holds for all n > n∗. This shows that

T (n, r, p) = O(nεmin{r, log p}), where p = n1−ε.
(6)

Therefore we have the following theorem:

Theorem 1 Selecting r elements on given

weighted-ranks in an arbitrary set of n elements

can be completed in a hypercube with p = n1−ε

processors in O(nεmin{r, log p}) time for any

0 < ε < 1.

The above result shows that weighted multise-
lection on hypercube has the same time complexity
and hence same optimality as multiselection.

3 Weighted multiselection on

mesh

We now consider the problem of weighted multis-
election on a

√
p × √p mesh-connected computer.

As for hypercube algorithm, we first give an al-
gorithm for single-element weighted selection, and
then present our algorithm for weighted multiselec-
tion.

3.1 Weighted selection

For single-element selection SelectMesh, we use the
algorithm given in [21], which requires time O(

√
p+

n
p log p log(kp/n)).
Applying SelectMesh, we can obtain a single-

element weighted selection algorithm, WSe-
lectMesh, as follows.

Algorithm WSelectMesh (S, k, p, W)
{*Select the element on weighted-rank k from
S on a

√
p×√p mesh.*}

1. if p ≤ 3 then

Use a sequential weighted selection
algorithm; EXIT;

2. SelectMesh (S, in/4, p, xi) for i = 1, 2, 3;
{*Select the n

4 ,
n
2 th and

3n
4 elements x1, x2 and

x3 in S.*}

3. Partition S into four subsets:
SSW = {x | x ≤ x1};

SSE = {x | x1 ≤ x ≤ x2};
SNW = {x | x2 ≤ x ≤ x3};
SNE = {x | x ≥ x3};

4. Compute w(SSW) =
∑

x∈SSW
w(x), w(SSE) =

∑

x∈SSE
w(x) and w(SNW) =

∑

x∈SNW
w(x);

5. Set S′ to be
SSW if k ≤ w(SSW),
SSE if w(SSW) < k ≤ w(SSW) + w(SSE),
SNW if w(SSW) + w(SSE) < k ≤
w(SSW) + w(SSE) + w(SNW), and
SNE if w(SSW)+w(SSE)+w(SNW) < k ≤
w(SSW) + w(SSE) + w(SNW) + w(SNE);

Let W ′ be the corresponding weight matrix of
all elements in S′;

6. Distribute S′ evenly among all processors in the
mesh;

7. WSelectMesh (S′, k, p, W ′)

endWSelectMesh.

Let the time complexity of algorithm WSe-
lectMesh be TWS(n, p). Step 1 requires O(n) time
[23] and Step 2 O(

√
p+ n

p log
2 p) time by algorithm

SelectMesh [21]. Steps 3 and 4 require broadcast
of xi, scanning (splitting) local data set on each
processor and reduction (summation), which takes
O(
√

p + n/p) time. Step 5 requires O(1) time and
Step 6 O(

√
p) time by using standard techniques.

Step 7 requires TWS(
n
4 ,

p
4) time. In summary, we

have

TWS(n, p) = O(
√

p+
n

p
log2 p) + TWS(

n

4
,
p

4
)

= O(
∑

i=0

log4 p− 1
√

p

2i
+

n

p
log2

p

4i
)

= O(
√

p+
n

p
log3 p). (7)

Therefore, the following lemma holds:

Lemma 2 Weighted selection in n elements on a√
p×√p mesh-connected computer can be completed

in O(
√

p+ n
p log

3 p) time.

3.2 Weighted multiselection

The basic idea of our algorithm for weighted multis-
election selecting K from S on mesh is to repeatedly
break S (orK) into equal-sized subsets andK (or S)
into some subsets accordingly, and then do weighted
multiselection on each corresponding pair of subsets
on a submesh. In order to carry out weighted mul-
tiselection on each submesh synchronously in paral-
lel, we should ensure that all submeshes are topo-
logically identical. For this purpose, each phase we
partition the

√
p×√p mesh into 4 submeshes of size

Proceedings of the Fifth International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP�02)
0-7695-1512-6/02 $17.00 © 2002 IEEE

√
p

2 ×
√
p

2 . We use two different strategies to parti-
tion S and K, depending on the size of K. When
r > log p/ log log p, we select 3 elements at ranks n

4 ,
n
2 and

3n
4 in S respectively and partition S and K

each into 4 subsets and move them to 4 submeshes
of size

√
p

2 ×
√
p

2 in the mesh respectively for next
phase process. When r ≤ log p/ log log p, we use
kr/4, kr/2 and k3/4 as ranks to select 3 elements in
S and partition S and K each into 4 subsets. Below
is the sketch of our algorithm.

Algorithm WMSelectMesh (S, K, p, M)
{*Select all elements in S whose ranks are spec-
ified in K on a

√
p×√p meshM , where |S| = n

and |K| = r.*}

1. if r ≤ 3 then

WSelectMesh (S, ki, p, xi) for i = 1, 2, 3;
exit;

2. if p ≤ 3 then

Select K using a sequential algorithm;
exit;

3. if r > log p/ log log p then k′i ← in
4

for i = 1, 2, 3
else k′i ← kir/4 for i = 1, 2, 3;

SelectMesh (S, k′i, p, xi) for i = 1, 2, 3;
{*Select the n

4 ,
n
2 th and

3n
4 elements x1, x2 and

x3 in S.*}

4. Partition S into four subsets:
SSW = {x | x ≤ x1};
SSE = {x | x1 ≤ x ≤ x2};
SNW = {x | x2 ≤ x ≤ x3};
SNE = {x | x ≥ x3};

5. Compute w(SSW) =
∑

x∈SSW
w(x), w(SSE) =

∑

x∈SSE
w(x) and w(SNW) =

∑

x∈SNW
w(x);

6. Partition K into four subsets:
KSW = {k | k < w(SSW)};
KSE = {k | w(SSW) ≤ k <
w(SSW) + w(SSE)};
KNW = {k | w(SSW) + w(SSE) ≤ k <
w(SSW) + w(SSE) + w(SNW)};
KNE = {k | k ≥ w(SSW) + w(SSE)+
w(SNW)};

7. Move Si to
√
p

2 ×
√
p

2 submesh Mi of M for
i = SW,SE,NW,NE;
{*MSW , MSE , MNW and MNE are respec-
tively the south-west, south-east, north-west
and north-east quadruples of M .*}

8. Balance load within Mi for i =
SW,SE,NW,NE in parallel.
{*Each processor holds n/p data after load
balancing.*}

9. Do in parallel for i = SW,SE,NW,NE
if |Ki| 6= 0 then

WMSelectMesh (Si, Ki, p/4, Mi).
{*Select Ki in Si on submesh Mi in parallel.*}

endWMSelectMesh.

In the above equation, the first item is routing
cost and the second item is the cost for data com-
parisons.
We now proceed with time complexity analysis

for algorithm WMSelectMesh.

• Steps 1 requires O(
√

p+ n
p log

3 p) time.

• Step 2 can be done in O(n log r) time with the
optimal sequential algorithm [9].

• Step 3 requires O(
√

p + n
p log

2 p) by algorithm

SelectMesh [21].

• In Step 4, to partition S each processor in M
needs to scan through its block of n/p data of S.
This can be done in parallel for all processors
and hence requires O(n/p) time.

• Step 5 can be completed in O(
√

p+ n
p) time.

• In Step 6, partitioning K at a processor re-
quires O(log r) time as K is sorted. So in total
O(n/p+ log r) time is required.

• Step 7 can be completed by 4 phases of permu-
tation routing [21] as follows:

– Processors in the bottom half (MSW ∪
MSE) of M send their SNW to the cor-
responding processors and append them
to the same partition in the top half
(MNW ∪MNE), and those in the top half
send their SSE and append to the corre-
sponding ones in the bottom half;

– Processors in the left half (MSW ∪MNW)
send their SNE to the corresponding pro-
cessors and append them to the same par-
tition in the right half (MSE ∪MNE), and
those in the right half send their SSW and
append to the corresponding ones in the
left half;

– Processors inMSE send their SNE and ap-
pend to the corresponding processors in
MNE , and those in MNW send their SSW

and append to the corresponding ones in
MSW ;

– Processors in MSW send their SSE and
append to the corresponding processors in
MSE , and those in MNE send their SNW

and append to the corresponding ones in
MNW .

Proceedings of the Fifth International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP�02)
0-7695-1512-6/02 $17.00 © 2002 IEEE

As each permutation routing in M requires in
2
√

p− 2 steps [14], the above task can be com-
pleted in O(

√
p) time.

• Using similar approach as above (“folding” and
“unfolding”), Step 8 load balancing within each
Mi can be completed in O(

√
p) time.

Let T (n, r, p) be the time complexity of the
algorithm. It is easy to see that the recursive
call in Step 9 has a time complexity of at most
T (n − 3r/4, r/4, p/4) when r > log p/ log log p, and
T (n/4, r, p/4) when r ≤ log p/ log log p. This results
in the following equation

T (n, r, p) =

O(
√

p+ n
p log

3 p)), if r ≤ 3,
O(n log r), if p ≤ 3,
O(
√

p+ n
p log

2 p) + min{T (n− 3r/4,
r/4, p/4), T (n/4, r, p/4)}, if r, p > 3.

(8)
The solution to the above recurrence is

T (n, r, p) = O(
√

p+
n

p
log3 p). (9)

We have therefore the following theorem regard-
ing weighted multiselection on mesh:

Theorem 2 Selecting r elements on specified

weighted-ranks in an arbitrary set of n elements

can be completed on mesh-connected computer with

p processors operating synchronously in O(
√

p +
n
p log

3 p) time, for any p ≤ n.

In comparison with the multiselection algorithm
of [21], our weighted multiselection algorithm has
the same time complexity as multiselection when
r ≥ log p. In this case, the weighted multiselection
algorithm is optimal.

4 Concluding remarks

We have proposed two efficient parallel algorithms
for weighted multiselection in hypercube and mesh
respectively. For selecting r elements on specified
weighted-ranks in a given set of n elements in a hy-
percube with p synchronous processors, p < n, our
algorithm requires time O(nεmin{r, log p}) when
p = n1−ε, 0 < ε < 1, which is the same as mul-
tiselection on hypercube and is cost optimal when
r ≥ p.
For weighted multiselection on a

√
p×√p mesh,

our algorithm runs in O(
√

p+ n
p log

3 p) time for any
p ≤ n, where processors in the mesh operate syn-
chronously. When r ≥ log p, our algorithm has the
same time complexity and optimality as multiselec-
tion.

References

[1] S. G. Akl. An optimal algorithm for parallel
selection. Information Processing Letters, 19,
1984.

[2] M. Blum, R. W. Floyd, V. R. Pratt, R. L.
Rivest, and R. E. Tarjan. Time bounds for se-
lection. J. Comput. Syst. Sci., 7:448–461, 1972.

[3] S. Chandran and A. Rosenfeld. Order statis-
tics on a hypercube. Information Processing

Letters, 27:129–132, 1988.

[4] S. Chaudhuri, T. Hagerup, and R. Raman. Ap-
proximate and exact deterministic parallel se-
lection. In Proc. Mathematical Foundations of

Computer Science 1993. Springer-Verlag, 1993.

[5] J. Chen. Studies on partial order production.
Phd thesis, Department of Computer Science,
Lund University, 1993.

[6] R. Cole and C. K. Yap. A parallel median algo-
rithm. Information processing Letters, 20:137–
139, 1985.

[7] R. J. Cole. An optimally efficient selection algo-
rithm. Information Processing Letters, 26:295–
299, 1988.

[8] R. Cypher and G. Plaxton. Deterministic sort-
ing in nearly logarithmic time on the hypercube
and related computers. In Proc. 22nd ACM

Symp. Theory of Computing. ACM Press, 1990.

[9] M. L. Fredman and T. H. Spencer. Refined
complexity analysis for heap operations. Jour-
nal of Computer and System Sciences, pages
269–284, 1987.

[10] F. Fussenegger and D. B. Johnson. A counting
approach to lower bounds for selection prob-
lems. J. Asso. Comput. Mach., 26:540–543,
1979.

[11] L. Hyafil. Bounds for selection. SIAM J. Com-

put., 5:114–119, 1976.

[12] D. G. Kirkpatrick. A unified lower bound for se-
lection and set partitioning problems. J. Asso.
Comput. Mach., 28:150–165, 1981.

[13] V. Kumar, A. Grama, A. Gupta, and
G. Karypis. In troduction to Parallel Comput-

ing. Benjamin/Cummings, 1993.

[14] M. Kunde. Routing and sorting on mesh-
connected architectures. In Proc. Agean Work-

shop on Computing: VLSI algorithms and ar-

chitectures, pages 423–433. Lecture Notes on
Computer Science, 1988.

Proceedings of the Fifth International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP�02)
0-7695-1512-6/02 $17.00 © 2002 IEEE

[15] C. G. Plaxton. On the network complexity of
selection. Technical Report STAN//CS-TR-89-
1276, Stanford University, Department of Com-
puter Science, August 1989.

[16] V. R. Pratt and F. F. Yao. On lower bounds
for computing the ith largest element. In Proc.
Annual Symp. Switching and Atomata Theory.
Iowa City, 1973.

[17] Eric Ruppert. Parallel algorithms for the k
shortest paths and related problems, 1996.

[18] A. Schonhage, M. Paterson, and N. Pippenger.
Finding the median. J. Comput. Syst. Sci.,
13:184–199, 1976.

[19] H. Shen. Improved universal k-selection in
hypercubes. Parallel Computing, 18:177–184,
1992.

[20] H. Shen. Optimal parallel multiselection on
EREW PRAM. Parallel Computing, 188:287–
298, 1997.

[21] H. Shen. Efficient parallel algorithms for se-
lection and multiselection on mesh-connected
computers. In Proc. 13th IEEE Int. Paral-

lel Processing Sypm. and 10th IEE Sypm. On

Parallel and Distributed Processing, pages 426–
430. IEEE, 1999.

[22] H. Shen. Efficient parallel multiselection in
hypercubes. Parallel Algorithms and Applica-

tions, 14(3):217–227, 2000.

[23] H. Shen. Optimal parallel weighted multise-
lection. Technical report, Japan Advanced In-
stitue of Science and Technology, 2002.

[24] H. Shen and G. L. Chen. Parallel selection us-
ing recursive filtering. Chinese Journal of Com-
puters, 11:523–532, 1988.

[25] H. Shen and G. L. Chen. A new upper bound of
delay time in selection network. Chinese Jour-
nal of Computers, 13:88–100, 1990.

[26] C. K. Yap. New bounds for selection. Comm.
ACM, 19:501–508, 1976.

Proceedings of the Fifth International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP�02)
0-7695-1512-6/02 $17.00 © 2002 IEEE

