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Abstract. Despite the impressive progress brought by deep network in
visual object recognition, robot vision is still far from being a solved
problem. The most successful convolutional architectures are developed
starting from ImageNet, a large scale collection of images of object cat-
egories downloaded from the Web. This kind of images is very different
from the situated and embodied visual experience of robots deployed in
unconstrained settings. To reduce the gap between these two visual ex-
periences, this paper proposes a simple yet effective data augmentation
layer that zooms on the object of interest and simulates the object de-
tection outcome of a robot vision system. The layer, that can be used
with any convolutional deep architecture, brings to an increase in ob-
ject recognition performance of up to 7%, in experiments performed over
three different benchmark databases. Upon acceptance of the paper, our
robot data augmentation layer will be made publicly available.

1 Introduction

The ability to understand what they see is crucial for autonomous robots de-
ployed in unconstrained settings, such as those shared with humans. Recent
advances in visual recognition, induced by the deep learning tidal wave, has
brought high hopes that the very same impressive progresses seen in the com-
puter vision community would have been quickly shared by the robot vision
community . Experimental evaluations have repeatedly shown that this is not
the case. Although the use of convolutional neural networks has brought impor-
tant improvements in performance, compared to approaches based on shallow
classifiers, several authors have shown that we are still far from the level of per-
formance necessary to robots in the wild (we refer to section [2] for a review of
previous work on the topic).

An issue that has called considerable attention is the difference between web
images and robot images (ﬁgure. Web images, that constitute the main train-
ing resource of modern deep networks, tend to show objects in the center of
the scene, in various contexts, from canonical view-points, i.e. view-points cap-
turing the most informative parts of the object of interest (figure [2 left). As
opposed to this, robots acquire snapshots of objects to be recognised based on
the figure-ground segmentation algorithms they are equipped with. This often
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leads to objects imaged at unusual angles and scale, and only partially visible
in the image (figure [2| right). This is a crucial issue, because the overwhelming
majority of deep visual recognition networks are trained over ImageNet, a 1.4M
images database of 1000 object categories derived from the Web . Hence, any
visual object recognition system attempting to use such deep networks for robot
vision, is attempting to recognise objects based on a very different type of visual
information than what the robot perceives in its situated scenario.

The focus of this paper is on how to bridge among these two different visual
domains, with the aim to increase the performance of deep visual object recogni-
tion networks when used on robotic data. We propose to enrich the original web
images with rescaled and cropped version of the original view, so to simulate to
a certain extent the visual experience of an autonomous agent. The procedure
can be integrated into any deep architecture as a data augmentation layer. Ex-
tensive experiments on 3 different databases and 2 different deep networks show
that our approach leads to increases in absolute performance of up to 7%. Upon
acceptance of the paper, we will release a python implementation for a seamless
integration of our data augmentation strategy in any deep network.

Our method:

Random
Crop Zooming
Extractor DA
Layer

CNN

Random
Cropping
S CNN

Layer

Classical method:

Fig.1: Above, the proposed pipeline: from each image we extract one or more
objects, using bounding box annotations. Each centered object goes then through
our data augmentation layer which extracts a number of crops at varying zoom
levels. Below, the classical approach: each image is randomly cropped by a
small amount, with no notion of objectness.

The rest of the paper is organized as follows: after a review of relevant litera-
ture (section, we describe our strategy for generating robot-like object images
starting from web images, and how the data augmentation layer works in prac-
tice. Section [4] reports our experimental setup and the results obtained over the
Washington-RGBD , JHUIT-50 and HelloiCubWorld ﬂgﬂ databases. We
conclude with a summary and discussing future research directions.



Fig. 2: Images from classes stapler, water bottle, cellphone, spray can as seen in
Imagenet (left) and JHUIT-50, HelloiCubWorld (right)

2 Related Work

State of the art work in computer vision reveals that deep convolutional models,
when pre-trained on a large and diverse dataset like ImageNet , are able
to extract general and high level information from images . Exploiting this
generalized knowledge for new tasks is common practice. In , the use of a
pre-trained convolutional model, installed on a robot, was combined with context
aware semantic web mining for object recognition. In [14], a pre-trained CNN
model was used as feature extractor on the RGB-D Object dataset for pose
estimation. Large convolutional models pre-trained on RGB images have been
used to extract rich features from depth images by representing depth with three
channels . combined RGB and depth classification, parallelizing deep
pre-trained models for each modality. Robot images are usually more prone to
scaling and translation noise; shows behaviours of features extracted from
pre-trained deep models with different degrees of visual transformations. While
the robot vision community is exploring several valid strategies, recent works in
the field share the same specific step: they use an AlexNet [4] model pre-trained
on the ImageNet 1000 object categories dataset for classification or feature
extraction on RGB images. We argue that features extracted from these models,
while having shown generality , are still tied to the original representations,
suffering from their own bias. Web images are directly downloaded from the
web, and often they have been acquired by humans and subjected to manual
cleaning and annotation. Hence, they are prone to heavy background noise.
Robot acquired images are often taken in large quantities in the same setting
instead, such as the same room or office, and are subject to a different kind of
bias. The robot often walks around the office, taking pictures of various things
of interest. In our approach we train deep convolutional models by artificially
injecting robot images’ bias on the training dataset. By applying bounding box
cropping and random zooming transformations on web images, we make them



more similar to robot images and subsequently test how our adapted models
perform in robot vision task against models trained on original images. We are
not aware of any previous work in this direction.

3 Robot Specific Data Augmentation

We propose a methodology for improving performances in robot vision tasks
when pre-training deep convolutional models on web images.

Very often CNN models pre-trained on the 1000 object categories dataset [2]
are used for feature extraction on robotic tasks. Classification scores in these
scenarios are good but not exceptional. The state of the art seems to suggest
problems related to a domain gap between ImageNet’s [3] web acquired images
and robot images. Web images are often acquired by humans and the main
source of noise is the background, which may vary significantly between pictures
belonging to the same category. Robot acquired images are subject to a different
kind of noise, objects are usually zoomed in or translated, while the background
view is limited.

Since pre-trained models are trained on web pictures, we process the CNN’s
training dataset to make its images resemble robot-acquired images, so that our
deep convolutional models learn features more resistant to robot vision noise.
Instead of training directly on web images, we use off-line preprocessing to build
a crop dataset by using bounding boxes annotation. We also enlarge original
bounding boxes by 20% before cropping. At training time, we use random zoom-
ing on the object crops to make the network see randomly zoomed versions of the
same object. The data-augmentation extracts patches at casual position, with a
random zooming factor between 1.0x and 2.0x. After zooming, images got resized
to fit the first convolutional layer’s input size using bilinear interpolation.

Combinining our off-line and on-line processing methodologies we trained
networks on patches containing zoomed-in or partially excluded objects, common
properties for robot images, and results show that models pre-trained on these
object parts significantly outperform models pre-trained on original images in
every robot vision task we tested them for.

4 Experiments

We train two models for each of our training datasets, a model based on the
” AlexNet” architecture [4] and a model based on the "Inception-v3” architecture
[6], using the data-augmentation techniques described in previous section. We
then select several robotic datasets with centered, non-centered, zoomed-in and
artificially translated images, and use our pre-trained CNNs models as features
extractors on these datasets [7]. Lastly, we run a linear classifier on the extracted
features to evaluate how well our models have generalized to the robotic tasks.



4.1 Databases

CNN’s training datasets. We collect 3 datasets from ImageNet [3] for train-
ing our models. We will refer to these datasets as Baseline, Clean Crops and
Dirty Crops for the rest of the article. The Baseline dataset consists of a set
of images, all having bounding boxes annotations, for which, like in the 1000
object categories dataset [2], there is no semantic overlap between the classes.
Clean Crops is another dataset without semantic overlaps between the classes,
it contains 930.000 images, obtained from Baseline by cropping objects outside
original pictures using bounding boxes annotation. For the Dirty Crops dataset,
we used every ImageNet’s bounding box to crop objects, and as a result, this
dataset contains many IS-A relationships between its classes, but, with approx-
imately 1.2 million images, its also larger than the Clean Crops.

Robotic datasets. We run our experiments on the JHUIT-50 [8], HelloiCub-
World [9] and RGB-D Object [10] datasets. The JHUIT-50 dataset is focused on
the task of fine-grained instance recognition and consists of 50 objects and hand
tools, with images being acquired by rotating a camera around the objects at
different heights - it contains almost 15.000 images. HelloiCubWorld contains a
“human” and a "robot” dataset. Images in the datasets are obtained by using
human or robot modes of acquisition. In the human mode acquisition, a human
moves the object while the robot tracks it. In the robot mode acquisition, the
robot moves the object in its own hand, tracking it. The HelloiCubWorld-human
dataset is obtained by using human mode acquisition, and the HelloiCubWorld-
robot dataset is obtained by using robot mode acquisition. Both datasets con-
sist of objects organized in 7 classes and each of them contain 7.000 images.
The RGB-D Object dataset has been obtained by collecting frames from objects
spinning on a turntable, it consists of 300 objects organized into 51 categories;
with around 50.000 images it’s the largest we experiment on. We also created
artificially translated versions of the RGB-D Object dataset to study translation
invariance of features extracted by our models. We created 3 additional versions,
RGB-D_tr_10%, RGB-D_tr_20% and RGB-D_tr_30% for which we have randomly
translated original crops by 10%, 20% and 30% respectively (see fig. .

4.2 Architectures

AlexNet. AlexNet [4] is the architecture behind the competition winning model
for the ILSVRC 2012 competition [2], it consists of 5 convolutional layer, followed
by 3 fully connected layer. The AlexNet is currently one of the most widely used
architecture in the robotic community.

Inception-v3. The Inception-v3 [6] is an improved version of the original In-
ception architecture [5]. It consists of several inception modules stacked on top
of each other. Compared to the AlexNet [4], the Inception-v3 is a more advanced
architecture which achieved far better classification results on the ILSVRC com-
petition.
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Fig. 3: Original crops from the RGB-D Object dataset (top) and the same crops
after random translations (bottom)

4.3 Results

For each architecture, we trained one model on the Baseline dataset with random
cropping, and two models for each of the crops datasets, one with random crop-
ping and the other with random zooming. On AlexNet, random cropping was
obtained by taking random 227x227 patches from the 256x256 input images;
on Inception-v3, we took 299x299 patches on 384x384 input images. AlexNet
models were trained by setting initial learning rate at 0.01 and dividing it by
a factor of 3 each time validation loss didn’t improve for 4 consecutive epochs;
this procedure was repeated 6 times. Inception-v3 models were trained by set-
ting learning rate at 0.01 and dividing it by a factor of 10 each time validation
loss got worse, with this procedure being repeated 2 times. All models were also
trained using random horizontal flipping.

After training, we extracted features of robotic images from different layers.
On the AlexNet models, we extracted features from pool5, fc6 and fc7. On the
Inception-v3 models, we extracted features from a max pooling layer and an
average pooling layer we placed on top of the last convolution; for both of those
layers we used kernel size 8 and stride 2.

Final classification occurred by running a linear SVM on extracted features.
Hyperparameter for the SVM was chosen by running a 3-fold cross validation
for the RGB-D Object dataset and its variations, while it was left at the default
value for the other robotic datasets.

Model’s results are summarized in the following tables and charts. Accu-
racy score refers to results obtained by running the linear classifiers on features
extracted by a model trained on a specific dataset and with a corresponding
data-augmentation technique. Each Table refers to features extracted from a
certain architecture, which is indicated in the caption.

On Inception-v3 models, features extracted from the average pooling layer
provided inferior results compared to features extracted from the max pooling
layer for the JHUIT-50 and HelloiCubWorld datasets. For this reason we didn’t
test the average pooling’s features on the RGB-D Object datasets and its vari-
ations.



Table 1: SVM results using AlexNet features on the HelloiCubWorld and JHUIT-
50 datasets. In bold the best results for a given layer. Best overall results are
highlighted in red.
Training Data iCub  iCub
dataset augmentation |(human) (robot)

Baseline Random Cropping| 93.66 94.11 85.00
Clean Crops Random Cropping| 94.14 96.31  85.36
Clean Crops Random Zooming| 93.49  96.09 85.79 |pool5
Dirty Crops Random Cropping| 93.66  94.11 85.00
Dirty Crops Random Zooming| 94.60 95.60 87.05

Baseline Random Cropping| 91.91 92.91 84.53
Clean Crops Random Cropping| 93.09  94.00 84.13
Clean Crops Random Zooming| 94.26 97.54  84.04 fc6
Dirty Crops Random Cropping| 93.27 94.91 84.67
Dirty Crops Random Zooming| 94.86 96.89 85.41

Baseline Random Cropping| 89.94  90.66 81.82
Clean Crops Random Cropping| 90.46  93.43 81.58
Clean Crops Random Zooming| 92.86 97.89  81.18 fe7
Dirty Crops Random Cropping| 93.46 95.17 81.62
Dirty Crops Random Zooming| 93.23  96.11 81.09

JHUIT-50|Layer

4.4 Discussion

Our results show that the best models are those trained on the crops datasets
using random zooming. On the AlexNet architecture the best model has been
the one trained on Dirty Crops, while the Inception-v3 models trained on Dirty
Crops and Clean Crops had comparable results, suggesting that AlexNet gen-
eralized better features by using more training images, even in the presence of
semantically overlapping labels.

Inception-v3 model trained on Clean Crops achieved a mean accuracy score
of 91.76 on the RGB-D Object splits, compared to the Baseline model which
scored 88.78, and also scored 92.50 points on the JHUIT-50 task, 4.5 points
higher than the corresponding Baseline score. Inception-v3 model trained on
Dirty Crops also surpassed the Baseline on the RGB-D Object and JHUIT-50
tasks, scoring 91.04 points and 93.13 points respectively. Models trained with our
methodology and tested on the HelloiCubWorld-human dataset didn’t improve
the Baseline results, while they performed worse for the HelloiCubWorld-robot
task, albeit the difference is lower than one point and the dataset is small.

We also test the models we trained on artificially translated versions of the
RGB-D Object dataset. Features extracted from the models trained on Crop
datasets with Random Zooming performed better than features extracted from
models trained on the Baseline against increasing levels of artificial translations.

Since we employed Random Zooming to simulate the zooming and off-target
detection phenomena we commonly see in robotic data-set, we used it only for
models trained on object crops. Since we are comparing models trained with



Table 2: SVM results using AlexNet features on the RGB-D Object dataset and
it’s artificially translated versions. In bold the best results for a given layer. Best

overall results are highlighted in red.
Training Data
dataset augmentation
Baseline Random Cropping| 84.904+1.02 82.92+1.17 79.414+1.30 76.74 +1.53
Clean Crops Random Cropping| 86.29 +1.83 84.85+1.56 81.85+1.81 79.68 +1.75
Clean Crops Random Zooming| 88.38 +1.42 86.55+1.63 83.64+1.56 81.70+ 1.62 |poolb
Dirty Crops Random Cropping| 87.53 £1.97 85.79£1.97 82.88+£1.89 80.49+1.76
Dirty Crops Random Zooming| 88.67 +£ 1.81 87.13 4+ 2.07 84.71 4+ 2.07 82.31 + 2.07
Baseline Random Cropping| 81.994+1.20 80.28+1.36 77.66+1.32 75.39 4+ 1.43
Clean Crops Random Cropping| 84.38 +2.00 82.94+2.01 80.36 £1.76 77.74+1.70
Clean Crops Random Zooming| 85.36 +1.59 83.21 +2.43 81.82+2.03 80.41 +1.89 | fc6
Dirty Crops Random Cropping| 85.76 £2.22 84.11+£2.31 80.90 +2.10 79.02 £ 1.81
Dirty Crops Random Zooming| 86.05 +1.99 84.54 + 2.29 82.75 + 2.02 80.93 +1.74
Baseline Random Cropping| 78.154+1.40 76.62+1.36 74.08 £1.31 71.13 +71.13
Clean Crops Random Cropping| 81.63+2.39 80.07+2.55 76.84+2.29 73.68 4+ 2.23
Clean Crops Random Zooming| 81.80+1.93 80.64+£2.16 78.90+2.08 77.04+2.12 | fc7
Dirty Crops Random Cropping| 82.93 +2.32 80.80 £2.25 77.53+£2.05 74.73+1.97
Dirty Crops Random Zooming| 82.58 £2.54 81.57 +2.47 79.97 +2.56 77.63 & 2.00

RGB-D Object  tr_-10% tr20% tr-30%  |Layer

random zooming with a baseline model trained with random cropping, it could
be argued that it is the random zooming itself giving better results, and not
the crop dataset used for training. Also the Dirty Crops datasets contain crops
extracted from images not in the Baseline dataset. However, by comparing results
obtained with the Baseline models with results obtained with the models trained
on Clean Crops with random cropping, we observe that using the crop dataset
is also beneficial for the final classification task. Features extracted from the
AlexNet models trained on Clean Crops with random cropping outperformed
the corresponding Baseline features in every task. Features extracted from the
Inception-v3 model trained on Clean Crops with random cropping outperformed
Baseline features by 1.23 and 4.57 points on the RGB-D Object and JHUIT-50
tasks, while they got outperformed on the smaller HelloiCubWorld human and
robot datasets by 0.08 and 0.5 points.

5 Conclusions

This paper presented a simple yet effective approach for improving the object
classification accuracy of any deep network trained over large scale databases
collected from the Web and used in the robot vision context. Our idea is to
increase the similarity between the data acquired in the two visual domains
by randomly scaling, zooming and cropping each image in a data augmentation
layer. Results over three different benchmark databases confirm the effectiveness
of the method.

While this technique certainly give a small but consistent help in bridging
between computer and robot vision, very many challenges remain open. In par-
ticular, we will dedicate future work attempting to close the gap between these
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Fig.4: Results on HelloiCubWorld and JHUIT-50 - InceptionV3. Notice how
our proposed methods boosts extensively the accuracy on JHUIT-50; the same
cannot be said about HelloiCubWorld but it must be kept in mind that it is a
small dataset, the accuracy is already extremely high, and the differences are
statistically insignificant.
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Fig.5: Results on Washington RGB - InceptionV3 Max Pool.

two different perceptual tasks by leveraging over the domain adaptation litera-
ture, aiming for methods working in the unsupervised domain adaptation setting
without heavy requirements about the deep architecture of choice.
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