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Abstract

A method to design a new type of metamaterial is presented. A two-step strategy to define an optimal long-range force distribution
embedded in an elastic support to control wave propagation is considered.
The first step uses a linear quadratic regulator (LQR) to produce an optimal set of long-range interactions. In the second step, a
least square passive approximation of the LQR optimal gains is determined. The paper investigates numerical solutions obtained
by the previously described procedure. Finally, we discuss physical and engineering implications and practical use of the present
study.
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1. Statement of the problem

Metamaterial science is gaining a wide interest in the scientific community [1–4]. In recent papers [5–7] the
authors investigated some particular features of long-range metamaterials [1]. This physical context considers particles
interacting not only by closest neighbour forces, but also through long-distance actions [8]. A mathematical model to
describe the long-range interactions in mechanical systems takes into account nonlinear integro-differential equations:
the second order differential part represents the standard closest neighbour forces, while the integral part models the
long-distance interactions [6]. An alternative form, shown in [5], uses a higher order differential model to describe
the particles motion. The larger the order of derivation, the longer is the distance of interaction between the particles.
We analyse a rod structure that is equipped with long-range interaction forces. Such a system can be physically realised
starting from a conventional elastic rod structure to which is added a network of particles, uniformly distributed over
its length, that can interact each other through electrical or magnetic charges. Without giving details, this physical
arrangement is the subject of an experimental investigation and setup in the Sapienza Labs.
The two systems have respective forms [5,6]:

ρ
∂2w
∂t2 − E

∂2w
∂x2 − g ∗ w = 0 (1)
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ρ
∂2w
∂t2 − E

∂2w
∂x2 +

∑
i

βi
∂iw
∂xi = 0 (2)

where, in general, the number of terms in the summation can be arbitrarily large, even infinite. Long-range effects in

these equations are easily understood. While the term
∂2w
∂x2 accounts for the closest neighbour forces, the term g ∗ w,

or
∑

i

βi
∂iw
∂xi , includes the long-distance interaction. In fact, the discretized form of g ∗ w ≈ ∑k g(x − ξk)w(ξk)

makes clear how the convolution term brings at the point x all the force contributions coming from any point

ξk along the waveguide that represents the long-range effect. Similarly, the set of even derivatives
∑

i

βi
∂2iw
∂x2i =

∑
i

βi

ε2i

2i∑
m=0

(−1)m
(

2i
m

)
w [(k − i + m) ε], when written by discretized finite differences, where ε is the discretization

step along the x axis, substantially produces the same effect.
Long-range non-local effects can be obtained by different technologies. Two of them are investigated by our group
and use magnets and direct elastic connections, suitably placed along the waveguides represented, for example, by
equations (1) and (2). It is an obvious consideration that the embedding of magnets (as well as spring-like connection
elements) in the material has a cost and technology complications. Neverthless, their benefit in terms of vibration con-
trol of some and selected parts of the structure has been outlined in [5–7]. Benefits and costs of magnets embedding
claim for a trade-off analysis. Therefore, the natural questions arise: how strong would be the magnetic force, what
an optimal collocation of the magnets, how many magnets we decide to embed? Of course the wider the embedding,
the larger is the cost and the technological effort. Moreover, the process is physical not trivial to control, so also the
benefit we expect to receive is not easy predictable.
The previous considerations strongly suggest that the idea of using long-range interaction forces must be necessarily
accompanied by an optimization analysis. This permits, in the form proposed in the present paper, to make the best
selection of the long-range forces, provided a given limit on the maximum allowed range for them. In the final part of
the paper, the method finally allows for directions on the choice of magnets properties for the best embedding. The
problem here is technically posed in terms of best selection of g(x), or βi’s, to produce a material response able to
minimize (or maximize) an objective function.
The problem can be formulated as follows:



Find w(x, t) and g(x) so that

min J =
∫ T

0

∫
R2

[
s(ξ, η)w(ξ, t)w(η, t) + p(ξ, η)ẇ(ξ, t)ẇ(η, t) + r(ξ, η)g(ξ)g(η)

]
dξdηdt

s.t. ρ
∂2w
∂t2 − E

∂2w
∂x2 +

∑
i

βi
∂iw
∂xi = 0 with i even

(3)

where the weighting functions s(ξ, η), p(ξ, η) and r(ξ, η) are given.
The mechanical interpretation of this formulation is straight: we aim at introducing a long-range interaction g(x),
so that the objective function J is minimum and w(x, t) and g(x) satisfy the equation of motion (2). The objective
function J is the integral over the structure of two quadratic forms: the first, s(ξ, η)w(ξ, t)w(η, t)+ p(ξ, η)ẇ(ξ, t)ẇ(η, t),
is associated to some form of energy, while the second, r(ξ, η)g(ξ)g(η), is associated to the long-range effort. In other
words, we desire to minimize the energy along the structure, protecting some regions more than others, by suitably
modulating s(ξ, η) and p(ξ, η). This minimization has a cost related to the long-range force intensity to produce the
vibration reduction effect. The second quadratic form quantifies this effort and the objective function J expresses the
balance between the enhancement of the material performance (s(ξ, η)w(ξ, t)w(η, t)+ p(ξ, η)ẇ(ξ, t)ẇ(η, t)) and the cost
in terms of long-range force (r(ξ, η)g(ξ)g(η)) to produce the desired material response.
The optimality problem (3) is faced using at first the Linear Quadratic Regulator method - LQR. However, this
technique provides an active control solution, in which the controlled system can receive energy from the environment,
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as typical of active controls. Instead, the desired structure must perform a passive control response, associated only
to long-range connections. Therefore, we define the form of the control system by additional forces that account only
for passive long-range actions. A least square method - LSM is used to make these forces as far as possible close to
the LQR control. Numerical simulations complete the analysis.

2. Outline of the control strategy

Aim of this work is the particle motion control in the previously introduced system, through long-range interactions.
Dynamic systems can be operated at minimum cost by applying the optimal control theory, LQR in this specific case,
which provides a solution for an active control technique. However, in our statement of the problem (3), the long-
range forces must be of passive type. To merge what obtained by the LQR method, taken as a reference, and the
passive behaviour, a least square procedure is then applied, trying to adapt a passive scheme to an active control. The
result is able to imitate the active control as close as it is possible.
We start from a discrete version of problem (3). Introducing the vector x(t) = [w(x1, t),w(x2, t), ...w(xN , t)]T , where
xi = iε (ε is the discretization step along the waveguide), M and KCN are the mass and stiffness matrices, respectively,
equation (2) takes the form:

Mẍ + CCN ẋ +KCNx +
∑

h

βhKhx = 0 (4)

where, for generality, a damping matrix CCN is also considered, associated to closest neighbour interaction. The last
term

∑
h βhKhx is the discrete counterpart of the continuous form

∑
h βh

∂hw
∂xh , when using central finite differences. In

this case Kh are banded symmetric matrices of bandwidth h + 1. The discretized form of equation (4) can replace
equation (2) only for a certain range of excitation. This implies that the characteristic excitation wavelength λ must
be much longer than ε, λ � ε, making (4) a good approximation for (2).
In engineering practice, we know that a certain amount of damping remains associated to any force. This fact induces
to include a second long-range damping-related effect, which simply states damping as proportional to the stiffness.
Therefore, reconsidering equation (2), it produces:

Mẍ + CCN ẋ +KCNx +
∑

h

βhKh (x + γẋ) = 0 (5)

where γ is the coefficient that controls the damping associated to
∑

h

βhKh (Note that the β’s in (5) are not the same

used in (2), but they are simply proportional). Equation (5) suggests that our direct optimization goal is related to the
best choice of the βh’s. However, the direct approach to optimization through the βh implies the problem is nonlinear,
since x is an unknown of the problem as βh and they appear as a product in the equation of motion.
We prefer to split the problem into two easier steps: the first approaches the problem of determining a vector of
control forces that replaces the term

∑
h βhKh (x + γẋ) by Du, where D is an assigned matrix of constant coefficients,

while u in an unknown control variable. With this choice, the optimization problem collapses into a standard LQR
formulation. This will lead to u = K∗OPT x + C∗OPT ẋ. However, this form represents an active control and the energy
balance of the material substantially differs from the one of a passive material. This means K∗OPT does not reproduce,
in general, a stiffness matrix, since it is not symmetric, and the signs of coefficients do not satisfy necessary conditions
to be an elastic matrix.
To make the additional force Du = DK∗OPT x + DC∗OPT ẋ = fK

LQR + fC
LQR suitable to be adapted to a passive long-range

force
∑

h βhKhx +
∑

h βhγKhẋ = fK
LR + fC

LR, we can ask the βh’s to minimize
∫ T

0

(∣∣∣∣fK
LR − fK

LQR

∣∣∣∣
2
+
∣∣∣∣fC

LR − fC
LQR

∣∣∣∣
2)

dt in a
least square sense.

3. First step: LQR approach

To design a material structure engineered to control wave propagation, the LQR technique is considered.
The controlled equation of motion takes the form:

Mẍ + CCN ẋ +KCNx + Du = 0 (6)
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u is the long-range control vector and D the control matrix.
In general, u can have a lower dimension with respect to x and it has not a direct physical interpretation, but it is the
generator element of the long-distance force. The vector Du is indeed interpreted as a force, namely the control force
due to the long-range interaction.
The functional J to be minimized is the discrete counterpart of J in equation (3):

J =
∫ +∞

0

(
xTSx + ẋTPẋ + uTRu

)
dt (7)

where P, S and R are in general arbitrarily chosen matrices, according to the requirements of the LQR method.
However, we can select P, S and R simply diagonal.

Before to proceed further, it is necessary to write the problem at the first order using z =
{

ẋ
x

}
. With obvious notation,

we obtain:

ż = Az + Bu J =
∫ +∞

0

(
zTQz + uTRu

)
dt (8)

The optimal control problem min J, solved by the LQR, produces the solution u = −KOPT z, that substituted into the
equation of motion (6) yields:

Mẍ + CCN ẋ +KCNx − DKOPT

{
ẋ
x

}
= 0 (9)

The partition KOPT =


C∗OPT K∗OPT

0 0

 finally determines the controlled equation of motion:

Mẍ + CCN ẋ +KCNx − DC∗OPT ẋ − DK∗OPT x = 0 (10)

4. Second step: LSM passive approximation

The goal here is to reproduce the active control of equation (10), in terms of a long-range interaction, as it is
described by equation (5). This operation is achieved acting on the coefficients βh’s.
The criterion to match the two forms has been outlined in section 2:

min
βh

Y = min
βh

[∫ T

0

(∣∣∣fK
LR − fK

LQR

∣∣∣2 +
∣∣∣fC

LR − fC
LQR

∣∣∣2
)

dt
]

(11)

where, on the basis of the results of section 3, we obtain:

∣∣∣fK
LR − fK

LQR

∣∣∣2 =
∣∣∣∣∣∣∣
∑

h

Khx(t) −KLQRx(t)

∣∣∣∣∣∣∣
2

∣∣∣fC
LR − fC

LQR

∣∣∣2 =
∣∣∣∣∣∣∣γ
∑

h

Khx(t) − CLQRx(t)

∣∣∣∣∣∣∣
2 (12)

With the notation β =
[
β1, β2, ..., βM

]T , we have to solve the least square system
∂Y
∂β
= 0.

Let:

T (k)
rs =

∫ T

0

(
xT KT

r Ksx
)

dt T (c)
rs = γ

2
∫ T

0

(
ẋT KT

r Ksẋ
)

dt

V (k)
r =

∫ T

0

(
xT KT

r KLQRx
)

dt V (c)
r = γ

∫ T
0

(
ẋT KT

r CLQRẋ
)

dt

W (k)
s =

∫ T

0

(
xT KT

LQRKsx
)

dt W (c)
s = γ

∫ T
0

(
ẋT CT

LQRKsẋ
)

dt

(13)
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The linear system generated by
∂Y
∂β
= 0 produces:

β =
1
2

(
T(k) + T(c)

)−1 (
V(k) + V(c) +W(k) +W(c)

)
(14)

that definitely solves the posed problem.

5. Numerical Simulations

The simulated system is a one-dimensional discrete longitudinal waveguide with uniform masses, each one con-
nected to its first neighbours through equal dampers and springs. A simulation time over an observation time much
smaller than the first natural period of the elastic rod allows to neglect boundary conditions, assimilating the system
to an infinite rod. The damping coefficient has been set as the 5% of the critical damping. To perform the simulations,
an initial non-zero displacement is imposed to the waveguide, in the form of a damped sine-shape decaying from the
left end.
The long-range interaction force is determined using the procedure illustrated in sections (3) and (4). The matrix ex-
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Fig. 1. Controlled waveguide simulations. The dashed vertical lines (red in digital version) show the controlled region

pansion
∑

h βhKh has been limited only to two terms, confining the range of interaction in equation (2) up to the fourth
order derivatives. The plots of Figure 1 show the comparison between the classical waveguide and the controlled one
by long-range forces. The decay of the response in the second case is self-evident. The choice of the Q matrix has
weights not uniform, emphasising the reduction in a the region (identified by the vertical dashed lines).
The strong decrease of the response is physically due also to the extra-damping induced by the long-range. However,
the optimization process guarantees this is the best result one can obtain connecting the masses of the simulated chain
in a range up to 2ε distance.
In other words, if we have a linear chain of N masses, decide to limit interactions to the range 2εmeans we put a limit
on the number of additional connections to be activated. This number is 4(N − 1). With this upper bound, the outlined
procedure guarantees the best result.

6. Physical and engineering remarks

One of the final goals of this work is the design of a new type of elasto-magnetic metamaterial, defining the
distribution and the intensity of magnetic dipoles embedded within an elastic support to obtain remarkable effects
on the capability of controlling wave propagation. The previous results find a general solution to this problem,
independently of the nature of the considered force. In other words, we found the best g(x) in equation (1), whatever
the physical origin for g(x), but making it possible to realize it by a passive system of long-range connections.
A Gaussian-like interaction is considered here, since it retraces the long-range decay with the distance, typical of the
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magnetic forces and can suitably interpolate magnetic interaction. As in [7], f (r) = µre−σr2
, assumed r = x − ξ +

w(x) − w(ξ) and ξ = iε; the coefficients βh’s can then be analytically expressed as functions of µ, σ and ε. Limiting
the interaction at the second neighbours, the related coefficients are:

β2 = µ(1 − 2βε2)e−βε
2
+ 4µ(1 − 8βε2)e−4βε2

β4 = µ(1 − 8βε2)e−4βε2
(15)

Given equation (15) and the values of β2 and β4 as obtained by the LSM procedure and for a fixed ε, the coefficients
µ and σ can be evaluated and they lead to the Gaussian-like force represented below. Therefore, the present analysis
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is able to provide the general structure of the best long-range force, once the designer puts a limit on the range of
the force. This is a practical, reasonable, engineering bound that confines the cost and the technological effort. If
the long-range force would be built by mechanical elastic connections, an element of practical simplicity can suggest
this bound. If a magnetic force would be generated by embedding small magnets, a practical bound is related to the
intensity, i.e. the force range of the used magnets.
The theory of long-range interaction developed in [5–7] and the optimality criteria for an effective design proposed
in the present paper are going to be used in an experimental campaign in the labs of the Dept. of Mechanical and
Aerospace Engineering at Sapienza, University of Rome.
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